anv: silence unused variable warning
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include <drm_fourcc.h>
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/mesa-sha1.h"
39 #include "vk_util.h"
40 #include "common/gen_defines.h"
41
42 #include "genxml/gen7_pack.h"
43
44 static void
45 compiler_debug_log(void *data, const char *fmt, ...)
46 { }
47
48 static void
49 compiler_perf_log(void *data, const char *fmt, ...)
50 {
51 va_list args;
52 va_start(args, fmt);
53
54 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
55 intel_logd_v(fmt, args);
56
57 va_end(args);
58 }
59
60 static VkResult
61 anv_compute_heap_size(int fd, uint64_t *heap_size)
62 {
63 uint64_t gtt_size;
64 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
65 &gtt_size) == -1) {
66 /* If, for whatever reason, we can't actually get the GTT size from the
67 * kernel (too old?) fall back to the aperture size.
68 */
69 anv_perf_warn(NULL, NULL,
70 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
71
72 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
73 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
74 "failed to get aperture size: %m");
75 }
76 }
77
78 /* Query the total ram from the system */
79 struct sysinfo info;
80 sysinfo(&info);
81
82 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
83
84 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
85 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
86 */
87 uint64_t available_ram;
88 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
89 available_ram = total_ram / 2;
90 else
91 available_ram = total_ram * 3 / 4;
92
93 /* We also want to leave some padding for things we allocate in the driver,
94 * so don't go over 3/4 of the GTT either.
95 */
96 uint64_t available_gtt = gtt_size * 3 / 4;
97
98 *heap_size = MIN2(available_ram, available_gtt);
99
100 return VK_SUCCESS;
101 }
102
103 static VkResult
104 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
105 {
106 /* The kernel query only tells us whether or not the kernel supports the
107 * EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and not whether or not the
108 * hardware has actual 48bit address support.
109 */
110 device->supports_48bit_addresses =
111 (device->info.gen >= 8) && anv_gem_supports_48b_addresses(fd);
112
113 uint64_t heap_size;
114 VkResult result = anv_compute_heap_size(fd, &heap_size);
115 if (result != VK_SUCCESS)
116 return result;
117
118 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
119 /* When running with an overridden PCI ID, we may get a GTT size from
120 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
121 * address support can still fail. Just clamp the address space size to
122 * 2 GiB if we don't have 48-bit support.
123 */
124 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
125 "not support for 48-bit addresses",
126 __FILE__, __LINE__);
127 heap_size = 2ull << 30;
128 }
129
130 if (heap_size <= 3ull * (1ull << 30)) {
131 /* In this case, everything fits nicely into the 32-bit address space,
132 * so there's no need for supporting 48bit addresses on client-allocated
133 * memory objects.
134 */
135 device->memory.heap_count = 1;
136 device->memory.heaps[0] = (struct anv_memory_heap) {
137 .size = heap_size,
138 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
139 .supports_48bit_addresses = false,
140 };
141 } else {
142 /* Not everything will fit nicely into a 32-bit address space. In this
143 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
144 * larger 48-bit heap. If we're in this case, then we have a total heap
145 * size larger than 3GiB which most likely means they have 8 GiB of
146 * video memory and so carving off 1 GiB for the 32-bit heap should be
147 * reasonable.
148 */
149 const uint64_t heap_size_32bit = 1ull << 30;
150 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
151
152 assert(device->supports_48bit_addresses);
153
154 device->memory.heap_count = 2;
155 device->memory.heaps[0] = (struct anv_memory_heap) {
156 .size = heap_size_48bit,
157 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
158 .supports_48bit_addresses = true,
159 };
160 device->memory.heaps[1] = (struct anv_memory_heap) {
161 .size = heap_size_32bit,
162 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
163 .supports_48bit_addresses = false,
164 };
165 }
166
167 uint32_t type_count = 0;
168 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
169 uint32_t valid_buffer_usage = ~0;
170
171 /* There appears to be a hardware issue in the VF cache where it only
172 * considers the bottom 32 bits of memory addresses. If you happen to
173 * have two vertex buffers which get placed exactly 4 GiB apart and use
174 * them in back-to-back draw calls, you can get collisions. In order to
175 * solve this problem, we require vertex and index buffers be bound to
176 * memory allocated out of the 32-bit heap.
177 */
178 if (device->memory.heaps[heap].supports_48bit_addresses) {
179 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
180 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
181 }
182
183 if (device->info.has_llc) {
184 /* Big core GPUs share LLC with the CPU and thus one memory type can be
185 * both cached and coherent at the same time.
186 */
187 device->memory.types[type_count++] = (struct anv_memory_type) {
188 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
189 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
190 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
191 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
192 .heapIndex = heap,
193 .valid_buffer_usage = valid_buffer_usage,
194 };
195 } else {
196 /* The spec requires that we expose a host-visible, coherent memory
197 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
198 * to give the application a choice between cached, but not coherent and
199 * coherent but uncached (WC though).
200 */
201 device->memory.types[type_count++] = (struct anv_memory_type) {
202 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
203 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
204 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
205 .heapIndex = heap,
206 .valid_buffer_usage = valid_buffer_usage,
207 };
208 device->memory.types[type_count++] = (struct anv_memory_type) {
209 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
210 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
211 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
212 .heapIndex = heap,
213 .valid_buffer_usage = valid_buffer_usage,
214 };
215 }
216 }
217 device->memory.type_count = type_count;
218
219 return VK_SUCCESS;
220 }
221
222 static VkResult
223 anv_physical_device_init_uuids(struct anv_physical_device *device)
224 {
225 const struct build_id_note *note =
226 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
227 if (!note) {
228 return vk_errorf(device->instance, device,
229 VK_ERROR_INITIALIZATION_FAILED,
230 "Failed to find build-id");
231 }
232
233 unsigned build_id_len = build_id_length(note);
234 if (build_id_len < 20) {
235 return vk_errorf(device->instance, device,
236 VK_ERROR_INITIALIZATION_FAILED,
237 "build-id too short. It needs to be a SHA");
238 }
239
240 struct mesa_sha1 sha1_ctx;
241 uint8_t sha1[20];
242 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
243
244 /* The pipeline cache UUID is used for determining when a pipeline cache is
245 * invalid. It needs both a driver build and the PCI ID of the device.
246 */
247 _mesa_sha1_init(&sha1_ctx);
248 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
249 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
250 sizeof(device->chipset_id));
251 _mesa_sha1_final(&sha1_ctx, sha1);
252 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
253
254 /* The driver UUID is used for determining sharability of images and memory
255 * between two Vulkan instances in separate processes. People who want to
256 * share memory need to also check the device UUID (below) so all this
257 * needs to be is the build-id.
258 */
259 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
260
261 /* The device UUID uniquely identifies the given device within the machine.
262 * Since we never have more than one device, this doesn't need to be a real
263 * UUID. However, on the off-chance that someone tries to use this to
264 * cache pre-tiled images or something of the like, we use the PCI ID and
265 * some bits of ISL info to ensure that this is safe.
266 */
267 _mesa_sha1_init(&sha1_ctx);
268 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
269 sizeof(device->chipset_id));
270 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
271 sizeof(device->isl_dev.has_bit6_swizzling));
272 _mesa_sha1_final(&sha1_ctx, sha1);
273 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
274
275 return VK_SUCCESS;
276 }
277
278 static VkResult
279 anv_physical_device_init(struct anv_physical_device *device,
280 struct anv_instance *instance,
281 const char *path)
282 {
283 VkResult result;
284 int fd;
285
286 brw_process_intel_debug_variable();
287
288 fd = open(path, O_RDWR | O_CLOEXEC);
289 if (fd < 0)
290 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
291
292 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
293 device->instance = instance;
294
295 assert(strlen(path) < ARRAY_SIZE(device->path));
296 strncpy(device->path, path, ARRAY_SIZE(device->path));
297
298 device->no_hw = getenv("INTEL_NO_HW") != NULL;
299
300 const int pci_id_override = gen_get_pci_device_id_override();
301 if (pci_id_override < 0) {
302 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
303 if (!device->chipset_id) {
304 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
305 goto fail;
306 }
307 } else {
308 device->chipset_id = pci_id_override;
309 device->no_hw = true;
310 }
311
312 device->name = gen_get_device_name(device->chipset_id);
313 if (!gen_get_device_info(device->chipset_id, &device->info)) {
314 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
315 goto fail;
316 }
317
318 if (device->info.is_haswell) {
319 intel_logw("Haswell Vulkan support is incomplete");
320 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
321 intel_logw("Ivy Bridge Vulkan support is incomplete");
322 } else if (device->info.gen == 7 && device->info.is_baytrail) {
323 intel_logw("Bay Trail Vulkan support is incomplete");
324 } else if (device->info.gen >= 8 && device->info.gen <= 10) {
325 /* Gen8-10 fully supported */
326 } else {
327 result = vk_errorf(device->instance, device,
328 VK_ERROR_INCOMPATIBLE_DRIVER,
329 "Vulkan not yet supported on %s", device->name);
330 goto fail;
331 }
332
333 device->cmd_parser_version = -1;
334 if (device->info.gen == 7) {
335 device->cmd_parser_version =
336 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
337 if (device->cmd_parser_version == -1) {
338 result = vk_errorf(device->instance, device,
339 VK_ERROR_INITIALIZATION_FAILED,
340 "failed to get command parser version");
341 goto fail;
342 }
343 }
344
345 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
346 result = vk_errorf(device->instance, device,
347 VK_ERROR_INITIALIZATION_FAILED,
348 "kernel missing gem wait");
349 goto fail;
350 }
351
352 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
353 result = vk_errorf(device->instance, device,
354 VK_ERROR_INITIALIZATION_FAILED,
355 "kernel missing execbuf2");
356 goto fail;
357 }
358
359 if (!device->info.has_llc &&
360 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
361 result = vk_errorf(device->instance, device,
362 VK_ERROR_INITIALIZATION_FAILED,
363 "kernel missing wc mmap");
364 goto fail;
365 }
366
367 result = anv_physical_device_init_heaps(device, fd);
368 if (result != VK_SUCCESS)
369 goto fail;
370
371 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
372 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
373 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
374 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
375 device->has_syncobj_wait = device->has_syncobj &&
376 anv_gem_supports_syncobj_wait(fd);
377 device->has_context_priority = anv_gem_has_context_priority(fd);
378
379 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
380
381 /* Starting with Gen10, the timestamp frequency of the command streamer may
382 * vary from one part to another. We can query the value from the kernel.
