anv: Implement VK_KHR_uniform_buffer_standard_layout
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_defines.h"
46 #include "compiler/glsl_types.h"
47
48 #include "genxml/gen7_pack.h"
49
50 /* This is probably far to big but it reflects the max size used for messages
51 * in OpenGLs KHR_debug.
52 */
53 #define MAX_DEBUG_MESSAGE_LENGTH 4096
54
55 static void
56 compiler_debug_log(void *data, const char *fmt, ...)
57 {
58 char str[MAX_DEBUG_MESSAGE_LENGTH];
59 struct anv_device *device = (struct anv_device *)data;
60
61 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
62 return;
63
64 va_list args;
65 va_start(args, fmt);
66 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
67 va_end(args);
68
69 vk_debug_report(&device->instance->debug_report_callbacks,
70 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
71 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
72 0, 0, 0, "anv", str);
73 }
74
75 static void
76 compiler_perf_log(void *data, const char *fmt, ...)
77 {
78 va_list args;
79 va_start(args, fmt);
80
81 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
82 intel_logd_v(fmt, args);
83
84 va_end(args);
85 }
86
87 static uint64_t
88 anv_compute_heap_size(int fd, uint64_t gtt_size)
89 {
90 /* Query the total ram from the system */
91 struct sysinfo info;
92 sysinfo(&info);
93
94 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
95
96 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
97 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
98 */
99 uint64_t available_ram;
100 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
101 available_ram = total_ram / 2;
102 else
103 available_ram = total_ram * 3 / 4;
104
105 /* We also want to leave some padding for things we allocate in the driver,
106 * so don't go over 3/4 of the GTT either.
107 */
108 uint64_t available_gtt = gtt_size * 3 / 4;
109
110 return MIN2(available_ram, available_gtt);
111 }
112
113 static VkResult
114 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
115 {
116 uint64_t gtt_size;
117 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
118 &gtt_size) == -1) {
119 /* If, for whatever reason, we can't actually get the GTT size from the
120 * kernel (too old?) fall back to the aperture size.
121 */
122 anv_perf_warn(NULL, NULL,
123 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
124
125 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
126 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
127 "failed to get aperture size: %m");
128 }
129 }
130
131 device->supports_48bit_addresses = (device->info.gen >= 8) &&
132 gtt_size > (4ULL << 30 /* GiB */);
133
134 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
135
136 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
137 /* When running with an overridden PCI ID, we may get a GTT size from
138 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
139 * address support can still fail. Just clamp the address space size to
140 * 2 GiB if we don't have 48-bit support.
141 */
142 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
143 "not support for 48-bit addresses",
144 __FILE__, __LINE__);
145 heap_size = 2ull << 30;
146 }
147
148 if (heap_size <= 3ull * (1ull << 30)) {
149 /* In this case, everything fits nicely into the 32-bit address space,
150 * so there's no need for supporting 48bit addresses on client-allocated
151 * memory objects.
152 */
153 device->memory.heap_count = 1;
154 device->memory.heaps[0] = (struct anv_memory_heap) {
155 .vma_start = LOW_HEAP_MIN_ADDRESS,
156 .vma_size = LOW_HEAP_SIZE,
157 .size = heap_size,
158 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
159 .supports_48bit_addresses = false,
160 };
161 } else {
162 /* Not everything will fit nicely into a 32-bit address space. In this
163 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
164 * larger 48-bit heap. If we're in this case, then we have a total heap
165 * size larger than 3GiB which most likely means they have 8 GiB of
166 * video memory and so carving off 1 GiB for the 32-bit heap should be
167 * reasonable.
168 */
169 const uint64_t heap_size_32bit = 1ull << 30;
170 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
171
172 assert(device->supports_48bit_addresses);
173
174 device->memory.heap_count = 2;
175 device->memory.heaps[0] = (struct anv_memory_heap) {
176 .vma_start = HIGH_HEAP_MIN_ADDRESS,
177 /* Leave the last 4GiB out of the high vma range, so that no state
178 * base address + size can overflow 48 bits. For more information see
179 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
180 */
181 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
182 .size = heap_size_48bit,
183 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
184 .supports_48bit_addresses = true,
185 };
186 device->memory.heaps[1] = (struct anv_memory_heap) {
187 .vma_start = LOW_HEAP_MIN_ADDRESS,
188 .vma_size = LOW_HEAP_SIZE,
189 .size = heap_size_32bit,
190 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
191 .supports_48bit_addresses = false,
192 };
193 }
194
195 uint32_t type_count = 0;
196 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
197 uint32_t valid_buffer_usage = ~0;
198
199 /* There appears to be a hardware issue in the VF cache where it only
200 * considers the bottom 32 bits of memory addresses. If you happen to
201 * have two vertex buffers which get placed exactly 4 GiB apart and use
202 * them in back-to-back draw calls, you can get collisions. In order to
203 * solve this problem, we require vertex and index buffers be bound to
204 * memory allocated out of the 32-bit heap.
205 */
206 if (device->memory.heaps[heap].supports_48bit_addresses) {
207 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
208 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
209 }
210
211 if (device->info.has_llc) {
212 /* Big core GPUs share LLC with the CPU and thus one memory type can be
213 * both cached and coherent at the same time.
214 */
215 device->memory.types[type_count++] = (struct anv_memory_type) {
216 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
217 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
218 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
219 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
220 .heapIndex = heap,
221 .valid_buffer_usage = valid_buffer_usage,
222 };
223 } else {
224 /* The spec requires that we expose a host-visible, coherent memory
225 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
226 * to give the application a choice between cached, but not coherent and
227 * coherent but uncached (WC though).
228 */
229 device->memory.types[type_count++] = (struct anv_memory_type) {
230 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
231 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
232 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
233 .heapIndex = heap,
234 .valid_buffer_usage = valid_buffer_usage,
235 };
236 device->memory.types[type_count++] = (struct anv_memory_type) {
237 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
238 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
239 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
240 .heapIndex = heap,
241 .valid_buffer_usage = valid_buffer_usage,
242 };
243 }
244 }
245 device->memory.type_count = type_count;
246
247 return VK_SUCCESS;
248 }
249
250 static VkResult
251 anv_physical_device_init_uuids(struct anv_physical_device *device)
252 {
253 const struct build_id_note *note =
254 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
255 if (!note) {
256 return vk_errorf(device->instance, device,
257 VK_ERROR_INITIALIZATION_FAILED,
258 "Failed to find build-id");
259 }
260
261 unsigned build_id_len = build_id_length(note);
262 if (build_id_len < 20) {
263 return vk_errorf(device->instance, device,
264 VK_ERROR_INITIALIZATION_FAILED,
265 "build-id too short. It needs to be a SHA");
266 }
267
268 memcpy(device->driver_build_sha1, build_id_data(note), 20);
269
270 struct mesa_sha1 sha1_ctx;
271 uint8_t sha1[20];
272 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
273
274 /* The pipeline cache UUID is used for determining when a pipeline cache is
275 * invalid. It needs both a driver build and the PCI ID of the device.
276 */
277 _mesa_sha1_init(&sha1_ctx);
278 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
279 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
280 sizeof(device->chipset_id));
281 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
282 sizeof(device->always_use_bindless));
283 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
284 sizeof(device->has_a64_buffer_access));
285 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
286 sizeof(device->has_bindless_images));
287 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
288 sizeof(device->has_bindless_samplers));
289 _mesa_sha1_final(&sha1_ctx, sha1);
290 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
291
292 /* The driver UUID is used for determining sharability of images and memory
293 * between two Vulkan instances in separate processes. People who want to
294 * share memory need to also check the device UUID (below) so all this
295 * needs to be is the build-id.
296 */
297 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
298
299 /* The device UUID uniquely identifies the given device within the machine.
300 * Since we never have more than one device, this doesn't need to be a real
301 * UUID. However, on the off-chance that someone tries to use this to
302 * cache pre-tiled images or something of the like, we use the PCI ID and
303 * some bits of ISL info to ensure that this is safe.
304 */
305 _mesa_sha1_init(&sha1_ctx);
306 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
307 sizeof(device->chipset_id));
308 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
309 sizeof(device->isl_dev.has_bit6_swizzling));
310 _mesa_sha1_final(&sha1_ctx, sha1);
311 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
312
313 return VK_SUCCESS;
314 }
315
316 static void
317 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
318 {
319 #ifdef ENABLE_SHADER_CACHE
320 char renderer[10];
321 MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
322 device->chipset_id);
323 assert(len == sizeof(renderer) - 2);
324
325 char timestamp[41];
326 _mesa_sha1_format(timestamp, device->driver_build_sha1);
327
328 const uint64_t driver_flags =
329 brw_get_compiler_config_value(device->compiler);
330 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
331 #else
332 device->disk_cache = NULL;
333 #endif
334 }
335
336 static void
337 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
338 {
339 #ifdef ENABLE_SHADER_CACHE
340 if (device->disk_cache)
341 disk_cache_destroy(device->disk_cache);
342 #else
343 assert(device->disk_cache == NULL);
344 #endif
345 }
346
347 static uint64_t
348 get_available_system_memory()
349 {
350 char *meminfo = os_read_file("/proc/meminfo");
351 if (!meminfo)
352 return 0;
353
354 char *str = strstr(meminfo, "MemAvailable:");
355 if (!str) {
356 free(meminfo);
357 return 0;
358 }
359
360 uint64_t kb_mem_available;
361 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
362 free(meminfo);
363 return kb_mem_available << 10;
364 }
365
366 free(meminfo);
367 return 0;
368 }
369
370 static VkResult
371 anv_physical_device_init(struct anv_physical_device *device,
372 struct anv_instance *instance,
373 drmDevicePtr drm_device)
374 {
375 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
376 const char *path = drm_device->nodes[DRM_NODE_RENDER];
377 VkResult result;
378 int fd;
379 int master_fd = -1;
380
381 brw_process_intel_debug_variable();
382
383 fd = open(path, O_RDWR | O_CLOEXEC);
384 if (fd < 0)
385 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
386
387 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
388 device->instance = instance;
389
390 assert(strlen(path) < ARRAY_SIZE(device->path));
391 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
392
393 device->no_hw = getenv("INTEL_NO_HW") != NULL;
394
395 const int pci_id_override = gen_get_pci_device_id_override();
396 if (pci_id_override < 0) {
397 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
398 if (!device->chipset_id) {
399 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
400 goto fail;
401 }
402 } else {
403 device->chipset_id = pci_id_override;
404 device->no_hw = true;
405 }
406
407 device->pci_info.domain = drm_device->businfo.pci->domain;
408 device->pci_info.bus = drm_device->businfo.pci->bus;
409 device->pci_info.device = drm_device->businfo.pci->dev;
410 device->pci_info.function = drm_device->businfo.pci->func;
411
412 device->name = gen_get_device_name(device->chipset_id);
413 if (!gen_get_device_info(device->chipset_id, &device->info)) {
414 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
415 goto fail;
416 }
417
418 if (device->info.is_haswell) {
419 intel_logw("Haswell Vulkan support is incomplete");
420 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
421 intel_logw("Ivy Bridge Vulkan support is incomplete");
422 } else if (device->info.gen == 7 && device->info.is_baytrail) {
423 intel_logw("Bay Trail Vulkan support is incomplete");
424 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
425 /* Gen8-11 fully supported */
426 } else {
427 result = vk_errorf(device->instance, device,
428 VK_ERROR_INCOMPATIBLE_DRIVER,
429 "Vulkan not yet supported on %s", device->name);
430 goto fail;
431 }
432
433 device->cmd_parser_version = -1;
434 if (device->info.gen == 7) {
435 device->cmd_parser_version =
436 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
437 if (device->cmd_parser_version == -1) {
438 result = vk_errorf(device->instance, device,
439 VK_ERROR_INITIALIZATION_FAILED,
440 "failed to get command parser version");
441 goto fail;
442 }
443 }
444
445 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
446 result = vk_errorf(device->instance, device,
447 VK_ERROR_INITIALIZATION_FAILED,
448 "kernel missing gem wait");
449 goto fail;
450 }
451
452 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
453 result = vk_errorf(device->instance, device,
454 VK_ERROR_INITIALIZATION_FAILED,
455 "kernel missing execbuf2");
456 goto fail;
457 }
458
459 if (!device->info.has_llc &&
460 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
461 result = vk_errorf(device->instance, device,
462 VK_ERROR_INITIALIZATION_FAILED,
463 "kernel missing wc mmap");
464 goto fail;
465 }
466
467 result = anv_physical_device_init_heaps(device, fd);
468 if (result != VK_SUCCESS)
469 goto fail;
470
471 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
472 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
473 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
474 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
475 device->has_syncobj_wait = device->has_syncobj &&
476 anv_gem_supports_syncobj_wait(fd);
477 device->has_context_priority = anv_gem_has_context_priority(fd);
478
479 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
480 && device->supports_48bit_addresses;
481
482 device->has_context_isolation =
483 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
484
485 device->always_use_bindless =
486 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
487
488 /* We first got the A64 messages on broadwell and we can only use them if
489 * we can pass addresses directly into the shader which requires softpin.
490 */
491 device->has_a64_buffer_access = device->info.gen >= 8 &&
492 device->use_softpin;
493
494 /* We first get bindless image access on Skylake and we can only really do
495 * it if we don't have any relocations so we need softpin.
496 */
497 device->has_bindless_images = device->info.gen >= 9 &&
498 device->use_softpin;
499
500 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
501 * because it's just a matter of setting the sampler address in the sample
502 * message header. However, we've not bothered to wire it up for vec4 so
503 * we leave it disabled on gen7.
