anv: implement VK_INTEL_performance_query
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "util/xmlpool.h"
44 #include "git_sha1.h"
45 #include "vk_util.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57 DRI_CONF_END;
58
59 /* This is probably far to big but it reflects the max size used for messages
60 * in OpenGLs KHR_debug.
61 */
62 #define MAX_DEBUG_MESSAGE_LENGTH 4096
63
64 static void
65 compiler_debug_log(void *data, const char *fmt, ...)
66 {
67 char str[MAX_DEBUG_MESSAGE_LENGTH];
68 struct anv_device *device = (struct anv_device *)data;
69
70 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
71 return;
72
73 va_list args;
74 va_start(args, fmt);
75 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
76 va_end(args);
77
78 vk_debug_report(&device->instance->debug_report_callbacks,
79 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
80 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
81 0, 0, 0, "anv", str);
82 }
83
84 static void
85 compiler_perf_log(void *data, const char *fmt, ...)
86 {
87 va_list args;
88 va_start(args, fmt);
89
90 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
91 intel_logd_v(fmt, args);
92
93 va_end(args);
94 }
95
96 static uint64_t
97 anv_compute_heap_size(int fd, uint64_t gtt_size)
98 {
99 /* Query the total ram from the system */
100 struct sysinfo info;
101 sysinfo(&info);
102
103 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
104
105 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
106 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
107 */
108 uint64_t available_ram;
109 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
110 available_ram = total_ram / 2;
111 else
112 available_ram = total_ram * 3 / 4;
113
114 /* We also want to leave some padding for things we allocate in the driver,
115 * so don't go over 3/4 of the GTT either.
116 */
117 uint64_t available_gtt = gtt_size * 3 / 4;
118
119 return MIN2(available_ram, available_gtt);
120 }
121
122 static VkResult
123 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
124 {
125 uint64_t gtt_size;
126 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
127 &gtt_size) == -1) {
128 /* If, for whatever reason, we can't actually get the GTT size from the
129 * kernel (too old?) fall back to the aperture size.
130 */
131 anv_perf_warn(NULL, NULL,
132 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
133
134 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
135 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
136 "failed to get aperture size: %m");
137 }
138 }
139
140 device->supports_48bit_addresses = (device->info.gen >= 8) &&
141 gtt_size > (4ULL << 30 /* GiB */);
142
143 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
144
145 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
146 /* When running with an overridden PCI ID, we may get a GTT size from
147 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
148 * address support can still fail. Just clamp the address space size to
149 * 2 GiB if we don't have 48-bit support.
150 */
151 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
152 "not support for 48-bit addresses",
153 __FILE__, __LINE__);
154 heap_size = 2ull << 30;
155 }
156
157 if (heap_size <= 3ull * (1ull << 30)) {
158 /* In this case, everything fits nicely into the 32-bit address space,
159 * so there's no need for supporting 48bit addresses on client-allocated
160 * memory objects.
161 */
162 device->memory.heap_count = 1;
163 device->memory.heaps[0] = (struct anv_memory_heap) {
164 .vma_start = LOW_HEAP_MIN_ADDRESS,
165 .vma_size = LOW_HEAP_SIZE,
166 .size = heap_size,
167 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
168 .supports_48bit_addresses = false,
169 };
170 } else {
171 /* Not everything will fit nicely into a 32-bit address space. In this
172 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
173 * larger 48-bit heap. If we're in this case, then we have a total heap
174 * size larger than 3GiB which most likely means they have 8 GiB of
175 * video memory and so carving off 1 GiB for the 32-bit heap should be
176 * reasonable.
177 */
178 const uint64_t heap_size_32bit = 1ull << 30;
179 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
180
181 assert(device->supports_48bit_addresses);
182
183 device->memory.heap_count = 2;
184 device->memory.heaps[0] = (struct anv_memory_heap) {
185 .vma_start = HIGH_HEAP_MIN_ADDRESS,
186 /* Leave the last 4GiB out of the high vma range, so that no state
187 * base address + size can overflow 48 bits. For more information see
188 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
189 */
190 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
191 .size = heap_size_48bit,
192 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
193 .supports_48bit_addresses = true,
194 };
195 device->memory.heaps[1] = (struct anv_memory_heap) {
196 .vma_start = LOW_HEAP_MIN_ADDRESS,
197 .vma_size = LOW_HEAP_SIZE,
198 .size = heap_size_32bit,
199 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
200 .supports_48bit_addresses = false,
201 };
202 }
203
204 uint32_t type_count = 0;
205 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
206 uint32_t valid_buffer_usage = ~0;
207
208 /* There appears to be a hardware issue in the VF cache where it only
209 * considers the bottom 32 bits of memory addresses. If you happen to
210 * have two vertex buffers which get placed exactly 4 GiB apart and use
211 * them in back-to-back draw calls, you can get collisions. In order to
212 * solve this problem, we require vertex and index buffers be bound to
213 * memory allocated out of the 32-bit heap.
214 */
215 if (device->memory.heaps[heap].supports_48bit_addresses) {
216 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
217 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
218 }
219
220 if (device->info.has_llc) {
221 /* Big core GPUs share LLC with the CPU and thus one memory type can be
222 * both cached and coherent at the same time.
223 */
224 device->memory.types[type_count++] = (struct anv_memory_type) {
225 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
226 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
227 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
228 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
229 .heapIndex = heap,
230 .valid_buffer_usage = valid_buffer_usage,
231 };
232 } else {
233 /* The spec requires that we expose a host-visible, coherent memory
234 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
235 * to give the application a choice between cached, but not coherent and
236 * coherent but uncached (WC though).
237 */
238 device->memory.types[type_count++] = (struct anv_memory_type) {
239 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
240 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
241 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
242 .heapIndex = heap,
243 .valid_buffer_usage = valid_buffer_usage,
244 };
245 device->memory.types[type_count++] = (struct anv_memory_type) {
246 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
247 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
248 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
249 .heapIndex = heap,
250 .valid_buffer_usage = valid_buffer_usage,
251 };
252 }
253 }
254 device->memory.type_count = type_count;
255
256 return VK_SUCCESS;
257 }
258
259 static VkResult
260 anv_physical_device_init_uuids(struct anv_physical_device *device)
261 {
262 const struct build_id_note *note =
263 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
264 if (!note) {
265 return vk_errorf(device->instance, device,
266 VK_ERROR_INITIALIZATION_FAILED,
267 "Failed to find build-id");
268 }
269
270 unsigned build_id_len = build_id_length(note);
271 if (build_id_len < 20) {
272 return vk_errorf(device->instance, device,
273 VK_ERROR_INITIALIZATION_FAILED,
274 "build-id too short. It needs to be a SHA");
275 }
276
277 memcpy(device->driver_build_sha1, build_id_data(note), 20);
278
279 struct mesa_sha1 sha1_ctx;
280 uint8_t sha1[20];
281 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
282
283 /* The pipeline cache UUID is used for determining when a pipeline cache is
284 * invalid. It needs both a driver build and the PCI ID of the device.
285 */
286 _mesa_sha1_init(&sha1_ctx);
287 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
288 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
289 sizeof(device->chipset_id));
290 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
291 sizeof(device->always_use_bindless));
292 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
293 sizeof(device->has_a64_buffer_access));
294 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
295 sizeof(device->has_bindless_images));
296 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
297 sizeof(device->has_bindless_samplers));
298 _mesa_sha1_final(&sha1_ctx, sha1);
299 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
300
301 /* The driver UUID is used for determining sharability of images and memory
302 * between two Vulkan instances in separate processes. People who want to
303 * share memory need to also check the device UUID (below) so all this
304 * needs to be is the build-id.
305 */
306 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
307
308 /* The device UUID uniquely identifies the given device within the machine.
309 * Since we never have more than one device, this doesn't need to be a real
310 * UUID. However, on the off-chance that someone tries to use this to
311 * cache pre-tiled images or something of the like, we use the PCI ID and
312 * some bits of ISL info to ensure that this is safe.
313 */
314 _mesa_sha1_init(&sha1_ctx);
315 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
316 sizeof(device->chipset_id));
317 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
318 sizeof(device->isl_dev.has_bit6_swizzling));
319 _mesa_sha1_final(&sha1_ctx, sha1);
320 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
321
322 return VK_SUCCESS;
323 }
324
325 static void
326 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
327 {
328 #ifdef ENABLE_SHADER_CACHE
329 char renderer[10];
330 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
331 device->chipset_id);
332 assert(len == sizeof(renderer) - 2);
333
334 char timestamp[41];
335 _mesa_sha1_format(timestamp, device->driver_build_sha1);
336
337 const uint64_t driver_flags =
338 brw_get_compiler_config_value(device->compiler);
339 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
340 #else
341 device->disk_cache = NULL;
342 #endif
343 }
344
345 static void
346 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
347 {
348 #ifdef ENABLE_SHADER_CACHE
349 if (device->disk_cache)
350 disk_cache_destroy(device->disk_cache);
351 #else
352 assert(device->disk_cache == NULL);
353 #endif
354 }
355
356 static uint64_t
357 get_available_system_memory()
358 {
359 char *meminfo = os_read_file("/proc/meminfo");
360 if (!meminfo)
361 return 0;
362
363 char *str = strstr(meminfo, "MemAvailable:");
364 if (!str) {
365 free(meminfo);
366 return 0;
367 }
368
369 uint64_t kb_mem_available;
370 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
371 free(meminfo);
372 return kb_mem_available << 10;
373 }
374
375 free(meminfo);
376 return 0;
377 }
378
379 static VkResult
380 anv_physical_device_init(struct anv_physical_device *device,
381 struct anv_instance *instance,
382 drmDevicePtr drm_device)
383 {
384 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
385 const char *path = drm_device->nodes[DRM_NODE_RENDER];
386 VkResult result;
387 int fd;
388 int master_fd = -1;
389
390 brw_process_intel_debug_variable();
391
392 fd = open(path, O_RDWR | O_CLOEXEC);
393 if (fd < 0)
394 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
395
396 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
397 device->instance = instance;
398
399 assert(strlen(path) < ARRAY_SIZE(device->path));
400 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
401
402 if (!gen_get_device_info_from_fd(fd, &device->info)) {
403 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
404 goto fail;
405 }
406 device->chipset_id = device->info.chipset_id;
407 device->no_hw = device->info.no_hw;
408
409 if (getenv("INTEL_NO_HW") != NULL)
410 device->no_hw = true;
411
412 device->pci_info.domain = drm_device->businfo.pci->domain;
413 device->pci_info.bus = drm_device->businfo.pci->bus;
414 device->pci_info.device = drm_device->businfo.pci->dev;
415 device->pci_info.function = drm_device->businfo.pci->func;
416
417 device->name = gen_get_device_name(device->chipset_id);
418
419 if (device->info.is_haswell) {
420 intel_logw("Haswell Vulkan support is incomplete");
421 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
422 intel_logw("Ivy Bridge Vulkan support is incomplete");
423 } else if (device->info.gen == 7 && device->info.is_baytrail) {
424 intel_logw("Bay Trail Vulkan support is incomplete");
425 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
426 /* Gen8-11 fully supported */
427 } else if (device->info.gen == 12) {
428 intel_logw("Vulkan is not yet fully supported on gen12");
429 } else {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INCOMPATIBLE_DRIVER,
432 "Vulkan not yet supported on %s", device->name);
433 goto fail;
434 }
435
436 device->cmd_parser_version = -1;
437 if (device->info.gen == 7) {
438 device->cmd_parser_version =
439 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
440 if (device->cmd_parser_version == -1) {
441 result = vk_errorf(device->instance, device,
442 VK_ERROR_INITIALIZATION_FAILED,
443 "failed to get command parser version");
444 goto fail;
445 }
446 }
447
448 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
449 result = vk_errorf(device->instance, device,
450 VK_ERROR_INITIALIZATION_FAILED,
451 "kernel missing gem wait");
452 goto fail;
453 }
454
455 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
456 result = vk_errorf(device->instance, device,
457 VK_ERROR_INITIALIZATION_FAILED,
458 "kernel missing execbuf2");
459 goto fail;
460 }
461
462 if (!device->info.has_llc &&
463 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
464 result = vk_errorf(device->instance, device,
465 VK_ERROR_INITIALIZATION_FAILED,
466 "kernel missing wc mmap");
467 goto fail;
468 }
469
470 result = anv_physical_device_init_heaps(device, fd);
471 if (result != VK_SUCCESS)
472 goto fail;
473
474 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
475 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
476 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
477 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
478 device->has_syncobj_wait = device->has_syncobj &&
479 anv_gem_supports_syncobj_wait(fd);
480 device->has_context_priority = anv_gem_has_context_priority(fd);
481
482 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
483 && device->supports_48bit_addresses;
484
485 device->has_context_isolation =
486 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
487
488 device->always_use_bindless =
489 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
490
491 /* We first got the A64 messages on broadwell and we can only use them if
492 * we can pass addresses directly into the shader which requires softpin.
493 */
494 device->has_a64_buffer_access = device->info.gen >= 8 &&
495 device->use_softpin;
496
497 /* We first get bindless image access on Skylake and we can only really do
498 * it if we don't have any relocations so we need softpin.
499 */
500 device->has_bindless_images = device->info.gen >= 9 &&
501 device->use_softpin;
502
503 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
504 * because it's just a matter of setting the sampler address in the sample
505 * message header. However, we've not bothered to wire it up for vec4 so
506 * we leave it disabled on gen7.
507 */
508 device->has_bindless_samplers = device->info.gen >= 8;
509
510 device->has_mem_available = get_available_system_memory() != 0;
511
512 /* Starting with Gen10, the timestamp frequency of the command streamer may
513 * vary from one part to another. We can query the value from the kernel.
514 */
515 if (device->info.gen >= 10) {
516 int timestamp_frequency =
517 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
518
519 if (timestamp_frequency < 0)
520 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
521 else
522 device->info.timestamp_frequency = timestamp_frequency;
523 }
524
525 /* GENs prior to 8 do not support EU/Subslice info */
526 if (device->info.gen >= 8) {
527 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
528 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
529
530 /* Without this information, we cannot get the right Braswell
531 * brandstrings, and we have to use conservative numbers for GPGPU on
532 * many platforms, but otherwise, things will just work.