383 */
384 if (device->info.gen >= 10) {
385 int timestamp_frequency =
386 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
387
388 if (timestamp_frequency < 0)
389 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
390 else
391 device->info.timestamp_frequency = timestamp_frequency;
392 }
393
394 /* GENs prior to 8 do not support EU/Subslice info */
395 if (device->info.gen >= 8) {
396 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
397 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
398
399 /* Without this information, we cannot get the right Braswell
400 * brandstrings, and we have to use conservative numbers for GPGPU on
401 * many platforms, but otherwise, things will just work.
402 */
403 if (device->subslice_total < 1 || device->eu_total < 1) {
404 intel_logw("Kernel 4.1 required to properly query GPU properties");
405 }
406 } else if (device->info.gen == 7) {
407 device->subslice_total = 1 << (device->info.gt - 1);
408 }
409
410 if (device->info.is_cherryview &&
411 device->subslice_total > 0 && device->eu_total > 0) {
412 /* Logical CS threads = EUs per subslice * num threads per EU */
413 uint32_t max_cs_threads =
414 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
415
416 /* Fuse configurations may give more threads than expected, never less. */
417 if (max_cs_threads > device->info.max_cs_threads)
418 device->info.max_cs_threads = max_cs_threads;
419 }
420
421 device->compiler = brw_compiler_create(NULL, &device->info);
422 if (device->compiler == NULL) {
423 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
424 goto fail;
425 }
426 device->compiler->shader_debug_log = compiler_debug_log;
427 device->compiler->shader_perf_log = compiler_perf_log;
428 device->compiler->supports_pull_constants = false;
429 device->compiler->constant_buffer_0_is_relative = true;
430
431 isl_device_init(&device->isl_dev, &device->info, swizzled);
432
433 result = anv_physical_device_init_uuids(device);
434 if (result != VK_SUCCESS)
435 goto fail;
436
437 result = anv_init_wsi(device);
438 if (result != VK_SUCCESS) {
439 ralloc_free(device->compiler);
440 goto fail;
441 }
442
443 anv_physical_device_get_supported_extensions(device,
444 &device->supported_extensions);
445
446 device->local_fd = fd;
447 return VK_SUCCESS;
448
449 fail:
450 close(fd);
451 return result;
452 }
453
454 static void
455 anv_physical_device_finish(struct anv_physical_device *device)
456 {
457 anv_finish_wsi(device);
458 ralloc_free(device->compiler);
459 close(device->local_fd);
460 }
461
462 static void *
463 default_alloc_func(void *pUserData, size_t size, size_t align,
464 VkSystemAllocationScope allocationScope)
465 {
466 return malloc(size);
467 }
468
469 static void *
470 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
471 size_t align, VkSystemAllocationScope allocationScope)
472 {
473 return realloc(pOriginal, size);
474 }
475
476 static void
477 default_free_func(void *pUserData, void *pMemory)
478 {
479 free(pMemory);
480 }
481
482 static const VkAllocationCallbacks default_alloc = {
483 .pUserData = NULL,
484 .pfnAllocation = default_alloc_func,
485 .pfnReallocation = default_realloc_func,
486 .pfnFree = default_free_func,
487 };
488
489 VkResult anv_EnumerateInstanceExtensionProperties(
490 const char* pLayerName,
491 uint32_t* pPropertyCount,
492 VkExtensionProperties* pProperties)
493 {
494 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
495
496 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
497 if (anv_instance_extensions_supported.extensions[i]) {
498 vk_outarray_append(&out, prop) {
499 *prop = anv_instance_extensions[i];
500 }
501 }
502 }
503
504 return vk_outarray_status(&out);
505 }
506
507 VkResult anv_CreateInstance(
508 const VkInstanceCreateInfo* pCreateInfo,
509 const VkAllocationCallbacks* pAllocator,
510 VkInstance* pInstance)
511 {
512 struct anv_instance *instance;
513 VkResult result;
514
515 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
516
517 struct anv_instance_extension_table enabled_extensions = {};
518 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
519 int idx;
520 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
521 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
522 anv_instance_extensions[idx].extensionName) == 0)
523 break;
524 }
525
526 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
527 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
528
529 if (!anv_instance_extensions_supported.extensions[idx])
530 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
531
532 enabled_extensions.extensions[idx] = true;
533 }
534
535 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
536 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
537 if (!instance)
538 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
539
540 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
541
542 if (pAllocator)
543 instance->alloc = *pAllocator;
544 else
545 instance->alloc = default_alloc;
546
547 if (pCreateInfo->pApplicationInfo &&
548 pCreateInfo->pApplicationInfo->apiVersion != 0) {
549 instance->apiVersion = pCreateInfo->pApplicationInfo->apiVersion;
550 } else {
551 anv_EnumerateInstanceVersion(&instance->apiVersion);
552 }
553
554 instance->enabled_extensions = enabled_extensions;
555
556 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
557 /* Vulkan requires that entrypoints for extensions which have not been
558 * enabled must not be advertised.
559 */
560 if (!anv_entrypoint_is_enabled(i, instance->apiVersion,
561 &instance->enabled_extensions, NULL)) {
562 instance->dispatch.entrypoints[i] = NULL;
563 } else if (anv_dispatch_table.entrypoints[i] != NULL) {
564 instance->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
565 } else {
566 instance->dispatch.entrypoints[i] =
567 anv_tramp_dispatch_table.entrypoints[i];
568 }
569 }
570
571 instance->physicalDeviceCount = -1;
572
573 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
574 if (result != VK_SUCCESS) {
575 vk_free2(&default_alloc, pAllocator, instance);
576 return vk_error(result);
577 }
578
579 _mesa_locale_init();
580
581 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
582
583 *pInstance = anv_instance_to_handle(instance);
584
585 return VK_SUCCESS;
586 }
587
588 void anv_DestroyInstance(
589 VkInstance _instance,
590 const VkAllocationCallbacks* pAllocator)
591 {
592 ANV_FROM_HANDLE(anv_instance, instance, _instance);
593
594 if (!instance)
595 return;
596
597 if (instance->physicalDeviceCount > 0) {
598 /* We support at most one physical device. */
599 assert(instance->physicalDeviceCount == 1);
600 anv_physical_device_finish(&instance->physicalDevice);
601 }
602
603 VG(VALGRIND_DESTROY_MEMPOOL(instance));
604
605 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
606
607 _mesa_locale_fini();
608
609 vk_free(&instance->alloc, instance);
610 }
611
612 static VkResult
613 anv_enumerate_devices(struct anv_instance *instance)
614 {
615 /* TODO: Check for more devices ? */
616 drmDevicePtr devices[8];
617 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
618 int max_devices;
619
620 instance->physicalDeviceCount = 0;
621
622 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
623 if (max_devices < 1)
624 return VK_ERROR_INCOMPATIBLE_DRIVER;
625
626 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
627 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
628 devices[i]->bustype == DRM_BUS_PCI &&
629 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
630
631 result = anv_physical_device_init(&instance->physicalDevice,
632 instance,
633 devices[i]->nodes[DRM_NODE_RENDER]);
634 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
635 break;
636 }
637 }
638 drmFreeDevices(devices, max_devices);
639
640 if (result == VK_SUCCESS)
641 instance->physicalDeviceCount = 1;
642
643 return result;
644 }
645
646 static VkResult
647 anv_instance_ensure_physical_device(struct anv_instance *instance)
648 {
649 if (instance->physicalDeviceCount < 0) {
650 VkResult result = anv_enumerate_devices(instance);
651 if (result != VK_SUCCESS &&
652 result != VK_ERROR_INCOMPATIBLE_DRIVER)
653 return result;
654 }
655
656 return VK_SUCCESS;
657 }
658
659 VkResult anv_EnumeratePhysicalDevices(
660 VkInstance _instance,
661 uint32_t* pPhysicalDeviceCount,
662 VkPhysicalDevice* pPhysicalDevices)
663 {
664 ANV_FROM_HANDLE(anv_instance, instance, _instance);
665 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
666
667 VkResult result = anv_instance_ensure_physical_device(instance);
668 if (result != VK_SUCCESS)
669 return result;
670
671 if (instance->physicalDeviceCount == 0)
672 return VK_SUCCESS;
673
674 assert(instance->physicalDeviceCount == 1);
675 vk_outarray_append(&out, i) {
676 *i = anv_physical_device_to_handle(&instance->physicalDevice);
677 }
678
679 return vk_outarray_status(&out);
680 }
681
682 VkResult anv_EnumeratePhysicalDeviceGroups(
683 VkInstance _instance,
684 uint32_t* pPhysicalDeviceGroupCount,
685 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
686 {
687 ANV_FROM_HANDLE(anv_instance, instance, _instance);
688 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
689 pPhysicalDeviceGroupCount);
690
691 VkResult result = anv_instance_ensure_physical_device(instance);
692 if (result != VK_SUCCESS)
693 return result;
694
695 if (instance->physicalDeviceCount == 0)
696 return VK_SUCCESS;
697
698 assert(instance->physicalDeviceCount == 1);
699
700 vk_outarray_append(&out, p) {
701 p->physicalDeviceCount = 1;
702 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
703 p->physicalDevices[0] =
704 anv_physical_device_to_handle(&instance->physicalDevice);
705 p->subsetAllocation = VK_FALSE;
706
707 vk_foreach_struct(ext, p->pNext)
708 anv_debug_ignored_stype(ext->sType);
709 }
710
711 return vk_outarray_status(&out);
712 }
713
714 void anv_GetPhysicalDeviceFeatures(
715 VkPhysicalDevice physicalDevice,
716 VkPhysicalDeviceFeatures* pFeatures)
717 {
718 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
719
720 *pFeatures = (VkPhysicalDeviceFeatures) {
721 .robustBufferAccess = true,
722 .fullDrawIndexUint32 = true,
723 .imageCubeArray = true,
724 .independentBlend = true,
725 .geometryShader = true,
726 .tessellationShader = true,
727 .sampleRateShading = true,
728 .dualSrcBlend = true,
729 .logicOp = true,
730 .multiDrawIndirect = true,
731 .drawIndirectFirstInstance = true,
732 .depthClamp = true,
733 .depthBiasClamp = true,
734 .fillModeNonSolid = true,
735 .depthBounds = false,
736 .wideLines = true,
737 .largePoints = true,
738 .alphaToOne = true,
739 .multiViewport = true,
740 .samplerAnisotropy = true,
741 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