504 */
505 device->has_bindless_samplers = device->info.gen >= 8;
506
507 device->has_mem_available = get_available_system_memory() != 0;
508
509 /* Starting with Gen10, the timestamp frequency of the command streamer may
510 * vary from one part to another. We can query the value from the kernel.
511 */
512 if (device->info.gen >= 10) {
513 int timestamp_frequency =
514 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
515
516 if (timestamp_frequency < 0)
517 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
518 else
519 device->info.timestamp_frequency = timestamp_frequency;
520 }
521
522 /* GENs prior to 8 do not support EU/Subslice info */
523 if (device->info.gen >= 8) {
524 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
525 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
526
527 /* Without this information, we cannot get the right Braswell
528 * brandstrings, and we have to use conservative numbers for GPGPU on
529 * many platforms, but otherwise, things will just work.
530 */
531 if (device->subslice_total < 1 || device->eu_total < 1) {
532 intel_logw("Kernel 4.1 required to properly query GPU properties");
533 }
534 } else if (device->info.gen == 7) {
535 device->subslice_total = 1 << (device->info.gt - 1);
536 }
537
538 if (device->info.is_cherryview &&
539 device->subslice_total > 0 && device->eu_total > 0) {
540 /* Logical CS threads = EUs per subslice * num threads per EU */
541 uint32_t max_cs_threads =
542 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
543
544 /* Fuse configurations may give more threads than expected, never less. */
545 if (max_cs_threads > device->info.max_cs_threads)
546 device->info.max_cs_threads = max_cs_threads;
547 }
548
549 device->compiler = brw_compiler_create(NULL, &device->info);
550 if (device->compiler == NULL) {
551 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
552 goto fail;
553 }
554 device->compiler->shader_debug_log = compiler_debug_log;
555 device->compiler->shader_perf_log = compiler_perf_log;
556 device->compiler->supports_pull_constants = false;
557 device->compiler->constant_buffer_0_is_relative =
558 device->info.gen < 8 || !device->has_context_isolation;
559 device->compiler->supports_shader_constants = true;
560
561 /* Broadwell PRM says:
562 *
563 * "Before Gen8, there was a historical configuration control field to
564 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
565 * different places: TILECTL[1:0], ARB_MODE[5:4], and
566 * DISP_ARB_CTL[14:13].
567 *
568 * For Gen8 and subsequent generations, the swizzle fields are all
569 * reserved, and the CPU's memory controller performs all address
570 * swizzling modifications."
571 */
572 bool swizzled =
573 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
574
575 isl_device_init(&device->isl_dev, &device->info, swizzled);
576
577 result = anv_physical_device_init_uuids(device);
578 if (result != VK_SUCCESS)
579 goto fail;
580
581 anv_physical_device_init_disk_cache(device);
582
583 if (instance->enabled_extensions.KHR_display) {
584 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
585 if (master_fd >= 0) {
586 /* prod the device with a GETPARAM call which will fail if
587 * we don't have permission to even render on this device
588 */
589 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
590 close(master_fd);
591 master_fd = -1;
592 }
593 }
594 }
595 device->master_fd = master_fd;
596
597 result = anv_init_wsi(device);
598 if (result != VK_SUCCESS) {
599 ralloc_free(device->compiler);
600 anv_physical_device_free_disk_cache(device);
601 goto fail;
602 }
603
604 anv_physical_device_get_supported_extensions(device,
605 &device->supported_extensions);
606
607
608 device->local_fd = fd;
609
610 return VK_SUCCESS;
611
612 fail:
613 close(fd);
614 if (master_fd != -1)
615 close(master_fd);
616 return result;
617 }
618
619 static void
620 anv_physical_device_finish(struct anv_physical_device *device)
621 {
622 anv_finish_wsi(device);
623 anv_physical_device_free_disk_cache(device);
624 ralloc_free(device->compiler);
625 close(device->local_fd);
626 if (device->master_fd >= 0)
627 close(device->master_fd);
628 }
629
630 static void *
631 default_alloc_func(void *pUserData, size_t size, size_t align,
632 VkSystemAllocationScope allocationScope)
633 {
634 return malloc(size);
635 }
636
637 static void *
638 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
639 size_t align, VkSystemAllocationScope allocationScope)
640 {
641 return realloc(pOriginal, size);
642 }
643
644 static void
645 default_free_func(void *pUserData, void *pMemory)
646 {
647 free(pMemory);
648 }
649
650 static const VkAllocationCallbacks default_alloc = {
651 .pUserData = NULL,
652 .pfnAllocation = default_alloc_func,
653 .pfnReallocation = default_realloc_func,
654 .pfnFree = default_free_func,
655 };
656
657 VkResult anv_EnumerateInstanceExtensionProperties(
658 const char* pLayerName,
659 uint32_t* pPropertyCount,
660 VkExtensionProperties* pProperties)
661 {
662 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
663
664 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
665 if (anv_instance_extensions_supported.extensions[i]) {
666 vk_outarray_append(&out, prop) {
667 *prop = anv_instance_extensions[i];
668 }
669 }
670 }
671
672 return vk_outarray_status(&out);
673 }
674
675 VkResult anv_CreateInstance(
676 const VkInstanceCreateInfo* pCreateInfo,
677 const VkAllocationCallbacks* pAllocator,
678 VkInstance* pInstance)
679 {
680 struct anv_instance *instance;
681 VkResult result;
682
683 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
684
685 struct anv_instance_extension_table enabled_extensions = {};
686 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
687 int idx;
688 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
689 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
690 anv_instance_extensions[idx].extensionName) == 0)
691 break;
692 }
693
694 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
695 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
696
697 if (!anv_instance_extensions_supported.extensions[idx])
698 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
699
700 enabled_extensions.extensions[idx] = true;
701 }
702
703 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
704 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
705 if (!instance)
706 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
707
708 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
709
710 if (pAllocator)
711 instance->alloc = *pAllocator;
712 else
713 instance->alloc = default_alloc;
714
715 instance->app_info = (struct anv_app_info) { .api_version = 0 };
716 if (pCreateInfo->pApplicationInfo) {
717 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
718
719 instance->app_info.app_name =
720 vk_strdup(&instance->alloc, app->pApplicationName,
721 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
722 instance->app_info.app_version = app->applicationVersion;
723
724 instance->app_info.engine_name =
725 vk_strdup(&instance->alloc, app->pEngineName,
726 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
727 instance->app_info.engine_version = app->engineVersion;
728
729 instance->app_info.api_version = app->apiVersion;
730 }
731
732 if (instance->app_info.api_version == 0)
733 instance->app_info.api_version = VK_API_VERSION_1_0;
734
735 instance->enabled_extensions = enabled_extensions;
736
737 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
738 /* Vulkan requires that entrypoints for extensions which have not been
739 * enabled must not be advertised.
740 */
741 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
742 &instance->enabled_extensions)) {
743 instance->dispatch.entrypoints[i] = NULL;
744 } else {
745 instance->dispatch.entrypoints[i] =
746 anv_instance_dispatch_table.entrypoints[i];
747 }
748 }
749
750 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
751 /* Vulkan requires that entrypoints for extensions which have not been
752 * enabled must not be advertised.
753 */
754 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
755 &instance->enabled_extensions, NULL)) {
756 instance->device_dispatch.entrypoints[i] = NULL;
757 } else {
758 instance->device_dispatch.entrypoints[i] =
759 anv_device_dispatch_table.entrypoints[i];
760 }
761 }
762
763 instance->physicalDeviceCount = -1;
764
765 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
766 if (result != VK_SUCCESS) {
767 vk_free2(&default_alloc, pAllocator, instance);
768 return vk_error(result);
769 }
770
771 instance->pipeline_cache_enabled =
772 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
773
774 _mesa_locale_init();
775 glsl_type_singleton_init_or_ref();
776
777 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
778
779 *pInstance = anv_instance_to_handle(instance);
780
781 return VK_SUCCESS;
782 }
783
784 void anv_DestroyInstance(
785 VkInstance _instance,
786 const VkAllocationCallbacks* pAllocator)
787 {
788 ANV_FROM_HANDLE(anv_instance, instance, _instance);
789
790 if (!instance)
791 return;
792
793 if (instance->physicalDeviceCount > 0) {
794 /* We support at most one physical device. */
795 assert(instance->physicalDeviceCount == 1);
796 anv_physical_device_finish(&instance->physicalDevice);
797 }
798
799 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
800 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
801
802 VG(VALGRIND_DESTROY_MEMPOOL(instance));
803
804 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
805
806 glsl_type_singleton_decref();
807 _mesa_locale_fini();
808
809 vk_free(&instance->alloc, instance);
810 }
811
812 static VkResult
813 anv_enumerate_devices(struct anv_instance *instance)
814 {
815 /* TODO: Check for more devices ? */
816 drmDevicePtr devices[8];
817 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
818 int max_devices;
819
820 instance->physicalDeviceCount = 0;
821
822 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
823 if (max_devices < 1)
824 return VK_ERROR_INCOMPATIBLE_DRIVER;
825
826 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
827 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
828 devices[i]->bustype == DRM_BUS_PCI &&
829 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
830
831 result = anv_physical_device_init(&instance->physicalDevice,
832 instance, devices[i]);
833 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
834 break;
835 }
836 }
837 drmFreeDevices(devices, max_devices);
838
839 if (result == VK_SUCCESS)
840 instance->physicalDeviceCount = 1;
841
842 return result;
843 }
844
845 static VkResult
846 anv_instance_ensure_physical_device(struct anv_instance *instance)
847 {
848 if (instance->physicalDeviceCount < 0) {
849 VkResult result = anv_enumerate_devices(instance);
850 if (result != VK_SUCCESS &&
851 result != VK_ERROR_INCOMPATIBLE_DRIVER)
852 return result;
853 }
854
855 return VK_SUCCESS;
856 }
857
858 VkResult anv_EnumeratePhysicalDevices(
859 VkInstance _instance,
860 uint32_t* pPhysicalDeviceCount,
861 VkPhysicalDevice* pPhysicalDevices)
862 {
863 ANV_FROM_HANDLE(anv_instance, instance, _instance);
864 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
865
866 VkResult result = anv_instance_ensure_physical_device(instance);
867 if (result != VK_SUCCESS)
868 return result;
869
870 if (instance->physicalDeviceCount == 0)
871 return VK_SUCCESS;
872
873 assert(instance->physicalDeviceCount == 1);
874 vk_outarray_append(&out, i) {
875 *i = anv_physical_device_to_handle(&instance->physicalDevice);
876 }
877
878 return vk_outarray_status(&out);
879 }
880
881 VkResult anv_EnumeratePhysicalDeviceGroups(
882 VkInstance _instance,
883 uint32_t* pPhysicalDeviceGroupCount,
884 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
885 {
886 ANV_FROM_HANDLE(anv_instance, instance, _instance);
887 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
888 pPhysicalDeviceGroupCount);
889
890 VkResult result = anv_instance_ensure_physical_device(instance);
891 if (result != VK_SUCCESS)
892 return result;
893
894 if (instance->physicalDeviceCount == 0)
895 return VK_SUCCESS;
896
897 assert(instance->physicalDeviceCount == 1);
898
899 vk_outarray_append(&out, p) {
900 p->physicalDeviceCount = 1;
901 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
902 p->physicalDevices[0] =
903 anv_physical_device_to_handle(&instance->physicalDevice);
904 p->subsetAllocation = false;
905
906 vk_foreach_struct(ext, p->pNext)
907 anv_debug_ignored_stype(ext->sType);
908 }
909
910 return vk_outarray_status(&out);
911 }
912
913 void anv_GetPhysicalDeviceFeatures(
914 VkPhysicalDevice physicalDevice,
915 VkPhysicalDeviceFeatures* pFeatures)
916 {
917 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
918
919 *pFeatures = (VkPhysicalDeviceFeatures) {
920 .robustBufferAccess = true,
921 .fullDrawIndexUint32 = true,
922 .imageCubeArray = true,
923 .independentBlend = true,
924 .geometryShader = true,
925 .tessellationShader = true,
926 .sampleRateShading = true,
927 .dualSrcBlend = true,
928 .logicOp = true,
929 .multiDrawIndirect = true,
930 .drawIndirectFirstInstance = true,
931 .depthClamp = true,
932 .depthBiasClamp = true,
933 .fillModeNonSolid = true,
934 .depthBounds = false,
935 .wideLines = true,
936 .largePoints = true,
937 .alphaToOne = true,
938 .multiViewport = true,
939 .samplerAnisotropy = true,
940 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
941 pdevice->info.is_baytrail,
942 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
943 .textureCompressionBC = true,
944 .occlusionQueryPrecise = true,
945 .pipelineStatisticsQuery = true,
946 .fragmentStoresAndAtomics = true,
947 .shaderTessellationAndGeometryPointSize = true,
948 .shaderImageGatherExtended = true,
949 .shaderStorageImageExtendedFormats = true,
950 .shaderStorageImageMultisample = false,
951 .shaderStorageImageReadWithoutFormat = false,
952 .shaderStorageImageWriteWithoutFormat = true,
953 .shaderUniformBufferArrayDynamicIndexing = true,
954 .shaderSampledImageArrayDynamicIndexing = true,
955 .shaderStorageBufferArrayDynamicIndexing = true,
956 .shaderStorageImageArrayDynamicIndexing = true,
957 .shaderClipDistance = true,
958 .shaderCullDistance = true,
959 .shaderFloat64 = pdevice->info.gen >= 8 &&
960 pdevice->info.has_64bit_types,
961 .shaderInt64 = pdevice->info.gen >= 8 &&
962 pdevice->info.has_64bit_types,
963 .shaderInt16 = pdevice->info.gen >= 8,
964 .shaderResourceMinLod = pdevice->info.gen >= 9,
965 .variableMultisampleRate = true,
966 .inheritedQueries = true,
967 };
968
969 /* We can't do image stores in vec4 shaders */
970 pFeatures->vertexPipelineStoresAndAtomics =
971 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
972 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
973
974 struct anv_app_info *app_info = &pdevice->instance->app_info;
975
976 /* The new DOOM and Wolfenstein games require depthBounds without
977 * checking for it. They seem to run fine without it so just claim it's
978 * there and accept the consequences.
