anv,i965: Stop warning about incomplete gen11 support
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_defines.h"
46 #include "compiler/glsl_types.h"
47
48 #include "genxml/gen7_pack.h"
49
50 /* This is probably far to big but it reflects the max size used for messages
51 * in OpenGLs KHR_debug.
52 */
53 #define MAX_DEBUG_MESSAGE_LENGTH 4096
54
55 static void
56 compiler_debug_log(void *data, const char *fmt, ...)
57 {
58 char str[MAX_DEBUG_MESSAGE_LENGTH];
59 struct anv_device *device = (struct anv_device *)data;
60
61 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
62 return;
63
64 va_list args;
65 va_start(args, fmt);
66 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
67 va_end(args);
68
69 vk_debug_report(&device->instance->debug_report_callbacks,
70 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
71 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
72 0, 0, 0, "anv", str);
73 }
74
75 static void
76 compiler_perf_log(void *data, const char *fmt, ...)
77 {
78 va_list args;
79 va_start(args, fmt);
80
81 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
82 intel_logd_v(fmt, args);
83
84 va_end(args);
85 }
86
87 static uint64_t
88 anv_compute_heap_size(int fd, uint64_t gtt_size)
89 {
90 /* Query the total ram from the system */
91 struct sysinfo info;
92 sysinfo(&info);
93
94 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
95
96 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
97 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
98 */
99 uint64_t available_ram;
100 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
101 available_ram = total_ram / 2;
102 else
103 available_ram = total_ram * 3 / 4;
104
105 /* We also want to leave some padding for things we allocate in the driver,
106 * so don't go over 3/4 of the GTT either.
107 */
108 uint64_t available_gtt = gtt_size * 3 / 4;
109
110 return MIN2(available_ram, available_gtt);
111 }
112
113 static VkResult
114 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
115 {
116 uint64_t gtt_size;
117 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
118 &gtt_size) == -1) {
119 /* If, for whatever reason, we can't actually get the GTT size from the
120 * kernel (too old?) fall back to the aperture size.
121 */
122 anv_perf_warn(NULL, NULL,
123 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
124
125 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
126 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
127 "failed to get aperture size: %m");
128 }
129 }
130
131 device->supports_48bit_addresses = (device->info.gen >= 8) &&
132 gtt_size > (4ULL << 30 /* GiB */);
133
134 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
135
136 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
137 /* When running with an overridden PCI ID, we may get a GTT size from
138 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
139 * address support can still fail. Just clamp the address space size to
140 * 2 GiB if we don't have 48-bit support.
141 */
142 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
143 "not support for 48-bit addresses",
144 __FILE__, __LINE__);
145 heap_size = 2ull << 30;
146 }
147
148 if (heap_size <= 3ull * (1ull << 30)) {
149 /* In this case, everything fits nicely into the 32-bit address space,
150 * so there's no need for supporting 48bit addresses on client-allocated
151 * memory objects.
152 */
153 device->memory.heap_count = 1;
154 device->memory.heaps[0] = (struct anv_memory_heap) {
155 .vma_start = LOW_HEAP_MIN_ADDRESS,
156 .vma_size = LOW_HEAP_SIZE,
157 .size = heap_size,
158 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
159 .supports_48bit_addresses = false,
160 };
161 } else {
162 /* Not everything will fit nicely into a 32-bit address space. In this
163 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
164 * larger 48-bit heap. If we're in this case, then we have a total heap
165 * size larger than 3GiB which most likely means they have 8 GiB of
166 * video memory and so carving off 1 GiB for the 32-bit heap should be
167 * reasonable.
168 */
169 const uint64_t heap_size_32bit = 1ull << 30;
170 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
171
172 assert(device->supports_48bit_addresses);
173
174 device->memory.heap_count = 2;
175 device->memory.heaps[0] = (struct anv_memory_heap) {
176 .vma_start = HIGH_HEAP_MIN_ADDRESS,
177 /* Leave the last 4GiB out of the high vma range, so that no state
178 * base address + size can overflow 48 bits. For more information see
179 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
180 */
181 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
182 .size = heap_size_48bit,
183 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
184 .supports_48bit_addresses = true,
185 };
186 device->memory.heaps[1] = (struct anv_memory_heap) {
187 .vma_start = LOW_HEAP_MIN_ADDRESS,
188 .vma_size = LOW_HEAP_SIZE,
189 .size = heap_size_32bit,
190 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
191 .supports_48bit_addresses = false,
192 };
193 }
194
195 uint32_t type_count = 0;
196 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
197 uint32_t valid_buffer_usage = ~0;
198
199 /* There appears to be a hardware issue in the VF cache where it only
200 * considers the bottom 32 bits of memory addresses. If you happen to
201 * have two vertex buffers which get placed exactly 4 GiB apart and use
202 * them in back-to-back draw calls, you can get collisions. In order to
203 * solve this problem, we require vertex and index buffers be bound to
204 * memory allocated out of the 32-bit heap.
205 */
206 if (device->memory.heaps[heap].supports_48bit_addresses) {
207 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
208 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
209 }
210
211 if (device->info.has_llc) {
212 /* Big core GPUs share LLC with the CPU and thus one memory type can be
213 * both cached and coherent at the same time.
214 */
215 device->memory.types[type_count++] = (struct anv_memory_type) {
216 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
217 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
218 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
219 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
220 .heapIndex = heap,
221 .valid_buffer_usage = valid_buffer_usage,
222 };
223 } else {
224 /* The spec requires that we expose a host-visible, coherent memory
225 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
226 * to give the application a choice between cached, but not coherent and
227 * coherent but uncached (WC though).
228 */
229 device->memory.types[type_count++] = (struct anv_memory_type) {
230 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
231 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
232 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
233 .heapIndex = heap,
234 .valid_buffer_usage = valid_buffer_usage,
235 };
236 device->memory.types[type_count++] = (struct anv_memory_type) {
237 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
238 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
239 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
240 .heapIndex = heap,
241 .valid_buffer_usage = valid_buffer_usage,
242 };
243 }
244 }
245 device->memory.type_count = type_count;
246
247 return VK_SUCCESS;
248 }
249
250 static VkResult
251 anv_physical_device_init_uuids(struct anv_physical_device *device)
252 {
253 const struct build_id_note *note =
254 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
255 if (!note) {
256 return vk_errorf(device->instance, device,
257 VK_ERROR_INITIALIZATION_FAILED,
258 "Failed to find build-id");
259 }
260
261 unsigned build_id_len = build_id_length(note);
262 if (build_id_len < 20) {
263 return vk_errorf(device->instance, device,
264 VK_ERROR_INITIALIZATION_FAILED,
265 "build-id too short. It needs to be a SHA");
266 }
267
268 memcpy(device->driver_build_sha1, build_id_data(note), 20);
269
270 struct mesa_sha1 sha1_ctx;
271 uint8_t sha1[20];
272 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
273
274 /* The pipeline cache UUID is used for determining when a pipeline cache is
275 * invalid. It needs both a driver build and the PCI ID of the device.
276 */
277 _mesa_sha1_init(&sha1_ctx);
278 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
279 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
280 sizeof(device->chipset_id));
281 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
282 sizeof(device->always_use_bindless));
283 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
284 sizeof(device->has_a64_buffer_access));
285 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
286 sizeof(device->has_bindless_images));
287 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
288 sizeof(device->has_bindless_samplers));
289 _mesa_sha1_final(&sha1_ctx, sha1);
290 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
291
292 /* The driver UUID is used for determining sharability of images and memory
293 * between two Vulkan instances in separate processes. People who want to
294 * share memory need to also check the device UUID (below) so all this
295 * needs to be is the build-id.
296 */
297 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
298
299 /* The device UUID uniquely identifies the given device within the machine.
300 * Since we never have more than one device, this doesn't need to be a real
301 * UUID. However, on the off-chance that someone tries to use this to
302 * cache pre-tiled images or something of the like, we use the PCI ID and
303 * some bits of ISL info to ensure that this is safe.
304 */
305 _mesa_sha1_init(&sha1_ctx);
306 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
307 sizeof(device->chipset_id));
308 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
309 sizeof(device->isl_dev.has_bit6_swizzling));
310 _mesa_sha1_final(&sha1_ctx, sha1);
311 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
312
313 return VK_SUCCESS;
314 }
315
316 static void
317 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
318 {
319 #ifdef ENABLE_SHADER_CACHE
320 char renderer[10];
321 MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
322 device->chipset_id);
323 assert(len == sizeof(renderer) - 2);
324
325 char timestamp[41];
326 _mesa_sha1_format(timestamp, device->driver_build_sha1);
327
328 const uint64_t driver_flags =
329 brw_get_compiler_config_value(device->compiler);
330 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
331 #else
332 device->disk_cache = NULL;
333 #endif
334 }
335
336 static void
337 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
338 {
339 #ifdef ENABLE_SHADER_CACHE
340 if (device->disk_cache)
341 disk_cache_destroy(device->disk_cache);
342 #else
343 assert(device->disk_cache == NULL);
344 #endif
345 }
346
347 static uint64_t
348 get_available_system_memory()
349 {
350 char *meminfo = os_read_file("/proc/meminfo");
351 if (!meminfo)
352 return 0;
353
354 char *str = strstr(meminfo, "MemAvailable:");
355 if (!str) {
356 free(meminfo);
357 return 0;
358 }
359
360 uint64_t kb_mem_available;
361 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
362 free(meminfo);
363 return kb_mem_available << 10;
364 }
365
366 free(meminfo);
367 return 0;
368 }
369
370 static VkResult
371 anv_physical_device_init(struct anv_physical_device *device,
372 struct anv_instance *instance,
373 drmDevicePtr drm_device)
374 {
375 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
376 const char *path = drm_device->nodes[DRM_NODE_RENDER];
377 VkResult result;
378 int fd;
379 int master_fd = -1;
380
381 brw_process_intel_debug_variable();
382
383 fd = open(path, O_RDWR | O_CLOEXEC);
384 if (fd < 0)
385 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
386
387 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
388 device->instance = instance;
389
390 assert(strlen(path) < ARRAY_SIZE(device->path));
391 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
392
393 device->no_hw = getenv("INTEL_NO_HW") != NULL;
394
395 const int pci_id_override = gen_get_pci_device_id_override();
396 if (pci_id_override < 0) {
397 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
398 if (!device->chipset_id) {
399 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
400 goto fail;
401 }
402 } else {
403 device->chipset_id = pci_id_override;
404 device->no_hw = true;
405 }
406
407 device->pci_info.domain = drm_device->businfo.pci->domain;
408 device->pci_info.bus = drm_device->businfo.pci->bus;
409 device->pci_info.device = drm_device->businfo.pci->dev;
410 device->pci_info.function = drm_device->businfo.pci->func;
411
412 device->name = gen_get_device_name(device->chipset_id);
413 if (!gen_get_device_info(device->chipset_id, &device->info)) {
414 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
415 goto fail;
416 }
417
418 if (device->info.is_haswell) {
419 intel_logw("Haswell Vulkan support is incomplete");
420 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
421 intel_logw("Ivy Bridge Vulkan support is incomplete");
422 } else if (device->info.gen == 7 && device->info.is_baytrail) {
423 intel_logw("Bay Trail Vulkan support is incomplete");
424 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
425 /* Gen8-11 fully supported */
426 } else {
427 result = vk_errorf(device->instance, device,
428 VK_ERROR_INCOMPATIBLE_DRIVER,
429 "Vulkan not yet supported on %s", device->name);
430 goto fail;
431 }
432
433 device->cmd_parser_version = -1;
434 if (device->info.gen == 7) {
435 device->cmd_parser_version =
436 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
437 if (device->cmd_parser_version == -1) {
438 result = vk_errorf(device->instance, device,
439 VK_ERROR_INITIALIZATION_FAILED,
440 "failed to get command parser version");
441 goto fail;
442 }
443 }
444
445 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
446 result = vk_errorf(device->instance, device,
447 VK_ERROR_INITIALIZATION_FAILED,
448 "kernel missing gem wait");
449 goto fail;
450 }
451
452 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
453 result = vk_errorf(device->instance, device,
454 VK_ERROR_INITIALIZATION_FAILED,
455 "kernel missing execbuf2");
456 goto fail;
457 }
458
459 if (!device->info.has_llc &&
460 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
461 result = vk_errorf(device->instance, device,
462 VK_ERROR_INITIALIZATION_FAILED,
463 "kernel missing wc mmap");
464 goto fail;
465 }
466
467 result = anv_physical_device_init_heaps(device, fd);
468 if (result != VK_SUCCESS)
469 goto fail;
470
471 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
472 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
473 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
474 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
475 device->has_syncobj_wait = device->has_syncobj &&
476 anv_gem_supports_syncobj_wait(fd);
477 device->has_context_priority = anv_gem_has_context_priority(fd);
478
479 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
480 && device->supports_48bit_addresses;
481
482 device->has_context_isolation =
483 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
484
485 device->always_use_bindless =
486 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
487
488 /* We first got the A64 messages on broadwell and we can only use them if
489 * we can pass addresses directly into the shader which requires softpin.
490 */
491 device->has_a64_buffer_access = device->info.gen >= 8 &&
492 device->use_softpin;
493
494 /* We first get bindless image access on Skylake and we can only really do
495 * it if we don't have any relocations so we need softpin.
496 */
497 device->has_bindless_images = device->info.gen >= 9 &&
498 device->use_softpin;
499
500 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
501 * because it's just a matter of setting the sampler address in the sample
502 * message header. However, we've not bothered to wire it up for vec4 so
503 * we leave it disabled on gen7.