742 pdevice->info.is_baytrail,
743 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
744 .textureCompressionBC = true,
745 .occlusionQueryPrecise = true,
746 .pipelineStatisticsQuery = true,
747 .fragmentStoresAndAtomics = true,
748 .shaderTessellationAndGeometryPointSize = true,
749 .shaderImageGatherExtended = true,
750 .shaderStorageImageExtendedFormats = true,
751 .shaderStorageImageMultisample = false,
752 .shaderStorageImageReadWithoutFormat = false,
753 .shaderStorageImageWriteWithoutFormat = true,
754 .shaderUniformBufferArrayDynamicIndexing = true,
755 .shaderSampledImageArrayDynamicIndexing = true,
756 .shaderStorageBufferArrayDynamicIndexing = true,
757 .shaderStorageImageArrayDynamicIndexing = true,
758 .shaderClipDistance = true,
759 .shaderCullDistance = true,
760 .shaderFloat64 = pdevice->info.gen >= 8,
761 .shaderInt64 = pdevice->info.gen >= 8,
762 .shaderInt16 = false,
763 .shaderResourceMinLod = false,
764 .variableMultisampleRate = false,
765 .inheritedQueries = true,
766 };
767
768 /* We can't do image stores in vec4 shaders */
769 pFeatures->vertexPipelineStoresAndAtomics =
770 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
771 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
772 }
773
774 void anv_GetPhysicalDeviceFeatures2(
775 VkPhysicalDevice physicalDevice,
776 VkPhysicalDeviceFeatures2* pFeatures)
777 {
778 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
779
780 vk_foreach_struct(ext, pFeatures->pNext) {
781 switch (ext->sType) {
782 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
783 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
784 features->protectedMemory = VK_FALSE;
785 break;
786 }
787
788 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
789 VkPhysicalDeviceMultiviewFeatures *features =
790 (VkPhysicalDeviceMultiviewFeatures *)ext;
791 features->multiview = true;
792 features->multiviewGeometryShader = true;
793 features->multiviewTessellationShader = true;
794 break;
795 }
796
797 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES: {
798 VkPhysicalDeviceVariablePointerFeatures *features = (void *)ext;
799 features->variablePointersStorageBuffer = true;
800 features->variablePointers = true;
801 break;
802 }
803
804 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
805 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
806 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
807 features->samplerYcbcrConversion = true;
808 break;
809 }
810
811 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES: {
812 VkPhysicalDeviceShaderDrawParameterFeatures *features = (void *)ext;
813 features->shaderDrawParameters = true;
814 break;
815 }
816
817 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR: {
818 VkPhysicalDevice16BitStorageFeaturesKHR *features =
819 (VkPhysicalDevice16BitStorageFeaturesKHR *)ext;
820 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
821
822 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
823 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
824 features->storagePushConstant16 = pdevice->info.gen >= 8;
825 features->storageInputOutput16 = false;
826 break;
827 }
828
829 default:
830 anv_debug_ignored_stype(ext->sType);
831 break;
832 }
833 }
834 }
835
836 void anv_GetPhysicalDeviceProperties(
837 VkPhysicalDevice physicalDevice,
838 VkPhysicalDeviceProperties* pProperties)
839 {
840 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
841 const struct gen_device_info *devinfo = &pdevice->info;
842
843 /* See assertions made when programming the buffer surface state. */
844 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
845 (1ul << 30) : (1ul << 27);
846
847 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
848 128 : 16;
849
850 VkSampleCountFlags sample_counts =
851 isl_device_get_sample_counts(&pdevice->isl_dev);
852
853 VkPhysicalDeviceLimits limits = {
854 .maxImageDimension1D = (1 << 14),
855 .maxImageDimension2D = (1 << 14),
856 .maxImageDimension3D = (1 << 11),
857 .maxImageDimensionCube = (1 << 14),
858 .maxImageArrayLayers = (1 << 11),
859 .maxTexelBufferElements = 128 * 1024 * 1024,
860 .maxUniformBufferRange = (1ul << 27),
861 .maxStorageBufferRange = max_raw_buffer_sz,
862 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
863 .maxMemoryAllocationCount = UINT32_MAX,
864 .maxSamplerAllocationCount = 64 * 1024,
865 .bufferImageGranularity = 64, /* A cache line */
866 .sparseAddressSpaceSize = 0,
867 .maxBoundDescriptorSets = MAX_SETS,
868 .maxPerStageDescriptorSamplers = max_samplers,
869 .maxPerStageDescriptorUniformBuffers = 64,
870 .maxPerStageDescriptorStorageBuffers = 64,
871 .maxPerStageDescriptorSampledImages = max_samplers,
872 .maxPerStageDescriptorStorageImages = 64,
873 .maxPerStageDescriptorInputAttachments = 64,
874 .maxPerStageResources = 250,
875 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
876 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
877 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
878 .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */
879 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
880 .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */
881 .maxDescriptorSetStorageImages = 6 * 64, /* number of stages * maxPerStageDescriptorStorageImages */
882 .maxDescriptorSetInputAttachments = 256,
883 .maxVertexInputAttributes = MAX_VBS,
884 .maxVertexInputBindings = MAX_VBS,
885 .maxVertexInputAttributeOffset = 2047,
886 .maxVertexInputBindingStride = 2048,
887 .maxVertexOutputComponents = 128,
888 .maxTessellationGenerationLevel = 64,
889 .maxTessellationPatchSize = 32,
890 .maxTessellationControlPerVertexInputComponents = 128,
891 .maxTessellationControlPerVertexOutputComponents = 128,
892 .maxTessellationControlPerPatchOutputComponents = 128,
893 .maxTessellationControlTotalOutputComponents = 2048,
894 .maxTessellationEvaluationInputComponents = 128,
895 .maxTessellationEvaluationOutputComponents = 128,
896 .maxGeometryShaderInvocations = 32,
897 .maxGeometryInputComponents = 64,
898 .maxGeometryOutputComponents = 128,
899 .maxGeometryOutputVertices = 256,
900 .maxGeometryTotalOutputComponents = 1024,
901 .maxFragmentInputComponents = 128,
902 .maxFragmentOutputAttachments = 8,
903 .maxFragmentDualSrcAttachments = 1,
904 .maxFragmentCombinedOutputResources = 8,
905 .maxComputeSharedMemorySize = 32768,
906 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
907 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
908 .maxComputeWorkGroupSize = {
909 16 * devinfo->max_cs_threads,
910 16 * devinfo->max_cs_threads,
911 16 * devinfo->max_cs_threads,
912 },
913 .subPixelPrecisionBits = 4 /* FIXME */,
914 .subTexelPrecisionBits = 4 /* FIXME */,
915 .mipmapPrecisionBits = 4 /* FIXME */,
916 .maxDrawIndexedIndexValue = UINT32_MAX,
917 .maxDrawIndirectCount = UINT32_MAX,
918 .maxSamplerLodBias = 16,
919 .maxSamplerAnisotropy = 16,
920 .maxViewports = MAX_VIEWPORTS,
921 .maxViewportDimensions = { (1 << 14), (1 << 14) },
922 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
923 .viewportSubPixelBits = 13, /* We take a float? */
924 .minMemoryMapAlignment = 4096, /* A page */
925 .minTexelBufferOffsetAlignment = 1,
926 /* We need 16 for UBO block reads to work and 32 for push UBOs */
927 .minUniformBufferOffsetAlignment = 32,
928 .minStorageBufferOffsetAlignment = 4,
929 .minTexelOffset = -8,
930 .maxTexelOffset = 7,
931 .minTexelGatherOffset = -32,
932 .maxTexelGatherOffset = 31,
933 .minInterpolationOffset = -0.5,
934 .maxInterpolationOffset = 0.4375,
935 .subPixelInterpolationOffsetBits = 4,
936 .maxFramebufferWidth = (1 << 14),
937 .maxFramebufferHeight = (1 << 14),
938 .maxFramebufferLayers = (1 << 11),
939 .framebufferColorSampleCounts = sample_counts,
940 .framebufferDepthSampleCounts = sample_counts,
941 .framebufferStencilSampleCounts = sample_counts,
942 .framebufferNoAttachmentsSampleCounts = sample_counts,
943 .maxColorAttachments = MAX_RTS,
944 .sampledImageColorSampleCounts = sample_counts,
945 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
946 .sampledImageDepthSampleCounts = sample_counts,
947 .sampledImageStencilSampleCounts = sample_counts,
948 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
949 .maxSampleMaskWords = 1,
950 .timestampComputeAndGraphics = false,
951 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
952 .maxClipDistances = 8,
953 .maxCullDistances = 8,
954 .maxCombinedClipAndCullDistances = 8,
955 .discreteQueuePriorities = 1,
956 .pointSizeRange = { 0.125, 255.875 },
957 .lineWidthRange = { 0.0, 7.9921875 },
958 .pointSizeGranularity = (1.0 / 8.0),
959 .lineWidthGranularity = (1.0 / 128.0),
960 .strictLines = false, /* FINISHME */
961 .standardSampleLocations = true,
962 .optimalBufferCopyOffsetAlignment = 128,
963 .optimalBufferCopyRowPitchAlignment = 128,
964 .nonCoherentAtomSize = 64,
965 };
966
967 *pProperties = (VkPhysicalDeviceProperties) {
968 .apiVersion = anv_physical_device_api_version(pdevice),
969 .driverVersion = vk_get_driver_version(),
970 .vendorID = 0x8086,
971 .deviceID = pdevice->chipset_id,
972 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
973 .limits = limits,
974 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
975 };
976
977 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
978 "%s", pdevice->name);
979 memcpy(pProperties->pipelineCacheUUID,
980 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
981 }
982
983 void anv_GetPhysicalDeviceProperties2(
984 VkPhysicalDevice physicalDevice,
985 VkPhysicalDeviceProperties2* pProperties)
986 {
987 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
988
989 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
990
991 vk_foreach_struct(ext, pProperties->pNext) {
992 switch (ext->sType) {
993 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
994 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
995 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
996
997 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
998 break;
999 }
1000
1001 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1002 VkPhysicalDeviceIDProperties *id_props =
1003 (VkPhysicalDeviceIDProperties *)ext;
1004 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1005 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1006 /* The LUID is for Windows. */
1007 id_props->deviceLUIDValid = false;
1008 break;
1009 }
1010
1011 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1012 VkPhysicalDeviceMaintenance3Properties *props =
1013 (VkPhysicalDeviceMaintenance3Properties *)ext;
1014 /* This value doesn't matter for us today as our per-stage
1015 * descriptors are the real limit.