533 */
534 if (device->subslice_total < 1 || device->eu_total < 1) {
535 intel_logw("Kernel 4.1 required to properly query GPU properties");
536 }
537 } else if (device->info.gen == 7) {
538 device->subslice_total = 1 << (device->info.gt - 1);
539 }
540
541 if (device->info.is_cherryview &&
542 device->subslice_total > 0 && device->eu_total > 0) {
543 /* Logical CS threads = EUs per subslice * num threads per EU */
544 uint32_t max_cs_threads =
545 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
546
547 /* Fuse configurations may give more threads than expected, never less. */
548 if (max_cs_threads > device->info.max_cs_threads)
549 device->info.max_cs_threads = max_cs_threads;
550 }
551
552 device->compiler = brw_compiler_create(NULL, &device->info);
553 if (device->compiler == NULL) {
554 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
555 goto fail;
556 }
557 device->compiler->shader_debug_log = compiler_debug_log;
558 device->compiler->shader_perf_log = compiler_perf_log;
559 device->compiler->supports_pull_constants = false;
560 device->compiler->constant_buffer_0_is_relative =
561 device->info.gen < 8 || !device->has_context_isolation;
562 device->compiler->supports_shader_constants = true;
563
564 /* Broadwell PRM says:
565 *
566 * "Before Gen8, there was a historical configuration control field to
567 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
568 * different places: TILECTL[1:0], ARB_MODE[5:4], and
569 * DISP_ARB_CTL[14:13].
570 *
571 * For Gen8 and subsequent generations, the swizzle fields are all
572 * reserved, and the CPU's memory controller performs all address
573 * swizzling modifications."
574 */
575 bool swizzled =
576 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
577
578 isl_device_init(&device->isl_dev, &device->info, swizzled);
579
580 result = anv_physical_device_init_uuids(device);
581 if (result != VK_SUCCESS)
582 goto fail;
583
584 anv_physical_device_init_disk_cache(device);
585
586 if (instance->enabled_extensions.KHR_display) {
587 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
588 if (master_fd >= 0) {
589 /* prod the device with a GETPARAM call which will fail if
590 * we don't have permission to even render on this device
591 */
592 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
593 close(master_fd);
594 master_fd = -1;
595 }
596 }
597 }
598 device->master_fd = master_fd;
599
600 result = anv_init_wsi(device);
601 if (result != VK_SUCCESS) {
602 ralloc_free(device->compiler);
603 anv_physical_device_free_disk_cache(device);
604 goto fail;
605 }
606
607 device->perf = anv_get_perf(&device->info, fd);
608
609 anv_physical_device_get_supported_extensions(device,
610 &device->supported_extensions);
611
612
613 device->local_fd = fd;
614
615 return VK_SUCCESS;
616
617 fail:
618 close(fd);
619 if (master_fd != -1)
620 close(master_fd);
621 return result;
622 }
623
624 static void
625 anv_physical_device_finish(struct anv_physical_device *device)
626 {
627 anv_finish_wsi(device);
628 anv_physical_device_free_disk_cache(device);
629 ralloc_free(device->compiler);
630 ralloc_free(device->perf);
631 close(device->local_fd);
632 if (device->master_fd >= 0)
633 close(device->master_fd);
634 }
635
636 static void *
637 default_alloc_func(void *pUserData, size_t size, size_t align,
638 VkSystemAllocationScope allocationScope)
639 {
640 return malloc(size);
641 }
642
643 static void *
644 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
645 size_t align, VkSystemAllocationScope allocationScope)
646 {
647 return realloc(pOriginal, size);
648 }
649
650 static void
651 default_free_func(void *pUserData, void *pMemory)
652 {
653 free(pMemory);
654 }
655
656 static const VkAllocationCallbacks default_alloc = {
657 .pUserData = NULL,
658 .pfnAllocation = default_alloc_func,
659 .pfnReallocation = default_realloc_func,
660 .pfnFree = default_free_func,
661 };
662
663 VkResult anv_EnumerateInstanceExtensionProperties(
664 const char* pLayerName,
665 uint32_t* pPropertyCount,
666 VkExtensionProperties* pProperties)
667 {
668 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
669
670 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
671 if (anv_instance_extensions_supported.extensions[i]) {
672 vk_outarray_append(&out, prop) {
673 *prop = anv_instance_extensions[i];
674 }
675 }
676 }
677
678 return vk_outarray_status(&out);
679 }
680
681 VkResult anv_CreateInstance(
682 const VkInstanceCreateInfo* pCreateInfo,
683 const VkAllocationCallbacks* pAllocator,
684 VkInstance* pInstance)
685 {
686 struct anv_instance *instance;
687 VkResult result;
688
689 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
690
691 struct anv_instance_extension_table enabled_extensions = {};
692 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
693 int idx;
694 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
695 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
696 anv_instance_extensions[idx].extensionName) == 0)
697 break;
698 }
699
700 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
701 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
702
703 if (!anv_instance_extensions_supported.extensions[idx])
704 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
705
706 enabled_extensions.extensions[idx] = true;
707 }
708
709 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
710 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
711 if (!instance)
712 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
713
714 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
715
716 if (pAllocator)
717 instance->alloc = *pAllocator;
718 else
719 instance->alloc = default_alloc;
720
721 instance->app_info = (struct anv_app_info) { .api_version = 0 };
722 if (pCreateInfo->pApplicationInfo) {
723 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
724
725 instance->app_info.app_name =
726 vk_strdup(&instance->alloc, app->pApplicationName,
727 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
728 instance->app_info.app_version = app->applicationVersion;
729
730 instance->app_info.engine_name =
731 vk_strdup(&instance->alloc, app->pEngineName,
732 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
733 instance->app_info.engine_version = app->engineVersion;
734
735 instance->app_info.api_version = app->apiVersion;
736 }
737
738 if (instance->app_info.api_version == 0)
739 instance->app_info.api_version = VK_API_VERSION_1_0;
740
741 instance->enabled_extensions = enabled_extensions;
742
743 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
744 /* Vulkan requires that entrypoints for extensions which have not been
745 * enabled must not be advertised.
746 */
747 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
748 &instance->enabled_extensions)) {
749 instance->dispatch.entrypoints[i] = NULL;
750 } else {
751 instance->dispatch.entrypoints[i] =
752 anv_instance_dispatch_table.entrypoints[i];
753 }
754 }
755
756 struct anv_physical_device *pdevice = &instance->physicalDevice;
757 for (unsigned i = 0; i < ARRAY_SIZE(pdevice->dispatch.entrypoints); i++) {
758 /* Vulkan requires that entrypoints for extensions which have not been
759 * enabled must not be advertised.
760 */
761 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
762 &instance->enabled_extensions)) {
763 pdevice->dispatch.entrypoints[i] = NULL;
764 } else {
765 pdevice->dispatch.entrypoints[i] =
766 anv_physical_device_dispatch_table.entrypoints[i];
767 }
768 }
769
770 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
771 /* Vulkan requires that entrypoints for extensions which have not been
772 * enabled must not be advertised.
773 */
774 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
775 &instance->enabled_extensions, NULL)) {
776 instance->device_dispatch.entrypoints[i] = NULL;
777 } else {
778 instance->device_dispatch.entrypoints[i] =
779 anv_device_dispatch_table.entrypoints[i];
780 }
781 }
782
783 instance->physicalDeviceCount = -1;
784
785 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
786 if (result != VK_SUCCESS) {
787 vk_free2(&default_alloc, pAllocator, instance);
788 return vk_error(result);
789 }
790
791 instance->pipeline_cache_enabled =
792 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
793
794 _mesa_locale_init();
795 glsl_type_singleton_init_or_ref();
796
797 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
798
799 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
800 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
801 0, "anv", NULL,
802 instance->app_info.engine_name,
803 instance->app_info.engine_version);
804
805 *pInstance = anv_instance_to_handle(instance);
806
807 return VK_SUCCESS;
808 }
809
810 void anv_DestroyInstance(
811 VkInstance _instance,
812 const VkAllocationCallbacks* pAllocator)
813 {
814 ANV_FROM_HANDLE(anv_instance, instance, _instance);
815
816 if (!instance)
817 return;
818
819 if (instance->physicalDeviceCount > 0) {
820 /* We support at most one physical device. */
821 assert(instance->physicalDeviceCount == 1);
822 anv_physical_device_finish(&instance->physicalDevice);
823 }
824
825 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
826 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
827
828 VG(VALGRIND_DESTROY_MEMPOOL(instance));
829
830 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
831
832 glsl_type_singleton_decref();
833 _mesa_locale_fini();
834
835 driDestroyOptionCache(&instance->dri_options);
836 driDestroyOptionInfo(&instance->available_dri_options);
837
838 vk_free(&instance->alloc, instance);
839 }
840
841 static VkResult
842 anv_enumerate_devices(struct anv_instance *instance)
843 {
844 /* TODO: Check for more devices ? */
845 drmDevicePtr devices[8];
846 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
847 int max_devices;
848
849 instance->physicalDeviceCount = 0;
850
851 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
852 if (max_devices < 1)
853 return VK_ERROR_INCOMPATIBLE_DRIVER;
854
855 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
856 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
857 devices[i]->bustype == DRM_BUS_PCI &&
858 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
859
860 result = anv_physical_device_init(&instance->physicalDevice,
861 instance, devices[i]);
862 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
863 break;
864 }
865 }
866 drmFreeDevices(devices, max_devices);
867
868 if (result == VK_SUCCESS)
869 instance->physicalDeviceCount = 1;
870
871 return result;
872 }
873
874 static VkResult
875 anv_instance_ensure_physical_device(struct anv_instance *instance)
876 {
877 if (instance->physicalDeviceCount < 0) {
878 VkResult result = anv_enumerate_devices(instance);
879 if (result != VK_SUCCESS &&
880 result != VK_ERROR_INCOMPATIBLE_DRIVER)
881 return result;
882 }
883
884 return VK_SUCCESS;
885 }
886
887 VkResult anv_EnumeratePhysicalDevices(
888 VkInstance _instance,
889 uint32_t* pPhysicalDeviceCount,
890 VkPhysicalDevice* pPhysicalDevices)
891 {
892 ANV_FROM_HANDLE(anv_instance, instance, _instance);
893 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
894
895 VkResult result = anv_instance_ensure_physical_device(instance);
896 if (result != VK_SUCCESS)
897 return result;
898
899 if (instance->physicalDeviceCount == 0)
900 return VK_SUCCESS;
901
902 assert(instance->physicalDeviceCount == 1);
903 vk_outarray_append(&out, i) {
904 *i = anv_physical_device_to_handle(&instance->physicalDevice);
905 }
906
907 return vk_outarray_status(&out);
908 }
909
910 VkResult anv_EnumeratePhysicalDeviceGroups(
911 VkInstance _instance,
912 uint32_t* pPhysicalDeviceGroupCount,
913 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
914 {
915 ANV_FROM_HANDLE(anv_instance, instance, _instance);
916 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
917 pPhysicalDeviceGroupCount);
918
919 VkResult result = anv_instance_ensure_physical_device(instance);
920 if (result != VK_SUCCESS)
921 return result;
922
923 if (instance->physicalDeviceCount == 0)
924 return VK_SUCCESS;
925
926 assert(instance->physicalDeviceCount == 1);
927
928 vk_outarray_append(&out, p) {
929 p->physicalDeviceCount = 1;
930 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
931 p->physicalDevices[0] =
932 anv_physical_device_to_handle(&instance->physicalDevice);
933 p->subsetAllocation = false;
934
935 vk_foreach_struct(ext, p->pNext)
936 anv_debug_ignored_stype(ext->sType);
937 }
938
939 return vk_outarray_status(&out);
940 }
941
942 void anv_GetPhysicalDeviceFeatures(
943 VkPhysicalDevice physicalDevice,
944 VkPhysicalDeviceFeatures* pFeatures)
945 {
946 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
947
948 *pFeatures = (VkPhysicalDeviceFeatures) {
949 .robustBufferAccess = true,
950 .fullDrawIndexUint32 = true,
951 .imageCubeArray = true,
952 .independentBlend = true,
953 .geometryShader = true,
954 .tessellationShader = true,
955 .sampleRateShading = true,
956 .dualSrcBlend = true,
957 .logicOp = true,
958 .multiDrawIndirect = true,
959 .drawIndirectFirstInstance = true,
960 .depthClamp = true,
961 .depthBiasClamp = true,
962 .fillModeNonSolid = true,
963 .depthBounds = false,
964 .wideLines = true,
965 .largePoints = true,
966 .alphaToOne = true,
967 .multiViewport = true,
968 .samplerAnisotropy = true,
969 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
970 pdevice->info.is_baytrail,
971 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
972 .textureCompressionBC = true,
973 .occlusionQueryPrecise = true,
974 .pipelineStatisticsQuery = true,
975 .fragmentStoresAndAtomics = true,
976 .shaderTessellationAndGeometryPointSize = true,
977 .shaderImageGatherExtended = true,
978 .shaderStorageImageExtendedFormats = true,
979 .shaderStorageImageMultisample = false,
980 .shaderStorageImageReadWithoutFormat = false,
981 .shaderStorageImageWriteWithoutFormat = true,
982 .shaderUniformBufferArrayDynamicIndexing = true,
983 .shaderSampledImageArrayDynamicIndexing = true,
984 .shaderStorageBufferArrayDynamicIndexing = true,
985 .shaderStorageImageArrayDynamicIndexing = true,
986 .shaderClipDistance = true,
987 .shaderCullDistance = true,
988 .shaderFloat64 = pdevice->info.gen >= 8 &&
989 pdevice->info.has_64bit_types,
990 .shaderInt64 = pdevice->info.gen >= 8 &&
991 pdevice->info.has_64bit_types,
992 .shaderInt16 = pdevice->info.gen >= 8,
993 .shaderResourceMinLod = pdevice->info.gen >= 9,
994 .variableMultisampleRate = true,
995 .inheritedQueries = true,
996 };
997
998 /* We can't do image stores in vec4 shaders */
999 pFeatures->vertexPipelineStoresAndAtomics =
1000 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
1001 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
1002
1003 struct anv_app_info *app_info = &pdevice->instance->app_info;
1004
1005 /* The new DOOM and Wolfenstein games require depthBounds without
1006 * checking for it. They seem to run fine without it so just claim it's
1007 * there and accept the consequences.
