anv: Unify GetDeviceQueue and GetDeviceQueue2
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/xmlpool.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57 DRI_CONF_END;
58
59 /* This is probably far to big but it reflects the max size used for messages
60 * in OpenGLs KHR_debug.
61 */
62 #define MAX_DEBUG_MESSAGE_LENGTH 4096
63
64 static void
65 compiler_debug_log(void *data, const char *fmt, ...)
66 {
67 char str[MAX_DEBUG_MESSAGE_LENGTH];
68 struct anv_device *device = (struct anv_device *)data;
69
70 if (list_is_empty(&device->instance->debug_report_callbacks.callbacks))
71 return;
72
73 va_list args;
74 va_start(args, fmt);
75 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
76 va_end(args);
77
78 vk_debug_report(&device->instance->debug_report_callbacks,
79 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
80 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
81 0, 0, 0, "anv", str);
82 }
83
84 static void
85 compiler_perf_log(void *data, const char *fmt, ...)
86 {
87 va_list args;
88 va_start(args, fmt);
89
90 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
91 intel_logd_v(fmt, args);
92
93 va_end(args);
94 }
95
96 static uint64_t
97 anv_compute_heap_size(int fd, uint64_t gtt_size)
98 {
99 /* Query the total ram from the system */
100 struct sysinfo info;
101 sysinfo(&info);
102
103 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
104
105 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
106 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
107 */
108 uint64_t available_ram;
109 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
110 available_ram = total_ram / 2;
111 else
112 available_ram = total_ram * 3 / 4;
113
114 /* We also want to leave some padding for things we allocate in the driver,
115 * so don't go over 3/4 of the GTT either.
116 */
117 uint64_t available_gtt = gtt_size * 3 / 4;
118
119 return MIN2(available_ram, available_gtt);
120 }
121
122 static VkResult
123 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
124 {
125 uint64_t gtt_size;
126 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
127 &gtt_size) == -1) {
128 /* If, for whatever reason, we can't actually get the GTT size from the
129 * kernel (too old?) fall back to the aperture size.
130 */
131 anv_perf_warn(NULL, NULL,
132 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
133
134 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
135 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
136 "failed to get aperture size: %m");
137 }
138 }
139
140 device->supports_48bit_addresses = (device->info.gen >= 8) &&
141 gtt_size > (4ULL << 30 /* GiB */);
142
143 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
144
145 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
146 /* When running with an overridden PCI ID, we may get a GTT size from
147 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
148 * address support can still fail. Just clamp the address space size to
149 * 2 GiB if we don't have 48-bit support.
150 */
151 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
152 "not support for 48-bit addresses",
153 __FILE__, __LINE__);
154 heap_size = 2ull << 30;
155 }
156
157 if (heap_size <= 3ull * (1ull << 30)) {
158 /* In this case, everything fits nicely into the 32-bit address space,
159 * so there's no need for supporting 48bit addresses on client-allocated
160 * memory objects.
161 */
162 device->memory.heap_count = 1;
163 device->memory.heaps[0] = (struct anv_memory_heap) {
164 .vma_start = LOW_HEAP_MIN_ADDRESS,
165 .vma_size = LOW_HEAP_SIZE,
166 .size = heap_size,
167 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
168 .supports_48bit_addresses = false,
169 };
170 } else {
171 /* Not everything will fit nicely into a 32-bit address space. In this
172 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
173 * larger 48-bit heap. If we're in this case, then we have a total heap
174 * size larger than 3GiB which most likely means they have 8 GiB of
175 * video memory and so carving off 1 GiB for the 32-bit heap should be
176 * reasonable.
177 */
178 const uint64_t heap_size_32bit = 1ull << 30;
179 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
180
181 assert(device->supports_48bit_addresses);
182
183 device->memory.heap_count = 2;
184 device->memory.heaps[0] = (struct anv_memory_heap) {
185 .vma_start = HIGH_HEAP_MIN_ADDRESS,
186 /* Leave the last 4GiB out of the high vma range, so that no state
187 * base address + size can overflow 48 bits. For more information see
188 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
189 */
190 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
191 .size = heap_size_48bit,
192 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
193 .supports_48bit_addresses = true,
194 };
195 device->memory.heaps[1] = (struct anv_memory_heap) {
196 .vma_start = LOW_HEAP_MIN_ADDRESS,
197 .vma_size = LOW_HEAP_SIZE,
198 .size = heap_size_32bit,
199 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
200 .supports_48bit_addresses = false,
201 };
202 }
203
204 uint32_t type_count = 0;
205 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
206 uint32_t valid_buffer_usage = ~0;
207
208 /* There appears to be a hardware issue in the VF cache where it only
209 * considers the bottom 32 bits of memory addresses. If you happen to
210 * have two vertex buffers which get placed exactly 4 GiB apart and use
211 * them in back-to-back draw calls, you can get collisions. In order to
212 * solve this problem, we require vertex and index buffers be bound to
213 * memory allocated out of the 32-bit heap.
214 */
215 if (device->memory.heaps[heap].supports_48bit_addresses) {
216 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
217 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
218 }
219
220 if (device->info.has_llc) {
221 /* Big core GPUs share LLC with the CPU and thus one memory type can be
222 * both cached and coherent at the same time.
223 */
224 device->memory.types[type_count++] = (struct anv_memory_type) {
225 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
226 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
227 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
228 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
229 .heapIndex = heap,
230 .valid_buffer_usage = valid_buffer_usage,
231 };
232 } else {
233 /* The spec requires that we expose a host-visible, coherent memory
234 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
235 * to give the application a choice between cached, but not coherent and
236 * coherent but uncached (WC though).
237 */
238 device->memory.types[type_count++] = (struct anv_memory_type) {
239 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
240 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
241 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
242 .heapIndex = heap,
243 .valid_buffer_usage = valid_buffer_usage,
244 };
245 device->memory.types[type_count++] = (struct anv_memory_type) {
246 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
247 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
248 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
249 .heapIndex = heap,
250 .valid_buffer_usage = valid_buffer_usage,
251 };
252 }
253 }
254 device->memory.type_count = type_count;
255
256 return VK_SUCCESS;
257 }
258
259 static VkResult
260 anv_physical_device_init_uuids(struct anv_physical_device *device)
261 {
262 const struct build_id_note *note =
263 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
264 if (!note) {
265 return vk_errorf(device->instance, device,
266 VK_ERROR_INITIALIZATION_FAILED,
267 "Failed to find build-id");
268 }
269
270 unsigned build_id_len = build_id_length(note);
271 if (build_id_len < 20) {
272 return vk_errorf(device->instance, device,
273 VK_ERROR_INITIALIZATION_FAILED,
274 "build-id too short. It needs to be a SHA");
275 }
276
277 memcpy(device->driver_build_sha1, build_id_data(note), 20);
278
279 struct mesa_sha1 sha1_ctx;
280 uint8_t sha1[20];
281 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
282
283 /* The pipeline cache UUID is used for determining when a pipeline cache is
284 * invalid. It needs both a driver build and the PCI ID of the device.
285 */
286 _mesa_sha1_init(&sha1_ctx);
287 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
288 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
289 sizeof(device->chipset_id));
290 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
291 sizeof(device->always_use_bindless));
292 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
293 sizeof(device->has_a64_buffer_access));
294 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
295 sizeof(device->has_bindless_images));
296 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
297 sizeof(device->has_bindless_samplers));
298 _mesa_sha1_final(&sha1_ctx, sha1);
299 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
300
301 /* The driver UUID is used for determining sharability of images and memory
302 * between two Vulkan instances in separate processes. People who want to
303 * share memory need to also check the device UUID (below) so all this
304 * needs to be is the build-id.
305 */
306 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
307
308 /* The device UUID uniquely identifies the given device within the machine.
309 * Since we never have more than one device, this doesn't need to be a real
310 * UUID. However, on the off-chance that someone tries to use this to
311 * cache pre-tiled images or something of the like, we use the PCI ID and
312 * some bits of ISL info to ensure that this is safe.
313 */
314 _mesa_sha1_init(&sha1_ctx);
315 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
316 sizeof(device->chipset_id));
317 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
318 sizeof(device->isl_dev.has_bit6_swizzling));
319 _mesa_sha1_final(&sha1_ctx, sha1);
320 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
321
322 return VK_SUCCESS;
323 }
324
325 static void
326 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
327 {
328 #ifdef ENABLE_SHADER_CACHE
329 char renderer[10];
330 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
331 device->chipset_id);
332 assert(len == sizeof(renderer) - 2);
333
334 char timestamp[41];
335 _mesa_sha1_format(timestamp, device->driver_build_sha1);
336
337 const uint64_t driver_flags =
338 brw_get_compiler_config_value(device->compiler);
339 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
340 #else
341 device->disk_cache = NULL;
342 #endif
343 }
344
345 static void
346 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
347 {
348 #ifdef ENABLE_SHADER_CACHE
349 if (device->disk_cache)
350 disk_cache_destroy(device->disk_cache);
351 #else
352 assert(device->disk_cache == NULL);
353 #endif
354 }
355
356 static uint64_t
357 get_available_system_memory()
358 {
359 char *meminfo = os_read_file("/proc/meminfo");
360 if (!meminfo)
361 return 0;
362
363 char *str = strstr(meminfo, "MemAvailable:");
364 if (!str) {
365 free(meminfo);
366 return 0;
367 }
368
369 uint64_t kb_mem_available;
370 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
371 free(meminfo);
372 return kb_mem_available << 10;
373 }
374
375 free(meminfo);
376 return 0;
377 }
378
379 static VkResult
380 anv_physical_device_init(struct anv_physical_device *device,
381 struct anv_instance *instance,
382 drmDevicePtr drm_device)
383 {
384 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
385 const char *path = drm_device->nodes[DRM_NODE_RENDER];
386 VkResult result;
387 int fd;
388 int master_fd = -1;
389
390 brw_process_intel_debug_variable();
391
392 fd = open(path, O_RDWR | O_CLOEXEC);
393 if (fd < 0)
394 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
395
396 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
397 device->instance = instance;
398
399 assert(strlen(path) < ARRAY_SIZE(device->path));
400 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
401
402 if (!gen_get_device_info_from_fd(fd, &device->info)) {
403 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
404 goto fail;
405 }
406 device->chipset_id = device->info.chipset_id;
407 device->no_hw = device->info.no_hw;
408
409 if (getenv("INTEL_NO_HW") != NULL)
410 device->no_hw = true;
411
412 device->pci_info.domain = drm_device->businfo.pci->domain;
413 device->pci_info.bus = drm_device->businfo.pci->bus;
414 device->pci_info.device = drm_device->businfo.pci->dev;
415 device->pci_info.function = drm_device->businfo.pci->func;
416
417 device->name = gen_get_device_name(device->chipset_id);
418
419 if (device->info.is_haswell) {
420 intel_logw("Haswell Vulkan support is incomplete");
421 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
422 intel_logw("Ivy Bridge Vulkan support is incomplete");
423 } else if (device->info.gen == 7 && device->info.is_baytrail) {
424 intel_logw("Bay Trail Vulkan support is incomplete");
425 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
426 /* Gen8-11 fully supported */
427 } else if (device->info.gen == 12) {
428 intel_logw("Vulkan is not yet fully supported on gen12");
429 } else {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INCOMPATIBLE_DRIVER,
432 "Vulkan not yet supported on %s", device->name);
433 goto fail;
434 }
435
436 device->cmd_parser_version = -1;
437 if (device->info.gen == 7) {
438 device->cmd_parser_version =
439 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
440 if (device->cmd_parser_version == -1) {
441 result = vk_errorf(device->instance, device,
442 VK_ERROR_INITIALIZATION_FAILED,
443 "failed to get command parser version");
444 goto fail;
445 }
446 }
447
448 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
449 result = vk_errorf(device->instance, device,
450 VK_ERROR_INITIALIZATION_FAILED,
451 "kernel missing gem wait");
452 goto fail;
453 }
454
455 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
456 result = vk_errorf(device->instance, device,
457 VK_ERROR_INITIALIZATION_FAILED,
458 "kernel missing execbuf2");
459 goto fail;
460 }
461
462 if (!device->info.has_llc &&
463 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
464 result = vk_errorf(device->instance, device,
465 VK_ERROR_INITIALIZATION_FAILED,
466 "kernel missing wc mmap");
467 goto fail;
468 }
469
470 result = anv_physical_device_init_heaps(device, fd);
471 if (result != VK_SUCCESS)
472 goto fail;
473
474 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
475 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
476 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
477 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
478 device->has_syncobj_wait = device->has_syncobj &&
479 anv_gem_supports_syncobj_wait(fd);
480 device->has_context_priority = anv_gem_has_context_priority(fd);
481
482 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
483 && device->supports_48bit_addresses;
484
485 device->has_context_isolation =
486 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
487
488 device->always_use_bindless =
489 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
490
491 /* We first got the A64 messages on broadwell and we can only use them if
492 * we can pass addresses directly into the shader which requires softpin.
493 */
494 device->has_a64_buffer_access = device->info.gen >= 8 &&
495 device->use_softpin;
496
497 /* We first get bindless image access on Skylake and we can only really do
498 * it if we don't have any relocations so we need softpin.
499 */
500 device->has_bindless_images = device->info.gen >= 9 &&
501 device->use_softpin;
502
503 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
504 * because it's just a matter of setting the sampler address in the sample
505 * message header. However, we've not bothered to wire it up for vec4 so
506 * we leave it disabled on gen7.
507 */
508 device->has_bindless_samplers = device->info.gen >= 8;
509
510 device->has_mem_available = get_available_system_memory() != 0;
511
512 /* Starting with Gen10, the timestamp frequency of the command streamer may
513 * vary from one part to another. We can query the value from the kernel.
514 */
515 if (device->info.gen >= 10) {
516 int timestamp_frequency =
517 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
518
519 if (timestamp_frequency < 0)
520 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
521 else
522 device->info.timestamp_frequency = timestamp_frequency;
523 }
524
525 /* GENs prior to 8 do not support EU/Subslice info */
526 if (device->info.gen >= 8) {
527 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
528 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
529
530 /* Without this information, we cannot get the right Braswell
531 * brandstrings, and we have to use conservative numbers for GPGPU on
532 * many platforms, but otherwise, things will just work.
533 */
534 if (device->subslice_total < 1 || device->eu_total < 1) {
535 intel_logw("Kernel 4.1 required to properly query GPU properties");
536 }
537 } else if (device->info.gen == 7) {
538 device->subslice_total = 1 << (device->info.gt - 1);
539 }
540
541 if (device->info.is_cherryview &&
542 device->subslice_total > 0 && device->eu_total > 0) {
543 /* Logical CS threads = EUs per subslice * num threads per EU */
544 uint32_t max_cs_threads =
545 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
546
547 /* Fuse configurations may give more threads than expected, never less. */
548 if (max_cs_threads > device->info.max_cs_threads)
549 device->info.max_cs_threads = max_cs_threads;
550 }
551
552 device->compiler = brw_compiler_create(NULL, &device->info);
553 if (device->compiler == NULL) {
554 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
555 goto fail;
556 }
557 device->compiler->shader_debug_log = compiler_debug_log;
558 device->compiler->shader_perf_log = compiler_perf_log;
559 device->compiler->supports_pull_constants = false;
560 device->compiler->constant_buffer_0_is_relative =
561 device->info.gen < 8 || !device->has_context_isolation;
562 device->compiler->supports_shader_constants = true;
563
564 /* Broadwell PRM says:
565 *
566 * "Before Gen8, there was a historical configuration control field to
567 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
568 * different places: TILECTL[1:0], ARB_MODE[5:4], and
569 * DISP_ARB_CTL[14:13].