504 */
505 device->has_bindless_samplers = device->info.gen >= 8;
506
507 device->has_mem_available = get_available_system_memory() != 0;
508
509 /* Starting with Gen10, the timestamp frequency of the command streamer may
510 * vary from one part to another. We can query the value from the kernel.
511 */
512 if (device->info.gen >= 10) {
513 int timestamp_frequency =
514 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
515
516 if (timestamp_frequency < 0)
517 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
518 else
519 device->info.timestamp_frequency = timestamp_frequency;
520 }
521
522 /* GENs prior to 8 do not support EU/Subslice info */
523 if (device->info.gen >= 8) {
524 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
525 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
526
527 /* Without this information, we cannot get the right Braswell
528 * brandstrings, and we have to use conservative numbers for GPGPU on
529 * many platforms, but otherwise, things will just work.
530 */
531 if (device->subslice_total < 1 || device->eu_total < 1) {
532 intel_logw("Kernel 4.1 required to properly query GPU properties");
533 }
534 } else if (device->info.gen == 7) {
535 device->subslice_total = 1 << (device->info.gt - 1);
536 }
537
538 if (device->info.is_cherryview &&
539 device->subslice_total > 0 && device->eu_total > 0) {
540 /* Logical CS threads = EUs per subslice * num threads per EU */
541 uint32_t max_cs_threads =
542 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
543
544 /* Fuse configurations may give more threads than expected, never less. */
545 if (max_cs_threads > device->info.max_cs_threads)
546 device->info.max_cs_threads = max_cs_threads;
547 }
548
549 device->compiler = brw_compiler_create(NULL, &device->info);
550 if (device->compiler == NULL) {
551 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
552 goto fail;
553 }
554 device->compiler->shader_debug_log = compiler_debug_log;
555 device->compiler->shader_perf_log = compiler_perf_log;
556 device->compiler->supports_pull_constants = false;
557 device->compiler->constant_buffer_0_is_relative =
558 device->info.gen < 8 || !device->has_context_isolation;
559 device->compiler->supports_shader_constants = true;
560
561 /* Broadwell PRM says:
562 *
563 * "Before Gen8, there was a historical configuration control field to
564 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
565 * different places: TILECTL[1:0], ARB_MODE[5:4], and
566 * DISP_ARB_CTL[14:13].
567 *
568 * For Gen8 and subsequent generations, the swizzle fields are all
569 * reserved, and the CPU's memory controller performs all address
570 * swizzling modifications."
571 */
572 bool swizzled =
573 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
574
575 isl_device_init(&device->isl_dev, &device->info, swizzled);
576
577 result = anv_physical_device_init_uuids(device);
578 if (result != VK_SUCCESS)
579 goto fail;
580
581 anv_physical_device_init_disk_cache(device);
582
583 if (instance->enabled_extensions.KHR_display) {
584 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
585 if (master_fd >= 0) {
586 /* prod the device with a GETPARAM call which will fail if
587 * we don't have permission to even render on this device
588 */
589 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
590 close(master_fd);
591 master_fd = -1;
592 }
593 }
594 }
595 device->master_fd = master_fd;
596
597 result = anv_init_wsi(device);
598 if (result != VK_SUCCESS) {
599 ralloc_free(device->compiler);
600 anv_physical_device_free_disk_cache(device);
601 goto fail;
602 }
603
604 anv_physical_device_get_supported_extensions(device,
605 &device->supported_extensions);
606
607
608 device->local_fd = fd;
609
610 return VK_SUCCESS;
611
612 fail:
613 close(fd);
614 if (master_fd != -1)
615 close(master_fd);
616 return result;
617 }
618
619 static void
620 anv_physical_device_finish(struct anv_physical_device *device)
621 {
622 anv_finish_wsi(device);
623 anv_physical_device_free_disk_cache(device);
624 ralloc_free(device->compiler);
625 close(device->local_fd);
626 if (device->master_fd >= 0)
627 close(device->master_fd);
628 }
629
630 static void *
631 default_alloc_func(void *pUserData, size_t size, size_t align,
632 VkSystemAllocationScope allocationScope)
633 {
634 return malloc(size);
635 }
636
637 static void *
638 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
639 size_t align, VkSystemAllocationScope allocationScope)
640 {
641 return realloc(pOriginal, size);
642 }
643
644 static void
645 default_free_func(void *pUserData, void *pMemory)
646 {
647 free(pMemory);
648 }
649
650 static const VkAllocationCallbacks default_alloc = {
651 .pUserData = NULL,
652 .pfnAllocation = default_alloc_func,
653 .pfnReallocation = default_realloc_func,
654 .pfnFree = default_free_func,
655 };
656
657 VkResult anv_EnumerateInstanceExtensionProperties(
658 const char* pLayerName,
659 uint32_t* pPropertyCount,
660 VkExtensionProperties* pProperties)
661 {
662 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
663
664 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
665 if (anv_instance_extensions_supported.extensions[i]) {
666 vk_outarray_append(&out, prop) {
667 *prop = anv_instance_extensions[i];
668 }
669 }
670 }
671
672 return vk_outarray_status(&out);
673 }
674
675 VkResult anv_CreateInstance(
676 const VkInstanceCreateInfo* pCreateInfo,
677 const VkAllocationCallbacks* pAllocator,
678 VkInstance* pInstance)
679 {
680 struct anv_instance *instance;
681 VkResult result;
682
683 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
684
685 struct anv_instance_extension_table enabled_extensions = {};
686 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
687 int idx;
688 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
689 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
690 anv_instance_extensions[idx].extensionName) == 0)
691 break;
692 }
693
694 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
695 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
696
697 if (!anv_instance_extensions_supported.extensions[idx])
698 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
699
700 enabled_extensions.extensions[idx] = true;
701 }
702
703 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
704 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
705 if (!instance)
706 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
707
708 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
709
710 if (pAllocator)
711 instance->alloc = *pAllocator;
712 else
713 instance->alloc = default_alloc;
714
715 instance->app_info = (struct anv_app_info) { .api_version = 0 };
716 if (pCreateInfo->pApplicationInfo) {
717 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
718
719 instance->app_info.app_name =
720 vk_strdup(&instance->alloc, app->pApplicationName,
721 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
722 instance->app_info.app_version = app->applicationVersion;
723
724 instance->app_info.engine_name =
725 vk_strdup(&instance->alloc, app->pEngineName,
726 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
727 instance->app_info.engine_version = app->engineVersion;
728
729 instance->app_info.api_version = app->apiVersion;
730 }
731
732 if (instance->app_info.api_version == 0)
733 instance->app_info.api_version = VK_API_VERSION_1_0;
734
735 instance->enabled_extensions = enabled_extensions;
736
737 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
738 /* Vulkan requires that entrypoints for extensions which have not been
739 * enabled must not be advertised.
740 */
741 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
742 &instance->enabled_extensions)) {
743 instance->dispatch.entrypoints[i] = NULL;
744 } else {
745 instance->dispatch.entrypoints[i] =
746 anv_instance_dispatch_table.entrypoints[i];
747 }
748 }
749
750 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
751 /* Vulkan requires that entrypoints for extensions which have not been
752 * enabled must not be advertised.
753 */
754 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
755 &instance->enabled_extensions, NULL)) {
756 instance->device_dispatch.entrypoints[i] = NULL;
757 } else {
758 instance->device_dispatch.entrypoints[i] =
759 anv_device_dispatch_table.entrypoints[i];
760 }
761 }
762
763 instance->physicalDeviceCount = -1;
764
765 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
766 if (result != VK_SUCCESS) {
767 vk_free2(&default_alloc, pAllocator, instance);
768 return vk_error(result);
769 }
770
771 instance->pipeline_cache_enabled =
772 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
773
774 _mesa_locale_init();
775 glsl_type_singleton_init_or_ref();
776
777 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
778
779 *pInstance = anv_instance_to_handle(instance);
780
781 return VK_SUCCESS;
782 }
783
784 void anv_DestroyInstance(
785 VkInstance _instance,
786 const VkAllocationCallbacks* pAllocator)
787 {
788 ANV_FROM_HANDLE(anv_instance, instance, _instance);
789
790 if (!instance)
791 return;
792
793 if (instance->physicalDeviceCount > 0) {
794 /* We support at most one physical device. */
795 assert(instance->physicalDeviceCount == 1);
796 anv_physical_device_finish(&instance->physicalDevice);
797 }
798
799 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
800 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
801
802 VG(VALGRIND_DESTROY_MEMPOOL(instance));
803
804 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
805
806 glsl_type_singleton_decref();
807 _mesa_locale_fini();
808
809 vk_free(&instance->alloc, instance);
810 }
811
812 static VkResult
813 anv_enumerate_devices(struct anv_instance *instance)
814 {
815 /* TODO: Check for more devices ? */
816 drmDevicePtr devices[8];
817 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
818 int max_devices;
819
820 instance->physicalDeviceCount = 0;
821
822 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
823 if (max_devices < 1)
824 return VK_ERROR_INCOMPATIBLE_DRIVER;
825
826 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
827 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
828 devices[i]->bustype == DRM_BUS_PCI &&
829 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
830
831 result = anv_physical_device_init(&instance->physicalDevice,
832 instance, devices[i]);
833 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
834 break;
835 }
836 }
837 drmFreeDevices(devices, max_devices);
838
839 if (result == VK_SUCCESS)
840 instance->physicalDeviceCount = 1;
841
842 return result;
843 }
844
845 static VkResult
846 anv_instance_ensure_physical_device(struct anv_instance *instance)
847 {
848 if (instance->physicalDeviceCount < 0) {
849 VkResult result = anv_enumerate_devices(instance);
850 if (result != VK_SUCCESS &&
851 result != VK_ERROR_INCOMPATIBLE_DRIVER)
852 return result;
853 }
854
855 return VK_SUCCESS;
856 }
857
858 VkResult anv_EnumeratePhysicalDevices(
859 VkInstance _instance,
860 uint32_t* pPhysicalDeviceCount,
861 VkPhysicalDevice* pPhysicalDevices)
862 {
863 ANV_FROM_HANDLE(anv_instance, instance, _instance);
864 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
865
866 VkResult result = anv_instance_ensure_physical_device(instance);
867 if (result != VK_SUCCESS)
868 return result;
869
870 if (instance->physicalDeviceCount == 0)
871 return VK_SUCCESS;
872
873 assert(instance->physicalDeviceCount == 1);
874 vk_outarray_append(&out, i) {
875 *i = anv_physical_device_to_handle(&instance->physicalDevice);
876 }
877
878 return vk_outarray_status(&out);
879 }
880
881 VkResult anv_EnumeratePhysicalDeviceGroups(
882 VkInstance _instance,
883 uint32_t* pPhysicalDeviceGroupCount,
884 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
885 {
886 ANV_FROM_HANDLE(anv_instance, instance, _instance);
887 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
888 pPhysicalDeviceGroupCount);
889
890 VkResult result = anv_instance_ensure_physical_device(instance);
891 if (result != VK_SUCCESS)
892 return result;
893
894 if (instance->physicalDeviceCount == 0)
895 return VK_SUCCESS;
896
897 assert(instance->physicalDeviceCount == 1);
898
899 vk_outarray_append(&out, p) {
900 p->physicalDeviceCount = 1;
901 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
902 p->physicalDevices[0] =
903 anv_physical_device_to_handle(&instance->physicalDevice);
904 p->subsetAllocation = false;
905
906 vk_foreach_struct(ext, p->pNext)
907 anv_debug_ignored_stype(ext->sType);
908 }
909
910 return vk_outarray_status(&out);
911 }
912
913 void anv_GetPhysicalDeviceFeatures(
914 VkPhysicalDevice physicalDevice,
915 VkPhysicalDeviceFeatures* pFeatures)
916 {
917 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
918
919 *pFeatures = (VkPhysicalDeviceFeatures) {
920 .robustBufferAccess = true,
921 .fullDrawIndexUint32 = true,
922 .imageCubeArray = true,
923 .independentBlend = true,
924 .geometryShader = true,
925 .tessellationShader = true,
926 .sampleRateShading = true,
927 .dualSrcBlend = true,
928 .logicOp = true,
929 .multiDrawIndirect = true,
930 .drawIndirectFirstInstance = true,
931 .depthClamp = true,
932 .depthBiasClamp = true,
933 .fillModeNonSolid = true,
934 .depthBounds = false,
935 .wideLines = true,
936 .largePoints = true,
937 .alphaToOne = true,
938 .multiViewport = true,
939 .samplerAnisotropy = true,
940 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
941 pdevice->info.is_baytrail,
942 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
943 .textureCompressionBC = true,
944 .occlusionQueryPrecise = true,
945 .pipelineStatisticsQuery = true,
946 .fragmentStoresAndAtomics = true,
947 .shaderTessellationAndGeometryPointSize = true,
948 .shaderImageGatherExtended = true,
949 .shaderStorageImageExtendedFormats = true,
950 .shaderStorageImageMultisample = false,
951 .shaderStorageImageReadWithoutFormat = false,
952 .shaderStorageImageWriteWithoutFormat = true,
953 .shaderUniformBufferArrayDynamicIndexing = true,
954 .shaderSampledImageArrayDynamicIndexing = true,
955 .shaderStorageBufferArrayDynamicIndexing = true,
956 .shaderStorageImageArrayDynamicIndexing = true,
957 .shaderClipDistance = true,
958 .shaderCullDistance = true,
959 .shaderFloat64 = pdevice->info.gen >= 8 &&
960 pdevice->info.has_64bit_types,
961 .shaderInt64 = pdevice->info.gen >= 8 &&
962 pdevice->info.has_64bit_types,
963 .shaderInt16 = pdevice->info.gen >= 8,
964 .shaderResourceMinLod = pdevice->info.gen >= 9,
965 .variableMultisampleRate = true,
966 .inheritedQueries = true,
967 };
968
969 /* We can't do image stores in vec4 shaders */
970 pFeatures->vertexPipelineStoresAndAtomics =
971 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
972 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
973
974 struct anv_app_info *app_info = &pdevice->instance->app_info;
975
976 /* The new DOOM and Wolfenstein games require depthBounds without
977 * checking for it. They seem to run fine without it so just claim it's
978 * there and accept the consequences.