1008 */
1009 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
1010 pFeatures->depthBounds = true;
1011 }
1012
1013 void anv_GetPhysicalDeviceFeatures2(
1014 VkPhysicalDevice physicalDevice,
1015 VkPhysicalDeviceFeatures2* pFeatures)
1016 {
1017 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1018 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1019
1020 vk_foreach_struct(ext, pFeatures->pNext) {
1021 switch (ext->sType) {
1022 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1023 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1024 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1025 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1026 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1027 features->storagePushConstant8 = pdevice->info.gen >= 8;
1028 break;
1029 }
1030
1031 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1032 VkPhysicalDevice16BitStorageFeatures *features =
1033 (VkPhysicalDevice16BitStorageFeatures *)ext;
1034 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1035 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1036 features->storagePushConstant16 = pdevice->info.gen >= 8;
1037 features->storageInputOutput16 = false;
1038 break;
1039 }
1040
1041 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1042 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1043 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1044 features->bufferDeviceAddressCaptureReplay = false;
1045 features->bufferDeviceAddressMultiDevice = false;
1046 break;
1047 }
1048
1049 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1050 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1051 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1052 features->computeDerivativeGroupQuads = true;
1053 features->computeDerivativeGroupLinear = true;
1054 break;
1055 }
1056
1057 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1058 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1059 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1060 features->conditionalRendering = pdevice->info.gen >= 8 ||
1061 pdevice->info.is_haswell;
1062 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1063 pdevice->info.is_haswell;
1064 break;
1065 }
1066
1067 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1068 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1069 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1070 features->depthClipEnable = true;
1071 break;
1072 }
1073
1074 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1075 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1076 features->shaderFloat16 = pdevice->info.gen >= 8;
1077 features->shaderInt8 = pdevice->info.gen >= 8;
1078 break;
1079 }
1080
1081 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1082 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1083 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1084 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1085 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1086 features->fragmentShaderShadingRateInterlock = false;
1087 break;
1088 }
1089
1090 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1091 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1092 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1093 features->hostQueryReset = true;
1094 break;
1095 }
1096
1097 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1098 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1099 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1100 features->shaderInputAttachmentArrayDynamicIndexing = false;
1101 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1102 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1103 features->shaderUniformBufferArrayNonUniformIndexing = false;
1104 features->shaderSampledImageArrayNonUniformIndexing = true;
1105 features->shaderStorageBufferArrayNonUniformIndexing = true;
1106 features->shaderStorageImageArrayNonUniformIndexing = true;
1107 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1108 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1109 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1110 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1111 features->descriptorBindingSampledImageUpdateAfterBind = true;
1112 features->descriptorBindingStorageImageUpdateAfterBind = true;
1113 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1114 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1115 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1116 features->descriptorBindingUpdateUnusedWhilePending = true;
1117 features->descriptorBindingPartiallyBound = true;
1118 features->descriptorBindingVariableDescriptorCount = false;
1119 features->runtimeDescriptorArray = true;
1120 break;
1121 }
1122
1123 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1124 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1125 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1126 features->indexTypeUint8 = true;
1127 break;
1128 }
1129
1130 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1131 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1132 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1133 features->inlineUniformBlock = true;
1134 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1135 break;
1136 }
1137
1138 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1139 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1140 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1141 features->rectangularLines = true;
1142 features->bresenhamLines = true;
1143 features->smoothLines = true;
1144 features->stippledRectangularLines = false;
1145 features->stippledBresenhamLines = true;
1146 features->stippledSmoothLines = false;
1147 break;
1148 }
1149
1150 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1151 VkPhysicalDeviceMultiviewFeatures *features =
1152 (VkPhysicalDeviceMultiviewFeatures *)ext;
1153 features->multiview = true;
1154 features->multiviewGeometryShader = true;
1155 features->multiviewTessellationShader = true;
1156 break;
1157 }
1158
1159 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1160 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1161 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1162 features->imagelessFramebuffer = true;
1163 break;
1164 }
1165
1166 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1167 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1168 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1169 features->pipelineExecutableInfo = true;
1170 break;
1171 }
1172
1173 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1174 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1175 features->protectedMemory = false;
1176 break;
1177 }
1178
1179 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1180 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1181 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1182 features->samplerYcbcrConversion = true;
1183 break;
1184 }
1185
1186 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1187 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1188 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1189 features->scalarBlockLayout = true;
1190 break;
1191 }
1192
1193 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1194 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1195 features->shaderBufferInt64Atomics =
1196 pdevice->info.gen >= 9 && pdevice->use_softpin;
1197 features->shaderSharedInt64Atomics = VK_FALSE;
1198 break;
1199 }
1200
1201 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1202 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1203 features->shaderDemoteToHelperInvocation = true;
1204 break;
1205 }
1206
1207 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1208 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1209 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1210 features->shaderSubgroupClock = true;
1211 features->shaderDeviceClock = false;
1212 break;
1213 }
1214
1215 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1216 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1217 features->shaderDrawParameters = true;
1218 break;
1219 }
1220
1221 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1222 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1223 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1224 features->shaderSubgroupExtendedTypes = true;
1225 break;
1226 }
1227
1228 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1229 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1230 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1231 features->subgroupSizeControl = true;
1232 features->computeFullSubgroups = true;
1233 break;
1234 }
1235
1236 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1237 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1238 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1239 features->texelBufferAlignment = true;
1240 break;
1241 }
1242
1243 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1244 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1245 features->variablePointersStorageBuffer = true;
1246 features->variablePointers = true;
1247 break;
1248 }
1249
1250 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1251 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1252 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1253 features->transformFeedback = true;
1254 features->geometryStreams = true;
1255 break;
1256 }
1257
1258 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1259 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1260 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1261 features->uniformBufferStandardLayout = true;
1262 break;
1263 }
1264
1265 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1266 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1267 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1268 features->vertexAttributeInstanceRateDivisor = true;
1269 features->vertexAttributeInstanceRateZeroDivisor = true;
1270 break;
1271 }
1272
1273 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1274 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1275 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1276 features->ycbcrImageArrays = true;
1277 break;
1278 }
1279
1280 default:
1281 anv_debug_ignored_stype(ext->sType);
1282 break;
1283 }
1284 }
1285 }
1286
1287 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1288
1289 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1290 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1291
1292 void anv_GetPhysicalDeviceProperties(
1293 VkPhysicalDevice physicalDevice,
1294 VkPhysicalDeviceProperties* pProperties)
1295 {
1296 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1297 const struct gen_device_info *devinfo = &pdevice->info;
1298
1299 /* See assertions made when programming the buffer surface state. */
1300 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1301 (1ul << 30) : (1ul << 27);
1302
1303 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1304 const uint32_t max_textures =
1305 pdevice->has_bindless_images ? UINT16_MAX : 128;
1306 const uint32_t max_samplers =
1307 pdevice->has_bindless_samplers ? UINT16_MAX :
1308 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1309 const uint32_t max_images =
1310 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1311
1312 /* If we can use bindless for everything, claim a high per-stage limit,
1313 * otherwise use the binding table size, minus the slots reserved for
1314 * render targets and one slot for the descriptor buffer. */
1315 const uint32_t max_per_stage =
1316 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1317 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1318
1319 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1320
1321 VkSampleCountFlags sample_counts =
1322 isl_device_get_sample_counts(&pdevice->isl_dev);
1323
1324
1325 VkPhysicalDeviceLimits limits = {
1326 .maxImageDimension1D = (1 << 14),
1327 .maxImageDimension2D = (1 << 14),
1328 .maxImageDimension3D = (1 << 11),
1329 .maxImageDimensionCube = (1 << 14),
1330 .maxImageArrayLayers = (1 << 11),
1331 .maxTexelBufferElements = 128 * 1024 * 1024,
1332 .maxUniformBufferRange = (1ul << 27),
1333 .maxStorageBufferRange = max_raw_buffer_sz,
1334 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1335 .maxMemoryAllocationCount = UINT32_MAX,
1336 .maxSamplerAllocationCount = 64 * 1024,
1337 .bufferImageGranularity = 64, /* A cache line */
1338 .sparseAddressSpaceSize = 0,
1339 .maxBoundDescriptorSets = MAX_SETS,
1340 .maxPerStageDescriptorSamplers = max_samplers,
1341 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1342 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1343 .maxPerStageDescriptorSampledImages = max_textures,
1344 .maxPerStageDescriptorStorageImages = max_images,
1345 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1346 .maxPerStageResources = max_per_stage,
1347 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1348 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1349 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1350 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1351 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1352 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1353 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1354 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1355 .maxVertexInputAttributes = MAX_VBS,
1356 .maxVertexInputBindings = MAX_VBS,
1357 .maxVertexInputAttributeOffset = 2047,
1358 .maxVertexInputBindingStride = 2048,
1359 .maxVertexOutputComponents = 128,
1360 .maxTessellationGenerationLevel = 64,
1361 .maxTessellationPatchSize = 32,
1362 .maxTessellationControlPerVertexInputComponents = 128,
1363 .maxTessellationControlPerVertexOutputComponents = 128,
1364 .maxTessellationControlPerPatchOutputComponents = 128,
1365 .maxTessellationControlTotalOutputComponents = 2048,
1366 .maxTessellationEvaluationInputComponents = 128,
1367 .maxTessellationEvaluationOutputComponents = 128,
1368 .maxGeometryShaderInvocations = 32,
1369 .maxGeometryInputComponents = 64,
1370 .maxGeometryOutputComponents = 128,
1371 .maxGeometryOutputVertices = 256,
1372 .maxGeometryTotalOutputComponents = 1024,
1373 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1374 .maxFragmentOutputAttachments = 8,
1375 .maxFragmentDualSrcAttachments = 1,
1376 .maxFragmentCombinedOutputResources = 8,
1377 .maxComputeSharedMemorySize = 64 * 1024,
1378 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1379 .maxComputeWorkGroupInvocations = max_workgroup_size,
1380 .maxComputeWorkGroupSize = {
1381 max_workgroup_size,
1382 max_workgroup_size,
1383 max_workgroup_size,
1384 },
1385 .subPixelPrecisionBits = 8,
1386 .subTexelPrecisionBits = 8,
1387 .mipmapPrecisionBits = 8,
1388 .maxDrawIndexedIndexValue = UINT32_MAX,
1389 .maxDrawIndirectCount = UINT32_MAX,
1390 .maxSamplerLodBias = 16,
1391 .maxSamplerAnisotropy = 16,
1392 .maxViewports = MAX_VIEWPORTS,
1393 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1394 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1395 .viewportSubPixelBits = 13, /* We take a float? */
1396 .minMemoryMapAlignment = 4096, /* A page */
1397 /* The dataport requires texel alignment so we need to assume a worst
1398 * case of R32G32B32A32 which is 16 bytes.
1399 */
1400 .minTexelBufferOffsetAlignment = 16,
1401 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1402 .minUniformBufferOffsetAlignment = 32,
1403 .minStorageBufferOffsetAlignment = 4,
1404 .minTexelOffset = -8,
1405 .maxTexelOffset = 7,
1406 .minTexelGatherOffset = -32,
1407 .maxTexelGatherOffset = 31,
1408 .minInterpolationOffset = -0.5,
1409 .maxInterpolationOffset = 0.4375,
1410 .subPixelInterpolationOffsetBits = 4,
1411 .maxFramebufferWidth = (1 << 14),
1412 .maxFramebufferHeight = (1 << 14),
1413 .maxFramebufferLayers = (1 << 11),
1414 .framebufferColorSampleCounts = sample_counts,
1415 .framebufferDepthSampleCounts = sample_counts,
1416 .framebufferStencilSampleCounts = sample_counts,
1417 .framebufferNoAttachmentsSampleCounts = sample_counts,
1418 .maxColorAttachments = MAX_RTS,
1419 .sampledImageColorSampleCounts = sample_counts,
1420 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1421 .sampledImageDepthSampleCounts = sample_counts,
1422 .sampledImageStencilSampleCounts = sample_counts,
1423 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1424 .maxSampleMaskWords = 1,
1425 .timestampComputeAndGraphics = true,
1426 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1427 .maxClipDistances = 8,
1428 .maxCullDistances = 8,
1429 .maxCombinedClipAndCullDistances = 8,
1430 .discreteQueuePriorities = 2,
1431 .pointSizeRange = { 0.125, 255.875 },
1432 .lineWidthRange = {
1433 0.0,
1434 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1435 2047.9921875 : 7.9921875,
1436 },
1437 .pointSizeGranularity = (1.0 / 8.0),
1438 .lineWidthGranularity = (1.0 / 128.0),
1439 .strictLines = false,
1440 .standardSampleLocations = true,
1441 .optimalBufferCopyOffsetAlignment = 128,
1442 .optimalBufferCopyRowPitchAlignment = 128,
1443 .nonCoherentAtomSize = 64,
1444 };
1445
1446 *pProperties = (VkPhysicalDeviceProperties) {
1447 .apiVersion = anv_physical_device_api_version(pdevice),
1448 .driverVersion = vk_get_driver_version(),
1449 .vendorID = 0x8086,
1450 .deviceID = pdevice->chipset_id,
1451 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1452 .limits = limits,
1453 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1454 };
1455
1456 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1457 "%s", pdevice->name);
1458 memcpy(pProperties->pipelineCacheUUID,
1459 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1460 }
1461
1462 void anv_GetPhysicalDeviceProperties2(
1463 VkPhysicalDevice physicalDevice,
1464 VkPhysicalDeviceProperties2* pProperties)
1465 {
1466 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1467
1468 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1469
1470 vk_foreach_struct(ext, pProperties->pNext) {
1471 switch (ext->sType) {
1472 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1473 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1474 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1475
1476 /* We support all of the depth resolve modes */
1477 props->supportedDepthResolveModes =
1478 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1479 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1480 VK_RESOLVE_MODE_MIN_BIT_KHR |
1481 VK_RESOLVE_MODE_MAX_BIT_KHR;
1482
1483 /* Average doesn't make sense for stencil so we don't support that */
1484 props->supportedStencilResolveModes =
1485 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1486 if (pdevice->info.gen >= 8) {
1487 /* The advanced stencil resolve modes currently require stencil
1488 * sampling be supported by the hardware.
1489 */
1490 props->supportedStencilResolveModes |=
1491 VK_RESOLVE_MODE_MIN_BIT_KHR |
1492 VK_RESOLVE_MODE_MAX_BIT_KHR;
1493 }
1494
1495 props->independentResolveNone = true;
1496 props->independentResolve = true;
1497 break;
1498 }
1499
1500 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1501 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1502 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1503
1504 /* It's a bit hard to exactly map our implementation to the limits
1505 * described here. The bindless surface handle in the extended
1506 * message descriptors is 20 bits and it's an index into the table of
1507 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1508 * address. Given that most things consume two surface states per
1509 * view (general/sampled for textures and write-only/read-write for
1510 * images), we claim 2^19 things.
1511 *
1512 * For SSBOs, we just use A64 messages so there is no real limit
1513 * there beyond the limit on the total size of a descriptor set.