979 */
980 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
981 pFeatures->depthBounds = true;
982 }
983
984 void anv_GetPhysicalDeviceFeatures2(
985 VkPhysicalDevice physicalDevice,
986 VkPhysicalDeviceFeatures2* pFeatures)
987 {
988 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
989 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
990
991 vk_foreach_struct(ext, pFeatures->pNext) {
992 switch (ext->sType) {
993 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
994 VkPhysicalDevice8BitStorageFeaturesKHR *features =
995 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
996 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
997 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
998 features->storagePushConstant8 = pdevice->info.gen >= 8;
999 break;
1000 }
1001
1002 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1003 VkPhysicalDevice16BitStorageFeatures *features =
1004 (VkPhysicalDevice16BitStorageFeatures *)ext;
1005 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1006 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1007 features->storagePushConstant16 = pdevice->info.gen >= 8;
1008 features->storageInputOutput16 = false;
1009 break;
1010 }
1011
1012 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1013 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1014 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1015 features->bufferDeviceAddressCaptureReplay = false;
1016 features->bufferDeviceAddressMultiDevice = false;
1017 break;
1018 }
1019
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1021 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1022 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1023 features->computeDerivativeGroupQuads = true;
1024 features->computeDerivativeGroupLinear = true;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1029 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1030 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1031 features->conditionalRendering = pdevice->info.gen >= 8 ||
1032 pdevice->info.is_haswell;
1033 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1034 pdevice->info.is_haswell;
1035 break;
1036 }
1037
1038 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1039 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1040 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1041 features->depthClipEnable = true;
1042 break;
1043 }
1044
1045 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1046 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1047 features->shaderFloat16 = pdevice->info.gen >= 8;
1048 features->shaderInt8 = pdevice->info.gen >= 8;
1049 break;
1050 }
1051
1052 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1053 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1054 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1055 features->hostQueryReset = true;
1056 break;
1057 }
1058
1059 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1060 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1061 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1062 features->shaderInputAttachmentArrayDynamicIndexing = false;
1063 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1064 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1065 features->shaderUniformBufferArrayNonUniformIndexing = false;
1066 features->shaderSampledImageArrayNonUniformIndexing = true;
1067 features->shaderStorageBufferArrayNonUniformIndexing = true;
1068 features->shaderStorageImageArrayNonUniformIndexing = true;
1069 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1070 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1071 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1072 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1073 features->descriptorBindingSampledImageUpdateAfterBind = true;
1074 features->descriptorBindingStorageImageUpdateAfterBind = true;
1075 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1076 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1077 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1078 features->descriptorBindingUpdateUnusedWhilePending = true;
1079 features->descriptorBindingPartiallyBound = true;
1080 features->descriptorBindingVariableDescriptorCount = false;
1081 features->runtimeDescriptorArray = true;
1082 break;
1083 }
1084
1085 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1086 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1087 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1088 features->inlineUniformBlock = true;
1089 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1090 break;
1091 }
1092
1093 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1094 VkPhysicalDeviceMultiviewFeatures *features =
1095 (VkPhysicalDeviceMultiviewFeatures *)ext;
1096 features->multiview = true;
1097 features->multiviewGeometryShader = true;
1098 features->multiviewTessellationShader = true;
1099 break;
1100 }
1101
1102 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1103 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1104 features->protectedMemory = false;
1105 break;
1106 }
1107
1108 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1109 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1110 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1111 features->samplerYcbcrConversion = true;
1112 break;
1113 }
1114
1115 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1116 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1117 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1118 features->scalarBlockLayout = true;
1119 break;
1120 }
1121
1122 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1123 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1124 features->shaderBufferInt64Atomics =
1125 pdevice->info.gen >= 9 && pdevice->use_softpin;
1126 features->shaderSharedInt64Atomics = VK_FALSE;
1127 break;
1128 }
1129
1130 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1131 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1132 features->shaderDrawParameters = true;
1133 break;
1134 }
1135
1136 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1137 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1138 features->variablePointersStorageBuffer = true;
1139 features->variablePointers = true;
1140 break;
1141 }
1142
1143 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1144 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1145 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1146 features->transformFeedback = true;
1147 features->geometryStreams = true;
1148 break;
1149 }
1150
1151 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1152 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1153 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1154 features->uniformBufferStandardLayout = true;
1155 break;
1156 }
1157
1158 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1159 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1160 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1161 features->vertexAttributeInstanceRateDivisor = true;
1162 features->vertexAttributeInstanceRateZeroDivisor = true;
1163 break;
1164 }
1165
1166 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1167 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1168 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1169 features->ycbcrImageArrays = true;
1170 break;
1171 }
1172
1173 default:
1174 anv_debug_ignored_stype(ext->sType);
1175 break;
1176 }
1177 }
1178 }
1179
1180 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1181
1182 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1183 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1184
1185 void anv_GetPhysicalDeviceProperties(
1186 VkPhysicalDevice physicalDevice,
1187 VkPhysicalDeviceProperties* pProperties)
1188 {
1189 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1190 const struct gen_device_info *devinfo = &pdevice->info;
1191
1192 /* See assertions made when programming the buffer surface state. */
1193 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1194 (1ul << 30) : (1ul << 27);
1195
1196 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1197 const uint32_t max_textures =
1198 pdevice->has_bindless_images ? UINT16_MAX : 128;
1199 const uint32_t max_samplers =
1200 pdevice->has_bindless_samplers ? UINT16_MAX :
1201 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1202 const uint32_t max_images =
1203 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1204
1205 /* The moment we have anything bindless, claim a high per-stage limit */
1206 const uint32_t max_per_stage =
1207 pdevice->has_a64_buffer_access ? UINT32_MAX :
1208 MAX_BINDING_TABLE_SIZE - MAX_RTS;
1209
1210 VkSampleCountFlags sample_counts =
1211 isl_device_get_sample_counts(&pdevice->isl_dev);
1212
1213
1214 VkPhysicalDeviceLimits limits = {
1215 .maxImageDimension1D = (1 << 14),
1216 .maxImageDimension2D = (1 << 14),
1217 .maxImageDimension3D = (1 << 11),
1218 .maxImageDimensionCube = (1 << 14),
1219 .maxImageArrayLayers = (1 << 11),
1220 .maxTexelBufferElements = 128 * 1024 * 1024,
1221 .maxUniformBufferRange = (1ul << 27),
1222 .maxStorageBufferRange = max_raw_buffer_sz,
1223 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1224 .maxMemoryAllocationCount = UINT32_MAX,
1225 .maxSamplerAllocationCount = 64 * 1024,
1226 .bufferImageGranularity = 64, /* A cache line */
1227 .sparseAddressSpaceSize = 0,
1228 .maxBoundDescriptorSets = MAX_SETS,
1229 .maxPerStageDescriptorSamplers = max_samplers,
1230 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1231 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1232 .maxPerStageDescriptorSampledImages = max_textures,
1233 .maxPerStageDescriptorStorageImages = max_images,
1234 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1235 .maxPerStageResources = max_per_stage,
1236 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1237 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1238 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1239 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1240 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1241 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1242 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1243 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1244 .maxVertexInputAttributes = MAX_VBS,
1245 .maxVertexInputBindings = MAX_VBS,
1246 .maxVertexInputAttributeOffset = 2047,
1247 .maxVertexInputBindingStride = 2048,
1248 .maxVertexOutputComponents = 128,
1249 .maxTessellationGenerationLevel = 64,
1250 .maxTessellationPatchSize = 32,
1251 .maxTessellationControlPerVertexInputComponents = 128,
1252 .maxTessellationControlPerVertexOutputComponents = 128,
1253 .maxTessellationControlPerPatchOutputComponents = 128,
1254 .maxTessellationControlTotalOutputComponents = 2048,
1255 .maxTessellationEvaluationInputComponents = 128,
1256 .maxTessellationEvaluationOutputComponents = 128,
1257 .maxGeometryShaderInvocations = 32,
1258 .maxGeometryInputComponents = 64,
1259 .maxGeometryOutputComponents = 128,
1260 .maxGeometryOutputVertices = 256,
1261 .maxGeometryTotalOutputComponents = 1024,
1262 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1263 .maxFragmentOutputAttachments = 8,
1264 .maxFragmentDualSrcAttachments = 1,
1265 .maxFragmentCombinedOutputResources = 8,
1266 .maxComputeSharedMemorySize = 32768,
1267 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1268 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1269 .maxComputeWorkGroupSize = {
1270 16 * devinfo->max_cs_threads,
1271 16 * devinfo->max_cs_threads,
1272 16 * devinfo->max_cs_threads,
1273 },
1274 .subPixelPrecisionBits = 8,
1275 .subTexelPrecisionBits = 8,
1276 .mipmapPrecisionBits = 8,
1277 .maxDrawIndexedIndexValue = UINT32_MAX,
1278 .maxDrawIndirectCount = UINT32_MAX,
1279 .maxSamplerLodBias = 16,
1280 .maxSamplerAnisotropy = 16,
1281 .maxViewports = MAX_VIEWPORTS,
1282 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1283 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1284 .viewportSubPixelBits = 13, /* We take a float? */
1285 .minMemoryMapAlignment = 4096, /* A page */
1286 .minTexelBufferOffsetAlignment = 1,
1287 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1288 .minUniformBufferOffsetAlignment = 32,
1289 .minStorageBufferOffsetAlignment = 4,
1290 .minTexelOffset = -8,
1291 .maxTexelOffset = 7,
1292 .minTexelGatherOffset = -32,
1293 .maxTexelGatherOffset = 31,
1294 .minInterpolationOffset = -0.5,
1295 .maxInterpolationOffset = 0.4375,
1296 .subPixelInterpolationOffsetBits = 4,
1297 .maxFramebufferWidth = (1 << 14),
1298 .maxFramebufferHeight = (1 << 14),
1299 .maxFramebufferLayers = (1 << 11),
1300 .framebufferColorSampleCounts = sample_counts,
1301 .framebufferDepthSampleCounts = sample_counts,
1302 .framebufferStencilSampleCounts = sample_counts,
1303 .framebufferNoAttachmentsSampleCounts = sample_counts,
1304 .maxColorAttachments = MAX_RTS,
1305 .sampledImageColorSampleCounts = sample_counts,
1306 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1307 .sampledImageDepthSampleCounts = sample_counts,
1308 .sampledImageStencilSampleCounts = sample_counts,
1309 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1310 .maxSampleMaskWords = 1,
1311 .timestampComputeAndGraphics = false,
1312 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1313 .maxClipDistances = 8,
1314 .maxCullDistances = 8,
1315 .maxCombinedClipAndCullDistances = 8,
1316 .discreteQueuePriorities = 2,
1317 .pointSizeRange = { 0.125, 255.875 },
1318 .lineWidthRange = { 0.0, 7.9921875 },
1319 .pointSizeGranularity = (1.0 / 8.0),
1320 .lineWidthGranularity = (1.0 / 128.0),
1321 .strictLines = false, /* FINISHME */
1322 .standardSampleLocations = true,
1323 .optimalBufferCopyOffsetAlignment = 128,
1324 .optimalBufferCopyRowPitchAlignment = 128,
1325 .nonCoherentAtomSize = 64,
1326 };
1327
1328 *pProperties = (VkPhysicalDeviceProperties) {
1329 .apiVersion = anv_physical_device_api_version(pdevice),
1330 .driverVersion = vk_get_driver_version(),
1331 .vendorID = 0x8086,
1332 .deviceID = pdevice->chipset_id,
1333 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1334 .limits = limits,
1335 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1336 };
1337
1338 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1339 "%s", pdevice->name);
1340 memcpy(pProperties->pipelineCacheUUID,
1341 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1342 }
1343
1344 void anv_GetPhysicalDeviceProperties2(
1345 VkPhysicalDevice physicalDevice,
1346 VkPhysicalDeviceProperties2* pProperties)
1347 {
1348 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1349
1350 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1351
1352 vk_foreach_struct(ext, pProperties->pNext) {
1353 switch (ext->sType) {
1354 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1355 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1356 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1357
1358 /* We support all of the depth resolve modes */
1359 props->supportedDepthResolveModes =
1360 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1361 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1362 VK_RESOLVE_MODE_MIN_BIT_KHR |
1363 VK_RESOLVE_MODE_MAX_BIT_KHR;
1364
1365 /* Average doesn't make sense for stencil so we don't support that */
1366 props->supportedStencilResolveModes =
1367 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1368 if (pdevice->info.gen >= 8) {
1369 /* The advanced stencil resolve modes currently require stencil
1370 * sampling be supported by the hardware.
1371 */
1372 props->supportedStencilResolveModes |=
1373 VK_RESOLVE_MODE_MIN_BIT_KHR |
1374 VK_RESOLVE_MODE_MAX_BIT_KHR;
1375 }
1376
1377 props->independentResolveNone = true;
1378 props->independentResolve = true;
1379 break;
1380 }
1381
1382 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1383 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1384 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1385
1386 /* It's a bit hard to exactly map our implementation to the limits
1387 * described here. The bindless surface handle in the extended
1388 * message descriptors is 20 bits and it's an index into the table of
1389 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1390 * address. Given that most things consume two surface states per
1391 * view (general/sampled for textures and write-only/read-write for
1392 * images), we claim 2^19 things.
