anv: Implement VK_EXT_custom_border_color
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/xmlpool.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57
58 DRI_CONF_SECTION_DEBUG
59 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
60 DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST("false")
61 DRI_CONF_SECTION_END
62 DRI_CONF_END;
63
64 /* This is probably far to big but it reflects the max size used for messages
65 * in OpenGLs KHR_debug.
66 */
67 #define MAX_DEBUG_MESSAGE_LENGTH 4096
68
69 static void
70 compiler_debug_log(void *data, const char *fmt, ...)
71 {
72 char str[MAX_DEBUG_MESSAGE_LENGTH];
73 struct anv_device *device = (struct anv_device *)data;
74 struct anv_instance *instance = device->physical->instance;
75
76 if (list_is_empty(&instance->debug_report_callbacks.callbacks))
77 return;
78
79 va_list args;
80 va_start(args, fmt);
81 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
82 va_end(args);
83
84 vk_debug_report(&instance->debug_report_callbacks,
85 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
86 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
87 0, 0, 0, "anv", str);
88 }
89
90 static void
91 compiler_perf_log(void *data, const char *fmt, ...)
92 {
93 va_list args;
94 va_start(args, fmt);
95
96 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
97 intel_logd_v(fmt, args);
98
99 va_end(args);
100 }
101
102 static uint64_t
103 anv_compute_heap_size(int fd, uint64_t gtt_size)
104 {
105 /* Query the total ram from the system */
106 struct sysinfo info;
107 sysinfo(&info);
108
109 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
110
111 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
112 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
113 */
114 uint64_t available_ram;
115 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
116 available_ram = total_ram / 2;
117 else
118 available_ram = total_ram * 3 / 4;
119
120 /* We also want to leave some padding for things we allocate in the driver,
121 * so don't go over 3/4 of the GTT either.
122 */
123 uint64_t available_gtt = gtt_size * 3 / 4;
124
125 return MIN2(available_ram, available_gtt);
126 }
127
128 static VkResult
129 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
130 {
131 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
132 &device->gtt_size) == -1) {
133 /* If, for whatever reason, we can't actually get the GTT size from the
134 * kernel (too old?) fall back to the aperture size.
135 */
136 anv_perf_warn(NULL, NULL,
137 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
138
139 if (anv_gem_get_aperture(fd, &device->gtt_size) == -1) {
140 return vk_errorfi(device->instance, NULL,
141 VK_ERROR_INITIALIZATION_FAILED,
142 "failed to get aperture size: %m");
143 }
144 }
145
146 /* We only allow 48-bit addresses with softpin because knowing the actual
147 * address is required for the vertex cache flush workaround.
148 */
149 device->supports_48bit_addresses = (device->info.gen >= 8) &&
150 device->has_softpin &&
151 device->gtt_size > (4ULL << 30 /* GiB */);
152
153 uint64_t heap_size = anv_compute_heap_size(fd, device->gtt_size);
154
155 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
156 /* When running with an overridden PCI ID, we may get a GTT size from
157 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
158 * address support can still fail. Just clamp the address space size to
159 * 2 GiB if we don't have 48-bit support.
160 */
161 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
162 "not support for 48-bit addresses",
163 __FILE__, __LINE__);
164 heap_size = 2ull << 30;
165 }
166
167 device->memory.heap_count = 1;
168 device->memory.heaps[0] = (struct anv_memory_heap) {
169 .size = heap_size,
170 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
171 };
172
173 uint32_t type_count = 0;
174 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
175 if (device->info.has_llc) {
176 /* Big core GPUs share LLC with the CPU and thus one memory type can be
177 * both cached and coherent at the same time.
178 */
179 device->memory.types[type_count++] = (struct anv_memory_type) {
180 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
181 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
182 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
183 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
184 .heapIndex = heap,
185 };
186 } else {
187 /* The spec requires that we expose a host-visible, coherent memory
188 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
189 * to give the application a choice between cached, but not coherent and
190 * coherent but uncached (WC though).
191 */
192 device->memory.types[type_count++] = (struct anv_memory_type) {
193 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
194 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
195 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
196 .heapIndex = heap,
197 };
198 device->memory.types[type_count++] = (struct anv_memory_type) {
199 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
200 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
201 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
202 .heapIndex = heap,
203 };
204 }
205 }
206 device->memory.type_count = type_count;
207
208 return VK_SUCCESS;
209 }
210
211 static VkResult
212 anv_physical_device_init_uuids(struct anv_physical_device *device)
213 {
214 const struct build_id_note *note =
215 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
216 if (!note) {
217 return vk_errorfi(device->instance, NULL,
218 VK_ERROR_INITIALIZATION_FAILED,
219 "Failed to find build-id");
220 }
221
222 unsigned build_id_len = build_id_length(note);
223 if (build_id_len < 20) {
224 return vk_errorfi(device->instance, NULL,
225 VK_ERROR_INITIALIZATION_FAILED,
226 "build-id too short. It needs to be a SHA");
227 }
228
229 memcpy(device->driver_build_sha1, build_id_data(note), 20);
230
231 struct mesa_sha1 sha1_ctx;
232 uint8_t sha1[20];
233 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
234
235 /* The pipeline cache UUID is used for determining when a pipeline cache is
236 * invalid. It needs both a driver build and the PCI ID of the device.
