anv: Implement VK_KHR_vulkan_memory_model
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "util/xmlpool.h"
44 #include "git_sha1.h"
45 #include "vk_util.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57 DRI_CONF_END;
58
59 /* This is probably far to big but it reflects the max size used for messages
60 * in OpenGLs KHR_debug.
61 */
62 #define MAX_DEBUG_MESSAGE_LENGTH 4096
63
64 static void
65 compiler_debug_log(void *data, const char *fmt, ...)
66 {
67 char str[MAX_DEBUG_MESSAGE_LENGTH];
68 struct anv_device *device = (struct anv_device *)data;
69
70 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
71 return;
72
73 va_list args;
74 va_start(args, fmt);
75 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
76 va_end(args);
77
78 vk_debug_report(&device->instance->debug_report_callbacks,
79 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
80 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
81 0, 0, 0, "anv", str);
82 }
83
84 static void
85 compiler_perf_log(void *data, const char *fmt, ...)
86 {
87 va_list args;
88 va_start(args, fmt);
89
90 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
91 intel_logd_v(fmt, args);
92
93 va_end(args);
94 }
95
96 static uint64_t
97 anv_compute_heap_size(int fd, uint64_t gtt_size)
98 {
99 /* Query the total ram from the system */
100 struct sysinfo info;
101 sysinfo(&info);
102
103 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
104
105 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
106 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
107 */
108 uint64_t available_ram;
109 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
110 available_ram = total_ram / 2;
111 else
112 available_ram = total_ram * 3 / 4;
113
114 /* We also want to leave some padding for things we allocate in the driver,
115 * so don't go over 3/4 of the GTT either.
116 */
117 uint64_t available_gtt = gtt_size * 3 / 4;
118
119 return MIN2(available_ram, available_gtt);
120 }
121
122 static VkResult
123 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
124 {
125 uint64_t gtt_size;
126 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
127 &gtt_size) == -1) {
128 /* If, for whatever reason, we can't actually get the GTT size from the
129 * kernel (too old?) fall back to the aperture size.
130 */
131 anv_perf_warn(NULL, NULL,
132 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
133
134 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
135 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
136 "failed to get aperture size: %m");
137 }
138 }
139
140 device->supports_48bit_addresses = (device->info.gen >= 8) &&
141 gtt_size > (4ULL << 30 /* GiB */);
142
143 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
144
145 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
146 /* When running with an overridden PCI ID, we may get a GTT size from
147 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
148 * address support can still fail. Just clamp the address space size to
149 * 2 GiB if we don't have 48-bit support.
150 */
151 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
152 "not support for 48-bit addresses",
153 __FILE__, __LINE__);
154 heap_size = 2ull << 30;
155 }
156
157 if (heap_size <= 3ull * (1ull << 30)) {
158 /* In this case, everything fits nicely into the 32-bit address space,
159 * so there's no need for supporting 48bit addresses on client-allocated
160 * memory objects.
161 */
162 device->memory.heap_count = 1;
163 device->memory.heaps[0] = (struct anv_memory_heap) {
164 .vma_start = LOW_HEAP_MIN_ADDRESS,
165 .vma_size = LOW_HEAP_SIZE,
166 .size = heap_size,
167 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
168 .supports_48bit_addresses = false,
169 };
170 } else {
171 /* Not everything will fit nicely into a 32-bit address space. In this
172 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
173 * larger 48-bit heap. If we're in this case, then we have a total heap
174 * size larger than 3GiB which most likely means they have 8 GiB of
175 * video memory and so carving off 1 GiB for the 32-bit heap should be
176 * reasonable.
177 */
178 const uint64_t heap_size_32bit = 1ull << 30;
179 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
180
181 assert(device->supports_48bit_addresses);
182
183 device->memory.heap_count = 2;
184 device->memory.heaps[0] = (struct anv_memory_heap) {
185 .vma_start = HIGH_HEAP_MIN_ADDRESS,
186 /* Leave the last 4GiB out of the high vma range, so that no state
187 * base address + size can overflow 48 bits. For more information see
188 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
189 */
190 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
191 .size = heap_size_48bit,
192 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
193 .supports_48bit_addresses = true,
194 };
195 device->memory.heaps[1] = (struct anv_memory_heap) {
196 .vma_start = LOW_HEAP_MIN_ADDRESS,
197 .vma_size = LOW_HEAP_SIZE,
198 .size = heap_size_32bit,
199 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
200 .supports_48bit_addresses = false,
201 };
202 }
203
204 uint32_t type_count = 0;
205 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
206 uint32_t valid_buffer_usage = ~0;
207
208 /* There appears to be a hardware issue in the VF cache where it only
209 * considers the bottom 32 bits of memory addresses. If you happen to
210 * have two vertex buffers which get placed exactly 4 GiB apart and use
211 * them in back-to-back draw calls, you can get collisions. In order to
212 * solve this problem, we require vertex and index buffers be bound to
213 * memory allocated out of the 32-bit heap.
214 */
215 if (device->memory.heaps[heap].supports_48bit_addresses) {
216 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
217 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
218 }
219
220 if (device->info.has_llc) {
221 /* Big core GPUs share LLC with the CPU and thus one memory type can be
222 * both cached and coherent at the same time.
223 */
224 device->memory.types[type_count++] = (struct anv_memory_type) {
225 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
226 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
227 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
228 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
229 .heapIndex = heap,
230 .valid_buffer_usage = valid_buffer_usage,
231 };
232 } else {
233 /* The spec requires that we expose a host-visible, coherent memory
234 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
235 * to give the application a choice between cached, but not coherent and
236 * coherent but uncached (WC though).
237 */
238 device->memory.types[type_count++] = (struct anv_memory_type) {
239 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
240 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
241 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
242 .heapIndex = heap,
243 .valid_buffer_usage = valid_buffer_usage,
244 };
245 device->memory.types[type_count++] = (struct anv_memory_type) {
246 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
247 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
248 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
249 .heapIndex = heap,
250 .valid_buffer_usage = valid_buffer_usage,
251 };
252 }
253 }
254 device->memory.type_count = type_count;
255
256 return VK_SUCCESS;
257 }
258
259 static VkResult
260 anv_physical_device_init_uuids(struct anv_physical_device *device)
261 {
262 const struct build_id_note *note =
263 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
264 if (!note) {
265 return vk_errorf(device->instance, device,
266 VK_ERROR_INITIALIZATION_FAILED,
267 "Failed to find build-id");
268 }
269
270 unsigned build_id_len = build_id_length(note);
271 if (build_id_len < 20) {
272 return vk_errorf(device->instance, device,
273 VK_ERROR_INITIALIZATION_FAILED,
274 "build-id too short. It needs to be a SHA");
275 }
276
277 memcpy(device->driver_build_sha1, build_id_data(note), 20);
278
279 struct mesa_sha1 sha1_ctx;
280 uint8_t sha1[20];
281 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
282
283 /* The pipeline cache UUID is used for determining when a pipeline cache is
284 * invalid. It needs both a driver build and the PCI ID of the device.
285 */
286 _mesa_sha1_init(&sha1_ctx);
287 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
288 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
289 sizeof(device->chipset_id));
290 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
291 sizeof(device->always_use_bindless));
292 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
293 sizeof(device->has_a64_buffer_access));
294 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
295 sizeof(device->has_bindless_images));
296 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
297 sizeof(device->has_bindless_samplers));
298 _mesa_sha1_final(&sha1_ctx, sha1);
299 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
300
301 /* The driver UUID is used for determining sharability of images and memory
302 * between two Vulkan instances in separate processes. People who want to
303 * share memory need to also check the device UUID (below) so all this
304 * needs to be is the build-id.
305 */
306 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
307
308 /* The device UUID uniquely identifies the given device within the machine.
309 * Since we never have more than one device, this doesn't need to be a real
310 * UUID. However, on the off-chance that someone tries to use this to
311 * cache pre-tiled images or something of the like, we use the PCI ID and
312 * some bits of ISL info to ensure that this is safe.
313 */
314 _mesa_sha1_init(&sha1_ctx);
315 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
316 sizeof(device->chipset_id));
317 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
318 sizeof(device->isl_dev.has_bit6_swizzling));
319 _mesa_sha1_final(&sha1_ctx, sha1);
320 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
321
322 return VK_SUCCESS;
323 }
324
325 static void
326 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
327 {
328 #ifdef ENABLE_SHADER_CACHE
329 char renderer[10];
330 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
331 device->chipset_id);
332 assert(len == sizeof(renderer) - 2);
333
334 char timestamp[41];
335 _mesa_sha1_format(timestamp, device->driver_build_sha1);
336
337 const uint64_t driver_flags =
338 brw_get_compiler_config_value(device->compiler);
339 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
340 #else
341 device->disk_cache = NULL;
342 #endif
343 }
344
345 static void
346 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
347 {
348 #ifdef ENABLE_SHADER_CACHE
349 if (device->disk_cache)
350 disk_cache_destroy(device->disk_cache);
351 #else
352 assert(device->disk_cache == NULL);
353 #endif
354 }
355
356 static uint64_t
357 get_available_system_memory()
358 {
359 char *meminfo = os_read_file("/proc/meminfo");
360 if (!meminfo)
361 return 0;
362
363 char *str = strstr(meminfo, "MemAvailable:");
364 if (!str) {
365 free(meminfo);
366 return 0;
367 }
368
369 uint64_t kb_mem_available;
370 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
371 free(meminfo);
372 return kb_mem_available << 10;
373 }
374
375 free(meminfo);
376 return 0;
377 }
378
379 static VkResult
380 anv_physical_device_init(struct anv_physical_device *device,
381 struct anv_instance *instance,
382 drmDevicePtr drm_device)
383 {
384 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
385 const char *path = drm_device->nodes[DRM_NODE_RENDER];
386 VkResult result;
387 int fd;
388 int master_fd = -1;
389
390 brw_process_intel_debug_variable();
391
392 fd = open(path, O_RDWR | O_CLOEXEC);
393 if (fd < 0)
394 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
395
396 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
397 device->instance = instance;
398
399 assert(strlen(path) < ARRAY_SIZE(device->path));
400 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
401
402 if (!gen_get_device_info_from_fd(fd, &device->info)) {
403 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
404 goto fail;
405 }
406 device->chipset_id = device->info.chipset_id;
407 device->no_hw = device->info.no_hw;
408
409 if (getenv("INTEL_NO_HW") != NULL)
410 device->no_hw = true;
411
412 device->pci_info.domain = drm_device->businfo.pci->domain;
413 device->pci_info.bus = drm_device->businfo.pci->bus;
414 device->pci_info.device = drm_device->businfo.pci->dev;
415 device->pci_info.function = drm_device->businfo.pci->func;
416
417 device->name = gen_get_device_name(device->chipset_id);
418
419 if (device->info.is_haswell) {
420 intel_logw("Haswell Vulkan support is incomplete");
421 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
422 intel_logw("Ivy Bridge Vulkan support is incomplete");
423 } else if (device->info.gen == 7 && device->info.is_baytrail) {
424 intel_logw("Bay Trail Vulkan support is incomplete");
425 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
426 /* Gen8-11 fully supported */
427 } else if (device->info.gen == 12) {
428 intel_logw("Vulkan is not yet fully supported on gen12");
429 } else {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INCOMPATIBLE_DRIVER,
432 "Vulkan not yet supported on %s", device->name);
433 goto fail;
434 }
435
436 device->cmd_parser_version = -1;
437 if (device->info.gen == 7) {
438 device->cmd_parser_version =
439 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
440 if (device->cmd_parser_version == -1) {
441 result = vk_errorf(device->instance, device,
442 VK_ERROR_INITIALIZATION_FAILED,
443 "failed to get command parser version");
444 goto fail;
445 }
446 }
447
448 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
449 result = vk_errorf(device->instance, device,
450 VK_ERROR_INITIALIZATION_FAILED,
451 "kernel missing gem wait");
452 goto fail;
453 }
454
455 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
456 result = vk_errorf(device->instance, device,
457 VK_ERROR_INITIALIZATION_FAILED,
458 "kernel missing execbuf2");
459 goto fail;
460 }
461
462 if (!device->info.has_llc &&
463 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
464 result = vk_errorf(device->instance, device,
465 VK_ERROR_INITIALIZATION_FAILED,
466 "kernel missing wc mmap");
467 goto fail;
468 }
469
470 result = anv_physical_device_init_heaps(device, fd);
471 if (result != VK_SUCCESS)
472 goto fail;
473
474 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
475 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
476 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
477 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
478 device->has_syncobj_wait = device->has_syncobj &&
479 anv_gem_supports_syncobj_wait(fd);
480 device->has_context_priority = anv_gem_has_context_priority(fd);
481
482 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
483 && device->supports_48bit_addresses;
484
485 device->has_context_isolation =
486 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
487
488 device->always_use_bindless =
489 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
490
491 /* We first got the A64 messages on broadwell and we can only use them if
492 * we can pass addresses directly into the shader which requires softpin.
493 */
494 device->has_a64_buffer_access = device->info.gen >= 8 &&
495 device->use_softpin;
496
497 /* We first get bindless image access on Skylake and we can only really do
498 * it if we don't have any relocations so we need softpin.
499 */
500 device->has_bindless_images = device->info.gen >= 9 &&
501 device->use_softpin;
502
503 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
504 * because it's just a matter of setting the sampler address in the sample
505 * message header. However, we've not bothered to wire it up for vec4 so
506 * we leave it disabled on gen7.
507 */
508 device->has_bindless_samplers = device->info.gen >= 8;
509
510 device->has_mem_available = get_available_system_memory() != 0;
511
512 /* Starting with Gen10, the timestamp frequency of the command streamer may
513 * vary from one part to another. We can query the value from the kernel.
514 */
515 if (device->info.gen >= 10) {
516 int timestamp_frequency =
517 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
518
519 if (timestamp_frequency < 0)
520 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
521 else
522 device->info.timestamp_frequency = timestamp_frequency;
523 }
524
525 /* GENs prior to 8 do not support EU/Subslice info */
526 if (device->info.gen >= 8) {
527 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
528 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
529
530 /* Without this information, we cannot get the right Braswell
531 * brandstrings, and we have to use conservative numbers for GPGPU on
532 * many platforms, but otherwise, things will just work.