1393 *
1394 * For SSBOs, we just use A64 messages so there is no real limit
1395 * there beyond the limit on the total size of a descriptor set.
1396 */
1397 const unsigned max_bindless_views = 1 << 19;
1398
1399 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1400 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1401 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1402 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1403 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1404 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1405 props->robustBufferAccessUpdateAfterBind = true;
1406 props->quadDivergentImplicitLod = false;
1407 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1408 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1409 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1410 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1411 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1412 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1413 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1414 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1415 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1416 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1417 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1418 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1419 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1420 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1421 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1422 break;
1423 }
1424
1425 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1426 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1427 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1428
1429 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1430 util_snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1431 "Intel open-source Mesa driver");
1432
1433 util_snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1434 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1435
1436 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1437 .major = 1,
1438 .minor = 1,
1439 .subminor = 2,
1440 .patch = 0,
1441 };
1442 break;
1443 }
1444
1445 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1446 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1447 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1448 /* Userptr needs page aligned memory. */
1449 props->minImportedHostPointerAlignment = 4096;
1450 break;
1451 }
1452
1453 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1454 VkPhysicalDeviceIDProperties *id_props =
1455 (VkPhysicalDeviceIDProperties *)ext;
1456 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1457 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1458 /* The LUID is for Windows. */
1459 id_props->deviceLUIDValid = false;
1460 break;
1461 }
1462
1463 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1464 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1465 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1466 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1467 props->maxPerStageDescriptorInlineUniformBlocks =
1468 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1469 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1470 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1471 props->maxDescriptorSetInlineUniformBlocks =
1472 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1473 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1474 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1475 break;
1476 }
1477
1478 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1479 VkPhysicalDeviceMaintenance3Properties *props =
1480 (VkPhysicalDeviceMaintenance3Properties *)ext;
1481 /* This value doesn't matter for us today as our per-stage
1482 * descriptors are the real limit.
1483 */
1484 props->maxPerSetDescriptors = 1024;
1485 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1486 break;
1487 }
1488
1489 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1490 VkPhysicalDeviceMultiviewProperties *properties =
1491 (VkPhysicalDeviceMultiviewProperties *)ext;
1492 properties->maxMultiviewViewCount = 16;
1493 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1494 break;
1495 }
1496
1497 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1498 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1499 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1500 properties->pciDomain = pdevice->pci_info.domain;
1501 properties->pciBus = pdevice->pci_info.bus;
1502 properties->pciDevice = pdevice->pci_info.device;
1503 properties->pciFunction = pdevice->pci_info.function;
1504 break;
1505 }
1506
1507 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1508 VkPhysicalDevicePointClippingProperties *properties =
1509 (VkPhysicalDevicePointClippingProperties *) ext;
1510 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1511 anv_finishme("Implement pop-free point clipping");
1512 break;
1513 }
1514
1515 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1516 VkPhysicalDeviceProtectedMemoryProperties *props =
1517 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1518 props->protectedNoFault = false;
1519 break;
1520 }
1521
1522 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1523 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1524 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1525
1526 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1527 break;
1528 }
1529
1530 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1531 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1532 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1533 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1534 properties->filterMinmaxSingleComponentFormats = true;
1535 break;
1536 }
1537
1538 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1539 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1540
1541 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1542
1543 VkShaderStageFlags scalar_stages = 0;
1544 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1545 if (pdevice->compiler->scalar_stage[stage])
1546 scalar_stages |= mesa_to_vk_shader_stage(stage);
1547 }
1548 properties->supportedStages = scalar_stages;
1549
1550 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1551 VK_SUBGROUP_FEATURE_VOTE_BIT |
1552 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1553 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1554 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1555 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1556 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1557 VK_SUBGROUP_FEATURE_QUAD_BIT;
1558 properties->quadOperationsInAllStages = true;
1559 break;
1560 }
1561
1562 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1563 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1564 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1565
1566 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1567 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1568 props->maxTransformFeedbackBufferSize = (1ull << 32);
1569 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1570 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1571 props->maxTransformFeedbackBufferDataStride = 2048;
1572 props->transformFeedbackQueries = true;
1573 props->transformFeedbackStreamsLinesTriangles = false;
1574 props->transformFeedbackRasterizationStreamSelect = false;
1575 props->transformFeedbackDraw = true;
1576 break;
1577 }
1578
1579 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1580 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1581 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1582 /* We have to restrict this a bit for multiview */
1583 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1584 break;
1585 }
1586
1587 default:
1588 anv_debug_ignored_stype(ext->sType);
1589 break;
1590 }
1591 }
1592 }
1593
1594 /* We support exactly one queue family. */
1595 static const VkQueueFamilyProperties
1596 anv_queue_family_properties = {
1597 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1598 VK_QUEUE_COMPUTE_BIT |
1599 VK_QUEUE_TRANSFER_BIT,
1600 .queueCount = 1,
1601 .timestampValidBits = 36, /* XXX: Real value here */
1602 .minImageTransferGranularity = { 1, 1, 1 },
1603 };
1604
1605 void anv_GetPhysicalDeviceQueueFamilyProperties(
1606 VkPhysicalDevice physicalDevice,
1607 uint32_t* pCount,
1608 VkQueueFamilyProperties* pQueueFamilyProperties)
1609 {
1610 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1611
1612 vk_outarray_append(&out, p) {
1613 *p = anv_queue_family_properties;
1614 }
1615 }
1616
1617 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1618 VkPhysicalDevice physicalDevice,
1619 uint32_t* pQueueFamilyPropertyCount,
1620 VkQueueFamilyProperties2* pQueueFamilyProperties)
1621 {
1622
1623 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1624
1625 vk_outarray_append(&out, p) {
1626 p->queueFamilyProperties = anv_queue_family_properties;
1627
1628 vk_foreach_struct(s, p->pNext) {
1629 anv_debug_ignored_stype(s->sType);
1630 }
1631 }
1632 }
1633
1634 void anv_GetPhysicalDeviceMemoryProperties(
1635 VkPhysicalDevice physicalDevice,
1636 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1637 {
1638 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1639
1640 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1641 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1642 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1643 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1644 .heapIndex = physical_device->memory.types[i].heapIndex,
1645 };
1646 }
1647
1648 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1649 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1650 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1651 .size = physical_device->memory.heaps[i].size,
1652 .flags = physical_device->memory.heaps[i].flags,
1653 };
1654 }
1655 }
1656
1657 static void
1658 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1659 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1660 {
1661 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1662 uint64_t sys_available = get_available_system_memory();
1663 assert(sys_available > 0);
1664
1665 VkDeviceSize total_heaps_size = 0;
1666 for (size_t i = 0; i < device->memory.heap_count; i++)
1667 total_heaps_size += device->memory.heaps[i].size;
1668
1669 for (size_t i = 0; i < device->memory.heap_count; i++) {
1670 VkDeviceSize heap_size = device->memory.heaps[i].size;
1671 VkDeviceSize heap_used = device->memory.heaps[i].used;
1672 VkDeviceSize heap_budget;
1673
1674 double heap_proportion = (double) heap_size / total_heaps_size;
1675 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1676
1677 /*
1678 * Let's not incite the app to starve the system: report at most 90% of
1679 * available system memory.
1680 */
1681 uint64_t heap_available = sys_available_prop * 9 / 10;
1682 heap_budget = MIN2(heap_size, heap_used + heap_available);
1683
1684 /*
1685 * Round down to the nearest MB
1686 */
1687 heap_budget &= ~((1ull << 20) - 1);
1688
1689 /*
1690 * The heapBudget value must be non-zero for array elements less than
1691 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1692 * value must be less than or equal to VkMemoryHeap::size for each heap.
1693 */
1694 assert(0 < heap_budget && heap_budget <= heap_size);
1695
1696 memoryBudget->heapUsage[i] = heap_used;
1697 memoryBudget->heapBudget[i] = heap_budget;
1698 }
1699
1700 /* The heapBudget and heapUsage values must be zero for array elements
1701 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1702 */
1703 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1704 memoryBudget->heapBudget[i] = 0;
1705 memoryBudget->heapUsage[i] = 0;
1706 }
1707 }
1708
1709 void anv_GetPhysicalDeviceMemoryProperties2(
1710 VkPhysicalDevice physicalDevice,
1711 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1712 {
1713 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1714 &pMemoryProperties->memoryProperties);
1715
1716 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1717 switch (ext->sType) {
1718 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1719 anv_get_memory_budget(physicalDevice, (void*)ext);
1720 break;
1721 default:
1722 anv_debug_ignored_stype(ext->sType);
1723 break;
1724 }
1725 }
1726 }
1727
1728 void
1729 anv_GetDeviceGroupPeerMemoryFeatures(
1730 VkDevice device,
1731 uint32_t heapIndex,
1732 uint32_t localDeviceIndex,
1733 uint32_t remoteDeviceIndex,
1734 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1735 {
1736 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1737 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1738 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1739 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1740 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1741 }
1742
1743 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1744 VkInstance _instance,
1745 const char* pName)
1746 {
1747 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1748
1749 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1750 * when we have to return valid function pointers, NULL, or it's left
1751 * undefined. See the table for exact details.
1752 */
1753 if (pName == NULL)
1754 return NULL;
1755
1756 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1757 if (strcmp(pName, "vk" #entrypoint) == 0) \
1758 return (PFN_vkVoidFunction)anv_##entrypoint
1759
1760 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1761 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1762 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1763 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1764
1765 #undef LOOKUP_ANV_ENTRYPOINT
1766
1767 if (instance == NULL)
1768 return NULL;
1769
1770 int idx = anv_get_instance_entrypoint_index(pName);
1771 if (idx >= 0)
1772 return instance->dispatch.entrypoints[idx];
1773
1774 idx = anv_get_device_entrypoint_index(pName);
1775 if (idx >= 0)
1776 return instance->device_dispatch.entrypoints[idx];
1777
1778 return NULL;
1779 }
1780
1781 /* With version 1+ of the loader interface the ICD should expose
1782 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1783 */
1784 PUBLIC
1785 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1786 VkInstance instance,
1787 const char* pName);
1788
1789 PUBLIC
1790 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1791 VkInstance instance,
1792 const char* pName)
1793 {
1794 return anv_GetInstanceProcAddr(instance, pName);
1795 }
1796
1797 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1798 VkDevice _device,
1799 const char* pName)
1800 {
1801 ANV_FROM_HANDLE(anv_device, device, _device);
1802
1803 if (!device || !pName)
1804 return NULL;
1805
1806 int idx = anv_get_device_entrypoint_index(pName);
1807 if (idx < 0)
1808 return NULL;
1809
1810 return device->dispatch.entrypoints[idx];
1811 }
1812
1813 VkResult
1814 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1815 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1816 const VkAllocationCallbacks* pAllocator,
1817 VkDebugReportCallbackEXT* pCallback)
1818 {
1819 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1820 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1821 pCreateInfo, pAllocator, &instance->alloc,
1822 pCallback);
1823 }
1824
1825 void
1826 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1827 VkDebugReportCallbackEXT _callback,
1828 const VkAllocationCallbacks* pAllocator)
1829 {
1830 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1831 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1832 _callback, pAllocator, &instance->alloc);
1833 }
1834
1835 void
1836 anv_DebugReportMessageEXT(VkInstance _instance,
1837 VkDebugReportFlagsEXT flags,
1838 VkDebugReportObjectTypeEXT objectType,
1839 uint64_t object,
1840 size_t location,
1841 int32_t messageCode,
1842 const char* pLayerPrefix,
1843 const char* pMessage)
1844 {
1845 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1846 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1847 object, location, messageCode, pLayerPrefix, pMessage);
1848 }
1849
1850 static void
1851 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1852 {
1853 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1854 queue->device = device;
1855 queue->flags = 0;
1856 }
1857
1858 static void
1859 anv_queue_finish(struct anv_queue *queue)
1860 {
1861 }
1862
1863 static struct anv_state
1864 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1865 {
1866 struct anv_state state;
1867
1868 state = anv_state_pool_alloc(pool, size, align);
1869 memcpy(state.map, p, size);
1870
1871 return state;
1872 }
1873
1874 struct gen8_border_color {
1875 union {
1876 float float32[4];
1877 uint32_t uint32[4];
1878 };
1879 /* Pad out to 64 bytes */
1880 uint32_t _pad[12];
1881 };
1882
1883 static void
1884 anv_device_init_border_colors(struct anv_device *device)
1885 {
1886 static const struct gen8_border_color border_colors[] = {
1887 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1888 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1889 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1890 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1891 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1892 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1893 };
1894
1895 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1896 sizeof(border_colors), 64,
1897 border_colors);
1898 }
1899
1900 static void
1901 anv_device_init_trivial_batch(struct anv_device *device)
1902 {
1903 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1904
1905 if (device->instance->physicalDevice.has_exec_async)
1906 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1907
1908 if (device->instance->physicalDevice.use_softpin)
1909 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
1910
1911 anv_vma_alloc(device, &device->trivial_batch_bo);
1912
1913 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1914 0, 4096, 0);
1915
1916 struct anv_batch batch = {
1917 .start = map,
1918 .next = map,
1919 .end = map + 4096,
1920 };
1921
1922 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1923 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1924
1925 if (!device->info.has_llc)
1926 gen_clflush_range(map, batch.next - map);
1927
1928 anv_gem_munmap(map, device->trivial_batch_bo.size);
1929 }
1930
1931 VkResult anv_EnumerateDeviceExtensionProperties(
1932 VkPhysicalDevice physicalDevice,
1933 const char* pLayerName,
1934 uint32_t* pPropertyCount,
1935 VkExtensionProperties* pProperties)
1936 {
1937 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1938 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1939
1940 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1941 if (device->supported_extensions.extensions[i]) {
1942 vk_outarray_append(&out, prop) {
1943 *prop = anv_device_extensions[i];
1944 }
1945 }
1946 }
1947
1948 return vk_outarray_status(&out);
1949 }
1950
1951 static void
1952 anv_device_init_dispatch(struct anv_device *device)
1953 {
1954 const struct anv_device_dispatch_table *genX_table;
1955 switch (device->info.gen) {
1956 case 11:
1957 genX_table = &gen11_device_dispatch_table;
1958 break;
1959 case 10:
1960 genX_table = &gen10_device_dispatch_table;
1961 break;
1962 case 9:
1963 genX_table = &gen9_device_dispatch_table;
1964 break;
1965 case 8:
1966 genX_table = &gen8_device_dispatch_table;
1967 break;
1968 case 7:
1969 if (device->info.is_haswell)
1970 genX_table = &gen75_device_dispatch_table;
1971 else
1972 genX_table = &gen7_device_dispatch_table;
1973 break;
1974 default:
1975 unreachable("unsupported gen\n");
1976 }
1977
1978 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1979 /* Vulkan requires that entrypoints for extensions which have not been
1980 * enabled must not be advertised.