570 *
571 * For Gen8 and subsequent generations, the swizzle fields are all
572 * reserved, and the CPU's memory controller performs all address
573 * swizzling modifications."
574 */
575 bool swizzled =
576 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
577
578 isl_device_init(&device->isl_dev, &device->info, swizzled);
579
580 result = anv_physical_device_init_uuids(device);
581 if (result != VK_SUCCESS)
582 goto fail;
583
584 anv_physical_device_init_disk_cache(device);
585
586 if (instance->enabled_extensions.KHR_display) {
587 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
588 if (master_fd >= 0) {
589 /* prod the device with a GETPARAM call which will fail if
590 * we don't have permission to even render on this device
591 */
592 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
593 close(master_fd);
594 master_fd = -1;
595 }
596 }
597 }
598 device->master_fd = master_fd;
599
600 result = anv_init_wsi(device);
601 if (result != VK_SUCCESS) {
602 ralloc_free(device->compiler);
603 anv_physical_device_free_disk_cache(device);
604 goto fail;
605 }
606
607 device->perf = anv_get_perf(&device->info, fd);
608
609 anv_physical_device_get_supported_extensions(device,
610 &device->supported_extensions);
611
612
613 device->local_fd = fd;
614
615 return VK_SUCCESS;
616
617 fail:
618 close(fd);
619 if (master_fd != -1)
620 close(master_fd);
621 return result;
622 }
623
624 static void
625 anv_physical_device_finish(struct anv_physical_device *device)
626 {
627 anv_finish_wsi(device);
628 anv_physical_device_free_disk_cache(device);
629 ralloc_free(device->compiler);
630 ralloc_free(device->perf);
631 close(device->local_fd);
632 if (device->master_fd >= 0)
633 close(device->master_fd);
634 }
635
636 static void *
637 default_alloc_func(void *pUserData, size_t size, size_t align,
638 VkSystemAllocationScope allocationScope)
639 {
640 return malloc(size);
641 }
642
643 static void *
644 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
645 size_t align, VkSystemAllocationScope allocationScope)
646 {
647 return realloc(pOriginal, size);
648 }
649
650 static void
651 default_free_func(void *pUserData, void *pMemory)
652 {
653 free(pMemory);
654 }
655
656 static const VkAllocationCallbacks default_alloc = {
657 .pUserData = NULL,
658 .pfnAllocation = default_alloc_func,
659 .pfnReallocation = default_realloc_func,
660 .pfnFree = default_free_func,
661 };
662
663 VkResult anv_EnumerateInstanceExtensionProperties(
664 const char* pLayerName,
665 uint32_t* pPropertyCount,
666 VkExtensionProperties* pProperties)
667 {
668 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
669
670 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
671 if (anv_instance_extensions_supported.extensions[i]) {
672 vk_outarray_append(&out, prop) {
673 *prop = anv_instance_extensions[i];
674 }
675 }
676 }
677
678 return vk_outarray_status(&out);
679 }
680
681 VkResult anv_CreateInstance(
682 const VkInstanceCreateInfo* pCreateInfo,
683 const VkAllocationCallbacks* pAllocator,
684 VkInstance* pInstance)
685 {
686 struct anv_instance *instance;
687 VkResult result;
688
689 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
690
691 struct anv_instance_extension_table enabled_extensions = {};
692 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
693 int idx;
694 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
695 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
696 anv_instance_extensions[idx].extensionName) == 0)
697 break;
698 }
699
700 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
701 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
702
703 if (!anv_instance_extensions_supported.extensions[idx])
704 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
705
706 enabled_extensions.extensions[idx] = true;
707 }
708
709 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
710 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
711 if (!instance)
712 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
713
714 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
715
716 if (pAllocator)
717 instance->alloc = *pAllocator;
718 else
719 instance->alloc = default_alloc;
720
721 instance->app_info = (struct anv_app_info) { .api_version = 0 };
722 if (pCreateInfo->pApplicationInfo) {
723 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
724
725 instance->app_info.app_name =
726 vk_strdup(&instance->alloc, app->pApplicationName,
727 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
728 instance->app_info.app_version = app->applicationVersion;
729
730 instance->app_info.engine_name =
731 vk_strdup(&instance->alloc, app->pEngineName,
732 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
733 instance->app_info.engine_version = app->engineVersion;
734
735 instance->app_info.api_version = app->apiVersion;
736 }
737
738 if (instance->app_info.api_version == 0)
739 instance->app_info.api_version = VK_API_VERSION_1_0;
740
741 instance->enabled_extensions = enabled_extensions;
742
743 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
744 /* Vulkan requires that entrypoints for extensions which have not been
745 * enabled must not be advertised.
746 */
747 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
748 &instance->enabled_extensions)) {
749 instance->dispatch.entrypoints[i] = NULL;
750 } else {
751 instance->dispatch.entrypoints[i] =
752 anv_instance_dispatch_table.entrypoints[i];
753 }
754 }
755
756 struct anv_physical_device *pdevice = &instance->physicalDevice;
757 for (unsigned i = 0; i < ARRAY_SIZE(pdevice->dispatch.entrypoints); i++) {
758 /* Vulkan requires that entrypoints for extensions which have not been
759 * enabled must not be advertised.
760 */
761 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
762 &instance->enabled_extensions)) {
763 pdevice->dispatch.entrypoints[i] = NULL;
764 } else {
765 pdevice->dispatch.entrypoints[i] =
766 anv_physical_device_dispatch_table.entrypoints[i];
767 }
768 }
769
770 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
771 /* Vulkan requires that entrypoints for extensions which have not been
772 * enabled must not be advertised.
773 */
774 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
775 &instance->enabled_extensions, NULL)) {
776 instance->device_dispatch.entrypoints[i] = NULL;
777 } else {
778 instance->device_dispatch.entrypoints[i] =
779 anv_device_dispatch_table.entrypoints[i];
780 }
781 }
782
783 instance->physicalDeviceCount = -1;
784
785 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
786 if (result != VK_SUCCESS) {
787 vk_free2(&default_alloc, pAllocator, instance);
788 return vk_error(result);
789 }
790
791 instance->pipeline_cache_enabled =
792 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
793
794 glsl_type_singleton_init_or_ref();
795
796 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
797
798 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
799 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
800 0, "anv", NULL,
801 instance->app_info.engine_name,
802 instance->app_info.engine_version);
803
804 *pInstance = anv_instance_to_handle(instance);
805
806 return VK_SUCCESS;
807 }
808
809 void anv_DestroyInstance(
810 VkInstance _instance,
811 const VkAllocationCallbacks* pAllocator)
812 {
813 ANV_FROM_HANDLE(anv_instance, instance, _instance);
814
815 if (!instance)
816 return;
817
818 if (instance->physicalDeviceCount > 0) {
819 /* We support at most one physical device. */
820 assert(instance->physicalDeviceCount == 1);
821 anv_physical_device_finish(&instance->physicalDevice);
822 }
823
824 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
825 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
826
827 VG(VALGRIND_DESTROY_MEMPOOL(instance));
828
829 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
830
831 glsl_type_singleton_decref();
832
833 driDestroyOptionCache(&instance->dri_options);
834 driDestroyOptionInfo(&instance->available_dri_options);
835
836 vk_free(&instance->alloc, instance);
837 }
838
839 static VkResult
840 anv_enumerate_devices(struct anv_instance *instance)
841 {
842 /* TODO: Check for more devices ? */
843 drmDevicePtr devices[8];
844 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
845 int max_devices;
846
847 instance->physicalDeviceCount = 0;
848
849 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
850 if (max_devices < 1)
851 return VK_ERROR_INCOMPATIBLE_DRIVER;
852
853 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
854 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
855 devices[i]->bustype == DRM_BUS_PCI &&
856 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
857
858 result = anv_physical_device_init(&instance->physicalDevice,
859 instance, devices[i]);
860 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
861 break;
862 }
863 }
864 drmFreeDevices(devices, max_devices);
865
866 if (result == VK_SUCCESS)
867 instance->physicalDeviceCount = 1;
868
869 return result;
870 }
871
872 static VkResult
873 anv_instance_ensure_physical_device(struct anv_instance *instance)
874 {
875 if (instance->physicalDeviceCount < 0) {
876 VkResult result = anv_enumerate_devices(instance);
877 if (result != VK_SUCCESS &&
878 result != VK_ERROR_INCOMPATIBLE_DRIVER)
879 return result;
880 }
881
882 return VK_SUCCESS;
883 }
884
885 VkResult anv_EnumeratePhysicalDevices(
886 VkInstance _instance,
887 uint32_t* pPhysicalDeviceCount,
888 VkPhysicalDevice* pPhysicalDevices)
889 {
890 ANV_FROM_HANDLE(anv_instance, instance, _instance);
891 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
892
893 VkResult result = anv_instance_ensure_physical_device(instance);
894 if (result != VK_SUCCESS)
895 return result;
896
897 if (instance->physicalDeviceCount == 0)
898 return VK_SUCCESS;
899
900 assert(instance->physicalDeviceCount == 1);
901 vk_outarray_append(&out, i) {
902 *i = anv_physical_device_to_handle(&instance->physicalDevice);
903 }
904
905 return vk_outarray_status(&out);
906 }
907
908 VkResult anv_EnumeratePhysicalDeviceGroups(
909 VkInstance _instance,
910 uint32_t* pPhysicalDeviceGroupCount,
911 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
912 {
913 ANV_FROM_HANDLE(anv_instance, instance, _instance);
914 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
915 pPhysicalDeviceGroupCount);
916
917 VkResult result = anv_instance_ensure_physical_device(instance);
918 if (result != VK_SUCCESS)
919 return result;
920
921 if (instance->physicalDeviceCount == 0)
922 return VK_SUCCESS;
923
924 assert(instance->physicalDeviceCount == 1);
925
926 vk_outarray_append(&out, p) {
927 p->physicalDeviceCount = 1;
928 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
929 p->physicalDevices[0] =
930 anv_physical_device_to_handle(&instance->physicalDevice);
931 p->subsetAllocation = false;
932
933 vk_foreach_struct(ext, p->pNext)
934 anv_debug_ignored_stype(ext->sType);
935 }
936
937 return vk_outarray_status(&out);
938 }
939
940 void anv_GetPhysicalDeviceFeatures(
941 VkPhysicalDevice physicalDevice,
942 VkPhysicalDeviceFeatures* pFeatures)
943 {
944 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
945
946 *pFeatures = (VkPhysicalDeviceFeatures) {
947 .robustBufferAccess = true,
948 .fullDrawIndexUint32 = true,
949 .imageCubeArray = true,
950 .independentBlend = true,
951 .geometryShader = true,
952 .tessellationShader = true,
953 .sampleRateShading = true,
954 .dualSrcBlend = true,
955 .logicOp = true,
956 .multiDrawIndirect = true,
957 .drawIndirectFirstInstance = true,
958 .depthClamp = true,
959 .depthBiasClamp = true,
960 .fillModeNonSolid = true,
961 .depthBounds = pdevice->info.gen >= 12,
962 .wideLines = true,
963 .largePoints = true,
964 .alphaToOne = true,
965 .multiViewport = true,
966 .samplerAnisotropy = true,
967 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
968 pdevice->info.is_baytrail,
969 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
970 .textureCompressionBC = true,
971 .occlusionQueryPrecise = true,
972 .pipelineStatisticsQuery = true,
973 .fragmentStoresAndAtomics = true,
974 .shaderTessellationAndGeometryPointSize = true,
975 .shaderImageGatherExtended = true,
976 .shaderStorageImageExtendedFormats = true,
977 .shaderStorageImageMultisample = false,
978 .shaderStorageImageReadWithoutFormat = false,
979 .shaderStorageImageWriteWithoutFormat = true,
980 .shaderUniformBufferArrayDynamicIndexing = true,
981 .shaderSampledImageArrayDynamicIndexing = true,
982 .shaderStorageBufferArrayDynamicIndexing = true,
983 .shaderStorageImageArrayDynamicIndexing = true,
984 .shaderClipDistance = true,
985 .shaderCullDistance = true,
986 .shaderFloat64 = pdevice->info.gen >= 8 &&
987 pdevice->info.has_64bit_types,
988 .shaderInt64 = pdevice->info.gen >= 8 &&
989 pdevice->info.has_64bit_types,
990 .shaderInt16 = pdevice->info.gen >= 8,
991 .shaderResourceMinLod = pdevice->info.gen >= 9,
992 .variableMultisampleRate = true,
993 .inheritedQueries = true,
994 };
995
996 /* We can't do image stores in vec4 shaders */
997 pFeatures->vertexPipelineStoresAndAtomics =
998 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
999 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
1000
1001 struct anv_app_info *app_info = &pdevice->instance->app_info;
1002
1003 /* The new DOOM and Wolfenstein games require depthBounds without
1004 * checking for it. They seem to run fine without it so just claim it's
1005 * there and accept the consequences.