979 */
980 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
981 pFeatures->depthBounds = true;
982 }
983
984 void anv_GetPhysicalDeviceFeatures2(
985 VkPhysicalDevice physicalDevice,
986 VkPhysicalDeviceFeatures2* pFeatures)
987 {
988 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
989 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
990
991 vk_foreach_struct(ext, pFeatures->pNext) {
992 switch (ext->sType) {
993 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
994 VkPhysicalDevice8BitStorageFeaturesKHR *features =
995 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
996 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
997 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
998 features->storagePushConstant8 = pdevice->info.gen >= 8;
999 break;
1000 }
1001
1002 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1003 VkPhysicalDevice16BitStorageFeatures *features =
1004 (VkPhysicalDevice16BitStorageFeatures *)ext;
1005 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1006 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1007 features->storagePushConstant16 = pdevice->info.gen >= 8;
1008 features->storageInputOutput16 = false;
1009 break;
1010 }
1011
1012 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1013 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1014 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1015 features->bufferDeviceAddressCaptureReplay = false;
1016 features->bufferDeviceAddressMultiDevice = false;
1017 break;
1018 }
1019
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1021 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1022 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1023 features->computeDerivativeGroupQuads = true;
1024 features->computeDerivativeGroupLinear = true;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1029 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1030 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1031 features->conditionalRendering = pdevice->info.gen >= 8 ||
1032 pdevice->info.is_haswell;
1033 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1034 pdevice->info.is_haswell;
1035 break;
1036 }
1037
1038 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1039 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1040 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1041 features->depthClipEnable = true;
1042 break;
1043 }
1044
1045 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1046 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1047 features->shaderFloat16 = pdevice->info.gen >= 8;
1048 features->shaderInt8 = pdevice->info.gen >= 8;
1049 break;
1050 }
1051
1052 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1053 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1054 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1055 features->hostQueryReset = true;
1056 break;
1057 }
1058
1059 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1060 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1061 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1062 features->shaderInputAttachmentArrayDynamicIndexing = false;
1063 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1064 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1065 features->shaderUniformBufferArrayNonUniformIndexing = false;
1066 features->shaderSampledImageArrayNonUniformIndexing = true;
1067 features->shaderStorageBufferArrayNonUniformIndexing = true;
1068 features->shaderStorageImageArrayNonUniformIndexing = true;
1069 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1070 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1071 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1072 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1073 features->descriptorBindingSampledImageUpdateAfterBind = true;
1074 features->descriptorBindingStorageImageUpdateAfterBind = true;
1075 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1076 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1077 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1078 features->descriptorBindingUpdateUnusedWhilePending = true;
1079 features->descriptorBindingPartiallyBound = true;
1080 features->descriptorBindingVariableDescriptorCount = false;
1081 features->runtimeDescriptorArray = true;
1082 break;
1083 }
1084
1085 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1086 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1087 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1088 features->inlineUniformBlock = true;
1089 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1090 break;
1091 }
1092
1093 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1094 VkPhysicalDeviceMultiviewFeatures *features =
1095 (VkPhysicalDeviceMultiviewFeatures *)ext;
1096 features->multiview = true;
1097 features->multiviewGeometryShader = true;
1098 features->multiviewTessellationShader = true;
1099 break;
1100 }
1101
1102 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1103 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1104 features->protectedMemory = false;
1105 break;
1106 }
1107
1108 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1109 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1110 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1111 features->samplerYcbcrConversion = true;
1112 break;
1113 }
1114
1115 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1116 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1117 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1118 features->scalarBlockLayout = true;
1119 break;
1120 }
1121
1122 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1123 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1124 features->shaderBufferInt64Atomics =
1125 pdevice->info.gen >= 9 && pdevice->use_softpin;
1126 features->shaderSharedInt64Atomics = VK_FALSE;
1127 break;
1128 }
1129
1130 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1131 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1132 features->shaderDrawParameters = true;
1133 break;
1134 }
1135
1136 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1137 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1138 features->variablePointersStorageBuffer = true;
1139 features->variablePointers = true;
1140 break;
1141 }
1142
1143 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1144 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1145 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1146 features->transformFeedback = true;
1147 features->geometryStreams = true;
1148 break;
1149 }
1150
1151 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1152 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1153 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1154 features->vertexAttributeInstanceRateDivisor = true;
1155 features->vertexAttributeInstanceRateZeroDivisor = true;
1156 break;
1157 }
1158
1159 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1160 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1161 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1162 features->ycbcrImageArrays = true;
1163 break;
1164 }
1165
1166 default:
1167 anv_debug_ignored_stype(ext->sType);
1168 break;
1169 }
1170 }
1171 }
1172
1173 void anv_GetPhysicalDeviceProperties(
1174 VkPhysicalDevice physicalDevice,
1175 VkPhysicalDeviceProperties* pProperties)
1176 {
1177 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1178 const struct gen_device_info *devinfo = &pdevice->info;
1179
1180 /* See assertions made when programming the buffer surface state. */
1181 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1182 (1ul << 30) : (1ul << 27);
1183
1184 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1185 const uint32_t max_textures =
1186 pdevice->has_bindless_images ? UINT16_MAX : 128;
1187 const uint32_t max_samplers =
1188 pdevice->has_bindless_samplers ? UINT16_MAX :
1189 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1190 const uint32_t max_images =
1191 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1192
1193 /* The moment we have anything bindless, claim a high per-stage limit */
1194 const uint32_t max_per_stage =
1195 pdevice->has_a64_buffer_access ? UINT32_MAX :
1196 MAX_BINDING_TABLE_SIZE - MAX_RTS;
1197
1198 VkSampleCountFlags sample_counts =
1199 isl_device_get_sample_counts(&pdevice->isl_dev);
1200
1201
1202 VkPhysicalDeviceLimits limits = {
1203 .maxImageDimension1D = (1 << 14),
1204 .maxImageDimension2D = (1 << 14),
1205 .maxImageDimension3D = (1 << 11),
1206 .maxImageDimensionCube = (1 << 14),
1207 .maxImageArrayLayers = (1 << 11),
1208 .maxTexelBufferElements = 128 * 1024 * 1024,
1209 .maxUniformBufferRange = (1ul << 27),
1210 .maxStorageBufferRange = max_raw_buffer_sz,
1211 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1212 .maxMemoryAllocationCount = UINT32_MAX,
1213 .maxSamplerAllocationCount = 64 * 1024,
1214 .bufferImageGranularity = 64, /* A cache line */
1215 .sparseAddressSpaceSize = 0,
1216 .maxBoundDescriptorSets = MAX_SETS,
1217 .maxPerStageDescriptorSamplers = max_samplers,
1218 .maxPerStageDescriptorUniformBuffers = 64,
1219 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1220 .maxPerStageDescriptorSampledImages = max_textures,
1221 .maxPerStageDescriptorStorageImages = max_images,
1222 .maxPerStageDescriptorInputAttachments = 64,
1223 .maxPerStageResources = max_per_stage,
1224 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1225 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
1226 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1227 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1228 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1229 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1230 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1231 .maxDescriptorSetInputAttachments = 256,
1232 .maxVertexInputAttributes = MAX_VBS,
1233 .maxVertexInputBindings = MAX_VBS,
1234 .maxVertexInputAttributeOffset = 2047,
1235 .maxVertexInputBindingStride = 2048,
1236 .maxVertexOutputComponents = 128,
1237 .maxTessellationGenerationLevel = 64,
1238 .maxTessellationPatchSize = 32,
1239 .maxTessellationControlPerVertexInputComponents = 128,
1240 .maxTessellationControlPerVertexOutputComponents = 128,
1241 .maxTessellationControlPerPatchOutputComponents = 128,
1242 .maxTessellationControlTotalOutputComponents = 2048,
1243 .maxTessellationEvaluationInputComponents = 128,
1244 .maxTessellationEvaluationOutputComponents = 128,
1245 .maxGeometryShaderInvocations = 32,
1246 .maxGeometryInputComponents = 64,
1247 .maxGeometryOutputComponents = 128,
1248 .maxGeometryOutputVertices = 256,
1249 .maxGeometryTotalOutputComponents = 1024,
1250 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1251 .maxFragmentOutputAttachments = 8,
1252 .maxFragmentDualSrcAttachments = 1,
1253 .maxFragmentCombinedOutputResources = 8,
1254 .maxComputeSharedMemorySize = 32768,
1255 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1256 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1257 .maxComputeWorkGroupSize = {
1258 16 * devinfo->max_cs_threads,
1259 16 * devinfo->max_cs_threads,
1260 16 * devinfo->max_cs_threads,
1261 },
1262 .subPixelPrecisionBits = 8,
1263 .subTexelPrecisionBits = 8,
1264 .mipmapPrecisionBits = 8,
1265 .maxDrawIndexedIndexValue = UINT32_MAX,
1266 .maxDrawIndirectCount = UINT32_MAX,
1267 .maxSamplerLodBias = 16,
1268 .maxSamplerAnisotropy = 16,
1269 .maxViewports = MAX_VIEWPORTS,
1270 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1271 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1272 .viewportSubPixelBits = 13, /* We take a float? */
1273 .minMemoryMapAlignment = 4096, /* A page */
1274 .minTexelBufferOffsetAlignment = 1,
1275 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1276 .minUniformBufferOffsetAlignment = 32,
1277 .minStorageBufferOffsetAlignment = 4,
1278 .minTexelOffset = -8,
1279 .maxTexelOffset = 7,
1280 .minTexelGatherOffset = -32,
1281 .maxTexelGatherOffset = 31,
1282 .minInterpolationOffset = -0.5,
1283 .maxInterpolationOffset = 0.4375,
1284 .subPixelInterpolationOffsetBits = 4,
1285 .maxFramebufferWidth = (1 << 14),
1286 .maxFramebufferHeight = (1 << 14),
1287 .maxFramebufferLayers = (1 << 11),
1288 .framebufferColorSampleCounts = sample_counts,
1289 .framebufferDepthSampleCounts = sample_counts,
1290 .framebufferStencilSampleCounts = sample_counts,
1291 .framebufferNoAttachmentsSampleCounts = sample_counts,
1292 .maxColorAttachments = MAX_RTS,
1293 .sampledImageColorSampleCounts = sample_counts,
1294 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1295 .sampledImageDepthSampleCounts = sample_counts,
1296 .sampledImageStencilSampleCounts = sample_counts,
1297 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1298 .maxSampleMaskWords = 1,
1299 .timestampComputeAndGraphics = false,
1300 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1301 .maxClipDistances = 8,
1302 .maxCullDistances = 8,
1303 .maxCombinedClipAndCullDistances = 8,
1304 .discreteQueuePriorities = 2,
1305 .pointSizeRange = { 0.125, 255.875 },
1306 .lineWidthRange = { 0.0, 7.9921875 },
1307 .pointSizeGranularity = (1.0 / 8.0),
1308 .lineWidthGranularity = (1.0 / 128.0),
1309 .strictLines = false, /* FINISHME */
1310 .standardSampleLocations = true,
1311 .optimalBufferCopyOffsetAlignment = 128,
1312 .optimalBufferCopyRowPitchAlignment = 128,
1313 .nonCoherentAtomSize = 64,
1314 };
1315
1316 *pProperties = (VkPhysicalDeviceProperties) {
1317 .apiVersion = anv_physical_device_api_version(pdevice),
1318 .driverVersion = vk_get_driver_version(),
1319 .vendorID = 0x8086,
1320 .deviceID = pdevice->chipset_id,
1321 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1322 .limits = limits,
1323 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1324 };
1325
1326 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1327 "%s", pdevice->name);
1328 memcpy(pProperties->pipelineCacheUUID,
1329 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1330 }
1331
1332 void anv_GetPhysicalDeviceProperties2(
1333 VkPhysicalDevice physicalDevice,
1334 VkPhysicalDeviceProperties2* pProperties)
1335 {
1336 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1337
1338 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1339
1340 vk_foreach_struct(ext, pProperties->pNext) {
1341 switch (ext->sType) {
1342 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1343 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1344 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1345
1346 /* We support all of the depth resolve modes */
1347 props->supportedDepthResolveModes =
1348 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1349 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1350 VK_RESOLVE_MODE_MIN_BIT_KHR |
1351 VK_RESOLVE_MODE_MAX_BIT_KHR;
1352
1353 /* Average doesn't make sense for stencil so we don't support that */
1354 props->supportedStencilResolveModes =
1355 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1356 if (pdevice->info.gen >= 8) {
1357 /* The advanced stencil resolve modes currently require stencil
1358 * sampling be supported by the hardware.
1359 */
1360 props->supportedStencilResolveModes |=
1361 VK_RESOLVE_MODE_MIN_BIT_KHR |
1362 VK_RESOLVE_MODE_MAX_BIT_KHR;
1363 }
1364
1365 props->independentResolveNone = true;
1366 props->independentResolve = true;
1367 break;
1368 }
1369
1370 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1371 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1372 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1373
1374 /* It's a bit hard to exactly map our implementation to the limits
1375 * described here. The bindless surface handle in the extended
1376 * message descriptors is 20 bits and it's an index into the table of
1377 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1378 * address. Given that most things consume two surface states per
1379 * view (general/sampled for textures and write-only/read-write for
1380 * images), we claim 2^19 things.
