anv: store the workaround address
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/xmlpool.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57
58 DRI_CONF_SECTION_DEBUG
59 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
60 DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST("false")
61 DRI_CONF_SECTION_END
62 DRI_CONF_END;
63
64 /* This is probably far to big but it reflects the max size used for messages
65 * in OpenGLs KHR_debug.
66 */
67 #define MAX_DEBUG_MESSAGE_LENGTH 4096
68
69 static void
70 compiler_debug_log(void *data, const char *fmt, ...)
71 {
72 char str[MAX_DEBUG_MESSAGE_LENGTH];
73 struct anv_device *device = (struct anv_device *)data;
74 struct anv_instance *instance = device->physical->instance;
75
76 if (list_is_empty(&instance->debug_report_callbacks.callbacks))
77 return;
78
79 va_list args;
80 va_start(args, fmt);
81 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
82 va_end(args);
83
84 vk_debug_report(&instance->debug_report_callbacks,
85 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
86 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
87 0, 0, 0, "anv", str);
88 }
89
90 static void
91 compiler_perf_log(void *data, const char *fmt, ...)
92 {
93 va_list args;
94 va_start(args, fmt);
95
96 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
97 intel_logd_v(fmt, args);
98
99 va_end(args);
100 }
101
102 static uint64_t
103 anv_compute_heap_size(int fd, uint64_t gtt_size)
104 {
105 /* Query the total ram from the system */
106 struct sysinfo info;
107 sysinfo(&info);
108
109 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
110
111 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
112 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
113 */
114 uint64_t available_ram;
115 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
116 available_ram = total_ram / 2;
117 else
118 available_ram = total_ram * 3 / 4;
119
120 /* We also want to leave some padding for things we allocate in the driver,
121 * so don't go over 3/4 of the GTT either.
122 */
123 uint64_t available_gtt = gtt_size * 3 / 4;
124
125 return MIN2(available_ram, available_gtt);
126 }
127
128 static VkResult
129 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
130 {
131 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
132 &device->gtt_size) == -1) {
133 /* If, for whatever reason, we can't actually get the GTT size from the
134 * kernel (too old?) fall back to the aperture size.
135 */
136 anv_perf_warn(NULL, NULL,
137 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
138
139 if (gen_get_aperture_size(fd, &device->gtt_size) == -1) {
140 return vk_errorfi(device->instance, NULL,
141 VK_ERROR_INITIALIZATION_FAILED,
142 "failed to get aperture size: %m");
143 }
144 }
145
146 /* We only allow 48-bit addresses with softpin because knowing the actual
147 * address is required for the vertex cache flush workaround.
148 */
149 device->supports_48bit_addresses = (device->info.gen >= 8) &&
150 device->has_softpin &&
151 device->gtt_size > (4ULL << 30 /* GiB */);
152
153 uint64_t heap_size = anv_compute_heap_size(fd, device->gtt_size);
154
155 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
156 /* When running with an overridden PCI ID, we may get a GTT size from
157 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
158 * address support can still fail. Just clamp the address space size to
159 * 2 GiB if we don't have 48-bit support.
160 */
161 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
162 "not support for 48-bit addresses",
163 __FILE__, __LINE__);
164 heap_size = 2ull << 30;
165 }
166
167 device->memory.heap_count = 1;
168 device->memory.heaps[0] = (struct anv_memory_heap) {
169 .size = heap_size,
170 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
171 };
172
173 uint32_t type_count = 0;
174 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
175 if (device->info.has_llc) {
176 /* Big core GPUs share LLC with the CPU and thus one memory type can be
177 * both cached and coherent at the same time.
178 */
179 device->memory.types[type_count++] = (struct anv_memory_type) {
180 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
181 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
182 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
183 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
184 .heapIndex = heap,
185 };
186 } else {
187 /* The spec requires that we expose a host-visible, coherent memory
188 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
189 * to give the application a choice between cached, but not coherent and
190 * coherent but uncached (WC though).
191 */
192 device->memory.types[type_count++] = (struct anv_memory_type) {
193 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
194 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
195 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
196 .heapIndex = heap,
197 };
198 device->memory.types[type_count++] = (struct anv_memory_type) {
199 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
200 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
201 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
202 .heapIndex = heap,
203 };
204 }
205 }
206 device->memory.type_count = type_count;
207
208 return VK_SUCCESS;
209 }
210
211 static VkResult
212 anv_physical_device_init_uuids(struct anv_physical_device *device)
213 {
214 const struct build_id_note *note =
215 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
216 if (!note) {
217 return vk_errorfi(device->instance, NULL,
218 VK_ERROR_INITIALIZATION_FAILED,
219 "Failed to find build-id");
220 }
221
222 unsigned build_id_len = build_id_length(note);
223 if (build_id_len < 20) {
224 return vk_errorfi(device->instance, NULL,
225 VK_ERROR_INITIALIZATION_FAILED,
226 "build-id too short. It needs to be a SHA");
227 }
228
229 memcpy(device->driver_build_sha1, build_id_data(note), 20);
230
231 struct mesa_sha1 sha1_ctx;
232 uint8_t sha1[20];
233 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
234
235 /* The pipeline cache UUID is used for determining when a pipeline cache is
236 * invalid. It needs both a driver build and the PCI ID of the device.
237 */
238 _mesa_sha1_init(&sha1_ctx);
239 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
240 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
241 sizeof(device->info.chipset_id));
242 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
243 sizeof(device->always_use_bindless));
244 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
245 sizeof(device->has_a64_buffer_access));
246 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
247 sizeof(device->has_bindless_images));
248 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
249 sizeof(device->has_bindless_samplers));
250 _mesa_sha1_final(&sha1_ctx, sha1);
251 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
252
253 /* The driver UUID is used for determining sharability of images and memory
254 * between two Vulkan instances in separate processes. People who want to
255 * share memory need to also check the device UUID (below) so all this
256 * needs to be is the build-id.
257 */
258 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
259
260 /* The device UUID uniquely identifies the given device within the machine.
261 * Since we never have more than one device, this doesn't need to be a real
262 * UUID. However, on the off-chance that someone tries to use this to
263 * cache pre-tiled images or something of the like, we use the PCI ID and
264 * some bits of ISL info to ensure that this is safe.
265 */
266 _mesa_sha1_init(&sha1_ctx);
267 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
268 sizeof(device->info.chipset_id));
269 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
270 sizeof(device->isl_dev.has_bit6_swizzling));
271 _mesa_sha1_final(&sha1_ctx, sha1);
272 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
273
274 return VK_SUCCESS;
275 }
276
277 static void
278 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
279 {
280 #ifdef ENABLE_SHADER_CACHE
281 char renderer[10];
282 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
283 device->info.chipset_id);
284 assert(len == sizeof(renderer) - 2);
285
286 char timestamp[41];
287 _mesa_sha1_format(timestamp, device->driver_build_sha1);
288
289 const uint64_t driver_flags =
290 brw_get_compiler_config_value(device->compiler);
291 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
292 #else
293 device->disk_cache = NULL;
294 #endif
295 }
296
297 static void
298 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
299 {
300 #ifdef ENABLE_SHADER_CACHE
301 if (device->disk_cache)
302 disk_cache_destroy(device->disk_cache);
303 #else
304 assert(device->disk_cache == NULL);
305 #endif
306 }
307
308 static uint64_t
309 get_available_system_memory()
310 {
311 char *meminfo = os_read_file("/proc/meminfo", NULL);
312 if (!meminfo)
313 return 0;
314
315 char *str = strstr(meminfo, "MemAvailable:");
316 if (!str) {
317 free(meminfo);
318 return 0;
319 }
320
321 uint64_t kb_mem_available;
322 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
323 free(meminfo);
324 return kb_mem_available << 10;
325 }
326
327 free(meminfo);
328 return 0;
329 }
330
331 static VkResult
332 anv_physical_device_try_create(struct anv_instance *instance,
333 drmDevicePtr drm_device,
334 struct anv_physical_device **device_out)
335 {
336 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
337 const char *path = drm_device->nodes[DRM_NODE_RENDER];
338 VkResult result;
339 int fd;
340 int master_fd = -1;
341
342 brw_process_intel_debug_variable();
343
344 fd = open(path, O_RDWR | O_CLOEXEC);
345 if (fd < 0)
346 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
347
348 struct gen_device_info devinfo;
349 if (!gen_get_device_info_from_fd(fd, &devinfo)) {
350 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
351 goto fail_fd;
352 }
353
354 const char *device_name = gen_get_device_name(devinfo.chipset_id);
355
356 if (devinfo.is_haswell) {
357 intel_logw("Haswell Vulkan support is incomplete");
358 } else if (devinfo.gen == 7 && !devinfo.is_baytrail) {
359 intel_logw("Ivy Bridge Vulkan support is incomplete");
360 } else if (devinfo.gen == 7 && devinfo.is_baytrail) {
361 intel_logw("Bay Trail Vulkan support is incomplete");
362 } else if (devinfo.gen >= 8 && devinfo.gen <= 11) {
363 /* Gen8-11 fully supported */
364 } else if (devinfo.gen == 12) {
365 intel_logw("Vulkan is not yet fully supported on gen12");
366 } else {
367 result = vk_errorfi(instance, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
368 "Vulkan not yet supported on %s", device_name);
369 goto fail_fd;
370 }
371
372 struct anv_physical_device *device =
373 vk_alloc(&instance->alloc, sizeof(*device), 8,
374 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
375 if (device == NULL) {
376 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
377 goto fail_fd;
378 }
379
380 vk_object_base_init(NULL, &device->base, VK_OBJECT_TYPE_PHYSICAL_DEVICE);
381 device->instance = instance;
382
383 assert(strlen(path) < ARRAY_SIZE(device->path));
384 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
385
386 device->info = devinfo;
387 device->name = device_name;
388
389 device->no_hw = device->info.no_hw;
390 if (getenv("INTEL_NO_HW") != NULL)
391 device->no_hw = true;
392
393 device->pci_info.domain = drm_device->businfo.pci->domain;
394 device->pci_info.bus = drm_device->businfo.pci->bus;
395 device->pci_info.device = drm_device->businfo.pci->dev;
396 device->pci_info.function = drm_device->businfo.pci->func;
397
398 device->cmd_parser_version = -1;
399 if (device->info.gen == 7) {
400 device->cmd_parser_version =
401 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
402 if (device->cmd_parser_version == -1) {
403 result = vk_errorfi(device->instance, NULL,
404 VK_ERROR_INITIALIZATION_FAILED,
405 "failed to get command parser version");
406 goto fail_alloc;
407 }
408 }
409
410 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
411 result = vk_errorfi(device->instance, NULL,
412 VK_ERROR_INITIALIZATION_FAILED,
413 "kernel missing gem wait");
414 goto fail_alloc;
415 }
416
417 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
418 result = vk_errorfi(device->instance, NULL,
419 VK_ERROR_INITIALIZATION_FAILED,
420 "kernel missing execbuf2");
421 goto fail_alloc;
422 }
423
424 if (!device->info.has_llc &&
425 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
426 result = vk_errorfi(device->instance, NULL,
427 VK_ERROR_INITIALIZATION_FAILED,
428 "kernel missing wc mmap");
429 goto fail_alloc;
430 }
431
432 device->has_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
433 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
434 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
435 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
436 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
437 device->has_syncobj_wait = device->has_syncobj &&
438 anv_gem_supports_syncobj_wait(fd);
439 device->has_context_priority = anv_gem_has_context_priority(fd);
440
441 result = anv_physical_device_init_heaps(device, fd);
442 if (result != VK_SUCCESS)
443 goto fail_alloc;
444
445 device->use_softpin = device->has_softpin &&
446 device->supports_48bit_addresses;
447
448 device->has_context_isolation =
449 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
450
451 device->always_use_bindless =
452 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
453
454 /* We first got the A64 messages on broadwell and we can only use them if
455 * we can pass addresses directly into the shader which requires softpin.
456 */
457 device->has_a64_buffer_access = device->info.gen >= 8 &&
458 device->use_softpin;
459
460 /* We first get bindless image access on Skylake and we can only really do
461 * it if we don't have any relocations so we need softpin.
462 */
463 device->has_bindless_images = device->info.gen >= 9 &&
464 device->use_softpin;
465
466 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
467 * because it's just a matter of setting the sampler address in the sample
468 * message header. However, we've not bothered to wire it up for vec4 so
469 * we leave it disabled on gen7.
470 */
471 device->has_bindless_samplers = device->info.gen >= 8;
472
473 device->has_implicit_ccs = device->info.has_aux_map;
474
475 device->has_mem_available = get_available_system_memory() != 0;
476
477 device->always_flush_cache =
478 driQueryOptionb(&instance->dri_options, "always_flush_cache");
479
480 device->has_mmap_offset =
481 anv_gem_get_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4;
482
483 /* GENs prior to 8 do not support EU/Subslice info */
484 if (device->info.gen >= 8) {
485 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
486 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
487
488 /* Without this information, we cannot get the right Braswell
489 * brandstrings, and we have to use conservative numbers for GPGPU on
490 * many platforms, but otherwise, things will just work.
491 */
492 if (device->subslice_total < 1 || device->eu_total < 1) {
493 intel_logw("Kernel 4.1 required to properly query GPU properties");
494 }
495 } else if (device->info.gen == 7) {
496 device->subslice_total = 1 << (device->info.gt - 1);
497 }
498
499 if (device->info.is_cherryview &&
500 device->subslice_total > 0 && device->eu_total > 0) {
501 /* Logical CS threads = EUs per subslice * num threads per EU */
502 uint32_t max_cs_threads =
503 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
504
505 /* Fuse configurations may give more threads than expected, never less. */
506 if (max_cs_threads > device->info.max_cs_threads)
507 device->info.max_cs_threads = max_cs_threads;
508 }
509
510 device->compiler = brw_compiler_create(NULL, &device->info);
511 if (device->compiler == NULL) {
512 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
513 goto fail_alloc;
514 }
515 device->compiler->shader_debug_log = compiler_debug_log;
516 device->compiler->shader_perf_log = compiler_perf_log;
517 device->compiler->supports_pull_constants = false;
518 device->compiler->constant_buffer_0_is_relative =
519 device->info.gen < 8 || !device->has_context_isolation;
520 device->compiler->supports_shader_constants = true;
521 device->compiler->compact_params = false;
522
523 /* Broadwell PRM says:
524 *
525 * "Before Gen8, there was a historical configuration control field to
526 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
527 * different places: TILECTL[1:0], ARB_MODE[5:4], and
528 * DISP_ARB_CTL[14:13].
529 *
530 * For Gen8 and subsequent generations, the swizzle fields are all
531 * reserved, and the CPU's memory controller performs all address
532 * swizzling modifications."
533 */
534 bool swizzled =
535 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
536
537 isl_device_init(&device->isl_dev, &device->info, swizzled);
538
539 result = anv_physical_device_init_uuids(device);
540 if (result != VK_SUCCESS)
541 goto fail_compiler;
542
543 anv_physical_device_init_disk_cache(device);
544
545 if (instance->enabled_extensions.KHR_display) {
546 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
547 if (master_fd >= 0) {
548 /* prod the device with a GETPARAM call which will fail if
549 * we don't have permission to even render on this device
550 */
551 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
552 close(master_fd);
553 master_fd = -1;
554 }
555 }
556 }
557 device->master_fd = master_fd;
558
559 result = anv_init_wsi(device);
560 if (result != VK_SUCCESS)
561 goto fail_disk_cache;
562
563 device->perf = anv_get_perf(&device->info, fd);
564
565 anv_physical_device_get_supported_extensions(device,
566 &device->supported_extensions);
567
568
569 device->local_fd = fd;
570
571 *device_out = device;
572
573 return VK_SUCCESS;
574
575 fail_disk_cache:
576 anv_physical_device_free_disk_cache(device);
577 fail_compiler:
578 ralloc_free(device->compiler);
579 fail_alloc:
580 vk_free(&instance->alloc, device);
581 fail_fd:
582 close(fd);
583 if (master_fd != -1)
584 close(master_fd);
585 return result;
586 }
587
588 static void
589 anv_physical_device_destroy(struct anv_physical_device *device)
590 {
591 anv_finish_wsi(device);
592 anv_physical_device_free_disk_cache(device);
593 ralloc_free(device->compiler);
594 ralloc_free(device->perf);
595 close(device->local_fd);
596 if (device->master_fd >= 0)
597 close(device->master_fd);
598 vk_object_base_finish(&device->base);
599 vk_free(&device->instance->alloc, device);
600 }
601
602 static void *
603 default_alloc_func(void *pUserData, size_t size, size_t align,
604 VkSystemAllocationScope allocationScope)
605 {
606 return malloc(size);
607 }
608
609 static void *
610 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
611 size_t align, VkSystemAllocationScope allocationScope)
612 {
613 return realloc(pOriginal, size);
614 }
615
616 static void
617 default_free_func(void *pUserData, void *pMemory)
618 {
619 free(pMemory);
620 }
621
622 static const VkAllocationCallbacks default_alloc = {
623 .pUserData = NULL,
624 .pfnAllocation = default_alloc_func,
625 .pfnReallocation = default_realloc_func,
626 .pfnFree = default_free_func,
627 };
628
629 VkResult anv_EnumerateInstanceExtensionProperties(
630 const char* pLayerName,
631 uint32_t* pPropertyCount,
632 VkExtensionProperties* pProperties)
633 {
634 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
635
636 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
637 if (anv_instance_extensions_supported.extensions[i]) {
638 vk_outarray_append(&out, prop) {
639 *prop = anv_instance_extensions[i];
640 }
641 }
642 }
643
644 return vk_outarray_status(&out);
645 }
646
647 VkResult anv_CreateInstance(
648 const VkInstanceCreateInfo* pCreateInfo,
649 const VkAllocationCallbacks* pAllocator,
650 VkInstance* pInstance)
651 {
652 struct anv_instance *instance;
653 VkResult result;
654
655 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
656
657 struct anv_instance_extension_table enabled_extensions = {};
658 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
659 int idx;
660 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
661 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
662 anv_instance_extensions[idx].extensionName) == 0)
663 break;
664 }
665
666 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
667 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
668
669 if (!anv_instance_extensions_supported.extensions[idx])
670 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
671
672 enabled_extensions.extensions[idx] = true;
673 }
674
675 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
676 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
677 if (!instance)
678 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
679
680 vk_object_base_init(NULL, &instance->base, VK_OBJECT_TYPE_INSTANCE);
681
682 if (pAllocator)
683 instance->alloc = *pAllocator;
684 else
685 instance->alloc = default_alloc;
686
687 instance->app_info = (struct anv_app_info) { .api_version = 0 };
688 if (pCreateInfo->pApplicationInfo) {
689 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
690
691 instance->app_info.app_name =
692 vk_strdup(&instance->alloc, app->pApplicationName,
693 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
694 instance->app_info.app_version = app->applicationVersion;
695
696 instance->app_info.engine_name =
697 vk_strdup(&instance->alloc, app->pEngineName,
698 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
699 instance->app_info.engine_version = app->engineVersion;
700
701 instance->app_info.api_version = app->apiVersion;
702 }
703
704 if (instance->app_info.api_version == 0)
705 instance->app_info.api_version = VK_API_VERSION_1_0;
706
707 instance->enabled_extensions = enabled_extensions;
708
709 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
710 /* Vulkan requires that entrypoints for extensions which have not been
711 * enabled must not be advertised.