533 */
534 if (device->subslice_total < 1 || device->eu_total < 1) {
535 intel_logw("Kernel 4.1 required to properly query GPU properties");
536 }
537 } else if (device->info.gen == 7) {
538 device->subslice_total = 1 << (device->info.gt - 1);
539 }
540
541 if (device->info.is_cherryview &&
542 device->subslice_total > 0 && device->eu_total > 0) {
543 /* Logical CS threads = EUs per subslice * num threads per EU */
544 uint32_t max_cs_threads =
545 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
546
547 /* Fuse configurations may give more threads than expected, never less. */
548 if (max_cs_threads > device->info.max_cs_threads)
549 device->info.max_cs_threads = max_cs_threads;
550 }
551
552 device->compiler = brw_compiler_create(NULL, &device->info);
553 if (device->compiler == NULL) {
554 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
555 goto fail;
556 }
557 device->compiler->shader_debug_log = compiler_debug_log;
558 device->compiler->shader_perf_log = compiler_perf_log;
559 device->compiler->supports_pull_constants = false;
560 device->compiler->constant_buffer_0_is_relative =
561 device->info.gen < 8 || !device->has_context_isolation;
562 device->compiler->supports_shader_constants = true;
563
564 /* Broadwell PRM says:
565 *
566 * "Before Gen8, there was a historical configuration control field to
567 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
568 * different places: TILECTL[1:0], ARB_MODE[5:4], and
569 * DISP_ARB_CTL[14:13].
570 *
571 * For Gen8 and subsequent generations, the swizzle fields are all
572 * reserved, and the CPU's memory controller performs all address
573 * swizzling modifications."
574 */
575 bool swizzled =
576 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
577
578 isl_device_init(&device->isl_dev, &device->info, swizzled);
579
580 result = anv_physical_device_init_uuids(device);
581 if (result != VK_SUCCESS)
582 goto fail;
583
584 anv_physical_device_init_disk_cache(device);
585
586 if (instance->enabled_extensions.KHR_display) {
587 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
588 if (master_fd >= 0) {
589 /* prod the device with a GETPARAM call which will fail if
590 * we don't have permission to even render on this device
591 */
592 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
593 close(master_fd);
594 master_fd = -1;
595 }
596 }
597 }
598 device->master_fd = master_fd;
599
600 result = anv_init_wsi(device);
601 if (result != VK_SUCCESS) {
602 ralloc_free(device->compiler);
603 anv_physical_device_free_disk_cache(device);
604 goto fail;
605 }
606
607 device->perf = anv_get_perf(&device->info, fd);
608
609 anv_physical_device_get_supported_extensions(device,
610 &device->supported_extensions);
611
612
613 device->local_fd = fd;
614
615 return VK_SUCCESS;
616
617 fail:
618 close(fd);
619 if (master_fd != -1)
620 close(master_fd);
621 return result;
622 }
623
624 static void
625 anv_physical_device_finish(struct anv_physical_device *device)
626 {
627 anv_finish_wsi(device);
628 anv_physical_device_free_disk_cache(device);
629 ralloc_free(device->compiler);
630 ralloc_free(device->perf);
631 close(device->local_fd);
632 if (device->master_fd >= 0)
633 close(device->master_fd);
634 }
635
636 static void *
637 default_alloc_func(void *pUserData, size_t size, size_t align,
638 VkSystemAllocationScope allocationScope)
639 {
640 return malloc(size);
641 }
642
643 static void *
644 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
645 size_t align, VkSystemAllocationScope allocationScope)
646 {
647 return realloc(pOriginal, size);
648 }
649
650 static void
651 default_free_func(void *pUserData, void *pMemory)
652 {
653 free(pMemory);
654 }
655
656 static const VkAllocationCallbacks default_alloc = {
657 .pUserData = NULL,
658 .pfnAllocation = default_alloc_func,
659 .pfnReallocation = default_realloc_func,
660 .pfnFree = default_free_func,
661 };
662
663 VkResult anv_EnumerateInstanceExtensionProperties(
664 const char* pLayerName,
665 uint32_t* pPropertyCount,
666 VkExtensionProperties* pProperties)
667 {
668 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
669
670 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
671 if (anv_instance_extensions_supported.extensions[i]) {
672 vk_outarray_append(&out, prop) {
673 *prop = anv_instance_extensions[i];
674 }
675 }
676 }
677
678 return vk_outarray_status(&out);
679 }
680
681 VkResult anv_CreateInstance(
682 const VkInstanceCreateInfo* pCreateInfo,
683 const VkAllocationCallbacks* pAllocator,
684 VkInstance* pInstance)
685 {
686 struct anv_instance *instance;
687 VkResult result;
688
689 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
690
691 struct anv_instance_extension_table enabled_extensions = {};
692 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
693 int idx;
694 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
695 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
696 anv_instance_extensions[idx].extensionName) == 0)
697 break;
698 }
699
700 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
701 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
702
703 if (!anv_instance_extensions_supported.extensions[idx])
704 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
705
706 enabled_extensions.extensions[idx] = true;
707 }
708
709 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
710 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
711 if (!instance)
712 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
713
714 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
715
716 if (pAllocator)
717 instance->alloc = *pAllocator;
718 else
719 instance->alloc = default_alloc;
720
721 instance->app_info = (struct anv_app_info) { .api_version = 0 };
722 if (pCreateInfo->pApplicationInfo) {
723 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
724
725 instance->app_info.app_name =
726 vk_strdup(&instance->alloc, app->pApplicationName,
727 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
728 instance->app_info.app_version = app->applicationVersion;
729
730 instance->app_info.engine_name =
731 vk_strdup(&instance->alloc, app->pEngineName,
732 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
733 instance->app_info.engine_version = app->engineVersion;
734
735 instance->app_info.api_version = app->apiVersion;
736 }
737
738 if (instance->app_info.api_version == 0)
739 instance->app_info.api_version = VK_API_VERSION_1_0;
740
741 instance->enabled_extensions = enabled_extensions;
742
743 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
744 /* Vulkan requires that entrypoints for extensions which have not been
745 * enabled must not be advertised.
746 */
747 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
748 &instance->enabled_extensions)) {
749 instance->dispatch.entrypoints[i] = NULL;
750 } else {
751 instance->dispatch.entrypoints[i] =
752 anv_instance_dispatch_table.entrypoints[i];
753 }
754 }
755
756 struct anv_physical_device *pdevice = &instance->physicalDevice;
757 for (unsigned i = 0; i < ARRAY_SIZE(pdevice->dispatch.entrypoints); i++) {
758 /* Vulkan requires that entrypoints for extensions which have not been
759 * enabled must not be advertised.
760 */
761 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
762 &instance->enabled_extensions)) {
763 pdevice->dispatch.entrypoints[i] = NULL;
764 } else {
765 pdevice->dispatch.entrypoints[i] =
766 anv_physical_device_dispatch_table.entrypoints[i];
767 }
768 }
769
770 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
771 /* Vulkan requires that entrypoints for extensions which have not been
772 * enabled must not be advertised.
773 */
774 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
775 &instance->enabled_extensions, NULL)) {
776 instance->device_dispatch.entrypoints[i] = NULL;
777 } else {
778 instance->device_dispatch.entrypoints[i] =
779 anv_device_dispatch_table.entrypoints[i];
780 }
781 }
782
783 instance->physicalDeviceCount = -1;
784
785 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
786 if (result != VK_SUCCESS) {
787 vk_free2(&default_alloc, pAllocator, instance);
788 return vk_error(result);
789 }
790
791 instance->pipeline_cache_enabled =
792 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
793
794 _mesa_locale_init();
795 glsl_type_singleton_init_or_ref();
796
797 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
798
799 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
800 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
801 0, "anv", NULL,
802 instance->app_info.engine_name,
803 instance->app_info.engine_version);
804
805 *pInstance = anv_instance_to_handle(instance);
806
807 return VK_SUCCESS;
808 }
809
810 void anv_DestroyInstance(
811 VkInstance _instance,
812 const VkAllocationCallbacks* pAllocator)
813 {
814 ANV_FROM_HANDLE(anv_instance, instance, _instance);
815
816 if (!instance)
817 return;
818
819 if (instance->physicalDeviceCount > 0) {
820 /* We support at most one physical device. */
821 assert(instance->physicalDeviceCount == 1);
822 anv_physical_device_finish(&instance->physicalDevice);
823 }
824
825 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
826 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
827
828 VG(VALGRIND_DESTROY_MEMPOOL(instance));
829
830 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
831
832 glsl_type_singleton_decref();
833 _mesa_locale_fini();
834
835 driDestroyOptionCache(&instance->dri_options);
836 driDestroyOptionInfo(&instance->available_dri_options);
837
838 vk_free(&instance->alloc, instance);
839 }
840
841 static VkResult
842 anv_enumerate_devices(struct anv_instance *instance)
843 {
844 /* TODO: Check for more devices ? */
845 drmDevicePtr devices[8];
846 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
847 int max_devices;
848
849 instance->physicalDeviceCount = 0;
850
851 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
852 if (max_devices < 1)
853 return VK_ERROR_INCOMPATIBLE_DRIVER;
854
855 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
856 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
857 devices[i]->bustype == DRM_BUS_PCI &&
858 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
859
860 result = anv_physical_device_init(&instance->physicalDevice,
861 instance, devices[i]);
862 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
863 break;
864 }
865 }
866 drmFreeDevices(devices, max_devices);
867
868 if (result == VK_SUCCESS)
869 instance->physicalDeviceCount = 1;
870
871 return result;
872 }
873
874 static VkResult
875 anv_instance_ensure_physical_device(struct anv_instance *instance)
876 {
877 if (instance->physicalDeviceCount < 0) {
878 VkResult result = anv_enumerate_devices(instance);
879 if (result != VK_SUCCESS &&
880 result != VK_ERROR_INCOMPATIBLE_DRIVER)
881 return result;
882 }
883
884 return VK_SUCCESS;
885 }
886
887 VkResult anv_EnumeratePhysicalDevices(
888 VkInstance _instance,
889 uint32_t* pPhysicalDeviceCount,
890 VkPhysicalDevice* pPhysicalDevices)
891 {
892 ANV_FROM_HANDLE(anv_instance, instance, _instance);
893 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
894
895 VkResult result = anv_instance_ensure_physical_device(instance);
896 if (result != VK_SUCCESS)
897 return result;
898
899 if (instance->physicalDeviceCount == 0)
900 return VK_SUCCESS;
901
902 assert(instance->physicalDeviceCount == 1);
903 vk_outarray_append(&out, i) {
904 *i = anv_physical_device_to_handle(&instance->physicalDevice);
905 }
906
907 return vk_outarray_status(&out);
908 }
909
910 VkResult anv_EnumeratePhysicalDeviceGroups(
911 VkInstance _instance,
912 uint32_t* pPhysicalDeviceGroupCount,
913 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
914 {
915 ANV_FROM_HANDLE(anv_instance, instance, _instance);
916 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
917 pPhysicalDeviceGroupCount);
918
919 VkResult result = anv_instance_ensure_physical_device(instance);
920 if (result != VK_SUCCESS)
921 return result;
922
923 if (instance->physicalDeviceCount == 0)
924 return VK_SUCCESS;
925
926 assert(instance->physicalDeviceCount == 1);
927
928 vk_outarray_append(&out, p) {
929 p->physicalDeviceCount = 1;
930 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
931 p->physicalDevices[0] =
932 anv_physical_device_to_handle(&instance->physicalDevice);
933 p->subsetAllocation = false;
934
935 vk_foreach_struct(ext, p->pNext)
936 anv_debug_ignored_stype(ext->sType);
937 }
938
939 return vk_outarray_status(&out);
940 }
941
942 void anv_GetPhysicalDeviceFeatures(
943 VkPhysicalDevice physicalDevice,
944 VkPhysicalDeviceFeatures* pFeatures)
945 {
946 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
947
948 *pFeatures = (VkPhysicalDeviceFeatures) {
949 .robustBufferAccess = true,
950 .fullDrawIndexUint32 = true,
951 .imageCubeArray = true,
952 .independentBlend = true,
953 .geometryShader = true,
954 .tessellationShader = true,
955 .sampleRateShading = true,
956 .dualSrcBlend = true,
957 .logicOp = true,
958 .multiDrawIndirect = true,
959 .drawIndirectFirstInstance = true,
960 .depthClamp = true,
961 .depthBiasClamp = true,
962 .fillModeNonSolid = true,
963 .depthBounds = false,
964 .wideLines = true,
965 .largePoints = true,
966 .alphaToOne = true,
967 .multiViewport = true,
968 .samplerAnisotropy = true,
969 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
970 pdevice->info.is_baytrail,
971 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
972 .textureCompressionBC = true,
973 .occlusionQueryPrecise = true,
974 .pipelineStatisticsQuery = true,
975 .fragmentStoresAndAtomics = true,
976 .shaderTessellationAndGeometryPointSize = true,
977 .shaderImageGatherExtended = true,
978 .shaderStorageImageExtendedFormats = true,
979 .shaderStorageImageMultisample = false,
980 .shaderStorageImageReadWithoutFormat = false,
981 .shaderStorageImageWriteWithoutFormat = true,
982 .shaderUniformBufferArrayDynamicIndexing = true,
983 .shaderSampledImageArrayDynamicIndexing = true,
984 .shaderStorageBufferArrayDynamicIndexing = true,
985 .shaderStorageImageArrayDynamicIndexing = true,
986 .shaderClipDistance = true,
987 .shaderCullDistance = true,
988 .shaderFloat64 = pdevice->info.gen >= 8 &&
989 pdevice->info.has_64bit_types,
990 .shaderInt64 = pdevice->info.gen >= 8 &&
991 pdevice->info.has_64bit_types,
992 .shaderInt16 = pdevice->info.gen >= 8,
993 .shaderResourceMinLod = pdevice->info.gen >= 9,
994 .variableMultisampleRate = true,
995 .inheritedQueries = true,
996 };
997
998 /* We can't do image stores in vec4 shaders */
999 pFeatures->vertexPipelineStoresAndAtomics =
1000 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
1001 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
1002
1003 struct anv_app_info *app_info = &pdevice->instance->app_info;
1004
1005 /* The new DOOM and Wolfenstein games require depthBounds without
1006 * checking for it. They seem to run fine without it so just claim it's
1007 * there and accept the consequences.