1381 *
1382 * For SSBOs, we just use A64 messages so there is no real limit
1383 * there beyond the limit on the total size of a descriptor set.
1384 */
1385 const unsigned max_bindless_views = 1 << 19;
1386
1387 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1388 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1389 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1390 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1391 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1392 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1393 props->robustBufferAccessUpdateAfterBind = true;
1394 props->quadDivergentImplicitLod = false;
1395 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1396 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = 0;
1397 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1398 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1399 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1400 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = 0;
1401 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1402 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1403 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 0;
1404 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = 0;
1405 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1406 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1407 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1408 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1409 props->maxDescriptorSetUpdateAfterBindInputAttachments = 0;
1410 break;
1411 }
1412
1413 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1414 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1415 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1416
1417 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1418 util_snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1419 "Intel open-source Mesa driver");
1420
1421 util_snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1422 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1423
1424 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1425 .major = 1,
1426 .minor = 1,
1427 .subminor = 2,
1428 .patch = 0,
1429 };
1430 break;
1431 }
1432
1433 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1434 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1435 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1436 /* Userptr needs page aligned memory. */
1437 props->minImportedHostPointerAlignment = 4096;
1438 break;
1439 }
1440
1441 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1442 VkPhysicalDeviceIDProperties *id_props =
1443 (VkPhysicalDeviceIDProperties *)ext;
1444 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1445 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1446 /* The LUID is for Windows. */
1447 id_props->deviceLUIDValid = false;
1448 break;
1449 }
1450
1451 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1452 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1453 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1454 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1455 props->maxPerStageDescriptorInlineUniformBlocks =
1456 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1457 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1458 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1459 props->maxDescriptorSetInlineUniformBlocks =
1460 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1461 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1462 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1463 break;
1464 }
1465
1466 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1467 VkPhysicalDeviceMaintenance3Properties *props =
1468 (VkPhysicalDeviceMaintenance3Properties *)ext;
1469 /* This value doesn't matter for us today as our per-stage
1470 * descriptors are the real limit.
1471 */
1472 props->maxPerSetDescriptors = 1024;
1473 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1474 break;
1475 }
1476
1477 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1478 VkPhysicalDeviceMultiviewProperties *properties =
1479 (VkPhysicalDeviceMultiviewProperties *)ext;
1480 properties->maxMultiviewViewCount = 16;
1481 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1482 break;
1483 }
1484
1485 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1486 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1487 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1488 properties->pciDomain = pdevice->pci_info.domain;
1489 properties->pciBus = pdevice->pci_info.bus;
1490 properties->pciDevice = pdevice->pci_info.device;
1491 properties->pciFunction = pdevice->pci_info.function;
1492 break;
1493 }
1494
1495 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1496 VkPhysicalDevicePointClippingProperties *properties =
1497 (VkPhysicalDevicePointClippingProperties *) ext;
1498 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1499 anv_finishme("Implement pop-free point clipping");
1500 break;
1501 }
1502
1503 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1504 VkPhysicalDeviceProtectedMemoryProperties *props =
1505 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1506 props->protectedNoFault = false;
1507 break;
1508 }
1509
1510 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1511 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1512 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1513
1514 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1515 break;
1516 }
1517
1518 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1519 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1520 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1521 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1522 properties->filterMinmaxSingleComponentFormats = true;
1523 break;
1524 }
1525
1526 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1527 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1528
1529 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1530
1531 VkShaderStageFlags scalar_stages = 0;
1532 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1533 if (pdevice->compiler->scalar_stage[stage])
1534 scalar_stages |= mesa_to_vk_shader_stage(stage);
1535 }
1536 properties->supportedStages = scalar_stages;
1537
1538 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1539 VK_SUBGROUP_FEATURE_VOTE_BIT |
1540 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1541 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1542 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1543 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1544 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1545 VK_SUBGROUP_FEATURE_QUAD_BIT;
1546 properties->quadOperationsInAllStages = true;
1547 break;
1548 }
1549
1550 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1551 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1552 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1553
1554 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1555 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1556 props->maxTransformFeedbackBufferSize = (1ull << 32);
1557 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1558 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1559 props->maxTransformFeedbackBufferDataStride = 2048;
1560 props->transformFeedbackQueries = true;
1561 props->transformFeedbackStreamsLinesTriangles = false;
1562 props->transformFeedbackRasterizationStreamSelect = false;
1563 props->transformFeedbackDraw = true;
1564 break;
1565 }
1566
1567 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1568 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1569 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1570 /* We have to restrict this a bit for multiview */
1571 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1572 break;
1573 }
1574
1575 default:
1576 anv_debug_ignored_stype(ext->sType);
1577 break;
1578 }
1579 }
1580 }
1581
1582 /* We support exactly one queue family. */
1583 static const VkQueueFamilyProperties
1584 anv_queue_family_properties = {
1585 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1586 VK_QUEUE_COMPUTE_BIT |
1587 VK_QUEUE_TRANSFER_BIT,
1588 .queueCount = 1,
1589 .timestampValidBits = 36, /* XXX: Real value here */
1590 .minImageTransferGranularity = { 1, 1, 1 },
1591 };
1592
1593 void anv_GetPhysicalDeviceQueueFamilyProperties(
1594 VkPhysicalDevice physicalDevice,
1595 uint32_t* pCount,
1596 VkQueueFamilyProperties* pQueueFamilyProperties)
1597 {
1598 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1599
1600 vk_outarray_append(&out, p) {
1601 *p = anv_queue_family_properties;
1602 }
1603 }
1604
1605 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1606 VkPhysicalDevice physicalDevice,
1607 uint32_t* pQueueFamilyPropertyCount,
1608 VkQueueFamilyProperties2* pQueueFamilyProperties)
1609 {
1610
1611 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1612
1613 vk_outarray_append(&out, p) {
1614 p->queueFamilyProperties = anv_queue_family_properties;
1615
1616 vk_foreach_struct(s, p->pNext) {
1617 anv_debug_ignored_stype(s->sType);
1618 }
1619 }
1620 }
1621
1622 void anv_GetPhysicalDeviceMemoryProperties(
1623 VkPhysicalDevice physicalDevice,
1624 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1625 {
1626 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1627
1628 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1629 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1630 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1631 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1632 .heapIndex = physical_device->memory.types[i].heapIndex,
1633 };
1634 }
1635
1636 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1637 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1638 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1639 .size = physical_device->memory.heaps[i].size,
1640 .flags = physical_device->memory.heaps[i].flags,
1641 };
1642 }
1643 }
1644
1645 static void
1646 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1647 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1648 {
1649 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1650 uint64_t sys_available = get_available_system_memory();
1651 assert(sys_available > 0);
1652
1653 VkDeviceSize total_heaps_size = 0;
1654 for (size_t i = 0; i < device->memory.heap_count; i++)
1655 total_heaps_size += device->memory.heaps[i].size;
1656
1657 for (size_t i = 0; i < device->memory.heap_count; i++) {
1658 VkDeviceSize heap_size = device->memory.heaps[i].size;
1659 VkDeviceSize heap_used = device->memory.heaps[i].used;
1660 VkDeviceSize heap_budget;
1661
1662 double heap_proportion = (double) heap_size / total_heaps_size;
1663 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1664
1665 /*
1666 * Let's not incite the app to starve the system: report at most 90% of
1667 * available system memory.
1668 */
1669 uint64_t heap_available = sys_available_prop * 9 / 10;
1670 heap_budget = MIN2(heap_size, heap_used + heap_available);
1671
1672 /*
1673 * Round down to the nearest MB
1674 */
1675 heap_budget &= ~((1ull << 20) - 1);
1676
1677 /*
1678 * The heapBudget value must be non-zero for array elements less than
1679 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1680 * value must be less than or equal to VkMemoryHeap::size for each heap.
1681 */
1682 assert(0 < heap_budget && heap_budget <= heap_size);
1683
1684 memoryBudget->heapUsage[i] = heap_used;
1685 memoryBudget->heapBudget[i] = heap_budget;
1686 }
1687
1688 /* The heapBudget and heapUsage values must be zero for array elements
1689 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1690 */
1691 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1692 memoryBudget->heapBudget[i] = 0;
1693 memoryBudget->heapUsage[i] = 0;
1694 }
1695 }
1696
1697 void anv_GetPhysicalDeviceMemoryProperties2(
1698 VkPhysicalDevice physicalDevice,
1699 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1700 {
1701 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1702 &pMemoryProperties->memoryProperties);
1703
1704 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1705 switch (ext->sType) {
1706 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1707 anv_get_memory_budget(physicalDevice, (void*)ext);
1708 break;
1709 default:
1710 anv_debug_ignored_stype(ext->sType);
1711 break;
1712 }
1713 }
1714 }
1715
1716 void
1717 anv_GetDeviceGroupPeerMemoryFeatures(
1718 VkDevice device,
1719 uint32_t heapIndex,
1720 uint32_t localDeviceIndex,
1721 uint32_t remoteDeviceIndex,
1722 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1723 {
1724 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1725 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1726 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1727 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1728 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1729 }
1730
1731 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1732 VkInstance _instance,
1733 const char* pName)
1734 {
1735 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1736
1737 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1738 * when we have to return valid function pointers, NULL, or it's left
1739 * undefined. See the table for exact details.
1740 */
1741 if (pName == NULL)
1742 return NULL;
1743
1744 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1745 if (strcmp(pName, "vk" #entrypoint) == 0) \
1746 return (PFN_vkVoidFunction)anv_##entrypoint
1747
1748 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1749 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1750 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1751 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1752
1753 #undef LOOKUP_ANV_ENTRYPOINT
1754
1755 if (instance == NULL)
1756 return NULL;
1757
1758 int idx = anv_get_instance_entrypoint_index(pName);
1759 if (idx >= 0)
1760 return instance->dispatch.entrypoints[idx];
1761
1762 idx = anv_get_device_entrypoint_index(pName);
1763 if (idx >= 0)
1764 return instance->device_dispatch.entrypoints[idx];
1765
1766 return NULL;
1767 }
1768
1769 /* With version 1+ of the loader interface the ICD should expose
1770 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1771 */
1772 PUBLIC
1773 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1774 VkInstance instance,
1775 const char* pName);
1776
1777 PUBLIC
1778 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1779 VkInstance instance,
1780 const char* pName)
1781 {
1782 return anv_GetInstanceProcAddr(instance, pName);
1783 }
1784
1785 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1786 VkDevice _device,
1787 const char* pName)
1788 {
1789 ANV_FROM_HANDLE(anv_device, device, _device);
1790
1791 if (!device || !pName)
1792 return NULL;
1793
1794 int idx = anv_get_device_entrypoint_index(pName);
1795 if (idx < 0)
1796 return NULL;
1797
1798 return device->dispatch.entrypoints[idx];
1799 }
1800
1801 VkResult
1802 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1803 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1804 const VkAllocationCallbacks* pAllocator,
1805 VkDebugReportCallbackEXT* pCallback)
1806 {
1807 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1808 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1809 pCreateInfo, pAllocator, &instance->alloc,
1810 pCallback);
1811 }
1812
1813 void
1814 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1815 VkDebugReportCallbackEXT _callback,
1816 const VkAllocationCallbacks* pAllocator)
1817 {
1818 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1819 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1820 _callback, pAllocator, &instance->alloc);
1821 }
1822
1823 void
1824 anv_DebugReportMessageEXT(VkInstance _instance,
1825 VkDebugReportFlagsEXT flags,
1826 VkDebugReportObjectTypeEXT objectType,
1827 uint64_t object,
1828 size_t location,
1829 int32_t messageCode,
1830 const char* pLayerPrefix,
1831 const char* pMessage)
1832 {
1833 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1834 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1835 object, location, messageCode, pLayerPrefix, pMessage);
1836 }
1837
1838 static void
1839 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1840 {
1841 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1842 queue->device = device;
1843 queue->flags = 0;
1844 }
1845
1846 static void
1847 anv_queue_finish(struct anv_queue *queue)
1848 {
1849 }
1850
1851 static struct anv_state
1852 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1853 {
1854 struct anv_state state;
1855
1856 state = anv_state_pool_alloc(pool, size, align);
1857 memcpy(state.map, p, size);
1858
1859 return state;
1860 }
1861
1862 struct gen8_border_color {
1863 union {
1864 float float32[4];
1865 uint32_t uint32[4];
1866 };
1867 /* Pad out to 64 bytes */
1868 uint32_t _pad[12];
1869 };
1870
1871 static void
1872 anv_device_init_border_colors(struct anv_device *device)
1873 {
1874 static const struct gen8_border_color border_colors[] = {
1875 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1876 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1877 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1878 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1879 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1880 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1881 };
1882
1883 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1884 sizeof(border_colors), 64,
1885 border_colors);
1886 }
1887
1888 static void
1889 anv_device_init_trivial_batch(struct anv_device *device)
1890 {
1891 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1892
1893 if (device->instance->physicalDevice.has_exec_async)
1894 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1895
1896 if (device->instance->physicalDevice.use_softpin)
1897 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
1898
1899 anv_vma_alloc(device, &device->trivial_batch_bo);
1900
1901 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1902 0, 4096, 0);
1903
1904 struct anv_batch batch = {
1905 .start = map,
1906 .next = map,
1907 .end = map + 4096,
1908 };
1909
1910 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1911 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1912
1913 if (!device->info.has_llc)
1914 gen_clflush_range(map, batch.next - map);
1915
1916 anv_gem_munmap(map, device->trivial_batch_bo.size);
1917 }
1918
1919 VkResult anv_EnumerateDeviceExtensionProperties(
1920 VkPhysicalDevice physicalDevice,
1921 const char* pLayerName,
1922 uint32_t* pPropertyCount,
1923 VkExtensionProperties* pProperties)
1924 {
1925 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1926 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1927
1928 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1929 if (device->supported_extensions.extensions[i]) {
1930 vk_outarray_append(&out, prop) {
1931 *prop = anv_device_extensions[i];
1932 }
1933 }
1934 }
1935
1936 return vk_outarray_status(&out);
1937 }
1938
1939 static void
1940 anv_device_init_dispatch(struct anv_device *device)
1941 {
1942 const struct anv_device_dispatch_table *genX_table;
1943 switch (device->info.gen) {
1944 case 11:
1945 genX_table = &gen11_device_dispatch_table;
1946 break;
1947 case 10:
1948 genX_table = &gen10_device_dispatch_table;
1949 break;
1950 case 9:
1951 genX_table = &gen9_device_dispatch_table;
1952 break;
1953 case 8:
1954 genX_table = &gen8_device_dispatch_table;
1955 break;
1956 case 7:
1957 if (device->info.is_haswell)
1958 genX_table = &gen75_device_dispatch_table;
1959 else
1960 genX_table = &gen7_device_dispatch_table;
1961 break;
1962 default:
1963 unreachable("unsupported gen\n");
1964 }
1965
1966 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1967 /* Vulkan requires that entrypoints for extensions which have not been
1968 * enabled must not be advertised.