712 */
713 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
714 &instance->enabled_extensions)) {
715 instance->dispatch.entrypoints[i] = NULL;
716 } else {
717 instance->dispatch.entrypoints[i] =
718 anv_instance_dispatch_table.entrypoints[i];
719 }
720 }
721
722 for (unsigned i = 0; i < ARRAY_SIZE(instance->physical_device_dispatch.entrypoints); i++) {
723 /* Vulkan requires that entrypoints for extensions which have not been
724 * enabled must not be advertised.
725 */
726 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
727 &instance->enabled_extensions)) {
728 instance->physical_device_dispatch.entrypoints[i] = NULL;
729 } else {
730 instance->physical_device_dispatch.entrypoints[i] =
731 anv_physical_device_dispatch_table.entrypoints[i];
732 }
733 }
734
735 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
736 /* Vulkan requires that entrypoints for extensions which have not been
737 * enabled must not be advertised.
738 */
739 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
740 &instance->enabled_extensions, NULL)) {
741 instance->device_dispatch.entrypoints[i] = NULL;
742 } else {
743 instance->device_dispatch.entrypoints[i] =
744 anv_device_dispatch_table.entrypoints[i];
745 }
746 }
747
748 instance->physical_devices_enumerated = false;
749 list_inithead(&instance->physical_devices);
750
751 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
752 if (result != VK_SUCCESS) {
753 vk_free2(&default_alloc, pAllocator, instance);
754 return vk_error(result);
755 }
756
757 instance->pipeline_cache_enabled =
758 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
759
760 glsl_type_singleton_init_or_ref();
761
762 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
763
764 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
765 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
766 0, "anv", NULL,
767 instance->app_info.engine_name,
768 instance->app_info.engine_version);
769
770 *pInstance = anv_instance_to_handle(instance);
771
772 return VK_SUCCESS;
773 }
774
775 void anv_DestroyInstance(
776 VkInstance _instance,
777 const VkAllocationCallbacks* pAllocator)
778 {
779 ANV_FROM_HANDLE(anv_instance, instance, _instance);
780
781 if (!instance)
782 return;
783
784 list_for_each_entry_safe(struct anv_physical_device, pdevice,
785 &instance->physical_devices, link)
786 anv_physical_device_destroy(pdevice);
787
788 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
789 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
790
791 VG(VALGRIND_DESTROY_MEMPOOL(instance));
792
793 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
794
795 glsl_type_singleton_decref();
796
797 driDestroyOptionCache(&instance->dri_options);
798 driDestroyOptionInfo(&instance->available_dri_options);
799
800 vk_object_base_finish(&instance->base);
801 vk_free(&instance->alloc, instance);
802 }
803
804 static VkResult
805 anv_enumerate_physical_devices(struct anv_instance *instance)
806 {
807 if (instance->physical_devices_enumerated)
808 return VK_SUCCESS;
809
810 instance->physical_devices_enumerated = true;
811
812 /* TODO: Check for more devices ? */
813 drmDevicePtr devices[8];
814 int max_devices;
815
816 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
817 if (max_devices < 1)
818 return VK_SUCCESS;
819
820 VkResult result = VK_SUCCESS;
821 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
822 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
823 devices[i]->bustype == DRM_BUS_PCI &&
824 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
825
826 struct anv_physical_device *pdevice;
827 result = anv_physical_device_try_create(instance, devices[i],
828 &pdevice);
829 /* Incompatible DRM device, skip. */
830 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
831 result = VK_SUCCESS;
832 continue;
833 }
834
835 /* Error creating the physical device, report the error. */
836 if (result != VK_SUCCESS)
837 break;
838
839 list_addtail(&pdevice->link, &instance->physical_devices);
840 }
841 }
842 drmFreeDevices(devices, max_devices);
843
844 /* If we successfully enumerated any devices, call it success */
845 return result;
846 }
847
848 VkResult anv_EnumeratePhysicalDevices(
849 VkInstance _instance,
850 uint32_t* pPhysicalDeviceCount,
851 VkPhysicalDevice* pPhysicalDevices)
852 {
853 ANV_FROM_HANDLE(anv_instance, instance, _instance);
854 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
855
856 VkResult result = anv_enumerate_physical_devices(instance);
857 if (result != VK_SUCCESS)
858 return result;
859
860 list_for_each_entry(struct anv_physical_device, pdevice,
861 &instance->physical_devices, link) {
862 vk_outarray_append(&out, i) {
863 *i = anv_physical_device_to_handle(pdevice);
864 }
865 }
866
867 return vk_outarray_status(&out);
868 }
869
870 VkResult anv_EnumeratePhysicalDeviceGroups(
871 VkInstance _instance,
872 uint32_t* pPhysicalDeviceGroupCount,
873 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
874 {
875 ANV_FROM_HANDLE(anv_instance, instance, _instance);
876 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
877 pPhysicalDeviceGroupCount);
878
879 VkResult result = anv_enumerate_physical_devices(instance);
880 if (result != VK_SUCCESS)
881 return result;
882
883 list_for_each_entry(struct anv_physical_device, pdevice,
884 &instance->physical_devices, link) {
885 vk_outarray_append(&out, p) {
886 p->physicalDeviceCount = 1;
887 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
888 p->physicalDevices[0] = anv_physical_device_to_handle(pdevice);
889 p->subsetAllocation = false;
890
891 vk_foreach_struct(ext, p->pNext)
892 anv_debug_ignored_stype(ext->sType);
893 }
894 }
895
896 return vk_outarray_status(&out);
897 }
898
899 void anv_GetPhysicalDeviceFeatures(
900 VkPhysicalDevice physicalDevice,
901 VkPhysicalDeviceFeatures* pFeatures)
902 {
903 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
904
905 *pFeatures = (VkPhysicalDeviceFeatures) {
906 .robustBufferAccess = true,
907 .fullDrawIndexUint32 = true,
908 .imageCubeArray = true,
909 .independentBlend = true,
910 .geometryShader = true,
911 .tessellationShader = true,
912 .sampleRateShading = true,
913 .dualSrcBlend = true,
914 .logicOp = true,
915 .multiDrawIndirect = true,
916 .drawIndirectFirstInstance = true,
917 .depthClamp = true,
918 .depthBiasClamp = true,
919 .fillModeNonSolid = true,
920 .depthBounds = pdevice->info.gen >= 12,
921 .wideLines = true,
922 .largePoints = true,
923 .alphaToOne = true,
924 .multiViewport = true,
925 .samplerAnisotropy = true,
926 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
927 pdevice->info.is_baytrail,
928 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
929 .textureCompressionBC = true,
930 .occlusionQueryPrecise = true,
931 .pipelineStatisticsQuery = true,
932 .fragmentStoresAndAtomics = true,
933 .shaderTessellationAndGeometryPointSize = true,
934 .shaderImageGatherExtended = true,
935 .shaderStorageImageExtendedFormats = true,
936 .shaderStorageImageMultisample = false,
937 .shaderStorageImageReadWithoutFormat = false,
938 .shaderStorageImageWriteWithoutFormat = true,
939 .shaderUniformBufferArrayDynamicIndexing = true,
940 .shaderSampledImageArrayDynamicIndexing = true,
941 .shaderStorageBufferArrayDynamicIndexing = true,
942 .shaderStorageImageArrayDynamicIndexing = true,
943 .shaderClipDistance = true,
944 .shaderCullDistance = true,
945 .shaderFloat64 = pdevice->info.gen >= 8 &&
946 pdevice->info.has_64bit_float,
947 .shaderInt64 = pdevice->info.gen >= 8 &&
948 pdevice->info.has_64bit_int,
949 .shaderInt16 = pdevice->info.gen >= 8,
950 .shaderResourceMinLod = pdevice->info.gen >= 9,
951 .variableMultisampleRate = true,
952 .inheritedQueries = true,
953 };
954
955 /* We can't do image stores in vec4 shaders */
956 pFeatures->vertexPipelineStoresAndAtomics =
957 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
958 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
959
960 struct anv_app_info *app_info = &pdevice->instance->app_info;
961
962 /* The new DOOM and Wolfenstein games require depthBounds without
963 * checking for it. They seem to run fine without it so just claim it's
964 * there and accept the consequences.
965 */
966 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
967 pFeatures->depthBounds = true;
968 }
969
970 static void
971 anv_get_physical_device_features_1_1(struct anv_physical_device *pdevice,
972 VkPhysicalDeviceVulkan11Features *f)
973 {
974 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
975
976 f->storageBuffer16BitAccess = pdevice->info.gen >= 8;
977 f->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
978 f->storagePushConstant16 = pdevice->info.gen >= 8;
979 f->storageInputOutput16 = false;
980 f->multiview = true;
981 f->multiviewGeometryShader = true;
982 f->multiviewTessellationShader = true;
983 f->variablePointersStorageBuffer = true;
984 f->variablePointers = true;
985 f->protectedMemory = false;
986 f->samplerYcbcrConversion = true;
987 f->shaderDrawParameters = true;
988 }
989
990 static void
991 anv_get_physical_device_features_1_2(struct anv_physical_device *pdevice,
992 VkPhysicalDeviceVulkan12Features *f)
993 {
994 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
995
996 f->samplerMirrorClampToEdge = true;
997 f->drawIndirectCount = true;
998 f->storageBuffer8BitAccess = pdevice->info.gen >= 8;
999 f->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1000 f->storagePushConstant8 = pdevice->info.gen >= 8;
1001 f->shaderBufferInt64Atomics = pdevice->info.gen >= 9 &&
1002 pdevice->use_softpin;
1003 f->shaderSharedInt64Atomics = false;
1004 f->shaderFloat16 = pdevice->info.gen >= 8;
1005 f->shaderInt8 = pdevice->info.gen >= 8;
1006
1007 bool descIndexing = pdevice->has_a64_buffer_access &&
1008 pdevice->has_bindless_images;
1009 f->descriptorIndexing = descIndexing;
1010 f->shaderInputAttachmentArrayDynamicIndexing = false;
1011 f->shaderUniformTexelBufferArrayDynamicIndexing = descIndexing;
1012 f->shaderStorageTexelBufferArrayDynamicIndexing = descIndexing;
1013 f->shaderUniformBufferArrayNonUniformIndexing = false;
1014 f->shaderSampledImageArrayNonUniformIndexing = descIndexing;
1015 f->shaderStorageBufferArrayNonUniformIndexing = descIndexing;
1016 f->shaderStorageImageArrayNonUniformIndexing = descIndexing;
1017 f->shaderInputAttachmentArrayNonUniformIndexing = false;
1018 f->shaderUniformTexelBufferArrayNonUniformIndexing = descIndexing;
1019 f->shaderStorageTexelBufferArrayNonUniformIndexing = descIndexing;
1020 f->descriptorBindingUniformBufferUpdateAfterBind = false;
1021 f->descriptorBindingSampledImageUpdateAfterBind = descIndexing;
1022 f->descriptorBindingStorageImageUpdateAfterBind = descIndexing;
1023 f->descriptorBindingStorageBufferUpdateAfterBind = descIndexing;
1024 f->descriptorBindingUniformTexelBufferUpdateAfterBind = descIndexing;
1025 f->descriptorBindingStorageTexelBufferUpdateAfterBind = descIndexing;
1026 f->descriptorBindingUpdateUnusedWhilePending = descIndexing;
1027 f->descriptorBindingPartiallyBound = descIndexing;
1028 f->descriptorBindingVariableDescriptorCount = false;
1029 f->runtimeDescriptorArray = descIndexing;
1030
1031 f->samplerFilterMinmax = pdevice->info.gen >= 9;
1032 f->scalarBlockLayout = true;
1033 f->imagelessFramebuffer = true;
1034 f->uniformBufferStandardLayout = true;
1035 f->shaderSubgroupExtendedTypes = true;
1036 f->separateDepthStencilLayouts = true;
1037 f->hostQueryReset = true;
1038 f->timelineSemaphore = true;
1039 f->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1040 f->bufferDeviceAddressCaptureReplay = pdevice->has_a64_buffer_access;
1041 f->bufferDeviceAddressMultiDevice = false;
1042 f->vulkanMemoryModel = true;
1043 f->vulkanMemoryModelDeviceScope = true;
1044 f->vulkanMemoryModelAvailabilityVisibilityChains = true;
1045 f->shaderOutputViewportIndex = true;
1046 f->shaderOutputLayer = true;
1047 f->subgroupBroadcastDynamicId = true;
1048 }
1049
1050 void anv_GetPhysicalDeviceFeatures2(
1051 VkPhysicalDevice physicalDevice,
1052 VkPhysicalDeviceFeatures2* pFeatures)
1053 {
1054 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1055 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1056
1057 VkPhysicalDeviceVulkan11Features core_1_1 = {
1058 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
1059 };
1060 anv_get_physical_device_features_1_1(pdevice, &core_1_1);
1061
1062 VkPhysicalDeviceVulkan12Features core_1_2 = {
1063 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
1064 };
1065 anv_get_physical_device_features_1_2(pdevice, &core_1_2);
1066
1067 #define CORE_FEATURE(major, minor, feature) \
1068 features->feature = core_##major##_##minor.feature
1069
1070
1071 vk_foreach_struct(ext, pFeatures->pNext) {
1072 switch (ext->sType) {
1073 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1074 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1075 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1076 CORE_FEATURE(1, 2, storageBuffer8BitAccess);
1077 CORE_FEATURE(1, 2, uniformAndStorageBuffer8BitAccess);
1078 CORE_FEATURE(1, 2, storagePushConstant8);
1079 break;
1080 }
1081
1082 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1083 VkPhysicalDevice16BitStorageFeatures *features =
1084 (VkPhysicalDevice16BitStorageFeatures *)ext;
1085 CORE_FEATURE(1, 1, storageBuffer16BitAccess);
1086 CORE_FEATURE(1, 1, uniformAndStorageBuffer16BitAccess);
1087 CORE_FEATURE(1, 1, storagePushConstant16);
1088 CORE_FEATURE(1, 1, storageInputOutput16);
1089 break;
1090 }
1091
1092 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1093 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1094 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1095 features->bufferDeviceAddressCaptureReplay = false;
1096 features->bufferDeviceAddressMultiDevice = false;
1097 break;
1098 }
1099
1100 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR: {
1101 VkPhysicalDeviceBufferDeviceAddressFeaturesKHR *features = (void *)ext;
1102 CORE_FEATURE(1, 2, bufferDeviceAddress);
1103 CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
1104 CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
1105 break;
1106 }
1107
1108 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1109 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1110 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1111 features->computeDerivativeGroupQuads = true;
1112 features->computeDerivativeGroupLinear = true;
1113 break;
1114 }
1115
1116 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1117 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1118 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1119 features->conditionalRendering = pdevice->info.gen >= 8 ||
1120 pdevice->info.is_haswell;
1121 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1122 pdevice->info.is_haswell;
1123 break;
1124 }
1125
1126 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
1127 VkPhysicalDeviceCustomBorderColorFeaturesEXT *features =
1128 (VkPhysicalDeviceCustomBorderColorFeaturesEXT *)ext;
1129 features->customBorderColors = pdevice->info.gen >= 8;
1130 features->customBorderColorWithoutFormat = pdevice->info.gen >= 8;
1131 break;
1132 }
1133
1134 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1135 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1136 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1137 features->depthClipEnable = true;
1138 break;
1139 }
1140
1141 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1142 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1143 CORE_FEATURE(1, 2, shaderFloat16);
1144 CORE_FEATURE(1, 2, shaderInt8);
1145 break;
1146 }
1147
1148 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1149 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1150 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1151 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1152 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1153 features->fragmentShaderShadingRateInterlock = false;
1154 break;
1155 }
1156
1157 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1158 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1159 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1160 CORE_FEATURE(1, 2, hostQueryReset);
1161 break;
1162 }
1163
1164 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1165 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1166 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1167 CORE_FEATURE(1, 2, shaderInputAttachmentArrayDynamicIndexing);
1168 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayDynamicIndexing);
1169 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayDynamicIndexing);
1170 CORE_FEATURE(1, 2, shaderUniformBufferArrayNonUniformIndexing);
1171 CORE_FEATURE(1, 2, shaderSampledImageArrayNonUniformIndexing);
1172 CORE_FEATURE(1, 2, shaderStorageBufferArrayNonUniformIndexing);
1173 CORE_FEATURE(1, 2, shaderStorageImageArrayNonUniformIndexing);
1174 CORE_FEATURE(1, 2, shaderInputAttachmentArrayNonUniformIndexing);
1175 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayNonUniformIndexing);
1176 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayNonUniformIndexing);
1177 CORE_FEATURE(1, 2, descriptorBindingUniformBufferUpdateAfterBind);
1178 CORE_FEATURE(1, 2, descriptorBindingSampledImageUpdateAfterBind);
1179 CORE_FEATURE(1, 2, descriptorBindingStorageImageUpdateAfterBind);
1180 CORE_FEATURE(1, 2, descriptorBindingStorageBufferUpdateAfterBind);
1181 CORE_FEATURE(1, 2, descriptorBindingUniformTexelBufferUpdateAfterBind);
1182 CORE_FEATURE(1, 2, descriptorBindingStorageTexelBufferUpdateAfterBind);
1183 CORE_FEATURE(1, 2, descriptorBindingUpdateUnusedWhilePending);
1184 CORE_FEATURE(1, 2, descriptorBindingPartiallyBound);
1185 CORE_FEATURE(1, 2, descriptorBindingVariableDescriptorCount);
1186 CORE_FEATURE(1, 2, runtimeDescriptorArray);
1187 break;
1188 }
1189
1190 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1191 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1192 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1193 features->indexTypeUint8 = true;
1194 break;
1195 }
1196
1197 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1198 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1199 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1200 features->inlineUniformBlock = true;
1201 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1202 break;
1203 }
1204
1205 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1206 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1207 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1208 features->rectangularLines = true;
1209 features->bresenhamLines = true;
1210 /* Support for Smooth lines with MSAA was removed on gen11. From the
1211 * BSpec section "Multisample ModesState" table for "AA Line Support
1212 * Requirements":
1213 *
1214 * GEN10:BUG:######## NUM_MULTISAMPLES == 1
1215 *
1216 * Fortunately, this isn't a case most people care about.