1006 */
1007 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
1008 pFeatures->depthBounds = true;
1009 }
1010
1011 void anv_GetPhysicalDeviceFeatures2(
1012 VkPhysicalDevice physicalDevice,
1013 VkPhysicalDeviceFeatures2* pFeatures)
1014 {
1015 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1016 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1017
1018 vk_foreach_struct(ext, pFeatures->pNext) {
1019 switch (ext->sType) {
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1021 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1022 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1023 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1024 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1025 features->storagePushConstant8 = pdevice->info.gen >= 8;
1026 break;
1027 }
1028
1029 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1030 VkPhysicalDevice16BitStorageFeatures *features =
1031 (VkPhysicalDevice16BitStorageFeatures *)ext;
1032 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1033 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1034 features->storagePushConstant16 = pdevice->info.gen >= 8;
1035 features->storageInputOutput16 = false;
1036 break;
1037 }
1038
1039 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1040 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1041 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1042 features->bufferDeviceAddressCaptureReplay = false;
1043 features->bufferDeviceAddressMultiDevice = false;
1044 break;
1045 }
1046
1047 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1048 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1049 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1050 features->computeDerivativeGroupQuads = true;
1051 features->computeDerivativeGroupLinear = true;
1052 break;
1053 }
1054
1055 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1056 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1057 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1058 features->conditionalRendering = pdevice->info.gen >= 8 ||
1059 pdevice->info.is_haswell;
1060 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1061 pdevice->info.is_haswell;
1062 break;
1063 }
1064
1065 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1066 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1067 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1068 features->depthClipEnable = true;
1069 break;
1070 }
1071
1072 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1073 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1074 features->shaderFloat16 = pdevice->info.gen >= 8;
1075 features->shaderInt8 = pdevice->info.gen >= 8;
1076 break;
1077 }
1078
1079 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1080 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1081 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1082 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1083 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1084 features->fragmentShaderShadingRateInterlock = false;
1085 break;
1086 }
1087
1088 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1089 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1090 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1091 features->hostQueryReset = true;
1092 break;
1093 }
1094
1095 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1096 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1097 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1098 features->shaderInputAttachmentArrayDynamicIndexing = false;
1099 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1100 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1101 features->shaderUniformBufferArrayNonUniformIndexing = false;
1102 features->shaderSampledImageArrayNonUniformIndexing = true;
1103 features->shaderStorageBufferArrayNonUniformIndexing = true;
1104 features->shaderStorageImageArrayNonUniformIndexing = true;
1105 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1106 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1107 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1108 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1109 features->descriptorBindingSampledImageUpdateAfterBind = true;
1110 features->descriptorBindingStorageImageUpdateAfterBind = true;
1111 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1112 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1113 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1114 features->descriptorBindingUpdateUnusedWhilePending = true;
1115 features->descriptorBindingPartiallyBound = true;
1116 features->descriptorBindingVariableDescriptorCount = false;
1117 features->runtimeDescriptorArray = true;
1118 break;
1119 }
1120
1121 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1122 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1123 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1124 features->indexTypeUint8 = true;
1125 break;
1126 }
1127
1128 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1129 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1130 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1131 features->inlineUniformBlock = true;
1132 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1133 break;
1134 }
1135
1136 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1137 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1138 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1139 features->rectangularLines = true;
1140 features->bresenhamLines = true;
1141 features->smoothLines = true;
1142 features->stippledRectangularLines = false;
1143 features->stippledBresenhamLines = true;
1144 features->stippledSmoothLines = false;
1145 break;
1146 }
1147
1148 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1149 VkPhysicalDeviceMultiviewFeatures *features =
1150 (VkPhysicalDeviceMultiviewFeatures *)ext;
1151 features->multiview = true;
1152 features->multiviewGeometryShader = true;
1153 features->multiviewTessellationShader = true;
1154 break;
1155 }
1156
1157 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1158 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1159 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1160 features->imagelessFramebuffer = true;
1161 break;
1162 }
1163
1164 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1165 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1166 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1167 features->pipelineExecutableInfo = true;
1168 break;
1169 }
1170
1171 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1172 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1173 features->protectedMemory = false;
1174 break;
1175 }
1176
1177 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1178 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1179 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1180 features->samplerYcbcrConversion = true;
1181 break;
1182 }
1183
1184 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1185 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1186 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1187 features->scalarBlockLayout = true;
1188 break;
1189 }
1190
1191 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1192 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1193 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1194 features->separateDepthStencilLayouts = true;
1195 break;
1196 }
1197
1198 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1199 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1200 features->shaderBufferInt64Atomics =
1201 pdevice->info.gen >= 9 && pdevice->use_softpin;
1202 features->shaderSharedInt64Atomics = VK_FALSE;
1203 break;
1204 }
1205
1206 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1207 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1208 features->shaderDemoteToHelperInvocation = true;
1209 break;
1210 }
1211
1212 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1213 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1214 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1215 features->shaderSubgroupClock = true;
1216 features->shaderDeviceClock = false;
1217 break;
1218 }
1219
1220 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1221 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1222 features->shaderDrawParameters = true;
1223 break;
1224 }
1225
1226 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1227 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1228 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1229 features->shaderSubgroupExtendedTypes = true;
1230 break;
1231 }
1232
1233 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1234 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1235 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1236 features->subgroupSizeControl = true;
1237 features->computeFullSubgroups = true;
1238 break;
1239 }
1240
1241 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1242 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1243 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1244 features->texelBufferAlignment = true;
1245 break;
1246 }
1247
1248 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1249 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1250 features->variablePointersStorageBuffer = true;
1251 features->variablePointers = true;
1252 break;
1253 }
1254
1255 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1256 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1257 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1258 features->transformFeedback = true;
1259 features->geometryStreams = true;
1260 break;
1261 }
1262
1263 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1264 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1265 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1266 features->uniformBufferStandardLayout = true;
1267 break;
1268 }
1269
1270 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1271 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1272 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1273 features->vertexAttributeInstanceRateDivisor = true;
1274 features->vertexAttributeInstanceRateZeroDivisor = true;
1275 break;
1276 }
1277
1278 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1279 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1280 features->vulkanMemoryModel = true;
1281 features->vulkanMemoryModelDeviceScope = true;
1282 features->vulkanMemoryModelAvailabilityVisibilityChains = true;
1283 break;
1284 }
1285
1286 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1287 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1288 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1289 features->ycbcrImageArrays = true;
1290 break;
1291 }
1292
1293 default:
1294 anv_debug_ignored_stype(ext->sType);
1295 break;
1296 }
1297 }
1298 }
1299
1300 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1301
1302 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1303 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1304
1305 void anv_GetPhysicalDeviceProperties(
1306 VkPhysicalDevice physicalDevice,
1307 VkPhysicalDeviceProperties* pProperties)
1308 {
1309 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1310 const struct gen_device_info *devinfo = &pdevice->info;
1311
1312 /* See assertions made when programming the buffer surface state. */
1313 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1314 (1ul << 30) : (1ul << 27);
1315
1316 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1317 const uint32_t max_textures =
1318 pdevice->has_bindless_images ? UINT16_MAX : 128;
1319 const uint32_t max_samplers =
1320 pdevice->has_bindless_samplers ? UINT16_MAX :
1321 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1322 const uint32_t max_images =
1323 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1324
1325 /* If we can use bindless for everything, claim a high per-stage limit,
1326 * otherwise use the binding table size, minus the slots reserved for
1327 * render targets and one slot for the descriptor buffer. */
1328 const uint32_t max_per_stage =
1329 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1330 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1331
1332 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1333
1334 VkSampleCountFlags sample_counts =
1335 isl_device_get_sample_counts(&pdevice->isl_dev);
1336
1337
1338 VkPhysicalDeviceLimits limits = {
1339 .maxImageDimension1D = (1 << 14),
1340 .maxImageDimension2D = (1 << 14),
1341 .maxImageDimension3D = (1 << 11),
1342 .maxImageDimensionCube = (1 << 14),
1343 .maxImageArrayLayers = (1 << 11),
1344 .maxTexelBufferElements = 128 * 1024 * 1024,
1345 .maxUniformBufferRange = (1ul << 27),
1346 .maxStorageBufferRange = max_raw_buffer_sz,
1347 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1348 .maxMemoryAllocationCount = UINT32_MAX,
1349 .maxSamplerAllocationCount = 64 * 1024,
1350 .bufferImageGranularity = 64, /* A cache line */
1351 .sparseAddressSpaceSize = 0,
1352 .maxBoundDescriptorSets = MAX_SETS,
1353 .maxPerStageDescriptorSamplers = max_samplers,
1354 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1355 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1356 .maxPerStageDescriptorSampledImages = max_textures,
1357 .maxPerStageDescriptorStorageImages = max_images,
1358 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1359 .maxPerStageResources = max_per_stage,
1360 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1361 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1362 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1363 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1364 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1365 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1366 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1367 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1368 .maxVertexInputAttributes = MAX_VBS,
1369 .maxVertexInputBindings = MAX_VBS,
1370 .maxVertexInputAttributeOffset = 2047,
1371 .maxVertexInputBindingStride = 2048,
1372 .maxVertexOutputComponents = 128,
1373 .maxTessellationGenerationLevel = 64,
1374 .maxTessellationPatchSize = 32,
1375 .maxTessellationControlPerVertexInputComponents = 128,
1376 .maxTessellationControlPerVertexOutputComponents = 128,
1377 .maxTessellationControlPerPatchOutputComponents = 128,
1378 .maxTessellationControlTotalOutputComponents = 2048,
1379 .maxTessellationEvaluationInputComponents = 128,
1380 .maxTessellationEvaluationOutputComponents = 128,
1381 .maxGeometryShaderInvocations = 32,
1382 .maxGeometryInputComponents = 64,
1383 .maxGeometryOutputComponents = 128,
1384 .maxGeometryOutputVertices = 256,
1385 .maxGeometryTotalOutputComponents = 1024,
1386 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1387 .maxFragmentOutputAttachments = 8,
1388 .maxFragmentDualSrcAttachments = 1,
1389 .maxFragmentCombinedOutputResources = 8,
1390 .maxComputeSharedMemorySize = 64 * 1024,
1391 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1392 .maxComputeWorkGroupInvocations = max_workgroup_size,
1393 .maxComputeWorkGroupSize = {
1394 max_workgroup_size,
1395 max_workgroup_size,
1396 max_workgroup_size,
1397 },
1398 .subPixelPrecisionBits = 8,
1399 .subTexelPrecisionBits = 8,
1400 .mipmapPrecisionBits = 8,
1401 .maxDrawIndexedIndexValue = UINT32_MAX,
1402 .maxDrawIndirectCount = UINT32_MAX,
1403 .maxSamplerLodBias = 16,
1404 .maxSamplerAnisotropy = 16,
1405 .maxViewports = MAX_VIEWPORTS,
1406 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1407 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1408 .viewportSubPixelBits = 13, /* We take a float? */
1409 .minMemoryMapAlignment = 4096, /* A page */
1410 /* The dataport requires texel alignment so we need to assume a worst
1411 * case of R32G32B32A32 which is 16 bytes.
1412 */
1413 .minTexelBufferOffsetAlignment = 16,
1414 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1415 .minUniformBufferOffsetAlignment = 32,
1416 .minStorageBufferOffsetAlignment = 4,
1417 .minTexelOffset = -8,
1418 .maxTexelOffset = 7,
1419 .minTexelGatherOffset = -32,
1420 .maxTexelGatherOffset = 31,
1421 .minInterpolationOffset = -0.5,
1422 .maxInterpolationOffset = 0.4375,
1423 .subPixelInterpolationOffsetBits = 4,
1424 .maxFramebufferWidth = (1 << 14),
1425 .maxFramebufferHeight = (1 << 14),
1426 .maxFramebufferLayers = (1 << 11),
1427 .framebufferColorSampleCounts = sample_counts,
1428 .framebufferDepthSampleCounts = sample_counts,
1429 .framebufferStencilSampleCounts = sample_counts,
1430 .framebufferNoAttachmentsSampleCounts = sample_counts,
1431 .maxColorAttachments = MAX_RTS,
1432 .sampledImageColorSampleCounts = sample_counts,
1433 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1434 .sampledImageDepthSampleCounts = sample_counts,
1435 .sampledImageStencilSampleCounts = sample_counts,
1436 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1437 .maxSampleMaskWords = 1,
1438 .timestampComputeAndGraphics = true,
1439 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1440 .maxClipDistances = 8,
1441 .maxCullDistances = 8,
1442 .maxCombinedClipAndCullDistances = 8,
1443 .discreteQueuePriorities = 2,
1444 .pointSizeRange = { 0.125, 255.875 },
1445 .lineWidthRange = {
1446 0.0,
1447 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1448 2047.9921875 : 7.9921875,
1449 },
1450 .pointSizeGranularity = (1.0 / 8.0),
1451 .lineWidthGranularity = (1.0 / 128.0),
1452 .strictLines = false,
1453 .standardSampleLocations = true,
1454 .optimalBufferCopyOffsetAlignment = 128,
1455 .optimalBufferCopyRowPitchAlignment = 128,
1456 .nonCoherentAtomSize = 64,
1457 };
1458
1459 *pProperties = (VkPhysicalDeviceProperties) {
1460 .apiVersion = anv_physical_device_api_version(pdevice),
1461 .driverVersion = vk_get_driver_version(),
1462 .vendorID = 0x8086,
1463 .deviceID = pdevice->chipset_id,
1464 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1465 .limits = limits,
1466 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1467 };
1468
1469 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1470 "%s", pdevice->name);
1471 memcpy(pProperties->pipelineCacheUUID,
1472 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1473 }
1474
1475 void anv_GetPhysicalDeviceProperties2(
1476 VkPhysicalDevice physicalDevice,
1477 VkPhysicalDeviceProperties2* pProperties)
1478 {
1479 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1480
1481 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1482
1483 vk_foreach_struct(ext, pProperties->pNext) {
1484 switch (ext->sType) {
1485 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1486 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1487 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1488
1489 /* We support all of the depth resolve modes */
1490 props->supportedDepthResolveModes =
1491 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1492 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1493 VK_RESOLVE_MODE_MIN_BIT_KHR |
1494 VK_RESOLVE_MODE_MAX_BIT_KHR;
1495
1496 /* Average doesn't make sense for stencil so we don't support that */
1497 props->supportedStencilResolveModes =
1498 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1499 if (pdevice->info.gen >= 8) {
1500 /* The advanced stencil resolve modes currently require stencil
1501 * sampling be supported by the hardware.
1502 */
1503 props->supportedStencilResolveModes |=
1504 VK_RESOLVE_MODE_MIN_BIT_KHR |
1505 VK_RESOLVE_MODE_MAX_BIT_KHR;
1506 }
1507
1508 props->independentResolveNone = true;
1509 props->independentResolve = true;
1510 break;
1511 }
1512
1513 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1514 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1515 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1516
1517 /* It's a bit hard to exactly map our implementation to the limits
1518 * described here. The bindless surface handle in the extended
1519 * message descriptors is 20 bits and it's an index into the table of
1520 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1521 * address. Given that most things consume two surface states per
1522 * view (general/sampled for textures and write-only/read-write for
1523 * images), we claim 2^19 things.
1524 *
1525 * For SSBOs, we just use A64 messages so there is no real limit
1526 * there beyond the limit on the total size of a descriptor set.
1527 */
1528 const unsigned max_bindless_views = 1 << 19;
1529
1530 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1531 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1532 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1533 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1534 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1535 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1536 props->robustBufferAccessUpdateAfterBind = true;
1537 props->quadDivergentImplicitLod = false;
1538 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1539 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1540 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1541 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1542 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1543 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1544 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1545 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1546 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1547 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1548 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1549 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1550 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1551 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1552 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1553 break;
1554 }
1555
1556 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1557 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1558 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1559
1560 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1561 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1562 "Intel open-source Mesa driver");
1563
1564 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1565 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1566
1567 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1568 .major = 1,
1569 .minor = 1,
1570 .subminor = 2,
1571 .patch = 0,
1572 };
1573 break;
1574 }
1575
1576 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1577 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1578 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1579 /* Userptr needs page aligned memory. */
1580 props->minImportedHostPointerAlignment = 4096;
1581 break;
1582 }
1583
1584 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1585 VkPhysicalDeviceIDProperties *id_props =
1586 (VkPhysicalDeviceIDProperties *)ext;
1587 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1588 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1589 /* The LUID is for Windows. */
1590 id_props->deviceLUIDValid = false;
1591 break;
1592 }
1593
1594 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1595 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1596 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1597 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1598 props->maxPerStageDescriptorInlineUniformBlocks =
1599 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1600 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1601 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1602 props->maxDescriptorSetInlineUniformBlocks =
1603 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1604 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1605 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1606 break;
1607 }
1608
1609 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1610 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1611 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1612 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1613 * Sampling Rules - Legacy Mode", it says the following:
1614 *
1615 * "Note that the device divides a pixel into a 16x16 array of
1616 * subpixels, referenced by their upper left corners."