237 */
238 _mesa_sha1_init(&sha1_ctx);
239 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
240 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
241 sizeof(device->info.chipset_id));
242 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
243 sizeof(device->always_use_bindless));
244 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
245 sizeof(device->has_a64_buffer_access));
246 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
247 sizeof(device->has_bindless_images));
248 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
249 sizeof(device->has_bindless_samplers));
250 _mesa_sha1_final(&sha1_ctx, sha1);
251 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
252
253 /* The driver UUID is used for determining sharability of images and memory
254 * between two Vulkan instances in separate processes. People who want to
255 * share memory need to also check the device UUID (below) so all this
256 * needs to be is the build-id.
257 */
258 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
259
260 /* The device UUID uniquely identifies the given device within the machine.
261 * Since we never have more than one device, this doesn't need to be a real
262 * UUID. However, on the off-chance that someone tries to use this to
263 * cache pre-tiled images or something of the like, we use the PCI ID and
264 * some bits of ISL info to ensure that this is safe.
265 */
266 _mesa_sha1_init(&sha1_ctx);
267 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
268 sizeof(device->info.chipset_id));
269 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
270 sizeof(device->isl_dev.has_bit6_swizzling));
271 _mesa_sha1_final(&sha1_ctx, sha1);
272 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
273
274 return VK_SUCCESS;
275 }
276
277 static void
278 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
279 {
280 #ifdef ENABLE_SHADER_CACHE
281 char renderer[10];
282 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
283 device->info.chipset_id);
284 assert(len == sizeof(renderer) - 2);
285
286 char timestamp[41];
287 _mesa_sha1_format(timestamp, device->driver_build_sha1);
288
289 const uint64_t driver_flags =
290 brw_get_compiler_config_value(device->compiler);
291 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
292 #else
293 device->disk_cache = NULL;
294 #endif
295 }
296
297 static void
298 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
299 {
300 #ifdef ENABLE_SHADER_CACHE
301 if (device->disk_cache)
302 disk_cache_destroy(device->disk_cache);
303 #else
304 assert(device->disk_cache == NULL);
305 #endif
306 }
307
308 static uint64_t
309 get_available_system_memory()
310 {
311 char *meminfo = os_read_file("/proc/meminfo", NULL);
312 if (!meminfo)
313 return 0;
314
315 char *str = strstr(meminfo, "MemAvailable:");
316 if (!str) {
317 free(meminfo);
318 return 0;
319 }
320
321 uint64_t kb_mem_available;
322 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
323 free(meminfo);
324 return kb_mem_available << 10;
325 }
326
327 free(meminfo);
328 return 0;
329 }
330
331 static VkResult
332 anv_physical_device_try_create(struct anv_instance *instance,
333 drmDevicePtr drm_device,
334 struct anv_physical_device **device_out)
335 {
336 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
337 const char *path = drm_device->nodes[DRM_NODE_RENDER];
338 VkResult result;
339 int fd;
340 int master_fd = -1;
341
342 brw_process_intel_debug_variable();
343
344 fd = open(path, O_RDWR | O_CLOEXEC);
345 if (fd < 0)
346 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
347
348 struct gen_device_info devinfo;
349 if (!gen_get_device_info_from_fd(fd, &devinfo)) {
350 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
351 goto fail_fd;
352 }
353
354 const char *device_name = gen_get_device_name(devinfo.chipset_id);
355
356 if (devinfo.is_haswell) {
357 intel_logw("Haswell Vulkan support is incomplete");
358 } else if (devinfo.gen == 7 && !devinfo.is_baytrail) {
359 intel_logw("Ivy Bridge Vulkan support is incomplete");
360 } else if (devinfo.gen == 7 && devinfo.is_baytrail) {
361 intel_logw("Bay Trail Vulkan support is incomplete");
362 } else if (devinfo.gen >= 8 && devinfo.gen <= 11) {
363 /* Gen8-11 fully supported */
364 } else if (devinfo.gen == 12) {
365 intel_logw("Vulkan is not yet fully supported on gen12");
366 } else {
367 result = vk_errorfi(instance, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
368 "Vulkan not yet supported on %s", device_name);
369 goto fail_fd;
370 }
371
372 struct anv_physical_device *device =
373 vk_alloc(&instance->alloc, sizeof(*device), 8,
374 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
375 if (device == NULL) {
376 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
377 goto fail_fd;
378 }
379
380 vk_object_base_init(NULL, &device->base, VK_OBJECT_TYPE_PHYSICAL_DEVICE);
381 device->instance = instance;
382
383 assert(strlen(path) < ARRAY_SIZE(device->path));
384 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
385
386 device->info = devinfo;
387 device->name = device_name;
388
389 device->no_hw = device->info.no_hw;
390 if (getenv("INTEL_NO_HW") != NULL)
391 device->no_hw = true;
392