1217 */
1218 features->smoothLines = pdevice->info.gen < 10;
1219 features->stippledRectangularLines = false;
1220 features->stippledBresenhamLines = true;
1221 features->stippledSmoothLines = false;
1222 break;
1223 }
1224
1225 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1226 VkPhysicalDeviceMultiviewFeatures *features =
1227 (VkPhysicalDeviceMultiviewFeatures *)ext;
1228 CORE_FEATURE(1, 1, multiview);
1229 CORE_FEATURE(1, 1, multiviewGeometryShader);
1230 CORE_FEATURE(1, 1, multiviewTessellationShader);
1231 break;
1232 }
1233
1234 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1235 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1236 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1237 CORE_FEATURE(1, 2, imagelessFramebuffer);
1238 break;
1239 }
1240
1241 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR: {
1242 VkPhysicalDevicePerformanceQueryFeaturesKHR *feature =
1243 (VkPhysicalDevicePerformanceQueryFeaturesKHR *)ext;
1244 feature->performanceCounterQueryPools = true;
1245 /* HW only supports a single configuration at a time. */
1246 feature->performanceCounterMultipleQueryPools = false;
1247 break;
1248 }
1249
1250 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1251 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1252 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1253 features->pipelineExecutableInfo = true;
1254 break;
1255 }
1256
1257 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES_EXT: {
1258 VkPhysicalDevicePrivateDataFeaturesEXT *features = (void *)ext;
1259 features->privateData = true;
1260 break;
1261 }
1262
1263 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1264 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1265 CORE_FEATURE(1, 1, protectedMemory);
1266 break;
1267 }
1268
1269 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
1270 VkPhysicalDeviceRobustness2FeaturesEXT *features = (void *)ext;
1271 features->robustBufferAccess2 = true;
1272 features->robustImageAccess2 = true;
1273 features->nullDescriptor = true;
1274 break;
1275 }
1276
1277 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1278 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1279 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1280 CORE_FEATURE(1, 1, samplerYcbcrConversion);
1281 break;
1282 }
1283
1284 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1285 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1286 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1287 CORE_FEATURE(1, 2, scalarBlockLayout);
1288 break;
1289 }
1290
1291 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1292 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1293 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1294 CORE_FEATURE(1, 2, separateDepthStencilLayouts);
1295 break;
1296 }
1297
1298 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1299 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1300 CORE_FEATURE(1, 2, shaderBufferInt64Atomics);
1301 CORE_FEATURE(1, 2, shaderSharedInt64Atomics);
1302 break;
1303 }
1304
1305 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1306 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1307 features->shaderDemoteToHelperInvocation = true;
1308 break;
1309 }
1310
1311 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1312 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1313 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1314 features->shaderSubgroupClock = true;
1315 features->shaderDeviceClock = false;
1316 break;
1317 }
1318
1319 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1320 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1321 CORE_FEATURE(1, 1, shaderDrawParameters);
1322 break;
1323 }
1324
1325 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1326 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1327 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1328 CORE_FEATURE(1, 2, shaderSubgroupExtendedTypes);
1329 break;
1330 }
1331
1332 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1333 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1334 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1335 features->subgroupSizeControl = true;
1336 features->computeFullSubgroups = true;
1337 break;
1338 }
1339
1340 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1341 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1342 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1343 features->texelBufferAlignment = true;
1344 break;
1345 }
1346
1347 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
1348 VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
1349 (VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
1350 CORE_FEATURE(1, 2, timelineSemaphore);
1351 break;
1352 }
1353
1354 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1355 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1356 CORE_FEATURE(1, 1, variablePointersStorageBuffer);
1357 CORE_FEATURE(1, 1, variablePointers);
1358 break;
1359 }
1360
1361 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1362 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1363 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1364 features->transformFeedback = true;
1365 features->geometryStreams = true;
1366 break;
1367 }
1368
1369 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1370 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1371 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1372 CORE_FEATURE(1, 2, uniformBufferStandardLayout);
1373 break;
1374 }
1375
1376 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1377 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1378 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1379 features->vertexAttributeInstanceRateDivisor = true;
1380 features->vertexAttributeInstanceRateZeroDivisor = true;
1381 break;
1382 }
1383
1384 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES:
1385 anv_get_physical_device_features_1_1(pdevice, (void *)ext);
1386 break;
1387
1388 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES:
1389 anv_get_physical_device_features_1_2(pdevice, (void *)ext);
1390 break;
1391
1392 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1393 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1394 CORE_FEATURE(1, 2, vulkanMemoryModel);
1395 CORE_FEATURE(1, 2, vulkanMemoryModelDeviceScope);
1396 CORE_FEATURE(1, 2, vulkanMemoryModelAvailabilityVisibilityChains);
1397 break;
1398 }
1399
1400 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1401 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1402 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1403 features->ycbcrImageArrays = true;
1404 break;
1405 }
1406
1407 default:
1408 anv_debug_ignored_stype(ext->sType);
1409 break;
1410 }
1411 }
1412
1413 #undef CORE_FEATURE
1414 }
1415
1416 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1417
1418 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1419 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1420
1421 #define MAX_CUSTOM_BORDER_COLORS 4096
1422
1423 void anv_GetPhysicalDeviceProperties(
1424 VkPhysicalDevice physicalDevice,
1425 VkPhysicalDeviceProperties* pProperties)
1426 {
1427 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1428 const struct gen_device_info *devinfo = &pdevice->info;
1429
1430 /* See assertions made when programming the buffer surface state. */
1431 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1432 (1ul << 30) : (1ul << 27);
1433
1434 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1435 const uint32_t max_textures =
1436 pdevice->has_bindless_images ? UINT16_MAX : 128;
1437 const uint32_t max_samplers =
1438 pdevice->has_bindless_samplers ? UINT16_MAX :
1439 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1440 const uint32_t max_images =
1441 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1442
1443 /* If we can use bindless for everything, claim a high per-stage limit,
1444 * otherwise use the binding table size, minus the slots reserved for
1445 * render targets and one slot for the descriptor buffer. */
1446 const uint32_t max_per_stage =
1447 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1448 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1449
1450 /* Limit max_threads to 64 for the GPGPU_WALKER command */
1451 const uint32_t max_workgroup_size = 32 * MIN2(64, devinfo->max_cs_threads);
1452
1453 VkSampleCountFlags sample_counts =
1454 isl_device_get_sample_counts(&pdevice->isl_dev);
1455
1456
1457 VkPhysicalDeviceLimits limits = {
1458 .maxImageDimension1D = (1 << 14),
1459 .maxImageDimension2D = (1 << 14),
1460 .maxImageDimension3D = (1 << 11),
1461 .maxImageDimensionCube = (1 << 14),
1462 .maxImageArrayLayers = (1 << 11),
1463 .maxTexelBufferElements = 128 * 1024 * 1024,
1464 .maxUniformBufferRange = (1ul << 27),
1465 .maxStorageBufferRange = max_raw_buffer_sz,
1466 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1467 .maxMemoryAllocationCount = UINT32_MAX,
1468 .maxSamplerAllocationCount = 64 * 1024,
1469 .bufferImageGranularity = 64, /* A cache line */
1470 .sparseAddressSpaceSize = 0,
1471 .maxBoundDescriptorSets = MAX_SETS,
1472 .maxPerStageDescriptorSamplers = max_samplers,
1473 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1474 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1475 .maxPerStageDescriptorSampledImages = max_textures,
1476 .maxPerStageDescriptorStorageImages = max_images,
1477 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1478 .maxPerStageResources = max_per_stage,
1479 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1480 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1481 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1482 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1483 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1484 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1485 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1486 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1487 .maxVertexInputAttributes = MAX_VBS,
1488 .maxVertexInputBindings = MAX_VBS,
1489 .maxVertexInputAttributeOffset = 2047,
1490 .maxVertexInputBindingStride = 2048,
1491 .maxVertexOutputComponents = 128,
1492 .maxTessellationGenerationLevel = 64,
1493 .maxTessellationPatchSize = 32,
1494 .maxTessellationControlPerVertexInputComponents = 128,
1495 .maxTessellationControlPerVertexOutputComponents = 128,
1496 .maxTessellationControlPerPatchOutputComponents = 128,
1497 .maxTessellationControlTotalOutputComponents = 2048,
1498 .maxTessellationEvaluationInputComponents = 128,
1499 .maxTessellationEvaluationOutputComponents = 128,
1500 .maxGeometryShaderInvocations = 32,
1501 .maxGeometryInputComponents = 64,
1502 .maxGeometryOutputComponents = 128,
1503 .maxGeometryOutputVertices = 256,
1504 .maxGeometryTotalOutputComponents = 1024,
1505 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1506 .maxFragmentOutputAttachments = 8,
1507 .maxFragmentDualSrcAttachments = 1,
1508 .maxFragmentCombinedOutputResources = 8,
1509 .maxComputeSharedMemorySize = 64 * 1024,
1510 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1511 .maxComputeWorkGroupInvocations = max_workgroup_size,
1512 .maxComputeWorkGroupSize = {
1513 max_workgroup_size,
1514 max_workgroup_size,
1515 max_workgroup_size,
1516 },
1517 .subPixelPrecisionBits = 8,
1518 .subTexelPrecisionBits = 8,
1519 .mipmapPrecisionBits = 8,
1520 .maxDrawIndexedIndexValue = UINT32_MAX,
1521 .maxDrawIndirectCount = UINT32_MAX,
1522 .maxSamplerLodBias = 16,
1523 .maxSamplerAnisotropy = 16,
1524 .maxViewports = MAX_VIEWPORTS,
1525 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1526 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1527 .viewportSubPixelBits = 13, /* We take a float? */
1528 .minMemoryMapAlignment = 4096, /* A page */
1529 /* The dataport requires texel alignment so we need to assume a worst
1530 * case of R32G32B32A32 which is 16 bytes.
1531 */
1532 .minTexelBufferOffsetAlignment = 16,
1533 .minUniformBufferOffsetAlignment = ANV_UBO_ALIGNMENT,
1534 .minStorageBufferOffsetAlignment = 4,
1535 .minTexelOffset = -8,
1536 .maxTexelOffset = 7,
1537 .minTexelGatherOffset = -32,
1538 .maxTexelGatherOffset = 31,
1539 .minInterpolationOffset = -0.5,
1540 .maxInterpolationOffset = 0.4375,
1541 .subPixelInterpolationOffsetBits = 4,
1542 .maxFramebufferWidth = (1 << 14),
1543 .maxFramebufferHeight = (1 << 14),
1544 .maxFramebufferLayers = (1 << 11),
1545 .framebufferColorSampleCounts = sample_counts,
1546 .framebufferDepthSampleCounts = sample_counts,
1547 .framebufferStencilSampleCounts = sample_counts,
1548 .framebufferNoAttachmentsSampleCounts = sample_counts,
1549 .maxColorAttachments = MAX_RTS,
1550 .sampledImageColorSampleCounts = sample_counts,
1551 .sampledImageIntegerSampleCounts = sample_counts,
1552 .sampledImageDepthSampleCounts = sample_counts,
1553 .sampledImageStencilSampleCounts = sample_counts,
1554 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1555 .maxSampleMaskWords = 1,
1556 .timestampComputeAndGraphics = true,
1557 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1558 .maxClipDistances = 8,
1559 .maxCullDistances = 8,
1560 .maxCombinedClipAndCullDistances = 8,
1561 .discreteQueuePriorities = 2,
1562 .pointSizeRange = { 0.125, 255.875 },
1563 .lineWidthRange = {
1564 0.0,
1565 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1566 2047.9921875 : 7.9921875,
1567 },
1568 .pointSizeGranularity = (1.0 / 8.0),
1569 .lineWidthGranularity = (1.0 / 128.0),
1570 .strictLines = false,
1571 .standardSampleLocations = true,
1572 .optimalBufferCopyOffsetAlignment = 128,
1573 .optimalBufferCopyRowPitchAlignment = 128,
1574 .nonCoherentAtomSize = 64,
1575 };
1576
1577 *pProperties = (VkPhysicalDeviceProperties) {
1578 .apiVersion = anv_physical_device_api_version(pdevice),
1579 .driverVersion = vk_get_driver_version(),
1580 .vendorID = 0x8086,
1581 .deviceID = pdevice->info.chipset_id,
1582 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1583 .limits = limits,
1584 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1585 };
1586
1587 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1588 "%s", pdevice->name);
1589 memcpy(pProperties->pipelineCacheUUID,
1590 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1591 }
1592
1593 static void
1594 anv_get_physical_device_properties_1_1(struct anv_physical_device *pdevice,
1595 VkPhysicalDeviceVulkan11Properties *p)
1596 {
1597 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
1598
1599 memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1600 memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1601 memset(p->deviceLUID, 0, VK_LUID_SIZE);
1602 p->deviceNodeMask = 0;
1603 p->deviceLUIDValid = false;
1604
1605 p->subgroupSize = BRW_SUBGROUP_SIZE;
1606 VkShaderStageFlags scalar_stages = 0;
1607 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1608 if (pdevice->compiler->scalar_stage[stage])
1609 scalar_stages |= mesa_to_vk_shader_stage(stage);
1610 }
1611 p->subgroupSupportedStages = scalar_stages;
1612 p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1613 VK_SUBGROUP_FEATURE_VOTE_BIT |
1614 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1615 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1616 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1617 VK_SUBGROUP_FEATURE_QUAD_BIT;
1618 if (pdevice->info.gen >= 8) {
1619 /* TODO: There's no technical reason why these can't be made to
1620 * work on gen7 but they don't at the moment so it's best to leave
1621 * the feature disabled than enabled and broken.
1622 */
1623 p->subgroupSupportedOperations |= VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1624 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1625 }
1626 p->subgroupQuadOperationsInAllStages = pdevice->info.gen >= 8;
1627
1628 p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1629 p->maxMultiviewViewCount = 16;
1630 p->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1631 p->protectedNoFault = false;
1632 /* This value doesn't matter for us today as our per-stage descriptors are
1633 * the real limit.
1634 */
1635 p->maxPerSetDescriptors = 1024;
1636 p->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1637 }
1638
1639 static void
1640 anv_get_physical_device_properties_1_2(struct anv_physical_device *pdevice,
1641 VkPhysicalDeviceVulkan12Properties *p)
1642 {
1643 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
1644
1645 p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1646 memset(p->driverName, 0, sizeof(p->driverName));
1647 snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1648 "Intel open-source Mesa driver");
1649 memset(p->driverInfo, 0, sizeof(p->driverInfo));
1650 snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1651 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1652 p->conformanceVersion = (VkConformanceVersionKHR) {
1653 .major = 1,
1654 .minor = 2,
1655 .subminor = 0,
1656 .patch = 0,
1657 };
1658
1659 p->denormBehaviorIndependence =
1660 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1661 p->roundingModeIndependence =
1662 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1663
1664 /* Broadwell does not support HF denorms and there are restrictions
1665 * other gens. According to Kabylake's PRM:
1666 *
1667 * "math - Extended Math Function
1668 * [...]
1669 * Restriction : Half-float denorms are always retained."
1670 */
1671 p->shaderDenormFlushToZeroFloat16 = false;
1672 p->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1673 p->shaderRoundingModeRTEFloat16 = true;
1674 p->shaderRoundingModeRTZFloat16 = true;
1675 p->shaderSignedZeroInfNanPreserveFloat16 = true;
1676
1677 p->shaderDenormFlushToZeroFloat32 = true;
1678 p->shaderDenormPreserveFloat32 = true;
1679 p->shaderRoundingModeRTEFloat32 = true;
1680 p->shaderRoundingModeRTZFloat32 = true;
1681 p->shaderSignedZeroInfNanPreserveFloat32 = true;
1682
1683 p->shaderDenormFlushToZeroFloat64 = true;
1684 p->shaderDenormPreserveFloat64 = true;
1685 p->shaderRoundingModeRTEFloat64 = true;
1686 p->shaderRoundingModeRTZFloat64 = true;
1687 p->shaderSignedZeroInfNanPreserveFloat64 = true;
1688
1689 /* It's a bit hard to exactly map our implementation to the limits
1690 * described here. The bindless surface handle in the extended
1691 * message descriptors is 20 bits and it's an index into the table of
1692 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1693 * address. Given that most things consume two surface states per
1694 * view (general/sampled for textures and write-only/read-write for
1695 * images), we claim 2^19 things.