1514 */
1515 const unsigned max_bindless_views = 1 << 19;
1516
1517 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1518 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1519 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1520 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1521 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1522 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1523 props->robustBufferAccessUpdateAfterBind = true;
1524 props->quadDivergentImplicitLod = false;
1525 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1526 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1527 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1528 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1529 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1530 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1531 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1532 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1533 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1534 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1535 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1536 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1537 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1538 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1539 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1540 break;
1541 }
1542
1543 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1544 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1545 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1546
1547 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1548 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1549 "Intel open-source Mesa driver");
1550
1551 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1552 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1553
1554 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1555 .major = 1,
1556 .minor = 1,
1557 .subminor = 2,
1558 .patch = 0,
1559 };
1560 break;
1561 }
1562
1563 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1564 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1565 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1566 /* Userptr needs page aligned memory. */
1567 props->minImportedHostPointerAlignment = 4096;
1568 break;
1569 }
1570
1571 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1572 VkPhysicalDeviceIDProperties *id_props =
1573 (VkPhysicalDeviceIDProperties *)ext;
1574 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1575 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1576 /* The LUID is for Windows. */
1577 id_props->deviceLUIDValid = false;
1578 break;
1579 }
1580
1581 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1582 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1583 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1584 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1585 props->maxPerStageDescriptorInlineUniformBlocks =
1586 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1587 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1588 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1589 props->maxDescriptorSetInlineUniformBlocks =
1590 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1591 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1592 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1593 break;
1594 }
1595
1596 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1597 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1598 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1599 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1600 * Sampling Rules - Legacy Mode", it says the following:
1601 *
1602 * "Note that the device divides a pixel into a 16x16 array of
1603 * subpixels, referenced by their upper left corners."
1604 *
1605 * This is the only known reference in the PRMs to the subpixel
1606 * precision of line rasterization and a "16x16 array of subpixels"
1607 * implies 4 subpixel precision bits. Empirical testing has shown
1608 * that 4 subpixel precision bits applies to all line rasterization
1609 * types.
1610 */
1611 props->lineSubPixelPrecisionBits = 4;
1612 break;
1613 }
1614
1615 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1616 VkPhysicalDeviceMaintenance3Properties *props =
1617 (VkPhysicalDeviceMaintenance3Properties *)ext;
1618 /* This value doesn't matter for us today as our per-stage
1619 * descriptors are the real limit.
1620 */
1621 props->maxPerSetDescriptors = 1024;
1622 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1623 break;
1624 }
1625
1626 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1627 VkPhysicalDeviceMultiviewProperties *properties =
1628 (VkPhysicalDeviceMultiviewProperties *)ext;
1629 properties->maxMultiviewViewCount = 16;
1630 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1631 break;
1632 }
1633
1634 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1635 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1636 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1637 properties->pciDomain = pdevice->pci_info.domain;
1638 properties->pciBus = pdevice->pci_info.bus;
1639 properties->pciDevice = pdevice->pci_info.device;
1640 properties->pciFunction = pdevice->pci_info.function;
1641 break;
1642 }
1643
1644 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1645 VkPhysicalDevicePointClippingProperties *properties =
1646 (VkPhysicalDevicePointClippingProperties *) ext;
1647 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1648 break;
1649 }
1650
1651 #pragma GCC diagnostic push
1652 #pragma GCC diagnostic ignored "-Wswitch"
1653 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1654 VkPhysicalDevicePresentationPropertiesANDROID *props =
1655 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1656 props->sharedImage = VK_FALSE;
1657 break;
1658 }
1659 #pragma GCC diagnostic pop
1660
1661 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1662 VkPhysicalDeviceProtectedMemoryProperties *props =
1663 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1664 props->protectedNoFault = false;
1665 break;
1666 }
1667
1668 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1669 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1670 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1671
1672 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1673 break;
1674 }
1675
1676 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1677 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1678 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1679 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1680 properties->filterMinmaxSingleComponentFormats = true;
1681 break;
1682 }
1683
1684 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1685 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1686
1687 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1688
1689 VkShaderStageFlags scalar_stages = 0;
1690 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1691 if (pdevice->compiler->scalar_stage[stage])
1692 scalar_stages |= mesa_to_vk_shader_stage(stage);
1693 }
1694 properties->supportedStages = scalar_stages;
1695
1696 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1697 VK_SUBGROUP_FEATURE_VOTE_BIT |
1698 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1699 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1700 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1701 VK_SUBGROUP_FEATURE_QUAD_BIT;
1702 if (pdevice->info.gen >= 8) {
1703 /* TODO: There's no technical reason why these can't be made to
1704 * work on gen7 but they don't at the moment so it's best to leave
1705 * the feature disabled than enabled and broken.
1706 */
1707 properties->supportedOperations |=
1708 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1709 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1710 }
1711 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1712 break;
1713 }
1714
1715 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1716 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1717 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1718 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1719 props->minSubgroupSize = 8;
1720 props->maxSubgroupSize = 32;
1721 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1722 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1723 break;
1724 }
1725 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1726 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1727 properties->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1728 properties->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1729
1730 /* Broadwell does not support HF denorms and there are restrictions
1731 * other gens. According to Kabylake's PRM:
1732 *
1733 * "math - Extended Math Function
1734 * [...]
1735 * Restriction : Half-float denorms are always retained."
1736 */
1737 properties->shaderDenormFlushToZeroFloat16 = false;
1738 properties->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1739 properties->shaderRoundingModeRTEFloat16 = true;
1740 properties->shaderRoundingModeRTZFloat16 = true;
1741 properties->shaderSignedZeroInfNanPreserveFloat16 = true;
1742
1743 properties->shaderDenormFlushToZeroFloat32 = true;
1744 properties->shaderDenormPreserveFloat32 = true;
1745 properties->shaderRoundingModeRTEFloat32 = true;
1746 properties->shaderRoundingModeRTZFloat32 = true;
1747 properties->shaderSignedZeroInfNanPreserveFloat32 = true;
1748
1749 properties->shaderDenormFlushToZeroFloat64 = true;
1750 properties->shaderDenormPreserveFloat64 = true;
1751 properties->shaderRoundingModeRTEFloat64 = true;
1752 properties->shaderRoundingModeRTZFloat64 = true;
1753 properties->shaderSignedZeroInfNanPreserveFloat64 = true;
1754 break;
1755 }
1756
1757 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1758 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1759 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1760
1761 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1762 * Base Address:
1763 *
1764 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1765 * specifies the base address of the first element of the surface,
1766 * computed in software by adding the surface base address to the
1767 * byte offset of the element in the buffer. The base address must
1768 * be aligned to element size."
1769 *
1770 * The typed dataport messages require that things be texel aligned.
1771 * Otherwise, we may just load/store the wrong data or, in the worst
1772 * case, there may be hangs.
1773 */
1774 props->storageTexelBufferOffsetAlignmentBytes = 16;
1775 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1776
1777 /* The sampler, however, is much more forgiving and it can handle
1778 * arbitrary byte alignment for linear and buffer surfaces. It's
1779 * hard to find a good PRM citation for this but years of empirical
1780 * experience demonstrate that this is true.
1781 */
1782 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1783 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1784 break;
1785 }
1786
1787 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1788 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1789 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1790
1791 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1792 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1793 props->maxTransformFeedbackBufferSize = (1ull << 32);
1794 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1795 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1796 props->maxTransformFeedbackBufferDataStride = 2048;
1797 props->transformFeedbackQueries = true;
1798 props->transformFeedbackStreamsLinesTriangles = false;
1799 props->transformFeedbackRasterizationStreamSelect = false;
1800 props->transformFeedbackDraw = true;
1801 break;
1802 }
1803
1804 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1805 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1806 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1807 /* We have to restrict this a bit for multiview */
1808 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1809 break;
1810 }
1811
1812 default:
1813 anv_debug_ignored_stype(ext->sType);
1814 break;
1815 }
1816 }
1817 }
1818
1819 /* We support exactly one queue family. */
1820 static const VkQueueFamilyProperties
1821 anv_queue_family_properties = {
1822 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1823 VK_QUEUE_COMPUTE_BIT |
1824 VK_QUEUE_TRANSFER_BIT,
1825 .queueCount = 1,
1826 .timestampValidBits = 36, /* XXX: Real value here */
1827 .minImageTransferGranularity = { 1, 1, 1 },
1828 };
1829
1830 void anv_GetPhysicalDeviceQueueFamilyProperties(
1831 VkPhysicalDevice physicalDevice,
1832 uint32_t* pCount,
1833 VkQueueFamilyProperties* pQueueFamilyProperties)
1834 {
1835 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1836
1837 vk_outarray_append(&out, p) {
1838 *p = anv_queue_family_properties;
1839 }
1840 }
1841
1842 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1843 VkPhysicalDevice physicalDevice,
1844 uint32_t* pQueueFamilyPropertyCount,
1845 VkQueueFamilyProperties2* pQueueFamilyProperties)
1846 {
1847
1848 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1849
1850 vk_outarray_append(&out, p) {
1851 p->queueFamilyProperties = anv_queue_family_properties;
1852
1853 vk_foreach_struct(s, p->pNext) {
1854 anv_debug_ignored_stype(s->sType);
1855 }
1856 }
1857 }
1858
1859 void anv_GetPhysicalDeviceMemoryProperties(
1860 VkPhysicalDevice physicalDevice,
1861 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1862 {
1863 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1864
1865 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1866 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1867 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1868 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1869 .heapIndex = physical_device->memory.types[i].heapIndex,
1870 };
1871 }
1872
1873 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1874 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1875 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1876 .size = physical_device->memory.heaps[i].size,
1877 .flags = physical_device->memory.heaps[i].flags,
1878 };
1879 }
1880 }
1881
1882 static void
1883 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1884 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1885 {
1886 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1887 uint64_t sys_available = get_available_system_memory();
1888 assert(sys_available > 0);
1889
1890 VkDeviceSize total_heaps_size = 0;
1891 for (size_t i = 0; i < device->memory.heap_count; i++)
1892 total_heaps_size += device->memory.heaps[i].size;
1893
1894 for (size_t i = 0; i < device->memory.heap_count; i++) {
1895 VkDeviceSize heap_size = device->memory.heaps[i].size;
1896 VkDeviceSize heap_used = device->memory.heaps[i].used;
1897 VkDeviceSize heap_budget;
1898
1899 double heap_proportion = (double) heap_size / total_heaps_size;
1900 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1901
1902 /*
1903 * Let's not incite the app to starve the system: report at most 90% of
1904 * available system memory.
1905 */
1906 uint64_t heap_available = sys_available_prop * 9 / 10;
1907 heap_budget = MIN2(heap_size, heap_used + heap_available);
1908
1909 /*
1910 * Round down to the nearest MB
1911 */
1912 heap_budget &= ~((1ull << 20) - 1);
1913
1914 /*
1915 * The heapBudget value must be non-zero for array elements less than
1916 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1917 * value must be less than or equal to VkMemoryHeap::size for each heap.
1918 */
1919 assert(0 < heap_budget && heap_budget <= heap_size);
1920
1921 memoryBudget->heapUsage[i] = heap_used;
1922 memoryBudget->heapBudget[i] = heap_budget;
1923 }
1924
1925 /* The heapBudget and heapUsage values must be zero for array elements
1926 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1927 */
1928 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1929 memoryBudget->heapBudget[i] = 0;
1930 memoryBudget->heapUsage[i] = 0;
1931 }
1932 }
1933
1934 void anv_GetPhysicalDeviceMemoryProperties2(
1935 VkPhysicalDevice physicalDevice,
1936 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1937 {
1938 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1939 &pMemoryProperties->memoryProperties);
1940
1941 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1942 switch (ext->sType) {
1943 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1944 anv_get_memory_budget(physicalDevice, (void*)ext);
1945 break;
1946 default:
1947 anv_debug_ignored_stype(ext->sType);
1948 break;
1949 }
1950 }
1951 }
1952
1953 void
1954 anv_GetDeviceGroupPeerMemoryFeatures(
1955 VkDevice device,
1956 uint32_t heapIndex,
1957 uint32_t localDeviceIndex,
1958 uint32_t remoteDeviceIndex,
1959 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1960 {
1961 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1962 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1963 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1964 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1965 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1966 }
1967
1968 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1969 VkInstance _instance,
1970 const char* pName)
1971 {
1972 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1973
1974 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1975 * when we have to return valid function pointers, NULL, or it's left
1976 * undefined. See the table for exact details.
1977 */
1978 if (pName == NULL)
1979 return NULL;
1980
1981 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1982 if (strcmp(pName, "vk" #entrypoint) == 0) \
1983 return (PFN_vkVoidFunction)anv_##entrypoint
1984
1985 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1986 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1987 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1988 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1989
1990 #undef LOOKUP_ANV_ENTRYPOINT
1991
1992 if (instance == NULL)
1993 return NULL;
1994
1995 int idx = anv_get_instance_entrypoint_index(pName);
1996 if (idx >= 0)
1997 return instance->dispatch.entrypoints[idx];
1998
1999 idx = anv_get_physical_device_entrypoint_index(pName);
2000 if (idx >= 0)
2001 return instance->physicalDevice.dispatch.entrypoints[idx];
2002
2003 idx = anv_get_device_entrypoint_index(pName);
2004 if (idx >= 0)
2005 return instance->device_dispatch.entrypoints[idx];
2006
2007 return NULL;
2008 }
2009
2010 /* With version 1+ of the loader interface the ICD should expose
2011 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2012 */
2013 PUBLIC
2014 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2015 VkInstance instance,
2016 const char* pName);
2017
2018 PUBLIC
2019 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2020 VkInstance instance,
2021 const char* pName)
2022 {
2023 return anv_GetInstanceProcAddr(instance, pName);
2024 }
2025
2026 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2027 VkDevice _device,
2028 const char* pName)
2029 {
2030 ANV_FROM_HANDLE(anv_device, device, _device);
2031
2032 if (!device || !pName)
2033 return NULL;
2034
2035 int idx = anv_get_device_entrypoint_index(pName);
2036 if (idx < 0)
2037 return NULL;
2038
2039 return device->dispatch.entrypoints[idx];
2040 }
2041
2042 /* With version 4+ of the loader interface the ICD should expose
2043 * vk_icdGetPhysicalDeviceProcAddr()
2044 */
2045 PUBLIC
2046 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2047 VkInstance _instance,
2048 const char* pName);
2049
2050 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2051 VkInstance _instance,
2052 const char* pName)
2053 {
2054 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2055
2056 if (!pName || !instance)
2057 return NULL;
2058
2059 int idx = anv_get_physical_device_entrypoint_index(pName);
2060 if (idx < 0)
2061 return NULL;
2062
2063 return instance->physicalDevice.dispatch.entrypoints[idx];
2064 }
2065
2066
2067 VkResult
2068 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2069 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2070 const VkAllocationCallbacks* pAllocator,
2071 VkDebugReportCallbackEXT* pCallback)
2072 {
2073 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2074 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2075 pCreateInfo, pAllocator, &instance->alloc,
2076 pCallback);
2077 }
2078
2079 void
2080 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2081 VkDebugReportCallbackEXT _callback,
2082 const VkAllocationCallbacks* pAllocator)
2083 {
2084 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2085 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2086 _callback, pAllocator, &instance->alloc);
2087 }
2088
2089 void
2090 anv_DebugReportMessageEXT(VkInstance _instance,
2091 VkDebugReportFlagsEXT flags,
2092 VkDebugReportObjectTypeEXT objectType,
2093 uint64_t object,
2094 size_t location,
2095 int32_t messageCode,
2096 const char* pLayerPrefix,
2097 const char* pMessage)
2098 {
2099 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2100 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2101 object, location, messageCode, pLayerPrefix, pMessage);
2102 }
2103
2104 static void
2105 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
2106 {
2107 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2108 queue->device = device;
2109 queue->flags = 0;
2110 }
2111
2112 static void
2113 anv_queue_finish(struct anv_queue *queue)
2114 {
2115 }
2116
2117 static struct anv_state
2118 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2119 {
2120 struct anv_state state;
2121
2122 state = anv_state_pool_alloc(pool, size, align);
2123 memcpy(state.map, p, size);
2124
2125 return state;
2126 }
2127
2128 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2129 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2130 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2131 * color as a separate entry /after/ the float color. The layout of this entry
2132 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2133 *
2134 * Since we don't know the format/bpp, we can't make any of the border colors
2135 * containing '1' work for all formats, as it would be in the wrong place for
2136 * some of them. We opt to make 32-bit integers work as this seems like the
2137 * most common option. Fortunately, transparent black works regardless, as
2138 * all zeroes is the same in every bit-size.