393 device->pci_info.domain = drm_device->businfo.pci->domain;
394 device->pci_info.bus = drm_device->businfo.pci->bus;
395 device->pci_info.device = drm_device->businfo.pci->dev;
396 device->pci_info.function = drm_device->businfo.pci->func;
397
398 device->cmd_parser_version = -1;
399 if (device->info.gen == 7) {
400 device->cmd_parser_version =
401 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
402 if (device->cmd_parser_version == -1) {
403 result = vk_errorfi(device->instance, NULL,
404 VK_ERROR_INITIALIZATION_FAILED,
405 "failed to get command parser version");
406 goto fail_alloc;
407 }
408 }
409
410 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
411 result = vk_errorfi(device->instance, NULL,
412 VK_ERROR_INITIALIZATION_FAILED,
413 "kernel missing gem wait");
414 goto fail_alloc;
415 }
416
417 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
418 result = vk_errorfi(device->instance, NULL,
419 VK_ERROR_INITIALIZATION_FAILED,
420 "kernel missing execbuf2");
421 goto fail_alloc;
422 }
423
424 if (!device->info.has_llc &&
425 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
426 result = vk_errorfi(device->instance, NULL,
427 VK_ERROR_INITIALIZATION_FAILED,
428 "kernel missing wc mmap");
429 goto fail_alloc;
430 }
431
432 device->has_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
433 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
434 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
435 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
436 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
437 device->has_syncobj_wait = device->has_syncobj &&
438 anv_gem_supports_syncobj_wait(fd);
439 device->has_context_priority = anv_gem_has_context_priority(fd);
440
441 result = anv_physical_device_init_heaps(device, fd);
442 if (result != VK_SUCCESS)
443 goto fail_alloc;
444
445 device->use_softpin = device->has_softpin &&
446 device->supports_48bit_addresses;
447
448 device->has_context_isolation =
449 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
450
451 device->always_use_bindless =
452 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
453
454 /* We first got the A64 messages on broadwell and we can only use them if
455 * we can pass addresses directly into the shader which requires softpin.
456 */
457 device->has_a64_buffer_access = device->info.gen >= 8 &&
458 device->use_softpin;
459
460 /* We first get bindless image access on Skylake and we can only really do
461 * it if we don't have any relocations so we need softpin.
462 */
463 device->has_bindless_images = device->info.gen >= 9 &&
464 device->use_softpin;
465
466 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
467 * because it's just a matter of setting the sampler address in the sample
468 * message header. However, we've not bothered to wire it up for vec4 so
469 * we leave it disabled on gen7.
470 */
471 device->has_bindless_samplers = device->info.gen >= 8;
472
473 device->has_implicit_ccs = device->info.has_aux_map;
474
475 device->has_mem_available = get_available_system_memory() != 0;
476
477 device->always_flush_cache =
478 driQueryOptionb(&instance->dri_options, "always_flush_cache");
479
480 device->has_mmap_offset =
481 anv_gem_get_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4;
482
483 /* GENs prior to 8 do not support EU/Subslice info */
484 if (device->info.gen >= 8) {
485 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
486 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
487
488 /* Without this information, we cannot get the right Braswell
489 * brandstrings, and we have to use conservative numbers for GPGPU on
490 * many platforms, but otherwise, things will just work.
491 */
492 if (device->subslice_total < 1 || device->eu_total < 1) {
493 intel_logw("Kernel 4.1 required to properly query GPU properties");
494 }
495 } else if (device->info.gen == 7) {
496 device->subslice_total = 1 << (device->info.gt - 1);
497 }
498
499 if (device->info.is_cherryview &&
500 device->subslice_total > 0 && device->eu_total > 0) {
501 /* Logical CS threads = EUs per subslice * num threads per EU */
502 uint32_t max_cs_threads =
503 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
504
505 /* Fuse configurations may give more threads than expected, never less. */
506 if (max_cs_threads > device->info.max_cs_threads)
507 device->info.max_cs_threads = max_cs_threads;
508 }
509
510 device->compiler = brw_compiler_create(NULL, &device->info);
511 if (device->compiler == NULL) {
512 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
513 goto fail_alloc;
514 }
515 device->compiler->shader_debug_log = compiler_debug_log;
516 device->compiler->shader_perf_log = compiler_perf_log;
517 device->compiler->supports_pull_constants = false;
518 device->compiler->constant_buffer_0_is_relative =
519 device->info.gen < 8 || !device->has_context_isolation;
520 device->compiler->supports_shader_constants = true;
521 device->compiler->compact_params = false;
522
523 /* Broadwell PRM says:
524 *
525 * "Before Gen8, there was a historical configuration control field to
526 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
527 * different places: TILECTL[1:0], ARB_MODE[5:4], and
528 * DISP_ARB_CTL[14:13].