1696 *
1697 * For SSBOs, we just use A64 messages so there is no real limit
1698 * there beyond the limit on the total size of a descriptor set.
1699 */
1700 const unsigned max_bindless_views = 1 << 19;
1701 p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1702 p->shaderUniformBufferArrayNonUniformIndexingNative = false;
1703 p->shaderSampledImageArrayNonUniformIndexingNative = false;
1704 p->shaderStorageBufferArrayNonUniformIndexingNative = true;
1705 p->shaderStorageImageArrayNonUniformIndexingNative = false;
1706 p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1707 p->robustBufferAccessUpdateAfterBind = true;
1708 p->quadDivergentImplicitLod = false;
1709 p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1710 p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1711 p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1712 p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1713 p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1714 p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1715 p->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1716 p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1717 p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1718 p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1719 p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1720 p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1721 p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1722 p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1723 p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1724
1725 /* We support all of the depth resolve modes */
1726 p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1727 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1728 VK_RESOLVE_MODE_MIN_BIT_KHR |
1729 VK_RESOLVE_MODE_MAX_BIT_KHR;
1730 /* Average doesn't make sense for stencil so we don't support that */
1731 p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1732 if (pdevice->info.gen >= 8) {
1733 /* The advanced stencil resolve modes currently require stencil
1734 * sampling be supported by the hardware.
1735 */
1736 p->supportedStencilResolveModes |= VK_RESOLVE_MODE_MIN_BIT_KHR |
1737 VK_RESOLVE_MODE_MAX_BIT_KHR;
1738 }
1739 p->independentResolveNone = true;
1740 p->independentResolve = true;
1741
1742 p->filterMinmaxSingleComponentFormats = pdevice->info.gen >= 9;
1743 p->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1744
1745 p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1746
1747 p->framebufferIntegerColorSampleCounts =
1748 isl_device_get_sample_counts(&pdevice->isl_dev);
1749 }
1750
1751 void anv_GetPhysicalDeviceProperties2(
1752 VkPhysicalDevice physicalDevice,
1753 VkPhysicalDeviceProperties2* pProperties)
1754 {
1755 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1756
1757 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1758
1759 VkPhysicalDeviceVulkan11Properties core_1_1 = {
1760 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
1761 };
1762 anv_get_physical_device_properties_1_1(pdevice, &core_1_1);
1763
1764 VkPhysicalDeviceVulkan12Properties core_1_2 = {
1765 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
1766 };
1767 anv_get_physical_device_properties_1_2(pdevice, &core_1_2);
1768
1769 #define CORE_RENAMED_PROPERTY(major, minor, ext_property, core_property) \
1770 memcpy(&properties->ext_property, &core_##major##_##minor.core_property, \
1771 sizeof(core_##major##_##minor.core_property))
1772
1773 #define CORE_PROPERTY(major, minor, property) \
1774 CORE_RENAMED_PROPERTY(major, minor, property, property)
1775
1776 vk_foreach_struct(ext, pProperties->pNext) {
1777 switch (ext->sType) {
1778 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
1779 VkPhysicalDeviceCustomBorderColorPropertiesEXT *properties =
1780 (VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
1781 properties->maxCustomBorderColorSamplers = MAX_CUSTOM_BORDER_COLORS;
1782 break;
1783 }
1784
1785 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1786 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *properties =
1787 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1788 CORE_PROPERTY(1, 2, supportedDepthResolveModes);
1789 CORE_PROPERTY(1, 2, supportedStencilResolveModes);
1790 CORE_PROPERTY(1, 2, independentResolveNone);
1791 CORE_PROPERTY(1, 2, independentResolve);
1792 break;
1793 }
1794
1795 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1796 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *properties =
1797 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1798 CORE_PROPERTY(1, 2, maxUpdateAfterBindDescriptorsInAllPools);
1799 CORE_PROPERTY(1, 2, shaderUniformBufferArrayNonUniformIndexingNative);
1800 CORE_PROPERTY(1, 2, shaderSampledImageArrayNonUniformIndexingNative);
1801 CORE_PROPERTY(1, 2, shaderStorageBufferArrayNonUniformIndexingNative);
1802 CORE_PROPERTY(1, 2, shaderStorageImageArrayNonUniformIndexingNative);
1803 CORE_PROPERTY(1, 2, shaderInputAttachmentArrayNonUniformIndexingNative);
1804 CORE_PROPERTY(1, 2, robustBufferAccessUpdateAfterBind);
1805 CORE_PROPERTY(1, 2, quadDivergentImplicitLod);
1806 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSamplers);
1807 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindUniformBuffers);
1808 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageBuffers);
1809 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSampledImages);
1810 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageImages);
1811 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindInputAttachments);
1812 CORE_PROPERTY(1, 2, maxPerStageUpdateAfterBindResources);
1813 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSamplers);
1814 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffers);
1815 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic);
1816 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffers);
1817 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic);
1818 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSampledImages);
1819 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageImages);
1820 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindInputAttachments);
1821 break;
1822 }
1823
1824 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1825 VkPhysicalDeviceDriverPropertiesKHR *properties =
1826 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1827 CORE_PROPERTY(1, 2, driverID);
1828 CORE_PROPERTY(1, 2, driverName);
1829 CORE_PROPERTY(1, 2, driverInfo);
1830 CORE_PROPERTY(1, 2, conformanceVersion);
1831 break;
1832 }
1833
1834 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1835 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1836 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1837 /* Userptr needs page aligned memory. */
1838 props->minImportedHostPointerAlignment = 4096;
1839 break;
1840 }
1841
1842 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1843 VkPhysicalDeviceIDProperties *properties =
1844 (VkPhysicalDeviceIDProperties *)ext;
1845 CORE_PROPERTY(1, 1, deviceUUID);
1846 CORE_PROPERTY(1, 1, driverUUID);
1847 CORE_PROPERTY(1, 1, deviceLUID);
1848 CORE_PROPERTY(1, 1, deviceLUIDValid);
1849 break;
1850 }
1851
1852 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1853 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1854 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1855 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1856 props->maxPerStageDescriptorInlineUniformBlocks =
1857 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1858 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1859 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1860 props->maxDescriptorSetInlineUniformBlocks =
1861 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1862 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1863 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1864 break;
1865 }
1866
1867 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1868 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1869 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1870 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1871 * Sampling Rules - Legacy Mode", it says the following:
1872 *
1873 * "Note that the device divides a pixel into a 16x16 array of
1874 * subpixels, referenced by their upper left corners."
1875 *
1876 * This is the only known reference in the PRMs to the subpixel
1877 * precision of line rasterization and a "16x16 array of subpixels"
1878 * implies 4 subpixel precision bits. Empirical testing has shown
1879 * that 4 subpixel precision bits applies to all line rasterization
1880 * types.
1881 */
1882 props->lineSubPixelPrecisionBits = 4;
1883 break;
1884 }
1885
1886 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1887 VkPhysicalDeviceMaintenance3Properties *properties =
1888 (VkPhysicalDeviceMaintenance3Properties *)ext;
1889 /* This value doesn't matter for us today as our per-stage
1890 * descriptors are the real limit.
1891 */
1892 CORE_PROPERTY(1, 1, maxPerSetDescriptors);
1893 CORE_PROPERTY(1, 1, maxMemoryAllocationSize);
1894 break;
1895 }
1896
1897 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1898 VkPhysicalDeviceMultiviewProperties *properties =
1899 (VkPhysicalDeviceMultiviewProperties *)ext;
1900 CORE_PROPERTY(1, 1, maxMultiviewViewCount);
1901 CORE_PROPERTY(1, 1, maxMultiviewInstanceIndex);
1902 break;
1903 }
1904
1905 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1906 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1907 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1908 properties->pciDomain = pdevice->pci_info.domain;
1909 properties->pciBus = pdevice->pci_info.bus;
1910 properties->pciDevice = pdevice->pci_info.device;
1911 properties->pciFunction = pdevice->pci_info.function;
1912 break;
1913 }
1914
1915 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR: {
1916 VkPhysicalDevicePerformanceQueryPropertiesKHR *properties =
1917 (VkPhysicalDevicePerformanceQueryPropertiesKHR *)ext;
1918 /* We could support this by spawning a shader to do the equation
1919 * normalization.
1920 */
1921 properties->allowCommandBufferQueryCopies = false;
1922 break;
1923 }
1924
1925 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1926 VkPhysicalDevicePointClippingProperties *properties =
1927 (VkPhysicalDevicePointClippingProperties *) ext;
1928 CORE_PROPERTY(1, 1, pointClippingBehavior);
1929 break;
1930 }
1931
1932 #pragma GCC diagnostic push
1933 #pragma GCC diagnostic ignored "-Wswitch"
1934 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1935 VkPhysicalDevicePresentationPropertiesANDROID *props =
1936 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1937 props->sharedImage = VK_FALSE;
1938 break;
1939 }
1940 #pragma GCC diagnostic pop
1941
1942 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1943 VkPhysicalDeviceProtectedMemoryProperties *properties =
1944 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1945 CORE_PROPERTY(1, 1, protectedNoFault);
1946 break;
1947 }
1948
1949 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1950 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1951 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1952 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1953 break;
1954 }
1955
1956 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
1957 VkPhysicalDeviceRobustness2PropertiesEXT *properties = (void *)ext;
1958 properties->robustStorageBufferAccessSizeAlignment =
1959 ANV_SSBO_BOUNDS_CHECK_ALIGNMENT;
1960 properties->robustUniformBufferAccessSizeAlignment =
1961 ANV_UBO_ALIGNMENT;
1962 break;
1963 }
1964
1965 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1966 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1967 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1968 CORE_PROPERTY(1, 2, filterMinmaxImageComponentMapping);
1969 CORE_PROPERTY(1, 2, filterMinmaxSingleComponentFormats);
1970 break;
1971 }
1972
1973 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1974 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1975 CORE_PROPERTY(1, 1, subgroupSize);
1976 CORE_RENAMED_PROPERTY(1, 1, supportedStages,
1977 subgroupSupportedStages);
1978 CORE_RENAMED_PROPERTY(1, 1, supportedOperations,
1979 subgroupSupportedOperations);
1980 CORE_RENAMED_PROPERTY(1, 1, quadOperationsInAllStages,
1981 subgroupQuadOperationsInAllStages);
1982 break;
1983 }
1984
1985 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1986 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1987 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1988 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1989 props->minSubgroupSize = 8;
1990 props->maxSubgroupSize = 32;
1991 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1992 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1993 break;
1994 }
1995 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1996 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1997 CORE_PROPERTY(1, 2, denormBehaviorIndependence);
1998 CORE_PROPERTY(1, 2, roundingModeIndependence);
1999 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat16);
2000 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat16);
2001 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat16);
2002 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat16);
2003 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat16);
2004 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat32);
2005 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat32);
2006 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat32);
2007 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat32);
2008 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat32);
2009 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat64);
2010 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat64);
2011 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat64);
2012 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat64);
2013 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat64);
2014 break;
2015 }
2016
2017 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
2018 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
2019 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
2020
2021 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
2022 * Base Address:
2023 *
2024 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
2025 * specifies the base address of the first element of the surface,
2026 * computed in software by adding the surface base address to the
2027 * byte offset of the element in the buffer. The base address must
2028 * be aligned to element size."
2029 *
2030 * The typed dataport messages require that things be texel aligned.
2031 * Otherwise, we may just load/store the wrong data or, in the worst
2032 * case, there may be hangs.
2033 */
2034 props->storageTexelBufferOffsetAlignmentBytes = 16;
2035 props->storageTexelBufferOffsetSingleTexelAlignment = true;
2036
2037 /* The sampler, however, is much more forgiving and it can handle
2038 * arbitrary byte alignment for linear and buffer surfaces. It's
2039 * hard to find a good PRM citation for this but years of empirical
2040 * experience demonstrate that this is true.
2041 */
2042 props->uniformTexelBufferOffsetAlignmentBytes = 1;
2043 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
2044 break;
2045 }
2046
2047 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
2048 VkPhysicalDeviceTimelineSemaphorePropertiesKHR *properties =
2049 (VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
2050 CORE_PROPERTY(1, 2, maxTimelineSemaphoreValueDifference);
2051 break;
2052 }
2053
2054 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
2055 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
2056 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
2057
2058 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
2059 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
2060 props->maxTransformFeedbackBufferSize = (1ull << 32);
2061 props->maxTransformFeedbackStreamDataSize = 128 * 4;
2062 props->maxTransformFeedbackBufferDataSize = 128 * 4;
2063 props->maxTransformFeedbackBufferDataStride = 2048;
2064 props->transformFeedbackQueries = true;
2065 props->transformFeedbackStreamsLinesTriangles = false;
2066 props->transformFeedbackRasterizationStreamSelect = false;
2067 props->transformFeedbackDraw = true;
2068 break;
2069 }
2070
2071 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
2072 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
2073 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
2074 /* We have to restrict this a bit for multiview */
2075 props->maxVertexAttribDivisor = UINT32_MAX / 16;
2076 break;
2077 }
2078
2079 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES:
2080 anv_get_physical_device_properties_1_1(pdevice, (void *)ext);
2081 break;
2082
2083 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES:
2084 anv_get_physical_device_properties_1_2(pdevice, (void *)ext);
2085 break;
2086
2087 default:
2088 anv_debug_ignored_stype(ext->sType);
2089 break;
2090 }
2091 }
2092
2093 #undef CORE_RENAMED_PROPERTY
2094 #undef CORE_PROPERTY
2095 }
2096
2097 /* We support exactly one queue family. */
2098 static const VkQueueFamilyProperties
2099 anv_queue_family_properties = {
2100 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
2101 VK_QUEUE_COMPUTE_BIT |
2102 VK_QUEUE_TRANSFER_BIT,
2103 .queueCount = 1,
2104 .timestampValidBits = 36, /* XXX: Real value here */
2105 .minImageTransferGranularity = { 1, 1, 1 },
2106 };
2107
2108 void anv_GetPhysicalDeviceQueueFamilyProperties(
2109 VkPhysicalDevice physicalDevice,
2110 uint32_t* pCount,
2111 VkQueueFamilyProperties* pQueueFamilyProperties)
2112 {
2113 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
2114
2115 vk_outarray_append(&out, p) {
2116 *p = anv_queue_family_properties;
2117 }
2118 }
2119
2120 void anv_GetPhysicalDeviceQueueFamilyProperties2(
2121 VkPhysicalDevice physicalDevice,
2122 uint32_t* pQueueFamilyPropertyCount,
2123 VkQueueFamilyProperties2* pQueueFamilyProperties)
2124 {
2125
2126 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
2127
2128 vk_outarray_append(&out, p) {
2129 p->queueFamilyProperties = anv_queue_family_properties;
2130
2131 vk_foreach_struct(s, p->pNext) {
2132 anv_debug_ignored_stype(s->sType);
2133 }
2134 }
2135 }
2136
2137 void anv_GetPhysicalDeviceMemoryProperties(
2138 VkPhysicalDevice physicalDevice,
2139 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
2140 {
2141 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2142
2143 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
2144 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
2145 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
2146 .propertyFlags = physical_device->memory.types[i].propertyFlags,
2147 .heapIndex = physical_device->memory.types[i].heapIndex,
2148 };
2149 }
2150
2151 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
2152 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
2153 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
2154 .size = physical_device->memory.heaps[i].size,
2155 .flags = physical_device->memory.heaps[i].flags,
2156 };
2157 }
2158 }
2159
2160 static void
2161 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
2162 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
2163 {
2164 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2165 uint64_t sys_available = get_available_system_memory();
2166 assert(sys_available > 0);
2167
2168 VkDeviceSize total_heaps_size = 0;
2169 for (size_t i = 0; i < device->memory.heap_count; i++)
2170 total_heaps_size += device->memory.heaps[i].size;
2171
2172 for (size_t i = 0; i < device->memory.heap_count; i++) {
2173 VkDeviceSize heap_size = device->memory.heaps[i].size;
2174 VkDeviceSize heap_used = device->memory.heaps[i].used;
2175 VkDeviceSize heap_budget;
2176
2177 double heap_proportion = (double) heap_size / total_heaps_size;
2178 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
2179
2180 /*
2181 * Let's not incite the app to starve the system: report at most 90% of
2182 * available system memory.
2183 */
2184 uint64_t heap_available = sys_available_prop * 9 / 10;
2185 heap_budget = MIN2(heap_size, heap_used + heap_available);
2186
2187 /*
2188 * Round down to the nearest MB
2189 */
2190 heap_budget &= ~((1ull << 20) - 1);
2191
2192 /*
2193 * The heapBudget value must be non-zero for array elements less than
2194 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
2195 * value must be less than or equal to VkMemoryHeap::size for each heap.
2196 */
2197 assert(0 < heap_budget && heap_budget <= heap_size);
2198
2199 memoryBudget->heapUsage[i] = heap_used;
2200 memoryBudget->heapBudget[i] = heap_budget;
2201 }
2202
2203 /* The heapBudget and heapUsage values must be zero for array elements
2204 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
2205 */
2206 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
2207 memoryBudget->heapBudget[i] = 0;
2208 memoryBudget->heapUsage[i] = 0;
2209 }
2210 }
2211
2212 void anv_GetPhysicalDeviceMemoryProperties2(
2213 VkPhysicalDevice physicalDevice,
2214 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
2215 {
2216 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
2217 &pMemoryProperties->memoryProperties);
2218
2219 vk_foreach_struct(ext, pMemoryProperties->pNext) {
2220 switch (ext->sType) {
2221 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
2222 anv_get_memory_budget(physicalDevice, (void*)ext);
2223 break;
2224 default:
2225 anv_debug_ignored_stype(ext->sType);
2226 break;
2227 }
2228 }
2229 }
2230
2231 void
2232 anv_GetDeviceGroupPeerMemoryFeatures(
2233 VkDevice device,
2234 uint32_t heapIndex,
2235 uint32_t localDeviceIndex,
2236 uint32_t remoteDeviceIndex,
2237 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
2238 {
2239 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
2240 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
2241 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
2242 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
2243 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
2244 }
2245
2246 PFN_vkVoidFunction anv_GetInstanceProcAddr(
2247 VkInstance _instance,
2248 const char* pName)
2249 {
2250 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2251
2252 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
2253 * when we have to return valid function pointers, NULL, or it's left
2254 * undefined. See the table for exact details.