1008 */
1009 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
1010 pFeatures->depthBounds = true;
1011 }
1012
1013 void anv_GetPhysicalDeviceFeatures2(
1014 VkPhysicalDevice physicalDevice,
1015 VkPhysicalDeviceFeatures2* pFeatures)
1016 {
1017 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1018 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1019
1020 vk_foreach_struct(ext, pFeatures->pNext) {
1021 switch (ext->sType) {
1022 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1023 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1024 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1025 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1026 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1027 features->storagePushConstant8 = pdevice->info.gen >= 8;
1028 break;
1029 }
1030
1031 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1032 VkPhysicalDevice16BitStorageFeatures *features =
1033 (VkPhysicalDevice16BitStorageFeatures *)ext;
1034 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1035 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1036 features->storagePushConstant16 = pdevice->info.gen >= 8;
1037 features->storageInputOutput16 = false;
1038 break;
1039 }
1040
1041 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1042 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1043 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1044 features->bufferDeviceAddressCaptureReplay = false;
1045 features->bufferDeviceAddressMultiDevice = false;
1046 break;
1047 }
1048
1049 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1050 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1051 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1052 features->computeDerivativeGroupQuads = true;
1053 features->computeDerivativeGroupLinear = true;
1054 break;
1055 }
1056
1057 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1058 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1059 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1060 features->conditionalRendering = pdevice->info.gen >= 8 ||
1061 pdevice->info.is_haswell;
1062 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1063 pdevice->info.is_haswell;
1064 break;
1065 }
1066
1067 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1068 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1069 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1070 features->depthClipEnable = true;
1071 break;
1072 }
1073
1074 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1075 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1076 features->shaderFloat16 = pdevice->info.gen >= 8;
1077 features->shaderInt8 = pdevice->info.gen >= 8;
1078 break;
1079 }
1080
1081 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1082 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1083 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1084 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1085 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1086 features->fragmentShaderShadingRateInterlock = false;
1087 break;
1088 }
1089
1090 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1091 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1092 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1093 features->hostQueryReset = true;
1094 break;
1095 }
1096
1097 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1098 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1099 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1100 features->shaderInputAttachmentArrayDynamicIndexing = false;
1101 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1102 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1103 features->shaderUniformBufferArrayNonUniformIndexing = false;
1104 features->shaderSampledImageArrayNonUniformIndexing = true;
1105 features->shaderStorageBufferArrayNonUniformIndexing = true;
1106 features->shaderStorageImageArrayNonUniformIndexing = true;
1107 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1108 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1109 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1110 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1111 features->descriptorBindingSampledImageUpdateAfterBind = true;
1112 features->descriptorBindingStorageImageUpdateAfterBind = true;
1113 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1114 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1115 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1116 features->descriptorBindingUpdateUnusedWhilePending = true;
1117 features->descriptorBindingPartiallyBound = true;
1118 features->descriptorBindingVariableDescriptorCount = false;
1119 features->runtimeDescriptorArray = true;
1120 break;
1121 }
1122
1123 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1124 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1125 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1126 features->indexTypeUint8 = true;
1127 break;
1128 }
1129
1130 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1131 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1132 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1133 features->inlineUniformBlock = true;
1134 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1135 break;
1136 }
1137
1138 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1139 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1140 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1141 features->rectangularLines = true;
1142 features->bresenhamLines = true;
1143 features->smoothLines = true;
1144 features->stippledRectangularLines = false;
1145 features->stippledBresenhamLines = true;
1146 features->stippledSmoothLines = false;
1147 break;
1148 }
1149
1150 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1151 VkPhysicalDeviceMultiviewFeatures *features =
1152 (VkPhysicalDeviceMultiviewFeatures *)ext;
1153 features->multiview = true;
1154 features->multiviewGeometryShader = true;
1155 features->multiviewTessellationShader = true;
1156 break;
1157 }
1158
1159 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1160 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1161 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1162 features->imagelessFramebuffer = true;
1163 break;
1164 }
1165
1166 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1167 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1168 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1169 features->pipelineExecutableInfo = true;
1170 break;
1171 }
1172
1173 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1174 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1175 features->protectedMemory = false;
1176 break;
1177 }
1178
1179 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1180 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1181 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1182 features->samplerYcbcrConversion = true;
1183 break;
1184 }
1185
1186 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1187 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1188 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1189 features->scalarBlockLayout = true;
1190 break;
1191 }
1192
1193 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1194 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1195 features->shaderBufferInt64Atomics =
1196 pdevice->info.gen >= 9 && pdevice->use_softpin;
1197 features->shaderSharedInt64Atomics = VK_FALSE;
1198 break;
1199 }
1200
1201 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1202 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1203 features->shaderDemoteToHelperInvocation = true;
1204 break;
1205 }
1206
1207 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1208 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1209 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1210 features->shaderSubgroupClock = true;
1211 features->shaderDeviceClock = false;
1212 break;
1213 }
1214
1215 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1216 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1217 features->shaderDrawParameters = true;
1218 break;
1219 }
1220
1221 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1222 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1223 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1224 features->shaderSubgroupExtendedTypes = true;
1225 break;
1226 }
1227
1228 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1229 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1230 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1231 features->subgroupSizeControl = true;
1232 features->computeFullSubgroups = true;
1233 break;
1234 }
1235
1236 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1237 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1238 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1239 features->texelBufferAlignment = true;
1240 break;
1241 }
1242
1243 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1244 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1245 features->variablePointersStorageBuffer = true;
1246 features->variablePointers = true;
1247 break;
1248 }
1249
1250 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1251 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1252 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1253 features->transformFeedback = true;
1254 features->geometryStreams = true;
1255 break;
1256 }
1257
1258 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1259 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1260 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1261 features->uniformBufferStandardLayout = true;
1262 break;
1263 }
1264
1265 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1266 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1267 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1268 features->vertexAttributeInstanceRateDivisor = true;
1269 features->vertexAttributeInstanceRateZeroDivisor = true;
1270 break;
1271 }
1272
1273 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1274 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1275 features->vulkanMemoryModel = true;
1276 features->vulkanMemoryModelDeviceScope = true;
1277 features->vulkanMemoryModelAvailabilityVisibilityChains = true;
1278 break;
1279 }
1280
1281 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1282 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1283 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1284 features->ycbcrImageArrays = true;
1285 break;
1286 }
1287
1288 default:
1289 anv_debug_ignored_stype(ext->sType);
1290 break;
1291 }
1292 }
1293 }
1294
1295 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1296
1297 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1298 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1299
1300 void anv_GetPhysicalDeviceProperties(
1301 VkPhysicalDevice physicalDevice,
1302 VkPhysicalDeviceProperties* pProperties)
1303 {
1304 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1305 const struct gen_device_info *devinfo = &pdevice->info;
1306
1307 /* See assertions made when programming the buffer surface state. */
1308 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1309 (1ul << 30) : (1ul << 27);
1310
1311 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1312 const uint32_t max_textures =
1313 pdevice->has_bindless_images ? UINT16_MAX : 128;
1314 const uint32_t max_samplers =
1315 pdevice->has_bindless_samplers ? UINT16_MAX :
1316 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1317 const uint32_t max_images =
1318 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1319
1320 /* If we can use bindless for everything, claim a high per-stage limit,
1321 * otherwise use the binding table size, minus the slots reserved for
1322 * render targets and one slot for the descriptor buffer. */
1323 const uint32_t max_per_stage =
1324 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1325 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1326
1327 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1328
1329 VkSampleCountFlags sample_counts =
1330 isl_device_get_sample_counts(&pdevice->isl_dev);
1331
1332
1333 VkPhysicalDeviceLimits limits = {
1334 .maxImageDimension1D = (1 << 14),
1335 .maxImageDimension2D = (1 << 14),
1336 .maxImageDimension3D = (1 << 11),
1337 .maxImageDimensionCube = (1 << 14),
1338 .maxImageArrayLayers = (1 << 11),
1339 .maxTexelBufferElements = 128 * 1024 * 1024,
1340 .maxUniformBufferRange = (1ul << 27),
1341 .maxStorageBufferRange = max_raw_buffer_sz,
1342 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1343 .maxMemoryAllocationCount = UINT32_MAX,
1344 .maxSamplerAllocationCount = 64 * 1024,
1345 .bufferImageGranularity = 64, /* A cache line */
1346 .sparseAddressSpaceSize = 0,
1347 .maxBoundDescriptorSets = MAX_SETS,
1348 .maxPerStageDescriptorSamplers = max_samplers,
1349 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1350 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1351 .maxPerStageDescriptorSampledImages = max_textures,
1352 .maxPerStageDescriptorStorageImages = max_images,
1353 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1354 .maxPerStageResources = max_per_stage,
1355 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1356 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1357 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1358 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1359 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1360 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1361 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1362 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1363 .maxVertexInputAttributes = MAX_VBS,
1364 .maxVertexInputBindings = MAX_VBS,
1365 .maxVertexInputAttributeOffset = 2047,
1366 .maxVertexInputBindingStride = 2048,
1367 .maxVertexOutputComponents = 128,
1368 .maxTessellationGenerationLevel = 64,
1369 .maxTessellationPatchSize = 32,
1370 .maxTessellationControlPerVertexInputComponents = 128,
1371 .maxTessellationControlPerVertexOutputComponents = 128,
1372 .maxTessellationControlPerPatchOutputComponents = 128,
1373 .maxTessellationControlTotalOutputComponents = 2048,
1374 .maxTessellationEvaluationInputComponents = 128,
1375 .maxTessellationEvaluationOutputComponents = 128,
1376 .maxGeometryShaderInvocations = 32,
1377 .maxGeometryInputComponents = 64,
1378 .maxGeometryOutputComponents = 128,
1379 .maxGeometryOutputVertices = 256,
1380 .maxGeometryTotalOutputComponents = 1024,
1381 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1382 .maxFragmentOutputAttachments = 8,
1383 .maxFragmentDualSrcAttachments = 1,
1384 .maxFragmentCombinedOutputResources = 8,
1385 .maxComputeSharedMemorySize = 64 * 1024,
1386 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1387 .maxComputeWorkGroupInvocations = max_workgroup_size,
1388 .maxComputeWorkGroupSize = {
1389 max_workgroup_size,
1390 max_workgroup_size,
1391 max_workgroup_size,
1392 },
1393 .subPixelPrecisionBits = 8,
1394 .subTexelPrecisionBits = 8,
1395 .mipmapPrecisionBits = 8,
1396 .maxDrawIndexedIndexValue = UINT32_MAX,
1397 .maxDrawIndirectCount = UINT32_MAX,
1398 .maxSamplerLodBias = 16,
1399 .maxSamplerAnisotropy = 16,
1400 .maxViewports = MAX_VIEWPORTS,
1401 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1402 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1403 .viewportSubPixelBits = 13, /* We take a float? */
1404 .minMemoryMapAlignment = 4096, /* A page */
1405 /* The dataport requires texel alignment so we need to assume a worst
1406 * case of R32G32B32A32 which is 16 bytes.
1407 */
1408 .minTexelBufferOffsetAlignment = 16,
1409 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1410 .minUniformBufferOffsetAlignment = 32,
1411 .minStorageBufferOffsetAlignment = 4,
1412 .minTexelOffset = -8,
1413 .maxTexelOffset = 7,
1414 .minTexelGatherOffset = -32,
1415 .maxTexelGatherOffset = 31,
1416 .minInterpolationOffset = -0.5,
1417 .maxInterpolationOffset = 0.4375,
1418 .subPixelInterpolationOffsetBits = 4,
1419 .maxFramebufferWidth = (1 << 14),
1420 .maxFramebufferHeight = (1 << 14),
1421 .maxFramebufferLayers = (1 << 11),
1422 .framebufferColorSampleCounts = sample_counts,
1423 .framebufferDepthSampleCounts = sample_counts,
1424 .framebufferStencilSampleCounts = sample_counts,
1425 .framebufferNoAttachmentsSampleCounts = sample_counts,
1426 .maxColorAttachments = MAX_RTS,
1427 .sampledImageColorSampleCounts = sample_counts,
1428 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1429 .sampledImageDepthSampleCounts = sample_counts,
1430 .sampledImageStencilSampleCounts = sample_counts,
1431 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1432 .maxSampleMaskWords = 1,
1433 .timestampComputeAndGraphics = true,
1434 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1435 .maxClipDistances = 8,
1436 .maxCullDistances = 8,
1437 .maxCombinedClipAndCullDistances = 8,
1438 .discreteQueuePriorities = 2,
1439 .pointSizeRange = { 0.125, 255.875 },
1440 .lineWidthRange = {
1441 0.0,
1442 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1443 2047.9921875 : 7.9921875,
1444 },
1445 .pointSizeGranularity = (1.0 / 8.0),
1446 .lineWidthGranularity = (1.0 / 128.0),
1447 .strictLines = false,
1448 .standardSampleLocations = true,
1449 .optimalBufferCopyOffsetAlignment = 128,
1450 .optimalBufferCopyRowPitchAlignment = 128,
1451 .nonCoherentAtomSize = 64,
1452 };
1453
1454 *pProperties = (VkPhysicalDeviceProperties) {
1455 .apiVersion = anv_physical_device_api_version(pdevice),
1456 .driverVersion = vk_get_driver_version(),
1457 .vendorID = 0x8086,
1458 .deviceID = pdevice->chipset_id,
1459 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1460 .limits = limits,
1461 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1462 };
1463
1464 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1465 "%s", pdevice->name);
1466 memcpy(pProperties->pipelineCacheUUID,
1467 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1468 }
1469
1470 void anv_GetPhysicalDeviceProperties2(
1471 VkPhysicalDevice physicalDevice,
1472 VkPhysicalDeviceProperties2* pProperties)
1473 {
1474 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1475
1476 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1477
1478 vk_foreach_struct(ext, pProperties->pNext) {
1479 switch (ext->sType) {
1480 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1481 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1482 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1483
1484 /* We support all of the depth resolve modes */
1485 props->supportedDepthResolveModes =
1486 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1487 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1488 VK_RESOLVE_MODE_MIN_BIT_KHR |
1489 VK_RESOLVE_MODE_MAX_BIT_KHR;
1490
1491 /* Average doesn't make sense for stencil so we don't support that */
1492 props->supportedStencilResolveModes =
1493 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1494 if (pdevice->info.gen >= 8) {
1495 /* The advanced stencil resolve modes currently require stencil
1496 * sampling be supported by the hardware.
1497 */
1498 props->supportedStencilResolveModes |=
1499 VK_RESOLVE_MODE_MIN_BIT_KHR |
1500 VK_RESOLVE_MODE_MAX_BIT_KHR;
1501 }
1502
1503 props->independentResolveNone = true;
1504 props->independentResolve = true;
1505 break;
1506 }
1507
1508 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1509 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1510 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1511
1512 /* It's a bit hard to exactly map our implementation to the limits
1513 * described here. The bindless surface handle in the extended
1514 * message descriptors is 20 bits and it's an index into the table of
1515 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1516 * address. Given that most things consume two surface states per
1517 * view (general/sampled for textures and write-only/read-write for
1518 * images), we claim 2^19 things.
1519 *
1520 * For SSBOs, we just use A64 messages so there is no real limit
1521 * there beyond the limit on the total size of a descriptor set.