529 *
530 * For Gen8 and subsequent generations, the swizzle fields are all
531 * reserved, and the CPU's memory controller performs all address
532 * swizzling modifications."
533 */
534 bool swizzled =
535 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
536
537 isl_device_init(&device->isl_dev, &device->info, swizzled);
538
539 result = anv_physical_device_init_uuids(device);
540 if (result != VK_SUCCESS)
541 goto fail_compiler;
542
543 anv_physical_device_init_disk_cache(device);
544
545 if (instance->enabled_extensions.KHR_display) {
546 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
547 if (master_fd >= 0) {
548 /* prod the device with a GETPARAM call which will fail if
549 * we don't have permission to even render on this device
550 */
551 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
552 close(master_fd);
553 master_fd = -1;
554 }
555 }
556 }
557 device->master_fd = master_fd;
558
559 result = anv_init_wsi(device);
560 if (result != VK_SUCCESS)
561 goto fail_disk_cache;
562
563 device->perf = anv_get_perf(&device->info, fd);
564
565 anv_physical_device_get_supported_extensions(device,
566 &device->supported_extensions);
567
568
569 device->local_fd = fd;
570
571 *device_out = device;
572
573 return VK_SUCCESS;
574
575 fail_disk_cache:
576 anv_physical_device_free_disk_cache(device);
577 fail_compiler:
578 ralloc_free(device->compiler);
579 fail_alloc:
580 vk_free(&instance->alloc, device);
581 fail_fd:
582 close(fd);
583 if (master_fd != -1)
584 close(master_fd);
585 return result;
586 }
587
588 static void
589 anv_physical_device_destroy(struct anv_physical_device *device)
590 {
591 anv_finish_wsi(device);
592 anv_physical_device_free_disk_cache(device);
593 ralloc_free(device->compiler);
594 ralloc_free(device->perf);
595 close(device->local_fd);
596 if (device->master_fd >= 0)
597 close(device->master_fd);
598 vk_object_base_finish(&device->base);
599 vk_free(&device->instance->alloc, device);
600 }
601
602 static void *
603 default_alloc_func(void *pUserData, size_t size, size_t align,
604 VkSystemAllocationScope allocationScope)
605 {
606 return malloc(size);
607 }
608
609 static void *
610 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
611 size_t align, VkSystemAllocationScope allocationScope)
612 {
613 return realloc(pOriginal, size);
614 }
615
616 static void
617 default_free_func(void *pUserData, void *pMemory)
618 {
619 free(pMemory);
620 }
621
622 static const VkAllocationCallbacks default_alloc = {
623 .pUserData = NULL,
624 .pfnAllocation = default_alloc_func,
625 .pfnReallocation = default_realloc_func,
626 .pfnFree = default_free_func,
627 };
628
629 VkResult anv_EnumerateInstanceExtensionProperties(
630 const char* pLayerName,
631 uint32_t* pPropertyCount,
632 VkExtensionProperties* pProperties)
633 {
634 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
635
636 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
637 if (anv_instance_extensions_supported.extensions[i]) {
638 vk_outarray_append(&out, prop) {
639 *prop = anv_instance_extensions[i];
640 }
641 }
642 }
643
644 return vk_outarray_status(&out);
645 }
646
647 VkResult anv_CreateInstance(
648 const VkInstanceCreateInfo* pCreateInfo,
649 const VkAllocationCallbacks* pAllocator,
650 VkInstance* pInstance)
651 {
652 struct anv_instance *instance;
653 VkResult result;
654
655 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
656
657 struct anv_instance_extension_table enabled_extensions = {};
658 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
659 int idx;
660 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
661 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
662 anv_instance_extensions[idx].extensionName) == 0)
663 break;
664 }
665
666 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
667 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
668
669 if (!anv_instance_extensions_supported.extensions[idx])
670 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
671
672 enabled_extensions.extensions[idx] = true;
673 }
674
675 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
676 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
677 if (!instance)
678 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
679
680 vk_object_base_init(NULL, &instance->base, VK_OBJECT_TYPE_INSTANCE);
681
682 if (pAllocator)
683 instance->alloc = *pAllocator;
684 else
685 instance->alloc = default_alloc;
686
687 instance->app_info = (struct anv_app_info) { .api_version = 0 };
688 if (pCreateInfo->pApplicationInfo) {
689 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
690
691 instance->app_info.app_name =
692 vk_strdup(&instance->alloc, app->pApplicationName,
693 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
694 instance->app_info.app_version = app->applicationVersion;
695
696 instance->app_info.engine_name =
697 vk_strdup(&instance->alloc, app->pEngineName,
698 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
699 instance->app_info.engine_version = app->engineVersion;
700
701 instance->app_info.api_version = app->apiVersion;
702 }
703
704 if (instance->app_info.api_version == 0)
705 instance->app_info.api_version = VK_API_VERSION_1_0;
706
707 instance->enabled_extensions = enabled_extensions;
708
709 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
710 /* Vulkan requires that entrypoints for extensions which have not been
711 * enabled must not be advertised.