2255 */
2256 if (pName == NULL)
2257 return NULL;
2258
2259 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
2260 if (strcmp(pName, "vk" #entrypoint) == 0) \
2261 return (PFN_vkVoidFunction)anv_##entrypoint
2262
2263 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
2264 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
2265 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
2266 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
2267
2268 /* GetInstanceProcAddr() can also be called with a NULL instance.
2269 * See https://gitlab.khronos.org/vulkan/vulkan/issues/2057
2270 */
2271 LOOKUP_ANV_ENTRYPOINT(GetInstanceProcAddr);
2272
2273 #undef LOOKUP_ANV_ENTRYPOINT
2274
2275 if (instance == NULL)
2276 return NULL;
2277
2278 int idx = anv_get_instance_entrypoint_index(pName);
2279 if (idx >= 0)
2280 return instance->dispatch.entrypoints[idx];
2281
2282 idx = anv_get_physical_device_entrypoint_index(pName);
2283 if (idx >= 0)
2284 return instance->physical_device_dispatch.entrypoints[idx];
2285
2286 idx = anv_get_device_entrypoint_index(pName);
2287 if (idx >= 0)
2288 return instance->device_dispatch.entrypoints[idx];
2289
2290 return NULL;
2291 }
2292
2293 /* With version 1+ of the loader interface the ICD should expose
2294 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2295 */
2296 PUBLIC
2297 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2298 VkInstance instance,
2299 const char* pName);
2300
2301 PUBLIC
2302 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2303 VkInstance instance,
2304 const char* pName)
2305 {
2306 return anv_GetInstanceProcAddr(instance, pName);
2307 }
2308
2309 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2310 VkDevice _device,
2311 const char* pName)
2312 {
2313 ANV_FROM_HANDLE(anv_device, device, _device);
2314
2315 if (!device || !pName)
2316 return NULL;
2317
2318 int idx = anv_get_device_entrypoint_index(pName);
2319 if (idx < 0)
2320 return NULL;
2321
2322 return device->dispatch.entrypoints[idx];
2323 }
2324
2325 /* With version 4+ of the loader interface the ICD should expose
2326 * vk_icdGetPhysicalDeviceProcAddr()
2327 */
2328 PUBLIC
2329 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2330 VkInstance _instance,
2331 const char* pName);
2332
2333 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2334 VkInstance _instance,
2335 const char* pName)
2336 {
2337 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2338
2339 if (!pName || !instance)
2340 return NULL;
2341
2342 int idx = anv_get_physical_device_entrypoint_index(pName);
2343 if (idx < 0)
2344 return NULL;
2345
2346 return instance->physical_device_dispatch.entrypoints[idx];
2347 }
2348
2349
2350 VkResult
2351 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2352 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2353 const VkAllocationCallbacks* pAllocator,
2354 VkDebugReportCallbackEXT* pCallback)
2355 {
2356 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2357 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2358 pCreateInfo, pAllocator, &instance->alloc,
2359 pCallback);
2360 }
2361
2362 void
2363 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2364 VkDebugReportCallbackEXT _callback,
2365 const VkAllocationCallbacks* pAllocator)
2366 {
2367 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2368 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2369 _callback, pAllocator, &instance->alloc);
2370 }
2371
2372 void
2373 anv_DebugReportMessageEXT(VkInstance _instance,
2374 VkDebugReportFlagsEXT flags,
2375 VkDebugReportObjectTypeEXT objectType,
2376 uint64_t object,
2377 size_t location,
2378 int32_t messageCode,
2379 const char* pLayerPrefix,
2380 const char* pMessage)
2381 {
2382 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2383 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2384 object, location, messageCode, pLayerPrefix, pMessage);
2385 }
2386
2387 static struct anv_state
2388 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2389 {
2390 struct anv_state state;
2391
2392 state = anv_state_pool_alloc(pool, size, align);
2393 memcpy(state.map, p, size);
2394
2395 return state;
2396 }
2397
2398 static void
2399 anv_device_init_border_colors(struct anv_device *device)
2400 {
2401 if (device->info.is_haswell) {
2402 static const struct hsw_border_color border_colors[] = {
2403 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2404 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2405 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2406 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2407 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2408 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2409 };
2410
2411 device->border_colors =
2412 anv_state_pool_emit_data(&device->dynamic_state_pool,
2413 sizeof(border_colors), 512, border_colors);
2414 } else {
2415 static const struct gen8_border_color border_colors[] = {
2416 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2417 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2418 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2419 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2420 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2421 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2422 };
2423
2424 device->border_colors =
2425 anv_state_pool_emit_data(&device->dynamic_state_pool,
2426 sizeof(border_colors), 64, border_colors);
2427 }
2428 }
2429
2430 static VkResult
2431 anv_device_init_trivial_batch(struct anv_device *device)
2432 {
2433 VkResult result = anv_device_alloc_bo(device, 4096,
2434 ANV_BO_ALLOC_MAPPED,
2435 0 /* explicit_address */,
2436 &device->trivial_batch_bo);
2437 if (result != VK_SUCCESS)
2438 return result;
2439
2440 struct anv_batch batch = {
2441 .start = device->trivial_batch_bo->map,
2442 .next = device->trivial_batch_bo->map,
2443 .end = device->trivial_batch_bo->map + 4096,
2444 };
2445
2446 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2447 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2448
2449 if (!device->info.has_llc)
2450 gen_clflush_range(batch.start, batch.next - batch.start);
2451
2452 return VK_SUCCESS;
2453 }
2454
2455 VkResult anv_EnumerateDeviceExtensionProperties(
2456 VkPhysicalDevice physicalDevice,
2457 const char* pLayerName,
2458 uint32_t* pPropertyCount,
2459 VkExtensionProperties* pProperties)
2460 {
2461 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2462 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2463
2464 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2465 if (device->supported_extensions.extensions[i]) {
2466 vk_outarray_append(&out, prop) {
2467 *prop = anv_device_extensions[i];
2468 }
2469 }
2470 }
2471
2472 return vk_outarray_status(&out);
2473 }
2474
2475 static void
2476 anv_device_init_dispatch(struct anv_device *device)
2477 {
2478 const struct anv_instance *instance = device->physical->instance;
2479
2480 const struct anv_device_dispatch_table *genX_table;
2481 switch (device->info.gen) {
2482 case 12:
2483 genX_table = &gen12_device_dispatch_table;
2484 break;
2485 case 11:
2486 genX_table = &gen11_device_dispatch_table;
2487 break;
2488 case 10:
2489 genX_table = &gen10_device_dispatch_table;
2490 break;
2491 case 9:
2492 genX_table = &gen9_device_dispatch_table;
2493 break;
2494 case 8:
2495 genX_table = &gen8_device_dispatch_table;
2496 break;
2497 case 7:
2498 if (device->info.is_haswell)
2499 genX_table = &gen75_device_dispatch_table;
2500 else
2501 genX_table = &gen7_device_dispatch_table;
2502 break;
2503 default:
2504 unreachable("unsupported gen\n");
2505 }
2506
2507 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2508 /* Vulkan requires that entrypoints for extensions which have not been
2509 * enabled must not be advertised.
2510 */
2511 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
2512 &instance->enabled_extensions,
2513 &device->enabled_extensions)) {
2514 device->dispatch.entrypoints[i] = NULL;
2515 } else if (genX_table->entrypoints[i]) {
2516 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2517 } else {
2518 device->dispatch.entrypoints[i] =
2519 anv_device_dispatch_table.entrypoints[i];
2520 }
2521 }
2522 }
2523
2524 static int
2525 vk_priority_to_gen(int priority)
2526 {
2527 switch (priority) {
2528 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2529 return GEN_CONTEXT_LOW_PRIORITY;
2530 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2531 return GEN_CONTEXT_MEDIUM_PRIORITY;
2532 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2533 return GEN_CONTEXT_HIGH_PRIORITY;
2534 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2535 return GEN_CONTEXT_REALTIME_PRIORITY;
2536 default:
2537 unreachable("Invalid priority");
2538 }
2539 }
2540
2541 static VkResult
2542 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2543 {
2544 VkResult result = anv_device_alloc_bo(device, 4096,
2545 ANV_BO_ALLOC_MAPPED,
2546 0 /* explicit_address */,
2547 &device->hiz_clear_bo);
2548 if (result != VK_SUCCESS)
2549 return result;
2550
2551 union isl_color_value hiz_clear = { .u32 = { 0, } };
2552 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2553
2554 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2555
2556 if (!device->info.has_llc)
2557 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2558
2559 return VK_SUCCESS;
2560 }
2561
2562 static bool
2563 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2564 struct anv_block_pool *pool,
2565 uint64_t address)
2566 {
2567 anv_block_pool_foreach_bo(bo, pool) {
2568 uint64_t bo_address = gen_48b_address(bo->offset);
2569 if (address >= bo_address && address < (bo_address + bo->size)) {
2570 *ret = (struct gen_batch_decode_bo) {
2571 .addr = bo_address,
2572 .size = bo->size,
2573 .map = bo->map,
2574 };
2575 return true;
2576 }
2577 }
2578 return false;
2579 }
2580
2581 /* Finding a buffer for batch decoding */
2582 static struct gen_batch_decode_bo
2583 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2584 {
2585 struct anv_device *device = v_batch;
2586 struct gen_batch_decode_bo ret_bo = {};
2587
2588 assert(ppgtt);
2589
2590 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2591 return ret_bo;
2592 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2593 return ret_bo;
2594 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2595 return ret_bo;
2596 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2597 return ret_bo;
2598
2599 if (!device->cmd_buffer_being_decoded)
2600 return (struct gen_batch_decode_bo) { };
2601
2602 struct anv_batch_bo **bo;
2603
2604 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2605 /* The decoder zeroes out the top 16 bits, so we need to as well */
2606 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2607
2608 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2609 return (struct gen_batch_decode_bo) {
2610 .addr = bo_address,
2611 .size = (*bo)->bo->size,
2612 .map = (*bo)->bo->map,
2613 };
2614 }
2615 }
2616
2617 return (struct gen_batch_decode_bo) { };
2618 }
2619
2620 struct gen_aux_map_buffer {
2621 struct gen_buffer base;
2622 struct anv_state state;
2623 };
2624
2625 static struct gen_buffer *
2626 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2627 {
2628 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2629 if (!buf)
2630 return NULL;
2631
2632 struct anv_device *device = (struct anv_device*)driver_ctx;
2633 assert(device->physical->supports_48bit_addresses &&
2634 device->physical->use_softpin);
2635
2636 struct anv_state_pool *pool = &device->dynamic_state_pool;
2637 buf->state = anv_state_pool_alloc(pool, size, size);
2638
2639 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2640 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2641 buf->base.map = buf->state.map;
2642 buf->base.driver_bo = &buf->state;
2643 return &buf->base;
2644 }
2645
2646 static void
2647 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2648 {
2649 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2650 struct anv_device *device = (struct anv_device*)driver_ctx;
2651 struct anv_state_pool *pool = &device->dynamic_state_pool;
2652 anv_state_pool_free(pool, buf->state);
2653 free(buf);
2654 }
2655
2656 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2657 .alloc = gen_aux_map_buffer_alloc,
2658 .free = gen_aux_map_buffer_free,
2659 };
2660
2661 static VkResult
2662 check_physical_device_features(VkPhysicalDevice physicalDevice,
2663 const VkPhysicalDeviceFeatures *features)
2664 {
2665 VkPhysicalDeviceFeatures supported_features;
2666 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2667 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2668 VkBool32 *enabled_feature = (VkBool32 *)features;
2669 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2670 for (uint32_t i = 0; i < num_features; i++) {
2671 if (enabled_feature[i] && !supported_feature[i])
2672 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2673 }
2674
2675 return VK_SUCCESS;
2676 }
2677
2678 VkResult anv_CreateDevice(
2679 VkPhysicalDevice physicalDevice,
2680 const VkDeviceCreateInfo* pCreateInfo,
2681 const VkAllocationCallbacks* pAllocator,
2682 VkDevice* pDevice)
2683 {
2684 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2685 VkResult result;
2686 struct anv_device *device;
2687
2688 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2689
2690 struct anv_device_extension_table enabled_extensions = { };
2691 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2692 int idx;
2693 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2694 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2695 anv_device_extensions[idx].extensionName) == 0)
2696 break;
2697 }
2698
2699 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2700 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2701
2702 if (!physical_device->supported_extensions.extensions[idx])
2703 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2704
2705 enabled_extensions.extensions[idx] = true;
2706 }
2707
2708 /* Check enabled features */
2709 bool robust_buffer_access = false;
2710 if (pCreateInfo->pEnabledFeatures) {
2711 result = check_physical_device_features(physicalDevice,
2712 pCreateInfo->pEnabledFeatures);
2713 if (result != VK_SUCCESS)
2714 return result;
2715
2716 if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
2717 robust_buffer_access = true;
2718 }
2719
2720 vk_foreach_struct_const(ext, pCreateInfo->pNext) {
2721 switch (ext->sType) {
2722 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
2723 const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
2724 result = check_physical_device_features(physicalDevice,
2725 &features->features);
2726 if (result != VK_SUCCESS)
2727 return result;
2728
2729 if (features->features.robustBufferAccess)
2730 robust_buffer_access = true;
2731 break;
2732 }
2733
2734 default:
2735 /* Don't warn */
2736 break;
2737 }
2738 }
2739
2740 /* Check requested queues and fail if we are requested to create any
2741 * queues with flags we don't support.
2742 */
2743 assert(pCreateInfo->queueCreateInfoCount > 0);
2744 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2745 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2746 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2747 }
2748
2749 /* Check if client specified queue priority. */
2750 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2751 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2752 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2753
2754 VkQueueGlobalPriorityEXT priority =
2755 queue_priority ? queue_priority->globalPriority :
2756 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2757
2758 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2759 sizeof(*device), 8,
2760 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2761 if (!device)
2762 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2763
2764 vk_device_init(&device->vk, pCreateInfo,
2765 &physical_device->instance->alloc, pAllocator);
2766
2767 if (INTEL_DEBUG & DEBUG_BATCH) {
2768 const unsigned decode_flags =
2769 GEN_BATCH_DECODE_FULL |
2770 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2771 GEN_BATCH_DECODE_OFFSETS |
2772 GEN_BATCH_DECODE_FLOATS;
2773
2774 gen_batch_decode_ctx_init(&device->decoder_ctx,
2775 &physical_device->info,
2776 stderr, decode_flags, NULL,
2777 decode_get_bo, NULL, device);
2778 }
2779
2780 device->physical = physical_device;
2781 device->no_hw = physical_device->no_hw;
2782 device->_lost = false;
2783
2784 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2785 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2786 if (device->fd == -1) {
2787 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2788 goto fail_device;
2789 }
2790
2791 device->context_id = anv_gem_create_context(device);
2792 if (device->context_id == -1) {
2793 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2794 goto fail_fd;
2795 }
2796
2797 result = anv_queue_init(device, &device->queue);
2798 if (result != VK_SUCCESS)
2799 goto fail_context_id;
2800
2801 if (physical_device->use_softpin) {
2802 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2803 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2804 goto fail_queue;
2805 }
2806
2807 /* keep the page with address zero out of the allocator */
2808 util_vma_heap_init(&device->vma_lo,
2809 LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
2810
2811 util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS,
2812 CLIENT_VISIBLE_HEAP_SIZE);
2813
2814 /* Leave the last 4GiB out of the high vma range, so that no state
2815 * base address + size can overflow 48 bits. For more information see
2816 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
2817 */
2818 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
2819 physical_device->gtt_size - (1ull << 32) -
2820 HIGH_HEAP_MIN_ADDRESS);
2821 }
2822
2823 list_inithead(&device->memory_objects);
2824
2825 /* As per spec, the driver implementation may deny requests to acquire
2826 * a priority above the default priority (MEDIUM) if the caller does not
2827 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2828 * is returned.
2829 */
2830 if (physical_device->has_context_priority) {
2831 int err = anv_gem_set_context_param(device->fd, device->context_id,
2832 I915_CONTEXT_PARAM_PRIORITY,
2833 vk_priority_to_gen(priority));
2834 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2835 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2836 goto fail_vmas;
2837 }
2838 }
2839
2840 device->info = physical_device->info;
2841 device->isl_dev = physical_device->isl_dev;
2842
2843 /* On Broadwell and later, we can use batch chaining to more efficiently
2844 * implement growing command buffers. Prior to Haswell, the kernel
2845 * command parser gets in the way and we have to fall back to growing
2846 * the batch.
2847 */
2848 device->can_chain_batches = device->info.gen >= 8;
2849
2850 device->robust_buffer_access = robust_buffer_access;
2851 device->enabled_extensions = enabled_extensions;
2852
2853 anv_device_init_dispatch(device);
2854
2855 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2856 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2857 goto fail_queue;
2858 }
2859
2860 pthread_condattr_t condattr;
2861 if (pthread_condattr_init(&condattr) != 0) {
2862 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2863 goto fail_mutex;
2864 }
2865 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2866 pthread_condattr_destroy(&condattr);
2867 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2868 goto fail_mutex;
2869 }
2870 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2871 pthread_condattr_destroy(&condattr);
2872 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2873 goto fail_mutex;
2874 }
2875 pthread_condattr_destroy(&condattr);
2876
2877 result = anv_bo_cache_init(&device->bo_cache);
2878 if (result != VK_SUCCESS)
2879 goto fail_queue_cond;
2880
2881 anv_bo_pool_init(&device->batch_bo_pool, device);
2882
2883 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2884 DYNAMIC_STATE_POOL_MIN_ADDRESS, 0, 16384);
2885 if (result != VK_SUCCESS)
2886 goto fail_batch_bo_pool;
2887
2888 if (device->info.gen >= 8) {
2889 /* The border color pointer is limited to 24 bits, so we need to make
2890 * sure that any such color used at any point in the program doesn't
2891 * exceed that limit.