1522 */
1523 const unsigned max_bindless_views = 1 << 19;
1524
1525 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1526 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1527 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1528 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1529 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1530 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1531 props->robustBufferAccessUpdateAfterBind = true;
1532 props->quadDivergentImplicitLod = false;
1533 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1534 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1535 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1536 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1537 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1538 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1539 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1540 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1541 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1542 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1543 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1544 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1545 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1546 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1547 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1548 break;
1549 }
1550
1551 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1552 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1553 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1554
1555 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1556 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1557 "Intel open-source Mesa driver");
1558
1559 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1560 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1561
1562 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1563 .major = 1,
1564 .minor = 1,
1565 .subminor = 2,
1566 .patch = 0,
1567 };
1568 break;
1569 }
1570
1571 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1572 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1573 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1574 /* Userptr needs page aligned memory. */
1575 props->minImportedHostPointerAlignment = 4096;
1576 break;
1577 }
1578
1579 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1580 VkPhysicalDeviceIDProperties *id_props =
1581 (VkPhysicalDeviceIDProperties *)ext;
1582 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1583 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1584 /* The LUID is for Windows. */
1585 id_props->deviceLUIDValid = false;
1586 break;
1587 }
1588
1589 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1590 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1591 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1592 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1593 props->maxPerStageDescriptorInlineUniformBlocks =
1594 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1595 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1596 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1597 props->maxDescriptorSetInlineUniformBlocks =
1598 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1599 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1600 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1601 break;
1602 }
1603
1604 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1605 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1606 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1607 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1608 * Sampling Rules - Legacy Mode", it says the following:
1609 *
1610 * "Note that the device divides a pixel into a 16x16 array of
1611 * subpixels, referenced by their upper left corners."
1612 *
1613 * This is the only known reference in the PRMs to the subpixel
1614 * precision of line rasterization and a "16x16 array of subpixels"
1615 * implies 4 subpixel precision bits. Empirical testing has shown
1616 * that 4 subpixel precision bits applies to all line rasterization
1617 * types.
1618 */
1619 props->lineSubPixelPrecisionBits = 4;
1620 break;
1621 }
1622
1623 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1624 VkPhysicalDeviceMaintenance3Properties *props =
1625 (VkPhysicalDeviceMaintenance3Properties *)ext;
1626 /* This value doesn't matter for us today as our per-stage
1627 * descriptors are the real limit.
1628 */
1629 props->maxPerSetDescriptors = 1024;
1630 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1631 break;
1632 }
1633
1634 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1635 VkPhysicalDeviceMultiviewProperties *properties =
1636 (VkPhysicalDeviceMultiviewProperties *)ext;
1637 properties->maxMultiviewViewCount = 16;
1638 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1639 break;
1640 }
1641
1642 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1643 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1644 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1645 properties->pciDomain = pdevice->pci_info.domain;
1646 properties->pciBus = pdevice->pci_info.bus;
1647 properties->pciDevice = pdevice->pci_info.device;
1648 properties->pciFunction = pdevice->pci_info.function;
1649 break;
1650 }
1651
1652 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1653 VkPhysicalDevicePointClippingProperties *properties =
1654 (VkPhysicalDevicePointClippingProperties *) ext;
1655 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1656 break;
1657 }
1658
1659 #pragma GCC diagnostic push
1660 #pragma GCC diagnostic ignored "-Wswitch"
1661 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1662 VkPhysicalDevicePresentationPropertiesANDROID *props =
1663 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1664 props->sharedImage = VK_FALSE;
1665 break;
1666 }
1667 #pragma GCC diagnostic pop
1668
1669 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1670 VkPhysicalDeviceProtectedMemoryProperties *props =
1671 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1672 props->protectedNoFault = false;
1673 break;
1674 }
1675
1676 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1677 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1678 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1679
1680 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1681 break;
1682 }
1683
1684 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1685 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1686 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1687 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1688 properties->filterMinmaxSingleComponentFormats = true;
1689 break;
1690 }
1691
1692 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1693 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1694
1695 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1696
1697 VkShaderStageFlags scalar_stages = 0;
1698 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1699 if (pdevice->compiler->scalar_stage[stage])
1700 scalar_stages |= mesa_to_vk_shader_stage(stage);
1701 }
1702 properties->supportedStages = scalar_stages;
1703
1704 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1705 VK_SUBGROUP_FEATURE_VOTE_BIT |
1706 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1707 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1708 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1709 VK_SUBGROUP_FEATURE_QUAD_BIT;
1710 if (pdevice->info.gen >= 8) {
1711 /* TODO: There's no technical reason why these can't be made to
1712 * work on gen7 but they don't at the moment so it's best to leave
1713 * the feature disabled than enabled and broken.
1714 */
1715 properties->supportedOperations |=
1716 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1717 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1718 }
1719 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1720 break;
1721 }
1722
1723 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1724 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1725 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1726 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1727 props->minSubgroupSize = 8;
1728 props->maxSubgroupSize = 32;
1729 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1730 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1731 break;
1732 }
1733 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1734 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1735 properties->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1736 properties->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1737
1738 /* Broadwell does not support HF denorms and there are restrictions
1739 * other gens. According to Kabylake's PRM:
1740 *
1741 * "math - Extended Math Function
1742 * [...]
1743 * Restriction : Half-float denorms are always retained."
1744 */
1745 properties->shaderDenormFlushToZeroFloat16 = false;
1746 properties->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1747 properties->shaderRoundingModeRTEFloat16 = true;
1748 properties->shaderRoundingModeRTZFloat16 = true;
1749 properties->shaderSignedZeroInfNanPreserveFloat16 = true;
1750
1751 properties->shaderDenormFlushToZeroFloat32 = true;
1752 properties->shaderDenormPreserveFloat32 = true;
1753 properties->shaderRoundingModeRTEFloat32 = true;
1754 properties->shaderRoundingModeRTZFloat32 = true;
1755 properties->shaderSignedZeroInfNanPreserveFloat32 = true;
1756
1757 properties->shaderDenormFlushToZeroFloat64 = true;
1758 properties->shaderDenormPreserveFloat64 = true;
1759 properties->shaderRoundingModeRTEFloat64 = true;
1760 properties->shaderRoundingModeRTZFloat64 = true;
1761 properties->shaderSignedZeroInfNanPreserveFloat64 = true;
1762 break;
1763 }
1764
1765 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1766 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1767 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1768
1769 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1770 * Base Address:
1771 *
1772 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1773 * specifies the base address of the first element of the surface,
1774 * computed in software by adding the surface base address to the
1775 * byte offset of the element in the buffer. The base address must
1776 * be aligned to element size."
1777 *
1778 * The typed dataport messages require that things be texel aligned.
1779 * Otherwise, we may just load/store the wrong data or, in the worst
1780 * case, there may be hangs.
1781 */
1782 props->storageTexelBufferOffsetAlignmentBytes = 16;
1783 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1784
1785 /* The sampler, however, is much more forgiving and it can handle
1786 * arbitrary byte alignment for linear and buffer surfaces. It's
1787 * hard to find a good PRM citation for this but years of empirical
1788 * experience demonstrate that this is true.
1789 */
1790 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1791 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1792 break;
1793 }
1794
1795 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1796 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1797 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1798
1799 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1800 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1801 props->maxTransformFeedbackBufferSize = (1ull << 32);
1802 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1803 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1804 props->maxTransformFeedbackBufferDataStride = 2048;
1805 props->transformFeedbackQueries = true;
1806 props->transformFeedbackStreamsLinesTriangles = false;
1807 props->transformFeedbackRasterizationStreamSelect = false;
1808 props->transformFeedbackDraw = true;
1809 break;
1810 }
1811
1812 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1813 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1814 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1815 /* We have to restrict this a bit for multiview */
1816 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1817 break;
1818 }
1819
1820 default:
1821 anv_debug_ignored_stype(ext->sType);
1822 break;
1823 }
1824 }
1825 }
1826
1827 /* We support exactly one queue family. */
1828 static const VkQueueFamilyProperties
1829 anv_queue_family_properties = {
1830 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1831 VK_QUEUE_COMPUTE_BIT |
1832 VK_QUEUE_TRANSFER_BIT,
1833 .queueCount = 1,
1834 .timestampValidBits = 36, /* XXX: Real value here */
1835 .minImageTransferGranularity = { 1, 1, 1 },
1836 };
1837
1838 void anv_GetPhysicalDeviceQueueFamilyProperties(
1839 VkPhysicalDevice physicalDevice,
1840 uint32_t* pCount,
1841 VkQueueFamilyProperties* pQueueFamilyProperties)
1842 {
1843 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1844
1845 vk_outarray_append(&out, p) {
1846 *p = anv_queue_family_properties;
1847 }
1848 }
1849
1850 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1851 VkPhysicalDevice physicalDevice,
1852 uint32_t* pQueueFamilyPropertyCount,
1853 VkQueueFamilyProperties2* pQueueFamilyProperties)
1854 {
1855
1856 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1857
1858 vk_outarray_append(&out, p) {
1859 p->queueFamilyProperties = anv_queue_family_properties;
1860
1861 vk_foreach_struct(s, p->pNext) {
1862 anv_debug_ignored_stype(s->sType);
1863 }
1864 }
1865 }
1866
1867 void anv_GetPhysicalDeviceMemoryProperties(
1868 VkPhysicalDevice physicalDevice,
1869 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1870 {
1871 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1872
1873 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1874 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1875 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1876 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1877 .heapIndex = physical_device->memory.types[i].heapIndex,
1878 };
1879 }
1880
1881 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1882 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1883 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1884 .size = physical_device->memory.heaps[i].size,
1885 .flags = physical_device->memory.heaps[i].flags,
1886 };
1887 }
1888 }
1889
1890 static void
1891 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1892 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1893 {
1894 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1895 uint64_t sys_available = get_available_system_memory();
1896 assert(sys_available > 0);
1897
1898 VkDeviceSize total_heaps_size = 0;
1899 for (size_t i = 0; i < device->memory.heap_count; i++)
1900 total_heaps_size += device->memory.heaps[i].size;
1901
1902 for (size_t i = 0; i < device->memory.heap_count; i++) {
1903 VkDeviceSize heap_size = device->memory.heaps[i].size;
1904 VkDeviceSize heap_used = device->memory.heaps[i].used;
1905 VkDeviceSize heap_budget;
1906
1907 double heap_proportion = (double) heap_size / total_heaps_size;
1908 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1909
1910 /*
1911 * Let's not incite the app to starve the system: report at most 90% of
1912 * available system memory.
1913 */
1914 uint64_t heap_available = sys_available_prop * 9 / 10;
1915 heap_budget = MIN2(heap_size, heap_used + heap_available);
1916
1917 /*
1918 * Round down to the nearest MB
1919 */
1920 heap_budget &= ~((1ull << 20) - 1);
1921
1922 /*
1923 * The heapBudget value must be non-zero for array elements less than
1924 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1925 * value must be less than or equal to VkMemoryHeap::size for each heap.
1926 */
1927 assert(0 < heap_budget && heap_budget <= heap_size);
1928
1929 memoryBudget->heapUsage[i] = heap_used;
1930 memoryBudget->heapBudget[i] = heap_budget;
1931 }
1932
1933 /* The heapBudget and heapUsage values must be zero for array elements
1934 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1935 */
1936 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1937 memoryBudget->heapBudget[i] = 0;
1938 memoryBudget->heapUsage[i] = 0;
1939 }
1940 }
1941
1942 void anv_GetPhysicalDeviceMemoryProperties2(
1943 VkPhysicalDevice physicalDevice,
1944 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1945 {
1946 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1947 &pMemoryProperties->memoryProperties);
1948
1949 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1950 switch (ext->sType) {
1951 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1952 anv_get_memory_budget(physicalDevice, (void*)ext);
1953 break;
1954 default:
1955 anv_debug_ignored_stype(ext->sType);
1956 break;
1957 }
1958 }
1959 }
1960
1961 void
1962 anv_GetDeviceGroupPeerMemoryFeatures(
1963 VkDevice device,
1964 uint32_t heapIndex,
1965 uint32_t localDeviceIndex,
1966 uint32_t remoteDeviceIndex,
1967 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1968 {
1969 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1970 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1971 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1972 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1973 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1974 }
1975
1976 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1977 VkInstance _instance,
1978 const char* pName)
1979 {
1980 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1981
1982 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1983 * when we have to return valid function pointers, NULL, or it's left
1984 * undefined. See the table for exact details.
1985 */
1986 if (pName == NULL)
1987 return NULL;
1988
1989 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1990 if (strcmp(pName, "vk" #entrypoint) == 0) \
1991 return (PFN_vkVoidFunction)anv_##entrypoint
1992
1993 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1994 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1995 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1996 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1997
1998 #undef LOOKUP_ANV_ENTRYPOINT
1999
2000 if (instance == NULL)
2001 return NULL;
2002
2003 int idx = anv_get_instance_entrypoint_index(pName);
2004 if (idx >= 0)
2005 return instance->dispatch.entrypoints[idx];
2006
2007 idx = anv_get_physical_device_entrypoint_index(pName);
2008 if (idx >= 0)
2009 return instance->physicalDevice.dispatch.entrypoints[idx];
2010
2011 idx = anv_get_device_entrypoint_index(pName);
2012 if (idx >= 0)
2013 return instance->device_dispatch.entrypoints[idx];
2014
2015 return NULL;
2016 }
2017
2018 /* With version 1+ of the loader interface the ICD should expose
2019 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2020 */
2021 PUBLIC
2022 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2023 VkInstance instance,
2024 const char* pName);
2025
2026 PUBLIC
2027 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2028 VkInstance instance,
2029 const char* pName)
2030 {
2031 return anv_GetInstanceProcAddr(instance, pName);
2032 }
2033
2034 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2035 VkDevice _device,
2036 const char* pName)
2037 {
2038 ANV_FROM_HANDLE(anv_device, device, _device);
2039
2040 if (!device || !pName)
2041 return NULL;
2042
2043 int idx = anv_get_device_entrypoint_index(pName);
2044 if (idx < 0)
2045 return NULL;
2046
2047 return device->dispatch.entrypoints[idx];
2048 }
2049
2050 /* With version 4+ of the loader interface the ICD should expose
2051 * vk_icdGetPhysicalDeviceProcAddr()
2052 */
2053 PUBLIC
2054 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2055 VkInstance _instance,
2056 const char* pName);
2057
2058 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2059 VkInstance _instance,
2060 const char* pName)
2061 {
2062 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2063
2064 if (!pName || !instance)
2065 return NULL;
2066
2067 int idx = anv_get_physical_device_entrypoint_index(pName);
2068 if (idx < 0)
2069 return NULL;
2070
2071 return instance->physicalDevice.dispatch.entrypoints[idx];
2072 }
2073
2074
2075 VkResult
2076 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2077 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2078 const VkAllocationCallbacks* pAllocator,
2079 VkDebugReportCallbackEXT* pCallback)
2080 {
2081 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2082 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2083 pCreateInfo, pAllocator, &instance->alloc,
2084 pCallback);
2085 }
2086
2087 void
2088 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2089 VkDebugReportCallbackEXT _callback,
2090 const VkAllocationCallbacks* pAllocator)
2091 {
2092 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2093 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2094 _callback, pAllocator, &instance->alloc);
2095 }
2096
2097 void
2098 anv_DebugReportMessageEXT(VkInstance _instance,
2099 VkDebugReportFlagsEXT flags,
2100 VkDebugReportObjectTypeEXT objectType,
2101 uint64_t object,
2102 size_t location,
2103 int32_t messageCode,
2104 const char* pLayerPrefix,
2105 const char* pMessage)
2106 {
2107 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2108 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2109 object, location, messageCode, pLayerPrefix, pMessage);
2110 }
2111
2112 static void
2113 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
2114 {
2115 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2116 queue->device = device;
2117 queue->flags = 0;
2118 }
2119
2120 static void
2121 anv_queue_finish(struct anv_queue *queue)
2122 {
2123 }
2124
2125 static struct anv_state
2126 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2127 {
2128 struct anv_state state;
2129
2130 state = anv_state_pool_alloc(pool, size, align);
2131 memcpy(state.map, p, size);
2132
2133 return state;
2134 }
2135
2136 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2137 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2138 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2139 * color as a separate entry /after/ the float color. The layout of this entry
2140 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2141 *
2142 * Since we don't know the format/bpp, we can't make any of the border colors
2143 * containing '1' work for all formats, as it would be in the wrong place for
2144 * some of them. We opt to make 32-bit integers work as this seems like the
2145 * most common option. Fortunately, transparent black works regardless, as
2146 * all zeroes is the same in every bit-size.