712 */
713 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
714 &instance->enabled_extensions)) {
715 instance->dispatch.entrypoints[i] = NULL;
716 } else {
717 instance->dispatch.entrypoints[i] =
718 anv_instance_dispatch_table.entrypoints[i];
719 }
720 }
721
722 for (unsigned i = 0; i < ARRAY_SIZE(instance->physical_device_dispatch.entrypoints); i++) {
723 /* Vulkan requires that entrypoints for extensions which have not been
724 * enabled must not be advertised.
725 */
726 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
727 &instance->enabled_extensions)) {
728 instance->physical_device_dispatch.entrypoints[i] = NULL;
729 } else {
730 instance->physical_device_dispatch.entrypoints[i] =
731 anv_physical_device_dispatch_table.entrypoints[i];
732 }
733 }
734
735 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
736 /* Vulkan requires that entrypoints for extensions which have not been
737 * enabled must not be advertised.
738 */
739 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
740 &instance->enabled_extensions, NULL)) {
741 instance->device_dispatch.entrypoints[i] = NULL;
742 } else {
743 instance->device_dispatch.entrypoints[i] =
744 anv_device_dispatch_table.entrypoints[i];
745 }
746 }
747
748 instance->physical_devices_enumerated = false;
749 list_inithead(&instance->physical_devices);
750
751 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
752 if (result != VK_SUCCESS) {
753 vk_free2(&default_alloc, pAllocator, instance);
754 return vk_error(result);
755 }
756
757 instance->pipeline_cache_enabled =
758 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
759
760 glsl_type_singleton_init_or_ref();
761
762 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
763
764 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
765 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
766 0, "anv", NULL,
767 instance->app_info.engine_name,
768 instance->app_info.engine_version);
769
770 *pInstance = anv_instance_to_handle(instance);
771
772 return VK_SUCCESS;
773 }
774
775 void anv_DestroyInstance(
776 VkInstance _instance,
777 const VkAllocationCallbacks* pAllocator)
778 {
779 ANV_FROM_HANDLE(anv_instance, instance, _instance);
780
781 if (!instance)
782 return;
783
784 list_for_each_entry_safe(struct anv_physical_device, pdevice,
785 &instance->physical_devices, link)
786 anv_physical_device_destroy(pdevice);
787
788 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
789 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
790
791 VG(VALGRIND_DESTROY_MEMPOOL(instance));
792
793 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
794
795 glsl_type_singleton_decref();
796
797 driDestroyOptionCache(&instance->dri_options);
798 driDestroyOptionInfo(&instance->available_dri_options);
799
800 vk_object_base_finish(&instance->base);
801 vk_free(&instance->alloc, instance);
802 }
803
804 static VkResult
805 anv_enumerate_physical_devices(struct anv_instance *instance)
806 {
807 if (instance->physical_devices_enumerated)
808 return VK_SUCCESS;
809
810 instance->physical_devices_enumerated = true;
811
812 /* TODO: Check for more devices ? */
813 drmDevicePtr devices[8];
814 int max_devices;
815
816 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
817 if (max_devices < 1)
818 return VK_SUCCESS;
819
820 VkResult result = VK_SUCCESS;
821 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
822 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
823 devices[i]->bustype == DRM_BUS_PCI &&
824 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
825
826 struct anv_physical_device *pdevice;
827 result = anv_physical_device_try_create(instance, devices[i],
828 &pdevice);
829 /* Incompatible DRM device, skip. */
830 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
831 result = VK_SUCCESS;
832 continue;
833 }
834
835 /* Error creating the physical device, report the error. */
836 if (result != VK_SUCCESS)
837 break;
838
839 list_addtail(&pdevice->link, &instance->physical_devices);
840 }
841 }
842 drmFreeDevices(devices, max_devices);
843
844 /* If we successfully enumerated any devices, call it success */