1016 */
1017 props->maxPerSetDescriptors = 1024;
1018 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1019 break;
1020 }
1021
1022 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1023 VkPhysicalDeviceMultiviewProperties *properties =
1024 (VkPhysicalDeviceMultiviewProperties *)ext;
1025 properties->maxMultiviewViewCount = 16;
1026 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1027 break;
1028 }
1029
1030 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1031 VkPhysicalDevicePointClippingProperties *properties =
1032 (VkPhysicalDevicePointClippingProperties *) ext;
1033 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1034 anv_finishme("Implement pop-free point clipping");
1035 break;
1036 }
1037
1038 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1039 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1040
1041 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1042
1043 VkShaderStageFlags scalar_stages = 0;
1044 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1045 if (pdevice->compiler->scalar_stage[stage])
1046 scalar_stages |= mesa_to_vk_shader_stage(stage);
1047 }
1048 properties->supportedStages = scalar_stages;
1049
1050 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1051 VK_SUBGROUP_FEATURE_VOTE_BIT |
1052 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1053 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1054 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1055 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1056 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1057 VK_SUBGROUP_FEATURE_QUAD_BIT;
1058 properties->quadOperationsInAllStages = VK_TRUE;
1059 break;
1060 }
1061
1062 default:
1063 anv_debug_ignored_stype(ext->sType);
1064 break;
1065 }
1066 }
1067 }
1068
1069 /* We support exactly one queue family. */
1070 static const VkQueueFamilyProperties
1071 anv_queue_family_properties = {
1072 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1073 VK_QUEUE_COMPUTE_BIT |
1074 VK_QUEUE_TRANSFER_BIT,
1075 .queueCount = 1,
1076 .timestampValidBits = 36, /* XXX: Real value here */
1077 .minImageTransferGranularity = { 1, 1, 1 },
1078 };
1079
1080 void anv_GetPhysicalDeviceQueueFamilyProperties(
1081 VkPhysicalDevice physicalDevice,
1082 uint32_t* pCount,
1083 VkQueueFamilyProperties* pQueueFamilyProperties)
1084 {
1085 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1086
1087 vk_outarray_append(&out, p) {
1088 *p = anv_queue_family_properties;
1089 }
1090 }
1091
1092 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1093 VkPhysicalDevice physicalDevice,
1094 uint32_t* pQueueFamilyPropertyCount,
1095 VkQueueFamilyProperties2* pQueueFamilyProperties)
1096 {
1097
1098 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1099
1100 vk_outarray_append(&out, p) {
1101 p->queueFamilyProperties = anv_queue_family_properties;
1102
1103 vk_foreach_struct(s, p->pNext) {
1104 anv_debug_ignored_stype(s->sType);
1105 }
1106 }
1107 }
1108
1109 void anv_GetPhysicalDeviceMemoryProperties(
1110 VkPhysicalDevice physicalDevice,
1111 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1112 {
1113 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1114
1115 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1116 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1117 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1118 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1119 .heapIndex = physical_device->memory.types[i].heapIndex,
1120 };
1121 }
1122
1123 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1124 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1125 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1126 .size = physical_device->memory.heaps[i].size,
1127 .flags = physical_device->memory.heaps[i].flags,
1128 };
1129 }
1130 }
1131
1132 void anv_GetPhysicalDeviceMemoryProperties2(
1133 VkPhysicalDevice physicalDevice,
1134 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1135 {
1136 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1137 &pMemoryProperties->memoryProperties);
1138
1139 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1140 switch (ext->sType) {
1141 default:
1142 anv_debug_ignored_stype(ext->sType);
1143 break;
1144 }
1145 }
1146 }
1147
1148 void
1149 anv_GetDeviceGroupPeerMemoryFeatures(
1150 VkDevice device,
1151 uint32_t heapIndex,
1152 uint32_t localDeviceIndex,
1153 uint32_t remoteDeviceIndex,
1154 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1155 {
1156 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1157 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1158 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1159 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1160 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1161 }
1162
1163 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1164 VkInstance _instance,
1165 const char* pName)
1166 {
1167 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1168
1169 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1170 * when we have to return valid function pointers, NULL, or it's left
1171 * undefined. See the table for exact details.
1172 */
1173 if (pName == NULL)
1174 return NULL;
1175
1176 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1177 if (strcmp(pName, "vk" #entrypoint) == 0) \
1178 return (PFN_vkVoidFunction)anv_##entrypoint
1179
1180 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1181 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1182 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1183
1184 #undef LOOKUP_ANV_ENTRYPOINT
1185
1186 if (instance == NULL)
1187 return NULL;
1188
1189 int idx = anv_get_entrypoint_index(pName);
1190 if (idx < 0)
1191 return NULL;
1192
1193 return instance->dispatch.entrypoints[idx];
1194 }
1195
1196 /* With version 1+ of the loader interface the ICD should expose
1197 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1198 */
1199 PUBLIC
1200 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1201 VkInstance instance,
1202 const char* pName);
1203
1204 PUBLIC
1205 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1206 VkInstance instance,
1207 const char* pName)
1208 {
1209 return anv_GetInstanceProcAddr(instance, pName);
1210 }
1211
1212 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1213 VkDevice _device,
1214 const char* pName)
1215 {
1216 ANV_FROM_HANDLE(anv_device, device, _device);
1217
1218 if (!device || !pName)
1219 return NULL;
1220
1221 int idx = anv_get_entrypoint_index(pName);
1222 if (idx < 0)
1223 return NULL;
1224
1225 return device->dispatch.entrypoints[idx];
1226 }
1227
1228 VkResult
1229 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1230 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1231 const VkAllocationCallbacks* pAllocator,
1232 VkDebugReportCallbackEXT* pCallback)
1233 {
1234 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1235 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1236 pCreateInfo, pAllocator, &instance->alloc,
1237 pCallback);
1238 }
1239
1240 void
1241 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1242 VkDebugReportCallbackEXT _callback,
1243 const VkAllocationCallbacks* pAllocator)
1244 {
1245 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1246 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1247 _callback, pAllocator, &instance->alloc);
1248 }
1249
1250 void
1251 anv_DebugReportMessageEXT(VkInstance _instance,
1252 VkDebugReportFlagsEXT flags,
1253 VkDebugReportObjectTypeEXT objectType,
1254 uint64_t object,
1255 size_t location,
1256 int32_t messageCode,
1257 const char* pLayerPrefix,
1258 const char* pMessage)
1259 {
1260 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1261 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1262 object, location, messageCode, pLayerPrefix, pMessage);
1263 }
1264
1265 static void
1266 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1267 {
1268 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1269 queue->device = device;
1270 queue->pool = &device->surface_state_pool;
1271 queue->flags = 0;
1272 }
1273
1274 static void
1275 anv_queue_finish(struct anv_queue *queue)
1276 {
1277 }
1278
1279 static struct anv_state
1280 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1281 {
1282 struct anv_state state;
1283
1284 state = anv_state_pool_alloc(pool, size, align);
1285 memcpy(state.map, p, size);
1286
1287 anv_state_flush(pool->block_pool.device, state);
1288
1289 return state;
1290 }
1291
1292 struct gen8_border_color {
1293 union {
1294 float float32[4];
1295 uint32_t uint32[4];
1296 };
1297 /* Pad out to 64 bytes */
1298 uint32_t _pad[12];
1299 };
1300
1301 static void
1302 anv_device_init_border_colors(struct anv_device *device)
1303 {
1304 static const struct gen8_border_color border_colors[] = {
1305 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1306 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1307 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1308 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1309 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1310 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1311 };
1312
1313 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1314 sizeof(border_colors), 64,
1315 border_colors);
1316 }
1317
1318 static void
1319 anv_device_init_trivial_batch(struct anv_device *device)
1320 {
1321 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1322
1323 if (device->instance->physicalDevice.has_exec_async)
1324 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1325
1326 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1327 0, 4096, 0);
1328
1329 struct anv_batch batch = {
1330 .start = map,
1331 .next = map,
1332 .end = map + 4096,
1333 };
1334
1335 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1336 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1337
1338 if (!device->info.has_llc)
1339 gen_clflush_range(map, batch.next - map);
1340
1341 anv_gem_munmap(map, device->trivial_batch_bo.size);
1342 }
1343
1344 VkResult anv_EnumerateDeviceExtensionProperties(
1345 VkPhysicalDevice physicalDevice,
1346 const char* pLayerName,
1347 uint32_t* pPropertyCount,
1348 VkExtensionProperties* pProperties)
1349 {
1350 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1351 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1352 (void)device;
1353
1354 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1355 if (device->supported_extensions.extensions[i]) {
1356 vk_outarray_append(&out, prop) {
1357 *prop = anv_device_extensions[i];
1358 }
1359 }
1360 }
1361
1362 return vk_outarray_status(&out);
1363 }
1364
1365 static void
1366 anv_device_init_dispatch(struct anv_device *device)
1367 {
1368 const struct anv_dispatch_table *genX_table;
1369 switch (device->info.gen) {
1370 case 10:
1371 genX_table = &gen10_dispatch_table;
1372 break;
1373 case 9:
1374 genX_table = &gen9_dispatch_table;
1375 break;
1376 case 8:
1377 genX_table = &gen8_dispatch_table;
1378 break;
1379 case 7:
1380 if (device->info.is_haswell)
1381 genX_table = &gen75_dispatch_table;
1382 else
1383 genX_table = &gen7_dispatch_table;
1384 break;
1385 default:
1386 unreachable("unsupported gen\n");
1387 }
1388
1389 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1390 /* Vulkan requires that entrypoints for extensions which have not been
1391 * enabled must not be advertised.