2147 */
2148 struct hsw_border_color {
2149 float float32[4];
2150 uint32_t _pad0[12];
2151 uint32_t uint32[4];
2152 uint32_t _pad1[108];
2153 };
2154
2155 struct gen8_border_color {
2156 union {
2157 float float32[4];
2158 uint32_t uint32[4];
2159 };
2160 /* Pad out to 64 bytes */
2161 uint32_t _pad[12];
2162 };
2163
2164 static void
2165 anv_device_init_border_colors(struct anv_device *device)
2166 {
2167 if (device->info.is_haswell) {
2168 static const struct hsw_border_color border_colors[] = {
2169 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2170 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2171 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2172 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2173 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2174 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2175 };
2176
2177 device->border_colors =
2178 anv_state_pool_emit_data(&device->dynamic_state_pool,
2179 sizeof(border_colors), 512, border_colors);
2180 } else {
2181 static const struct gen8_border_color border_colors[] = {
2182 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2183 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2184 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2185 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2186 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2187 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2188 };
2189
2190 device->border_colors =
2191 anv_state_pool_emit_data(&device->dynamic_state_pool,
2192 sizeof(border_colors), 64, border_colors);
2193 }
2194 }
2195
2196 static void
2197 anv_device_init_trivial_batch(struct anv_device *device)
2198 {
2199 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
2200
2201 if (device->instance->physicalDevice.has_exec_async)
2202 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
2203
2204 if (device->instance->physicalDevice.use_softpin)
2205 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
2206
2207 anv_vma_alloc(device, &device->trivial_batch_bo);
2208
2209 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
2210 0, 4096, 0);
2211
2212 struct anv_batch batch = {
2213 .start = map,
2214 .next = map,
2215 .end = map + 4096,
2216 };
2217
2218 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2219 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2220
2221 if (!device->info.has_llc)
2222 gen_clflush_range(map, batch.next - map);
2223
2224 anv_gem_munmap(map, device->trivial_batch_bo.size);
2225 }
2226
2227 VkResult anv_EnumerateDeviceExtensionProperties(
2228 VkPhysicalDevice physicalDevice,
2229 const char* pLayerName,
2230 uint32_t* pPropertyCount,
2231 VkExtensionProperties* pProperties)
2232 {
2233 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2234 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2235
2236 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2237 if (device->supported_extensions.extensions[i]) {
2238 vk_outarray_append(&out, prop) {
2239 *prop = anv_device_extensions[i];
2240 }
2241 }
2242 }
2243
2244 return vk_outarray_status(&out);
2245 }
2246
2247 static void
2248 anv_device_init_dispatch(struct anv_device *device)
2249 {
2250 const struct anv_device_dispatch_table *genX_table;
2251 switch (device->info.gen) {
2252 case 12:
2253 genX_table = &gen12_device_dispatch_table;
2254 break;
2255 case 11:
2256 genX_table = &gen11_device_dispatch_table;
2257 break;
2258 case 10:
2259 genX_table = &gen10_device_dispatch_table;
2260 break;
2261 case 9:
2262 genX_table = &gen9_device_dispatch_table;
2263 break;
2264 case 8:
2265 genX_table = &gen8_device_dispatch_table;
2266 break;
2267 case 7:
2268 if (device->info.is_haswell)
2269 genX_table = &gen75_device_dispatch_table;
2270 else
2271 genX_table = &gen7_device_dispatch_table;
2272 break;
2273 default:
2274 unreachable("unsupported gen\n");
2275 }
2276
2277 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2278 /* Vulkan requires that entrypoints for extensions which have not been
2279 * enabled must not be advertised.
2280 */
2281 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2282 &device->instance->enabled_extensions,
2283 &device->enabled_extensions)) {
2284 device->dispatch.entrypoints[i] = NULL;
2285 } else if (genX_table->entrypoints[i]) {
2286 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2287 } else {
2288 device->dispatch.entrypoints[i] =
2289 anv_device_dispatch_table.entrypoints[i];
2290 }
2291 }
2292 }
2293
2294 static int
2295 vk_priority_to_gen(int priority)
2296 {
2297 switch (priority) {
2298 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2299 return GEN_CONTEXT_LOW_PRIORITY;
2300 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2301 return GEN_CONTEXT_MEDIUM_PRIORITY;
2302 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2303 return GEN_CONTEXT_HIGH_PRIORITY;
2304 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2305 return GEN_CONTEXT_REALTIME_PRIORITY;
2306 default:
2307 unreachable("Invalid priority");
2308 }
2309 }
2310
2311 static void
2312 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2313 {
2314 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2315
2316 if (device->instance->physicalDevice.has_exec_async)
2317 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2318
2319 if (device->instance->physicalDevice.use_softpin)
2320 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2321
2322 anv_vma_alloc(device, &device->hiz_clear_bo);
2323
2324 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2325 0, 4096, 0);
2326
2327 union isl_color_value hiz_clear = { .u32 = { 0, } };
2328 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2329
2330 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2331 anv_gem_munmap(map, device->hiz_clear_bo.size);
2332 }
2333
2334 static bool
2335 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2336 struct anv_block_pool *pool,
2337 uint64_t address)
2338 {
2339 for (uint32_t i = 0; i < pool->nbos; i++) {
2340 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2341 uint32_t bo_size = pool->bos[i].size;
2342 if (address >= bo_address && address < (bo_address + bo_size)) {
2343 *ret = (struct gen_batch_decode_bo) {
2344 .addr = bo_address,
2345 .size = bo_size,
2346 .map = pool->bos[i].map,
2347 };
2348 return true;
2349 }
2350 }
2351 return false;
2352 }
2353
2354 /* Finding a buffer for batch decoding */
2355 static struct gen_batch_decode_bo
2356 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2357 {
2358 struct anv_device *device = v_batch;
2359 struct gen_batch_decode_bo ret_bo = {};
2360
2361 assert(ppgtt);
2362
2363 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2364 return ret_bo;
2365 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2366 return ret_bo;
2367 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2368 return ret_bo;
2369 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2370 return ret_bo;
2371
2372 if (!device->cmd_buffer_being_decoded)
2373 return (struct gen_batch_decode_bo) { };
2374
2375 struct anv_batch_bo **bo;
2376
2377 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2378 /* The decoder zeroes out the top 16 bits, so we need to as well */
2379 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2380
2381 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2382 return (struct gen_batch_decode_bo) {
2383 .addr = bo_address,
2384 .size = (*bo)->bo.size,
2385 .map = (*bo)->bo.map,
2386 };
2387 }
2388 }
2389
2390 return (struct gen_batch_decode_bo) { };
2391 }
2392
2393 VkResult anv_CreateDevice(
2394 VkPhysicalDevice physicalDevice,
2395 const VkDeviceCreateInfo* pCreateInfo,
2396 const VkAllocationCallbacks* pAllocator,
2397 VkDevice* pDevice)
2398 {
2399 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2400 VkResult result;
2401 struct anv_device *device;
2402
2403 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2404
2405 struct anv_device_extension_table enabled_extensions = { };
2406 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2407 int idx;
2408 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2409 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2410 anv_device_extensions[idx].extensionName) == 0)
2411 break;
2412 }
2413
2414 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2415 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2416
2417 if (!physical_device->supported_extensions.extensions[idx])
2418 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2419
2420 enabled_extensions.extensions[idx] = true;
2421 }
2422
2423 /* Check enabled features */
2424 if (pCreateInfo->pEnabledFeatures) {
2425 VkPhysicalDeviceFeatures supported_features;
2426 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2427 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2428 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2429 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2430 for (uint32_t i = 0; i < num_features; i++) {
2431 if (enabled_feature[i] && !supported_feature[i])
2432 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2433 }
2434 }
2435
2436 /* Check requested queues and fail if we are requested to create any
2437 * queues with flags we don't support.
2438 */
2439 assert(pCreateInfo->queueCreateInfoCount > 0);
2440 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2441 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2442 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2443 }
2444
2445 /* Check if client specified queue priority. */
2446 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2447 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2448 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2449
2450 VkQueueGlobalPriorityEXT priority =
2451 queue_priority ? queue_priority->globalPriority :
2452 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2453
2454 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2455 sizeof(*device), 8,
2456 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2457 if (!device)
2458 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2459
2460 if (INTEL_DEBUG & DEBUG_BATCH) {
2461 const unsigned decode_flags =
2462 GEN_BATCH_DECODE_FULL |
2463 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2464 GEN_BATCH_DECODE_OFFSETS |
2465 GEN_BATCH_DECODE_FLOATS;
2466
2467 gen_batch_decode_ctx_init(&device->decoder_ctx,
2468 &physical_device->info,
2469 stderr, decode_flags, NULL,
2470 decode_get_bo, NULL, device);
2471 }
2472
2473 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2474 device->instance = physical_device->instance;
2475 device->chipset_id = physical_device->chipset_id;
2476 device->no_hw = physical_device->no_hw;
2477 device->_lost = false;
2478
2479 if (pAllocator)
2480 device->alloc = *pAllocator;
2481 else
2482 device->alloc = physical_device->instance->alloc;
2483
2484 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2485 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2486 if (device->fd == -1) {
2487 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2488 goto fail_device;
2489 }
2490
2491 device->context_id = anv_gem_create_context(device);
2492 if (device->context_id == -1) {
2493 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2494 goto fail_fd;
2495 }
2496
2497 if (physical_device->use_softpin) {
2498 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2499 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2500 goto fail_context_id;
2501 }
2502
2503 /* keep the page with address zero out of the allocator */
2504 struct anv_memory_heap *low_heap =
2505 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2506 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2507 device->vma_lo_available = low_heap->size;
2508
2509 struct anv_memory_heap *high_heap =
2510 &physical_device->memory.heaps[0];
2511 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2512 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2513 high_heap->size;
2514 }
2515
2516 list_inithead(&device->memory_objects);
2517
2518 /* As per spec, the driver implementation may deny requests to acquire
2519 * a priority above the default priority (MEDIUM) if the caller does not
2520 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2521 * is returned.
2522 */
2523 if (physical_device->has_context_priority) {
2524 int err = anv_gem_set_context_param(device->fd, device->context_id,
2525 I915_CONTEXT_PARAM_PRIORITY,
2526 vk_priority_to_gen(priority));
2527 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2528 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2529 goto fail_vmas;
2530 }
2531 }
2532
2533 device->info = physical_device->info;
2534 device->isl_dev = physical_device->isl_dev;
2535
2536 /* On Broadwell and later, we can use batch chaining to more efficiently
2537 * implement growing command buffers. Prior to Haswell, the kernel
2538 * command parser gets in the way and we have to fall back to growing
2539 * the batch.