2139 */
2140 struct hsw_border_color {
2141 float float32[4];
2142 uint32_t _pad0[12];
2143 uint32_t uint32[4];
2144 uint32_t _pad1[108];
2145 };
2146
2147 struct gen8_border_color {
2148 union {
2149 float float32[4];
2150 uint32_t uint32[4];
2151 };
2152 /* Pad out to 64 bytes */
2153 uint32_t _pad[12];
2154 };
2155
2156 static void
2157 anv_device_init_border_colors(struct anv_device *device)
2158 {
2159 if (device->info.is_haswell) {
2160 static const struct hsw_border_color border_colors[] = {
2161 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2162 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2163 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2164 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2165 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2166 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2167 };
2168
2169 device->border_colors =
2170 anv_state_pool_emit_data(&device->dynamic_state_pool,
2171 sizeof(border_colors), 512, border_colors);
2172 } else {
2173 static const struct gen8_border_color border_colors[] = {
2174 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2175 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2176 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2177 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2178 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2179 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2180 };
2181
2182 device->border_colors =
2183 anv_state_pool_emit_data(&device->dynamic_state_pool,
2184 sizeof(border_colors), 64, border_colors);
2185 }
2186 }
2187
2188 static void
2189 anv_device_init_trivial_batch(struct anv_device *device)
2190 {
2191 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
2192
2193 if (device->instance->physicalDevice.has_exec_async)
2194 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
2195
2196 if (device->instance->physicalDevice.use_softpin)
2197 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
2198
2199 anv_vma_alloc(device, &device->trivial_batch_bo);
2200
2201 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
2202 0, 4096, 0);
2203
2204 struct anv_batch batch = {
2205 .start = map,
2206 .next = map,
2207 .end = map + 4096,
2208 };
2209
2210 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2211 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2212
2213 if (!device->info.has_llc)
2214 gen_clflush_range(map, batch.next - map);
2215
2216 anv_gem_munmap(map, device->trivial_batch_bo.size);
2217 }
2218
2219 VkResult anv_EnumerateDeviceExtensionProperties(
2220 VkPhysicalDevice physicalDevice,
2221 const char* pLayerName,
2222 uint32_t* pPropertyCount,
2223 VkExtensionProperties* pProperties)
2224 {
2225 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2226 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2227
2228 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2229 if (device->supported_extensions.extensions[i]) {
2230 vk_outarray_append(&out, prop) {
2231 *prop = anv_device_extensions[i];
2232 }
2233 }
2234 }
2235
2236 return vk_outarray_status(&out);
2237 }
2238
2239 static void
2240 anv_device_init_dispatch(struct anv_device *device)
2241 {
2242 const struct anv_device_dispatch_table *genX_table;
2243 switch (device->info.gen) {
2244 case 12:
2245 genX_table = &gen12_device_dispatch_table;
2246 break;
2247 case 11:
2248 genX_table = &gen11_device_dispatch_table;
2249 break;
2250 case 10:
2251 genX_table = &gen10_device_dispatch_table;
2252 break;
2253 case 9:
2254 genX_table = &gen9_device_dispatch_table;
2255 break;
2256 case 8:
2257 genX_table = &gen8_device_dispatch_table;
2258 break;
2259 case 7:
2260 if (device->info.is_haswell)
2261 genX_table = &gen75_device_dispatch_table;
2262 else
2263 genX_table = &gen7_device_dispatch_table;
2264 break;
2265 default:
2266 unreachable("unsupported gen\n");
2267 }
2268
2269 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2270 /* Vulkan requires that entrypoints for extensions which have not been
2271 * enabled must not be advertised.
2272 */
2273 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2274 &device->instance->enabled_extensions,
2275 &device->enabled_extensions)) {
2276 device->dispatch.entrypoints[i] = NULL;
2277 } else if (genX_table->entrypoints[i]) {
2278 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2279 } else {
2280 device->dispatch.entrypoints[i] =
2281 anv_device_dispatch_table.entrypoints[i];
2282 }
2283 }
2284 }
2285
2286 static int
2287 vk_priority_to_gen(int priority)
2288 {
2289 switch (priority) {
2290 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2291 return GEN_CONTEXT_LOW_PRIORITY;
2292 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2293 return GEN_CONTEXT_MEDIUM_PRIORITY;
2294 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2295 return GEN_CONTEXT_HIGH_PRIORITY;
2296 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2297 return GEN_CONTEXT_REALTIME_PRIORITY;
2298 default:
2299 unreachable("Invalid priority");
2300 }
2301 }
2302
2303 static void
2304 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2305 {
2306 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2307
2308 if (device->instance->physicalDevice.has_exec_async)
2309 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2310
2311 if (device->instance->physicalDevice.use_softpin)
2312 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2313
2314 anv_vma_alloc(device, &device->hiz_clear_bo);
2315
2316 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2317 0, 4096, 0);
2318
2319 union isl_color_value hiz_clear = { .u32 = { 0, } };
2320 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2321
2322 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2323 anv_gem_munmap(map, device->hiz_clear_bo.size);
2324 }
2325
2326 static bool
2327 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2328 struct anv_block_pool *pool,
2329 uint64_t address)
2330 {
2331 for (uint32_t i = 0; i < pool->nbos; i++) {
2332 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2333 uint32_t bo_size = pool->bos[i].size;
2334 if (address >= bo_address && address < (bo_address + bo_size)) {
2335 *ret = (struct gen_batch_decode_bo) {
2336 .addr = bo_address,
2337 .size = bo_size,
2338 .map = pool->bos[i].map,
2339 };
2340 return true;
2341 }
2342 }
2343 return false;
2344 }
2345
2346 /* Finding a buffer for batch decoding */
2347 static struct gen_batch_decode_bo
2348 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2349 {
2350 struct anv_device *device = v_batch;
2351 struct gen_batch_decode_bo ret_bo = {};
2352
2353 assert(ppgtt);
2354
2355 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2356 return ret_bo;
2357 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2358 return ret_bo;
2359 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2360 return ret_bo;
2361 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2362 return ret_bo;
2363
2364 if (!device->cmd_buffer_being_decoded)
2365 return (struct gen_batch_decode_bo) { };
2366
2367 struct anv_batch_bo **bo;
2368
2369 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2370 /* The decoder zeroes out the top 16 bits, so we need to as well */
2371 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2372
2373 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2374 return (struct gen_batch_decode_bo) {
2375 .addr = bo_address,
2376 .size = (*bo)->bo.size,
2377 .map = (*bo)->bo.map,
2378 };
2379 }
2380 }
2381
2382 return (struct gen_batch_decode_bo) { };
2383 }
2384
2385 VkResult anv_CreateDevice(
2386 VkPhysicalDevice physicalDevice,
2387 const VkDeviceCreateInfo* pCreateInfo,
2388 const VkAllocationCallbacks* pAllocator,
2389 VkDevice* pDevice)
2390 {
2391 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2392 VkResult result;
2393 struct anv_device *device;
2394
2395 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2396
2397 struct anv_device_extension_table enabled_extensions = { };
2398 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2399 int idx;
2400 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2401 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2402 anv_device_extensions[idx].extensionName) == 0)
2403 break;
2404 }
2405
2406 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2407 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2408
2409 if (!physical_device->supported_extensions.extensions[idx])
2410 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2411
2412 enabled_extensions.extensions[idx] = true;
2413 }
2414
2415 /* Check enabled features */
2416 if (pCreateInfo->pEnabledFeatures) {
2417 VkPhysicalDeviceFeatures supported_features;
2418 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2419 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2420 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2421 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2422 for (uint32_t i = 0; i < num_features; i++) {
2423 if (enabled_feature[i] && !supported_feature[i])
2424 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2425 }
2426 }
2427
2428 /* Check requested queues and fail if we are requested to create any
2429 * queues with flags we don't support.
2430 */
2431 assert(pCreateInfo->queueCreateInfoCount > 0);
2432 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2433 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2434 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2435 }
2436
2437 /* Check if client specified queue priority. */
2438 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2439 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2440 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2441
2442 VkQueueGlobalPriorityEXT priority =
2443 queue_priority ? queue_priority->globalPriority :
2444 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2445
2446 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2447 sizeof(*device), 8,
2448 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2449 if (!device)
2450 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2451
2452 if (INTEL_DEBUG & DEBUG_BATCH) {
2453 const unsigned decode_flags =
2454 GEN_BATCH_DECODE_FULL |
2455 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2456 GEN_BATCH_DECODE_OFFSETS |
2457 GEN_BATCH_DECODE_FLOATS;
2458
2459 gen_batch_decode_ctx_init(&device->decoder_ctx,
2460 &physical_device->info,
2461 stderr, decode_flags, NULL,
2462 decode_get_bo, NULL, device);
2463 }
2464
2465 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2466 device->instance = physical_device->instance;
2467 device->chipset_id = physical_device->chipset_id;
2468 device->no_hw = physical_device->no_hw;
2469 device->_lost = false;
2470
2471 if (pAllocator)
2472 device->alloc = *pAllocator;
2473 else
2474 device->alloc = physical_device->instance->alloc;
2475
2476 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2477 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2478 if (device->fd == -1) {
2479 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2480 goto fail_device;
2481 }
2482
2483 device->context_id = anv_gem_create_context(device);
2484 if (device->context_id == -1) {
2485 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2486 goto fail_fd;
2487 }
2488
2489 if (physical_device->use_softpin) {
2490 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2491 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2492 goto fail_context_id;
2493 }
2494
2495 /* keep the page with address zero out of the allocator */
2496 struct anv_memory_heap *low_heap =
2497 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2498 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2499 device->vma_lo_available = low_heap->size;
2500
2501 struct anv_memory_heap *high_heap =
2502 &physical_device->memory.heaps[0];
2503 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2504 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2505 high_heap->size;
2506 }
2507
2508 list_inithead(&device->memory_objects);
2509
2510 /* As per spec, the driver implementation may deny requests to acquire
2511 * a priority above the default priority (MEDIUM) if the caller does not
2512 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2513 * is returned.
2514 */
2515 if (physical_device->has_context_priority) {
2516 int err = anv_gem_set_context_param(device->fd, device->context_id,
2517 I915_CONTEXT_PARAM_PRIORITY,
2518 vk_priority_to_gen(priority));
2519 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2520 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2521 goto fail_vmas;
2522 }
2523 }
2524
2525 device->info = physical_device->info;
2526 device->isl_dev = physical_device->isl_dev;
2527
2528 /* On Broadwell and later, we can use batch chaining to more efficiently
2529 * implement growing command buffers. Prior to Haswell, the kernel
2530 * command parser gets in the way and we have to fall back to growing
2531 * the batch.