845 return result;
846 }
847
848 VkResult anv_EnumeratePhysicalDevices(
849 VkInstance _instance,
850 uint32_t* pPhysicalDeviceCount,
851 VkPhysicalDevice* pPhysicalDevices)
852 {
853 ANV_FROM_HANDLE(anv_instance, instance, _instance);
854 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
855
856 VkResult result = anv_enumerate_physical_devices(instance);
857 if (result != VK_SUCCESS)
858 return result;
859
860 list_for_each_entry(struct anv_physical_device, pdevice,
861 &instance->physical_devices, link) {
862 vk_outarray_append(&out, i) {
863 *i = anv_physical_device_to_handle(pdevice);
864 }
865 }
866
867 return vk_outarray_status(&out);
868 }
869
870 VkResult anv_EnumeratePhysicalDeviceGroups(
871 VkInstance _instance,
872 uint32_t* pPhysicalDeviceGroupCount,
873 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
874 {
875 ANV_FROM_HANDLE(anv_instance, instance, _instance);
876 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
877 pPhysicalDeviceGroupCount);
878
879 VkResult result = anv_enumerate_physical_devices(instance);
880 if (result != VK_SUCCESS)
881 return result;
882
883 list_for_each_entry(struct anv_physical_device, pdevice,
884 &instance->physical_devices, link) {
885 vk_outarray_append(&out, p) {
886 p->physicalDeviceCount = 1;
887 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
888 p->physicalDevices[0] = anv_physical_device_to_handle(pdevice);
889 p->subsetAllocation = false;
890
891 vk_foreach_struct(ext, p->pNext)
892 anv_debug_ignored_stype(ext->sType);
893 }
894 }
895
896 return vk_outarray_status(&out);
897 }
898
899 void anv_GetPhysicalDeviceFeatures(
900 VkPhysicalDevice physicalDevice,
901 VkPhysicalDeviceFeatures* pFeatures)
902 {
903 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
904
905 *pFeatures = (VkPhysicalDeviceFeatures) {
906 .robustBufferAccess = true,
907 .fullDrawIndexUint32 = true,
908 .imageCubeArray = true,
909 .independentBlend = true,
910 .geometryShader = true,
911 .tessellationShader = true,
912 .sampleRateShading = true,
913 .dualSrcBlend = true,
914 .logicOp = true,
915 .multiDrawIndirect = true,
916 .drawIndirectFirstInstance = true,
917 .depthClamp = true,
918 .depthBiasClamp = true,
919 .fillModeNonSolid = true,
920 .depthBounds = pdevice->info.gen >= 12,
921 .wideLines = true,
922 .largePoints = true,
923 .alphaToOne = true,
924 .multiViewport = true,
925 .samplerAnisotropy = true,
926 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
927 pdevice->info.is_baytrail,
928 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
929 .textureCompressionBC = true,
930 .occlusionQueryPrecise = true,
931 .pipelineStatisticsQuery = true,
932 .fragmentStoresAndAtomics = true,
933 .shaderTessellationAndGeometryPointSize = true,
934 .shaderImageGatherExtended = true,
935 .shaderStorageImageExtendedFormats = true,
936 .shaderStorageImageMultisample = false,
937 .shaderStorageImageReadWithoutFormat = false,
938 .shaderStorageImageWriteWithoutFormat = true,
939 .shaderUniformBufferArrayDynamicIndexing = true,
940 .shaderSampledImageArrayDynamicIndexing = true,
941 .shaderStorageBufferArrayDynamicIndexing = true,
942 .shaderStorageImageArrayDynamicIndexing = true,
943 .shaderClipDistance = true,
944 .shaderCullDistance = true,
945 .shaderFloat64 = pdevice->info.gen >= 8 &&
946 pdevice->info.has_64bit_float,
947 .shaderInt64 = pdevice->info.gen >= 8 &&
948 pdevice->info.has_64bit_int,
949 .shaderInt16 = pdevice->info.gen >= 8,
950 .shaderResourceMinLod = pdevice->info.gen >= 9,
951 .variableMultisampleRate = true,
952 .inheritedQueries = true,
953 };
954
955 /* We can't do image stores in vec4 shaders */
956 pFeatures->vertexPipelineStoresAndAtomics =
957 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
958 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
959
960 struct anv_app_info *app_info = &pdevice->instance->app_info;
961
962 /* The new DOOM and Wolfenstein games require depthBounds without
963 * checking for it. They seem to run fine without it so just claim it's
964 * there and accept the consequences.