2540 */
2541 device->can_chain_batches = device->info.gen >= 8;
2542
2543 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2544 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2545 device->enabled_extensions = enabled_extensions;
2546
2547 anv_device_init_dispatch(device);
2548
2549 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2550 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2551 goto fail_context_id;
2552 }
2553
2554 pthread_condattr_t condattr;
2555 if (pthread_condattr_init(&condattr) != 0) {
2556 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2557 goto fail_mutex;
2558 }
2559 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2560 pthread_condattr_destroy(&condattr);
2561 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2562 goto fail_mutex;
2563 }
2564 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2565 pthread_condattr_destroy(&condattr);
2566 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2567 goto fail_mutex;
2568 }
2569 pthread_condattr_destroy(&condattr);
2570
2571 uint64_t bo_flags =
2572 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2573 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2574 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2575 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2576
2577 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2578
2579 result = anv_bo_cache_init(&device->bo_cache);
2580 if (result != VK_SUCCESS)
2581 goto fail_batch_bo_pool;
2582
2583 if (!physical_device->use_softpin)
2584 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2585
2586 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2587 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2588 16384,
2589 bo_flags);
2590 if (result != VK_SUCCESS)
2591 goto fail_bo_cache;
2592
2593 result = anv_state_pool_init(&device->instruction_state_pool, device,
2594 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2595 16384,
2596 bo_flags);
2597 if (result != VK_SUCCESS)
2598 goto fail_dynamic_state_pool;
2599
2600 result = anv_state_pool_init(&device->surface_state_pool, device,
2601 SURFACE_STATE_POOL_MIN_ADDRESS,
2602 4096,
2603 bo_flags);
2604 if (result != VK_SUCCESS)
2605 goto fail_instruction_state_pool;
2606
2607 if (physical_device->use_softpin) {
2608 result = anv_state_pool_init(&device->binding_table_pool, device,
2609 BINDING_TABLE_POOL_MIN_ADDRESS,
2610 4096,
2611 bo_flags);
2612 if (result != VK_SUCCESS)
2613 goto fail_surface_state_pool;
2614 }
2615
2616 result = anv_bo_init_new(&device->workaround_bo, device, 4096);
2617 if (result != VK_SUCCESS)
2618 goto fail_binding_table_pool;
2619
2620 if (physical_device->use_softpin)
2621 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2622
2623 if (!anv_vma_alloc(device, &device->workaround_bo))
2624 goto fail_workaround_bo;
2625
2626 anv_device_init_trivial_batch(device);
2627
2628 if (device->info.gen >= 10)
2629 anv_device_init_hiz_clear_value_bo(device);
2630
2631 anv_scratch_pool_init(device, &device->scratch_pool);
2632
2633 anv_queue_init(device, &device->queue);
2634
2635 switch (device->info.gen) {
2636 case 7:
2637 if (!device->info.is_haswell)
2638 result = gen7_init_device_state(device);
2639 else
2640 result = gen75_init_device_state(device);
2641 break;
2642 case 8:
2643 result = gen8_init_device_state(device);
2644 break;
2645 case 9:
2646 result = gen9_init_device_state(device);
2647 break;
2648 case 10:
2649 result = gen10_init_device_state(device);
2650 break;
2651 case 11:
2652 result = gen11_init_device_state(device);
2653 break;
2654 case 12:
2655 result = gen12_init_device_state(device);
2656 break;
2657 default:
2658 /* Shouldn't get here as we don't create physical devices for any other
2659 * gens. */
2660 unreachable("unhandled gen");
2661 }
2662 if (result != VK_SUCCESS)
2663 goto fail_workaround_bo;
2664
2665 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2666
2667 anv_device_init_blorp(device);
2668
2669 anv_device_init_border_colors(device);
2670
2671 anv_device_perf_init(device);
2672
2673 *pDevice = anv_device_to_handle(device);
2674
2675 return VK_SUCCESS;
2676
2677 fail_workaround_bo:
2678 anv_queue_finish(&device->queue);
2679 anv_scratch_pool_finish(device, &device->scratch_pool);
2680 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2681 anv_gem_close(device, device->workaround_bo.gem_handle);
2682 fail_binding_table_pool:
2683 if (physical_device->use_softpin)
2684 anv_state_pool_finish(&device->binding_table_pool);
2685 fail_surface_state_pool:
2686 anv_state_pool_finish(&device->surface_state_pool);
2687 fail_instruction_state_pool:
2688 anv_state_pool_finish(&device->instruction_state_pool);
2689 fail_dynamic_state_pool:
2690 anv_state_pool_finish(&device->dynamic_state_pool);
2691 fail_bo_cache:
2692 anv_bo_cache_finish(&device->bo_cache);
2693 fail_batch_bo_pool:
2694 anv_bo_pool_finish(&device->batch_bo_pool);
2695 pthread_cond_destroy(&device->queue_submit);
2696 fail_mutex:
2697 pthread_mutex_destroy(&device->mutex);
2698 fail_vmas:
2699 if (physical_device->use_softpin) {
2700 util_vma_heap_finish(&device->vma_hi);
2701 util_vma_heap_finish(&device->vma_lo);
2702 }
2703 fail_context_id:
2704 anv_gem_destroy_context(device, device->context_id);
2705 fail_fd:
2706 close(device->fd);
2707 fail_device:
2708 vk_free(&device->alloc, device);
2709
2710 return result;
2711 }
2712
2713 void anv_DestroyDevice(
2714 VkDevice _device,
2715 const VkAllocationCallbacks* pAllocator)
2716 {
2717 ANV_FROM_HANDLE(anv_device, device, _device);
2718 struct anv_physical_device *physical_device;
2719
2720 if (!device)
2721 return;
2722
2723 physical_device = &device->instance->physicalDevice;
2724
2725 anv_device_finish_blorp(device);
2726
2727 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2728
2729 anv_queue_finish(&device->queue);
2730
2731 #ifdef HAVE_VALGRIND
2732 /* We only need to free these to prevent valgrind errors. The backing
2733 * BO will go away in a couple of lines so we don't actually leak.
2734 */
2735 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2736 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2737 #endif
2738
2739 anv_scratch_pool_finish(device, &device->scratch_pool);
2740
2741 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2742 anv_vma_free(device, &device->workaround_bo);
2743 anv_gem_close(device, device->workaround_bo.gem_handle);
2744
2745 anv_vma_free(device, &device->trivial_batch_bo);
2746 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2747 if (device->info.gen >= 10)
2748 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2749
2750 if (physical_device->use_softpin)
2751 anv_state_pool_finish(&device->binding_table_pool);
2752 anv_state_pool_finish(&device->surface_state_pool);
2753 anv_state_pool_finish(&device->instruction_state_pool);
2754 anv_state_pool_finish(&device->dynamic_state_pool);
2755
2756 anv_bo_cache_finish(&device->bo_cache);
2757
2758 anv_bo_pool_finish(&device->batch_bo_pool);
2759
2760 if (physical_device->use_softpin) {
2761 util_vma_heap_finish(&device->vma_hi);
2762 util_vma_heap_finish(&device->vma_lo);
2763 }
2764
2765 pthread_cond_destroy(&device->queue_submit);
2766 pthread_mutex_destroy(&device->mutex);
2767
2768 anv_gem_destroy_context(device, device->context_id);
2769
2770 if (INTEL_DEBUG & DEBUG_BATCH)
2771 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2772
2773 close(device->fd);
2774
2775 vk_free(&device->alloc, device);
2776 }
2777
2778 VkResult anv_EnumerateInstanceLayerProperties(
2779 uint32_t* pPropertyCount,
2780 VkLayerProperties* pProperties)
2781 {
2782 if (pProperties == NULL) {
2783 *pPropertyCount = 0;
2784 return VK_SUCCESS;
2785 }
2786
2787 /* None supported at this time */
2788 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2789 }
2790
2791 VkResult anv_EnumerateDeviceLayerProperties(
2792 VkPhysicalDevice physicalDevice,
2793 uint32_t* pPropertyCount,
2794 VkLayerProperties* pProperties)
2795 {
2796 if (pProperties == NULL) {
2797 *pPropertyCount = 0;
2798 return VK_SUCCESS;
2799 }
2800
2801 /* None supported at this time */
2802 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2803 }
2804
2805 void anv_GetDeviceQueue(
2806 VkDevice _device,
2807 uint32_t queueNodeIndex,
2808 uint32_t queueIndex,
2809 VkQueue* pQueue)
2810 {
2811 ANV_FROM_HANDLE(anv_device, device, _device);
2812
2813 assert(queueIndex == 0);
2814
2815 *pQueue = anv_queue_to_handle(&device->queue);
2816 }
2817
2818 void anv_GetDeviceQueue2(
2819 VkDevice _device,
2820 const VkDeviceQueueInfo2* pQueueInfo,
2821 VkQueue* pQueue)
2822 {
2823 ANV_FROM_HANDLE(anv_device, device, _device);
2824
2825 assert(pQueueInfo->queueIndex == 0);
2826
2827 if (pQueueInfo->flags == device->queue.flags)
2828 *pQueue = anv_queue_to_handle(&device->queue);
2829 else
2830 *pQueue = NULL;
2831 }
2832
2833 VkResult
2834 _anv_device_set_lost(struct anv_device *device,
2835 const char *file, int line,
2836 const char *msg, ...)
2837 {
2838 VkResult err;
2839 va_list ap;
2840
2841 device->_lost = true;
2842
2843 va_start(ap, msg);
2844 err = __vk_errorv(device->instance, device,
2845 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2846 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2847 va_end(ap);
2848
2849 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2850 abort();
2851
2852 return err;
2853 }
2854
2855 VkResult
2856 anv_device_query_status(struct anv_device *device)
2857 {
2858 /* This isn't likely as most of the callers of this function already check
2859 * for it. However, it doesn't hurt to check and it potentially lets us
2860 * avoid an ioctl.
2861 */
2862 if (anv_device_is_lost(device))
2863 return VK_ERROR_DEVICE_LOST;
2864
2865 uint32_t active, pending;
2866 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2867 if (ret == -1) {
2868 /* We don't know the real error. */
2869 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2870 }
2871
2872 if (active) {
2873 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2874 } else if (pending) {
2875 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2876 }
2877
2878 return VK_SUCCESS;
2879 }
2880
2881 VkResult
2882 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2883 {
2884 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2885 * Other usages of the BO (such as on different hardware) will not be
2886 * flagged as "busy" by this ioctl. Use with care.
2887 */
2888 int ret = anv_gem_busy(device, bo->gem_handle);
2889 if (ret == 1) {
2890 return VK_NOT_READY;
2891 } else if (ret == -1) {
2892 /* We don't know the real error. */
2893 return anv_device_set_lost(device, "gem wait failed: %m");
2894 }
2895
2896 /* Query for device status after the busy call. If the BO we're checking
2897 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2898 * client because it clearly doesn't have valid data. Yes, this most
2899 * likely means an ioctl, but we just did an ioctl to query the busy status
2900 * so it's no great loss.
2901 */
2902 return anv_device_query_status(device);
2903 }
2904
2905 VkResult
2906 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2907 int64_t timeout)
2908 {
2909 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2910 if (ret == -1 && errno == ETIME) {
2911 return VK_TIMEOUT;
2912 } else if (ret == -1) {
2913 /* We don't know the real error. */
2914 return anv_device_set_lost(device, "gem wait failed: %m");
2915 }
2916
2917 /* Query for device status after the wait. If the BO we're waiting on got
2918 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2919 * because it clearly doesn't have valid data. Yes, this most likely means
2920 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2921 */
2922 return anv_device_query_status(device);
2923 }
2924
2925 VkResult anv_DeviceWaitIdle(
2926 VkDevice _device)
2927 {
2928 ANV_FROM_HANDLE(anv_device, device, _device);
2929 if (anv_device_is_lost(device))
2930 return VK_ERROR_DEVICE_LOST;
2931
2932 struct anv_batch batch;
2933
2934 uint32_t cmds[8];
2935 batch.start = batch.next = cmds;
2936 batch.end = (void *) cmds + sizeof(cmds);
2937
2938 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2939 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2940
2941 return anv_device_submit_simple_batch(device, &batch);
2942 }
2943
2944 bool
2945 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2946 {
2947 if (!(bo->flags & EXEC_OBJECT_PINNED))
2948 return true;
2949
2950 pthread_mutex_lock(&device->vma_mutex);
2951
2952 bo->offset = 0;
2953
2954 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2955 device->vma_hi_available >= bo->size) {
2956 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2957 if (addr) {
2958 bo->offset = gen_canonical_address(addr);
2959 assert(addr == gen_48b_address(bo->offset));
2960 device->vma_hi_available -= bo->size;
2961 }
2962 }
2963
2964 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2965 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2966 if (addr) {
2967 bo->offset = gen_canonical_address(addr);
2968 assert(addr == gen_48b_address(bo->offset));
2969 device->vma_lo_available -= bo->size;
2970 }
2971 }
2972
2973 pthread_mutex_unlock(&device->vma_mutex);
2974
2975 return bo->offset != 0;
2976 }
2977
2978 void
2979 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2980 {
2981 if (!(bo->flags & EXEC_OBJECT_PINNED))
2982 return;
2983
2984 const uint64_t addr_48b = gen_48b_address(bo->offset);
2985
2986 pthread_mutex_lock(&device->vma_mutex);
2987
2988 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2989 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2990 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2991 device->vma_lo_available += bo->size;
2992 } else {
2993 ASSERTED const struct anv_physical_device *physical_device =
2994 &device->instance->physicalDevice;
2995 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2996 addr_48b < (physical_device->memory.heaps[0].vma_start +
2997 physical_device->memory.heaps[0].vma_size));
2998 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2999 device->vma_hi_available += bo->size;
3000 }
3001
3002 pthread_mutex_unlock(&device->vma_mutex);
3003
3004 bo->offset = 0;
3005 }
3006
3007 VkResult
3008 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
3009 {
3010 uint32_t gem_handle = anv_gem_create(device, size);
3011 if (!gem_handle)
3012 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3013
3014 anv_bo_init(bo, gem_handle, size);
3015
3016 return VK_SUCCESS;
3017 }
3018
3019 VkResult anv_AllocateMemory(
3020 VkDevice _device,
3021 const VkMemoryAllocateInfo* pAllocateInfo,
3022 const VkAllocationCallbacks* pAllocator,
3023 VkDeviceMemory* pMem)
3024 {
3025 ANV_FROM_HANDLE(anv_device, device, _device);
3026 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3027 struct anv_device_memory *mem;
3028 VkResult result = VK_SUCCESS;
3029
3030 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3031
3032 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3033 assert(pAllocateInfo->allocationSize > 0);
3034
3035 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
3036 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
3037
3038 /* FINISHME: Fail if allocation request exceeds heap size. */
3039
3040 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3041 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3042 if (mem == NULL)
3043 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3044
3045 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3046 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3047 mem->map = NULL;
3048 mem->map_size = 0;
3049 mem->ahw = NULL;
3050 mem->host_ptr = NULL;
3051
3052 uint64_t bo_flags = 0;
3053
3054 assert(mem->type->heapIndex < pdevice->memory.heap_count);
3055 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
3056 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
3057
3058 const struct wsi_memory_allocate_info *wsi_info =
3059 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
3060 if (wsi_info && wsi_info->implicit_sync) {
3061 /* We need to set the WRITE flag on window system buffers so that GEM
3062 * will know we're writing to them and synchronize uses on other rings
3063 * (eg if the display server uses the blitter ring).
3064 */
3065 bo_flags |= EXEC_OBJECT_WRITE;
3066 } else if (pdevice->has_exec_async) {
3067 bo_flags |= EXEC_OBJECT_ASYNC;
3068 }
3069
3070 if (pdevice->use_softpin)
3071 bo_flags |= EXEC_OBJECT_PINNED;
3072
3073 const VkExportMemoryAllocateInfo *export_info =
3074 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
3075
3076 /* Check if we need to support Android HW buffer export. If so,
3077 * create AHardwareBuffer and import memory from it.
3078 */
3079 bool android_export = false;
3080 if (export_info && export_info->handleTypes &
3081 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3082 android_export = true;
3083
3084 /* Android memory import. */
3085 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
3086 vk_find_struct_const(pAllocateInfo->pNext,
3087 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
3088
3089 if (ahw_import_info) {
3090 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3091 if (result != VK_SUCCESS)
3092 goto fail;
3093
3094 goto success;
3095 } else if (android_export) {
3096 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3097 if (result != VK_SUCCESS)
3098 goto fail;
3099
3100 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
3101 .buffer = mem->ahw,
3102 };
3103 result = anv_import_ahw_memory(_device, mem, &import_info);
3104 if (result != VK_SUCCESS)
3105 goto fail;
3106
3107 goto success;
3108 }
3109
3110 const VkImportMemoryFdInfoKHR *fd_info =
3111 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
3112
3113 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3114 * ignored.
3115 */
3116 if (fd_info && fd_info->handleType) {
3117 /* At the moment, we support only the below handle types. */
3118 assert(fd_info->handleType ==
3119 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3120 fd_info->handleType ==
3121 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3122
3123 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
3124 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
3125 if (result != VK_SUCCESS)
3126 goto fail;
3127
3128 VkDeviceSize aligned_alloc_size =
3129 align_u64(pAllocateInfo->allocationSize, 4096);
3130
3131 /* For security purposes, we reject importing the bo if it's smaller
3132 * than the requested allocation size. This prevents a malicious client
3133 * from passing a buffer to a trusted client, lying about the size, and
3134 * telling the trusted client to try and texture from an image that goes
3135 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3136 * in the trusted client. The trusted client can protect itself against
3137 * this sort of attack but only if it can trust the buffer size.