1617 *
1618 * This is the only known reference in the PRMs to the subpixel
1619 * precision of line rasterization and a "16x16 array of subpixels"
1620 * implies 4 subpixel precision bits. Empirical testing has shown
1621 * that 4 subpixel precision bits applies to all line rasterization
1622 * types.
1623 */
1624 props->lineSubPixelPrecisionBits = 4;
1625 break;
1626 }
1627
1628 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1629 VkPhysicalDeviceMaintenance3Properties *props =
1630 (VkPhysicalDeviceMaintenance3Properties *)ext;
1631 /* This value doesn't matter for us today as our per-stage
1632 * descriptors are the real limit.
1633 */
1634 props->maxPerSetDescriptors = 1024;
1635 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1636 break;
1637 }
1638
1639 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1640 VkPhysicalDeviceMultiviewProperties *properties =
1641 (VkPhysicalDeviceMultiviewProperties *)ext;
1642 properties->maxMultiviewViewCount = 16;
1643 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1644 break;
1645 }
1646
1647 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1648 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1649 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1650 properties->pciDomain = pdevice->pci_info.domain;
1651 properties->pciBus = pdevice->pci_info.bus;
1652 properties->pciDevice = pdevice->pci_info.device;
1653 properties->pciFunction = pdevice->pci_info.function;
1654 break;
1655 }
1656
1657 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1658 VkPhysicalDevicePointClippingProperties *properties =
1659 (VkPhysicalDevicePointClippingProperties *) ext;
1660 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1661 break;
1662 }
1663
1664 #pragma GCC diagnostic push
1665 #pragma GCC diagnostic ignored "-Wswitch"
1666 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1667 VkPhysicalDevicePresentationPropertiesANDROID *props =
1668 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1669 props->sharedImage = VK_FALSE;
1670 break;
1671 }
1672 #pragma GCC diagnostic pop
1673
1674 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1675 VkPhysicalDeviceProtectedMemoryProperties *props =
1676 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1677 props->protectedNoFault = false;
1678 break;
1679 }
1680
1681 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1682 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1683 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1684
1685 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1686 break;
1687 }
1688
1689 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1690 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1691 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1692 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1693 properties->filterMinmaxSingleComponentFormats = true;
1694 break;
1695 }
1696
1697 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1698 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1699
1700 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1701
1702 VkShaderStageFlags scalar_stages = 0;
1703 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1704 if (pdevice->compiler->scalar_stage[stage])
1705 scalar_stages |= mesa_to_vk_shader_stage(stage);
1706 }
1707 properties->supportedStages = scalar_stages;
1708
1709 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1710 VK_SUBGROUP_FEATURE_VOTE_BIT |
1711 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1712 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1713 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1714 VK_SUBGROUP_FEATURE_QUAD_BIT;
1715 if (pdevice->info.gen >= 8) {
1716 /* TODO: There's no technical reason why these can't be made to
1717 * work on gen7 but they don't at the moment so it's best to leave
1718 * the feature disabled than enabled and broken.
1719 */
1720 properties->supportedOperations |=
1721 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1722 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1723 }
1724 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1725 break;
1726 }
1727
1728 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1729 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1730 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1731 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1732 props->minSubgroupSize = 8;
1733 props->maxSubgroupSize = 32;
1734 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1735 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1736 break;
1737 }
1738 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1739 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1740 properties->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1741 properties->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1742
1743 /* Broadwell does not support HF denorms and there are restrictions
1744 * other gens. According to Kabylake's PRM:
1745 *
1746 * "math - Extended Math Function
1747 * [...]
1748 * Restriction : Half-float denorms are always retained."
1749 */
1750 properties->shaderDenormFlushToZeroFloat16 = false;
1751 properties->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1752 properties->shaderRoundingModeRTEFloat16 = true;
1753 properties->shaderRoundingModeRTZFloat16 = true;
1754 properties->shaderSignedZeroInfNanPreserveFloat16 = true;
1755
1756 properties->shaderDenormFlushToZeroFloat32 = true;
1757 properties->shaderDenormPreserveFloat32 = true;
1758 properties->shaderRoundingModeRTEFloat32 = true;
1759 properties->shaderRoundingModeRTZFloat32 = true;
1760 properties->shaderSignedZeroInfNanPreserveFloat32 = true;
1761
1762 properties->shaderDenormFlushToZeroFloat64 = true;
1763 properties->shaderDenormPreserveFloat64 = true;
1764 properties->shaderRoundingModeRTEFloat64 = true;
1765 properties->shaderRoundingModeRTZFloat64 = true;
1766 properties->shaderSignedZeroInfNanPreserveFloat64 = true;
1767 break;
1768 }
1769
1770 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1771 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1772 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1773
1774 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1775 * Base Address:
1776 *
1777 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1778 * specifies the base address of the first element of the surface,
1779 * computed in software by adding the surface base address to the
1780 * byte offset of the element in the buffer. The base address must
1781 * be aligned to element size."
1782 *
1783 * The typed dataport messages require that things be texel aligned.
1784 * Otherwise, we may just load/store the wrong data or, in the worst
1785 * case, there may be hangs.
1786 */
1787 props->storageTexelBufferOffsetAlignmentBytes = 16;
1788 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1789
1790 /* The sampler, however, is much more forgiving and it can handle
1791 * arbitrary byte alignment for linear and buffer surfaces. It's
1792 * hard to find a good PRM citation for this but years of empirical
1793 * experience demonstrate that this is true.
1794 */
1795 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1796 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1797 break;
1798 }
1799
1800 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1801 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1802 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1803
1804 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1805 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1806 props->maxTransformFeedbackBufferSize = (1ull << 32);
1807 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1808 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1809 props->maxTransformFeedbackBufferDataStride = 2048;
1810 props->transformFeedbackQueries = true;
1811 props->transformFeedbackStreamsLinesTriangles = false;
1812 props->transformFeedbackRasterizationStreamSelect = false;
1813 props->transformFeedbackDraw = true;
1814 break;
1815 }
1816
1817 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1818 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1819 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1820 /* We have to restrict this a bit for multiview */
1821 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1822 break;
1823 }
1824
1825 default:
1826 anv_debug_ignored_stype(ext->sType);
1827 break;
1828 }
1829 }
1830 }
1831
1832 /* We support exactly one queue family. */
1833 static const VkQueueFamilyProperties
1834 anv_queue_family_properties = {
1835 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1836 VK_QUEUE_COMPUTE_BIT |
1837 VK_QUEUE_TRANSFER_BIT,
1838 .queueCount = 1,
1839 .timestampValidBits = 36, /* XXX: Real value here */
1840 .minImageTransferGranularity = { 1, 1, 1 },
1841 };
1842
1843 void anv_GetPhysicalDeviceQueueFamilyProperties(
1844 VkPhysicalDevice physicalDevice,
1845 uint32_t* pCount,
1846 VkQueueFamilyProperties* pQueueFamilyProperties)
1847 {
1848 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1849
1850 vk_outarray_append(&out, p) {
1851 *p = anv_queue_family_properties;
1852 }
1853 }
1854
1855 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1856 VkPhysicalDevice physicalDevice,
1857 uint32_t* pQueueFamilyPropertyCount,
1858 VkQueueFamilyProperties2* pQueueFamilyProperties)
1859 {
1860
1861 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1862
1863 vk_outarray_append(&out, p) {
1864 p->queueFamilyProperties = anv_queue_family_properties;
1865
1866 vk_foreach_struct(s, p->pNext) {
1867 anv_debug_ignored_stype(s->sType);
1868 }
1869 }
1870 }
1871
1872 void anv_GetPhysicalDeviceMemoryProperties(
1873 VkPhysicalDevice physicalDevice,
1874 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1875 {
1876 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1877
1878 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1879 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1880 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1881 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1882 .heapIndex = physical_device->memory.types[i].heapIndex,
1883 };
1884 }
1885
1886 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1887 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1888 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1889 .size = physical_device->memory.heaps[i].size,
1890 .flags = physical_device->memory.heaps[i].flags,
1891 };
1892 }
1893 }
1894
1895 static void
1896 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1897 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1898 {
1899 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1900 uint64_t sys_available = get_available_system_memory();
1901 assert(sys_available > 0);
1902
1903 VkDeviceSize total_heaps_size = 0;
1904 for (size_t i = 0; i < device->memory.heap_count; i++)
1905 total_heaps_size += device->memory.heaps[i].size;
1906
1907 for (size_t i = 0; i < device->memory.heap_count; i++) {
1908 VkDeviceSize heap_size = device->memory.heaps[i].size;
1909 VkDeviceSize heap_used = device->memory.heaps[i].used;
1910 VkDeviceSize heap_budget;
1911
1912 double heap_proportion = (double) heap_size / total_heaps_size;
1913 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1914
1915 /*
1916 * Let's not incite the app to starve the system: report at most 90% of
1917 * available system memory.
1918 */
1919 uint64_t heap_available = sys_available_prop * 9 / 10;
1920 heap_budget = MIN2(heap_size, heap_used + heap_available);
1921
1922 /*
1923 * Round down to the nearest MB
1924 */
1925 heap_budget &= ~((1ull << 20) - 1);
1926
1927 /*
1928 * The heapBudget value must be non-zero for array elements less than
1929 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1930 * value must be less than or equal to VkMemoryHeap::size for each heap.
1931 */
1932 assert(0 < heap_budget && heap_budget <= heap_size);
1933
1934 memoryBudget->heapUsage[i] = heap_used;
1935 memoryBudget->heapBudget[i] = heap_budget;
1936 }
1937
1938 /* The heapBudget and heapUsage values must be zero for array elements
1939 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1940 */
1941 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1942 memoryBudget->heapBudget[i] = 0;
1943 memoryBudget->heapUsage[i] = 0;
1944 }
1945 }
1946
1947 void anv_GetPhysicalDeviceMemoryProperties2(
1948 VkPhysicalDevice physicalDevice,
1949 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1950 {
1951 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1952 &pMemoryProperties->memoryProperties);
1953
1954 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1955 switch (ext->sType) {
1956 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1957 anv_get_memory_budget(physicalDevice, (void*)ext);
1958 break;
1959 default:
1960 anv_debug_ignored_stype(ext->sType);
1961 break;
1962 }
1963 }
1964 }
1965
1966 void
1967 anv_GetDeviceGroupPeerMemoryFeatures(
1968 VkDevice device,
1969 uint32_t heapIndex,
1970 uint32_t localDeviceIndex,
1971 uint32_t remoteDeviceIndex,
1972 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1973 {
1974 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1975 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1976 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1977 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1978 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1979 }
1980
1981 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1982 VkInstance _instance,
1983 const char* pName)
1984 {
1985 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1986
1987 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1988 * when we have to return valid function pointers, NULL, or it's left
1989 * undefined. See the table for exact details.
1990 */
1991 if (pName == NULL)
1992 return NULL;
1993
1994 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1995 if (strcmp(pName, "vk" #entrypoint) == 0) \
1996 return (PFN_vkVoidFunction)anv_##entrypoint
1997
1998 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1999 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
2000 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
2001 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
2002
2003 #undef LOOKUP_ANV_ENTRYPOINT
2004
2005 if (instance == NULL)
2006 return NULL;
2007
2008 int idx = anv_get_instance_entrypoint_index(pName);
2009 if (idx >= 0)
2010 return instance->dispatch.entrypoints[idx];
2011
2012 idx = anv_get_physical_device_entrypoint_index(pName);
2013 if (idx >= 0)
2014 return instance->physicalDevice.dispatch.entrypoints[idx];
2015
2016 idx = anv_get_device_entrypoint_index(pName);
2017 if (idx >= 0)
2018 return instance->device_dispatch.entrypoints[idx];
2019
2020 return NULL;
2021 }
2022
2023 /* With version 1+ of the loader interface the ICD should expose
2024 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2025 */
2026 PUBLIC
2027 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2028 VkInstance instance,
2029 const char* pName);
2030
2031 PUBLIC
2032 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2033 VkInstance instance,
2034 const char* pName)
2035 {
2036 return anv_GetInstanceProcAddr(instance, pName);
2037 }
2038
2039 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2040 VkDevice _device,
2041 const char* pName)
2042 {
2043 ANV_FROM_HANDLE(anv_device, device, _device);
2044
2045 if (!device || !pName)
2046 return NULL;
2047
2048 int idx = anv_get_device_entrypoint_index(pName);
2049 if (idx < 0)
2050 return NULL;
2051
2052 return device->dispatch.entrypoints[idx];
2053 }
2054
2055 /* With version 4+ of the loader interface the ICD should expose
2056 * vk_icdGetPhysicalDeviceProcAddr()
2057 */
2058 PUBLIC
2059 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2060 VkInstance _instance,
2061 const char* pName);
2062
2063 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2064 VkInstance _instance,
2065 const char* pName)
2066 {
2067 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2068
2069 if (!pName || !instance)
2070 return NULL;
2071
2072 int idx = anv_get_physical_device_entrypoint_index(pName);
2073 if (idx < 0)
2074 return NULL;
2075
2076 return instance->physicalDevice.dispatch.entrypoints[idx];
2077 }
2078
2079
2080 VkResult
2081 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2082 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2083 const VkAllocationCallbacks* pAllocator,
2084 VkDebugReportCallbackEXT* pCallback)
2085 {
2086 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2087 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2088 pCreateInfo, pAllocator, &instance->alloc,
2089 pCallback);
2090 }
2091
2092 void
2093 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2094 VkDebugReportCallbackEXT _callback,
2095 const VkAllocationCallbacks* pAllocator)
2096 {
2097 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2098 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2099 _callback, pAllocator, &instance->alloc);
2100 }
2101
2102 void
2103 anv_DebugReportMessageEXT(VkInstance _instance,
2104 VkDebugReportFlagsEXT flags,
2105 VkDebugReportObjectTypeEXT objectType,
2106 uint64_t object,
2107 size_t location,
2108 int32_t messageCode,
2109 const char* pLayerPrefix,
2110 const char* pMessage)
2111 {
2112 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2113 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2114 object, location, messageCode, pLayerPrefix, pMessage);
2115 }
2116
2117 static void
2118 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
2119 {
2120 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2121 queue->device = device;
2122 queue->flags = 0;
2123 }
2124
2125 static void
2126 anv_queue_finish(struct anv_queue *queue)
2127 {
2128 }
2129
2130 static struct anv_state
2131 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2132 {
2133 struct anv_state state;
2134
2135 state = anv_state_pool_alloc(pool, size, align);
2136 memcpy(state.map, p, size);
2137
2138 return state;
2139 }
2140
2141 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2142 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2143 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2144 * color as a separate entry /after/ the float color. The layout of this entry
2145 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2146 *
2147 * Since we don't know the format/bpp, we can't make any of the border colors
2148 * containing '1' work for all formats, as it would be in the wrong place for
2149 * some of them. We opt to make 32-bit integers work as this seems like the
2150 * most common option. Fortunately, transparent black works regardless, as
2151 * all zeroes is the same in every bit-size.