1981 */
1982 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
1983 &device->instance->enabled_extensions,
1984 &device->enabled_extensions)) {
1985 device->dispatch.entrypoints[i] = NULL;
1986 } else if (genX_table->entrypoints[i]) {
1987 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1988 } else {
1989 device->dispatch.entrypoints[i] =
1990 anv_device_dispatch_table.entrypoints[i];
1991 }
1992 }
1993 }
1994
1995 static int
1996 vk_priority_to_gen(int priority)
1997 {
1998 switch (priority) {
1999 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2000 return GEN_CONTEXT_LOW_PRIORITY;
2001 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2002 return GEN_CONTEXT_MEDIUM_PRIORITY;
2003 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2004 return GEN_CONTEXT_HIGH_PRIORITY;
2005 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2006 return GEN_CONTEXT_REALTIME_PRIORITY;
2007 default:
2008 unreachable("Invalid priority");
2009 }
2010 }
2011
2012 static void
2013 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2014 {
2015 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2016
2017 if (device->instance->physicalDevice.has_exec_async)
2018 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2019
2020 if (device->instance->physicalDevice.use_softpin)
2021 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2022
2023 anv_vma_alloc(device, &device->hiz_clear_bo);
2024
2025 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2026 0, 4096, 0);
2027
2028 union isl_color_value hiz_clear = { .u32 = { 0, } };
2029 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2030
2031 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2032 anv_gem_munmap(map, device->hiz_clear_bo.size);
2033 }
2034
2035 static bool
2036 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2037 struct anv_block_pool *pool,
2038 uint64_t address)
2039 {
2040 for (uint32_t i = 0; i < pool->nbos; i++) {
2041 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2042 uint32_t bo_size = pool->bos[i].size;
2043 if (address >= bo_address && address < (bo_address + bo_size)) {
2044 *ret = (struct gen_batch_decode_bo) {
2045 .addr = bo_address,
2046 .size = bo_size,
2047 .map = pool->bos[i].map,
2048 };
2049 return true;
2050 }
2051 }
2052 return false;
2053 }
2054
2055 /* Finding a buffer for batch decoding */
2056 static struct gen_batch_decode_bo
2057 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2058 {
2059 struct anv_device *device = v_batch;
2060 struct gen_batch_decode_bo ret_bo = {};
2061
2062 assert(ppgtt);
2063
2064 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2065 return ret_bo;
2066 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2067 return ret_bo;
2068 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2069 return ret_bo;
2070 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2071 return ret_bo;
2072
2073 if (!device->cmd_buffer_being_decoded)
2074 return (struct gen_batch_decode_bo) { };
2075
2076 struct anv_batch_bo **bo;
2077
2078 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2079 /* The decoder zeroes out the top 16 bits, so we need to as well */
2080 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2081
2082 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2083 return (struct gen_batch_decode_bo) {
2084 .addr = bo_address,
2085 .size = (*bo)->bo.size,
2086 .map = (*bo)->bo.map,
2087 };
2088 }
2089 }
2090
2091 return (struct gen_batch_decode_bo) { };
2092 }
2093
2094 VkResult anv_CreateDevice(
2095 VkPhysicalDevice physicalDevice,
2096 const VkDeviceCreateInfo* pCreateInfo,
2097 const VkAllocationCallbacks* pAllocator,
2098 VkDevice* pDevice)
2099 {
2100 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2101 VkResult result;
2102 struct anv_device *device;
2103
2104 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2105
2106 struct anv_device_extension_table enabled_extensions = { };
2107 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2108 int idx;
2109 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2110 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2111 anv_device_extensions[idx].extensionName) == 0)
2112 break;
2113 }
2114
2115 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2116 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2117
2118 if (!physical_device->supported_extensions.extensions[idx])
2119 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2120
2121 enabled_extensions.extensions[idx] = true;
2122 }
2123
2124 /* Check enabled features */
2125 if (pCreateInfo->pEnabledFeatures) {
2126 VkPhysicalDeviceFeatures supported_features;
2127 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2128 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2129 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2130 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2131 for (uint32_t i = 0; i < num_features; i++) {
2132 if (enabled_feature[i] && !supported_feature[i])
2133 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2134 }
2135 }
2136
2137 /* Check requested queues and fail if we are requested to create any
2138 * queues with flags we don't support.
2139 */
2140 assert(pCreateInfo->queueCreateInfoCount > 0);
2141 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2142 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2143 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2144 }
2145
2146 /* Check if client specified queue priority. */
2147 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2148 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2149 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2150
2151 VkQueueGlobalPriorityEXT priority =
2152 queue_priority ? queue_priority->globalPriority :
2153 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2154
2155 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2156 sizeof(*device), 8,
2157 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2158 if (!device)
2159 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2160
2161 const unsigned decode_flags =
2162 GEN_BATCH_DECODE_FULL |
2163 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2164 GEN_BATCH_DECODE_OFFSETS |
2165 GEN_BATCH_DECODE_FLOATS;
2166
2167 gen_batch_decode_ctx_init(&device->decoder_ctx,
2168 &physical_device->info,
2169 stderr, decode_flags, NULL,
2170 decode_get_bo, NULL, device);
2171
2172 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2173 device->instance = physical_device->instance;
2174 device->chipset_id = physical_device->chipset_id;
2175 device->no_hw = physical_device->no_hw;
2176 device->_lost = false;
2177
2178 if (pAllocator)
2179 device->alloc = *pAllocator;
2180 else
2181 device->alloc = physical_device->instance->alloc;
2182
2183 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2184 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2185 if (device->fd == -1) {
2186 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2187 goto fail_device;
2188 }
2189
2190 device->context_id = anv_gem_create_context(device);
2191 if (device->context_id == -1) {
2192 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2193 goto fail_fd;
2194 }
2195
2196 if (physical_device->use_softpin) {
2197 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2198 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2199 goto fail_fd;
2200 }
2201
2202 /* keep the page with address zero out of the allocator */
2203 struct anv_memory_heap *low_heap =
2204 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2205 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2206 device->vma_lo_available = low_heap->size;
2207
2208 struct anv_memory_heap *high_heap =
2209 &physical_device->memory.heaps[0];
2210 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2211 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2212 high_heap->size;
2213 }
2214
2215 list_inithead(&device->memory_objects);
2216
2217 /* As per spec, the driver implementation may deny requests to acquire
2218 * a priority above the default priority (MEDIUM) if the caller does not
2219 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2220 * is returned.
2221 */
2222 if (physical_device->has_context_priority) {
2223 int err = anv_gem_set_context_param(device->fd, device->context_id,
2224 I915_CONTEXT_PARAM_PRIORITY,
2225 vk_priority_to_gen(priority));
2226 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2227 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2228 goto fail_fd;
2229 }
2230 }
2231
2232 device->info = physical_device->info;
2233 device->isl_dev = physical_device->isl_dev;
2234
2235 /* On Broadwell and later, we can use batch chaining to more efficiently
2236 * implement growing command buffers. Prior to Haswell, the kernel
2237 * command parser gets in the way and we have to fall back to growing
2238 * the batch.
2239 */
2240 device->can_chain_batches = device->info.gen >= 8;
2241
2242 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2243 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2244 device->enabled_extensions = enabled_extensions;
2245
2246 anv_device_init_dispatch(device);
2247
2248 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2249 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2250 goto fail_context_id;
2251 }
2252
2253 pthread_condattr_t condattr;
2254 if (pthread_condattr_init(&condattr) != 0) {
2255 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2256 goto fail_mutex;
2257 }
2258 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2259 pthread_condattr_destroy(&condattr);
2260 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2261 goto fail_mutex;
2262 }
2263 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2264 pthread_condattr_destroy(&condattr);
2265 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2266 goto fail_mutex;
2267 }
2268 pthread_condattr_destroy(&condattr);
2269
2270 uint64_t bo_flags =
2271 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2272 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2273 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2274 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2275
2276 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2277
2278 result = anv_bo_cache_init(&device->bo_cache);
2279 if (result != VK_SUCCESS)
2280 goto fail_batch_bo_pool;
2281
2282 if (!physical_device->use_softpin)
2283 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2284
2285 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2286 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2287 16384,
2288 bo_flags);
2289 if (result != VK_SUCCESS)
2290 goto fail_bo_cache;
2291
2292 result = anv_state_pool_init(&device->instruction_state_pool, device,
2293 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2294 16384,
2295 bo_flags);
2296 if (result != VK_SUCCESS)
2297 goto fail_dynamic_state_pool;
2298
2299 result = anv_state_pool_init(&device->surface_state_pool, device,
2300 SURFACE_STATE_POOL_MIN_ADDRESS,
2301 4096,
2302 bo_flags);
2303 if (result != VK_SUCCESS)
2304 goto fail_instruction_state_pool;
2305
2306 if (physical_device->use_softpin) {
2307 result = anv_state_pool_init(&device->binding_table_pool, device,
2308 BINDING_TABLE_POOL_MIN_ADDRESS,
2309 4096,
2310 bo_flags);
2311 if (result != VK_SUCCESS)
2312 goto fail_surface_state_pool;
2313 }
2314
2315 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
2316 if (result != VK_SUCCESS)
2317 goto fail_binding_table_pool;
2318
2319 if (physical_device->use_softpin)
2320 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2321
2322 if (!anv_vma_alloc(device, &device->workaround_bo))
2323 goto fail_workaround_bo;
2324
2325 anv_device_init_trivial_batch(device);
2326
2327 if (device->info.gen >= 10)
2328 anv_device_init_hiz_clear_value_bo(device);
2329
2330 anv_scratch_pool_init(device, &device->scratch_pool);
2331
2332 anv_queue_init(device, &device->queue);
2333
2334 switch (device->info.gen) {
2335 case 7:
2336 if (!device->info.is_haswell)
2337 result = gen7_init_device_state(device);
2338 else
2339 result = gen75_init_device_state(device);
2340 break;
2341 case 8:
2342 result = gen8_init_device_state(device);
2343 break;
2344 case 9:
2345 result = gen9_init_device_state(device);
2346 break;
2347 case 10:
2348 result = gen10_init_device_state(device);
2349 break;
2350 case 11:
2351 result = gen11_init_device_state(device);
2352 break;
2353 default:
2354 /* Shouldn't get here as we don't create physical devices for any other
2355 * gens. */
2356 unreachable("unhandled gen");
2357 }
2358 if (result != VK_SUCCESS)
2359 goto fail_workaround_bo;
2360
2361 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2362
2363 anv_device_init_blorp(device);
2364
2365 anv_device_init_border_colors(device);
2366
2367 *pDevice = anv_device_to_handle(device);
2368
2369 return VK_SUCCESS;
2370
2371 fail_workaround_bo:
2372 anv_queue_finish(&device->queue);
2373 anv_scratch_pool_finish(device, &device->scratch_pool);
2374 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2375 anv_gem_close(device, device->workaround_bo.gem_handle);
2376 fail_binding_table_pool:
2377 if (physical_device->use_softpin)
2378 anv_state_pool_finish(&device->binding_table_pool);
2379 fail_surface_state_pool:
2380 anv_state_pool_finish(&device->surface_state_pool);
2381 fail_instruction_state_pool:
2382 anv_state_pool_finish(&device->instruction_state_pool);
2383 fail_dynamic_state_pool:
2384 anv_state_pool_finish(&device->dynamic_state_pool);
2385 fail_bo_cache:
2386 anv_bo_cache_finish(&device->bo_cache);
2387 fail_batch_bo_pool:
2388 anv_bo_pool_finish(&device->batch_bo_pool);
2389 pthread_cond_destroy(&device->queue_submit);
2390 fail_mutex:
2391 pthread_mutex_destroy(&device->mutex);
2392 fail_context_id:
2393 anv_gem_destroy_context(device, device->context_id);
2394 fail_fd:
2395 close(device->fd);
2396 fail_device:
2397 vk_free(&device->alloc, device);
2398
2399 return result;
2400 }
2401
2402 void anv_DestroyDevice(
2403 VkDevice _device,
2404 const VkAllocationCallbacks* pAllocator)
2405 {
2406 ANV_FROM_HANDLE(anv_device, device, _device);
2407 struct anv_physical_device *physical_device;
2408
2409 if (!device)
2410 return;
2411
2412 physical_device = &device->instance->physicalDevice;
2413
2414 anv_device_finish_blorp(device);
2415
2416 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2417
2418 anv_queue_finish(&device->queue);
2419
2420 #ifdef HAVE_VALGRIND
2421 /* We only need to free these to prevent valgrind errors. The backing
2422 * BO will go away in a couple of lines so we don't actually leak.