1969 */
1970 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
1971 &device->instance->enabled_extensions,
1972 &device->enabled_extensions)) {
1973 device->dispatch.entrypoints[i] = NULL;
1974 } else if (genX_table->entrypoints[i]) {
1975 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1976 } else {
1977 device->dispatch.entrypoints[i] =
1978 anv_device_dispatch_table.entrypoints[i];
1979 }
1980 }
1981 }
1982
1983 static int
1984 vk_priority_to_gen(int priority)
1985 {
1986 switch (priority) {
1987 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1988 return GEN_CONTEXT_LOW_PRIORITY;
1989 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1990 return GEN_CONTEXT_MEDIUM_PRIORITY;
1991 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1992 return GEN_CONTEXT_HIGH_PRIORITY;
1993 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1994 return GEN_CONTEXT_REALTIME_PRIORITY;
1995 default:
1996 unreachable("Invalid priority");
1997 }
1998 }
1999
2000 static void
2001 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2002 {
2003 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2004
2005 if (device->instance->physicalDevice.has_exec_async)
2006 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2007
2008 if (device->instance->physicalDevice.use_softpin)
2009 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2010
2011 anv_vma_alloc(device, &device->hiz_clear_bo);
2012
2013 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2014 0, 4096, 0);
2015
2016 union isl_color_value hiz_clear = { .u32 = { 0, } };
2017 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2018
2019 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2020 anv_gem_munmap(map, device->hiz_clear_bo.size);
2021 }
2022
2023 static bool
2024 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2025 struct anv_block_pool *pool,
2026 uint64_t address)
2027 {
2028 for (uint32_t i = 0; i < pool->nbos; i++) {
2029 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2030 uint32_t bo_size = pool->bos[i].size;
2031 if (address >= bo_address && address < (bo_address + bo_size)) {
2032 *ret = (struct gen_batch_decode_bo) {
2033 .addr = bo_address,
2034 .size = bo_size,
2035 .map = pool->bos[i].map,
2036 };
2037 return true;
2038 }
2039 }
2040 return false;
2041 }
2042
2043 /* Finding a buffer for batch decoding */
2044 static struct gen_batch_decode_bo
2045 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2046 {
2047 struct anv_device *device = v_batch;
2048 struct gen_batch_decode_bo ret_bo = {};
2049
2050 assert(ppgtt);
2051
2052 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2053 return ret_bo;
2054 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2055 return ret_bo;
2056 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2057 return ret_bo;
2058 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2059 return ret_bo;
2060
2061 if (!device->cmd_buffer_being_decoded)
2062 return (struct gen_batch_decode_bo) { };
2063
2064 struct anv_batch_bo **bo;
2065
2066 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2067 /* The decoder zeroes out the top 16 bits, so we need to as well */
2068 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2069
2070 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2071 return (struct gen_batch_decode_bo) {
2072 .addr = bo_address,
2073 .size = (*bo)->bo.size,
2074 .map = (*bo)->bo.map,
2075 };
2076 }
2077 }
2078
2079 return (struct gen_batch_decode_bo) { };
2080 }
2081
2082 VkResult anv_CreateDevice(
2083 VkPhysicalDevice physicalDevice,
2084 const VkDeviceCreateInfo* pCreateInfo,
2085 const VkAllocationCallbacks* pAllocator,
2086 VkDevice* pDevice)
2087 {
2088 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2089 VkResult result;
2090 struct anv_device *device;
2091
2092 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2093
2094 struct anv_device_extension_table enabled_extensions = { };
2095 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2096 int idx;
2097 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2098 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2099 anv_device_extensions[idx].extensionName) == 0)
2100 break;
2101 }
2102
2103 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2104 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2105
2106 if (!physical_device->supported_extensions.extensions[idx])
2107 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2108
2109 enabled_extensions.extensions[idx] = true;
2110 }
2111
2112 /* Check enabled features */
2113 if (pCreateInfo->pEnabledFeatures) {
2114 VkPhysicalDeviceFeatures supported_features;
2115 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2116 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2117 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2118 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2119 for (uint32_t i = 0; i < num_features; i++) {
2120 if (enabled_feature[i] && !supported_feature[i])
2121 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2122 }
2123 }
2124
2125 /* Check requested queues and fail if we are requested to create any
2126 * queues with flags we don't support.
2127 */
2128 assert(pCreateInfo->queueCreateInfoCount > 0);
2129 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2130 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2131 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2132 }
2133
2134 /* Check if client specified queue priority. */
2135 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2136 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2137 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2138
2139 VkQueueGlobalPriorityEXT priority =
2140 queue_priority ? queue_priority->globalPriority :
2141 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2142
2143 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2144 sizeof(*device), 8,
2145 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2146 if (!device)
2147 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2148
2149 const unsigned decode_flags =
2150 GEN_BATCH_DECODE_FULL |
2151 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2152 GEN_BATCH_DECODE_OFFSETS |
2153 GEN_BATCH_DECODE_FLOATS;
2154
2155 gen_batch_decode_ctx_init(&device->decoder_ctx,
2156 &physical_device->info,
2157 stderr, decode_flags, NULL,
2158 decode_get_bo, NULL, device);
2159
2160 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2161 device->instance = physical_device->instance;
2162 device->chipset_id = physical_device->chipset_id;
2163 device->no_hw = physical_device->no_hw;
2164 device->_lost = false;
2165
2166 if (pAllocator)
2167 device->alloc = *pAllocator;
2168 else
2169 device->alloc = physical_device->instance->alloc;
2170
2171 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2172 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2173 if (device->fd == -1) {
2174 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2175 goto fail_device;
2176 }
2177
2178 device->context_id = anv_gem_create_context(device);
2179 if (device->context_id == -1) {
2180 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2181 goto fail_fd;
2182 }
2183
2184 if (physical_device->use_softpin) {
2185 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2186 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2187 goto fail_fd;
2188 }
2189
2190 /* keep the page with address zero out of the allocator */
2191 struct anv_memory_heap *low_heap =
2192 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2193 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2194 device->vma_lo_available = low_heap->size;
2195
2196 struct anv_memory_heap *high_heap =
2197 &physical_device->memory.heaps[0];
2198 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2199 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2200 high_heap->size;
2201 }
2202
2203 list_inithead(&device->memory_objects);
2204
2205 /* As per spec, the driver implementation may deny requests to acquire
2206 * a priority above the default priority (MEDIUM) if the caller does not
2207 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2208 * is returned.
2209 */
2210 if (physical_device->has_context_priority) {
2211 int err = anv_gem_set_context_param(device->fd, device->context_id,
2212 I915_CONTEXT_PARAM_PRIORITY,
2213 vk_priority_to_gen(priority));
2214 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2215 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2216 goto fail_fd;
2217 }
2218 }
2219
2220 device->info = physical_device->info;
2221 device->isl_dev = physical_device->isl_dev;
2222
2223 /* On Broadwell and later, we can use batch chaining to more efficiently
2224 * implement growing command buffers. Prior to Haswell, the kernel
2225 * command parser gets in the way and we have to fall back to growing
2226 * the batch.
2227 */
2228 device->can_chain_batches = device->info.gen >= 8;
2229
2230 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2231 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2232 device->enabled_extensions = enabled_extensions;
2233
2234 anv_device_init_dispatch(device);
2235
2236 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2237 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2238 goto fail_context_id;
2239 }
2240
2241 pthread_condattr_t condattr;
2242 if (pthread_condattr_init(&condattr) != 0) {
2243 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2244 goto fail_mutex;
2245 }
2246 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2247 pthread_condattr_destroy(&condattr);
2248 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2249 goto fail_mutex;
2250 }
2251 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2252 pthread_condattr_destroy(&condattr);
2253 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2254 goto fail_mutex;
2255 }
2256 pthread_condattr_destroy(&condattr);
2257
2258 uint64_t bo_flags =
2259 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2260 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2261 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2262 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2263
2264 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2265
2266 result = anv_bo_cache_init(&device->bo_cache);
2267 if (result != VK_SUCCESS)
2268 goto fail_batch_bo_pool;
2269
2270 if (!physical_device->use_softpin)
2271 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2272
2273 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2274 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2275 16384,
2276 bo_flags);
2277 if (result != VK_SUCCESS)
2278 goto fail_bo_cache;
2279
2280 result = anv_state_pool_init(&device->instruction_state_pool, device,
2281 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2282 16384,
2283 bo_flags);
2284 if (result != VK_SUCCESS)
2285 goto fail_dynamic_state_pool;
2286
2287 result = anv_state_pool_init(&device->surface_state_pool, device,
2288 SURFACE_STATE_POOL_MIN_ADDRESS,
2289 4096,
2290 bo_flags);
2291 if (result != VK_SUCCESS)
2292 goto fail_instruction_state_pool;
2293
2294 if (physical_device->use_softpin) {
2295 result = anv_state_pool_init(&device->binding_table_pool, device,
2296 BINDING_TABLE_POOL_MIN_ADDRESS,
2297 4096,
2298 bo_flags);
2299 if (result != VK_SUCCESS)
2300 goto fail_surface_state_pool;
2301 }
2302
2303 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
2304 if (result != VK_SUCCESS)
2305 goto fail_binding_table_pool;
2306
2307 if (physical_device->use_softpin)
2308 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2309
2310 if (!anv_vma_alloc(device, &device->workaround_bo))
2311 goto fail_workaround_bo;
2312
2313 anv_device_init_trivial_batch(device);
2314
2315 if (device->info.gen >= 10)
2316 anv_device_init_hiz_clear_value_bo(device);
2317
2318 anv_scratch_pool_init(device, &device->scratch_pool);
2319
2320 anv_queue_init(device, &device->queue);
2321
2322 switch (device->info.gen) {
2323 case 7:
2324 if (!device->info.is_haswell)
2325 result = gen7_init_device_state(device);
2326 else
2327 result = gen75_init_device_state(device);
2328 break;
2329 case 8:
2330 result = gen8_init_device_state(device);
2331 break;
2332 case 9:
2333 result = gen9_init_device_state(device);
2334 break;
2335 case 10:
2336 result = gen10_init_device_state(device);
2337 break;
2338 case 11:
2339 result = gen11_init_device_state(device);
2340 break;
2341 default:
2342 /* Shouldn't get here as we don't create physical devices for any other
2343 * gens. */
2344 unreachable("unhandled gen");
2345 }
2346 if (result != VK_SUCCESS)
2347 goto fail_workaround_bo;
2348
2349 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2350
2351 anv_device_init_blorp(device);
2352
2353 anv_device_init_border_colors(device);
2354
2355 *pDevice = anv_device_to_handle(device);
2356
2357 return VK_SUCCESS;
2358
2359 fail_workaround_bo:
2360 anv_queue_finish(&device->queue);
2361 anv_scratch_pool_finish(device, &device->scratch_pool);
2362 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2363 anv_gem_close(device, device->workaround_bo.gem_handle);
2364 fail_binding_table_pool:
2365 if (physical_device->use_softpin)
2366 anv_state_pool_finish(&device->binding_table_pool);
2367 fail_surface_state_pool:
2368 anv_state_pool_finish(&device->surface_state_pool);
2369 fail_instruction_state_pool:
2370 anv_state_pool_finish(&device->instruction_state_pool);
2371 fail_dynamic_state_pool:
2372 anv_state_pool_finish(&device->dynamic_state_pool);
2373 fail_bo_cache:
2374 anv_bo_cache_finish(&device->bo_cache);
2375 fail_batch_bo_pool:
2376 anv_bo_pool_finish(&device->batch_bo_pool);
2377 pthread_cond_destroy(&device->queue_submit);
2378 fail_mutex:
2379 pthread_mutex_destroy(&device->mutex);
2380 fail_context_id:
2381 anv_gem_destroy_context(device, device->context_id);
2382 fail_fd:
2383 close(device->fd);
2384 fail_device:
2385 vk_free(&device->alloc, device);
2386
2387 return result;
2388 }
2389
2390 void anv_DestroyDevice(
2391 VkDevice _device,
2392 const VkAllocationCallbacks* pAllocator)
2393 {
2394 ANV_FROM_HANDLE(anv_device, device, _device);
2395 struct anv_physical_device *physical_device;
2396
2397 if (!device)
2398 return;
2399
2400 physical_device = &device->instance->physicalDevice;
2401
2402 anv_device_finish_blorp(device);
2403
2404 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2405
2406 anv_queue_finish(&device->queue);
2407
2408 #ifdef HAVE_VALGRIND
2409 /* We only need to free these to prevent valgrind errors. The backing
2410 * BO will go away in a couple of lines so we don't actually leak.