3138 */
3139 if (mem->bo->size < aligned_alloc_size) {
3140 result = vk_errorf(device->instance, device,
3141 VK_ERROR_INVALID_EXTERNAL_HANDLE,
3142 "aligned allocationSize too large for "
3143 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3144 "%"PRIu64"B > %"PRIu64"B",
3145 aligned_alloc_size, mem->bo->size);
3146 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3147 goto fail;
3148 }
3149
3150 /* From the Vulkan spec:
3151 *
3152 * "Importing memory from a file descriptor transfers ownership of
3153 * the file descriptor from the application to the Vulkan
3154 * implementation. The application must not perform any operations on
3155 * the file descriptor after a successful import."
3156 *
3157 * If the import fails, we leave the file descriptor open.
3158 */
3159 close(fd_info->fd);
3160 goto success;
3161 }
3162
3163 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
3164 vk_find_struct_const(pAllocateInfo->pNext,
3165 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
3166 if (host_ptr_info && host_ptr_info->handleType) {
3167 if (host_ptr_info->handleType ==
3168 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3169 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3170 goto fail;
3171 }
3172
3173 assert(host_ptr_info->handleType ==
3174 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3175
3176 result = anv_bo_cache_import_host_ptr(
3177 device, &device->bo_cache, host_ptr_info->pHostPointer,
3178 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
3179
3180 if (result != VK_SUCCESS)
3181 goto fail;
3182
3183 mem->host_ptr = host_ptr_info->pHostPointer;
3184 goto success;
3185 }
3186
3187 /* Regular allocate (not importing memory). */
3188
3189 if (export_info && export_info->handleTypes)
3190 bo_flags |= ANV_BO_EXTERNAL;
3191
3192 result = anv_bo_cache_alloc(device, &device->bo_cache,
3193 pAllocateInfo->allocationSize, bo_flags,
3194 &mem->bo);
3195 if (result != VK_SUCCESS)
3196 goto fail;
3197
3198 const VkMemoryDedicatedAllocateInfo *dedicated_info =
3199 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3200 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3201 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3202
3203 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3204 * the BO. In this case, we have a dedicated allocation.
3205 */
3206 if (image->needs_set_tiling) {
3207 const uint32_t i915_tiling =
3208 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3209 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3210 image->planes[0].surface.isl.row_pitch_B,
3211 i915_tiling);
3212 if (ret) {
3213 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3214 return vk_errorf(device->instance, NULL,
3215 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3216 "failed to set BO tiling: %m");
3217 }
3218 }
3219 }
3220
3221 success:
3222 pthread_mutex_lock(&device->mutex);
3223 list_addtail(&mem->link, &device->memory_objects);
3224 pthread_mutex_unlock(&device->mutex);
3225
3226 *pMem = anv_device_memory_to_handle(mem);
3227
3228 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3229 mem->bo->size);
3230
3231 return VK_SUCCESS;
3232
3233 fail:
3234 vk_free2(&device->alloc, pAllocator, mem);
3235
3236 return result;
3237 }
3238
3239 VkResult anv_GetMemoryFdKHR(
3240 VkDevice device_h,
3241 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3242 int* pFd)
3243 {
3244 ANV_FROM_HANDLE(anv_device, dev, device_h);
3245 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3246
3247 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3248
3249 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3250 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3251
3252 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
3253 }
3254
3255 VkResult anv_GetMemoryFdPropertiesKHR(
3256 VkDevice _device,
3257 VkExternalMemoryHandleTypeFlagBits handleType,
3258 int fd,
3259 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3260 {
3261 ANV_FROM_HANDLE(anv_device, device, _device);
3262 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3263
3264 switch (handleType) {
3265 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3266 /* dma-buf can be imported as any memory type */
3267 pMemoryFdProperties->memoryTypeBits =
3268 (1 << pdevice->memory.type_count) - 1;
3269 return VK_SUCCESS;
3270
3271 default:
3272 /* The valid usage section for this function says:
3273 *
3274 * "handleType must not be one of the handle types defined as
3275 * opaque."
3276 *
3277 * So opaque handle types fall into the default "unsupported" case.
3278 */
3279 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3280 }
3281 }
3282
3283 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3284 VkDevice _device,
3285 VkExternalMemoryHandleTypeFlagBits handleType,
3286 const void* pHostPointer,
3287 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3288 {
3289 ANV_FROM_HANDLE(anv_device, device, _device);
3290
3291 assert(pMemoryHostPointerProperties->sType ==
3292 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3293
3294 switch (handleType) {
3295 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3296 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3297
3298 /* Host memory can be imported as any memory type. */
3299 pMemoryHostPointerProperties->memoryTypeBits =
3300 (1ull << pdevice->memory.type_count) - 1;
3301
3302 return VK_SUCCESS;
3303 }
3304 default:
3305 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3306 }
3307 }
3308
3309 void anv_FreeMemory(
3310 VkDevice _device,
3311 VkDeviceMemory _mem,
3312 const VkAllocationCallbacks* pAllocator)
3313 {
3314 ANV_FROM_HANDLE(anv_device, device, _device);
3315 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3316 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3317
3318 if (mem == NULL)
3319 return;
3320
3321 pthread_mutex_lock(&device->mutex);
3322 list_del(&mem->link);
3323 pthread_mutex_unlock(&device->mutex);
3324
3325 if (mem->map)
3326 anv_UnmapMemory(_device, _mem);
3327
3328 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3329 -mem->bo->size);
3330
3331 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3332
3333 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3334 if (mem->ahw)
3335 AHardwareBuffer_release(mem->ahw);
3336 #endif
3337
3338 vk_free2(&device->alloc, pAllocator, mem);
3339 }
3340
3341 VkResult anv_MapMemory(
3342 VkDevice _device,
3343 VkDeviceMemory _memory,
3344 VkDeviceSize offset,
3345 VkDeviceSize size,
3346 VkMemoryMapFlags flags,
3347 void** ppData)
3348 {
3349 ANV_FROM_HANDLE(anv_device, device, _device);
3350 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3351
3352 if (mem == NULL) {
3353 *ppData = NULL;
3354 return VK_SUCCESS;
3355 }
3356
3357 if (mem->host_ptr) {
3358 *ppData = mem->host_ptr + offset;
3359 return VK_SUCCESS;
3360 }
3361
3362 if (size == VK_WHOLE_SIZE)
3363 size = mem->bo->size - offset;
3364
3365 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3366 *
3367 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3368 * assert(size != 0);
3369 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3370 * equal to the size of the memory minus offset
3371 */
3372 assert(size > 0);
3373 assert(offset + size <= mem->bo->size);
3374
3375 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3376 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3377 * at a time is valid. We could just mmap up front and return an offset
3378 * pointer here, but that may exhaust virtual memory on 32 bit
3379 * userspace. */
3380
3381 uint32_t gem_flags = 0;
3382
3383 if (!device->info.has_llc &&
3384 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3385 gem_flags |= I915_MMAP_WC;
3386
3387 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3388 uint64_t map_offset = offset & ~4095ull;
3389 assert(offset >= map_offset);
3390 uint64_t map_size = (offset + size) - map_offset;
3391
3392 /* Let's map whole pages */
3393 map_size = align_u64(map_size, 4096);
3394
3395 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3396 map_offset, map_size, gem_flags);
3397 if (map == MAP_FAILED)
3398 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3399
3400 mem->map = map;
3401 mem->map_size = map_size;
3402
3403 *ppData = mem->map + (offset - map_offset);
3404
3405 return VK_SUCCESS;
3406 }
3407
3408 void anv_UnmapMemory(
3409 VkDevice _device,
3410 VkDeviceMemory _memory)
3411 {
3412 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3413
3414 if (mem == NULL || mem->host_ptr)
3415 return;
3416
3417 anv_gem_munmap(mem->map, mem->map_size);
3418
3419 mem->map = NULL;
3420 mem->map_size = 0;
3421 }
3422
3423 static void
3424 clflush_mapped_ranges(struct anv_device *device,
3425 uint32_t count,
3426 const VkMappedMemoryRange *ranges)
3427 {
3428 for (uint32_t i = 0; i < count; i++) {
3429 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3430 if (ranges[i].offset >= mem->map_size)
3431 continue;
3432
3433 gen_clflush_range(mem->map + ranges[i].offset,
3434 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3435 }
3436 }
3437
3438 VkResult anv_FlushMappedMemoryRanges(
3439 VkDevice _device,
3440 uint32_t memoryRangeCount,
3441 const VkMappedMemoryRange* pMemoryRanges)
3442 {
3443 ANV_FROM_HANDLE(anv_device, device, _device);
3444
3445 if (device->info.has_llc)
3446 return VK_SUCCESS;
3447
3448 /* Make sure the writes we're flushing have landed. */
3449 __builtin_ia32_mfence();
3450
3451 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3452
3453 return VK_SUCCESS;
3454 }
3455
3456 VkResult anv_InvalidateMappedMemoryRanges(
3457 VkDevice _device,
3458 uint32_t memoryRangeCount,
3459 const VkMappedMemoryRange* pMemoryRanges)
3460 {
3461 ANV_FROM_HANDLE(anv_device, device, _device);
3462
3463 if (device->info.has_llc)
3464 return VK_SUCCESS;
3465
3466 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3467
3468 /* Make sure no reads get moved up above the invalidate. */
3469 __builtin_ia32_mfence();
3470
3471 return VK_SUCCESS;
3472 }
3473
3474 void anv_GetBufferMemoryRequirements(
3475 VkDevice _device,
3476 VkBuffer _buffer,
3477 VkMemoryRequirements* pMemoryRequirements)
3478 {
3479 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3480 ANV_FROM_HANDLE(anv_device, device, _device);
3481 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3482
3483 /* The Vulkan spec (git aaed022) says:
3484 *
3485 * memoryTypeBits is a bitfield and contains one bit set for every
3486 * supported memory type for the resource. The bit `1<<i` is set if and
3487 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3488 * structure for the physical device is supported.
3489 */
3490 uint32_t memory_types = 0;
3491 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3492 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3493 if ((valid_usage & buffer->usage) == buffer->usage)
3494 memory_types |= (1u << i);
3495 }
3496
3497 /* Base alignment requirement of a cache line */
3498 uint32_t alignment = 16;
3499
3500 /* We need an alignment of 32 for pushing UBOs */
3501 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3502 alignment = MAX2(alignment, 32);
3503
3504 pMemoryRequirements->size = buffer->size;
3505 pMemoryRequirements->alignment = alignment;
3506
3507 /* Storage and Uniform buffers should have their size aligned to
3508 * 32-bits to avoid boundary checks when last DWord is not complete.
3509 * This would ensure that not internal padding would be needed for
3510 * 16-bit types.
3511 */
3512 if (device->robust_buffer_access &&
3513 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3514 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3515 pMemoryRequirements->size = align_u64(buffer->size, 4);
3516
3517 pMemoryRequirements->memoryTypeBits = memory_types;
3518 }
3519
3520 void anv_GetBufferMemoryRequirements2(
3521 VkDevice _device,
3522 const VkBufferMemoryRequirementsInfo2* pInfo,
3523 VkMemoryRequirements2* pMemoryRequirements)
3524 {
3525 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3526 &pMemoryRequirements->memoryRequirements);
3527
3528 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3529 switch (ext->sType) {
3530 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3531 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3532 requirements->prefersDedicatedAllocation = false;
3533 requirements->requiresDedicatedAllocation = false;
3534 break;
3535 }
3536
3537 default:
3538 anv_debug_ignored_stype(ext->sType);
3539 break;
3540 }
3541 }
3542 }
3543
3544 void anv_GetImageMemoryRequirements(
3545 VkDevice _device,
3546 VkImage _image,
3547 VkMemoryRequirements* pMemoryRequirements)
3548 {
3549 ANV_FROM_HANDLE(anv_image, image, _image);
3550 ANV_FROM_HANDLE(anv_device, device, _device);
3551 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3552
3553 /* The Vulkan spec (git aaed022) says:
3554 *
3555 * memoryTypeBits is a bitfield and contains one bit set for every
3556 * supported memory type for the resource. The bit `1<<i` is set if and
3557 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3558 * structure for the physical device is supported.
3559 *
3560 * All types are currently supported for images.
3561 */
3562 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3563
3564 /* We must have image allocated or imported at this point. According to the
3565 * specification, external images must have been bound to memory before
3566 * calling GetImageMemoryRequirements.
3567 */
3568 assert(image->size > 0);
3569
3570 pMemoryRequirements->size = image->size;
3571 pMemoryRequirements->alignment = image->alignment;
3572 pMemoryRequirements->memoryTypeBits = memory_types;
3573 }
3574
3575 void anv_GetImageMemoryRequirements2(
3576 VkDevice _device,
3577 const VkImageMemoryRequirementsInfo2* pInfo,
3578 VkMemoryRequirements2* pMemoryRequirements)
3579 {
3580 ANV_FROM_HANDLE(anv_device, device, _device);
3581 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3582
3583 anv_GetImageMemoryRequirements(_device, pInfo->image,
3584 &pMemoryRequirements->memoryRequirements);
3585
3586 vk_foreach_struct_const(ext, pInfo->pNext) {
3587 switch (ext->sType) {
3588 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3589 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3590 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3591 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3592 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3593 plane_reqs->planeAspect);
3594
3595 assert(image->planes[plane].offset == 0);
3596
3597 /* The Vulkan spec (git aaed022) says:
3598 *
3599 * memoryTypeBits is a bitfield and contains one bit set for every
3600 * supported memory type for the resource. The bit `1<<i` is set
3601 * if and only if the memory type `i` in the
3602 * VkPhysicalDeviceMemoryProperties structure for the physical
3603 * device is supported.
3604 *
3605 * All types are currently supported for images.
3606 */
3607 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3608 (1ull << pdevice->memory.type_count) - 1;
3609
3610 /* We must have image allocated or imported at this point. According to the
3611 * specification, external images must have been bound to memory before
3612 * calling GetImageMemoryRequirements.
3613 */
3614 assert(image->planes[plane].size > 0);
3615
3616 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3617 pMemoryRequirements->memoryRequirements.alignment =
3618 image->planes[plane].alignment;
3619 break;
3620 }
3621
3622 default:
3623 anv_debug_ignored_stype(ext->sType);
3624 break;
3625 }
3626 }
3627
3628 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3629 switch (ext->sType) {
3630 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3631 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3632 if (image->needs_set_tiling || image->external_format) {
3633 /* If we need to set the tiling for external consumers, we need a
3634 * dedicated allocation.
3635 *
3636 * See also anv_AllocateMemory.