2423 */
2424 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2425 #endif
2426
2427 anv_scratch_pool_finish(device, &device->scratch_pool);
2428
2429 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2430 anv_vma_free(device, &device->workaround_bo);
2431 anv_gem_close(device, device->workaround_bo.gem_handle);
2432
2433 anv_vma_free(device, &device->trivial_batch_bo);
2434 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2435 if (device->info.gen >= 10)
2436 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2437
2438 if (physical_device->use_softpin)
2439 anv_state_pool_finish(&device->binding_table_pool);
2440 anv_state_pool_finish(&device->surface_state_pool);
2441 anv_state_pool_finish(&device->instruction_state_pool);
2442 anv_state_pool_finish(&device->dynamic_state_pool);
2443
2444 anv_bo_cache_finish(&device->bo_cache);
2445
2446 anv_bo_pool_finish(&device->batch_bo_pool);
2447
2448 pthread_cond_destroy(&device->queue_submit);
2449 pthread_mutex_destroy(&device->mutex);
2450
2451 anv_gem_destroy_context(device, device->context_id);
2452
2453 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2454
2455 close(device->fd);
2456
2457 vk_free(&device->alloc, device);
2458 }
2459
2460 VkResult anv_EnumerateInstanceLayerProperties(
2461 uint32_t* pPropertyCount,
2462 VkLayerProperties* pProperties)
2463 {
2464 if (pProperties == NULL) {
2465 *pPropertyCount = 0;
2466 return VK_SUCCESS;
2467 }
2468
2469 /* None supported at this time */
2470 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2471 }
2472
2473 VkResult anv_EnumerateDeviceLayerProperties(
2474 VkPhysicalDevice physicalDevice,
2475 uint32_t* pPropertyCount,
2476 VkLayerProperties* pProperties)
2477 {
2478 if (pProperties == NULL) {
2479 *pPropertyCount = 0;
2480 return VK_SUCCESS;
2481 }
2482
2483 /* None supported at this time */
2484 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2485 }
2486
2487 void anv_GetDeviceQueue(
2488 VkDevice _device,
2489 uint32_t queueNodeIndex,
2490 uint32_t queueIndex,
2491 VkQueue* pQueue)
2492 {
2493 ANV_FROM_HANDLE(anv_device, device, _device);
2494
2495 assert(queueIndex == 0);
2496
2497 *pQueue = anv_queue_to_handle(&device->queue);
2498 }
2499
2500 void anv_GetDeviceQueue2(
2501 VkDevice _device,
2502 const VkDeviceQueueInfo2* pQueueInfo,
2503 VkQueue* pQueue)
2504 {
2505 ANV_FROM_HANDLE(anv_device, device, _device);
2506
2507 assert(pQueueInfo->queueIndex == 0);
2508
2509 if (pQueueInfo->flags == device->queue.flags)
2510 *pQueue = anv_queue_to_handle(&device->queue);
2511 else
2512 *pQueue = NULL;
2513 }
2514
2515 VkResult
2516 _anv_device_set_lost(struct anv_device *device,
2517 const char *file, int line,
2518 const char *msg, ...)
2519 {
2520 VkResult err;
2521 va_list ap;
2522
2523 device->_lost = true;
2524
2525 va_start(ap, msg);
2526 err = __vk_errorv(device->instance, device,
2527 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2528 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2529 va_end(ap);
2530
2531 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2532 abort();
2533
2534 return err;
2535 }
2536
2537 VkResult
2538 anv_device_query_status(struct anv_device *device)
2539 {
2540 /* This isn't likely as most of the callers of this function already check
2541 * for it. However, it doesn't hurt to check and it potentially lets us
2542 * avoid an ioctl.
2543 */
2544 if (anv_device_is_lost(device))
2545 return VK_ERROR_DEVICE_LOST;
2546
2547 uint32_t active, pending;
2548 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2549 if (ret == -1) {
2550 /* We don't know the real error. */
2551 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2552 }
2553
2554 if (active) {
2555 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2556 } else if (pending) {
2557 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2558 }
2559
2560 return VK_SUCCESS;
2561 }
2562
2563 VkResult
2564 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2565 {
2566 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2567 * Other usages of the BO (such as on different hardware) will not be
2568 * flagged as "busy" by this ioctl. Use with care.
2569 */
2570 int ret = anv_gem_busy(device, bo->gem_handle);
2571 if (ret == 1) {
2572 return VK_NOT_READY;
2573 } else if (ret == -1) {
2574 /* We don't know the real error. */
2575 return anv_device_set_lost(device, "gem wait failed: %m");
2576 }
2577
2578 /* Query for device status after the busy call. If the BO we're checking
2579 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2580 * client because it clearly doesn't have valid data. Yes, this most
2581 * likely means an ioctl, but we just did an ioctl to query the busy status
2582 * so it's no great loss.
2583 */
2584 return anv_device_query_status(device);
2585 }
2586
2587 VkResult
2588 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2589 int64_t timeout)
2590 {
2591 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2592 if (ret == -1 && errno == ETIME) {
2593 return VK_TIMEOUT;
2594 } else if (ret == -1) {
2595 /* We don't know the real error. */
2596 return anv_device_set_lost(device, "gem wait failed: %m");
2597 }
2598
2599 /* Query for device status after the wait. If the BO we're waiting on got
2600 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2601 * because it clearly doesn't have valid data. Yes, this most likely means
2602 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2603 */
2604 return anv_device_query_status(device);
2605 }
2606
2607 VkResult anv_DeviceWaitIdle(
2608 VkDevice _device)
2609 {
2610 ANV_FROM_HANDLE(anv_device, device, _device);
2611 if (anv_device_is_lost(device))
2612 return VK_ERROR_DEVICE_LOST;
2613
2614 struct anv_batch batch;
2615
2616 uint32_t cmds[8];
2617 batch.start = batch.next = cmds;
2618 batch.end = (void *) cmds + sizeof(cmds);
2619
2620 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2621 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2622
2623 return anv_device_submit_simple_batch(device, &batch);
2624 }
2625
2626 bool
2627 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2628 {
2629 if (!(bo->flags & EXEC_OBJECT_PINNED))
2630 return true;
2631
2632 pthread_mutex_lock(&device->vma_mutex);
2633
2634 bo->offset = 0;
2635
2636 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2637 device->vma_hi_available >= bo->size) {
2638 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2639 if (addr) {
2640 bo->offset = gen_canonical_address(addr);
2641 assert(addr == gen_48b_address(bo->offset));
2642 device->vma_hi_available -= bo->size;
2643 }
2644 }
2645
2646 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2647 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2648 if (addr) {
2649 bo->offset = gen_canonical_address(addr);
2650 assert(addr == gen_48b_address(bo->offset));
2651 device->vma_lo_available -= bo->size;
2652 }
2653 }
2654
2655 pthread_mutex_unlock(&device->vma_mutex);
2656
2657 return bo->offset != 0;
2658 }
2659
2660 void
2661 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2662 {
2663 if (!(bo->flags & EXEC_OBJECT_PINNED))
2664 return;
2665
2666 const uint64_t addr_48b = gen_48b_address(bo->offset);
2667
2668 pthread_mutex_lock(&device->vma_mutex);
2669
2670 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2671 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2672 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2673 device->vma_lo_available += bo->size;
2674 } else {
2675 MAYBE_UNUSED const struct anv_physical_device *physical_device =
2676 &device->instance->physicalDevice;
2677 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2678 addr_48b < (physical_device->memory.heaps[0].vma_start +
2679 physical_device->memory.heaps[0].vma_size));
2680 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2681 device->vma_hi_available += bo->size;
2682 }
2683
2684 pthread_mutex_unlock(&device->vma_mutex);
2685
2686 bo->offset = 0;
2687 }
2688
2689 VkResult
2690 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2691 {
2692 uint32_t gem_handle = anv_gem_create(device, size);
2693 if (!gem_handle)
2694 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2695
2696 anv_bo_init(bo, gem_handle, size);
2697
2698 return VK_SUCCESS;
2699 }
2700
2701 VkResult anv_AllocateMemory(
2702 VkDevice _device,
2703 const VkMemoryAllocateInfo* pAllocateInfo,
2704 const VkAllocationCallbacks* pAllocator,
2705 VkDeviceMemory* pMem)
2706 {
2707 ANV_FROM_HANDLE(anv_device, device, _device);
2708 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2709 struct anv_device_memory *mem;
2710 VkResult result = VK_SUCCESS;
2711
2712 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2713
2714 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2715 assert(pAllocateInfo->allocationSize > 0);
2716
2717 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2718 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2719
2720 /* FINISHME: Fail if allocation request exceeds heap size. */
2721
2722 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2723 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2724 if (mem == NULL)
2725 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2726
2727 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2728 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2729 mem->map = NULL;
2730 mem->map_size = 0;
2731 mem->ahw = NULL;
2732 mem->host_ptr = NULL;
2733
2734 uint64_t bo_flags = 0;
2735
2736 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2737 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2738 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2739
2740 const struct wsi_memory_allocate_info *wsi_info =
2741 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2742 if (wsi_info && wsi_info->implicit_sync) {
2743 /* We need to set the WRITE flag on window system buffers so that GEM
2744 * will know we're writing to them and synchronize uses on other rings
2745 * (eg if the display server uses the blitter ring).
2746 */
2747 bo_flags |= EXEC_OBJECT_WRITE;
2748 } else if (pdevice->has_exec_async) {
2749 bo_flags |= EXEC_OBJECT_ASYNC;
2750 }
2751
2752 if (pdevice->use_softpin)
2753 bo_flags |= EXEC_OBJECT_PINNED;
2754
2755 const VkExportMemoryAllocateInfo *export_info =
2756 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2757
2758 /* Check if we need to support Android HW buffer export. If so,
2759 * create AHardwareBuffer and import memory from it.
2760 */
2761 bool android_export = false;
2762 if (export_info && export_info->handleTypes &
2763 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2764 android_export = true;
2765
2766 /* Android memory import. */
2767 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2768 vk_find_struct_const(pAllocateInfo->pNext,
2769 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2770
2771 if (ahw_import_info) {
2772 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2773 if (result != VK_SUCCESS)
2774 goto fail;
2775
2776 goto success;
2777 } else if (android_export) {
2778 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2779 if (result != VK_SUCCESS)
2780 goto fail;
2781
2782 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2783 .buffer = mem->ahw,
2784 };
2785 result = anv_import_ahw_memory(_device, mem, &import_info);
2786 if (result != VK_SUCCESS)
2787 goto fail;
2788
2789 goto success;
2790 }
2791
2792 const VkImportMemoryFdInfoKHR *fd_info =
2793 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2794
2795 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2796 * ignored.
2797 */
2798 if (fd_info && fd_info->handleType) {
2799 /* At the moment, we support only the below handle types. */
2800 assert(fd_info->handleType ==
2801 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2802 fd_info->handleType ==
2803 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2804
2805 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2806 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2807 if (result != VK_SUCCESS)
2808 goto fail;
2809
2810 VkDeviceSize aligned_alloc_size =
2811 align_u64(pAllocateInfo->allocationSize, 4096);
2812
2813 /* For security purposes, we reject importing the bo if it's smaller
2814 * than the requested allocation size. This prevents a malicious client
2815 * from passing a buffer to a trusted client, lying about the size, and
2816 * telling the trusted client to try and texture from an image that goes
2817 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2818 * in the trusted client. The trusted client can protect itself against
2819 * this sort of attack but only if it can trust the buffer size.
2820 */
2821 if (mem->bo->size < aligned_alloc_size) {
2822 result = vk_errorf(device->instance, device,
2823 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2824 "aligned allocationSize too large for "
2825 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2826 "%"PRIu64"B > %"PRIu64"B",
2827 aligned_alloc_size, mem->bo->size);
2828 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2829 goto fail;
2830 }
2831
2832 /* From the Vulkan spec:
2833 *
2834 * "Importing memory from a file descriptor transfers ownership of
2835 * the file descriptor from the application to the Vulkan
2836 * implementation. The application must not perform any operations on
2837 * the file descriptor after a successful import."
2838 *
2839 * If the import fails, we leave the file descriptor open.
2840 */
2841 close(fd_info->fd);
2842 goto success;
2843 }
2844
2845 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2846 vk_find_struct_const(pAllocateInfo->pNext,
2847 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2848 if (host_ptr_info && host_ptr_info->handleType) {
2849 if (host_ptr_info->handleType ==
2850 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2851 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2852 goto fail;
2853 }
2854
2855 assert(host_ptr_info->handleType ==
2856 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2857
2858 result = anv_bo_cache_import_host_ptr(
2859 device, &device->bo_cache, host_ptr_info->pHostPointer,
2860 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2861
2862 if (result != VK_SUCCESS)
2863 goto fail;
2864
2865 mem->host_ptr = host_ptr_info->pHostPointer;
2866 goto success;
2867 }
2868
2869 /* Regular allocate (not importing memory). */
2870
2871 if (export_info && export_info->handleTypes)
2872 bo_flags |= ANV_BO_EXTERNAL;
2873
2874 result = anv_bo_cache_alloc(device, &device->bo_cache,
2875 pAllocateInfo->allocationSize, bo_flags,
2876 &mem->bo);
2877 if (result != VK_SUCCESS)
2878 goto fail;
2879
2880 const VkMemoryDedicatedAllocateInfo *dedicated_info =
2881 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
2882 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2883 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2884
2885 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2886 * the BO. In this case, we have a dedicated allocation.