2411 */
2412 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2413 #endif
2414
2415 anv_scratch_pool_finish(device, &device->scratch_pool);
2416
2417 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2418 anv_vma_free(device, &device->workaround_bo);
2419 anv_gem_close(device, device->workaround_bo.gem_handle);
2420
2421 anv_vma_free(device, &device->trivial_batch_bo);
2422 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2423 if (device->info.gen >= 10)
2424 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2425
2426 if (physical_device->use_softpin)
2427 anv_state_pool_finish(&device->binding_table_pool);
2428 anv_state_pool_finish(&device->surface_state_pool);
2429 anv_state_pool_finish(&device->instruction_state_pool);
2430 anv_state_pool_finish(&device->dynamic_state_pool);
2431
2432 anv_bo_cache_finish(&device->bo_cache);
2433
2434 anv_bo_pool_finish(&device->batch_bo_pool);
2435
2436 pthread_cond_destroy(&device->queue_submit);
2437 pthread_mutex_destroy(&device->mutex);
2438
2439 anv_gem_destroy_context(device, device->context_id);
2440
2441 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2442
2443 close(device->fd);
2444
2445 vk_free(&device->alloc, device);
2446 }
2447
2448 VkResult anv_EnumerateInstanceLayerProperties(
2449 uint32_t* pPropertyCount,
2450 VkLayerProperties* pProperties)
2451 {
2452 if (pProperties == NULL) {
2453 *pPropertyCount = 0;
2454 return VK_SUCCESS;
2455 }
2456
2457 /* None supported at this time */
2458 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2459 }
2460
2461 VkResult anv_EnumerateDeviceLayerProperties(
2462 VkPhysicalDevice physicalDevice,
2463 uint32_t* pPropertyCount,
2464 VkLayerProperties* pProperties)
2465 {
2466 if (pProperties == NULL) {
2467 *pPropertyCount = 0;
2468 return VK_SUCCESS;
2469 }
2470
2471 /* None supported at this time */
2472 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2473 }
2474
2475 void anv_GetDeviceQueue(
2476 VkDevice _device,
2477 uint32_t queueNodeIndex,
2478 uint32_t queueIndex,
2479 VkQueue* pQueue)
2480 {
2481 ANV_FROM_HANDLE(anv_device, device, _device);
2482
2483 assert(queueIndex == 0);
2484
2485 *pQueue = anv_queue_to_handle(&device->queue);
2486 }
2487
2488 void anv_GetDeviceQueue2(
2489 VkDevice _device,
2490 const VkDeviceQueueInfo2* pQueueInfo,
2491 VkQueue* pQueue)
2492 {
2493 ANV_FROM_HANDLE(anv_device, device, _device);
2494
2495 assert(pQueueInfo->queueIndex == 0);
2496
2497 if (pQueueInfo->flags == device->queue.flags)
2498 *pQueue = anv_queue_to_handle(&device->queue);
2499 else
2500 *pQueue = NULL;
2501 }
2502
2503 VkResult
2504 _anv_device_set_lost(struct anv_device *device,
2505 const char *file, int line,
2506 const char *msg, ...)
2507 {
2508 VkResult err;
2509 va_list ap;
2510
2511 device->_lost = true;
2512
2513 va_start(ap, msg);
2514 err = __vk_errorv(device->instance, device,
2515 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2516 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2517 va_end(ap);
2518
2519 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2520 abort();
2521
2522 return err;
2523 }
2524
2525 VkResult
2526 anv_device_query_status(struct anv_device *device)
2527 {
2528 /* This isn't likely as most of the callers of this function already check
2529 * for it. However, it doesn't hurt to check and it potentially lets us
2530 * avoid an ioctl.
2531 */
2532 if (anv_device_is_lost(device))
2533 return VK_ERROR_DEVICE_LOST;
2534
2535 uint32_t active, pending;
2536 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2537 if (ret == -1) {
2538 /* We don't know the real error. */
2539 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2540 }
2541
2542 if (active) {
2543 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2544 } else if (pending) {
2545 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2546 }
2547
2548 return VK_SUCCESS;
2549 }
2550
2551 VkResult
2552 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2553 {
2554 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2555 * Other usages of the BO (such as on different hardware) will not be
2556 * flagged as "busy" by this ioctl. Use with care.
2557 */
2558 int ret = anv_gem_busy(device, bo->gem_handle);
2559 if (ret == 1) {
2560 return VK_NOT_READY;
2561 } else if (ret == -1) {
2562 /* We don't know the real error. */
2563 return anv_device_set_lost(device, "gem wait failed: %m");
2564 }
2565
2566 /* Query for device status after the busy call. If the BO we're checking
2567 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2568 * client because it clearly doesn't have valid data. Yes, this most
2569 * likely means an ioctl, but we just did an ioctl to query the busy status
2570 * so it's no great loss.
2571 */
2572 return anv_device_query_status(device);
2573 }
2574
2575 VkResult
2576 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2577 int64_t timeout)
2578 {
2579 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2580 if (ret == -1 && errno == ETIME) {
2581 return VK_TIMEOUT;
2582 } else if (ret == -1) {
2583 /* We don't know the real error. */
2584 return anv_device_set_lost(device, "gem wait failed: %m");
2585 }
2586
2587 /* Query for device status after the wait. If the BO we're waiting on got
2588 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2589 * because it clearly doesn't have valid data. Yes, this most likely means
2590 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2591 */
2592 return anv_device_query_status(device);
2593 }
2594
2595 VkResult anv_DeviceWaitIdle(
2596 VkDevice _device)
2597 {
2598 ANV_FROM_HANDLE(anv_device, device, _device);
2599 if (anv_device_is_lost(device))
2600 return VK_ERROR_DEVICE_LOST;
2601
2602 struct anv_batch batch;
2603
2604 uint32_t cmds[8];
2605 batch.start = batch.next = cmds;
2606 batch.end = (void *) cmds + sizeof(cmds);
2607
2608 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2609 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2610
2611 return anv_device_submit_simple_batch(device, &batch);
2612 }
2613
2614 bool
2615 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2616 {
2617 if (!(bo->flags & EXEC_OBJECT_PINNED))
2618 return true;
2619
2620 pthread_mutex_lock(&device->vma_mutex);
2621
2622 bo->offset = 0;
2623
2624 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2625 device->vma_hi_available >= bo->size) {
2626 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2627 if (addr) {
2628 bo->offset = gen_canonical_address(addr);
2629 assert(addr == gen_48b_address(bo->offset));
2630 device->vma_hi_available -= bo->size;
2631 }
2632 }
2633
2634 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2635 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2636 if (addr) {
2637 bo->offset = gen_canonical_address(addr);
2638 assert(addr == gen_48b_address(bo->offset));
2639 device->vma_lo_available -= bo->size;
2640 }
2641 }
2642
2643 pthread_mutex_unlock(&device->vma_mutex);
2644
2645 return bo->offset != 0;
2646 }
2647
2648 void
2649 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2650 {
2651 if (!(bo->flags & EXEC_OBJECT_PINNED))
2652 return;
2653
2654 const uint64_t addr_48b = gen_48b_address(bo->offset);
2655
2656 pthread_mutex_lock(&device->vma_mutex);
2657
2658 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2659 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2660 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2661 device->vma_lo_available += bo->size;
2662 } else {
2663 MAYBE_UNUSED const struct anv_physical_device *physical_device =
2664 &device->instance->physicalDevice;
2665 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2666 addr_48b < (physical_device->memory.heaps[0].vma_start +
2667 physical_device->memory.heaps[0].vma_size));
2668 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2669 device->vma_hi_available += bo->size;
2670 }
2671
2672 pthread_mutex_unlock(&device->vma_mutex);
2673
2674 bo->offset = 0;
2675 }
2676
2677 VkResult
2678 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2679 {
2680 uint32_t gem_handle = anv_gem_create(device, size);
2681 if (!gem_handle)
2682 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2683
2684 anv_bo_init(bo, gem_handle, size);
2685
2686 return VK_SUCCESS;
2687 }
2688
2689 VkResult anv_AllocateMemory(
2690 VkDevice _device,
2691 const VkMemoryAllocateInfo* pAllocateInfo,
2692 const VkAllocationCallbacks* pAllocator,
2693 VkDeviceMemory* pMem)
2694 {
2695 ANV_FROM_HANDLE(anv_device, device, _device);
2696 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2697 struct anv_device_memory *mem;
2698 VkResult result = VK_SUCCESS;
2699
2700 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2701
2702 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2703 assert(pAllocateInfo->allocationSize > 0);
2704
2705 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2706 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2707
2708 /* FINISHME: Fail if allocation request exceeds heap size. */
2709
2710 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2711 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2712 if (mem == NULL)
2713 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2714
2715 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2716 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2717 mem->map = NULL;
2718 mem->map_size = 0;
2719 mem->ahw = NULL;
2720 mem->host_ptr = NULL;
2721
2722 uint64_t bo_flags = 0;
2723
2724 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2725 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2726 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2727
2728 const struct wsi_memory_allocate_info *wsi_info =
2729 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2730 if (wsi_info && wsi_info->implicit_sync) {
2731 /* We need to set the WRITE flag on window system buffers so that GEM
2732 * will know we're writing to them and synchronize uses on other rings
2733 * (eg if the display server uses the blitter ring).
2734 */
2735 bo_flags |= EXEC_OBJECT_WRITE;
2736 } else if (pdevice->has_exec_async) {
2737 bo_flags |= EXEC_OBJECT_ASYNC;
2738 }
2739
2740 if (pdevice->use_softpin)
2741 bo_flags |= EXEC_OBJECT_PINNED;
2742
2743 const VkExportMemoryAllocateInfo *export_info =
2744 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2745
2746 /* Check if we need to support Android HW buffer export. If so,
2747 * create AHardwareBuffer and import memory from it.
2748 */
2749 bool android_export = false;
2750 if (export_info && export_info->handleTypes &
2751 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2752 android_export = true;
2753
2754 /* Android memory import. */
2755 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2756 vk_find_struct_const(pAllocateInfo->pNext,
2757 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2758
2759 if (ahw_import_info) {
2760 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2761 if (result != VK_SUCCESS)
2762 goto fail;
2763
2764 goto success;
2765 } else if (android_export) {
2766 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2767 if (result != VK_SUCCESS)
2768 goto fail;
2769
2770 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2771 .buffer = mem->ahw,
2772 };
2773 result = anv_import_ahw_memory(_device, mem, &import_info);
2774 if (result != VK_SUCCESS)
2775 goto fail;
2776
2777 goto success;
2778 }
2779
2780 const VkImportMemoryFdInfoKHR *fd_info =
2781 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2782
2783 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2784 * ignored.
2785 */
2786 if (fd_info && fd_info->handleType) {
2787 /* At the moment, we support only the below handle types. */
2788 assert(fd_info->handleType ==
2789 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2790 fd_info->handleType ==
2791 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2792
2793 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2794 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2795 if (result != VK_SUCCESS)
2796 goto fail;
2797
2798 VkDeviceSize aligned_alloc_size =
2799 align_u64(pAllocateInfo->allocationSize, 4096);
2800
2801 /* For security purposes, we reject importing the bo if it's smaller
2802 * than the requested allocation size. This prevents a malicious client
2803 * from passing a buffer to a trusted client, lying about the size, and
2804 * telling the trusted client to try and texture from an image that goes
2805 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2806 * in the trusted client. The trusted client can protect itself against
2807 * this sort of attack but only if it can trust the buffer size.
2808 */
2809 if (mem->bo->size < aligned_alloc_size) {
2810 result = vk_errorf(device->instance, device,
2811 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2812 "aligned allocationSize too large for "
2813 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2814 "%"PRIu64"B > %"PRIu64"B",
2815 aligned_alloc_size, mem->bo->size);
2816 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2817 goto fail;
2818 }
2819
2820 /* From the Vulkan spec:
2821 *
2822 * "Importing memory from a file descriptor transfers ownership of
2823 * the file descriptor from the application to the Vulkan
2824 * implementation. The application must not perform any operations on
2825 * the file descriptor after a successful import."
2826 *
2827 * If the import fails, we leave the file descriptor open.
2828 */
2829 close(fd_info->fd);
2830 goto success;
2831 }
2832
2833 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2834 vk_find_struct_const(pAllocateInfo->pNext,
2835 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2836 if (host_ptr_info && host_ptr_info->handleType) {
2837 if (host_ptr_info->handleType ==
2838 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2839 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2840 goto fail;
2841 }
2842
2843 assert(host_ptr_info->handleType ==
2844 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2845
2846 result = anv_bo_cache_import_host_ptr(
2847 device, &device->bo_cache, host_ptr_info->pHostPointer,
2848 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2849
2850 if (result != VK_SUCCESS)
2851 goto fail;
2852
2853 mem->host_ptr = host_ptr_info->pHostPointer;
2854 goto success;
2855 }
2856
2857 /* Regular allocate (not importing memory). */
2858
2859 if (export_info && export_info->handleTypes)
2860 bo_flags |= ANV_BO_EXTERNAL;
2861
2862 result = anv_bo_cache_alloc(device, &device->bo_cache,
2863 pAllocateInfo->allocationSize, bo_flags,
2864 &mem->bo);
2865 if (result != VK_SUCCESS)
2866 goto fail;
2867
2868 const VkMemoryDedicatedAllocateInfo *dedicated_info =
2869 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
2870 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2871 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2872
2873 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2874 * the BO. In this case, we have a dedicated allocation.