1392 */
1393 if (!anv_entrypoint_is_enabled(i, device->instance->apiVersion,
1394 &device->instance->enabled_extensions,
1395 &device->enabled_extensions)) {
1396 device->dispatch.entrypoints[i] = NULL;
1397 } else if (genX_table->entrypoints[i]) {
1398 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1399 } else {
1400 device->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
1401 }
1402 }
1403 }
1404
1405 static int
1406 vk_priority_to_gen(int priority)
1407 {
1408 switch (priority) {
1409 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1410 return GEN_CONTEXT_LOW_PRIORITY;
1411 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1412 return GEN_CONTEXT_MEDIUM_PRIORITY;
1413 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1414 return GEN_CONTEXT_HIGH_PRIORITY;
1415 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1416 return GEN_CONTEXT_REALTIME_PRIORITY;
1417 default:
1418 unreachable("Invalid priority");
1419 }
1420 }
1421
1422 VkResult anv_CreateDevice(
1423 VkPhysicalDevice physicalDevice,
1424 const VkDeviceCreateInfo* pCreateInfo,
1425 const VkAllocationCallbacks* pAllocator,
1426 VkDevice* pDevice)
1427 {
1428 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1429 VkResult result;
1430 struct anv_device *device;
1431
1432 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1433
1434 struct anv_device_extension_table enabled_extensions = { };
1435 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1436 int idx;
1437 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
1438 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1439 anv_device_extensions[idx].extensionName) == 0)
1440 break;
1441 }
1442
1443 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
1444 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1445
1446 if (!physical_device->supported_extensions.extensions[idx])
1447 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1448
1449 enabled_extensions.extensions[idx] = true;
1450 }
1451
1452 /* Check enabled features */
1453 if (pCreateInfo->pEnabledFeatures) {
1454 VkPhysicalDeviceFeatures supported_features;
1455 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1456 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1457 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1458 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1459 for (uint32_t i = 0; i < num_features; i++) {
1460 if (enabled_feature[i] && !supported_feature[i])
1461 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1462 }
1463 }
1464
1465 /* Check requested queues and fail if we are requested to create any
1466 * queues with flags we don't support.
1467 */
1468 assert(pCreateInfo->queueCreateInfoCount > 0);
1469 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
1470 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
1471 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
1472 }
1473
1474 /* Check if client specified queue priority. */
1475 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
1476 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
1477 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1478
1479 VkQueueGlobalPriorityEXT priority =
1480 queue_priority ? queue_priority->globalPriority :
1481 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
1482
1483 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1484 sizeof(*device), 8,
1485 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1486 if (!device)
1487 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1488
1489 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1490 device->instance = physical_device->instance;
1491 device->chipset_id = physical_device->chipset_id;
1492 device->no_hw = physical_device->no_hw;
1493 device->lost = false;
1494
1495 if (pAllocator)
1496 device->alloc = *pAllocator;
1497 else
1498 device->alloc = physical_device->instance->alloc;
1499
1500 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1501 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1502 if (device->fd == -1) {
1503 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1504 goto fail_device;
1505 }
1506
1507 device->context_id = anv_gem_create_context(device);
1508 if (device->context_id == -1) {
1509 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1510 goto fail_fd;
1511 }
1512
1513 /* As per spec, the driver implementation may deny requests to acquire
1514 * a priority above the default priority (MEDIUM) if the caller does not
1515 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
1516 * is returned.
1517 */
1518 if (physical_device->has_context_priority) {
1519 int err = anv_gem_set_context_param(device->fd, device->context_id,
1520 I915_CONTEXT_PARAM_PRIORITY,
1521 vk_priority_to_gen(priority));
1522 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
1523 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
1524 goto fail_fd;
1525 }
1526 }
1527
1528 device->info = physical_device->info;
1529 device->isl_dev = physical_device->isl_dev;
1530
1531 /* On Broadwell and later, we can use batch chaining to more efficiently
1532 * implement growing command buffers. Prior to Haswell, the kernel
1533 * command parser gets in the way and we have to fall back to growing
1534 * the batch.
1535 */
1536 device->can_chain_batches = device->info.gen >= 8;
1537
1538 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1539 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1540 device->enabled_extensions = enabled_extensions;
1541
1542 anv_device_init_dispatch(device);
1543
1544 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
1545 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1546 goto fail_context_id;
1547 }
1548
1549 pthread_condattr_t condattr;
1550 if (pthread_condattr_init(&condattr) != 0) {
1551 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1552 goto fail_mutex;
1553 }
1554 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
1555 pthread_condattr_destroy(&condattr);
1556 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1557 goto fail_mutex;
1558 }
1559 if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
1560 pthread_condattr_destroy(&condattr);
1561 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1562 goto fail_mutex;
1563 }
1564 pthread_condattr_destroy(&condattr);
1565
1566 uint64_t bo_flags =
1567 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
1568 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1569 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1570
1571 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
1572
1573 result = anv_bo_cache_init(&device->bo_cache);
1574 if (result != VK_SUCCESS)
1575 goto fail_batch_bo_pool;
1576
1577 /* For the state pools we explicitly disable 48bit. */
1578 bo_flags = (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1579 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1580
1581 result = anv_state_pool_init(&device->dynamic_state_pool, device, 16384,
1582 bo_flags);
1583 if (result != VK_SUCCESS)
1584 goto fail_bo_cache;
1585
1586 result = anv_state_pool_init(&device->instruction_state_pool, device, 16384,
1587 bo_flags);
1588 if (result != VK_SUCCESS)
1589 goto fail_dynamic_state_pool;
1590
1591 result = anv_state_pool_init(&device->surface_state_pool, device, 4096,
1592 bo_flags);
1593 if (result != VK_SUCCESS)
1594 goto fail_instruction_state_pool;
1595
1596 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
1597 if (result != VK_SUCCESS)
1598 goto fail_surface_state_pool;
1599
1600 anv_device_init_trivial_batch(device);
1601
1602 anv_scratch_pool_init(device, &device->scratch_pool);
1603
1604 anv_queue_init(device, &device->queue);
1605
1606 switch (device->info.gen) {
1607 case 7:
1608 if (!device->info.is_haswell)
1609 result = gen7_init_device_state(device);
1610 else
1611 result = gen75_init_device_state(device);
1612 break;
1613 case 8:
1614 result = gen8_init_device_state(device);
1615 break;
1616 case 9:
1617 result = gen9_init_device_state(device);
1618 break;
1619 case 10:
1620 result = gen10_init_device_state(device);
1621 break;
1622 case 11:
1623 result = gen11_init_device_state(device);
1624 break;
1625 default:
1626 /* Shouldn't get here as we don't create physical devices for any other
1627 * gens. */
1628 unreachable("unhandled gen");
1629 }
1630 if (result != VK_SUCCESS)
1631 goto fail_workaround_bo;
1632
1633 anv_device_init_blorp(device);
1634
1635 anv_device_init_border_colors(device);
1636
1637 *pDevice = anv_device_to_handle(device);
1638
1639 return VK_SUCCESS;
1640
1641 fail_workaround_bo:
1642 anv_queue_finish(&device->queue);
1643 anv_scratch_pool_finish(device, &device->scratch_pool);
1644 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1645 anv_gem_close(device, device->workaround_bo.gem_handle);
1646 fail_surface_state_pool:
1647 anv_state_pool_finish(&device->surface_state_pool);
1648 fail_instruction_state_pool:
1649 anv_state_pool_finish(&device->instruction_state_pool);
1650 fail_dynamic_state_pool:
1651 anv_state_pool_finish(&device->dynamic_state_pool);
1652 fail_bo_cache:
1653 anv_bo_cache_finish(&device->bo_cache);
1654 fail_batch_bo_pool:
1655 anv_bo_pool_finish(&device->batch_bo_pool);
1656 pthread_cond_destroy(&device->queue_submit);
1657 fail_mutex:
1658 pthread_mutex_destroy(&device->mutex);
1659 fail_context_id:
1660 anv_gem_destroy_context(device, device->context_id);
1661 fail_fd:
1662 close(device->fd);
1663 fail_device:
1664 vk_free(&device->alloc, device);
1665
1666 return result;
1667 }
1668
1669 void anv_DestroyDevice(
1670 VkDevice _device,
1671 const VkAllocationCallbacks* pAllocator)
1672 {
1673 ANV_FROM_HANDLE(anv_device, device, _device);
1674
1675 if (!device)
1676 return;
1677
1678 anv_device_finish_blorp(device);
1679
1680 anv_queue_finish(&device->queue);
1681
1682 #ifdef HAVE_VALGRIND
1683 /* We only need to free these to prevent valgrind errors. The backing
1684 * BO will go away in a couple of lines so we don't actually leak.