2532 */
2533 device->can_chain_batches = device->info.gen >= 8;
2534
2535 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2536 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2537 device->enabled_extensions = enabled_extensions;
2538
2539 anv_device_init_dispatch(device);
2540
2541 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2542 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2543 goto fail_context_id;
2544 }
2545
2546 pthread_condattr_t condattr;
2547 if (pthread_condattr_init(&condattr) != 0) {
2548 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2549 goto fail_mutex;
2550 }
2551 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2552 pthread_condattr_destroy(&condattr);
2553 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2554 goto fail_mutex;
2555 }
2556 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2557 pthread_condattr_destroy(&condattr);
2558 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2559 goto fail_mutex;
2560 }
2561 pthread_condattr_destroy(&condattr);
2562
2563 uint64_t bo_flags =
2564 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2565 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2566 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2567 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2568
2569 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2570
2571 result = anv_bo_cache_init(&device->bo_cache);
2572 if (result != VK_SUCCESS)
2573 goto fail_batch_bo_pool;
2574
2575 if (!physical_device->use_softpin)
2576 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2577
2578 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2579 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2580 16384,
2581 bo_flags);
2582 if (result != VK_SUCCESS)
2583 goto fail_bo_cache;
2584
2585 result = anv_state_pool_init(&device->instruction_state_pool, device,
2586 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2587 16384,
2588 bo_flags);
2589 if (result != VK_SUCCESS)
2590 goto fail_dynamic_state_pool;
2591
2592 result = anv_state_pool_init(&device->surface_state_pool, device,
2593 SURFACE_STATE_POOL_MIN_ADDRESS,
2594 4096,
2595 bo_flags);
2596 if (result != VK_SUCCESS)
2597 goto fail_instruction_state_pool;
2598
2599 if (physical_device->use_softpin) {
2600 result = anv_state_pool_init(&device->binding_table_pool, device,
2601 BINDING_TABLE_POOL_MIN_ADDRESS,
2602 4096,
2603 bo_flags);
2604 if (result != VK_SUCCESS)
2605 goto fail_surface_state_pool;
2606 }
2607
2608 result = anv_bo_init_new(&device->workaround_bo, device, 4096);
2609 if (result != VK_SUCCESS)
2610 goto fail_binding_table_pool;
2611
2612 if (physical_device->use_softpin)
2613 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2614
2615 if (!anv_vma_alloc(device, &device->workaround_bo))
2616 goto fail_workaround_bo;
2617
2618 anv_device_init_trivial_batch(device);
2619
2620 if (device->info.gen >= 10)
2621 anv_device_init_hiz_clear_value_bo(device);
2622
2623 anv_scratch_pool_init(device, &device->scratch_pool);
2624
2625 anv_queue_init(device, &device->queue);
2626
2627 switch (device->info.gen) {
2628 case 7:
2629 if (!device->info.is_haswell)
2630 result = gen7_init_device_state(device);
2631 else
2632 result = gen75_init_device_state(device);
2633 break;
2634 case 8:
2635 result = gen8_init_device_state(device);
2636 break;
2637 case 9:
2638 result = gen9_init_device_state(device);
2639 break;
2640 case 10:
2641 result = gen10_init_device_state(device);
2642 break;
2643 case 11:
2644 result = gen11_init_device_state(device);
2645 break;
2646 case 12:
2647 result = gen12_init_device_state(device);
2648 break;
2649 default:
2650 /* Shouldn't get here as we don't create physical devices for any other
2651 * gens. */
2652 unreachable("unhandled gen");
2653 }
2654 if (result != VK_SUCCESS)
2655 goto fail_workaround_bo;
2656
2657 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2658
2659 anv_device_init_blorp(device);
2660
2661 anv_device_init_border_colors(device);
2662
2663 anv_device_perf_init(device);
2664
2665 *pDevice = anv_device_to_handle(device);
2666
2667 return VK_SUCCESS;
2668
2669 fail_workaround_bo:
2670 anv_queue_finish(&device->queue);
2671 anv_scratch_pool_finish(device, &device->scratch_pool);
2672 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2673 anv_gem_close(device, device->workaround_bo.gem_handle);
2674 fail_binding_table_pool:
2675 if (physical_device->use_softpin)
2676 anv_state_pool_finish(&device->binding_table_pool);
2677 fail_surface_state_pool:
2678 anv_state_pool_finish(&device->surface_state_pool);
2679 fail_instruction_state_pool:
2680 anv_state_pool_finish(&device->instruction_state_pool);
2681 fail_dynamic_state_pool:
2682 anv_state_pool_finish(&device->dynamic_state_pool);
2683 fail_bo_cache:
2684 anv_bo_cache_finish(&device->bo_cache);
2685 fail_batch_bo_pool:
2686 anv_bo_pool_finish(&device->batch_bo_pool);
2687 pthread_cond_destroy(&device->queue_submit);
2688 fail_mutex:
2689 pthread_mutex_destroy(&device->mutex);
2690 fail_vmas:
2691 if (physical_device->use_softpin) {
2692 util_vma_heap_finish(&device->vma_hi);
2693 util_vma_heap_finish(&device->vma_lo);
2694 }
2695 fail_context_id:
2696 anv_gem_destroy_context(device, device->context_id);
2697 fail_fd:
2698 close(device->fd);
2699 fail_device:
2700 vk_free(&device->alloc, device);
2701
2702 return result;
2703 }
2704
2705 void anv_DestroyDevice(
2706 VkDevice _device,
2707 const VkAllocationCallbacks* pAllocator)
2708 {
2709 ANV_FROM_HANDLE(anv_device, device, _device);
2710 struct anv_physical_device *physical_device;
2711
2712 if (!device)
2713 return;
2714
2715 physical_device = &device->instance->physicalDevice;
2716
2717 anv_device_finish_blorp(device);
2718
2719 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2720
2721 anv_queue_finish(&device->queue);
2722
2723 #ifdef HAVE_VALGRIND
2724 /* We only need to free these to prevent valgrind errors. The backing
2725 * BO will go away in a couple of lines so we don't actually leak.
2726 */
2727 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2728 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2729 #endif
2730
2731 anv_scratch_pool_finish(device, &device->scratch_pool);
2732
2733 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2734 anv_vma_free(device, &device->workaround_bo);
2735 anv_gem_close(device, device->workaround_bo.gem_handle);
2736
2737 anv_vma_free(device, &device->trivial_batch_bo);
2738 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2739 if (device->info.gen >= 10)
2740 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2741
2742 if (physical_device->use_softpin)
2743 anv_state_pool_finish(&device->binding_table_pool);
2744 anv_state_pool_finish(&device->surface_state_pool);
2745 anv_state_pool_finish(&device->instruction_state_pool);
2746 anv_state_pool_finish(&device->dynamic_state_pool);
2747
2748 anv_bo_cache_finish(&device->bo_cache);
2749
2750 anv_bo_pool_finish(&device->batch_bo_pool);
2751
2752 if (physical_device->use_softpin) {
2753 util_vma_heap_finish(&device->vma_hi);
2754 util_vma_heap_finish(&device->vma_lo);
2755 }
2756
2757 pthread_cond_destroy(&device->queue_submit);
2758 pthread_mutex_destroy(&device->mutex);
2759
2760 anv_gem_destroy_context(device, device->context_id);
2761
2762 if (INTEL_DEBUG & DEBUG_BATCH)
2763 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2764
2765 close(device->fd);
2766
2767 vk_free(&device->alloc, device);
2768 }
2769
2770 VkResult anv_EnumerateInstanceLayerProperties(
2771 uint32_t* pPropertyCount,
2772 VkLayerProperties* pProperties)
2773 {
2774 if (pProperties == NULL) {
2775 *pPropertyCount = 0;
2776 return VK_SUCCESS;
2777 }
2778
2779 /* None supported at this time */
2780 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2781 }
2782
2783 VkResult anv_EnumerateDeviceLayerProperties(
2784 VkPhysicalDevice physicalDevice,
2785 uint32_t* pPropertyCount,
2786 VkLayerProperties* pProperties)
2787 {
2788 if (pProperties == NULL) {
2789 *pPropertyCount = 0;
2790 return VK_SUCCESS;
2791 }
2792
2793 /* None supported at this time */
2794 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2795 }
2796
2797 void anv_GetDeviceQueue(
2798 VkDevice _device,
2799 uint32_t queueNodeIndex,
2800 uint32_t queueIndex,
2801 VkQueue* pQueue)
2802 {
2803 ANV_FROM_HANDLE(anv_device, device, _device);
2804
2805 assert(queueIndex == 0);
2806
2807 *pQueue = anv_queue_to_handle(&device->queue);
2808 }
2809
2810 void anv_GetDeviceQueue2(
2811 VkDevice _device,
2812 const VkDeviceQueueInfo2* pQueueInfo,
2813 VkQueue* pQueue)
2814 {
2815 ANV_FROM_HANDLE(anv_device, device, _device);
2816
2817 assert(pQueueInfo->queueIndex == 0);
2818
2819 if (pQueueInfo->flags == device->queue.flags)
2820 *pQueue = anv_queue_to_handle(&device->queue);
2821 else
2822 *pQueue = NULL;
2823 }
2824
2825 VkResult
2826 _anv_device_set_lost(struct anv_device *device,
2827 const char *file, int line,
2828 const char *msg, ...)
2829 {
2830 VkResult err;
2831 va_list ap;
2832
2833 device->_lost = true;
2834
2835 va_start(ap, msg);
2836 err = __vk_errorv(device->instance, device,
2837 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2838 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2839 va_end(ap);
2840
2841 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2842 abort();
2843
2844 return err;
2845 }
2846
2847 VkResult
2848 anv_device_query_status(struct anv_device *device)
2849 {
2850 /* This isn't likely as most of the callers of this function already check
2851 * for it. However, it doesn't hurt to check and it potentially lets us
2852 * avoid an ioctl.
2853 */
2854 if (anv_device_is_lost(device))
2855 return VK_ERROR_DEVICE_LOST;
2856
2857 uint32_t active, pending;
2858 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2859 if (ret == -1) {
2860 /* We don't know the real error. */
2861 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2862 }
2863
2864 if (active) {
2865 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2866 } else if (pending) {
2867 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2868 }
2869
2870 return VK_SUCCESS;
2871 }
2872
2873 VkResult
2874 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2875 {
2876 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2877 * Other usages of the BO (such as on different hardware) will not be
2878 * flagged as "busy" by this ioctl. Use with care.
2879 */
2880 int ret = anv_gem_busy(device, bo->gem_handle);
2881 if (ret == 1) {
2882 return VK_NOT_READY;
2883 } else if (ret == -1) {
2884 /* We don't know the real error. */
2885 return anv_device_set_lost(device, "gem wait failed: %m");
2886 }
2887
2888 /* Query for device status after the busy call. If the BO we're checking
2889 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2890 * client because it clearly doesn't have valid data. Yes, this most
2891 * likely means an ioctl, but we just did an ioctl to query the busy status
2892 * so it's no great loss.
2893 */
2894 return anv_device_query_status(device);
2895 }
2896
2897 VkResult
2898 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2899 int64_t timeout)
2900 {
2901 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2902 if (ret == -1 && errno == ETIME) {
2903 return VK_TIMEOUT;
2904 } else if (ret == -1) {
2905 /* We don't know the real error. */
2906 return anv_device_set_lost(device, "gem wait failed: %m");
2907 }
2908
2909 /* Query for device status after the wait. If the BO we're waiting on got
2910 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2911 * because it clearly doesn't have valid data. Yes, this most likely means
2912 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2913 */
2914 return anv_device_query_status(device);
2915 }
2916
2917 VkResult anv_DeviceWaitIdle(
2918 VkDevice _device)
2919 {
2920 ANV_FROM_HANDLE(anv_device, device, _device);
2921 if (anv_device_is_lost(device))
2922 return VK_ERROR_DEVICE_LOST;
2923
2924 struct anv_batch batch;
2925
2926 uint32_t cmds[8];
2927 batch.start = batch.next = cmds;
2928 batch.end = (void *) cmds + sizeof(cmds);
2929
2930 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2931 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2932
2933 return anv_device_submit_simple_batch(device, &batch);
2934 }
2935
2936 bool
2937 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2938 {
2939 if (!(bo->flags & EXEC_OBJECT_PINNED))
2940 return true;
2941
2942 pthread_mutex_lock(&device->vma_mutex);
2943
2944 bo->offset = 0;
2945
2946 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2947 device->vma_hi_available >= bo->size) {
2948 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2949 if (addr) {
2950 bo->offset = gen_canonical_address(addr);
2951 assert(addr == gen_48b_address(bo->offset));
2952 device->vma_hi_available -= bo->size;
2953 }
2954 }
2955
2956 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2957 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2958 if (addr) {
2959 bo->offset = gen_canonical_address(addr);
2960 assert(addr == gen_48b_address(bo->offset));
2961 device->vma_lo_available -= bo->size;
2962 }
2963 }
2964
2965 pthread_mutex_unlock(&device->vma_mutex);
2966
2967 return bo->offset != 0;
2968 }
2969
2970 void
2971 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2972 {
2973 if (!(bo->flags & EXEC_OBJECT_PINNED))
2974 return;
2975
2976 const uint64_t addr_48b = gen_48b_address(bo->offset);
2977
2978 pthread_mutex_lock(&device->vma_mutex);
2979
2980 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2981 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2982 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2983 device->vma_lo_available += bo->size;
2984 } else {
2985 ASSERTED const struct anv_physical_device *physical_device =
2986 &device->instance->physicalDevice;
2987 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2988 addr_48b < (physical_device->memory.heaps[0].vma_start +
2989 physical_device->memory.heaps[0].vma_size));
2990 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2991 device->vma_hi_available += bo->size;
2992 }
2993
2994 pthread_mutex_unlock(&device->vma_mutex);
2995
2996 bo->offset = 0;
2997 }
2998
2999 VkResult
3000 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
3001 {
3002 uint32_t gem_handle = anv_gem_create(device, size);
3003 if (!gem_handle)
3004 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3005
3006 anv_bo_init(bo, gem_handle, size);
3007
3008 return VK_SUCCESS;
3009 }
3010
3011 VkResult anv_AllocateMemory(
3012 VkDevice _device,
3013 const VkMemoryAllocateInfo* pAllocateInfo,
3014 const VkAllocationCallbacks* pAllocator,
3015 VkDeviceMemory* pMem)
3016 {
3017 ANV_FROM_HANDLE(anv_device, device, _device);
3018 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3019 struct anv_device_memory *mem;
3020 VkResult result = VK_SUCCESS;
3021
3022 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3023
3024 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3025 assert(pAllocateInfo->allocationSize > 0);
3026
3027 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
3028 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
3029
3030 /* FINISHME: Fail if allocation request exceeds heap size. */
3031
3032 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3033 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3034 if (mem == NULL)
3035 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3036
3037 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3038 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3039 mem->map = NULL;
3040 mem->map_size = 0;
3041 mem->ahw = NULL;
3042 mem->host_ptr = NULL;
3043
3044 uint64_t bo_flags = 0;
3045
3046 assert(mem->type->heapIndex < pdevice->memory.heap_count);
3047 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
3048 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
3049
3050 const struct wsi_memory_allocate_info *wsi_info =
3051 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
3052 if (wsi_info && wsi_info->implicit_sync) {
3053 /* We need to set the WRITE flag on window system buffers so that GEM
3054 * will know we're writing to them and synchronize uses on other rings
3055 * (eg if the display server uses the blitter ring).
3056 */
3057 bo_flags |= EXEC_OBJECT_WRITE;
3058 } else if (pdevice->has_exec_async) {
3059 bo_flags |= EXEC_OBJECT_ASYNC;
3060 }
3061
3062 if (pdevice->use_softpin)
3063 bo_flags |= EXEC_OBJECT_PINNED;
3064
3065 const VkExportMemoryAllocateInfo *export_info =
3066 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
3067
3068 /* Check if we need to support Android HW buffer export. If so,
3069 * create AHardwareBuffer and import memory from it.
3070 */
3071 bool android_export = false;
3072 if (export_info && export_info->handleTypes &
3073 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3074 android_export = true;
3075
3076 /* Android memory import. */
3077 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
3078 vk_find_struct_const(pAllocateInfo->pNext,
3079 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
3080
3081 if (ahw_import_info) {
3082 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3083 if (result != VK_SUCCESS)
3084 goto fail;
3085
3086 goto success;
3087 } else if (android_export) {
3088 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3089 if (result != VK_SUCCESS)
3090 goto fail;
3091
3092 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
3093 .buffer = mem->ahw,
3094 };
3095 result = anv_import_ahw_memory(_device, mem, &import_info);
3096 if (result != VK_SUCCESS)
3097 goto fail;
3098
3099 goto success;
3100 }
3101
3102 const VkImportMemoryFdInfoKHR *fd_info =
3103 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
3104
3105 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3106 * ignored.
3107 */
3108 if (fd_info && fd_info->handleType) {
3109 /* At the moment, we support only the below handle types. */
3110 assert(fd_info->handleType ==
3111 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3112 fd_info->handleType ==
3113 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3114
3115 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
3116 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
3117 if (result != VK_SUCCESS)
3118 goto fail;
3119
3120 VkDeviceSize aligned_alloc_size =
3121 align_u64(pAllocateInfo->allocationSize, 4096);
3122
3123 /* For security purposes, we reject importing the bo if it's smaller
3124 * than the requested allocation size. This prevents a malicious client
3125 * from passing a buffer to a trusted client, lying about the size, and
3126 * telling the trusted client to try and texture from an image that goes
3127 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3128 * in the trusted client. The trusted client can protect itself against
3129 * this sort of attack but only if it can trust the buffer size.