2892 * We achieve that by reserving all the custom border colors we support
2893 * right off the bat, so they are close to the base address.
2894 */
2895 anv_state_reserved_pool_init(&device->custom_border_colors,
2896 &device->dynamic_state_pool,
2897 sizeof(struct gen8_border_color),
2898 MAX_CUSTOM_BORDER_COLORS, 64);
2899 }
2900
2901 result = anv_state_pool_init(&device->instruction_state_pool, device,
2902 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 0, 16384);
2903 if (result != VK_SUCCESS)
2904 goto fail_dynamic_state_pool;
2905
2906 result = anv_state_pool_init(&device->surface_state_pool, device,
2907 SURFACE_STATE_POOL_MIN_ADDRESS, 0, 4096);
2908 if (result != VK_SUCCESS)
2909 goto fail_instruction_state_pool;
2910
2911 if (physical_device->use_softpin) {
2912 int64_t bt_pool_offset = (int64_t)BINDING_TABLE_POOL_MIN_ADDRESS -
2913 (int64_t)SURFACE_STATE_POOL_MIN_ADDRESS;
2914 assert(INT32_MIN < bt_pool_offset && bt_pool_offset < 0);
2915 result = anv_state_pool_init(&device->binding_table_pool, device,
2916 SURFACE_STATE_POOL_MIN_ADDRESS,
2917 bt_pool_offset, 4096);
2918 if (result != VK_SUCCESS)
2919 goto fail_surface_state_pool;
2920 }
2921
2922 if (device->info.gen >= 12) {
2923 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2924 &physical_device->info);
2925 if (!device->aux_map_ctx)
2926 goto fail_binding_table_pool;
2927 }
2928
2929 result = anv_device_alloc_bo(device, 4096, 0 /* flags */,
2930 0 /* explicit_address */,
2931 &device->workaround_bo);
2932 if (result != VK_SUCCESS)
2933 goto fail_surface_aux_map_pool;
2934
2935 device->workaround_address = (struct anv_address) {
2936 .bo = device->workaround_bo,
2937 };
2938
2939 result = anv_device_init_trivial_batch(device);
2940 if (result != VK_SUCCESS)
2941 goto fail_workaround_bo;
2942
2943 /* Allocate a null surface state at surface state offset 0. This makes
2944 * NULL descriptor handling trivial because we can just memset structures
2945 * to zero and they have a valid descriptor.
2946 */
2947 device->null_surface_state =
2948 anv_state_pool_alloc(&device->surface_state_pool,
2949 device->isl_dev.ss.size,
2950 device->isl_dev.ss.align);
2951 isl_null_fill_state(&device->isl_dev, device->null_surface_state.map,
2952 isl_extent3d(1, 1, 1) /* This shouldn't matter */);
2953 assert(device->null_surface_state.offset == 0);
2954
2955 if (device->info.gen >= 10) {
2956 result = anv_device_init_hiz_clear_value_bo(device);
2957 if (result != VK_SUCCESS)
2958 goto fail_trivial_batch_bo;
2959 }
2960
2961 anv_scratch_pool_init(device, &device->scratch_pool);
2962
2963 switch (device->info.gen) {
2964 case 7:
2965 if (!device->info.is_haswell)
2966 result = gen7_init_device_state(device);
2967 else
2968 result = gen75_init_device_state(device);
2969 break;
2970 case 8:
2971 result = gen8_init_device_state(device);
2972 break;
2973 case 9:
2974 result = gen9_init_device_state(device);
2975 break;
2976 case 10:
2977 result = gen10_init_device_state(device);
2978 break;
2979 case 11:
2980 result = gen11_init_device_state(device);
2981 break;
2982 case 12:
2983 result = gen12_init_device_state(device);
2984 break;
2985 default:
2986 /* Shouldn't get here as we don't create physical devices for any other
2987 * gens. */
2988 unreachable("unhandled gen");
2989 }
2990 if (result != VK_SUCCESS)
2991 goto fail_clear_value_bo;
2992
2993 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2994
2995 anv_device_init_blorp(device);
2996
2997 anv_device_init_border_colors(device);
2998
2999 anv_device_perf_init(device);
3000
3001 *pDevice = anv_device_to_handle(device);
3002
3003 return VK_SUCCESS;
3004
3005 fail_clear_value_bo:
3006 if (device->info.gen >= 10)
3007 anv_device_release_bo(device, device->hiz_clear_bo);
3008 anv_scratch_pool_finish(device, &device->scratch_pool);
3009 fail_trivial_batch_bo:
3010 anv_device_release_bo(device, device->trivial_batch_bo);
3011 fail_workaround_bo:
3012 anv_device_release_bo(device, device->workaround_bo);
3013 fail_surface_aux_map_pool:
3014 if (device->info.gen >= 12) {
3015 gen_aux_map_finish(device->aux_map_ctx);
3016 device->aux_map_ctx = NULL;
3017 }
3018 fail_binding_table_pool:
3019 if (physical_device->use_softpin)
3020 anv_state_pool_finish(&device->binding_table_pool);
3021 fail_surface_state_pool:
3022 anv_state_pool_finish(&device->surface_state_pool);
3023 fail_instruction_state_pool:
3024 anv_state_pool_finish(&device->instruction_state_pool);
3025 fail_dynamic_state_pool:
3026 if (device->info.gen >= 8)
3027 anv_state_reserved_pool_finish(&device->custom_border_colors);
3028 anv_state_pool_finish(&device->dynamic_state_pool);
3029 fail_batch_bo_pool:
3030 anv_bo_pool_finish(&device->batch_bo_pool);
3031 anv_bo_cache_finish(&device->bo_cache);
3032 fail_queue_cond:
3033 pthread_cond_destroy(&device->queue_submit);
3034 fail_mutex:
3035 pthread_mutex_destroy(&device->mutex);
3036 fail_vmas:
3037 if (physical_device->use_softpin) {
3038 util_vma_heap_finish(&device->vma_hi);
3039 util_vma_heap_finish(&device->vma_cva);
3040 util_vma_heap_finish(&device->vma_lo);
3041 }
3042 fail_queue:
3043 anv_queue_finish(&device->queue);
3044 fail_context_id:
3045 anv_gem_destroy_context(device, device->context_id);
3046 fail_fd:
3047 close(device->fd);
3048 fail_device:
3049 vk_free(&device->vk.alloc, device);
3050
3051 return result;
3052 }
3053
3054 void anv_DestroyDevice(
3055 VkDevice _device,
3056 const VkAllocationCallbacks* pAllocator)
3057 {
3058 ANV_FROM_HANDLE(anv_device, device, _device);
3059
3060 if (!device)
3061 return;
3062
3063 anv_device_finish_blorp(device);
3064
3065 anv_pipeline_cache_finish(&device->default_pipeline_cache);
3066
3067 anv_queue_finish(&device->queue);
3068
3069 #ifdef HAVE_VALGRIND
3070 /* We only need to free these to prevent valgrind errors. The backing
3071 * BO will go away in a couple of lines so we don't actually leak.
3072 */
3073 if (device->info.gen >= 8)
3074 anv_state_reserved_pool_finish(&device->custom_border_colors);
3075 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
3076 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
3077 #endif
3078
3079 anv_scratch_pool_finish(device, &device->scratch_pool);
3080
3081 anv_device_release_bo(device, device->workaround_bo);
3082 anv_device_release_bo(device, device->trivial_batch_bo);
3083 if (device->info.gen >= 10)
3084 anv_device_release_bo(device, device->hiz_clear_bo);
3085
3086 if (device->info.gen >= 12) {
3087 gen_aux_map_finish(device->aux_map_ctx);
3088 device->aux_map_ctx = NULL;
3089 }
3090
3091 if (device->physical->use_softpin)
3092 anv_state_pool_finish(&device->binding_table_pool);
3093 anv_state_pool_finish(&device->surface_state_pool);
3094 anv_state_pool_finish(&device->instruction_state_pool);
3095 anv_state_pool_finish(&device->dynamic_state_pool);
3096
3097 anv_bo_pool_finish(&device->batch_bo_pool);
3098
3099 anv_bo_cache_finish(&device->bo_cache);
3100
3101 if (device->physical->use_softpin) {
3102 util_vma_heap_finish(&device->vma_hi);
3103 util_vma_heap_finish(&device->vma_cva);
3104 util_vma_heap_finish(&device->vma_lo);
3105 }
3106
3107 pthread_cond_destroy(&device->queue_submit);
3108 pthread_mutex_destroy(&device->mutex);
3109
3110 anv_gem_destroy_context(device, device->context_id);
3111
3112 if (INTEL_DEBUG & DEBUG_BATCH)
3113 gen_batch_decode_ctx_finish(&device->decoder_ctx);
3114
3115 close(device->fd);
3116
3117 vk_device_finish(&device->vk);
3118 vk_free(&device->vk.alloc, device);
3119 }
3120
3121 VkResult anv_EnumerateInstanceLayerProperties(
3122 uint32_t* pPropertyCount,
3123 VkLayerProperties* pProperties)
3124 {
3125 if (pProperties == NULL) {
3126 *pPropertyCount = 0;
3127 return VK_SUCCESS;
3128 }
3129
3130 /* None supported at this time */
3131 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3132 }
3133
3134 VkResult anv_EnumerateDeviceLayerProperties(
3135 VkPhysicalDevice physicalDevice,
3136 uint32_t* pPropertyCount,
3137 VkLayerProperties* pProperties)
3138 {
3139 if (pProperties == NULL) {
3140 *pPropertyCount = 0;
3141 return VK_SUCCESS;
3142 }
3143
3144 /* None supported at this time */
3145 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3146 }
3147
3148 void anv_GetDeviceQueue(
3149 VkDevice _device,
3150 uint32_t queueNodeIndex,
3151 uint32_t queueIndex,
3152 VkQueue* pQueue)
3153 {
3154 const VkDeviceQueueInfo2 info = {
3155 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
3156 .pNext = NULL,
3157 .flags = 0,
3158 .queueFamilyIndex = queueNodeIndex,
3159 .queueIndex = queueIndex,
3160 };
3161
3162 anv_GetDeviceQueue2(_device, &info, pQueue);
3163 }
3164
3165 void anv_GetDeviceQueue2(
3166 VkDevice _device,
3167 const VkDeviceQueueInfo2* pQueueInfo,
3168 VkQueue* pQueue)
3169 {
3170 ANV_FROM_HANDLE(anv_device, device, _device);
3171
3172 assert(pQueueInfo->queueIndex == 0);
3173
3174 if (pQueueInfo->flags == device->queue.flags)
3175 *pQueue = anv_queue_to_handle(&device->queue);
3176 else
3177 *pQueue = NULL;
3178 }
3179
3180 VkResult
3181 _anv_device_set_lost(struct anv_device *device,
3182 const char *file, int line,
3183 const char *msg, ...)
3184 {
3185 VkResult err;
3186 va_list ap;
3187
3188 p_atomic_inc(&device->_lost);
3189
3190 va_start(ap, msg);
3191 err = __vk_errorv(device->physical->instance, device,
3192 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3193 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3194 va_end(ap);
3195
3196 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3197 abort();
3198
3199 return err;
3200 }
3201
3202 VkResult
3203 _anv_queue_set_lost(struct anv_queue *queue,
3204 const char *file, int line,
3205 const char *msg, ...)
3206 {
3207 VkResult err;
3208 va_list ap;
3209
3210 p_atomic_inc(&queue->device->_lost);
3211
3212 va_start(ap, msg);
3213 err = __vk_errorv(queue->device->physical->instance, queue->device,
3214 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3215 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3216 va_end(ap);
3217
3218 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3219 abort();
3220
3221 return err;
3222 }
3223
3224 VkResult
3225 anv_device_query_status(struct anv_device *device)
3226 {
3227 /* This isn't likely as most of the callers of this function already check
3228 * for it. However, it doesn't hurt to check and it potentially lets us
3229 * avoid an ioctl.
3230 */
3231 if (anv_device_is_lost(device))
3232 return VK_ERROR_DEVICE_LOST;
3233
3234 uint32_t active, pending;
3235 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
3236 if (ret == -1) {
3237 /* We don't know the real error. */
3238 return anv_device_set_lost(device, "get_reset_stats failed: %m");
3239 }
3240
3241 if (active) {
3242 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
3243 } else if (pending) {
3244 return anv_device_set_lost(device, "GPU hung with commands in-flight");
3245 }
3246
3247 return VK_SUCCESS;
3248 }
3249
3250 VkResult
3251 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
3252 {
3253 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
3254 * Other usages of the BO (such as on different hardware) will not be
3255 * flagged as "busy" by this ioctl. Use with care.
3256 */
3257 int ret = anv_gem_busy(device, bo->gem_handle);
3258 if (ret == 1) {
3259 return VK_NOT_READY;
3260 } else if (ret == -1) {
3261 /* We don't know the real error. */
3262 return anv_device_set_lost(device, "gem wait failed: %m");
3263 }
3264
3265 /* Query for device status after the busy call. If the BO we're checking
3266 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
3267 * client because it clearly doesn't have valid data. Yes, this most
3268 * likely means an ioctl, but we just did an ioctl to query the busy status
3269 * so it's no great loss.
3270 */
3271 return anv_device_query_status(device);
3272 }
3273
3274 VkResult
3275 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
3276 int64_t timeout)
3277 {
3278 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
3279 if (ret == -1 && errno == ETIME) {
3280 return VK_TIMEOUT;
3281 } else if (ret == -1) {
3282 /* We don't know the real error. */
3283 return anv_device_set_lost(device, "gem wait failed: %m");
3284 }
3285
3286 /* Query for device status after the wait. If the BO we're waiting on got
3287 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
3288 * because it clearly doesn't have valid data. Yes, this most likely means
3289 * an ioctl, but we just did an ioctl to wait so it's no great loss.
3290 */
3291 return anv_device_query_status(device);
3292 }
3293
3294 VkResult anv_DeviceWaitIdle(
3295 VkDevice _device)
3296 {
3297 ANV_FROM_HANDLE(anv_device, device, _device);
3298
3299 if (anv_device_is_lost(device))
3300 return VK_ERROR_DEVICE_LOST;
3301
3302 return anv_queue_submit_simple_batch(&device->queue, NULL);
3303 }
3304
3305 uint64_t
3306 anv_vma_alloc(struct anv_device *device,
3307 uint64_t size, uint64_t align,
3308 enum anv_bo_alloc_flags alloc_flags,
3309 uint64_t client_address)
3310 {
3311 pthread_mutex_lock(&device->vma_mutex);
3312
3313 uint64_t addr = 0;
3314
3315 if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) {
3316 if (client_address) {
3317 if (util_vma_heap_alloc_addr(&device->vma_cva,
3318 client_address, size)) {
3319 addr = client_address;
3320 }
3321 } else {
3322 addr = util_vma_heap_alloc(&device->vma_cva, size, align);
3323 }
3324 /* We don't want to fall back to other heaps */
3325 goto done;
3326 }
3327
3328 assert(client_address == 0);
3329
3330 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS))
3331 addr = util_vma_heap_alloc(&device->vma_hi, size, align);
3332
3333 if (addr == 0)
3334 addr = util_vma_heap_alloc(&device->vma_lo, size, align);
3335
3336 done:
3337 pthread_mutex_unlock(&device->vma_mutex);
3338
3339 assert(addr == gen_48b_address(addr));
3340 return gen_canonical_address(addr);
3341 }
3342
3343 void
3344 anv_vma_free(struct anv_device *device,
3345 uint64_t address, uint64_t size)
3346 {
3347 const uint64_t addr_48b = gen_48b_address(address);
3348
3349 pthread_mutex_lock(&device->vma_mutex);
3350
3351 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3352 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3353 util_vma_heap_free(&device->vma_lo, addr_48b, size);
3354 } else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS &&
3355 addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) {
3356 util_vma_heap_free(&device->vma_cva, addr_48b, size);
3357 } else {
3358 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
3359 util_vma_heap_free(&device->vma_hi, addr_48b, size);
3360 }
3361
3362 pthread_mutex_unlock(&device->vma_mutex);
3363 }
3364
3365 VkResult anv_AllocateMemory(
3366 VkDevice _device,
3367 const VkMemoryAllocateInfo* pAllocateInfo,
3368 const VkAllocationCallbacks* pAllocator,
3369 VkDeviceMemory* pMem)
3370 {
3371 ANV_FROM_HANDLE(anv_device, device, _device);
3372 struct anv_physical_device *pdevice = device->physical;
3373 struct anv_device_memory *mem;
3374 VkResult result = VK_SUCCESS;
3375
3376 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3377
3378 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3379 assert(pAllocateInfo->allocationSize > 0);
3380
3381 VkDeviceSize aligned_alloc_size =
3382 align_u64(pAllocateInfo->allocationSize, 4096);
3383
3384 if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
3385 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3386
3387 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3388 struct anv_memory_type *mem_type =
3389 &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3390 assert(mem_type->heapIndex < pdevice->memory.heap_count);
3391 struct anv_memory_heap *mem_heap =
3392 &pdevice->memory.heaps[mem_type->heapIndex];
3393
3394 uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
3395 if (mem_heap_used + aligned_alloc_size > mem_heap->size)
3396 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3397
3398 mem = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*mem), 8,
3399 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3400 if (mem == NULL)
3401 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3402
3403 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3404 vk_object_base_init(&device->vk, &mem->base, VK_OBJECT_TYPE_DEVICE_MEMORY);
3405 mem->type = mem_type;
3406 mem->map = NULL;
3407 mem->map_size = 0;
3408 mem->ahw = NULL;
3409 mem->host_ptr = NULL;
3410
3411 enum anv_bo_alloc_flags alloc_flags = 0;
3412
3413 const VkExportMemoryAllocateInfo *export_info = NULL;
3414 const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL;
3415 const VkImportMemoryFdInfoKHR *fd_info = NULL;
3416 const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL;
3417 const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
3418 VkMemoryAllocateFlags vk_flags = 0;
3419 uint64_t client_address = 0;
3420
3421 vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
3422 switch (ext->sType) {
3423 case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
3424 export_info = (void *)ext;
3425 break;
3426
3427 case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
3428 ahw_import_info = (void *)ext;
3429 break;
3430
3431 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
3432 fd_info = (void *)ext;
3433 break;
3434
3435 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
3436 host_ptr_info = (void *)ext;
3437 break;
3438
3439 case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: {
3440 const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext;
3441 vk_flags = flags_info->flags;
3442 break;
3443 }
3444
3445 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
3446 dedicated_info = (void *)ext;
3447 break;
3448
3449 case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO_KHR: {
3450 const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *addr_info =
3451 (const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *)ext;
3452 client_address = addr_info->opaqueCaptureAddress;
3453 break;
3454 }
3455
3456 default:
3457 anv_debug_ignored_stype(ext->sType);
3458 break;
3459 }
3460 }
3461
3462 /* By default, we want all VkDeviceMemory objects to support CCS */
3463 if (device->physical->has_implicit_ccs)
3464 alloc_flags |= ANV_BO_ALLOC_IMPLICIT_CCS;
3465
3466 if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR)
3467 alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
3468
3469 if ((export_info && export_info->handleTypes) ||
3470 (fd_info && fd_info->handleType) ||
3471 (host_ptr_info && host_ptr_info->handleType)) {
3472 /* Anything imported or exported is EXTERNAL */
3473 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3474
3475 /* We can't have implicit CCS on external memory with an AUX-table.