2152 */
2153 struct hsw_border_color {
2154 float float32[4];
2155 uint32_t _pad0[12];
2156 uint32_t uint32[4];
2157 uint32_t _pad1[108];
2158 };
2159
2160 struct gen8_border_color {
2161 union {
2162 float float32[4];
2163 uint32_t uint32[4];
2164 };
2165 /* Pad out to 64 bytes */
2166 uint32_t _pad[12];
2167 };
2168
2169 static void
2170 anv_device_init_border_colors(struct anv_device *device)
2171 {
2172 if (device->info.is_haswell) {
2173 static const struct hsw_border_color border_colors[] = {
2174 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2175 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2176 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2177 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2178 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2179 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2180 };
2181
2182 device->border_colors =
2183 anv_state_pool_emit_data(&device->dynamic_state_pool,
2184 sizeof(border_colors), 512, border_colors);
2185 } else {
2186 static const struct gen8_border_color border_colors[] = {
2187 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2188 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2189 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2190 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2191 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2192 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2193 };
2194
2195 device->border_colors =
2196 anv_state_pool_emit_data(&device->dynamic_state_pool,
2197 sizeof(border_colors), 64, border_colors);
2198 }
2199 }
2200
2201 static VkResult
2202 anv_device_init_trivial_batch(struct anv_device *device)
2203 {
2204 VkResult result = anv_device_alloc_bo(device, 4096,
2205 ANV_BO_ALLOC_MAPPED,
2206 &device->trivial_batch_bo);
2207 if (result != VK_SUCCESS)
2208 return result;
2209
2210 struct anv_batch batch = {
2211 .start = device->trivial_batch_bo->map,
2212 .next = device->trivial_batch_bo->map,
2213 .end = device->trivial_batch_bo->map + 4096,
2214 };
2215
2216 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2217 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2218
2219 if (!device->info.has_llc)
2220 gen_clflush_range(batch.start, batch.next - batch.start);
2221
2222 return VK_SUCCESS;
2223 }
2224
2225 VkResult anv_EnumerateDeviceExtensionProperties(
2226 VkPhysicalDevice physicalDevice,
2227 const char* pLayerName,
2228 uint32_t* pPropertyCount,
2229 VkExtensionProperties* pProperties)
2230 {
2231 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2232 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2233
2234 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2235 if (device->supported_extensions.extensions[i]) {
2236 vk_outarray_append(&out, prop) {
2237 *prop = anv_device_extensions[i];
2238 }
2239 }
2240 }
2241
2242 return vk_outarray_status(&out);
2243 }
2244
2245 static void
2246 anv_device_init_dispatch(struct anv_device *device)
2247 {
2248 const struct anv_device_dispatch_table *genX_table;
2249 switch (device->info.gen) {
2250 case 12:
2251 genX_table = &gen12_device_dispatch_table;
2252 break;
2253 case 11:
2254 genX_table = &gen11_device_dispatch_table;
2255 break;
2256 case 10:
2257 genX_table = &gen10_device_dispatch_table;
2258 break;
2259 case 9:
2260 genX_table = &gen9_device_dispatch_table;
2261 break;
2262 case 8:
2263 genX_table = &gen8_device_dispatch_table;
2264 break;
2265 case 7:
2266 if (device->info.is_haswell)
2267 genX_table = &gen75_device_dispatch_table;
2268 else
2269 genX_table = &gen7_device_dispatch_table;
2270 break;
2271 default:
2272 unreachable("unsupported gen\n");
2273 }
2274
2275 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2276 /* Vulkan requires that entrypoints for extensions which have not been
2277 * enabled must not be advertised.
2278 */
2279 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2280 &device->instance->enabled_extensions,
2281 &device->enabled_extensions)) {
2282 device->dispatch.entrypoints[i] = NULL;
2283 } else if (genX_table->entrypoints[i]) {
2284 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2285 } else {
2286 device->dispatch.entrypoints[i] =
2287 anv_device_dispatch_table.entrypoints[i];
2288 }
2289 }
2290 }
2291
2292 static int
2293 vk_priority_to_gen(int priority)
2294 {
2295 switch (priority) {
2296 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2297 return GEN_CONTEXT_LOW_PRIORITY;
2298 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2299 return GEN_CONTEXT_MEDIUM_PRIORITY;
2300 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2301 return GEN_CONTEXT_HIGH_PRIORITY;
2302 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2303 return GEN_CONTEXT_REALTIME_PRIORITY;
2304 default:
2305 unreachable("Invalid priority");
2306 }
2307 }
2308
2309 static VkResult
2310 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2311 {
2312 VkResult result = anv_device_alloc_bo(device, 4096,
2313 ANV_BO_ALLOC_MAPPED,
2314 &device->hiz_clear_bo);
2315 if (result != VK_SUCCESS)
2316 return result;
2317
2318 union isl_color_value hiz_clear = { .u32 = { 0, } };
2319 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2320
2321 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2322
2323 if (!device->info.has_llc)
2324 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2325
2326 return VK_SUCCESS;
2327 }
2328
2329 static bool
2330 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2331 struct anv_block_pool *pool,
2332 uint64_t address)
2333 {
2334 anv_block_pool_foreach_bo(bo, pool) {
2335 uint64_t bo_address = gen_48b_address(bo->offset);
2336 if (address >= bo_address && address < (bo_address + bo->size)) {
2337 *ret = (struct gen_batch_decode_bo) {
2338 .addr = bo_address,
2339 .size = bo->size,
2340 .map = bo->map,
2341 };
2342 return true;
2343 }
2344 }
2345 return false;
2346 }
2347
2348 /* Finding a buffer for batch decoding */
2349 static struct gen_batch_decode_bo
2350 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2351 {
2352 struct anv_device *device = v_batch;
2353 struct gen_batch_decode_bo ret_bo = {};
2354
2355 assert(ppgtt);
2356
2357 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2358 return ret_bo;
2359 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2360 return ret_bo;
2361 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2362 return ret_bo;
2363 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2364 return ret_bo;
2365
2366 if (!device->cmd_buffer_being_decoded)
2367 return (struct gen_batch_decode_bo) { };
2368
2369 struct anv_batch_bo **bo;
2370
2371 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2372 /* The decoder zeroes out the top 16 bits, so we need to as well */
2373 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2374
2375 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2376 return (struct gen_batch_decode_bo) {
2377 .addr = bo_address,
2378 .size = (*bo)->bo->size,
2379 .map = (*bo)->bo->map,
2380 };
2381 }
2382 }
2383
2384 return (struct gen_batch_decode_bo) { };
2385 }
2386
2387 struct gen_aux_map_buffer {
2388 struct gen_buffer base;
2389 struct anv_state state;
2390 };
2391
2392 static struct gen_buffer *
2393 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2394 {
2395 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2396 if (!buf)
2397 return NULL;
2398
2399 struct anv_device *device = (struct anv_device*)driver_ctx;
2400 assert(device->instance->physicalDevice.supports_48bit_addresses &&
2401 device->instance->physicalDevice.use_softpin);
2402
2403 struct anv_state_pool *pool = &device->dynamic_state_pool;
2404 buf->state = anv_state_pool_alloc(pool, size, size);
2405
2406 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2407 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2408 buf->base.map = buf->state.map;
2409 buf->base.driver_bo = &buf->state;
2410 return &buf->base;
2411 }
2412
2413 static void
2414 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2415 {
2416 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2417 struct anv_device *device = (struct anv_device*)driver_ctx;
2418 struct anv_state_pool *pool = &device->dynamic_state_pool;
2419 anv_state_pool_free(pool, buf->state);
2420 free(buf);
2421 }
2422
2423 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2424 .alloc = gen_aux_map_buffer_alloc,
2425 .free = gen_aux_map_buffer_free,
2426 };
2427
2428 VkResult anv_CreateDevice(
2429 VkPhysicalDevice physicalDevice,
2430 const VkDeviceCreateInfo* pCreateInfo,
2431 const VkAllocationCallbacks* pAllocator,
2432 VkDevice* pDevice)
2433 {
2434 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2435 VkResult result;
2436 struct anv_device *device;
2437
2438 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2439
2440 struct anv_device_extension_table enabled_extensions = { };
2441 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2442 int idx;
2443 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2444 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2445 anv_device_extensions[idx].extensionName) == 0)
2446 break;
2447 }
2448
2449 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2450 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2451
2452 if (!physical_device->supported_extensions.extensions[idx])
2453 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2454
2455 enabled_extensions.extensions[idx] = true;
2456 }
2457
2458 /* Check enabled features */
2459 if (pCreateInfo->pEnabledFeatures) {
2460 VkPhysicalDeviceFeatures supported_features;
2461 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2462 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2463 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2464 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2465 for (uint32_t i = 0; i < num_features; i++) {
2466 if (enabled_feature[i] && !supported_feature[i])
2467 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2468 }
2469 }
2470
2471 /* Check requested queues and fail if we are requested to create any
2472 * queues with flags we don't support.
2473 */
2474 assert(pCreateInfo->queueCreateInfoCount > 0);
2475 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2476 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2477 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2478 }
2479
2480 /* Check if client specified queue priority. */
2481 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2482 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2483 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2484
2485 VkQueueGlobalPriorityEXT priority =
2486 queue_priority ? queue_priority->globalPriority :
2487 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2488
2489 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2490 sizeof(*device), 8,
2491 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2492 if (!device)
2493 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2494
2495 if (INTEL_DEBUG & DEBUG_BATCH) {
2496 const unsigned decode_flags =
2497 GEN_BATCH_DECODE_FULL |
2498 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2499 GEN_BATCH_DECODE_OFFSETS |
2500 GEN_BATCH_DECODE_FLOATS;
2501
2502 gen_batch_decode_ctx_init(&device->decoder_ctx,
2503 &physical_device->info,
2504 stderr, decode_flags, NULL,
2505 decode_get_bo, NULL, device);
2506 }
2507
2508 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2509 device->instance = physical_device->instance;
2510 device->chipset_id = physical_device->chipset_id;
2511 device->no_hw = physical_device->no_hw;
2512 device->_lost = false;
2513
2514 if (pAllocator)
2515 device->alloc = *pAllocator;
2516 else
2517 device->alloc = physical_device->instance->alloc;
2518
2519 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2520 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2521 if (device->fd == -1) {
2522 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2523 goto fail_device;
2524 }
2525
2526 device->context_id = anv_gem_create_context(device);
2527 if (device->context_id == -1) {
2528 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2529 goto fail_fd;
2530 }
2531
2532 if (physical_device->use_softpin) {
2533 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2534 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2535 goto fail_context_id;
2536 }
2537
2538 /* keep the page with address zero out of the allocator */
2539 struct anv_memory_heap *low_heap =
2540 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2541 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2542 device->vma_lo_available = low_heap->size;
2543
2544 struct anv_memory_heap *high_heap =
2545 &physical_device->memory.heaps[0];
2546 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2547 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2548 high_heap->size;
2549 }
2550
2551 list_inithead(&device->memory_objects);
2552
2553 /* As per spec, the driver implementation may deny requests to acquire
2554 * a priority above the default priority (MEDIUM) if the caller does not
2555 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2556 * is returned.
2557 */
2558 if (physical_device->has_context_priority) {
2559 int err = anv_gem_set_context_param(device->fd, device->context_id,
2560 I915_CONTEXT_PARAM_PRIORITY,
2561 vk_priority_to_gen(priority));
2562 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2563 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2564 goto fail_vmas;
2565 }
2566 }
2567
2568 device->info = physical_device->info;
2569 device->isl_dev = physical_device->isl_dev;
2570
2571 /* On Broadwell and later, we can use batch chaining to more efficiently
2572 * implement growing command buffers. Prior to Haswell, the kernel
2573 * command parser gets in the way and we have to fall back to growing
2574 * the batch.