3130 */
3131 if (mem->bo->size < aligned_alloc_size) {
3132 result = vk_errorf(device->instance, device,
3133 VK_ERROR_INVALID_EXTERNAL_HANDLE,
3134 "aligned allocationSize too large for "
3135 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3136 "%"PRIu64"B > %"PRIu64"B",
3137 aligned_alloc_size, mem->bo->size);
3138 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3139 goto fail;
3140 }
3141
3142 /* From the Vulkan spec:
3143 *
3144 * "Importing memory from a file descriptor transfers ownership of
3145 * the file descriptor from the application to the Vulkan
3146 * implementation. The application must not perform any operations on
3147 * the file descriptor after a successful import."
3148 *
3149 * If the import fails, we leave the file descriptor open.
3150 */
3151 close(fd_info->fd);
3152 goto success;
3153 }
3154
3155 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
3156 vk_find_struct_const(pAllocateInfo->pNext,
3157 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
3158 if (host_ptr_info && host_ptr_info->handleType) {
3159 if (host_ptr_info->handleType ==
3160 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3161 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3162 goto fail;
3163 }
3164
3165 assert(host_ptr_info->handleType ==
3166 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3167
3168 result = anv_bo_cache_import_host_ptr(
3169 device, &device->bo_cache, host_ptr_info->pHostPointer,
3170 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
3171
3172 if (result != VK_SUCCESS)
3173 goto fail;
3174
3175 mem->host_ptr = host_ptr_info->pHostPointer;
3176 goto success;
3177 }
3178
3179 /* Regular allocate (not importing memory). */
3180
3181 if (export_info && export_info->handleTypes)
3182 bo_flags |= ANV_BO_EXTERNAL;
3183
3184 result = anv_bo_cache_alloc(device, &device->bo_cache,
3185 pAllocateInfo->allocationSize, bo_flags,
3186 &mem->bo);
3187 if (result != VK_SUCCESS)
3188 goto fail;
3189
3190 const VkMemoryDedicatedAllocateInfo *dedicated_info =
3191 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3192 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3193 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3194
3195 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3196 * the BO. In this case, we have a dedicated allocation.
3197 */
3198 if (image->needs_set_tiling) {
3199 const uint32_t i915_tiling =
3200 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3201 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3202 image->planes[0].surface.isl.row_pitch_B,
3203 i915_tiling);
3204 if (ret) {
3205 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3206 return vk_errorf(device->instance, NULL,
3207 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3208 "failed to set BO tiling: %m");
3209 }
3210 }
3211 }
3212
3213 success:
3214 pthread_mutex_lock(&device->mutex);
3215 list_addtail(&mem->link, &device->memory_objects);
3216 pthread_mutex_unlock(&device->mutex);
3217
3218 *pMem = anv_device_memory_to_handle(mem);
3219
3220 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3221 mem->bo->size);
3222
3223 return VK_SUCCESS;
3224
3225 fail:
3226 vk_free2(&device->alloc, pAllocator, mem);
3227
3228 return result;
3229 }
3230
3231 VkResult anv_GetMemoryFdKHR(
3232 VkDevice device_h,
3233 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3234 int* pFd)
3235 {
3236 ANV_FROM_HANDLE(anv_device, dev, device_h);
3237 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3238
3239 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3240
3241 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3242 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3243
3244 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
3245 }
3246
3247 VkResult anv_GetMemoryFdPropertiesKHR(
3248 VkDevice _device,
3249 VkExternalMemoryHandleTypeFlagBits handleType,
3250 int fd,
3251 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3252 {
3253 ANV_FROM_HANDLE(anv_device, device, _device);
3254 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3255
3256 switch (handleType) {
3257 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3258 /* dma-buf can be imported as any memory type */
3259 pMemoryFdProperties->memoryTypeBits =
3260 (1 << pdevice->memory.type_count) - 1;
3261 return VK_SUCCESS;
3262
3263 default:
3264 /* The valid usage section for this function says:
3265 *
3266 * "handleType must not be one of the handle types defined as
3267 * opaque."
3268 *
3269 * So opaque handle types fall into the default "unsupported" case.
3270 */
3271 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3272 }
3273 }
3274
3275 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3276 VkDevice _device,
3277 VkExternalMemoryHandleTypeFlagBits handleType,
3278 const void* pHostPointer,
3279 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3280 {
3281 ANV_FROM_HANDLE(anv_device, device, _device);
3282
3283 assert(pMemoryHostPointerProperties->sType ==
3284 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3285
3286 switch (handleType) {
3287 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3288 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3289
3290 /* Host memory can be imported as any memory type. */
3291 pMemoryHostPointerProperties->memoryTypeBits =
3292 (1ull << pdevice->memory.type_count) - 1;
3293
3294 return VK_SUCCESS;
3295 }
3296 default:
3297 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3298 }
3299 }
3300
3301 void anv_FreeMemory(
3302 VkDevice _device,
3303 VkDeviceMemory _mem,
3304 const VkAllocationCallbacks* pAllocator)
3305 {
3306 ANV_FROM_HANDLE(anv_device, device, _device);
3307 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3308 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3309
3310 if (mem == NULL)
3311 return;
3312
3313 pthread_mutex_lock(&device->mutex);
3314 list_del(&mem->link);
3315 pthread_mutex_unlock(&device->mutex);
3316
3317 if (mem->map)
3318 anv_UnmapMemory(_device, _mem);
3319
3320 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3321 -mem->bo->size);
3322
3323 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3324
3325 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3326 if (mem->ahw)
3327 AHardwareBuffer_release(mem->ahw);
3328 #endif
3329
3330 vk_free2(&device->alloc, pAllocator, mem);
3331 }
3332
3333 VkResult anv_MapMemory(
3334 VkDevice _device,
3335 VkDeviceMemory _memory,
3336 VkDeviceSize offset,
3337 VkDeviceSize size,
3338 VkMemoryMapFlags flags,
3339 void** ppData)
3340 {
3341 ANV_FROM_HANDLE(anv_device, device, _device);
3342 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3343
3344 if (mem == NULL) {
3345 *ppData = NULL;
3346 return VK_SUCCESS;
3347 }
3348
3349 if (mem->host_ptr) {
3350 *ppData = mem->host_ptr + offset;
3351 return VK_SUCCESS;
3352 }
3353
3354 if (size == VK_WHOLE_SIZE)
3355 size = mem->bo->size - offset;
3356
3357 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3358 *
3359 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3360 * assert(size != 0);
3361 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3362 * equal to the size of the memory minus offset
3363 */
3364 assert(size > 0);
3365 assert(offset + size <= mem->bo->size);
3366
3367 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3368 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3369 * at a time is valid. We could just mmap up front and return an offset
3370 * pointer here, but that may exhaust virtual memory on 32 bit
3371 * userspace. */
3372
3373 uint32_t gem_flags = 0;
3374
3375 if (!device->info.has_llc &&
3376 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3377 gem_flags |= I915_MMAP_WC;
3378
3379 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3380 uint64_t map_offset = offset & ~4095ull;
3381 assert(offset >= map_offset);
3382 uint64_t map_size = (offset + size) - map_offset;
3383
3384 /* Let's map whole pages */
3385 map_size = align_u64(map_size, 4096);
3386
3387 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3388 map_offset, map_size, gem_flags);
3389 if (map == MAP_FAILED)
3390 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3391
3392 mem->map = map;
3393 mem->map_size = map_size;
3394
3395 *ppData = mem->map + (offset - map_offset);
3396
3397 return VK_SUCCESS;
3398 }
3399
3400 void anv_UnmapMemory(
3401 VkDevice _device,
3402 VkDeviceMemory _memory)
3403 {
3404 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3405
3406 if (mem == NULL || mem->host_ptr)
3407 return;
3408
3409 anv_gem_munmap(mem->map, mem->map_size);
3410
3411 mem->map = NULL;
3412 mem->map_size = 0;
3413 }
3414
3415 static void
3416 clflush_mapped_ranges(struct anv_device *device,
3417 uint32_t count,
3418 const VkMappedMemoryRange *ranges)
3419 {
3420 for (uint32_t i = 0; i < count; i++) {
3421 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3422 if (ranges[i].offset >= mem->map_size)
3423 continue;
3424
3425 gen_clflush_range(mem->map + ranges[i].offset,
3426 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3427 }
3428 }
3429
3430 VkResult anv_FlushMappedMemoryRanges(
3431 VkDevice _device,
3432 uint32_t memoryRangeCount,
3433 const VkMappedMemoryRange* pMemoryRanges)
3434 {
3435 ANV_FROM_HANDLE(anv_device, device, _device);
3436
3437 if (device->info.has_llc)
3438 return VK_SUCCESS;
3439
3440 /* Make sure the writes we're flushing have landed. */
3441 __builtin_ia32_mfence();
3442
3443 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3444
3445 return VK_SUCCESS;
3446 }
3447
3448 VkResult anv_InvalidateMappedMemoryRanges(
3449 VkDevice _device,
3450 uint32_t memoryRangeCount,
3451 const VkMappedMemoryRange* pMemoryRanges)
3452 {
3453 ANV_FROM_HANDLE(anv_device, device, _device);
3454
3455 if (device->info.has_llc)
3456 return VK_SUCCESS;
3457
3458 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3459
3460 /* Make sure no reads get moved up above the invalidate. */
3461 __builtin_ia32_mfence();
3462
3463 return VK_SUCCESS;
3464 }
3465
3466 void anv_GetBufferMemoryRequirements(
3467 VkDevice _device,
3468 VkBuffer _buffer,
3469 VkMemoryRequirements* pMemoryRequirements)
3470 {
3471 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3472 ANV_FROM_HANDLE(anv_device, device, _device);
3473 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3474
3475 /* The Vulkan spec (git aaed022) says:
3476 *
3477 * memoryTypeBits is a bitfield and contains one bit set for every
3478 * supported memory type for the resource. The bit `1<<i` is set if and
3479 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3480 * structure for the physical device is supported.
3481 */
3482 uint32_t memory_types = 0;
3483 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3484 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3485 if ((valid_usage & buffer->usage) == buffer->usage)
3486 memory_types |= (1u << i);
3487 }
3488
3489 /* Base alignment requirement of a cache line */
3490 uint32_t alignment = 16;
3491
3492 /* We need an alignment of 32 for pushing UBOs */
3493 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3494 alignment = MAX2(alignment, 32);
3495
3496 pMemoryRequirements->size = buffer->size;
3497 pMemoryRequirements->alignment = alignment;
3498
3499 /* Storage and Uniform buffers should have their size aligned to
3500 * 32-bits to avoid boundary checks when last DWord is not complete.
3501 * This would ensure that not internal padding would be needed for
3502 * 16-bit types.
3503 */
3504 if (device->robust_buffer_access &&
3505 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3506 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3507 pMemoryRequirements->size = align_u64(buffer->size, 4);
3508
3509 pMemoryRequirements->memoryTypeBits = memory_types;
3510 }
3511
3512 void anv_GetBufferMemoryRequirements2(
3513 VkDevice _device,
3514 const VkBufferMemoryRequirementsInfo2* pInfo,
3515 VkMemoryRequirements2* pMemoryRequirements)
3516 {
3517 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3518 &pMemoryRequirements->memoryRequirements);
3519
3520 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3521 switch (ext->sType) {
3522 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3523 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3524 requirements->prefersDedicatedAllocation = false;
3525 requirements->requiresDedicatedAllocation = false;
3526 break;
3527 }
3528
3529 default:
3530 anv_debug_ignored_stype(ext->sType);
3531 break;
3532 }
3533 }
3534 }
3535
3536 void anv_GetImageMemoryRequirements(
3537 VkDevice _device,
3538 VkImage _image,
3539 VkMemoryRequirements* pMemoryRequirements)
3540 {
3541 ANV_FROM_HANDLE(anv_image, image, _image);
3542 ANV_FROM_HANDLE(anv_device, device, _device);
3543 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3544
3545 /* The Vulkan spec (git aaed022) says:
3546 *
3547 * memoryTypeBits is a bitfield and contains one bit set for every
3548 * supported memory type for the resource. The bit `1<<i` is set if and
3549 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3550 * structure for the physical device is supported.
3551 *
3552 * All types are currently supported for images.
3553 */
3554 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3555
3556 /* We must have image allocated or imported at this point. According to the
3557 * specification, external images must have been bound to memory before
3558 * calling GetImageMemoryRequirements.
3559 */
3560 assert(image->size > 0);
3561
3562 pMemoryRequirements->size = image->size;
3563 pMemoryRequirements->alignment = image->alignment;
3564 pMemoryRequirements->memoryTypeBits = memory_types;
3565 }
3566
3567 void anv_GetImageMemoryRequirements2(
3568 VkDevice _device,
3569 const VkImageMemoryRequirementsInfo2* pInfo,
3570 VkMemoryRequirements2* pMemoryRequirements)
3571 {
3572 ANV_FROM_HANDLE(anv_device, device, _device);
3573 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3574
3575 anv_GetImageMemoryRequirements(_device, pInfo->image,
3576 &pMemoryRequirements->memoryRequirements);
3577
3578 vk_foreach_struct_const(ext, pInfo->pNext) {
3579 switch (ext->sType) {
3580 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3581 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3582 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3583 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3584 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3585 plane_reqs->planeAspect);
3586
3587 assert(image->planes[plane].offset == 0);
3588
3589 /* The Vulkan spec (git aaed022) says:
3590 *
3591 * memoryTypeBits is a bitfield and contains one bit set for every
3592 * supported memory type for the resource. The bit `1<<i` is set
3593 * if and only if the memory type `i` in the
3594 * VkPhysicalDeviceMemoryProperties structure for the physical
3595 * device is supported.
3596 *
3597 * All types are currently supported for images.
3598 */
3599 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3600 (1ull << pdevice->memory.type_count) - 1;
3601
3602 /* We must have image allocated or imported at this point. According to the
3603 * specification, external images must have been bound to memory before
3604 * calling GetImageMemoryRequirements.
3605 */
3606 assert(image->planes[plane].size > 0);
3607
3608 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3609 pMemoryRequirements->memoryRequirements.alignment =
3610 image->planes[plane].alignment;
3611 break;
3612 }
3613
3614 default:
3615 anv_debug_ignored_stype(ext->sType);
3616 break;
3617 }
3618 }
3619
3620 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3621 switch (ext->sType) {
3622 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3623 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3624 if (image->needs_set_tiling || image->external_format) {
3625 /* If we need to set the tiling for external consumers, we need a
3626 * dedicated allocation.
3627 *
3628 * See also anv_AllocateMemory.