3476 * Doing so would require us to sync the aux tables across processes
3477 * which is impractical.
3478 */
3479 if (device->info.has_aux_map)
3480 alloc_flags &= ~ANV_BO_ALLOC_IMPLICIT_CCS;
3481 }
3482
3483 /* Check if we need to support Android HW buffer export. If so,
3484 * create AHardwareBuffer and import memory from it.
3485 */
3486 bool android_export = false;
3487 if (export_info && export_info->handleTypes &
3488 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3489 android_export = true;
3490
3491 if (ahw_import_info) {
3492 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3493 if (result != VK_SUCCESS)
3494 goto fail;
3495
3496 goto success;
3497 } else if (android_export) {
3498 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3499 if (result != VK_SUCCESS)
3500 goto fail;
3501
3502 const VkImportAndroidHardwareBufferInfoANDROID import_info = {
3503 .buffer = mem->ahw,
3504 };
3505 result = anv_import_ahw_memory(_device, mem, &import_info);
3506 if (result != VK_SUCCESS)
3507 goto fail;
3508
3509 goto success;
3510 }
3511
3512 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3513 * ignored.
3514 */
3515 if (fd_info && fd_info->handleType) {
3516 /* At the moment, we support only the below handle types. */
3517 assert(fd_info->handleType ==
3518 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3519 fd_info->handleType ==
3520 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3521
3522 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3523 client_address, &mem->bo);
3524 if (result != VK_SUCCESS)
3525 goto fail;
3526
3527 /* For security purposes, we reject importing the bo if it's smaller
3528 * than the requested allocation size. This prevents a malicious client
3529 * from passing a buffer to a trusted client, lying about the size, and
3530 * telling the trusted client to try and texture from an image that goes
3531 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3532 * in the trusted client. The trusted client can protect itself against
3533 * this sort of attack but only if it can trust the buffer size.
3534 */
3535 if (mem->bo->size < aligned_alloc_size) {
3536 result = vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
3537 "aligned allocationSize too large for "
3538 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3539 "%"PRIu64"B > %"PRIu64"B",
3540 aligned_alloc_size, mem->bo->size);
3541 anv_device_release_bo(device, mem->bo);
3542 goto fail;
3543 }
3544
3545 /* From the Vulkan spec:
3546 *
3547 * "Importing memory from a file descriptor transfers ownership of
3548 * the file descriptor from the application to the Vulkan
3549 * implementation. The application must not perform any operations on
3550 * the file descriptor after a successful import."
3551 *
3552 * If the import fails, we leave the file descriptor open.
3553 */
3554 close(fd_info->fd);
3555 goto success;
3556 }
3557
3558 if (host_ptr_info && host_ptr_info->handleType) {
3559 if (host_ptr_info->handleType ==
3560 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3561 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3562 goto fail;
3563 }
3564
3565 assert(host_ptr_info->handleType ==
3566 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3567
3568 result = anv_device_import_bo_from_host_ptr(device,
3569 host_ptr_info->pHostPointer,
3570 pAllocateInfo->allocationSize,
3571 alloc_flags,
3572 client_address,
3573 &mem->bo);
3574 if (result != VK_SUCCESS)
3575 goto fail;
3576
3577 mem->host_ptr = host_ptr_info->pHostPointer;
3578 goto success;
3579 }
3580
3581 /* Regular allocate (not importing memory). */
3582
3583 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3584 alloc_flags, client_address, &mem->bo);
3585 if (result != VK_SUCCESS)
3586 goto fail;
3587
3588 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3589 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3590
3591 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3592 * the BO. In this case, we have a dedicated allocation.
3593 */
3594 if (image->needs_set_tiling) {
3595 const uint32_t i915_tiling =
3596 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3597 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3598 image->planes[0].surface.isl.row_pitch_B,
3599 i915_tiling);
3600 if (ret) {
3601 anv_device_release_bo(device, mem->bo);
3602 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3603 "failed to set BO tiling: %m");
3604 goto fail;
3605 }
3606 }
3607 }
3608
3609 success:
3610 mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
3611 if (mem_heap_used > mem_heap->size) {
3612 p_atomic_add(&mem_heap->used, -mem->bo->size);
3613 anv_device_release_bo(device, mem->bo);
3614 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3615 "Out of heap memory");
3616 goto fail;
3617 }
3618
3619 pthread_mutex_lock(&device->mutex);
3620 list_addtail(&mem->link, &device->memory_objects);
3621 pthread_mutex_unlock(&device->mutex);
3622
3623 *pMem = anv_device_memory_to_handle(mem);
3624
3625 return VK_SUCCESS;
3626
3627 fail:
3628 vk_free2(&device->vk.alloc, pAllocator, mem);
3629
3630 return result;
3631 }
3632
3633 VkResult anv_GetMemoryFdKHR(
3634 VkDevice device_h,
3635 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3636 int* pFd)
3637 {
3638 ANV_FROM_HANDLE(anv_device, dev, device_h);
3639 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3640
3641 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3642
3643 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3644 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3645
3646 return anv_device_export_bo(dev, mem->bo, pFd);
3647 }
3648
3649 VkResult anv_GetMemoryFdPropertiesKHR(
3650 VkDevice _device,
3651 VkExternalMemoryHandleTypeFlagBits handleType,
3652 int fd,
3653 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3654 {
3655 ANV_FROM_HANDLE(anv_device, device, _device);
3656
3657 switch (handleType) {
3658 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3659 /* dma-buf can be imported as any memory type */
3660 pMemoryFdProperties->memoryTypeBits =
3661 (1 << device->physical->memory.type_count) - 1;
3662 return VK_SUCCESS;
3663
3664 default:
3665 /* The valid usage section for this function says:
3666 *
3667 * "handleType must not be one of the handle types defined as
3668 * opaque."
3669 *
3670 * So opaque handle types fall into the default "unsupported" case.
3671 */
3672 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3673 }
3674 }
3675
3676 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3677 VkDevice _device,
3678 VkExternalMemoryHandleTypeFlagBits handleType,
3679 const void* pHostPointer,
3680 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3681 {
3682 ANV_FROM_HANDLE(anv_device, device, _device);
3683
3684 assert(pMemoryHostPointerProperties->sType ==
3685 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3686
3687 switch (handleType) {
3688 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
3689 /* Host memory can be imported as any memory type. */
3690 pMemoryHostPointerProperties->memoryTypeBits =
3691 (1ull << device->physical->memory.type_count) - 1;
3692
3693 return VK_SUCCESS;
3694
3695 default:
3696 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3697 }
3698 }
3699
3700 void anv_FreeMemory(
3701 VkDevice _device,
3702 VkDeviceMemory _mem,
3703 const VkAllocationCallbacks* pAllocator)
3704 {
3705 ANV_FROM_HANDLE(anv_device, device, _device);
3706 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3707
3708 if (mem == NULL)
3709 return;
3710
3711 pthread_mutex_lock(&device->mutex);
3712 list_del(&mem->link);
3713 pthread_mutex_unlock(&device->mutex);
3714
3715 if (mem->map)
3716 anv_UnmapMemory(_device, _mem);
3717
3718 p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used,
3719 -mem->bo->size);
3720
3721 anv_device_release_bo(device, mem->bo);
3722
3723 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3724 if (mem->ahw)
3725 AHardwareBuffer_release(mem->ahw);
3726 #endif
3727
3728 vk_object_base_finish(&mem->base);
3729 vk_free2(&device->vk.alloc, pAllocator, mem);
3730 }
3731
3732 VkResult anv_MapMemory(
3733 VkDevice _device,
3734 VkDeviceMemory _memory,
3735 VkDeviceSize offset,
3736 VkDeviceSize size,
3737 VkMemoryMapFlags flags,
3738 void** ppData)
3739 {
3740 ANV_FROM_HANDLE(anv_device, device, _device);
3741 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3742
3743 if (mem == NULL) {
3744 *ppData = NULL;
3745 return VK_SUCCESS;
3746 }
3747
3748 if (mem->host_ptr) {
3749 *ppData = mem->host_ptr + offset;
3750 return VK_SUCCESS;
3751 }
3752
3753 if (size == VK_WHOLE_SIZE)
3754 size = mem->bo->size - offset;
3755
3756 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3757 *
3758 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3759 * assert(size != 0);
3760 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3761 * equal to the size of the memory minus offset
3762 */
3763 assert(size > 0);
3764 assert(offset + size <= mem->bo->size);
3765
3766 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3767 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3768 * at a time is valid. We could just mmap up front and return an offset
3769 * pointer here, but that may exhaust virtual memory on 32 bit
3770 * userspace. */
3771
3772 uint32_t gem_flags = 0;
3773
3774 if (!device->info.has_llc &&
3775 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3776 gem_flags |= I915_MMAP_WC;
3777
3778 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3779 uint64_t map_offset;
3780 if (!device->physical->has_mmap_offset)
3781 map_offset = offset & ~4095ull;
3782 else
3783 map_offset = 0;
3784 assert(offset >= map_offset);
3785 uint64_t map_size = (offset + size) - map_offset;
3786
3787 /* Let's map whole pages */
3788 map_size = align_u64(map_size, 4096);
3789
3790 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3791 map_offset, map_size, gem_flags);
3792 if (map == MAP_FAILED)
3793 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3794
3795 mem->map = map;
3796 mem->map_size = map_size;
3797
3798 *ppData = mem->map + (offset - map_offset);
3799
3800 return VK_SUCCESS;
3801 }
3802
3803 void anv_UnmapMemory(
3804 VkDevice _device,
3805 VkDeviceMemory _memory)
3806 {
3807 ANV_FROM_HANDLE(anv_device, device, _device);
3808 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3809
3810 if (mem == NULL || mem->host_ptr)
3811 return;
3812
3813 anv_gem_munmap(device, mem->map, mem->map_size);
3814
3815 mem->map = NULL;
3816 mem->map_size = 0;
3817 }
3818
3819 static void
3820 clflush_mapped_ranges(struct anv_device *device,
3821 uint32_t count,
3822 const VkMappedMemoryRange *ranges)
3823 {
3824 for (uint32_t i = 0; i < count; i++) {
3825 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3826 if (ranges[i].offset >= mem->map_size)
3827 continue;
3828
3829 gen_clflush_range(mem->map + ranges[i].offset,
3830 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3831 }
3832 }
3833
3834 VkResult anv_FlushMappedMemoryRanges(
3835 VkDevice _device,
3836 uint32_t memoryRangeCount,
3837 const VkMappedMemoryRange* pMemoryRanges)
3838 {
3839 ANV_FROM_HANDLE(anv_device, device, _device);
3840
3841 if (device->info.has_llc)
3842 return VK_SUCCESS;
3843
3844 /* Make sure the writes we're flushing have landed. */
3845 __builtin_ia32_mfence();
3846
3847 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3848
3849 return VK_SUCCESS;
3850 }
3851
3852 VkResult anv_InvalidateMappedMemoryRanges(
3853 VkDevice _device,
3854 uint32_t memoryRangeCount,
3855 const VkMappedMemoryRange* pMemoryRanges)
3856 {
3857 ANV_FROM_HANDLE(anv_device, device, _device);
3858
3859 if (device->info.has_llc)
3860 return VK_SUCCESS;
3861
3862 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3863
3864 /* Make sure no reads get moved up above the invalidate. */
3865 __builtin_ia32_mfence();
3866
3867 return VK_SUCCESS;
3868 }
3869
3870 void anv_GetBufferMemoryRequirements(
3871 VkDevice _device,
3872 VkBuffer _buffer,
3873 VkMemoryRequirements* pMemoryRequirements)
3874 {
3875 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3876 ANV_FROM_HANDLE(anv_device, device, _device);
3877
3878 /* The Vulkan spec (git aaed022) says:
3879 *
3880 * memoryTypeBits is a bitfield and contains one bit set for every
3881 * supported memory type for the resource. The bit `1<<i` is set if and
3882 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3883 * structure for the physical device is supported.
3884 */
3885 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3886
3887 /* Base alignment requirement of a cache line */
3888 uint32_t alignment = 16;
3889
3890 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3891 alignment = MAX2(alignment, ANV_UBO_ALIGNMENT);
3892
3893 pMemoryRequirements->size = buffer->size;
3894 pMemoryRequirements->alignment = alignment;
3895
3896 /* Storage and Uniform buffers should have their size aligned to
3897 * 32-bits to avoid boundary checks when last DWord is not complete.
3898 * This would ensure that not internal padding would be needed for
3899 * 16-bit types.
3900 */
3901 if (device->robust_buffer_access &&
3902 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3903 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3904 pMemoryRequirements->size = align_u64(buffer->size, 4);
3905
3906 pMemoryRequirements->memoryTypeBits = memory_types;
3907 }
3908
3909 void anv_GetBufferMemoryRequirements2(
3910 VkDevice _device,
3911 const VkBufferMemoryRequirementsInfo2* pInfo,
3912 VkMemoryRequirements2* pMemoryRequirements)
3913 {
3914 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3915 &pMemoryRequirements->memoryRequirements);
3916
3917 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3918 switch (ext->sType) {
3919 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3920 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3921 requirements->prefersDedicatedAllocation = false;
3922 requirements->requiresDedicatedAllocation = false;
3923 break;
3924 }
3925
3926 default:
3927 anv_debug_ignored_stype(ext->sType);
3928 break;
3929 }
3930 }
3931 }
3932
3933 void anv_GetImageMemoryRequirements(
3934 VkDevice _device,
3935 VkImage _image,
3936 VkMemoryRequirements* pMemoryRequirements)
3937 {
3938 ANV_FROM_HANDLE(anv_image, image, _image);
3939 ANV_FROM_HANDLE(anv_device, device, _device);
3940
3941 /* The Vulkan spec (git aaed022) says:
3942 *
3943 * memoryTypeBits is a bitfield and contains one bit set for every
3944 * supported memory type for the resource. The bit `1<<i` is set if and
3945 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3946 * structure for the physical device is supported.
3947 *
3948 * All types are currently supported for images.
3949 */
3950 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3951
3952 pMemoryRequirements->size = image->size;
3953 pMemoryRequirements->alignment = image->alignment;
3954 pMemoryRequirements->memoryTypeBits = memory_types;
3955 }
3956
3957 void anv_GetImageMemoryRequirements2(
3958 VkDevice _device,
3959 const VkImageMemoryRequirementsInfo2* pInfo,
3960 VkMemoryRequirements2* pMemoryRequirements)
3961 {
3962 ANV_FROM_HANDLE(anv_device, device, _device);
3963 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3964
3965 anv_GetImageMemoryRequirements(_device, pInfo->image,
3966 &pMemoryRequirements->memoryRequirements);
3967
3968 vk_foreach_struct_const(ext, pInfo->pNext) {
3969 switch (ext->sType) {
3970 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3971 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3972 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3973 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3974 plane_reqs->planeAspect);
3975
3976 assert(image->planes[plane].offset == 0);
3977
3978 /* The Vulkan spec (git aaed022) says:
3979 *
3980 * memoryTypeBits is a bitfield and contains one bit set for every
3981 * supported memory type for the resource. The bit `1<<i` is set
3982 * if and only if the memory type `i` in the
3983 * VkPhysicalDeviceMemoryProperties structure for the physical
3984 * device is supported.
3985 *
3986 * All types are currently supported for images.
3987 */
3988 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3989 (1ull << device->physical->memory.type_count) - 1;
3990
3991 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3992 pMemoryRequirements->memoryRequirements.alignment =
3993 image->planes[plane].alignment;
3994 break;
3995 }
3996
3997 default:
3998 anv_debug_ignored_stype(ext->sType);
3999 break;
4000 }
4001 }
4002
4003 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
4004 switch (ext->sType) {
4005 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
4006 VkMemoryDedicatedRequirements *requirements = (void *)ext;
4007 if (image->needs_set_tiling || image->external_format) {
4008 /* If we need to set the tiling for external consumers, we need a
4009 * dedicated allocation.
4010 *
4011 * See also anv_AllocateMemory.