2575 */
2576 device->can_chain_batches = device->info.gen >= 8;
2577
2578 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2579 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2580 device->enabled_extensions = enabled_extensions;
2581
2582 anv_device_init_dispatch(device);
2583
2584 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2585 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2586 goto fail_context_id;
2587 }
2588
2589 pthread_condattr_t condattr;
2590 if (pthread_condattr_init(&condattr) != 0) {
2591 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2592 goto fail_mutex;
2593 }
2594 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2595 pthread_condattr_destroy(&condattr);
2596 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2597 goto fail_mutex;
2598 }
2599 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2600 pthread_condattr_destroy(&condattr);
2601 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2602 goto fail_mutex;
2603 }
2604 pthread_condattr_destroy(&condattr);
2605
2606 uint64_t bo_flags =
2607 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2608 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2609 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2610 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2611
2612 result = anv_bo_cache_init(&device->bo_cache);
2613 if (result != VK_SUCCESS)
2614 goto fail_queue_cond;
2615
2616 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2617
2618 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2619 DYNAMIC_STATE_POOL_MIN_ADDRESS, 16384);
2620 if (result != VK_SUCCESS)
2621 goto fail_batch_bo_pool;
2622
2623 result = anv_state_pool_init(&device->instruction_state_pool, device,
2624 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 16384);
2625 if (result != VK_SUCCESS)
2626 goto fail_dynamic_state_pool;
2627
2628 result = anv_state_pool_init(&device->surface_state_pool, device,
2629 SURFACE_STATE_POOL_MIN_ADDRESS, 4096);
2630 if (result != VK_SUCCESS)
2631 goto fail_instruction_state_pool;
2632
2633 if (physical_device->use_softpin) {
2634 result = anv_state_pool_init(&device->binding_table_pool, device,
2635 BINDING_TABLE_POOL_MIN_ADDRESS, 4096);
2636 if (result != VK_SUCCESS)
2637 goto fail_surface_state_pool;
2638 }
2639
2640 if (device->info.gen >= 12) {
2641 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2642 &physical_device->info);
2643 if (!device->aux_map_ctx)
2644 goto fail_binding_table_pool;
2645 }
2646
2647 result = anv_device_alloc_bo(device, 4096, 0, &device->workaround_bo);
2648 if (result != VK_SUCCESS)
2649 goto fail_surface_aux_map_pool;
2650
2651 result = anv_device_init_trivial_batch(device);
2652 if (result != VK_SUCCESS)
2653 goto fail_workaround_bo;
2654
2655 if (device->info.gen >= 10) {
2656 result = anv_device_init_hiz_clear_value_bo(device);
2657 if (result != VK_SUCCESS)
2658 goto fail_trivial_batch_bo;
2659 }
2660
2661 anv_scratch_pool_init(device, &device->scratch_pool);
2662
2663 anv_queue_init(device, &device->queue);
2664
2665 switch (device->info.gen) {
2666 case 7:
2667 if (!device->info.is_haswell)
2668 result = gen7_init_device_state(device);
2669 else
2670 result = gen75_init_device_state(device);
2671 break;
2672 case 8:
2673 result = gen8_init_device_state(device);
2674 break;
2675 case 9:
2676 result = gen9_init_device_state(device);
2677 break;
2678 case 10:
2679 result = gen10_init_device_state(device);
2680 break;
2681 case 11:
2682 result = gen11_init_device_state(device);
2683 break;
2684 case 12:
2685 result = gen12_init_device_state(device);
2686 break;
2687 default:
2688 /* Shouldn't get here as we don't create physical devices for any other
2689 * gens. */
2690 unreachable("unhandled gen");
2691 }
2692 if (result != VK_SUCCESS)
2693 goto fail_queue;
2694
2695 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2696
2697 anv_device_init_blorp(device);
2698
2699 anv_device_init_border_colors(device);
2700
2701 anv_device_perf_init(device);
2702
2703 *pDevice = anv_device_to_handle(device);
2704
2705 return VK_SUCCESS;
2706
2707 fail_queue:
2708 anv_queue_finish(&device->queue);
2709 anv_scratch_pool_finish(device, &device->scratch_pool);
2710 if (device->info.gen >= 10)
2711 anv_device_release_bo(device, device->hiz_clear_bo);
2712 fail_trivial_batch_bo:
2713 anv_device_release_bo(device, device->trivial_batch_bo);
2714 fail_workaround_bo:
2715 anv_device_release_bo(device, device->workaround_bo);
2716 fail_surface_aux_map_pool:
2717 if (device->info.gen >= 12) {
2718 gen_aux_map_finish(device->aux_map_ctx);
2719 device->aux_map_ctx = NULL;
2720 }
2721 fail_binding_table_pool:
2722 if (physical_device->use_softpin)
2723 anv_state_pool_finish(&device->binding_table_pool);
2724 fail_surface_state_pool:
2725 anv_state_pool_finish(&device->surface_state_pool);
2726 fail_instruction_state_pool:
2727 anv_state_pool_finish(&device->instruction_state_pool);
2728 fail_dynamic_state_pool:
2729 anv_state_pool_finish(&device->dynamic_state_pool);
2730 fail_batch_bo_pool:
2731 anv_bo_pool_finish(&device->batch_bo_pool);
2732 anv_bo_cache_finish(&device->bo_cache);
2733 fail_queue_cond:
2734 pthread_cond_destroy(&device->queue_submit);
2735 fail_mutex:
2736 pthread_mutex_destroy(&device->mutex);
2737 fail_vmas:
2738 if (physical_device->use_softpin) {
2739 util_vma_heap_finish(&device->vma_hi);
2740 util_vma_heap_finish(&device->vma_lo);
2741 }
2742 fail_context_id:
2743 anv_gem_destroy_context(device, device->context_id);
2744 fail_fd:
2745 close(device->fd);
2746 fail_device:
2747 vk_free(&device->alloc, device);
2748
2749 return result;
2750 }
2751
2752 void anv_DestroyDevice(
2753 VkDevice _device,
2754 const VkAllocationCallbacks* pAllocator)
2755 {
2756 ANV_FROM_HANDLE(anv_device, device, _device);
2757 struct anv_physical_device *physical_device;
2758
2759 if (!device)
2760 return;
2761
2762 physical_device = &device->instance->physicalDevice;
2763
2764 anv_device_finish_blorp(device);
2765
2766 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2767
2768 anv_queue_finish(&device->queue);
2769
2770 #ifdef HAVE_VALGRIND
2771 /* We only need to free these to prevent valgrind errors. The backing
2772 * BO will go away in a couple of lines so we don't actually leak.
2773 */
2774 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2775 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2776 #endif
2777
2778 anv_scratch_pool_finish(device, &device->scratch_pool);
2779
2780 anv_device_release_bo(device, device->workaround_bo);
2781 anv_device_release_bo(device, device->trivial_batch_bo);
2782 if (device->info.gen >= 10)
2783 anv_device_release_bo(device, device->hiz_clear_bo);
2784
2785 if (device->info.gen >= 12) {
2786 gen_aux_map_finish(device->aux_map_ctx);
2787 device->aux_map_ctx = NULL;
2788 }
2789
2790 if (physical_device->use_softpin)
2791 anv_state_pool_finish(&device->binding_table_pool);
2792 anv_state_pool_finish(&device->surface_state_pool);
2793 anv_state_pool_finish(&device->instruction_state_pool);
2794 anv_state_pool_finish(&device->dynamic_state_pool);
2795
2796 anv_bo_pool_finish(&device->batch_bo_pool);
2797
2798 anv_bo_cache_finish(&device->bo_cache);
2799
2800 if (physical_device->use_softpin) {
2801 util_vma_heap_finish(&device->vma_hi);
2802 util_vma_heap_finish(&device->vma_lo);
2803 }
2804
2805 pthread_cond_destroy(&device->queue_submit);
2806 pthread_mutex_destroy(&device->mutex);
2807
2808 anv_gem_destroy_context(device, device->context_id);
2809
2810 if (INTEL_DEBUG & DEBUG_BATCH)
2811 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2812
2813 close(device->fd);
2814
2815 vk_free(&device->alloc, device);
2816 }
2817
2818 VkResult anv_EnumerateInstanceLayerProperties(
2819 uint32_t* pPropertyCount,
2820 VkLayerProperties* pProperties)
2821 {
2822 if (pProperties == NULL) {
2823 *pPropertyCount = 0;
2824 return VK_SUCCESS;
2825 }
2826
2827 /* None supported at this time */
2828 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2829 }
2830
2831 VkResult anv_EnumerateDeviceLayerProperties(
2832 VkPhysicalDevice physicalDevice,
2833 uint32_t* pPropertyCount,
2834 VkLayerProperties* pProperties)
2835 {
2836 if (pProperties == NULL) {
2837 *pPropertyCount = 0;
2838 return VK_SUCCESS;
2839 }
2840
2841 /* None supported at this time */
2842 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2843 }
2844
2845 void anv_GetDeviceQueue(
2846 VkDevice _device,
2847 uint32_t queueNodeIndex,
2848 uint32_t queueIndex,
2849 VkQueue* pQueue)
2850 {
2851 const VkDeviceQueueInfo2 info = {
2852 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
2853 .pNext = NULL,
2854 .flags = 0,
2855 .queueFamilyIndex = queueNodeIndex,
2856 .queueIndex = queueIndex,
2857 };
2858
2859 anv_GetDeviceQueue2(_device, &info, pQueue);
2860 }
2861
2862 void anv_GetDeviceQueue2(
2863 VkDevice _device,
2864 const VkDeviceQueueInfo2* pQueueInfo,
2865 VkQueue* pQueue)
2866 {
2867 ANV_FROM_HANDLE(anv_device, device, _device);
2868
2869 assert(pQueueInfo->queueIndex == 0);
2870
2871 if (pQueueInfo->flags == device->queue.flags)
2872 *pQueue = anv_queue_to_handle(&device->queue);
2873 else
2874 *pQueue = NULL;
2875 }
2876
2877 VkResult
2878 _anv_device_set_lost(struct anv_device *device,
2879 const char *file, int line,
2880 const char *msg, ...)
2881 {
2882 VkResult err;
2883 va_list ap;
2884
2885 device->_lost = true;
2886
2887 va_start(ap, msg);
2888 err = __vk_errorv(device->instance, device,
2889 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2890 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2891 va_end(ap);
2892
2893 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2894 abort();
2895
2896 return err;
2897 }
2898
2899 VkResult
2900 anv_device_query_status(struct anv_device *device)
2901 {
2902 /* This isn't likely as most of the callers of this function already check
2903 * for it. However, it doesn't hurt to check and it potentially lets us
2904 * avoid an ioctl.
2905 */
2906 if (anv_device_is_lost(device))
2907 return VK_ERROR_DEVICE_LOST;
2908
2909 uint32_t active, pending;
2910 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2911 if (ret == -1) {
2912 /* We don't know the real error. */
2913 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2914 }
2915
2916 if (active) {
2917 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2918 } else if (pending) {
2919 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2920 }
2921
2922 return VK_SUCCESS;
2923 }
2924
2925 VkResult
2926 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2927 {
2928 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2929 * Other usages of the BO (such as on different hardware) will not be
2930 * flagged as "busy" by this ioctl. Use with care.
2931 */
2932 int ret = anv_gem_busy(device, bo->gem_handle);
2933 if (ret == 1) {
2934 return VK_NOT_READY;
2935 } else if (ret == -1) {
2936 /* We don't know the real error. */
2937 return anv_device_set_lost(device, "gem wait failed: %m");
2938 }
2939
2940 /* Query for device status after the busy call. If the BO we're checking
2941 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2942 * client because it clearly doesn't have valid data. Yes, this most
2943 * likely means an ioctl, but we just did an ioctl to query the busy status
2944 * so it's no great loss.
2945 */
2946 return anv_device_query_status(device);
2947 }
2948
2949 VkResult
2950 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2951 int64_t timeout)
2952 {
2953 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2954 if (ret == -1 && errno == ETIME) {
2955 return VK_TIMEOUT;
2956 } else if (ret == -1) {
2957 /* We don't know the real error. */
2958 return anv_device_set_lost(device, "gem wait failed: %m");
2959 }
2960
2961 /* Query for device status after the wait. If the BO we're waiting on got
2962 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2963 * because it clearly doesn't have valid data. Yes, this most likely means
2964 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2965 */
2966 return anv_device_query_status(device);
2967 }
2968
2969 VkResult anv_DeviceWaitIdle(
2970 VkDevice _device)
2971 {
2972 ANV_FROM_HANDLE(anv_device, device, _device);
2973 if (anv_device_is_lost(device))
2974 return VK_ERROR_DEVICE_LOST;
2975
2976 struct anv_batch batch;
2977
2978 uint32_t cmds[8];
2979 batch.start = batch.next = cmds;
2980 batch.end = (void *) cmds + sizeof(cmds);
2981
2982 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2983 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2984
2985 return anv_device_submit_simple_batch(device, &batch);
2986 }
2987
2988 bool
2989 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2990 {
2991 if (!(bo->flags & EXEC_OBJECT_PINNED))
2992 return true;
2993
2994 pthread_mutex_lock(&device->vma_mutex);
2995
2996 bo->offset = 0;
2997
2998 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2999 device->vma_hi_available >= bo->size) {
3000 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
3001 if (addr) {
3002 bo->offset = gen_canonical_address(addr);
3003 assert(addr == gen_48b_address(bo->offset));
3004 device->vma_hi_available -= bo->size;
3005 }
3006 }
3007
3008 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
3009 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
3010 if (addr) {
3011 bo->offset = gen_canonical_address(addr);
3012 assert(addr == gen_48b_address(bo->offset));
3013 device->vma_lo_available -= bo->size;
3014 }
3015 }
3016
3017 pthread_mutex_unlock(&device->vma_mutex);
3018
3019 return bo->offset != 0;
3020 }
3021
3022 void
3023 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
3024 {
3025 if (!(bo->flags & EXEC_OBJECT_PINNED))
3026 return;
3027
3028 const uint64_t addr_48b = gen_48b_address(bo->offset);
3029
3030 pthread_mutex_lock(&device->vma_mutex);
3031
3032 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3033 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3034 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
3035 device->vma_lo_available += bo->size;
3036 } else {
3037 ASSERTED const struct anv_physical_device *physical_device =
3038 &device->instance->physicalDevice;
3039 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
3040 addr_48b < (physical_device->memory.heaps[0].vma_start +
3041 physical_device->memory.heaps[0].vma_size));
3042 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
3043 device->vma_hi_available += bo->size;
3044 }
3045
3046 pthread_mutex_unlock(&device->vma_mutex);
3047
3048 bo->offset = 0;
3049 }
3050
3051 VkResult anv_AllocateMemory(
3052 VkDevice _device,
3053 const VkMemoryAllocateInfo* pAllocateInfo,
3054 const VkAllocationCallbacks* pAllocator,
3055 VkDeviceMemory* pMem)
3056 {
3057 ANV_FROM_HANDLE(anv_device, device, _device);
3058 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3059 struct anv_device_memory *mem;
3060 VkResult result = VK_SUCCESS;
3061
3062 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3063
3064 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3065 assert(pAllocateInfo->allocationSize > 0);
3066
3067 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
3068 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
3069
3070 /* FINISHME: Fail if allocation request exceeds heap size. */
3071
3072 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3073 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3074 if (mem == NULL)
3075 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3076
3077 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3078 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3079 mem->map = NULL;
3080 mem->map_size = 0;
3081 mem->ahw = NULL;
3082 mem->host_ptr = NULL;
3083
3084 enum anv_bo_alloc_flags alloc_flags = 0;
3085
3086 assert(mem->type->heapIndex < pdevice->memory.heap_count);
3087 if (!pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
3088 alloc_flags |= ANV_BO_ALLOC_32BIT_ADDRESS;
3089
3090 const struct wsi_memory_allocate_info *wsi_info =
3091 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
3092 if (wsi_info && wsi_info->implicit_sync) {
3093 /* We need to set the WRITE flag on window system buffers so that GEM
3094 * will know we're writing to them and synchronize uses on other rings
3095 * (eg if the display server uses the blitter ring).
3096 */
3097 alloc_flags |= ANV_BO_ALLOC_IMPLICIT_SYNC |
3098 ANV_BO_ALLOC_IMPLICIT_WRITE;
3099 }
3100
3101 const VkExportMemoryAllocateInfo *export_info =
3102 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
3103
3104 /* Check if we need to support Android HW buffer export. If so,
3105 * create AHardwareBuffer and import memory from it.
3106 */
3107 bool android_export = false;
3108 if (export_info && export_info->handleTypes &
3109 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3110 android_export = true;
3111
3112 /* Android memory import. */
3113 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
3114 vk_find_struct_const(pAllocateInfo->pNext,
3115 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
3116
3117 if (ahw_import_info) {
3118 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3119 if (result != VK_SUCCESS)
3120 goto fail;
3121
3122 goto success;
3123 } else if (android_export) {
3124 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3125 if (result != VK_SUCCESS)
3126 goto fail;
3127
3128 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
3129 .buffer = mem->ahw,
3130 };
3131 result = anv_import_ahw_memory(_device, mem, &import_info);
3132 if (result != VK_SUCCESS)
3133 goto fail;
3134
3135 goto success;
3136 }
3137
3138 const VkImportMemoryFdInfoKHR *fd_info =
3139 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
3140
3141 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3142 * ignored.