2875 */
2876 if (image->needs_set_tiling) {
2877 const uint32_t i915_tiling =
2878 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2879 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2880 image->planes[0].surface.isl.row_pitch_B,
2881 i915_tiling);
2882 if (ret) {
2883 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2884 return vk_errorf(device->instance, NULL,
2885 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2886 "failed to set BO tiling: %m");
2887 }
2888 }
2889 }
2890
2891 success:
2892 pthread_mutex_lock(&device->mutex);
2893 list_addtail(&mem->link, &device->memory_objects);
2894 pthread_mutex_unlock(&device->mutex);
2895
2896 *pMem = anv_device_memory_to_handle(mem);
2897
2898 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
2899 mem->bo->size);
2900
2901 return VK_SUCCESS;
2902
2903 fail:
2904 vk_free2(&device->alloc, pAllocator, mem);
2905
2906 return result;
2907 }
2908
2909 VkResult anv_GetMemoryFdKHR(
2910 VkDevice device_h,
2911 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2912 int* pFd)
2913 {
2914 ANV_FROM_HANDLE(anv_device, dev, device_h);
2915 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2916
2917 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2918
2919 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2920 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2921
2922 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2923 }
2924
2925 VkResult anv_GetMemoryFdPropertiesKHR(
2926 VkDevice _device,
2927 VkExternalMemoryHandleTypeFlagBits handleType,
2928 int fd,
2929 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2930 {
2931 ANV_FROM_HANDLE(anv_device, device, _device);
2932 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2933
2934 switch (handleType) {
2935 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2936 /* dma-buf can be imported as any memory type */
2937 pMemoryFdProperties->memoryTypeBits =
2938 (1 << pdevice->memory.type_count) - 1;
2939 return VK_SUCCESS;
2940
2941 default:
2942 /* The valid usage section for this function says:
2943 *
2944 * "handleType must not be one of the handle types defined as
2945 * opaque."
2946 *
2947 * So opaque handle types fall into the default "unsupported" case.
2948 */
2949 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2950 }
2951 }
2952
2953 VkResult anv_GetMemoryHostPointerPropertiesEXT(
2954 VkDevice _device,
2955 VkExternalMemoryHandleTypeFlagBits handleType,
2956 const void* pHostPointer,
2957 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
2958 {
2959 ANV_FROM_HANDLE(anv_device, device, _device);
2960
2961 assert(pMemoryHostPointerProperties->sType ==
2962 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
2963
2964 switch (handleType) {
2965 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
2966 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2967
2968 /* Host memory can be imported as any memory type. */
2969 pMemoryHostPointerProperties->memoryTypeBits =
2970 (1ull << pdevice->memory.type_count) - 1;
2971
2972 return VK_SUCCESS;
2973 }
2974 default:
2975 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
2976 }
2977 }
2978
2979 void anv_FreeMemory(
2980 VkDevice _device,
2981 VkDeviceMemory _mem,
2982 const VkAllocationCallbacks* pAllocator)
2983 {
2984 ANV_FROM_HANDLE(anv_device, device, _device);
2985 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2986 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2987
2988 if (mem == NULL)
2989 return;
2990
2991 pthread_mutex_lock(&device->mutex);
2992 list_del(&mem->link);
2993 pthread_mutex_unlock(&device->mutex);
2994
2995 if (mem->map)
2996 anv_UnmapMemory(_device, _mem);
2997
2998 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2999
3000 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3001 if (mem->ahw)
3002 AHardwareBuffer_release(mem->ahw);
3003 #endif
3004
3005 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3006 -mem->bo->size);
3007
3008 vk_free2(&device->alloc, pAllocator, mem);
3009 }
3010
3011 VkResult anv_MapMemory(
3012 VkDevice _device,
3013 VkDeviceMemory _memory,
3014 VkDeviceSize offset,
3015 VkDeviceSize size,
3016 VkMemoryMapFlags flags,
3017 void** ppData)
3018 {
3019 ANV_FROM_HANDLE(anv_device, device, _device);
3020 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3021
3022 if (mem == NULL) {
3023 *ppData = NULL;
3024 return VK_SUCCESS;
3025 }
3026
3027 if (mem->host_ptr) {
3028 *ppData = mem->host_ptr + offset;
3029 return VK_SUCCESS;
3030 }
3031
3032 if (size == VK_WHOLE_SIZE)
3033 size = mem->bo->size - offset;
3034
3035 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3036 *
3037 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3038 * assert(size != 0);
3039 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3040 * equal to the size of the memory minus offset
3041 */
3042 assert(size > 0);
3043 assert(offset + size <= mem->bo->size);
3044
3045 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3046 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3047 * at a time is valid. We could just mmap up front and return an offset
3048 * pointer here, but that may exhaust virtual memory on 32 bit
3049 * userspace. */
3050
3051 uint32_t gem_flags = 0;
3052
3053 if (!device->info.has_llc &&
3054 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3055 gem_flags |= I915_MMAP_WC;
3056
3057 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3058 uint64_t map_offset = offset & ~4095ull;
3059 assert(offset >= map_offset);
3060 uint64_t map_size = (offset + size) - map_offset;
3061
3062 /* Let's map whole pages */
3063 map_size = align_u64(map_size, 4096);
3064
3065 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3066 map_offset, map_size, gem_flags);
3067 if (map == MAP_FAILED)
3068 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3069
3070 mem->map = map;
3071 mem->map_size = map_size;
3072
3073 *ppData = mem->map + (offset - map_offset);
3074
3075 return VK_SUCCESS;
3076 }
3077
3078 void anv_UnmapMemory(
3079 VkDevice _device,
3080 VkDeviceMemory _memory)
3081 {
3082 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3083
3084 if (mem == NULL || mem->host_ptr)
3085 return;
3086
3087 anv_gem_munmap(mem->map, mem->map_size);
3088
3089 mem->map = NULL;
3090 mem->map_size = 0;
3091 }
3092
3093 static void
3094 clflush_mapped_ranges(struct anv_device *device,
3095 uint32_t count,
3096 const VkMappedMemoryRange *ranges)
3097 {
3098 for (uint32_t i = 0; i < count; i++) {
3099 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3100 if (ranges[i].offset >= mem->map_size)
3101 continue;
3102
3103 gen_clflush_range(mem->map + ranges[i].offset,
3104 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3105 }
3106 }
3107
3108 VkResult anv_FlushMappedMemoryRanges(
3109 VkDevice _device,
3110 uint32_t memoryRangeCount,
3111 const VkMappedMemoryRange* pMemoryRanges)
3112 {
3113 ANV_FROM_HANDLE(anv_device, device, _device);
3114
3115 if (device->info.has_llc)
3116 return VK_SUCCESS;
3117
3118 /* Make sure the writes we're flushing have landed. */
3119 __builtin_ia32_mfence();
3120
3121 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3122
3123 return VK_SUCCESS;
3124 }
3125
3126 VkResult anv_InvalidateMappedMemoryRanges(
3127 VkDevice _device,
3128 uint32_t memoryRangeCount,
3129 const VkMappedMemoryRange* pMemoryRanges)
3130 {
3131 ANV_FROM_HANDLE(anv_device, device, _device);
3132
3133 if (device->info.has_llc)
3134 return VK_SUCCESS;
3135
3136 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3137
3138 /* Make sure no reads get moved up above the invalidate. */
3139 __builtin_ia32_mfence();
3140
3141 return VK_SUCCESS;
3142 }
3143
3144 void anv_GetBufferMemoryRequirements(
3145 VkDevice _device,
3146 VkBuffer _buffer,
3147 VkMemoryRequirements* pMemoryRequirements)
3148 {
3149 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3150 ANV_FROM_HANDLE(anv_device, device, _device);
3151 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3152
3153 /* The Vulkan spec (git aaed022) says:
3154 *
3155 * memoryTypeBits is a bitfield and contains one bit set for every
3156 * supported memory type for the resource. The bit `1<<i` is set if and
3157 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3158 * structure for the physical device is supported.
3159 */
3160 uint32_t memory_types = 0;
3161 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3162 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3163 if ((valid_usage & buffer->usage) == buffer->usage)
3164 memory_types |= (1u << i);
3165 }
3166
3167 /* Base alignment requirement of a cache line */
3168 uint32_t alignment = 16;
3169
3170 /* We need an alignment of 32 for pushing UBOs */
3171 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3172 alignment = MAX2(alignment, 32);
3173
3174 pMemoryRequirements->size = buffer->size;
3175 pMemoryRequirements->alignment = alignment;
3176
3177 /* Storage and Uniform buffers should have their size aligned to
3178 * 32-bits to avoid boundary checks when last DWord is not complete.
3179 * This would ensure that not internal padding would be needed for
3180 * 16-bit types.
3181 */
3182 if (device->robust_buffer_access &&
3183 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3184 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3185 pMemoryRequirements->size = align_u64(buffer->size, 4);
3186
3187 pMemoryRequirements->memoryTypeBits = memory_types;
3188 }
3189
3190 void anv_GetBufferMemoryRequirements2(
3191 VkDevice _device,
3192 const VkBufferMemoryRequirementsInfo2* pInfo,
3193 VkMemoryRequirements2* pMemoryRequirements)
3194 {
3195 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3196 &pMemoryRequirements->memoryRequirements);
3197
3198 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3199 switch (ext->sType) {
3200 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3201 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3202 requirements->prefersDedicatedAllocation = false;
3203 requirements->requiresDedicatedAllocation = false;
3204 break;
3205 }
3206
3207 default:
3208 anv_debug_ignored_stype(ext->sType);
3209 break;
3210 }
3211 }
3212 }
3213
3214 void anv_GetImageMemoryRequirements(
3215 VkDevice _device,
3216 VkImage _image,
3217 VkMemoryRequirements* pMemoryRequirements)
3218 {
3219 ANV_FROM_HANDLE(anv_image, image, _image);
3220 ANV_FROM_HANDLE(anv_device, device, _device);
3221 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3222
3223 /* The Vulkan spec (git aaed022) says:
3224 *
3225 * memoryTypeBits is a bitfield and contains one bit set for every
3226 * supported memory type for the resource. The bit `1<<i` is set if and
3227 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3228 * structure for the physical device is supported.
3229 *
3230 * All types are currently supported for images.
3231 */
3232 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3233
3234 /* We must have image allocated or imported at this point. According to the
3235 * specification, external images must have been bound to memory before
3236 * calling GetImageMemoryRequirements.
3237 */
3238 assert(image->size > 0);
3239
3240 pMemoryRequirements->size = image->size;
3241 pMemoryRequirements->alignment = image->alignment;
3242 pMemoryRequirements->memoryTypeBits = memory_types;
3243 }
3244
3245 void anv_GetImageMemoryRequirements2(
3246 VkDevice _device,
3247 const VkImageMemoryRequirementsInfo2* pInfo,
3248 VkMemoryRequirements2* pMemoryRequirements)
3249 {
3250 ANV_FROM_HANDLE(anv_device, device, _device);
3251 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3252
3253 anv_GetImageMemoryRequirements(_device, pInfo->image,
3254 &pMemoryRequirements->memoryRequirements);
3255
3256 vk_foreach_struct_const(ext, pInfo->pNext) {
3257 switch (ext->sType) {
3258 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3259 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3260 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3261 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3262 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3263 plane_reqs->planeAspect);
3264
3265 assert(image->planes[plane].offset == 0);
3266
3267 /* The Vulkan spec (git aaed022) says:
3268 *
3269 * memoryTypeBits is a bitfield and contains one bit set for every
3270 * supported memory type for the resource. The bit `1<<i` is set
3271 * if and only if the memory type `i` in the
3272 * VkPhysicalDeviceMemoryProperties structure for the physical
3273 * device is supported.
3274 *
3275 * All types are currently supported for images.
3276 */
3277 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3278 (1ull << pdevice->memory.type_count) - 1;
3279
3280 /* We must have image allocated or imported at this point. According to the
3281 * specification, external images must have been bound to memory before
3282 * calling GetImageMemoryRequirements.
3283 */
3284 assert(image->planes[plane].size > 0);
3285
3286 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3287 pMemoryRequirements->memoryRequirements.alignment =
3288 image->planes[plane].alignment;
3289 break;
3290 }
3291
3292 default:
3293 anv_debug_ignored_stype(ext->sType);
3294 break;
3295 }
3296 }
3297
3298 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3299 switch (ext->sType) {
3300 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3301 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3302 if (image->needs_set_tiling || image->external_format) {
3303 /* If we need to set the tiling for external consumers, we need a
3304 * dedicated allocation.
3305 *
3306 * See also anv_AllocateMemory.