4012 */
4013 requirements->prefersDedicatedAllocation = true;
4014 requirements->requiresDedicatedAllocation = true;
4015 } else {
4016 requirements->prefersDedicatedAllocation = false;
4017 requirements->requiresDedicatedAllocation = false;
4018 }
4019 break;
4020 }
4021
4022 default:
4023 anv_debug_ignored_stype(ext->sType);
4024 break;
4025 }
4026 }
4027 }
4028
4029 void anv_GetImageSparseMemoryRequirements(
4030 VkDevice device,
4031 VkImage image,
4032 uint32_t* pSparseMemoryRequirementCount,
4033 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
4034 {
4035 *pSparseMemoryRequirementCount = 0;
4036 }
4037
4038 void anv_GetImageSparseMemoryRequirements2(
4039 VkDevice device,
4040 const VkImageSparseMemoryRequirementsInfo2* pInfo,
4041 uint32_t* pSparseMemoryRequirementCount,
4042 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
4043 {
4044 *pSparseMemoryRequirementCount = 0;
4045 }
4046
4047 void anv_GetDeviceMemoryCommitment(
4048 VkDevice device,
4049 VkDeviceMemory memory,
4050 VkDeviceSize* pCommittedMemoryInBytes)
4051 {
4052 *pCommittedMemoryInBytes = 0;
4053 }
4054
4055 static void
4056 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
4057 {
4058 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
4059 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
4060
4061 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
4062
4063 if (mem) {
4064 buffer->address = (struct anv_address) {
4065 .bo = mem->bo,
4066 .offset = pBindInfo->memoryOffset,
4067 };
4068 } else {
4069 buffer->address = ANV_NULL_ADDRESS;
4070 }
4071 }
4072
4073 VkResult anv_BindBufferMemory(
4074 VkDevice device,
4075 VkBuffer buffer,
4076 VkDeviceMemory memory,
4077 VkDeviceSize memoryOffset)
4078 {
4079 anv_bind_buffer_memory(
4080 &(VkBindBufferMemoryInfo) {
4081 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
4082 .buffer = buffer,
4083 .memory = memory,
4084 .memoryOffset = memoryOffset,
4085 });
4086
4087 return VK_SUCCESS;
4088 }
4089
4090 VkResult anv_BindBufferMemory2(
4091 VkDevice device,
4092 uint32_t bindInfoCount,
4093 const VkBindBufferMemoryInfo* pBindInfos)
4094 {
4095 for (uint32_t i = 0; i < bindInfoCount; i++)
4096 anv_bind_buffer_memory(&pBindInfos[i]);
4097
4098 return VK_SUCCESS;
4099 }
4100
4101 VkResult anv_QueueBindSparse(
4102 VkQueue _queue,
4103 uint32_t bindInfoCount,
4104 const VkBindSparseInfo* pBindInfo,
4105 VkFence fence)
4106 {
4107 ANV_FROM_HANDLE(anv_queue, queue, _queue);
4108 if (anv_device_is_lost(queue->device))
4109 return VK_ERROR_DEVICE_LOST;
4110
4111 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
4112 }
4113
4114 // Event functions
4115
4116 VkResult anv_CreateEvent(
4117 VkDevice _device,
4118 const VkEventCreateInfo* pCreateInfo,
4119 const VkAllocationCallbacks* pAllocator,
4120 VkEvent* pEvent)
4121 {
4122 ANV_FROM_HANDLE(anv_device, device, _device);
4123 struct anv_event *event;
4124
4125 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
4126
4127 event = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*event), 8,
4128 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4129 if (event == NULL)
4130 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4131
4132 vk_object_base_init(&device->vk, &event->base, VK_OBJECT_TYPE_EVENT);
4133 event->state = anv_state_pool_alloc(&device->dynamic_state_pool,
4134 sizeof(uint64_t), 8);
4135 *(uint64_t *)event->state.map = VK_EVENT_RESET;
4136
4137 *pEvent = anv_event_to_handle(event);
4138
4139 return VK_SUCCESS;
4140 }
4141
4142 void anv_DestroyEvent(
4143 VkDevice _device,
4144 VkEvent _event,
4145 const VkAllocationCallbacks* pAllocator)
4146 {
4147 ANV_FROM_HANDLE(anv_device, device, _device);
4148 ANV_FROM_HANDLE(anv_event, event, _event);
4149
4150 if (!event)
4151 return;
4152
4153 anv_state_pool_free(&device->dynamic_state_pool, event->state);
4154
4155 vk_object_base_finish(&event->base);
4156 vk_free2(&device->vk.alloc, pAllocator, event);
4157 }
4158
4159 VkResult anv_GetEventStatus(
4160 VkDevice _device,
4161 VkEvent _event)
4162 {
4163 ANV_FROM_HANDLE(anv_device, device, _device);
4164 ANV_FROM_HANDLE(anv_event, event, _event);
4165
4166 if (anv_device_is_lost(device))
4167 return VK_ERROR_DEVICE_LOST;
4168
4169 return *(uint64_t *)event->state.map;
4170 }
4171
4172 VkResult anv_SetEvent(
4173 VkDevice _device,
4174 VkEvent _event)
4175 {
4176 ANV_FROM_HANDLE(anv_event, event, _event);
4177
4178 *(uint64_t *)event->state.map = VK_EVENT_SET;
4179
4180 return VK_SUCCESS;
4181 }
4182
4183 VkResult anv_ResetEvent(
4184 VkDevice _device,
4185 VkEvent _event)
4186 {
4187 ANV_FROM_HANDLE(anv_event, event, _event);
4188
4189 *(uint64_t *)event->state.map = VK_EVENT_RESET;
4190
4191 return VK_SUCCESS;
4192 }
4193
4194 // Buffer functions
4195
4196 VkResult anv_CreateBuffer(
4197 VkDevice _device,
4198 const VkBufferCreateInfo* pCreateInfo,
4199 const VkAllocationCallbacks* pAllocator,
4200 VkBuffer* pBuffer)
4201 {
4202 ANV_FROM_HANDLE(anv_device, device, _device);
4203 struct anv_buffer *buffer;
4204
4205 /* Don't allow creating buffers bigger than our address space. The real
4206 * issue here is that we may align up the buffer size and we don't want
4207 * doing so to cause roll-over. However, no one has any business
4208 * allocating a buffer larger than our GTT size.
4209 */
4210 if (pCreateInfo->size > device->physical->gtt_size)
4211 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
4212
4213 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
4214
4215 buffer = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*buffer), 8,
4216 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4217 if (buffer == NULL)
4218 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4219
4220 vk_object_base_init(&device->vk, &buffer->base, VK_OBJECT_TYPE_BUFFER);
4221 buffer->size = pCreateInfo->size;
4222 buffer->usage = pCreateInfo->usage;
4223 buffer->address = ANV_NULL_ADDRESS;
4224
4225 *pBuffer = anv_buffer_to_handle(buffer);
4226
4227 return VK_SUCCESS;
4228 }
4229
4230 void anv_DestroyBuffer(
4231 VkDevice _device,
4232 VkBuffer _buffer,
4233 const VkAllocationCallbacks* pAllocator)
4234 {
4235 ANV_FROM_HANDLE(anv_device, device, _device);
4236 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4237
4238 if (!buffer)
4239 return;
4240
4241 vk_object_base_finish(&buffer->base);
4242 vk_free2(&device->vk.alloc, pAllocator, buffer);
4243 }
4244
4245 VkDeviceAddress anv_GetBufferDeviceAddress(
4246 VkDevice device,
4247 const VkBufferDeviceAddressInfoKHR* pInfo)
4248 {
4249 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
4250
4251 assert(!anv_address_is_null(buffer->address));
4252 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
4253
4254 return anv_address_physical(buffer->address);
4255 }
4256
4257 uint64_t anv_GetBufferOpaqueCaptureAddress(
4258 VkDevice device,
4259 const VkBufferDeviceAddressInfoKHR* pInfo)
4260 {
4261 return 0;
4262 }
4263
4264 uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress(
4265 VkDevice device,
4266 const VkDeviceMemoryOpaqueCaptureAddressInfoKHR* pInfo)
4267 {
4268 ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
4269
4270 assert(memory->bo->flags & EXEC_OBJECT_PINNED);
4271 assert(memory->bo->has_client_visible_address);
4272
4273 return gen_48b_address(memory->bo->offset);
4274 }
4275
4276 void
4277 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
4278 enum isl_format format,
4279 struct anv_address address,
4280 uint32_t range, uint32_t stride)
4281 {
4282 isl_buffer_fill_state(&device->isl_dev, state.map,
4283 .address = anv_address_physical(address),
4284 .mocs = device->isl_dev.mocs.internal,
4285 .size_B = range,
4286 .format = format,
4287 .swizzle = ISL_SWIZZLE_IDENTITY,
4288 .stride_B = stride);
4289 }
4290
4291 void anv_DestroySampler(
4292 VkDevice _device,
4293 VkSampler _sampler,
4294 const VkAllocationCallbacks* pAllocator)
4295 {
4296 ANV_FROM_HANDLE(anv_device, device, _device);
4297 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
4298
4299 if (!sampler)
4300 return;
4301
4302 if (sampler->bindless_state.map) {
4303 anv_state_pool_free(&device->dynamic_state_pool,
4304 sampler->bindless_state);
4305 }
4306
4307 if (sampler->custom_border_color.map) {
4308 anv_state_reserved_pool_free(&device->custom_border_colors,
4309 sampler->custom_border_color);
4310 }
4311
4312 vk_object_base_finish(&sampler->base);
4313 vk_free2(&device->vk.alloc, pAllocator, sampler);
4314 }
4315
4316 VkResult anv_CreateFramebuffer(
4317 VkDevice _device,
4318 const VkFramebufferCreateInfo* pCreateInfo,
4319 const VkAllocationCallbacks* pAllocator,
4320 VkFramebuffer* pFramebuffer)
4321 {
4322 ANV_FROM_HANDLE(anv_device, device, _device);
4323 struct anv_framebuffer *framebuffer;
4324
4325 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
4326
4327 size_t size = sizeof(*framebuffer);
4328
4329 /* VK_KHR_imageless_framebuffer extension says:
4330 *
4331 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
4332 * parameter pAttachments is ignored.
4333 */
4334 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
4335 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
4336 framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
4337 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4338 if (framebuffer == NULL)
4339 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4340
4341 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
4342 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
4343 framebuffer->attachments[i] = iview;
4344 }
4345 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4346 } else {
4347 framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
4348 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4349 if (framebuffer == NULL)
4350 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4351
4352 framebuffer->attachment_count = 0;
4353 }
4354
4355 vk_object_base_init(&device->vk, &framebuffer->base,
4356 VK_OBJECT_TYPE_FRAMEBUFFER);
4357
4358 framebuffer->width = pCreateInfo->width;
4359 framebuffer->height = pCreateInfo->height;
4360 framebuffer->layers = pCreateInfo->layers;
4361
4362 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4363
4364 return VK_SUCCESS;
4365 }
4366
4367 void anv_DestroyFramebuffer(
4368 VkDevice _device,
4369 VkFramebuffer _fb,
4370 const VkAllocationCallbacks* pAllocator)
4371 {
4372 ANV_FROM_HANDLE(anv_device, device, _device);
4373 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4374
4375 if (!fb)
4376 return;
4377
4378 vk_object_base_finish(&fb->base);
4379 vk_free2(&device->vk.alloc, pAllocator, fb);
4380 }
4381
4382 static const VkTimeDomainEXT anv_time_domains[] = {
4383 VK_TIME_DOMAIN_DEVICE_EXT,
4384 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4385 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4386 };
4387
4388 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4389 VkPhysicalDevice physicalDevice,
4390 uint32_t *pTimeDomainCount,
4391 VkTimeDomainEXT *pTimeDomains)
4392 {
4393 int d;
4394 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4395
4396 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4397 vk_outarray_append(&out, i) {
4398 *i = anv_time_domains[d];
4399 }
4400 }
4401
4402 return vk_outarray_status(&out);
4403 }
4404
4405 static uint64_t
4406 anv_clock_gettime(clockid_t clock_id)
4407 {
4408 struct timespec current;
4409 int ret;
4410
4411 ret = clock_gettime(clock_id, &current);
4412 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4413 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4414 if (ret < 0)
4415 return 0;
4416
4417 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4418 }
4419
4420 #define TIMESTAMP 0x2358
4421
4422 VkResult anv_GetCalibratedTimestampsEXT(
4423 VkDevice _device,
4424 uint32_t timestampCount,
4425 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4426 uint64_t *pTimestamps,
4427 uint64_t *pMaxDeviation)
4428 {
4429 ANV_FROM_HANDLE(anv_device, device, _device);
4430 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4431 int ret;
4432 int d;
4433 uint64_t begin, end;
4434 uint64_t max_clock_period = 0;
4435
4436 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4437
4438 for (d = 0; d < timestampCount; d++) {
4439 switch (pTimestampInfos[d].timeDomain) {
4440 case VK_TIME_DOMAIN_DEVICE_EXT:
4441 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4442 &pTimestamps[d]);
4443
4444 if (ret != 0) {
4445 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4446 "register: %m");
4447 }
4448 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4449 max_clock_period = MAX2(max_clock_period, device_period);
4450 break;
4451 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4452 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4453 max_clock_period = MAX2(max_clock_period, 1);
4454 break;
4455
4456 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4457 pTimestamps[d] = begin;
4458 break;
4459 default:
4460 pTimestamps[d] = 0;
4461 break;
4462 }
4463 }
4464
4465 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4466
4467 /*
4468 * The maximum deviation is the sum of the interval over which we
4469 * perform the sampling and the maximum period of any sampled
4470 * clock. That's because the maximum skew between any two sampled
4471 * clock edges is when the sampled clock with the largest period is
4472 * sampled at the end of that period but right at the beginning of the
4473 * sampling interval and some other clock is sampled right at the
4474 * begining of its sampling period and right at the end of the
4475 * sampling interval. Let's assume the GPU has the longest clock
4476 * period and that the application is sampling GPU and monotonic:
4477 *
4478 * s e
4479 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4480 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4481 *
4482 * g
4483 * 0 1 2 3
4484 * GPU -----_____-----_____-----_____-----_____
4485 *
4486 * m
4487 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4488 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4489 *
4490 * Interval <----------------->
4491 * Deviation <-------------------------->
4492 *
4493 * s = read(raw) 2
4494 * g = read(GPU) 1
4495 * m = read(monotonic) 2
4496 * e = read(raw) b
4497 *
4498 * We round the sample interval up by one tick to cover sampling error
4499 * in the interval clock
4500 */
4501
4502 uint64_t sample_interval = end - begin + 1;
4503
4504 *pMaxDeviation = sample_interval + max_clock_period;
4505
4506 return VK_SUCCESS;
4507 }
4508
4509 /* vk_icd.h does not declare this function, so we declare it here to
4510 * suppress Wmissing-prototypes.
4511 */
4512 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4513 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4514
4515 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4516 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4517 {
4518 /* For the full details on loader interface versioning, see
4519 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4520 * What follows is a condensed summary, to help you navigate the large and
4521 * confusing official doc.
4522 *
4523 * - Loader interface v0 is incompatible with later versions. We don't
4524 * support it.
4525 *
4526 * - In loader interface v1:
4527 * - The first ICD entrypoint called by the loader is
4528 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4529 * entrypoint.
4530 * - The ICD must statically expose no other Vulkan symbol unless it is
4531 * linked with -Bsymbolic.
4532 * - Each dispatchable Vulkan handle created by the ICD must be
4533 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4534 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4535 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4536 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4537 * such loader-managed surfaces.
4538 *
4539 * - Loader interface v2 differs from v1 in:
4540 * - The first ICD entrypoint called by the loader is
4541 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4542 * statically expose this entrypoint.
4543 *
4544 * - Loader interface v3 differs from v2 in:
4545 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4546 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4547 * because the loader no longer does so.
4548 *
4549 * - Loader interface v4 differs from v3 in:
4550 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4551 */
4552 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4553 return VK_SUCCESS;
4554 }
4555
4556 VkResult anv_CreatePrivateDataSlotEXT(
4557 VkDevice _device,
4558 const VkPrivateDataSlotCreateInfoEXT* pCreateInfo,
4559 const VkAllocationCallbacks* pAllocator,
4560 VkPrivateDataSlotEXT* pPrivateDataSlot)
4561 {
4562 ANV_FROM_HANDLE(anv_device, device, _device);
4563 return vk_private_data_slot_create(&device->vk, pCreateInfo, pAllocator,
4564 pPrivateDataSlot);
4565 }
4566
4567 void anv_DestroyPrivateDataSlotEXT(
4568 VkDevice _device,
4569 VkPrivateDataSlotEXT privateDataSlot,
4570 const VkAllocationCallbacks* pAllocator)
4571 {
4572 ANV_FROM_HANDLE(anv_device, device, _device);
4573 vk_private_data_slot_destroy(&device->vk, privateDataSlot, pAllocator);
4574 }
4575
4576 VkResult anv_SetPrivateDataEXT(
4577 VkDevice _device,
4578 VkObjectType objectType,
4579 uint64_t objectHandle,
4580 VkPrivateDataSlotEXT privateDataSlot,
4581 uint64_t data)
4582 {
4583 ANV_FROM_HANDLE(anv_device, device, _device);
4584 return vk_object_base_set_private_data(&device->vk,
4585 objectType, objectHandle,
4586 privateDataSlot, data);
4587 }
4588
4589 void anv_GetPrivateDataEXT(
4590 VkDevice _device,
4591 VkObjectType objectType,
4592 uint64_t objectHandle,
4593 VkPrivateDataSlotEXT privateDataSlot,
4594 uint64_t* pData)
4595 {
4596 ANV_FROM_HANDLE(anv_device, device, _device);
4597 vk_object_base_get_private_data(&device->vk,
4598 objectType, objectHandle,
4599 privateDataSlot, pData);
4600 }