3143 */
3144 if (fd_info && fd_info->handleType) {
3145 /* At the moment, we support only the below handle types. */
3146 assert(fd_info->handleType ==
3147 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3148 fd_info->handleType ==
3149 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3150
3151 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3152 &mem->bo);
3153 if (result != VK_SUCCESS)
3154 goto fail;
3155
3156 VkDeviceSize aligned_alloc_size =
3157 align_u64(pAllocateInfo->allocationSize, 4096);
3158
3159 /* For security purposes, we reject importing the bo if it's smaller
3160 * than the requested allocation size. This prevents a malicious client
3161 * from passing a buffer to a trusted client, lying about the size, and
3162 * telling the trusted client to try and texture from an image that goes
3163 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3164 * in the trusted client. The trusted client can protect itself against
3165 * this sort of attack but only if it can trust the buffer size.
3166 */
3167 if (mem->bo->size < aligned_alloc_size) {
3168 result = vk_errorf(device->instance, device,
3169 VK_ERROR_INVALID_EXTERNAL_HANDLE,
3170 "aligned allocationSize too large for "
3171 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3172 "%"PRIu64"B > %"PRIu64"B",
3173 aligned_alloc_size, mem->bo->size);
3174 anv_device_release_bo(device, mem->bo);
3175 goto fail;
3176 }
3177
3178 /* From the Vulkan spec:
3179 *
3180 * "Importing memory from a file descriptor transfers ownership of
3181 * the file descriptor from the application to the Vulkan
3182 * implementation. The application must not perform any operations on
3183 * the file descriptor after a successful import."
3184 *
3185 * If the import fails, we leave the file descriptor open.
3186 */
3187 close(fd_info->fd);
3188 goto success;
3189 }
3190
3191 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
3192 vk_find_struct_const(pAllocateInfo->pNext,
3193 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
3194 if (host_ptr_info && host_ptr_info->handleType) {
3195 if (host_ptr_info->handleType ==
3196 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3197 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3198 goto fail;
3199 }
3200
3201 assert(host_ptr_info->handleType ==
3202 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3203
3204 result = anv_device_import_bo_from_host_ptr(device,
3205 host_ptr_info->pHostPointer,
3206 pAllocateInfo->allocationSize,
3207 alloc_flags,
3208 &mem->bo);
3209
3210 if (result != VK_SUCCESS)
3211 goto fail;
3212
3213 mem->host_ptr = host_ptr_info->pHostPointer;
3214 goto success;
3215 }
3216
3217 /* Regular allocate (not importing memory). */
3218
3219 if (export_info && export_info->handleTypes)
3220 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3221
3222 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3223 alloc_flags, &mem->bo);
3224 if (result != VK_SUCCESS)
3225 goto fail;
3226
3227 const VkMemoryDedicatedAllocateInfo *dedicated_info =
3228 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3229 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3230 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3231
3232 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3233 * the BO. In this case, we have a dedicated allocation.
3234 */
3235 if (image->needs_set_tiling) {
3236 const uint32_t i915_tiling =
3237 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3238 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3239 image->planes[0].surface.isl.row_pitch_B,
3240 i915_tiling);
3241 if (ret) {
3242 anv_device_release_bo(device, mem->bo);
3243 return vk_errorf(device->instance, NULL,
3244 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3245 "failed to set BO tiling: %m");
3246 }
3247 }
3248 }
3249
3250 success:
3251 pthread_mutex_lock(&device->mutex);
3252 list_addtail(&mem->link, &device->memory_objects);
3253 pthread_mutex_unlock(&device->mutex);
3254
3255 *pMem = anv_device_memory_to_handle(mem);
3256
3257 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3258 mem->bo->size);
3259
3260 return VK_SUCCESS;
3261
3262 fail:
3263 vk_free2(&device->alloc, pAllocator, mem);
3264
3265 return result;
3266 }
3267
3268 VkResult anv_GetMemoryFdKHR(
3269 VkDevice device_h,
3270 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3271 int* pFd)
3272 {
3273 ANV_FROM_HANDLE(anv_device, dev, device_h);
3274 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3275
3276 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3277
3278 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3279 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3280
3281 return anv_device_export_bo(dev, mem->bo, pFd);
3282 }
3283
3284 VkResult anv_GetMemoryFdPropertiesKHR(
3285 VkDevice _device,
3286 VkExternalMemoryHandleTypeFlagBits handleType,
3287 int fd,
3288 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3289 {
3290 ANV_FROM_HANDLE(anv_device, device, _device);
3291 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3292
3293 switch (handleType) {
3294 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3295 /* dma-buf can be imported as any memory type */
3296 pMemoryFdProperties->memoryTypeBits =
3297 (1 << pdevice->memory.type_count) - 1;
3298 return VK_SUCCESS;
3299
3300 default:
3301 /* The valid usage section for this function says:
3302 *
3303 * "handleType must not be one of the handle types defined as
3304 * opaque."
3305 *
3306 * So opaque handle types fall into the default "unsupported" case.
3307 */
3308 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3309 }
3310 }
3311
3312 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3313 VkDevice _device,
3314 VkExternalMemoryHandleTypeFlagBits handleType,
3315 const void* pHostPointer,
3316 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3317 {
3318 ANV_FROM_HANDLE(anv_device, device, _device);
3319
3320 assert(pMemoryHostPointerProperties->sType ==
3321 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3322
3323 switch (handleType) {
3324 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3325 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3326
3327 /* Host memory can be imported as any memory type. */
3328 pMemoryHostPointerProperties->memoryTypeBits =
3329 (1ull << pdevice->memory.type_count) - 1;
3330
3331 return VK_SUCCESS;
3332 }
3333 default:
3334 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3335 }
3336 }
3337
3338 void anv_FreeMemory(
3339 VkDevice _device,
3340 VkDeviceMemory _mem,
3341 const VkAllocationCallbacks* pAllocator)
3342 {
3343 ANV_FROM_HANDLE(anv_device, device, _device);
3344 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3345 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3346
3347 if (mem == NULL)
3348 return;
3349
3350 pthread_mutex_lock(&device->mutex);
3351 list_del(&mem->link);
3352 pthread_mutex_unlock(&device->mutex);
3353
3354 if (mem->map)
3355 anv_UnmapMemory(_device, _mem);
3356
3357 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3358 -mem->bo->size);
3359
3360 anv_device_release_bo(device, mem->bo);
3361
3362 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3363 if (mem->ahw)
3364 AHardwareBuffer_release(mem->ahw);
3365 #endif
3366
3367 vk_free2(&device->alloc, pAllocator, mem);
3368 }
3369
3370 VkResult anv_MapMemory(
3371 VkDevice _device,
3372 VkDeviceMemory _memory,
3373 VkDeviceSize offset,
3374 VkDeviceSize size,
3375 VkMemoryMapFlags flags,
3376 void** ppData)
3377 {
3378 ANV_FROM_HANDLE(anv_device, device, _device);
3379 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3380
3381 if (mem == NULL) {
3382 *ppData = NULL;
3383 return VK_SUCCESS;
3384 }
3385
3386 if (mem->host_ptr) {
3387 *ppData = mem->host_ptr + offset;
3388 return VK_SUCCESS;
3389 }
3390
3391 if (size == VK_WHOLE_SIZE)
3392 size = mem->bo->size - offset;
3393
3394 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3395 *
3396 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3397 * assert(size != 0);
3398 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3399 * equal to the size of the memory minus offset
3400 */
3401 assert(size > 0);
3402 assert(offset + size <= mem->bo->size);
3403
3404 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3405 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3406 * at a time is valid. We could just mmap up front and return an offset
3407 * pointer here, but that may exhaust virtual memory on 32 bit
3408 * userspace. */
3409
3410 uint32_t gem_flags = 0;
3411
3412 if (!device->info.has_llc &&
3413 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3414 gem_flags |= I915_MMAP_WC;
3415
3416 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3417 uint64_t map_offset = offset & ~4095ull;
3418 assert(offset >= map_offset);
3419 uint64_t map_size = (offset + size) - map_offset;
3420
3421 /* Let's map whole pages */
3422 map_size = align_u64(map_size, 4096);
3423
3424 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3425 map_offset, map_size, gem_flags);
3426 if (map == MAP_FAILED)
3427 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3428
3429 mem->map = map;
3430 mem->map_size = map_size;
3431
3432 *ppData = mem->map + (offset - map_offset);
3433
3434 return VK_SUCCESS;
3435 }
3436
3437 void anv_UnmapMemory(
3438 VkDevice _device,
3439 VkDeviceMemory _memory)
3440 {
3441 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3442
3443 if (mem == NULL || mem->host_ptr)
3444 return;
3445
3446 anv_gem_munmap(mem->map, mem->map_size);
3447
3448 mem->map = NULL;
3449 mem->map_size = 0;
3450 }
3451
3452 static void
3453 clflush_mapped_ranges(struct anv_device *device,
3454 uint32_t count,
3455 const VkMappedMemoryRange *ranges)
3456 {
3457 for (uint32_t i = 0; i < count; i++) {
3458 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3459 if (ranges[i].offset >= mem->map_size)
3460 continue;
3461
3462 gen_clflush_range(mem->map + ranges[i].offset,
3463 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3464 }
3465 }
3466
3467 VkResult anv_FlushMappedMemoryRanges(
3468 VkDevice _device,
3469 uint32_t memoryRangeCount,
3470 const VkMappedMemoryRange* pMemoryRanges)
3471 {
3472 ANV_FROM_HANDLE(anv_device, device, _device);
3473
3474 if (device->info.has_llc)
3475 return VK_SUCCESS;
3476
3477 /* Make sure the writes we're flushing have landed. */
3478 __builtin_ia32_mfence();
3479
3480 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3481
3482 return VK_SUCCESS;
3483 }
3484
3485 VkResult anv_InvalidateMappedMemoryRanges(
3486 VkDevice _device,
3487 uint32_t memoryRangeCount,
3488 const VkMappedMemoryRange* pMemoryRanges)
3489 {
3490 ANV_FROM_HANDLE(anv_device, device, _device);
3491
3492 if (device->info.has_llc)
3493 return VK_SUCCESS;
3494
3495 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3496
3497 /* Make sure no reads get moved up above the invalidate. */
3498 __builtin_ia32_mfence();
3499
3500 return VK_SUCCESS;
3501 }
3502
3503 void anv_GetBufferMemoryRequirements(
3504 VkDevice _device,
3505 VkBuffer _buffer,
3506 VkMemoryRequirements* pMemoryRequirements)
3507 {
3508 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3509 ANV_FROM_HANDLE(anv_device, device, _device);
3510 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3511
3512 /* The Vulkan spec (git aaed022) says:
3513 *
3514 * memoryTypeBits is a bitfield and contains one bit set for every
3515 * supported memory type for the resource. The bit `1<<i` is set if and
3516 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3517 * structure for the physical device is supported.
3518 */
3519 uint32_t memory_types = 0;
3520 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3521 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3522 if ((valid_usage & buffer->usage) == buffer->usage)
3523 memory_types |= (1u << i);
3524 }
3525
3526 /* Base alignment requirement of a cache line */
3527 uint32_t alignment = 16;
3528
3529 /* We need an alignment of 32 for pushing UBOs */
3530 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3531 alignment = MAX2(alignment, 32);
3532
3533 pMemoryRequirements->size = buffer->size;
3534 pMemoryRequirements->alignment = alignment;
3535
3536 /* Storage and Uniform buffers should have their size aligned to
3537 * 32-bits to avoid boundary checks when last DWord is not complete.
3538 * This would ensure that not internal padding would be needed for
3539 * 16-bit types.
3540 */
3541 if (device->robust_buffer_access &&
3542 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3543 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3544 pMemoryRequirements->size = align_u64(buffer->size, 4);
3545
3546 pMemoryRequirements->memoryTypeBits = memory_types;
3547 }
3548
3549 void anv_GetBufferMemoryRequirements2(
3550 VkDevice _device,
3551 const VkBufferMemoryRequirementsInfo2* pInfo,
3552 VkMemoryRequirements2* pMemoryRequirements)
3553 {
3554 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3555 &pMemoryRequirements->memoryRequirements);
3556
3557 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3558 switch (ext->sType) {
3559 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3560 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3561 requirements->prefersDedicatedAllocation = false;
3562 requirements->requiresDedicatedAllocation = false;
3563 break;
3564 }
3565
3566 default:
3567 anv_debug_ignored_stype(ext->sType);
3568 break;
3569 }
3570 }
3571 }
3572
3573 void anv_GetImageMemoryRequirements(
3574 VkDevice _device,
3575 VkImage _image,
3576 VkMemoryRequirements* pMemoryRequirements)
3577 {
3578 ANV_FROM_HANDLE(anv_image, image, _image);
3579 ANV_FROM_HANDLE(anv_device, device, _device);
3580 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3581
3582 /* The Vulkan spec (git aaed022) says:
3583 *
3584 * memoryTypeBits is a bitfield and contains one bit set for every
3585 * supported memory type for the resource. The bit `1<<i` is set if and
3586 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3587 * structure for the physical device is supported.
3588 *
3589 * All types are currently supported for images.
3590 */
3591 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3592
3593 /* We must have image allocated or imported at this point. According to the
3594 * specification, external images must have been bound to memory before
3595 * calling GetImageMemoryRequirements.
3596 */
3597 assert(image->size > 0);
3598
3599 pMemoryRequirements->size = image->size;
3600 pMemoryRequirements->alignment = image->alignment;
3601 pMemoryRequirements->memoryTypeBits = memory_types;
3602 }
3603
3604 void anv_GetImageMemoryRequirements2(
3605 VkDevice _device,
3606 const VkImageMemoryRequirementsInfo2* pInfo,
3607 VkMemoryRequirements2* pMemoryRequirements)
3608 {
3609 ANV_FROM_HANDLE(anv_device, device, _device);
3610 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3611
3612 anv_GetImageMemoryRequirements(_device, pInfo->image,
3613 &pMemoryRequirements->memoryRequirements);
3614
3615 vk_foreach_struct_const(ext, pInfo->pNext) {
3616 switch (ext->sType) {
3617 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3618 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3619 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3620 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3621 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3622 plane_reqs->planeAspect);
3623
3624 assert(image->planes[plane].offset == 0);
3625
3626 /* The Vulkan spec (git aaed022) says:
3627 *
3628 * memoryTypeBits is a bitfield and contains one bit set for every
3629 * supported memory type for the resource. The bit `1<<i` is set
3630 * if and only if the memory type `i` in the
3631 * VkPhysicalDeviceMemoryProperties structure for the physical
3632 * device is supported.
3633 *
3634 * All types are currently supported for images.
3635 */
3636 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3637 (1ull << pdevice->memory.type_count) - 1;
3638
3639 /* We must have image allocated or imported at this point. According to the
3640 * specification, external images must have been bound to memory before
3641 * calling GetImageMemoryRequirements.
3642 */
3643 assert(image->planes[plane].size > 0);
3644
3645 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3646 pMemoryRequirements->memoryRequirements.alignment =
3647 image->planes[plane].alignment;
3648 break;
3649 }
3650
3651 default:
3652 anv_debug_ignored_stype(ext->sType);
3653 break;
3654 }
3655 }
3656
3657 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3658 switch (ext->sType) {
3659 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3660 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3661 if (image->needs_set_tiling || image->external_format) {
3662 /* If we need to set the tiling for external consumers, we need a
3663 * dedicated allocation.