3637 */
3638 requirements->prefersDedicatedAllocation = true;
3639 requirements->requiresDedicatedAllocation = true;
3640 } else {
3641 requirements->prefersDedicatedAllocation = false;
3642 requirements->requiresDedicatedAllocation = false;
3643 }
3644 break;
3645 }
3646
3647 default:
3648 anv_debug_ignored_stype(ext->sType);
3649 break;
3650 }
3651 }
3652 }
3653
3654 void anv_GetImageSparseMemoryRequirements(
3655 VkDevice device,
3656 VkImage image,
3657 uint32_t* pSparseMemoryRequirementCount,
3658 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3659 {
3660 *pSparseMemoryRequirementCount = 0;
3661 }
3662
3663 void anv_GetImageSparseMemoryRequirements2(
3664 VkDevice device,
3665 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3666 uint32_t* pSparseMemoryRequirementCount,
3667 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3668 {
3669 *pSparseMemoryRequirementCount = 0;
3670 }
3671
3672 void anv_GetDeviceMemoryCommitment(
3673 VkDevice device,
3674 VkDeviceMemory memory,
3675 VkDeviceSize* pCommittedMemoryInBytes)
3676 {
3677 *pCommittedMemoryInBytes = 0;
3678 }
3679
3680 static void
3681 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3682 {
3683 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3684 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3685
3686 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3687
3688 if (mem) {
3689 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3690 buffer->address = (struct anv_address) {
3691 .bo = mem->bo,
3692 .offset = pBindInfo->memoryOffset,
3693 };
3694 } else {
3695 buffer->address = ANV_NULL_ADDRESS;
3696 }
3697 }
3698
3699 VkResult anv_BindBufferMemory(
3700 VkDevice device,
3701 VkBuffer buffer,
3702 VkDeviceMemory memory,
3703 VkDeviceSize memoryOffset)
3704 {
3705 anv_bind_buffer_memory(
3706 &(VkBindBufferMemoryInfo) {
3707 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3708 .buffer = buffer,
3709 .memory = memory,
3710 .memoryOffset = memoryOffset,
3711 });
3712
3713 return VK_SUCCESS;
3714 }
3715
3716 VkResult anv_BindBufferMemory2(
3717 VkDevice device,
3718 uint32_t bindInfoCount,
3719 const VkBindBufferMemoryInfo* pBindInfos)
3720 {
3721 for (uint32_t i = 0; i < bindInfoCount; i++)
3722 anv_bind_buffer_memory(&pBindInfos[i]);
3723
3724 return VK_SUCCESS;
3725 }
3726
3727 VkResult anv_QueueBindSparse(
3728 VkQueue _queue,
3729 uint32_t bindInfoCount,
3730 const VkBindSparseInfo* pBindInfo,
3731 VkFence fence)
3732 {
3733 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3734 if (anv_device_is_lost(queue->device))
3735 return VK_ERROR_DEVICE_LOST;
3736
3737 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3738 }
3739
3740 // Event functions
3741
3742 VkResult anv_CreateEvent(
3743 VkDevice _device,
3744 const VkEventCreateInfo* pCreateInfo,
3745 const VkAllocationCallbacks* pAllocator,
3746 VkEvent* pEvent)
3747 {
3748 ANV_FROM_HANDLE(anv_device, device, _device);
3749 struct anv_state state;
3750 struct anv_event *event;
3751
3752 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3753
3754 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3755 sizeof(*event), 8);
3756 event = state.map;
3757 event->state = state;
3758 event->semaphore = VK_EVENT_RESET;
3759
3760 if (!device->info.has_llc) {
3761 /* Make sure the writes we're flushing have landed. */
3762 __builtin_ia32_mfence();
3763 __builtin_ia32_clflush(event);
3764 }
3765
3766 *pEvent = anv_event_to_handle(event);
3767
3768 return VK_SUCCESS;
3769 }
3770
3771 void anv_DestroyEvent(
3772 VkDevice _device,
3773 VkEvent _event,
3774 const VkAllocationCallbacks* pAllocator)
3775 {
3776 ANV_FROM_HANDLE(anv_device, device, _device);
3777 ANV_FROM_HANDLE(anv_event, event, _event);
3778
3779 if (!event)
3780 return;
3781
3782 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3783 }
3784
3785 VkResult anv_GetEventStatus(
3786 VkDevice _device,
3787 VkEvent _event)
3788 {
3789 ANV_FROM_HANDLE(anv_device, device, _device);
3790 ANV_FROM_HANDLE(anv_event, event, _event);
3791
3792 if (anv_device_is_lost(device))
3793 return VK_ERROR_DEVICE_LOST;
3794
3795 if (!device->info.has_llc) {
3796 /* Invalidate read cache before reading event written by GPU. */
3797 __builtin_ia32_clflush(event);
3798 __builtin_ia32_mfence();
3799
3800 }
3801
3802 return event->semaphore;
3803 }
3804
3805 VkResult anv_SetEvent(
3806 VkDevice _device,
3807 VkEvent _event)
3808 {
3809 ANV_FROM_HANDLE(anv_device, device, _device);
3810 ANV_FROM_HANDLE(anv_event, event, _event);
3811
3812 event->semaphore = VK_EVENT_SET;
3813
3814 if (!device->info.has_llc) {
3815 /* Make sure the writes we're flushing have landed. */
3816 __builtin_ia32_mfence();
3817 __builtin_ia32_clflush(event);
3818 }
3819
3820 return VK_SUCCESS;
3821 }
3822
3823 VkResult anv_ResetEvent(
3824 VkDevice _device,
3825 VkEvent _event)
3826 {
3827 ANV_FROM_HANDLE(anv_device, device, _device);
3828 ANV_FROM_HANDLE(anv_event, event, _event);
3829
3830 event->semaphore = VK_EVENT_RESET;
3831
3832 if (!device->info.has_llc) {
3833 /* Make sure the writes we're flushing have landed. */
3834 __builtin_ia32_mfence();
3835 __builtin_ia32_clflush(event);
3836 }
3837
3838 return VK_SUCCESS;
3839 }
3840
3841 // Buffer functions
3842
3843 VkResult anv_CreateBuffer(
3844 VkDevice _device,
3845 const VkBufferCreateInfo* pCreateInfo,
3846 const VkAllocationCallbacks* pAllocator,
3847 VkBuffer* pBuffer)
3848 {
3849 ANV_FROM_HANDLE(anv_device, device, _device);
3850 struct anv_buffer *buffer;
3851
3852 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3853
3854 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3855 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3856 if (buffer == NULL)
3857 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3858
3859 buffer->size = pCreateInfo->size;
3860 buffer->usage = pCreateInfo->usage;
3861 buffer->address = ANV_NULL_ADDRESS;
3862
3863 *pBuffer = anv_buffer_to_handle(buffer);
3864
3865 return VK_SUCCESS;
3866 }
3867
3868 void anv_DestroyBuffer(
3869 VkDevice _device,
3870 VkBuffer _buffer,
3871 const VkAllocationCallbacks* pAllocator)
3872 {
3873 ANV_FROM_HANDLE(anv_device, device, _device);
3874 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3875
3876 if (!buffer)
3877 return;
3878
3879 vk_free2(&device->alloc, pAllocator, buffer);
3880 }
3881
3882 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3883 VkDevice device,
3884 const VkBufferDeviceAddressInfoEXT* pInfo)
3885 {
3886 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3887
3888 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3889
3890 return anv_address_physical(buffer->address);
3891 }
3892
3893 void
3894 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3895 enum isl_format format,
3896 struct anv_address address,
3897 uint32_t range, uint32_t stride)
3898 {
3899 isl_buffer_fill_state(&device->isl_dev, state.map,
3900 .address = anv_address_physical(address),
3901 .mocs = device->default_mocs,
3902 .size_B = range,
3903 .format = format,
3904 .swizzle = ISL_SWIZZLE_IDENTITY,
3905 .stride_B = stride);
3906 }
3907
3908 void anv_DestroySampler(
3909 VkDevice _device,
3910 VkSampler _sampler,
3911 const VkAllocationCallbacks* pAllocator)
3912 {
3913 ANV_FROM_HANDLE(anv_device, device, _device);
3914 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3915
3916 if (!sampler)
3917 return;
3918
3919 if (sampler->bindless_state.map) {
3920 anv_state_pool_free(&device->dynamic_state_pool,
3921 sampler->bindless_state);
3922 }
3923
3924 vk_free2(&device->alloc, pAllocator, sampler);
3925 }
3926
3927 VkResult anv_CreateFramebuffer(
3928 VkDevice _device,
3929 const VkFramebufferCreateInfo* pCreateInfo,
3930 const VkAllocationCallbacks* pAllocator,
3931 VkFramebuffer* pFramebuffer)
3932 {
3933 ANV_FROM_HANDLE(anv_device, device, _device);
3934 struct anv_framebuffer *framebuffer;
3935
3936 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3937
3938 size_t size = sizeof(*framebuffer);
3939
3940 /* VK_KHR_imageless_framebuffer extension says:
3941 *
3942 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3943 * parameter pAttachments is ignored.
3944 */
3945 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3946 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3947 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3948 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3949 if (framebuffer == NULL)
3950 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3951
3952 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3953 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
3954 framebuffer->attachments[i] = iview;
3955 }
3956 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3957 } else {
3958 assert(device->enabled_extensions.KHR_imageless_framebuffer);
3959 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3960 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3961 if (framebuffer == NULL)
3962 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3963
3964 framebuffer->attachment_count = 0;
3965 }
3966
3967 framebuffer->width = pCreateInfo->width;
3968 framebuffer->height = pCreateInfo->height;
3969 framebuffer->layers = pCreateInfo->layers;
3970
3971 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3972
3973 return VK_SUCCESS;
3974 }
3975
3976 void anv_DestroyFramebuffer(
3977 VkDevice _device,
3978 VkFramebuffer _fb,
3979 const VkAllocationCallbacks* pAllocator)
3980 {
3981 ANV_FROM_HANDLE(anv_device, device, _device);
3982 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3983
3984 if (!fb)
3985 return;
3986
3987 vk_free2(&device->alloc, pAllocator, fb);
3988 }
3989
3990 static const VkTimeDomainEXT anv_time_domains[] = {
3991 VK_TIME_DOMAIN_DEVICE_EXT,
3992 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3993 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3994 };
3995
3996 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3997 VkPhysicalDevice physicalDevice,
3998 uint32_t *pTimeDomainCount,
3999 VkTimeDomainEXT *pTimeDomains)
4000 {
4001 int d;
4002 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4003
4004 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4005 vk_outarray_append(&out, i) {
4006 *i = anv_time_domains[d];
4007 }
4008 }
4009
4010 return vk_outarray_status(&out);
4011 }
4012
4013 static uint64_t
4014 anv_clock_gettime(clockid_t clock_id)
4015 {
4016 struct timespec current;
4017 int ret;
4018
4019 ret = clock_gettime(clock_id, &current);
4020 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4021 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4022 if (ret < 0)
4023 return 0;
4024
4025 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4026 }
4027
4028 #define TIMESTAMP 0x2358
4029
4030 VkResult anv_GetCalibratedTimestampsEXT(
4031 VkDevice _device,
4032 uint32_t timestampCount,
4033 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4034 uint64_t *pTimestamps,
4035 uint64_t *pMaxDeviation)
4036 {
4037 ANV_FROM_HANDLE(anv_device, device, _device);
4038 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4039 int ret;
4040 int d;
4041 uint64_t begin, end;
4042 uint64_t max_clock_period = 0;
4043
4044 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4045
4046 for (d = 0; d < timestampCount; d++) {
4047 switch (pTimestampInfos[d].timeDomain) {
4048 case VK_TIME_DOMAIN_DEVICE_EXT:
4049 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4050 &pTimestamps[d]);
4051
4052 if (ret != 0) {
4053 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4054 "register: %m");
4055 }
4056 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4057 max_clock_period = MAX2(max_clock_period, device_period);
4058 break;
4059 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4060 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4061 max_clock_period = MAX2(max_clock_period, 1);
4062 break;
4063
4064 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4065 pTimestamps[d] = begin;
4066 break;
4067 default:
4068 pTimestamps[d] = 0;
4069 break;
4070 }
4071 }
4072
4073 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4074
4075 /*
4076 * The maximum deviation is the sum of the interval over which we
4077 * perform the sampling and the maximum period of any sampled
4078 * clock. That's because the maximum skew between any two sampled
4079 * clock edges is when the sampled clock with the largest period is
4080 * sampled at the end of that period but right at the beginning of the
4081 * sampling interval and some other clock is sampled right at the
4082 * begining of its sampling period and right at the end of the
4083 * sampling interval. Let's assume the GPU has the longest clock
4084 * period and that the application is sampling GPU and monotonic:
4085 *
4086 * s e
4087 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4088 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4089 *
4090 * g
4091 * 0 1 2 3
4092 * GPU -----_____-----_____-----_____-----_____
4093 *
4094 * m
4095 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4096 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4097 *
4098 * Interval <----------------->
4099 * Deviation <-------------------------->
4100 *
4101 * s = read(raw) 2
4102 * g = read(GPU) 1
4103 * m = read(monotonic) 2
4104 * e = read(raw) b
4105 *
4106 * We round the sample interval up by one tick to cover sampling error
4107 * in the interval clock
4108 */
4109
4110 uint64_t sample_interval = end - begin + 1;
4111
4112 *pMaxDeviation = sample_interval + max_clock_period;
4113
4114 return VK_SUCCESS;
4115 }
4116
4117 /* vk_icd.h does not declare this function, so we declare it here to
4118 * suppress Wmissing-prototypes.
4119 */
4120 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4121 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4122
4123 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4124 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4125 {
4126 /* For the full details on loader interface versioning, see
4127 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4128 * What follows is a condensed summary, to help you navigate the large and
4129 * confusing official doc.
4130 *
4131 * - Loader interface v0 is incompatible with later versions. We don't
4132 * support it.
4133 *
4134 * - In loader interface v1:
4135 * - The first ICD entrypoint called by the loader is
4136 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4137 * entrypoint.
4138 * - The ICD must statically expose no other Vulkan symbol unless it is
4139 * linked with -Bsymbolic.
4140 * - Each dispatchable Vulkan handle created by the ICD must be
4141 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4142 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4143 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4144 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4145 * such loader-managed surfaces.
4146 *
4147 * - Loader interface v2 differs from v1 in:
4148 * - The first ICD entrypoint called by the loader is
4149 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4150 * statically expose this entrypoint.
4151 *
4152 * - Loader interface v3 differs from v2 in:
4153 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4154 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4155 * because the loader no longer does so.
4156 *
4157 * - Loader interface v4 differs from v3 in:
4158 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4159 */
4160 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4161 return VK_SUCCESS;
4162 }