1685 */
1686 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1687 #endif
1688
1689 anv_scratch_pool_finish(device, &device->scratch_pool);
1690
1691 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1692 anv_gem_close(device, device->workaround_bo.gem_handle);
1693
1694 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
1695
1696 anv_state_pool_finish(&device->surface_state_pool);
1697 anv_state_pool_finish(&device->instruction_state_pool);
1698 anv_state_pool_finish(&device->dynamic_state_pool);
1699
1700 anv_bo_cache_finish(&device->bo_cache);
1701
1702 anv_bo_pool_finish(&device->batch_bo_pool);
1703
1704 pthread_cond_destroy(&device->queue_submit);
1705 pthread_mutex_destroy(&device->mutex);
1706
1707 anv_gem_destroy_context(device, device->context_id);
1708
1709 close(device->fd);
1710
1711 vk_free(&device->alloc, device);
1712 }
1713
1714 VkResult anv_EnumerateInstanceLayerProperties(
1715 uint32_t* pPropertyCount,
1716 VkLayerProperties* pProperties)
1717 {
1718 if (pProperties == NULL) {
1719 *pPropertyCount = 0;
1720 return VK_SUCCESS;
1721 }
1722
1723 /* None supported at this time */
1724 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1725 }
1726
1727 VkResult anv_EnumerateDeviceLayerProperties(
1728 VkPhysicalDevice physicalDevice,
1729 uint32_t* pPropertyCount,
1730 VkLayerProperties* pProperties)
1731 {
1732 if (pProperties == NULL) {
1733 *pPropertyCount = 0;
1734 return VK_SUCCESS;
1735 }
1736
1737 /* None supported at this time */
1738 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1739 }
1740
1741 void anv_GetDeviceQueue(
1742 VkDevice _device,
1743 uint32_t queueNodeIndex,
1744 uint32_t queueIndex,
1745 VkQueue* pQueue)
1746 {
1747 ANV_FROM_HANDLE(anv_device, device, _device);
1748
1749 assert(queueIndex == 0);
1750
1751 *pQueue = anv_queue_to_handle(&device->queue);
1752 }
1753
1754 void anv_GetDeviceQueue2(
1755 VkDevice _device,
1756 const VkDeviceQueueInfo2* pQueueInfo,
1757 VkQueue* pQueue)
1758 {
1759 ANV_FROM_HANDLE(anv_device, device, _device);
1760
1761 assert(pQueueInfo->queueIndex == 0);
1762
1763 if (pQueueInfo->flags == device->queue.flags)
1764 *pQueue = anv_queue_to_handle(&device->queue);
1765 else
1766 *pQueue = NULL;
1767 }
1768
1769 VkResult
1770 anv_device_query_status(struct anv_device *device)
1771 {
1772 /* This isn't likely as most of the callers of this function already check
1773 * for it. However, it doesn't hurt to check and it potentially lets us
1774 * avoid an ioctl.
1775 */
1776 if (unlikely(device->lost))
1777 return VK_ERROR_DEVICE_LOST;
1778
1779 uint32_t active, pending;
1780 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
1781 if (ret == -1) {
1782 /* We don't know the real error. */
1783 device->lost = true;
1784 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1785 "get_reset_stats failed: %m");
1786 }
1787
1788 if (active) {
1789 device->lost = true;
1790 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1791 "GPU hung on one of our command buffers");
1792 } else if (pending) {
1793 device->lost = true;
1794 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1795 "GPU hung with commands in-flight");
1796 }
1797
1798 return VK_SUCCESS;
1799 }
1800
1801 VkResult
1802 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
1803 {
1804 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
1805 * Other usages of the BO (such as on different hardware) will not be
1806 * flagged as "busy" by this ioctl. Use with care.
1807 */
1808 int ret = anv_gem_busy(device, bo->gem_handle);
1809 if (ret == 1) {
1810 return VK_NOT_READY;
1811 } else if (ret == -1) {
1812 /* We don't know the real error. */
1813 device->lost = true;
1814 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1815 "gem wait failed: %m");
1816 }
1817
1818 /* Query for device status after the busy call. If the BO we're checking
1819 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
1820 * client because it clearly doesn't have valid data. Yes, this most
1821 * likely means an ioctl, but we just did an ioctl to query the busy status
1822 * so it's no great loss.
1823 */
1824 return anv_device_query_status(device);
1825 }
1826
1827 VkResult
1828 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1829 int64_t timeout)
1830 {
1831 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
1832 if (ret == -1 && errno == ETIME) {
1833 return VK_TIMEOUT;
1834 } else if (ret == -1) {
1835 /* We don't know the real error. */
1836 device->lost = true;
1837 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1838 "gem wait failed: %m");
1839 }
1840
1841 /* Query for device status after the wait. If the BO we're waiting on got
1842 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
1843 * because it clearly doesn't have valid data. Yes, this most likely means
1844 * an ioctl, but we just did an ioctl to wait so it's no great loss.
1845 */
1846 return anv_device_query_status(device);
1847 }
1848
1849 VkResult anv_DeviceWaitIdle(
1850 VkDevice _device)
1851 {
1852 ANV_FROM_HANDLE(anv_device, device, _device);
1853 if (unlikely(device->lost))
1854 return VK_ERROR_DEVICE_LOST;
1855
1856 struct anv_batch batch;
1857
1858 uint32_t cmds[8];
1859 batch.start = batch.next = cmds;
1860 batch.end = (void *) cmds + sizeof(cmds);
1861
1862 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1863 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1864
1865 return anv_device_submit_simple_batch(device, &batch);
1866 }
1867
1868 VkResult
1869 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1870 {
1871 uint32_t gem_handle = anv_gem_create(device, size);
1872 if (!gem_handle)
1873 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1874
1875 anv_bo_init(bo, gem_handle, size);
1876
1877 return VK_SUCCESS;
1878 }
1879
1880 VkResult anv_AllocateMemory(
1881 VkDevice _device,
1882 const VkMemoryAllocateInfo* pAllocateInfo,
1883 const VkAllocationCallbacks* pAllocator,
1884 VkDeviceMemory* pMem)
1885 {
1886 ANV_FROM_HANDLE(anv_device, device, _device);
1887 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1888 struct anv_device_memory *mem;
1889 VkResult result = VK_SUCCESS;
1890
1891 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1892
1893 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
1894 assert(pAllocateInfo->allocationSize > 0);
1895
1896 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
1897 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1898
1899 /* FINISHME: Fail if allocation request exceeds heap size. */
1900
1901 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1902 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1903 if (mem == NULL)
1904 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1905
1906 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
1907 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
1908 mem->map = NULL;
1909 mem->map_size = 0;
1910
1911 const VkImportMemoryFdInfoKHR *fd_info =
1912 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
1913
1914 /* The Vulkan spec permits handleType to be 0, in which case the struct is
1915 * ignored.
1916 */
1917 if (fd_info && fd_info->handleType) {
1918 /* At the moment, we support only the below handle types. */
1919 assert(fd_info->handleType ==
1920 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
1921 fd_info->handleType ==
1922 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
1923
1924 result = anv_bo_cache_import(device, &device->bo_cache,
1925 fd_info->fd, &mem->bo);
1926 if (result != VK_SUCCESS)
1927 goto fail;
1928
1929 VkDeviceSize aligned_alloc_size =
1930 align_u64(pAllocateInfo->allocationSize, 4096);
1931
1932 /* For security purposes, we reject importing the bo if it's smaller
1933 * than the requested allocation size. This prevents a malicious client
1934 * from passing a buffer to a trusted client, lying about the size, and
1935 * telling the trusted client to try and texture from an image that goes
1936 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
1937 * in the trusted client. The trusted client can protect itself against
1938 * this sort of attack but only if it can trust the buffer size.
1939 */
1940 if (mem->bo->size < aligned_alloc_size) {
1941 result = vk_errorf(device->instance, device,
1942 VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
1943 "aligned allocationSize too large for "
1944 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR: "
1945 "%"PRIu64"B > %"PRIu64"B",
1946 aligned_alloc_size, mem->bo->size);
1947 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1948 goto fail;
1949 }
1950
1951 /* From the Vulkan spec:
1952 *
1953 * "Importing memory from a file descriptor transfers ownership of
1954 * the file descriptor from the application to the Vulkan
1955 * implementation. The application must not perform any operations on
1956 * the file descriptor after a successful import."
1957 *
1958 * If the import fails, we leave the file descriptor open.
1959 */
1960 close(fd_info->fd);
1961 } else {
1962 result = anv_bo_cache_alloc(device, &device->bo_cache,
1963 pAllocateInfo->allocationSize,
1964 &mem->bo);
1965 if (result != VK_SUCCESS)
1966 goto fail;
1967
1968 const VkMemoryDedicatedAllocateInfoKHR *dedicated_info =
1969 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO_KHR);
1970 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
1971 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
1972
1973 /* Some legacy (non-modifiers) consumers need the tiling to be set on
1974 * the BO. In this case, we have a dedicated allocation.
1975 */
1976 if (image->needs_set_tiling) {
1977 const uint32_t i915_tiling =
1978 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
1979 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
1980 image->planes[0].surface.isl.row_pitch,
1981 i915_tiling);
1982 if (ret) {
1983 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1984 return vk_errorf(device->instance, NULL,
1985 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1986 "failed to set BO tiling: %m");
1987 }
1988 }
1989 }
1990 }
1991
1992 assert(mem->type->heapIndex < pdevice->memory.heap_count);
1993 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
1994 mem->bo->flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1995
1996 const struct wsi_memory_allocate_info *wsi_info =
1997 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
1998 if (wsi_info && wsi_info->implicit_sync) {
1999 /* We need to set the WRITE flag on window system buffers so that GEM
2000 * will know we're writing to them and synchronize uses on other rings
2001 * (eg if the display server uses the blitter ring).
2002 */
2003 mem->bo->flags |= EXEC_OBJECT_WRITE;
2004 } else if (pdevice->has_exec_async) {
2005 mem->bo->flags |= EXEC_OBJECT_ASYNC;
2006 }
2007
2008 *pMem = anv_device_memory_to_handle(mem);
2009
2010 return VK_SUCCESS;
2011
2012 fail:
2013 vk_free2(&device->alloc, pAllocator, mem);
2014
2015 return result;
2016 }
2017
2018 VkResult anv_GetMemoryFdKHR(
2019 VkDevice device_h,
2020 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2021 int* pFd)
2022 {
2023 ANV_FROM_HANDLE(anv_device, dev, device_h);
2024 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2025
2026 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2027
2028 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2029 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2030
2031 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2032 }
2033
2034 VkResult anv_GetMemoryFdPropertiesKHR(
2035 VkDevice _device,
2036 VkExternalMemoryHandleTypeFlagBitsKHR handleType,
2037 int fd,
2038 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2039 {
2040 ANV_FROM_HANDLE(anv_device, device, _device);
2041 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2042
2043 switch (handleType) {
2044 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2045 /* dma-buf can be imported as any memory type */
2046 pMemoryFdProperties->memoryTypeBits =
2047 (1 << pdevice->memory.type_count) - 1;
2048 return VK_SUCCESS;
2049
2050 default:
2051 /* The valid usage section for this function says:
2052 *
2053 * "handleType must not be one of the handle types defined as
2054 * opaque."