3664 *
3665 * See also anv_AllocateMemory.
3666 */
3667 requirements->prefersDedicatedAllocation = true;
3668 requirements->requiresDedicatedAllocation = true;
3669 } else {
3670 requirements->prefersDedicatedAllocation = false;
3671 requirements->requiresDedicatedAllocation = false;
3672 }
3673 break;
3674 }
3675
3676 default:
3677 anv_debug_ignored_stype(ext->sType);
3678 break;
3679 }
3680 }
3681 }
3682
3683 void anv_GetImageSparseMemoryRequirements(
3684 VkDevice device,
3685 VkImage image,
3686 uint32_t* pSparseMemoryRequirementCount,
3687 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3688 {
3689 *pSparseMemoryRequirementCount = 0;
3690 }
3691
3692 void anv_GetImageSparseMemoryRequirements2(
3693 VkDevice device,
3694 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3695 uint32_t* pSparseMemoryRequirementCount,
3696 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3697 {
3698 *pSparseMemoryRequirementCount = 0;
3699 }
3700
3701 void anv_GetDeviceMemoryCommitment(
3702 VkDevice device,
3703 VkDeviceMemory memory,
3704 VkDeviceSize* pCommittedMemoryInBytes)
3705 {
3706 *pCommittedMemoryInBytes = 0;
3707 }
3708
3709 static void
3710 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3711 {
3712 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3713 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3714
3715 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3716
3717 if (mem) {
3718 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3719 buffer->address = (struct anv_address) {
3720 .bo = mem->bo,
3721 .offset = pBindInfo->memoryOffset,
3722 };
3723 } else {
3724 buffer->address = ANV_NULL_ADDRESS;
3725 }
3726 }
3727
3728 VkResult anv_BindBufferMemory(
3729 VkDevice device,
3730 VkBuffer buffer,
3731 VkDeviceMemory memory,
3732 VkDeviceSize memoryOffset)
3733 {
3734 anv_bind_buffer_memory(
3735 &(VkBindBufferMemoryInfo) {
3736 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3737 .buffer = buffer,
3738 .memory = memory,
3739 .memoryOffset = memoryOffset,
3740 });
3741
3742 return VK_SUCCESS;
3743 }
3744
3745 VkResult anv_BindBufferMemory2(
3746 VkDevice device,
3747 uint32_t bindInfoCount,
3748 const VkBindBufferMemoryInfo* pBindInfos)
3749 {
3750 for (uint32_t i = 0; i < bindInfoCount; i++)
3751 anv_bind_buffer_memory(&pBindInfos[i]);
3752
3753 return VK_SUCCESS;
3754 }
3755
3756 VkResult anv_QueueBindSparse(
3757 VkQueue _queue,
3758 uint32_t bindInfoCount,
3759 const VkBindSparseInfo* pBindInfo,
3760 VkFence fence)
3761 {
3762 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3763 if (anv_device_is_lost(queue->device))
3764 return VK_ERROR_DEVICE_LOST;
3765
3766 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3767 }
3768
3769 // Event functions
3770
3771 VkResult anv_CreateEvent(
3772 VkDevice _device,
3773 const VkEventCreateInfo* pCreateInfo,
3774 const VkAllocationCallbacks* pAllocator,
3775 VkEvent* pEvent)
3776 {
3777 ANV_FROM_HANDLE(anv_device, device, _device);
3778 struct anv_state state;
3779 struct anv_event *event;
3780
3781 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3782
3783 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3784 sizeof(*event), 8);
3785 event = state.map;
3786 event->state = state;
3787 event->semaphore = VK_EVENT_RESET;
3788
3789 if (!device->info.has_llc) {
3790 /* Make sure the writes we're flushing have landed. */
3791 __builtin_ia32_mfence();
3792 __builtin_ia32_clflush(event);
3793 }
3794
3795 *pEvent = anv_event_to_handle(event);
3796
3797 return VK_SUCCESS;
3798 }
3799
3800 void anv_DestroyEvent(
3801 VkDevice _device,
3802 VkEvent _event,
3803 const VkAllocationCallbacks* pAllocator)
3804 {
3805 ANV_FROM_HANDLE(anv_device, device, _device);
3806 ANV_FROM_HANDLE(anv_event, event, _event);
3807
3808 if (!event)
3809 return;
3810
3811 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3812 }
3813
3814 VkResult anv_GetEventStatus(
3815 VkDevice _device,
3816 VkEvent _event)
3817 {
3818 ANV_FROM_HANDLE(anv_device, device, _device);
3819 ANV_FROM_HANDLE(anv_event, event, _event);
3820
3821 if (anv_device_is_lost(device))
3822 return VK_ERROR_DEVICE_LOST;
3823
3824 if (!device->info.has_llc) {
3825 /* Invalidate read cache before reading event written by GPU. */
3826 __builtin_ia32_clflush(event);
3827 __builtin_ia32_mfence();
3828
3829 }
3830
3831 return event->semaphore;
3832 }
3833
3834 VkResult anv_SetEvent(
3835 VkDevice _device,
3836 VkEvent _event)
3837 {
3838 ANV_FROM_HANDLE(anv_device, device, _device);
3839 ANV_FROM_HANDLE(anv_event, event, _event);
3840
3841 event->semaphore = VK_EVENT_SET;
3842
3843 if (!device->info.has_llc) {
3844 /* Make sure the writes we're flushing have landed. */
3845 __builtin_ia32_mfence();
3846 __builtin_ia32_clflush(event);
3847 }
3848
3849 return VK_SUCCESS;
3850 }
3851
3852 VkResult anv_ResetEvent(
3853 VkDevice _device,
3854 VkEvent _event)
3855 {
3856 ANV_FROM_HANDLE(anv_device, device, _device);
3857 ANV_FROM_HANDLE(anv_event, event, _event);
3858
3859 event->semaphore = VK_EVENT_RESET;
3860
3861 if (!device->info.has_llc) {
3862 /* Make sure the writes we're flushing have landed. */
3863 __builtin_ia32_mfence();
3864 __builtin_ia32_clflush(event);
3865 }
3866
3867 return VK_SUCCESS;
3868 }
3869
3870 // Buffer functions
3871
3872 VkResult anv_CreateBuffer(
3873 VkDevice _device,
3874 const VkBufferCreateInfo* pCreateInfo,
3875 const VkAllocationCallbacks* pAllocator,
3876 VkBuffer* pBuffer)
3877 {
3878 ANV_FROM_HANDLE(anv_device, device, _device);
3879 struct anv_buffer *buffer;
3880
3881 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3882
3883 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3884 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3885 if (buffer == NULL)
3886 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3887
3888 buffer->size = pCreateInfo->size;
3889 buffer->usage = pCreateInfo->usage;
3890 buffer->address = ANV_NULL_ADDRESS;
3891
3892 *pBuffer = anv_buffer_to_handle(buffer);
3893
3894 return VK_SUCCESS;
3895 }
3896
3897 void anv_DestroyBuffer(
3898 VkDevice _device,
3899 VkBuffer _buffer,
3900 const VkAllocationCallbacks* pAllocator)
3901 {
3902 ANV_FROM_HANDLE(anv_device, device, _device);
3903 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3904
3905 if (!buffer)
3906 return;
3907
3908 vk_free2(&device->alloc, pAllocator, buffer);
3909 }
3910
3911 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3912 VkDevice device,
3913 const VkBufferDeviceAddressInfoEXT* pInfo)
3914 {
3915 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3916
3917 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3918
3919 return anv_address_physical(buffer->address);
3920 }
3921
3922 void
3923 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3924 enum isl_format format,
3925 struct anv_address address,
3926 uint32_t range, uint32_t stride)
3927 {
3928 isl_buffer_fill_state(&device->isl_dev, state.map,
3929 .address = anv_address_physical(address),
3930 .mocs = device->default_mocs,
3931 .size_B = range,
3932 .format = format,
3933 .swizzle = ISL_SWIZZLE_IDENTITY,
3934 .stride_B = stride);
3935 }
3936
3937 void anv_DestroySampler(
3938 VkDevice _device,
3939 VkSampler _sampler,
3940 const VkAllocationCallbacks* pAllocator)
3941 {
3942 ANV_FROM_HANDLE(anv_device, device, _device);
3943 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3944
3945 if (!sampler)
3946 return;
3947
3948 if (sampler->bindless_state.map) {
3949 anv_state_pool_free(&device->dynamic_state_pool,
3950 sampler->bindless_state);
3951 }
3952
3953 vk_free2(&device->alloc, pAllocator, sampler);
3954 }
3955
3956 VkResult anv_CreateFramebuffer(
3957 VkDevice _device,
3958 const VkFramebufferCreateInfo* pCreateInfo,
3959 const VkAllocationCallbacks* pAllocator,
3960 VkFramebuffer* pFramebuffer)
3961 {
3962 ANV_FROM_HANDLE(anv_device, device, _device);
3963 struct anv_framebuffer *framebuffer;
3964
3965 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3966
3967 size_t size = sizeof(*framebuffer);
3968
3969 /* VK_KHR_imageless_framebuffer extension says:
3970 *
3971 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3972 * parameter pAttachments is ignored.
3973 */
3974 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3975 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3976 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3977 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3978 if (framebuffer == NULL)
3979 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3980
3981 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3982 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
3983 framebuffer->attachments[i] = iview;
3984 }
3985 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3986 } else {
3987 assert(device->enabled_extensions.KHR_imageless_framebuffer);
3988 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3989 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3990 if (framebuffer == NULL)
3991 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3992
3993 framebuffer->attachment_count = 0;
3994 }
3995
3996 framebuffer->width = pCreateInfo->width;
3997 framebuffer->height = pCreateInfo->height;
3998 framebuffer->layers = pCreateInfo->layers;
3999
4000 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4001
4002 return VK_SUCCESS;
4003 }
4004
4005 void anv_DestroyFramebuffer(
4006 VkDevice _device,
4007 VkFramebuffer _fb,
4008 const VkAllocationCallbacks* pAllocator)
4009 {
4010 ANV_FROM_HANDLE(anv_device, device, _device);
4011 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4012
4013 if (!fb)
4014 return;
4015
4016 vk_free2(&device->alloc, pAllocator, fb);
4017 }
4018
4019 static const VkTimeDomainEXT anv_time_domains[] = {
4020 VK_TIME_DOMAIN_DEVICE_EXT,
4021 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4022 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4023 };
4024
4025 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4026 VkPhysicalDevice physicalDevice,
4027 uint32_t *pTimeDomainCount,
4028 VkTimeDomainEXT *pTimeDomains)
4029 {
4030 int d;
4031 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4032
4033 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4034 vk_outarray_append(&out, i) {
4035 *i = anv_time_domains[d];
4036 }
4037 }
4038
4039 return vk_outarray_status(&out);
4040 }
4041
4042 static uint64_t
4043 anv_clock_gettime(clockid_t clock_id)
4044 {
4045 struct timespec current;
4046 int ret;
4047
4048 ret = clock_gettime(clock_id, &current);
4049 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4050 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4051 if (ret < 0)
4052 return 0;
4053
4054 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4055 }
4056
4057 #define TIMESTAMP 0x2358
4058
4059 VkResult anv_GetCalibratedTimestampsEXT(
4060 VkDevice _device,
4061 uint32_t timestampCount,
4062 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4063 uint64_t *pTimestamps,
4064 uint64_t *pMaxDeviation)
4065 {
4066 ANV_FROM_HANDLE(anv_device, device, _device);
4067 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4068 int ret;
4069 int d;
4070 uint64_t begin, end;
4071 uint64_t max_clock_period = 0;
4072
4073 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4074
4075 for (d = 0; d < timestampCount; d++) {
4076 switch (pTimestampInfos[d].timeDomain) {
4077 case VK_TIME_DOMAIN_DEVICE_EXT:
4078 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4079 &pTimestamps[d]);
4080
4081 if (ret != 0) {
4082 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4083 "register: %m");
4084 }
4085 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4086 max_clock_period = MAX2(max_clock_period, device_period);
4087 break;
4088 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4089 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4090 max_clock_period = MAX2(max_clock_period, 1);
4091 break;
4092
4093 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4094 pTimestamps[d] = begin;
4095 break;
4096 default:
4097 pTimestamps[d] = 0;
4098 break;
4099 }
4100 }
4101
4102 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4103
4104 /*
4105 * The maximum deviation is the sum of the interval over which we
4106 * perform the sampling and the maximum period of any sampled
4107 * clock. That's because the maximum skew between any two sampled
4108 * clock edges is when the sampled clock with the largest period is
4109 * sampled at the end of that period but right at the beginning of the
4110 * sampling interval and some other clock is sampled right at the
4111 * begining of its sampling period and right at the end of the
4112 * sampling interval. Let's assume the GPU has the longest clock
4113 * period and that the application is sampling GPU and monotonic:
4114 *
4115 * s e
4116 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4117 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4118 *
4119 * g
4120 * 0 1 2 3
4121 * GPU -----_____-----_____-----_____-----_____
4122 *
4123 * m
4124 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4125 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4126 *
4127 * Interval <----------------->
4128 * Deviation <-------------------------->
4129 *
4130 * s = read(raw) 2
4131 * g = read(GPU) 1
4132 * m = read(monotonic) 2
4133 * e = read(raw) b
4134 *
4135 * We round the sample interval up by one tick to cover sampling error
4136 * in the interval clock
4137 */
4138
4139 uint64_t sample_interval = end - begin + 1;
4140
4141 *pMaxDeviation = sample_interval + max_clock_period;
4142
4143 return VK_SUCCESS;
4144 }
4145
4146 /* vk_icd.h does not declare this function, so we declare it here to
4147 * suppress Wmissing-prototypes.
4148 */
4149 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4150 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4151
4152 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4153 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4154 {
4155 /* For the full details on loader interface versioning, see
4156 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4157 * What follows is a condensed summary, to help you navigate the large and
4158 * confusing official doc.
4159 *
4160 * - Loader interface v0 is incompatible with later versions. We don't
4161 * support it.
4162 *
4163 * - In loader interface v1:
4164 * - The first ICD entrypoint called by the loader is
4165 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4166 * entrypoint.
4167 * - The ICD must statically expose no other Vulkan symbol unless it is
4168 * linked with -Bsymbolic.
4169 * - Each dispatchable Vulkan handle created by the ICD must be
4170 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4171 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4172 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4173 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4174 * such loader-managed surfaces.
4175 *
4176 * - Loader interface v2 differs from v1 in:
4177 * - The first ICD entrypoint called by the loader is
4178 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4179 * statically expose this entrypoint.
4180 *
4181 * - Loader interface v3 differs from v2 in:
4182 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4183 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4184 * because the loader no longer does so.
4185 *
4186 * - Loader interface v4 differs from v3 in:
4187 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4188 */
4189 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4190 return VK_SUCCESS;
4191 }