965 */
966 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
967 pFeatures->depthBounds = true;
968 }
969
970 static void
971 anv_get_physical_device_features_1_1(struct anv_physical_device *pdevice,
972 VkPhysicalDeviceVulkan11Features *f)
973 {
974 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
975
976 f->storageBuffer16BitAccess = pdevice->info.gen >= 8;
977 f->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
978 f->storagePushConstant16 = pdevice->info.gen >= 8;
979 f->storageInputOutput16 = false;
980 f->multiview = true;
981 f->multiviewGeometryShader = true;
982 f->multiviewTessellationShader = true;
983 f->variablePointersStorageBuffer = true;
984 f->variablePointers = true;
985 f->protectedMemory = false;
986 f->samplerYcbcrConversion = true;
987 f->shaderDrawParameters = true;
988 }
989
990 static void
991 anv_get_physical_device_features_1_2(struct anv_physical_device *pdevice,
992 VkPhysicalDeviceVulkan12Features *f)
993 {
994 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
995
996 f->samplerMirrorClampToEdge = true;
997 f->drawIndirectCount = true;
998 f->storageBuffer8BitAccess = pdevice->info.gen >= 8;
999 f->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1000 f->storagePushConstant8 = pdevice->info.gen >= 8;
1001 f->shaderBufferInt64Atomics = pdevice->info.gen >= 9 &&
1002 pdevice->use_softpin;
1003 f->shaderSharedInt64Atomics = false;
1004 f->shaderFloat16 = pdevice->info.gen >= 8;
1005 f->shaderInt8 = pdevice->info.gen >= 8;
1006
1007 bool descIndexing = pdevice->has_a64_buffer_access &&
1008 pdevice->has_bindless_images;
1009 f->descriptorIndexing = descIndexing;
1010 f->shaderInputAttachmentArrayDynamicIndexing = false;
1011 f->shaderUniformTexelBufferArrayDynamicIndexing = descIndexing;
1012 f->shaderStorageTexelBufferArrayDynamicIndexing = descIndexing;
1013 f->shaderUniformBufferArrayNonUniformIndexing = false;
1014 f->shaderSampledImageArrayNonUniformIndexing = descIndexing;
1015 f->shaderStorageBufferArrayNonUniformIndexing = descIndexing;
1016 f->shaderStorageImageArrayNonUniformIndexing = descIndexing;
1017 f->shaderInputAttachmentArrayNonUniformIndexing = false;
1018 f->shaderUniformTexelBufferArrayNonUniformIndexing = descIndexing;
1019 f->shaderStorageTexelBufferArrayNonUniformIndexing = descIndexing;
1020 f->descriptorBindingUniformBufferUpdateAfterBind = false;
1021 f->descriptorBindingSampledImageUpdateAfterBind = descIndexing;
1022 f->descriptorBindingStorageImageUpdateAfterBind = descIndexing;
1023 f->descriptorBindingStorageBufferUpdateAfterBind = descIndexing;
1024 f->descriptorBindingUniformTexelBufferUpdateAfterBind = descIndexing;
1025 f->descriptorBindingStorageTexelBufferUpdateAfterBind = descIndexing;
1026 f->descriptorBindingUpdateUnusedWhilePending = descIndexing;
1027 f->descriptorBindingPartiallyBound = descIndexing;
1028 f->descriptorBindingVariableDescriptorCount = false;
1029 f->runtimeDescriptorArray = descIndexing;
1030
1031 f->samplerFilterMinmax = pdevice->info.gen >= 9;
1032 f->scalarBlockLayout = true;
1033 f->imagelessFramebuffer = true;
1034 f->uniformBufferStandardLayout = true;
1035 f->shaderSubgroupExtendedTypes = true;
1036 f->separateDepthStencilLayouts = true;
1037 f->hostQueryReset = true;
1038 f->timelineSemaphore = true;
1039 f->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1040 f->bufferDeviceAddressCaptureReplay = pdevice->has_a64_buffer_access;
1041 f->bufferDeviceAddressMultiDevice = false;
1042 f->vulkanMemoryModel = true;
1043 f->vulkanMemoryModelDeviceScope = true;
1044 f->vulkanMemoryModelAvailabilityVisibilityChains = true;
1045 f->shaderOutputViewportIndex = true;
1046 f->shaderOutputLayer = true;
1047 f->subgroupBroadcastDynamicId = true;
1048 }
1049
1050 void anv_GetPhysicalDeviceFeatures2(
1051 VkPhysicalDevice physicalDevice,
1052 VkPhysicalDeviceFeatures2* pFeatures)
1053 {
1054 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1055 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1056
1057 VkPhysicalDeviceVulkan11Features core_1_1 = {
1058 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
1059 };
1060 anv_get_physical_device_features_1_1(pdevice, &core_1_1);
1061
1062 VkPhysicalDeviceVulkan12Features core_1_2 = {
1063 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
1064 };
1065 anv_get_physical_device_features_1_2(pdevice, &core_1_2);
1066
1067 #define CORE_FEATURE(major, minor, feature) \
1068 features->feature = core_##major##_##minor.feature
1069
1070
1071 vk_foreach_struct(ext, pFeatures->pNext) {
1072 switch (ext->sType) {
1073 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1074 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1075 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1076 CORE_FEATURE(1, 2, storageBuffer8BitAccess);
1077 CORE_FEATURE(1, 2, uniformAndStorageBuffer8BitAccess);
1078 CORE_FEATURE(1, 2, storagePushConstant8);
1079 break;
1080 }
1081
1082 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1083 VkPhysicalDevice16BitStorageFeatures *features =
1084 (VkPhysicalDevice16BitStorageFeatures *)ext;
1085 CORE_FEATURE(1, 1, storageBuffer16BitAccess);
1086 CORE_FEATURE(1, 1, uniformAndStorageBuffer16BitAccess);
1087 CORE_FEATURE(1, 1, storagePushConstant16);
1088 CORE_FEATURE(1, 1, storageInputOutput16);
1089 break;
1090 }
1091