2887 */
2888 if (image->needs_set_tiling) {
2889 const uint32_t i915_tiling =
2890 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2891 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2892 image->planes[0].surface.isl.row_pitch_B,
2893 i915_tiling);
2894 if (ret) {
2895 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2896 return vk_errorf(device->instance, NULL,
2897 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2898 "failed to set BO tiling: %m");
2899 }
2900 }
2901 }
2902
2903 success:
2904 pthread_mutex_lock(&device->mutex);
2905 list_addtail(&mem->link, &device->memory_objects);
2906 pthread_mutex_unlock(&device->mutex);
2907
2908 *pMem = anv_device_memory_to_handle(mem);
2909
2910 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
2911 mem->bo->size);
2912
2913 return VK_SUCCESS;
2914
2915 fail:
2916 vk_free2(&device->alloc, pAllocator, mem);
2917
2918 return result;
2919 }
2920
2921 VkResult anv_GetMemoryFdKHR(
2922 VkDevice device_h,
2923 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2924 int* pFd)
2925 {
2926 ANV_FROM_HANDLE(anv_device, dev, device_h);
2927 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2928
2929 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2930
2931 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2932 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2933
2934 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2935 }
2936
2937 VkResult anv_GetMemoryFdPropertiesKHR(
2938 VkDevice _device,
2939 VkExternalMemoryHandleTypeFlagBits handleType,
2940 int fd,
2941 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2942 {
2943 ANV_FROM_HANDLE(anv_device, device, _device);
2944 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2945
2946 switch (handleType) {
2947 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2948 /* dma-buf can be imported as any memory type */
2949 pMemoryFdProperties->memoryTypeBits =
2950 (1 << pdevice->memory.type_count) - 1;
2951 return VK_SUCCESS;
2952
2953 default:
2954 /* The valid usage section for this function says:
2955 *
2956 * "handleType must not be one of the handle types defined as
2957 * opaque."
2958 *
2959 * So opaque handle types fall into the default "unsupported" case.
2960 */
2961 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2962 }
2963 }
2964
2965 VkResult anv_GetMemoryHostPointerPropertiesEXT(
2966 VkDevice _device,
2967 VkExternalMemoryHandleTypeFlagBits handleType,
2968 const void* pHostPointer,
2969 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
2970 {
2971 ANV_FROM_HANDLE(anv_device, device, _device);
2972
2973 assert(pMemoryHostPointerProperties->sType ==
2974 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
2975
2976 switch (handleType) {
2977 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
2978 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2979
2980 /* Host memory can be imported as any memory type. */
2981 pMemoryHostPointerProperties->memoryTypeBits =
2982 (1ull << pdevice->memory.type_count) - 1;
2983
2984 return VK_SUCCESS;
2985 }
2986 default:
2987 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
2988 }
2989 }
2990
2991 void anv_FreeMemory(
2992 VkDevice _device,
2993 VkDeviceMemory _mem,
2994 const VkAllocationCallbacks* pAllocator)
2995 {
2996 ANV_FROM_HANDLE(anv_device, device, _device);
2997 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2998 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2999
3000 if (mem == NULL)
3001 return;
3002
3003 pthread_mutex_lock(&device->mutex);
3004 list_del(&mem->link);
3005 pthread_mutex_unlock(&device->mutex);
3006
3007 if (mem->map)
3008 anv_UnmapMemory(_device, _mem);
3009
3010 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3011 -mem->bo->size);
3012
3013 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3014
3015 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3016 if (mem->ahw)
3017 AHardwareBuffer_release(mem->ahw);
3018 #endif
3019
3020 vk_free2(&device->alloc, pAllocator, mem);
3021 }
3022
3023 VkResult anv_MapMemory(
3024 VkDevice _device,
3025 VkDeviceMemory _memory,
3026 VkDeviceSize offset,
3027 VkDeviceSize size,
3028 VkMemoryMapFlags flags,
3029 void** ppData)
3030 {
3031 ANV_FROM_HANDLE(anv_device, device, _device);
3032 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3033
3034 if (mem == NULL) {
3035 *ppData = NULL;
3036 return VK_SUCCESS;
3037 }
3038
3039 if (mem->host_ptr) {
3040 *ppData = mem->host_ptr + offset;
3041 return VK_SUCCESS;
3042 }
3043
3044 if (size == VK_WHOLE_SIZE)
3045 size = mem->bo->size - offset;
3046
3047 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3048 *
3049 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3050 * assert(size != 0);
3051 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3052 * equal to the size of the memory minus offset
3053 */
3054 assert(size > 0);
3055 assert(offset + size <= mem->bo->size);
3056
3057 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3058 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3059 * at a time is valid. We could just mmap up front and return an offset
3060 * pointer here, but that may exhaust virtual memory on 32 bit
3061 * userspace. */
3062
3063 uint32_t gem_flags = 0;
3064
3065 if (!device->info.has_llc &&
3066 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3067 gem_flags |= I915_MMAP_WC;
3068
3069 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3070 uint64_t map_offset = offset & ~4095ull;
3071 assert(offset >= map_offset);
3072 uint64_t map_size = (offset + size) - map_offset;
3073
3074 /* Let's map whole pages */
3075 map_size = align_u64(map_size, 4096);
3076
3077 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3078 map_offset, map_size, gem_flags);
3079 if (map == MAP_FAILED)
3080 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3081
3082 mem->map = map;
3083 mem->map_size = map_size;
3084
3085 *ppData = mem->map + (offset - map_offset);
3086
3087 return VK_SUCCESS;
3088 }
3089
3090 void anv_UnmapMemory(
3091 VkDevice _device,
3092 VkDeviceMemory _memory)
3093 {
3094 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3095
3096 if (mem == NULL || mem->host_ptr)
3097 return;
3098
3099 anv_gem_munmap(mem->map, mem->map_size);
3100
3101 mem->map = NULL;
3102 mem->map_size = 0;
3103 }
3104
3105 static void
3106 clflush_mapped_ranges(struct anv_device *device,
3107 uint32_t count,
3108 const VkMappedMemoryRange *ranges)
3109 {
3110 for (uint32_t i = 0; i < count; i++) {
3111 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3112 if (ranges[i].offset >= mem->map_size)
3113 continue;
3114
3115 gen_clflush_range(mem->map + ranges[i].offset,
3116 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3117 }
3118 }
3119
3120 VkResult anv_FlushMappedMemoryRanges(
3121 VkDevice _device,
3122 uint32_t memoryRangeCount,
3123 const VkMappedMemoryRange* pMemoryRanges)
3124 {
3125 ANV_FROM_HANDLE(anv_device, device, _device);
3126
3127 if (device->info.has_llc)
3128 return VK_SUCCESS;
3129
3130 /* Make sure the writes we're flushing have landed. */
3131 __builtin_ia32_mfence();
3132
3133 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3134
3135 return VK_SUCCESS;
3136 }
3137
3138 VkResult anv_InvalidateMappedMemoryRanges(
3139 VkDevice _device,
3140 uint32_t memoryRangeCount,
3141 const VkMappedMemoryRange* pMemoryRanges)
3142 {
3143 ANV_FROM_HANDLE(anv_device, device, _device);
3144
3145 if (device->info.has_llc)
3146 return VK_SUCCESS;
3147
3148 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3149
3150 /* Make sure no reads get moved up above the invalidate. */
3151 __builtin_ia32_mfence();
3152
3153 return VK_SUCCESS;
3154 }
3155
3156 void anv_GetBufferMemoryRequirements(
3157 VkDevice _device,
3158 VkBuffer _buffer,
3159 VkMemoryRequirements* pMemoryRequirements)
3160 {
3161 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3162 ANV_FROM_HANDLE(anv_device, device, _device);
3163 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3164
3165 /* The Vulkan spec (git aaed022) says:
3166 *
3167 * memoryTypeBits is a bitfield and contains one bit set for every
3168 * supported memory type for the resource. The bit `1<<i` is set if and
3169 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3170 * structure for the physical device is supported.
3171 */
3172 uint32_t memory_types = 0;
3173 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3174 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3175 if ((valid_usage & buffer->usage) == buffer->usage)
3176 memory_types |= (1u << i);
3177 }
3178
3179 /* Base alignment requirement of a cache line */
3180 uint32_t alignment = 16;
3181
3182 /* We need an alignment of 32 for pushing UBOs */
3183 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3184 alignment = MAX2(alignment, 32);
3185
3186 pMemoryRequirements->size = buffer->size;
3187 pMemoryRequirements->alignment = alignment;
3188
3189 /* Storage and Uniform buffers should have their size aligned to
3190 * 32-bits to avoid boundary checks when last DWord is not complete.
3191 * This would ensure that not internal padding would be needed for
3192 * 16-bit types.
3193 */
3194 if (device->robust_buffer_access &&
3195 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3196 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3197 pMemoryRequirements->size = align_u64(buffer->size, 4);
3198
3199 pMemoryRequirements->memoryTypeBits = memory_types;
3200 }
3201
3202 void anv_GetBufferMemoryRequirements2(
3203 VkDevice _device,
3204 const VkBufferMemoryRequirementsInfo2* pInfo,
3205 VkMemoryRequirements2* pMemoryRequirements)
3206 {
3207 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3208 &pMemoryRequirements->memoryRequirements);
3209
3210 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3211 switch (ext->sType) {
3212 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3213 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3214 requirements->prefersDedicatedAllocation = false;
3215 requirements->requiresDedicatedAllocation = false;
3216 break;
3217 }
3218
3219 default:
3220 anv_debug_ignored_stype(ext->sType);
3221 break;
3222 }
3223 }
3224 }
3225
3226 void anv_GetImageMemoryRequirements(
3227 VkDevice _device,
3228 VkImage _image,
3229 VkMemoryRequirements* pMemoryRequirements)
3230 {
3231 ANV_FROM_HANDLE(anv_image, image, _image);
3232 ANV_FROM_HANDLE(anv_device, device, _device);
3233 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3234
3235 /* The Vulkan spec (git aaed022) says:
3236 *
3237 * memoryTypeBits is a bitfield and contains one bit set for every
3238 * supported memory type for the resource. The bit `1<<i` is set if and
3239 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3240 * structure for the physical device is supported.
3241 *
3242 * All types are currently supported for images.
3243 */
3244 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3245
3246 /* We must have image allocated or imported at this point. According to the
3247 * specification, external images must have been bound to memory before
3248 * calling GetImageMemoryRequirements.
3249 */
3250 assert(image->size > 0);
3251
3252 pMemoryRequirements->size = image->size;
3253 pMemoryRequirements->alignment = image->alignment;
3254 pMemoryRequirements->memoryTypeBits = memory_types;
3255 }
3256
3257 void anv_GetImageMemoryRequirements2(
3258 VkDevice _device,
3259 const VkImageMemoryRequirementsInfo2* pInfo,
3260 VkMemoryRequirements2* pMemoryRequirements)
3261 {
3262 ANV_FROM_HANDLE(anv_device, device, _device);
3263 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3264
3265 anv_GetImageMemoryRequirements(_device, pInfo->image,
3266 &pMemoryRequirements->memoryRequirements);
3267
3268 vk_foreach_struct_const(ext, pInfo->pNext) {
3269 switch (ext->sType) {
3270 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3271 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3272 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3273 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3274 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3275 plane_reqs->planeAspect);
3276
3277 assert(image->planes[plane].offset == 0);
3278
3279 /* The Vulkan spec (git aaed022) says:
3280 *
3281 * memoryTypeBits is a bitfield and contains one bit set for every
3282 * supported memory type for the resource. The bit `1<<i` is set
3283 * if and only if the memory type `i` in the
3284 * VkPhysicalDeviceMemoryProperties structure for the physical
3285 * device is supported.
3286 *
3287 * All types are currently supported for images.
3288 */
3289 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3290 (1ull << pdevice->memory.type_count) - 1;
3291
3292 /* We must have image allocated or imported at this point. According to the
3293 * specification, external images must have been bound to memory before
3294 * calling GetImageMemoryRequirements.
3295 */
3296 assert(image->planes[plane].size > 0);
3297
3298 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3299 pMemoryRequirements->memoryRequirements.alignment =
3300 image->planes[plane].alignment;
3301 break;
3302 }
3303
3304 default:
3305 anv_debug_ignored_stype(ext->sType);
3306 break;
3307 }
3308 }
3309
3310 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3311 switch (ext->sType) {
3312 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3313 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3314 if (image->needs_set_tiling || image->external_format) {
3315 /* If we need to set the tiling for external consumers, we need a
3316 * dedicated allocation.
3317 *
3318 * See also anv_AllocateMemory.