2055 *
2056 * So opaque handle types fall into the default "unsupported" case.
2057 */
2058 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2059 }
2060 }
2061
2062 void anv_FreeMemory(
2063 VkDevice _device,
2064 VkDeviceMemory _mem,
2065 const VkAllocationCallbacks* pAllocator)
2066 {
2067 ANV_FROM_HANDLE(anv_device, device, _device);
2068 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2069
2070 if (mem == NULL)
2071 return;
2072
2073 if (mem->map)
2074 anv_UnmapMemory(_device, _mem);
2075
2076 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2077
2078 vk_free2(&device->alloc, pAllocator, mem);
2079 }
2080
2081 VkResult anv_MapMemory(
2082 VkDevice _device,
2083 VkDeviceMemory _memory,
2084 VkDeviceSize offset,
2085 VkDeviceSize size,
2086 VkMemoryMapFlags flags,
2087 void** ppData)
2088 {
2089 ANV_FROM_HANDLE(anv_device, device, _device);
2090 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2091
2092 if (mem == NULL) {
2093 *ppData = NULL;
2094 return VK_SUCCESS;
2095 }
2096
2097 if (size == VK_WHOLE_SIZE)
2098 size = mem->bo->size - offset;
2099
2100 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
2101 *
2102 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
2103 * assert(size != 0);
2104 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
2105 * equal to the size of the memory minus offset
2106 */
2107 assert(size > 0);
2108 assert(offset + size <= mem->bo->size);
2109
2110 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
2111 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
2112 * at a time is valid. We could just mmap up front and return an offset
2113 * pointer here, but that may exhaust virtual memory on 32 bit
2114 * userspace. */
2115
2116 uint32_t gem_flags = 0;
2117
2118 if (!device->info.has_llc &&
2119 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
2120 gem_flags |= I915_MMAP_WC;
2121
2122 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
2123 uint64_t map_offset = offset & ~4095ull;
2124 assert(offset >= map_offset);
2125 uint64_t map_size = (offset + size) - map_offset;
2126
2127 /* Let's map whole pages */
2128 map_size = align_u64(map_size, 4096);
2129
2130 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
2131 map_offset, map_size, gem_flags);
2132 if (map == MAP_FAILED)
2133 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2134
2135 mem->map = map;
2136 mem->map_size = map_size;
2137
2138 *ppData = mem->map + (offset - map_offset);
2139
2140 return VK_SUCCESS;
2141 }
2142
2143 void anv_UnmapMemory(
2144 VkDevice _device,
2145 VkDeviceMemory _memory)
2146 {
2147 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2148
2149 if (mem == NULL)
2150 return;
2151
2152 anv_gem_munmap(mem->map, mem->map_size);
2153
2154 mem->map = NULL;
2155 mem->map_size = 0;
2156 }
2157
2158 static void
2159 clflush_mapped_ranges(struct anv_device *device,
2160 uint32_t count,
2161 const VkMappedMemoryRange *ranges)
2162 {
2163 for (uint32_t i = 0; i < count; i++) {
2164 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
2165 if (ranges[i].offset >= mem->map_size)
2166 continue;
2167
2168 gen_clflush_range(mem->map + ranges[i].offset,
2169 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
2170 }
2171 }
2172
2173 VkResult anv_FlushMappedMemoryRanges(
2174 VkDevice _device,
2175 uint32_t memoryRangeCount,
2176 const VkMappedMemoryRange* pMemoryRanges)
2177 {
2178 ANV_FROM_HANDLE(anv_device, device, _device);
2179
2180 if (device->info.has_llc)
2181 return VK_SUCCESS;
2182
2183 /* Make sure the writes we're flushing have landed. */
2184 __builtin_ia32_mfence();
2185
2186 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2187
2188 return VK_SUCCESS;
2189 }
2190
2191 VkResult anv_InvalidateMappedMemoryRanges(
2192 VkDevice _device,
2193 uint32_t memoryRangeCount,
2194 const VkMappedMemoryRange* pMemoryRanges)
2195 {
2196 ANV_FROM_HANDLE(anv_device, device, _device);
2197
2198 if (device->info.has_llc)
2199 return VK_SUCCESS;
2200
2201 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2202
2203 /* Make sure no reads get moved up above the invalidate. */
2204 __builtin_ia32_mfence();
2205
2206 return VK_SUCCESS;
2207 }
2208
2209 void anv_GetBufferMemoryRequirements(
2210 VkDevice _device,
2211 VkBuffer _buffer,
2212 VkMemoryRequirements* pMemoryRequirements)
2213 {
2214 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2215 ANV_FROM_HANDLE(anv_device, device, _device);
2216 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2217
2218 /* The Vulkan spec (git aaed022) says:
2219 *
2220 * memoryTypeBits is a bitfield and contains one bit set for every
2221 * supported memory type for the resource. The bit `1<<i` is set if and
2222 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2223 * structure for the physical device is supported.
2224 */
2225 uint32_t memory_types = 0;
2226 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
2227 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
2228 if ((valid_usage & buffer->usage) == buffer->usage)
2229 memory_types |= (1u << i);
2230 }
2231
2232 /* Base alignment requirement of a cache line */
2233 uint32_t alignment = 16;
2234
2235 /* We need an alignment of 32 for pushing UBOs */
2236 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
2237 alignment = MAX2(alignment, 32);
2238
2239 pMemoryRequirements->size = buffer->size;
2240 pMemoryRequirements->alignment = alignment;
2241
2242 /* Storage and Uniform buffers should have their size aligned to
2243 * 32-bits to avoid boundary checks when last DWord is not complete.
2244 * This would ensure that not internal padding would be needed for
2245 * 16-bit types.
2246 */
2247 if (device->robust_buffer_access &&
2248 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
2249 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
2250 pMemoryRequirements->size = align_u64(buffer->size, 4);
2251
2252 pMemoryRequirements->memoryTypeBits = memory_types;
2253 }
2254
2255 void anv_GetBufferMemoryRequirements2(
2256 VkDevice _device,
2257 const VkBufferMemoryRequirementsInfo2* pInfo,
2258 VkMemoryRequirements2* pMemoryRequirements)
2259 {
2260 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
2261 &pMemoryRequirements->memoryRequirements);
2262
2263 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2264 switch (ext->sType) {
2265 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2266 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2267 requirements->prefersDedicatedAllocation = VK_FALSE;
2268 requirements->requiresDedicatedAllocation = VK_FALSE;
2269 break;
2270 }
2271
2272 default:
2273 anv_debug_ignored_stype(ext->sType);
2274 break;
2275 }
2276 }
2277 }
2278
2279 void anv_GetImageMemoryRequirements(
2280 VkDevice _device,
2281 VkImage _image,
2282 VkMemoryRequirements* pMemoryRequirements)
2283 {
2284 ANV_FROM_HANDLE(anv_image, image, _image);
2285 ANV_FROM_HANDLE(anv_device, device, _device);
2286 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2287
2288 /* The Vulkan spec (git aaed022) says:
2289 *
2290 * memoryTypeBits is a bitfield and contains one bit set for every
2291 * supported memory type for the resource. The bit `1<<i` is set if and
2292 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2293 * structure for the physical device is supported.
2294 *
2295 * All types are currently supported for images.
2296 */
2297 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
2298
2299 pMemoryRequirements->size = image->size;
2300 pMemoryRequirements->alignment = image->alignment;
2301 pMemoryRequirements->memoryTypeBits = memory_types;
2302 }
2303
2304 void anv_GetImageMemoryRequirements2(
2305 VkDevice _device,
2306 const VkImageMemoryRequirementsInfo2* pInfo,
2307 VkMemoryRequirements2* pMemoryRequirements)
2308 {
2309 ANV_FROM_HANDLE(anv_device, device, _device);
2310 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
2311
2312 anv_GetImageMemoryRequirements(_device, pInfo->image,
2313 &pMemoryRequirements->memoryRequirements);
2314
2315 vk_foreach_struct_const(ext, pInfo->pNext) {
2316 switch (ext->sType) {
2317 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
2318 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2319 const VkImagePlaneMemoryRequirementsInfoKHR *plane_reqs =
2320 (const VkImagePlaneMemoryRequirementsInfoKHR *) ext;
2321 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
2322 plane_reqs->planeAspect);
2323
2324 assert(image->planes[plane].offset == 0);
2325
2326 /* The Vulkan spec (git aaed022) says:
2327 *
2328 * memoryTypeBits is a bitfield and contains one bit set for every
2329 * supported memory type for the resource. The bit `1<<i` is set
2330 * if and only if the memory type `i` in the
2331 * VkPhysicalDeviceMemoryProperties structure for the physical
2332 * device is supported.
2333 *
2334 * All types are currently supported for images.
2335 */
2336 pMemoryRequirements->memoryRequirements.memoryTypeBits =
2337 (1ull << pdevice->memory.type_count) - 1;
2338
2339 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
2340 pMemoryRequirements->memoryRequirements.alignment =
2341 image->planes[plane].alignment;
2342 break;
2343 }
2344
2345 default:
2346 anv_debug_ignored_stype(ext->sType);
2347 break;
2348 }
2349 }
2350
2351 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2352 switch (ext->sType) {
2353 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2354 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2355 if (image->needs_set_tiling) {
2356 /* If we need to set the tiling for external consumers, we need a
2357 * dedicated allocation.
2358 *
2359 * See also anv_AllocateMemory.