3629 */
3630 requirements->prefersDedicatedAllocation = true;
3631 requirements->requiresDedicatedAllocation = true;
3632 } else {
3633 requirements->prefersDedicatedAllocation = false;
3634 requirements->requiresDedicatedAllocation = false;
3635 }
3636 break;
3637 }
3638
3639 default:
3640 anv_debug_ignored_stype(ext->sType);
3641 break;
3642 }
3643 }
3644 }
3645
3646 void anv_GetImageSparseMemoryRequirements(
3647 VkDevice device,
3648 VkImage image,
3649 uint32_t* pSparseMemoryRequirementCount,
3650 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3651 {
3652 *pSparseMemoryRequirementCount = 0;
3653 }
3654
3655 void anv_GetImageSparseMemoryRequirements2(
3656 VkDevice device,
3657 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3658 uint32_t* pSparseMemoryRequirementCount,
3659 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3660 {
3661 *pSparseMemoryRequirementCount = 0;
3662 }
3663
3664 void anv_GetDeviceMemoryCommitment(
3665 VkDevice device,
3666 VkDeviceMemory memory,
3667 VkDeviceSize* pCommittedMemoryInBytes)
3668 {
3669 *pCommittedMemoryInBytes = 0;
3670 }
3671
3672 static void
3673 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3674 {
3675 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3676 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3677
3678 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3679
3680 if (mem) {
3681 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3682 buffer->address = (struct anv_address) {
3683 .bo = mem->bo,
3684 .offset = pBindInfo->memoryOffset,
3685 };
3686 } else {
3687 buffer->address = ANV_NULL_ADDRESS;
3688 }
3689 }
3690
3691 VkResult anv_BindBufferMemory(
3692 VkDevice device,
3693 VkBuffer buffer,
3694 VkDeviceMemory memory,
3695 VkDeviceSize memoryOffset)
3696 {
3697 anv_bind_buffer_memory(
3698 &(VkBindBufferMemoryInfo) {
3699 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3700 .buffer = buffer,
3701 .memory = memory,
3702 .memoryOffset = memoryOffset,
3703 });
3704
3705 return VK_SUCCESS;
3706 }
3707
3708 VkResult anv_BindBufferMemory2(
3709 VkDevice device,
3710 uint32_t bindInfoCount,
3711 const VkBindBufferMemoryInfo* pBindInfos)
3712 {
3713 for (uint32_t i = 0; i < bindInfoCount; i++)
3714 anv_bind_buffer_memory(&pBindInfos[i]);
3715
3716 return VK_SUCCESS;
3717 }
3718
3719 VkResult anv_QueueBindSparse(
3720 VkQueue _queue,
3721 uint32_t bindInfoCount,
3722 const VkBindSparseInfo* pBindInfo,
3723 VkFence fence)
3724 {
3725 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3726 if (anv_device_is_lost(queue->device))
3727 return VK_ERROR_DEVICE_LOST;
3728
3729 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3730 }
3731
3732 // Event functions
3733
3734 VkResult anv_CreateEvent(
3735 VkDevice _device,
3736 const VkEventCreateInfo* pCreateInfo,
3737 const VkAllocationCallbacks* pAllocator,
3738 VkEvent* pEvent)
3739 {
3740 ANV_FROM_HANDLE(anv_device, device, _device);
3741 struct anv_state state;
3742 struct anv_event *event;
3743
3744 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3745
3746 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3747 sizeof(*event), 8);
3748 event = state.map;
3749 event->state = state;
3750 event->semaphore = VK_EVENT_RESET;
3751
3752 if (!device->info.has_llc) {
3753 /* Make sure the writes we're flushing have landed. */
3754 __builtin_ia32_mfence();
3755 __builtin_ia32_clflush(event);
3756 }
3757
3758 *pEvent = anv_event_to_handle(event);
3759
3760 return VK_SUCCESS;
3761 }
3762
3763 void anv_DestroyEvent(
3764 VkDevice _device,
3765 VkEvent _event,
3766 const VkAllocationCallbacks* pAllocator)
3767 {
3768 ANV_FROM_HANDLE(anv_device, device, _device);
3769 ANV_FROM_HANDLE(anv_event, event, _event);
3770
3771 if (!event)
3772 return;
3773
3774 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3775 }
3776
3777 VkResult anv_GetEventStatus(
3778 VkDevice _device,
3779 VkEvent _event)
3780 {
3781 ANV_FROM_HANDLE(anv_device, device, _device);
3782 ANV_FROM_HANDLE(anv_event, event, _event);
3783
3784 if (anv_device_is_lost(device))
3785 return VK_ERROR_DEVICE_LOST;
3786
3787 if (!device->info.has_llc) {
3788 /* Invalidate read cache before reading event written by GPU. */
3789 __builtin_ia32_clflush(event);
3790 __builtin_ia32_mfence();
3791
3792 }
3793
3794 return event->semaphore;
3795 }
3796
3797 VkResult anv_SetEvent(
3798 VkDevice _device,
3799 VkEvent _event)
3800 {
3801 ANV_FROM_HANDLE(anv_device, device, _device);
3802 ANV_FROM_HANDLE(anv_event, event, _event);
3803
3804 event->semaphore = VK_EVENT_SET;
3805
3806 if (!device->info.has_llc) {
3807 /* Make sure the writes we're flushing have landed. */
3808 __builtin_ia32_mfence();
3809 __builtin_ia32_clflush(event);
3810 }
3811
3812 return VK_SUCCESS;
3813 }
3814
3815 VkResult anv_ResetEvent(
3816 VkDevice _device,
3817 VkEvent _event)
3818 {
3819 ANV_FROM_HANDLE(anv_device, device, _device);
3820 ANV_FROM_HANDLE(anv_event, event, _event);
3821
3822 event->semaphore = VK_EVENT_RESET;
3823
3824 if (!device->info.has_llc) {
3825 /* Make sure the writes we're flushing have landed. */
3826 __builtin_ia32_mfence();
3827 __builtin_ia32_clflush(event);
3828 }
3829
3830 return VK_SUCCESS;
3831 }
3832
3833 // Buffer functions
3834
3835 VkResult anv_CreateBuffer(
3836 VkDevice _device,
3837 const VkBufferCreateInfo* pCreateInfo,
3838 const VkAllocationCallbacks* pAllocator,
3839 VkBuffer* pBuffer)
3840 {
3841 ANV_FROM_HANDLE(anv_device, device, _device);
3842 struct anv_buffer *buffer;
3843
3844 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3845
3846 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3847 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3848 if (buffer == NULL)
3849 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3850
3851 buffer->size = pCreateInfo->size;
3852 buffer->usage = pCreateInfo->usage;
3853 buffer->address = ANV_NULL_ADDRESS;
3854
3855 *pBuffer = anv_buffer_to_handle(buffer);
3856
3857 return VK_SUCCESS;
3858 }
3859
3860 void anv_DestroyBuffer(
3861 VkDevice _device,
3862 VkBuffer _buffer,
3863 const VkAllocationCallbacks* pAllocator)
3864 {
3865 ANV_FROM_HANDLE(anv_device, device, _device);
3866 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3867
3868 if (!buffer)
3869 return;
3870
3871 vk_free2(&device->alloc, pAllocator, buffer);
3872 }
3873
3874 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3875 VkDevice device,
3876 const VkBufferDeviceAddressInfoEXT* pInfo)
3877 {
3878 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3879
3880 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3881
3882 return anv_address_physical(buffer->address);
3883 }
3884
3885 void
3886 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3887 enum isl_format format,
3888 struct anv_address address,
3889 uint32_t range, uint32_t stride)
3890 {
3891 isl_buffer_fill_state(&device->isl_dev, state.map,
3892 .address = anv_address_physical(address),
3893 .mocs = device->default_mocs,
3894 .size_B = range,
3895 .format = format,
3896 .swizzle = ISL_SWIZZLE_IDENTITY,
3897 .stride_B = stride);
3898 }
3899
3900 void anv_DestroySampler(
3901 VkDevice _device,
3902 VkSampler _sampler,
3903 const VkAllocationCallbacks* pAllocator)
3904 {
3905 ANV_FROM_HANDLE(anv_device, device, _device);
3906 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3907
3908 if (!sampler)
3909 return;
3910
3911 if (sampler->bindless_state.map) {
3912 anv_state_pool_free(&device->dynamic_state_pool,
3913 sampler->bindless_state);
3914 }
3915
3916 vk_free2(&device->alloc, pAllocator, sampler);
3917 }
3918
3919 VkResult anv_CreateFramebuffer(
3920 VkDevice _device,
3921 const VkFramebufferCreateInfo* pCreateInfo,
3922 const VkAllocationCallbacks* pAllocator,
3923 VkFramebuffer* pFramebuffer)
3924 {
3925 ANV_FROM_HANDLE(anv_device, device, _device);
3926 struct anv_framebuffer *framebuffer;
3927
3928 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3929
3930 size_t size = sizeof(*framebuffer);
3931
3932 /* VK_KHR_imageless_framebuffer extension says:
3933 *
3934 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3935 * parameter pAttachments is ignored.
3936 */
3937 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3938 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3939 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3940 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3941 if (framebuffer == NULL)
3942 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3943
3944 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3945 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
3946 framebuffer->attachments[i] = iview;
3947 }
3948 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3949 } else {
3950 assert(device->enabled_extensions.KHR_imageless_framebuffer);
3951 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3952 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3953 if (framebuffer == NULL)
3954 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3955
3956 framebuffer->attachment_count = 0;
3957 }
3958
3959 framebuffer->width = pCreateInfo->width;
3960 framebuffer->height = pCreateInfo->height;
3961 framebuffer->layers = pCreateInfo->layers;
3962
3963 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3964
3965 return VK_SUCCESS;
3966 }
3967
3968 void anv_DestroyFramebuffer(
3969 VkDevice _device,
3970 VkFramebuffer _fb,
3971 const VkAllocationCallbacks* pAllocator)
3972 {
3973 ANV_FROM_HANDLE(anv_device, device, _device);
3974 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3975
3976 if (!fb)
3977 return;
3978
3979 vk_free2(&device->alloc, pAllocator, fb);
3980 }
3981
3982 static const VkTimeDomainEXT anv_time_domains[] = {
3983 VK_TIME_DOMAIN_DEVICE_EXT,
3984 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3985 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3986 };
3987
3988 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3989 VkPhysicalDevice physicalDevice,
3990 uint32_t *pTimeDomainCount,
3991 VkTimeDomainEXT *pTimeDomains)
3992 {
3993 int d;
3994 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3995
3996 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3997 vk_outarray_append(&out, i) {
3998 *i = anv_time_domains[d];
3999 }
4000 }
4001
4002 return vk_outarray_status(&out);
4003 }
4004
4005 static uint64_t
4006 anv_clock_gettime(clockid_t clock_id)
4007 {
4008 struct timespec current;
4009 int ret;
4010
4011 ret = clock_gettime(clock_id, &current);
4012 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4013 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4014 if (ret < 0)
4015 return 0;
4016
4017 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4018 }
4019
4020 #define TIMESTAMP 0x2358
4021
4022 VkResult anv_GetCalibratedTimestampsEXT(
4023 VkDevice _device,
4024 uint32_t timestampCount,
4025 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4026 uint64_t *pTimestamps,
4027 uint64_t *pMaxDeviation)
4028 {
4029 ANV_FROM_HANDLE(anv_device, device, _device);
4030 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4031 int ret;
4032 int d;
4033 uint64_t begin, end;
4034 uint64_t max_clock_period = 0;
4035
4036 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4037
4038 for (d = 0; d < timestampCount; d++) {
4039 switch (pTimestampInfos[d].timeDomain) {
4040 case VK_TIME_DOMAIN_DEVICE_EXT:
4041 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4042 &pTimestamps[d]);
4043
4044 if (ret != 0) {
4045 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4046 "register: %m");
4047 }
4048 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4049 max_clock_period = MAX2(max_clock_period, device_period);
4050 break;
4051 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4052 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4053 max_clock_period = MAX2(max_clock_period, 1);
4054 break;
4055
4056 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4057 pTimestamps[d] = begin;
4058 break;
4059 default:
4060 pTimestamps[d] = 0;
4061 break;
4062 }
4063 }
4064
4065 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4066
4067 /*
4068 * The maximum deviation is the sum of the interval over which we
4069 * perform the sampling and the maximum period of any sampled
4070 * clock. That's because the maximum skew between any two sampled
4071 * clock edges is when the sampled clock with the largest period is
4072 * sampled at the end of that period but right at the beginning of the
4073 * sampling interval and some other clock is sampled right at the
4074 * begining of its sampling period and right at the end of the
4075 * sampling interval. Let's assume the GPU has the longest clock
4076 * period and that the application is sampling GPU and monotonic:
4077 *
4078 * s e
4079 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4080 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4081 *
4082 * g
4083 * 0 1 2 3
4084 * GPU -----_____-----_____-----_____-----_____
4085 *
4086 * m
4087 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4088 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4089 *
4090 * Interval <----------------->
4091 * Deviation <-------------------------->
4092 *
4093 * s = read(raw) 2
4094 * g = read(GPU) 1
4095 * m = read(monotonic) 2
4096 * e = read(raw) b
4097 *
4098 * We round the sample interval up by one tick to cover sampling error
4099 * in the interval clock
4100 */
4101
4102 uint64_t sample_interval = end - begin + 1;
4103
4104 *pMaxDeviation = sample_interval + max_clock_period;
4105
4106 return VK_SUCCESS;
4107 }
4108
4109 /* vk_icd.h does not declare this function, so we declare it here to
4110 * suppress Wmissing-prototypes.
4111 */
4112 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4113 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4114
4115 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4116 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4117 {
4118 /* For the full details on loader interface versioning, see
4119 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4120 * What follows is a condensed summary, to help you navigate the large and
4121 * confusing official doc.
4122 *
4123 * - Loader interface v0 is incompatible with later versions. We don't
4124 * support it.
4125 *
4126 * - In loader interface v1:
4127 * - The first ICD entrypoint called by the loader is
4128 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4129 * entrypoint.
4130 * - The ICD must statically expose no other Vulkan symbol unless it is
4131 * linked with -Bsymbolic.
4132 * - Each dispatchable Vulkan handle created by the ICD must be
4133 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4134 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4135 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4136 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4137 * such loader-managed surfaces.
4138 *
4139 * - Loader interface v2 differs from v1 in:
4140 * - The first ICD entrypoint called by the loader is
4141 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4142 * statically expose this entrypoint.
4143 *
4144 * - Loader interface v3 differs from v2 in:
4145 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4146 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4147 * because the loader no longer does so.
4148 *
4149 * - Loader interface v4 differs from v3 in:
4150 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4151 */
4152 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4153 return VK_SUCCESS;
4154 }