3307 */
3308 requirements->prefersDedicatedAllocation = true;
3309 requirements->requiresDedicatedAllocation = true;
3310 } else {
3311 requirements->prefersDedicatedAllocation = false;
3312 requirements->requiresDedicatedAllocation = false;
3313 }
3314 break;
3315 }
3316
3317 default:
3318 anv_debug_ignored_stype(ext->sType);
3319 break;
3320 }
3321 }
3322 }
3323
3324 void anv_GetImageSparseMemoryRequirements(
3325 VkDevice device,
3326 VkImage image,
3327 uint32_t* pSparseMemoryRequirementCount,
3328 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3329 {
3330 *pSparseMemoryRequirementCount = 0;
3331 }
3332
3333 void anv_GetImageSparseMemoryRequirements2(
3334 VkDevice device,
3335 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3336 uint32_t* pSparseMemoryRequirementCount,
3337 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3338 {
3339 *pSparseMemoryRequirementCount = 0;
3340 }
3341
3342 void anv_GetDeviceMemoryCommitment(
3343 VkDevice device,
3344 VkDeviceMemory memory,
3345 VkDeviceSize* pCommittedMemoryInBytes)
3346 {
3347 *pCommittedMemoryInBytes = 0;
3348 }
3349
3350 static void
3351 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3352 {
3353 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3354 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3355
3356 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3357
3358 if (mem) {
3359 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3360 buffer->address = (struct anv_address) {
3361 .bo = mem->bo,
3362 .offset = pBindInfo->memoryOffset,
3363 };
3364 } else {
3365 buffer->address = ANV_NULL_ADDRESS;
3366 }
3367 }
3368
3369 VkResult anv_BindBufferMemory(
3370 VkDevice device,
3371 VkBuffer buffer,
3372 VkDeviceMemory memory,
3373 VkDeviceSize memoryOffset)
3374 {
3375 anv_bind_buffer_memory(
3376 &(VkBindBufferMemoryInfo) {
3377 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3378 .buffer = buffer,
3379 .memory = memory,
3380 .memoryOffset = memoryOffset,
3381 });
3382
3383 return VK_SUCCESS;
3384 }
3385
3386 VkResult anv_BindBufferMemory2(
3387 VkDevice device,
3388 uint32_t bindInfoCount,
3389 const VkBindBufferMemoryInfo* pBindInfos)
3390 {
3391 for (uint32_t i = 0; i < bindInfoCount; i++)
3392 anv_bind_buffer_memory(&pBindInfos[i]);
3393
3394 return VK_SUCCESS;
3395 }
3396
3397 VkResult anv_QueueBindSparse(
3398 VkQueue _queue,
3399 uint32_t bindInfoCount,
3400 const VkBindSparseInfo* pBindInfo,
3401 VkFence fence)
3402 {
3403 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3404 if (anv_device_is_lost(queue->device))
3405 return VK_ERROR_DEVICE_LOST;
3406
3407 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3408 }
3409
3410 // Event functions
3411
3412 VkResult anv_CreateEvent(
3413 VkDevice _device,
3414 const VkEventCreateInfo* pCreateInfo,
3415 const VkAllocationCallbacks* pAllocator,
3416 VkEvent* pEvent)
3417 {
3418 ANV_FROM_HANDLE(anv_device, device, _device);
3419 struct anv_state state;
3420 struct anv_event *event;
3421
3422 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3423
3424 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3425 sizeof(*event), 8);
3426 event = state.map;
3427 event->state = state;
3428 event->semaphore = VK_EVENT_RESET;
3429
3430 if (!device->info.has_llc) {
3431 /* Make sure the writes we're flushing have landed. */
3432 __builtin_ia32_mfence();
3433 __builtin_ia32_clflush(event);
3434 }
3435
3436 *pEvent = anv_event_to_handle(event);
3437
3438 return VK_SUCCESS;
3439 }
3440
3441 void anv_DestroyEvent(
3442 VkDevice _device,
3443 VkEvent _event,
3444 const VkAllocationCallbacks* pAllocator)
3445 {
3446 ANV_FROM_HANDLE(anv_device, device, _device);
3447 ANV_FROM_HANDLE(anv_event, event, _event);
3448
3449 if (!event)
3450 return;
3451
3452 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3453 }
3454
3455 VkResult anv_GetEventStatus(
3456 VkDevice _device,
3457 VkEvent _event)
3458 {
3459 ANV_FROM_HANDLE(anv_device, device, _device);
3460 ANV_FROM_HANDLE(anv_event, event, _event);
3461
3462 if (anv_device_is_lost(device))
3463 return VK_ERROR_DEVICE_LOST;
3464
3465 if (!device->info.has_llc) {
3466 /* Invalidate read cache before reading event written by GPU. */
3467 __builtin_ia32_clflush(event);
3468 __builtin_ia32_mfence();
3469
3470 }
3471
3472 return event->semaphore;
3473 }
3474
3475 VkResult anv_SetEvent(
3476 VkDevice _device,
3477 VkEvent _event)
3478 {
3479 ANV_FROM_HANDLE(anv_device, device, _device);
3480 ANV_FROM_HANDLE(anv_event, event, _event);
3481
3482 event->semaphore = VK_EVENT_SET;
3483
3484 if (!device->info.has_llc) {
3485 /* Make sure the writes we're flushing have landed. */
3486 __builtin_ia32_mfence();
3487 __builtin_ia32_clflush(event);
3488 }
3489
3490 return VK_SUCCESS;
3491 }
3492
3493 VkResult anv_ResetEvent(
3494 VkDevice _device,
3495 VkEvent _event)
3496 {
3497 ANV_FROM_HANDLE(anv_device, device, _device);
3498 ANV_FROM_HANDLE(anv_event, event, _event);
3499
3500 event->semaphore = VK_EVENT_RESET;
3501
3502 if (!device->info.has_llc) {
3503 /* Make sure the writes we're flushing have landed. */
3504 __builtin_ia32_mfence();
3505 __builtin_ia32_clflush(event);
3506 }
3507
3508 return VK_SUCCESS;
3509 }
3510
3511 // Buffer functions
3512
3513 VkResult anv_CreateBuffer(
3514 VkDevice _device,
3515 const VkBufferCreateInfo* pCreateInfo,
3516 const VkAllocationCallbacks* pAllocator,
3517 VkBuffer* pBuffer)
3518 {
3519 ANV_FROM_HANDLE(anv_device, device, _device);
3520 struct anv_buffer *buffer;
3521
3522 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3523
3524 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3525 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3526 if (buffer == NULL)
3527 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3528
3529 buffer->size = pCreateInfo->size;
3530 buffer->usage = pCreateInfo->usage;
3531 buffer->address = ANV_NULL_ADDRESS;
3532
3533 *pBuffer = anv_buffer_to_handle(buffer);
3534
3535 return VK_SUCCESS;
3536 }
3537
3538 void anv_DestroyBuffer(
3539 VkDevice _device,
3540 VkBuffer _buffer,
3541 const VkAllocationCallbacks* pAllocator)
3542 {
3543 ANV_FROM_HANDLE(anv_device, device, _device);
3544 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3545
3546 if (!buffer)
3547 return;
3548
3549 vk_free2(&device->alloc, pAllocator, buffer);
3550 }
3551
3552 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3553 VkDevice device,
3554 const VkBufferDeviceAddressInfoEXT* pInfo)
3555 {
3556 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3557
3558 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3559
3560 return anv_address_physical(buffer->address);
3561 }
3562
3563 void
3564 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3565 enum isl_format format,
3566 struct anv_address address,
3567 uint32_t range, uint32_t stride)
3568 {
3569 isl_buffer_fill_state(&device->isl_dev, state.map,
3570 .address = anv_address_physical(address),
3571 .mocs = device->default_mocs,
3572 .size_B = range,
3573 .format = format,
3574 .swizzle = ISL_SWIZZLE_IDENTITY,
3575 .stride_B = stride);
3576 }
3577
3578 void anv_DestroySampler(
3579 VkDevice _device,
3580 VkSampler _sampler,
3581 const VkAllocationCallbacks* pAllocator)
3582 {
3583 ANV_FROM_HANDLE(anv_device, device, _device);
3584 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3585
3586 if (!sampler)
3587 return;
3588
3589 if (sampler->bindless_state.map) {
3590 anv_state_pool_free(&device->dynamic_state_pool,
3591 sampler->bindless_state);
3592 }
3593
3594 vk_free2(&device->alloc, pAllocator, sampler);
3595 }
3596
3597 VkResult anv_CreateFramebuffer(
3598 VkDevice _device,
3599 const VkFramebufferCreateInfo* pCreateInfo,
3600 const VkAllocationCallbacks* pAllocator,
3601 VkFramebuffer* pFramebuffer)
3602 {
3603 ANV_FROM_HANDLE(anv_device, device, _device);
3604 struct anv_framebuffer *framebuffer;
3605
3606 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3607
3608 size_t size = sizeof(*framebuffer) +
3609 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3610 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3611 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3612 if (framebuffer == NULL)
3613 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3614
3615 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3616 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3617 VkImageView _iview = pCreateInfo->pAttachments[i];
3618 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
3619 }
3620
3621 framebuffer->width = pCreateInfo->width;
3622 framebuffer->height = pCreateInfo->height;
3623 framebuffer->layers = pCreateInfo->layers;
3624
3625 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3626
3627 return VK_SUCCESS;
3628 }
3629
3630 void anv_DestroyFramebuffer(
3631 VkDevice _device,
3632 VkFramebuffer _fb,
3633 const VkAllocationCallbacks* pAllocator)
3634 {
3635 ANV_FROM_HANDLE(anv_device, device, _device);
3636 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3637
3638 if (!fb)
3639 return;
3640
3641 vk_free2(&device->alloc, pAllocator, fb);
3642 }
3643
3644 static const VkTimeDomainEXT anv_time_domains[] = {
3645 VK_TIME_DOMAIN_DEVICE_EXT,
3646 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3647 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3648 };
3649
3650 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3651 VkPhysicalDevice physicalDevice,
3652 uint32_t *pTimeDomainCount,
3653 VkTimeDomainEXT *pTimeDomains)
3654 {
3655 int d;
3656 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3657
3658 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3659 vk_outarray_append(&out, i) {
3660 *i = anv_time_domains[d];
3661 }
3662 }
3663
3664 return vk_outarray_status(&out);
3665 }
3666
3667 static uint64_t
3668 anv_clock_gettime(clockid_t clock_id)
3669 {
3670 struct timespec current;
3671 int ret;
3672
3673 ret = clock_gettime(clock_id, &current);
3674 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3675 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3676 if (ret < 0)
3677 return 0;
3678
3679 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3680 }
3681
3682 #define TIMESTAMP 0x2358
3683
3684 VkResult anv_GetCalibratedTimestampsEXT(
3685 VkDevice _device,
3686 uint32_t timestampCount,
3687 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3688 uint64_t *pTimestamps,
3689 uint64_t *pMaxDeviation)
3690 {
3691 ANV_FROM_HANDLE(anv_device, device, _device);
3692 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3693 int ret;
3694 int d;
3695 uint64_t begin, end;
3696 uint64_t max_clock_period = 0;
3697
3698 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3699
3700 for (d = 0; d < timestampCount; d++) {
3701 switch (pTimestampInfos[d].timeDomain) {
3702 case VK_TIME_DOMAIN_DEVICE_EXT:
3703 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3704 &pTimestamps[d]);
3705
3706 if (ret != 0) {
3707 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3708 "register: %m");
3709 }
3710 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3711 max_clock_period = MAX2(max_clock_period, device_period);
3712 break;
3713 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3714 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3715 max_clock_period = MAX2(max_clock_period, 1);
3716 break;
3717
3718 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3719 pTimestamps[d] = begin;
3720 break;
3721 default:
3722 pTimestamps[d] = 0;
3723 break;
3724 }
3725 }
3726
3727 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3728
3729 /*
3730 * The maximum deviation is the sum of the interval over which we
3731 * perform the sampling and the maximum period of any sampled
3732 * clock. That's because the maximum skew between any two sampled
3733 * clock edges is when the sampled clock with the largest period is
3734 * sampled at the end of that period but right at the beginning of the
3735 * sampling interval and some other clock is sampled right at the
3736 * begining of its sampling period and right at the end of the
3737 * sampling interval. Let's assume the GPU has the longest clock
3738 * period and that the application is sampling GPU and monotonic:
3739 *
3740 * s e
3741 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3742 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3743 *
3744 * g
3745 * 0 1 2 3
3746 * GPU -----_____-----_____-----_____-----_____
3747 *
3748 * m
3749 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3750 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3751 *
3752 * Interval <----------------->
3753 * Deviation <-------------------------->
3754 *
3755 * s = read(raw) 2
3756 * g = read(GPU) 1
3757 * m = read(monotonic) 2
3758 * e = read(raw) b
3759 *
3760 * We round the sample interval up by one tick to cover sampling error
3761 * in the interval clock
3762 */
3763
3764 uint64_t sample_interval = end - begin + 1;
3765
3766 *pMaxDeviation = sample_interval + max_clock_period;
3767
3768 return VK_SUCCESS;
3769 }
3770
3771 /* vk_icd.h does not declare this function, so we declare it here to
3772 * suppress Wmissing-prototypes.
3773 */
3774 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3775 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3776
3777 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3778 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3779 {
3780 /* For the full details on loader interface versioning, see
3781 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3782 * What follows is a condensed summary, to help you navigate the large and
3783 * confusing official doc.
3784 *
3785 * - Loader interface v0 is incompatible with later versions. We don't
3786 * support it.
3787 *
3788 * - In loader interface v1:
3789 * - The first ICD entrypoint called by the loader is
3790 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3791 * entrypoint.
3792 * - The ICD must statically expose no other Vulkan symbol unless it is
3793 * linked with -Bsymbolic.
3794 * - Each dispatchable Vulkan handle created by the ICD must be
3795 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3796 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3797 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3798 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3799 * such loader-managed surfaces.
3800 *
3801 * - Loader interface v2 differs from v1 in:
3802 * - The first ICD entrypoint called by the loader is
3803 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3804 * statically expose this entrypoint.
3805 *
3806 * - Loader interface v3 differs from v2 in:
3807 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3808 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3809 * because the loader no longer does so.
3810 */
3811 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3812 return VK_SUCCESS;
3813 }