3319 */
3320 requirements->prefersDedicatedAllocation = true;
3321 requirements->requiresDedicatedAllocation = true;
3322 } else {
3323 requirements->prefersDedicatedAllocation = false;
3324 requirements->requiresDedicatedAllocation = false;
3325 }
3326 break;
3327 }
3328
3329 default:
3330 anv_debug_ignored_stype(ext->sType);
3331 break;
3332 }
3333 }
3334 }
3335
3336 void anv_GetImageSparseMemoryRequirements(
3337 VkDevice device,
3338 VkImage image,
3339 uint32_t* pSparseMemoryRequirementCount,
3340 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3341 {
3342 *pSparseMemoryRequirementCount = 0;
3343 }
3344
3345 void anv_GetImageSparseMemoryRequirements2(
3346 VkDevice device,
3347 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3348 uint32_t* pSparseMemoryRequirementCount,
3349 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3350 {
3351 *pSparseMemoryRequirementCount = 0;
3352 }
3353
3354 void anv_GetDeviceMemoryCommitment(
3355 VkDevice device,
3356 VkDeviceMemory memory,
3357 VkDeviceSize* pCommittedMemoryInBytes)
3358 {
3359 *pCommittedMemoryInBytes = 0;
3360 }
3361
3362 static void
3363 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3364 {
3365 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3366 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3367
3368 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3369
3370 if (mem) {
3371 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3372 buffer->address = (struct anv_address) {
3373 .bo = mem->bo,
3374 .offset = pBindInfo->memoryOffset,
3375 };
3376 } else {
3377 buffer->address = ANV_NULL_ADDRESS;
3378 }
3379 }
3380
3381 VkResult anv_BindBufferMemory(
3382 VkDevice device,
3383 VkBuffer buffer,
3384 VkDeviceMemory memory,
3385 VkDeviceSize memoryOffset)
3386 {
3387 anv_bind_buffer_memory(
3388 &(VkBindBufferMemoryInfo) {
3389 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3390 .buffer = buffer,
3391 .memory = memory,
3392 .memoryOffset = memoryOffset,
3393 });
3394
3395 return VK_SUCCESS;
3396 }
3397
3398 VkResult anv_BindBufferMemory2(
3399 VkDevice device,
3400 uint32_t bindInfoCount,
3401 const VkBindBufferMemoryInfo* pBindInfos)
3402 {
3403 for (uint32_t i = 0; i < bindInfoCount; i++)
3404 anv_bind_buffer_memory(&pBindInfos[i]);
3405
3406 return VK_SUCCESS;
3407 }
3408
3409 VkResult anv_QueueBindSparse(
3410 VkQueue _queue,
3411 uint32_t bindInfoCount,
3412 const VkBindSparseInfo* pBindInfo,
3413 VkFence fence)
3414 {
3415 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3416 if (anv_device_is_lost(queue->device))
3417 return VK_ERROR_DEVICE_LOST;
3418
3419 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3420 }
3421
3422 // Event functions
3423
3424 VkResult anv_CreateEvent(
3425 VkDevice _device,
3426 const VkEventCreateInfo* pCreateInfo,
3427 const VkAllocationCallbacks* pAllocator,
3428 VkEvent* pEvent)
3429 {
3430 ANV_FROM_HANDLE(anv_device, device, _device);
3431 struct anv_state state;
3432 struct anv_event *event;
3433
3434 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3435
3436 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3437 sizeof(*event), 8);
3438 event = state.map;
3439 event->state = state;
3440 event->semaphore = VK_EVENT_RESET;
3441
3442 if (!device->info.has_llc) {
3443 /* Make sure the writes we're flushing have landed. */
3444 __builtin_ia32_mfence();
3445 __builtin_ia32_clflush(event);
3446 }
3447
3448 *pEvent = anv_event_to_handle(event);
3449
3450 return VK_SUCCESS;
3451 }
3452
3453 void anv_DestroyEvent(
3454 VkDevice _device,
3455 VkEvent _event,
3456 const VkAllocationCallbacks* pAllocator)
3457 {
3458 ANV_FROM_HANDLE(anv_device, device, _device);
3459 ANV_FROM_HANDLE(anv_event, event, _event);
3460
3461 if (!event)
3462 return;
3463
3464 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3465 }
3466
3467 VkResult anv_GetEventStatus(
3468 VkDevice _device,
3469 VkEvent _event)
3470 {
3471 ANV_FROM_HANDLE(anv_device, device, _device);
3472 ANV_FROM_HANDLE(anv_event, event, _event);
3473
3474 if (anv_device_is_lost(device))
3475 return VK_ERROR_DEVICE_LOST;
3476
3477 if (!device->info.has_llc) {
3478 /* Invalidate read cache before reading event written by GPU. */
3479 __builtin_ia32_clflush(event);
3480 __builtin_ia32_mfence();
3481
3482 }
3483
3484 return event->semaphore;
3485 }
3486
3487 VkResult anv_SetEvent(
3488 VkDevice _device,
3489 VkEvent _event)
3490 {
3491 ANV_FROM_HANDLE(anv_device, device, _device);
3492 ANV_FROM_HANDLE(anv_event, event, _event);
3493
3494 event->semaphore = VK_EVENT_SET;
3495
3496 if (!device->info.has_llc) {
3497 /* Make sure the writes we're flushing have landed. */
3498 __builtin_ia32_mfence();
3499 __builtin_ia32_clflush(event);
3500 }
3501
3502 return VK_SUCCESS;
3503 }
3504
3505 VkResult anv_ResetEvent(
3506 VkDevice _device,
3507 VkEvent _event)
3508 {
3509 ANV_FROM_HANDLE(anv_device, device, _device);
3510 ANV_FROM_HANDLE(anv_event, event, _event);
3511
3512 event->semaphore = VK_EVENT_RESET;
3513
3514 if (!device->info.has_llc) {
3515 /* Make sure the writes we're flushing have landed. */
3516 __builtin_ia32_mfence();
3517 __builtin_ia32_clflush(event);
3518 }
3519
3520 return VK_SUCCESS;
3521 }
3522
3523 // Buffer functions
3524
3525 VkResult anv_CreateBuffer(
3526 VkDevice _device,
3527 const VkBufferCreateInfo* pCreateInfo,
3528 const VkAllocationCallbacks* pAllocator,
3529 VkBuffer* pBuffer)
3530 {
3531 ANV_FROM_HANDLE(anv_device, device, _device);
3532 struct anv_buffer *buffer;
3533
3534 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3535
3536 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3537 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3538 if (buffer == NULL)
3539 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3540
3541 buffer->size = pCreateInfo->size;
3542 buffer->usage = pCreateInfo->usage;
3543 buffer->address = ANV_NULL_ADDRESS;
3544
3545 *pBuffer = anv_buffer_to_handle(buffer);
3546
3547 return VK_SUCCESS;
3548 }
3549
3550 void anv_DestroyBuffer(
3551 VkDevice _device,
3552 VkBuffer _buffer,
3553 const VkAllocationCallbacks* pAllocator)
3554 {
3555 ANV_FROM_HANDLE(anv_device, device, _device);
3556 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3557
3558 if (!buffer)
3559 return;
3560
3561 vk_free2(&device->alloc, pAllocator, buffer);
3562 }
3563
3564 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3565 VkDevice device,
3566 const VkBufferDeviceAddressInfoEXT* pInfo)
3567 {
3568 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3569
3570 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3571
3572 return anv_address_physical(buffer->address);
3573 }
3574
3575 void
3576 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3577 enum isl_format format,
3578 struct anv_address address,
3579 uint32_t range, uint32_t stride)
3580 {
3581 isl_buffer_fill_state(&device->isl_dev, state.map,
3582 .address = anv_address_physical(address),
3583 .mocs = device->default_mocs,
3584 .size_B = range,
3585 .format = format,
3586 .swizzle = ISL_SWIZZLE_IDENTITY,
3587 .stride_B = stride);
3588 }
3589
3590 void anv_DestroySampler(
3591 VkDevice _device,
3592 VkSampler _sampler,
3593 const VkAllocationCallbacks* pAllocator)
3594 {
3595 ANV_FROM_HANDLE(anv_device, device, _device);
3596 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3597
3598 if (!sampler)
3599 return;
3600
3601 if (sampler->bindless_state.map) {
3602 anv_state_pool_free(&device->dynamic_state_pool,
3603 sampler->bindless_state);
3604 }
3605
3606 vk_free2(&device->alloc, pAllocator, sampler);
3607 }
3608
3609 VkResult anv_CreateFramebuffer(
3610 VkDevice _device,
3611 const VkFramebufferCreateInfo* pCreateInfo,
3612 const VkAllocationCallbacks* pAllocator,
3613 VkFramebuffer* pFramebuffer)
3614 {
3615 ANV_FROM_HANDLE(anv_device, device, _device);
3616 struct anv_framebuffer *framebuffer;
3617
3618 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3619
3620 size_t size = sizeof(*framebuffer) +
3621 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3622 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3623 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3624 if (framebuffer == NULL)
3625 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3626
3627 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3628 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3629 VkImageView _iview = pCreateInfo->pAttachments[i];
3630 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
3631 }
3632
3633 framebuffer->width = pCreateInfo->width;
3634 framebuffer->height = pCreateInfo->height;
3635 framebuffer->layers = pCreateInfo->layers;
3636
3637 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3638
3639 return VK_SUCCESS;
3640 }
3641
3642 void anv_DestroyFramebuffer(
3643 VkDevice _device,
3644 VkFramebuffer _fb,
3645 const VkAllocationCallbacks* pAllocator)
3646 {
3647 ANV_FROM_HANDLE(anv_device, device, _device);
3648 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3649
3650 if (!fb)
3651 return;
3652
3653 vk_free2(&device->alloc, pAllocator, fb);
3654 }
3655
3656 static const VkTimeDomainEXT anv_time_domains[] = {
3657 VK_TIME_DOMAIN_DEVICE_EXT,
3658 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3659 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3660 };
3661
3662 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3663 VkPhysicalDevice physicalDevice,
3664 uint32_t *pTimeDomainCount,
3665 VkTimeDomainEXT *pTimeDomains)
3666 {
3667 int d;
3668 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3669
3670 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3671 vk_outarray_append(&out, i) {
3672 *i = anv_time_domains[d];
3673 }
3674 }
3675
3676 return vk_outarray_status(&out);
3677 }
3678
3679 static uint64_t
3680 anv_clock_gettime(clockid_t clock_id)
3681 {
3682 struct timespec current;
3683 int ret;
3684
3685 ret = clock_gettime(clock_id, &current);
3686 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3687 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3688 if (ret < 0)
3689 return 0;
3690
3691 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3692 }
3693
3694 #define TIMESTAMP 0x2358
3695
3696 VkResult anv_GetCalibratedTimestampsEXT(
3697 VkDevice _device,
3698 uint32_t timestampCount,
3699 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3700 uint64_t *pTimestamps,
3701 uint64_t *pMaxDeviation)
3702 {
3703 ANV_FROM_HANDLE(anv_device, device, _device);
3704 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3705 int ret;
3706 int d;
3707 uint64_t begin, end;
3708 uint64_t max_clock_period = 0;
3709
3710 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3711
3712 for (d = 0; d < timestampCount; d++) {
3713 switch (pTimestampInfos[d].timeDomain) {
3714 case VK_TIME_DOMAIN_DEVICE_EXT:
3715 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3716 &pTimestamps[d]);
3717
3718 if (ret != 0) {
3719 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3720 "register: %m");
3721 }
3722 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3723 max_clock_period = MAX2(max_clock_period, device_period);
3724 break;
3725 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3726 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3727 max_clock_period = MAX2(max_clock_period, 1);
3728 break;
3729
3730 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3731 pTimestamps[d] = begin;
3732 break;
3733 default:
3734 pTimestamps[d] = 0;
3735 break;
3736 }
3737 }
3738
3739 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3740
3741 /*
3742 * The maximum deviation is the sum of the interval over which we
3743 * perform the sampling and the maximum period of any sampled
3744 * clock. That's because the maximum skew between any two sampled
3745 * clock edges is when the sampled clock with the largest period is
3746 * sampled at the end of that period but right at the beginning of the
3747 * sampling interval and some other clock is sampled right at the
3748 * begining of its sampling period and right at the end of the
3749 * sampling interval. Let's assume the GPU has the longest clock
3750 * period and that the application is sampling GPU and monotonic:
3751 *
3752 * s e
3753 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3754 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3755 *
3756 * g
3757 * 0 1 2 3
3758 * GPU -----_____-----_____-----_____-----_____
3759 *
3760 * m
3761 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3762 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3763 *
3764 * Interval <----------------->
3765 * Deviation <-------------------------->
3766 *
3767 * s = read(raw) 2
3768 * g = read(GPU) 1
3769 * m = read(monotonic) 2
3770 * e = read(raw) b
3771 *
3772 * We round the sample interval up by one tick to cover sampling error
3773 * in the interval clock
3774 */
3775
3776 uint64_t sample_interval = end - begin + 1;
3777
3778 *pMaxDeviation = sample_interval + max_clock_period;
3779
3780 return VK_SUCCESS;
3781 }
3782
3783 /* vk_icd.h does not declare this function, so we declare it here to
3784 * suppress Wmissing-prototypes.
3785 */
3786 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3787 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3788
3789 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3790 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3791 {
3792 /* For the full details on loader interface versioning, see
3793 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3794 * What follows is a condensed summary, to help you navigate the large and
3795 * confusing official doc.
3796 *
3797 * - Loader interface v0 is incompatible with later versions. We don't
3798 * support it.
3799 *
3800 * - In loader interface v1:
3801 * - The first ICD entrypoint called by the loader is
3802 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3803 * entrypoint.
3804 * - The ICD must statically expose no other Vulkan symbol unless it is
3805 * linked with -Bsymbolic.
3806 * - Each dispatchable Vulkan handle created by the ICD must be
3807 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3808 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3809 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3810 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3811 * such loader-managed surfaces.
3812 *
3813 * - Loader interface v2 differs from v1 in:
3814 * - The first ICD entrypoint called by the loader is
3815 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3816 * statically expose this entrypoint.
3817 *
3818 * - Loader interface v3 differs from v2 in:
3819 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3820 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3821 * because the loader no longer does so.
3822 */
3823 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3824 return VK_SUCCESS;
3825 }