2360 */
2361 requirements->prefersDedicatedAllocation = VK_TRUE;
2362 requirements->requiresDedicatedAllocation = VK_TRUE;
2363 } else {
2364 requirements->prefersDedicatedAllocation = VK_FALSE;
2365 requirements->requiresDedicatedAllocation = VK_FALSE;
2366 }
2367 break;
2368 }
2369
2370 default:
2371 anv_debug_ignored_stype(ext->sType);
2372 break;
2373 }
2374 }
2375 }
2376
2377 void anv_GetImageSparseMemoryRequirements(
2378 VkDevice device,
2379 VkImage image,
2380 uint32_t* pSparseMemoryRequirementCount,
2381 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
2382 {
2383 *pSparseMemoryRequirementCount = 0;
2384 }
2385
2386 void anv_GetImageSparseMemoryRequirements2(
2387 VkDevice device,
2388 const VkImageSparseMemoryRequirementsInfo2* pInfo,
2389 uint32_t* pSparseMemoryRequirementCount,
2390 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
2391 {
2392 *pSparseMemoryRequirementCount = 0;
2393 }
2394
2395 void anv_GetDeviceMemoryCommitment(
2396 VkDevice device,
2397 VkDeviceMemory memory,
2398 VkDeviceSize* pCommittedMemoryInBytes)
2399 {
2400 *pCommittedMemoryInBytes = 0;
2401 }
2402
2403 static void
2404 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
2405 {
2406 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
2407 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
2408
2409 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
2410
2411 if (mem) {
2412 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
2413 buffer->bo = mem->bo;
2414 buffer->offset = pBindInfo->memoryOffset;
2415 } else {
2416 buffer->bo = NULL;
2417 buffer->offset = 0;
2418 }
2419 }
2420
2421 VkResult anv_BindBufferMemory(
2422 VkDevice device,
2423 VkBuffer buffer,
2424 VkDeviceMemory memory,
2425 VkDeviceSize memoryOffset)
2426 {
2427 anv_bind_buffer_memory(
2428 &(VkBindBufferMemoryInfo) {
2429 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
2430 .buffer = buffer,
2431 .memory = memory,
2432 .memoryOffset = memoryOffset,
2433 });
2434
2435 return VK_SUCCESS;
2436 }
2437
2438 VkResult anv_BindBufferMemory2(
2439 VkDevice device,
2440 uint32_t bindInfoCount,
2441 const VkBindBufferMemoryInfo* pBindInfos)
2442 {
2443 for (uint32_t i = 0; i < bindInfoCount; i++)
2444 anv_bind_buffer_memory(&pBindInfos[i]);
2445
2446 return VK_SUCCESS;
2447 }
2448
2449 VkResult anv_QueueBindSparse(
2450 VkQueue _queue,
2451 uint32_t bindInfoCount,
2452 const VkBindSparseInfo* pBindInfo,
2453 VkFence fence)
2454 {
2455 ANV_FROM_HANDLE(anv_queue, queue, _queue);
2456 if (unlikely(queue->device->lost))
2457 return VK_ERROR_DEVICE_LOST;
2458
2459 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2460 }
2461
2462 // Event functions
2463
2464 VkResult anv_CreateEvent(
2465 VkDevice _device,
2466 const VkEventCreateInfo* pCreateInfo,
2467 const VkAllocationCallbacks* pAllocator,
2468 VkEvent* pEvent)
2469 {
2470 ANV_FROM_HANDLE(anv_device, device, _device);
2471 struct anv_state state;
2472 struct anv_event *event;
2473
2474 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
2475
2476 state = anv_state_pool_alloc(&device->dynamic_state_pool,
2477 sizeof(*event), 8);
2478 event = state.map;
2479 event->state = state;
2480 event->semaphore = VK_EVENT_RESET;
2481
2482 if (!device->info.has_llc) {
2483 /* Make sure the writes we're flushing have landed. */
2484 __builtin_ia32_mfence();
2485 __builtin_ia32_clflush(event);
2486 }
2487
2488 *pEvent = anv_event_to_handle(event);
2489
2490 return VK_SUCCESS;
2491 }
2492
2493 void anv_DestroyEvent(
2494 VkDevice _device,
2495 VkEvent _event,
2496 const VkAllocationCallbacks* pAllocator)
2497 {
2498 ANV_FROM_HANDLE(anv_device, device, _device);
2499 ANV_FROM_HANDLE(anv_event, event, _event);
2500
2501 if (!event)
2502 return;
2503
2504 anv_state_pool_free(&device->dynamic_state_pool, event->state);
2505 }
2506
2507 VkResult anv_GetEventStatus(
2508 VkDevice _device,
2509 VkEvent _event)
2510 {
2511 ANV_FROM_HANDLE(anv_device, device, _device);
2512 ANV_FROM_HANDLE(anv_event, event, _event);
2513
2514 if (unlikely(device->lost))
2515 return VK_ERROR_DEVICE_LOST;
2516
2517 if (!device->info.has_llc) {
2518 /* Invalidate read cache before reading event written by GPU. */
2519 __builtin_ia32_clflush(event);
2520 __builtin_ia32_mfence();
2521
2522 }
2523
2524 return event->semaphore;
2525 }
2526
2527 VkResult anv_SetEvent(
2528 VkDevice _device,
2529 VkEvent _event)
2530 {
2531 ANV_FROM_HANDLE(anv_device, device, _device);
2532 ANV_FROM_HANDLE(anv_event, event, _event);
2533
2534 event->semaphore = VK_EVENT_SET;
2535
2536 if (!device->info.has_llc) {
2537 /* Make sure the writes we're flushing have landed. */
2538 __builtin_ia32_mfence();
2539 __builtin_ia32_clflush(event);
2540 }
2541
2542 return VK_SUCCESS;
2543 }
2544
2545 VkResult anv_ResetEvent(
2546 VkDevice _device,
2547 VkEvent _event)
2548 {
2549 ANV_FROM_HANDLE(anv_device, device, _device);
2550 ANV_FROM_HANDLE(anv_event, event, _event);
2551
2552 event->semaphore = VK_EVENT_RESET;
2553
2554 if (!device->info.has_llc) {
2555 /* Make sure the writes we're flushing have landed. */
2556 __builtin_ia32_mfence();
2557 __builtin_ia32_clflush(event);
2558 }
2559
2560 return VK_SUCCESS;
2561 }
2562
2563 // Buffer functions
2564
2565 VkResult anv_CreateBuffer(
2566 VkDevice _device,
2567 const VkBufferCreateInfo* pCreateInfo,
2568 const VkAllocationCallbacks* pAllocator,
2569 VkBuffer* pBuffer)
2570 {
2571 ANV_FROM_HANDLE(anv_device, device, _device);
2572 struct anv_buffer *buffer;
2573
2574 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
2575
2576 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
2577 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2578 if (buffer == NULL)
2579 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2580
2581 buffer->size = pCreateInfo->size;
2582 buffer->usage = pCreateInfo->usage;
2583 buffer->bo = NULL;
2584 buffer->offset = 0;
2585
2586 *pBuffer = anv_buffer_to_handle(buffer);
2587
2588 return VK_SUCCESS;
2589 }
2590
2591 void anv_DestroyBuffer(
2592 VkDevice _device,
2593 VkBuffer _buffer,
2594 const VkAllocationCallbacks* pAllocator)
2595 {
2596 ANV_FROM_HANDLE(anv_device, device, _device);
2597 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2598
2599 if (!buffer)
2600 return;
2601
2602 vk_free2(&device->alloc, pAllocator, buffer);
2603 }
2604
2605 void
2606 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
2607 enum isl_format format,
2608 uint32_t offset, uint32_t range, uint32_t stride)
2609 {
2610 isl_buffer_fill_state(&device->isl_dev, state.map,
2611 .address = offset,
2612 .mocs = device->default_mocs,
2613 .size = range,
2614 .format = format,
2615 .stride = stride);
2616
2617 anv_state_flush(device, state);
2618 }
2619
2620 void anv_DestroySampler(
2621 VkDevice _device,
2622 VkSampler _sampler,
2623 const VkAllocationCallbacks* pAllocator)
2624 {
2625 ANV_FROM_HANDLE(anv_device, device, _device);
2626 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
2627
2628 if (!sampler)
2629 return;
2630
2631 vk_free2(&device->alloc, pAllocator, sampler);
2632 }
2633
2634 VkResult anv_CreateFramebuffer(
2635 VkDevice _device,
2636 const VkFramebufferCreateInfo* pCreateInfo,
2637 const VkAllocationCallbacks* pAllocator,
2638 VkFramebuffer* pFramebuffer)
2639 {
2640 ANV_FROM_HANDLE(anv_device, device, _device);
2641 struct anv_framebuffer *framebuffer;
2642
2643 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2644
2645 size_t size = sizeof(*framebuffer) +
2646 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
2647 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
2648 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2649 if (framebuffer == NULL)
2650 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2651
2652 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2653 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2654 VkImageView _iview = pCreateInfo->pAttachments[i];
2655 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2656 }
2657
2658 framebuffer->width = pCreateInfo->width;
2659 framebuffer->height = pCreateInfo->height;
2660 framebuffer->layers = pCreateInfo->layers;
2661
2662 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2663
2664 return VK_SUCCESS;
2665 }
2666
2667 void anv_DestroyFramebuffer(
2668 VkDevice _device,
2669 VkFramebuffer _fb,
2670 const VkAllocationCallbacks* pAllocator)
2671 {
2672 ANV_FROM_HANDLE(anv_device, device, _device);
2673 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2674
2675 if (!fb)
2676 return;
2677
2678 vk_free2(&device->alloc, pAllocator, fb);
2679 }
2680
2681 /* vk_icd.h does not declare this function, so we declare it here to
2682 * suppress Wmissing-prototypes.
2683 */
2684 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2685 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
2686
2687 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2688 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
2689 {
2690 /* For the full details on loader interface versioning, see
2691 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
2692 * What follows is a condensed summary, to help you navigate the large and
2693 * confusing official doc.
2694 *
2695 * - Loader interface v0 is incompatible with later versions. We don't
2696 * support it.
2697 *
2698 * - In loader interface v1:
2699 * - The first ICD entrypoint called by the loader is
2700 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
2701 * entrypoint.
2702 * - The ICD must statically expose no other Vulkan symbol unless it is
2703 * linked with -Bsymbolic.
2704 * - Each dispatchable Vulkan handle created by the ICD must be
2705 * a pointer to a struct whose first member is VK_LOADER_DATA. The
2706 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
2707 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
2708 * vkDestroySurfaceKHR(). The ICD must be capable of working with
2709 * such loader-managed surfaces.
2710 *
2711 * - Loader interface v2 differs from v1 in:
2712 * - The first ICD entrypoint called by the loader is
2713 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
2714 * statically expose this entrypoint.
2715 *
2716 * - Loader interface v3 differs from v2 in:
2717 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
2718 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
2719 * because the loader no longer does so.
2720 */
2721 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
2722 return VK_SUCCESS;
2723 }