1092 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1093 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1094 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1095 features->bufferDeviceAddressCaptureReplay = false;
1096 features->bufferDeviceAddressMultiDevice = false;
1097 break;
1098 }
1099
1100 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR: {
1101 VkPhysicalDeviceBufferDeviceAddressFeaturesKHR *features = (void *)ext;
1102 CORE_FEATURE(1, 2, bufferDeviceAddress);
1103 CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
1104 CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
1105 break;
1106 }
1107
1108 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1109 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1110 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1111 features->computeDerivativeGroupQuads = true;
1112 features->computeDerivativeGroupLinear = true;
1113 break;
1114 }
1115
1116 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1117 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1118 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1119 features->conditionalRendering = pdevice->info.gen >= 8 ||
1120 pdevice->info.is_haswell;
1121 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1122 pdevice->info.is_haswell;
1123 break;
1124 }
1125
1126 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
1127 VkPhysicalDeviceCustomBorderColorFeaturesEXT *features =
1128 (VkPhysicalDeviceCustomBorderColorFeaturesEXT *)ext;
1129 features->customBorderColors = pdevice->info.gen >= 8;
1130 features->customBorderColorWithoutFormat = pdevice->info.gen >= 8;
1131 break;
1132 }
1133
1134 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1135 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1136 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1137 features->depthClipEnable = true;
1138 break;
1139 }
1140
1141 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1142 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1143 CORE_FEATURE(1, 2, shaderFloat16);
1144 CORE_FEATURE(1, 2, shaderInt8);
1145 break;
1146 }
1147
1148 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1149 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1150 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1151 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1152 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1153 features->fragmentShaderShadingRateInterlock = false;
1154 break;
1155 }
1156
1157 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1158 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1159 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1160 CORE_FEATURE(1, 2, hostQueryReset);
1161 break;
1162 }
1163
1164 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1165 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1166 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1167 CORE_FEATURE(1, 2, shaderInputAttachmentArrayDynamicIndexing);
1168 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayDynamicIndexing);
1169 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayDynamicIndexing);
1170 CORE_FEATURE(1, 2, shaderUniformBufferArrayNonUniformIndexing);
1171 CORE_FEATURE(1, 2, shaderSampledImageArrayNonUniformIndexing);
1172 CORE_FEATURE(1, 2, shaderStorageBufferArrayNonUniformIndexing);
1173 CORE_FEATURE(1, 2, shaderStorageImageArrayNonUniformIndexing);
1174 CORE_FEATURE(1, 2, shaderInputAttachmentArrayNonUniformIndexing);
1175 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayNonUniformIndexing);
1176 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayNonUniformIndexing);
1177 CORE_FEATURE(1, 2, descriptorBindingUniformBufferUpdateAfterBind);
1178 CORE_FEATURE(1, 2, descriptorBindingSampledImageUpdateAfterBind);
1179 CORE_FEATURE(1, 2, descriptorBindingStorageImageUpdateAfterBind);
1180 CORE_FEATURE(1, 2, descriptorBindingStorageBufferUpdateAfterBind);
1181 CORE_FEATURE(1, 2, descriptorBindingUniformTexelBufferUpdateAfterBind);
1182 CORE_FEATURE(1, 2, descriptorBindingStorageTexelBufferUpdateAfterBind);
1183 CORE_FEATURE(1, 2, descriptorBindingUpdateUnusedWhilePending);
1184 CORE_FEATURE(1, 2, descriptorBindingPartiallyBound);
1185 CORE_FEATURE(1, 2, descriptorBindingVariableDescriptorCount);
1186 CORE_FEATURE(1, 2, runtimeDescriptorArray);
1187 break;
1188 }
1189
1190 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1191 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1192 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1193 features->indexTypeUint8 = true;
1194 break;
1195 }
1196
1197 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1198 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1199 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1200 features->inlineUniformBlock = true;
1201 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1202 break;
1203 }
1204
1205 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1206 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1207 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1208 features->rectangularLines = true;
1209 features->bresenhamLines = true;
1210 /* Support for Smooth lines with MSAA was removed on gen11. From the
1211 * BSpec section "Multisample ModesState" table for "AA Line Support
1212 * Requirements":
1213 *
1214 * GEN10:BUG:######## NUM_MULTISAMPLES == 1
1215 *
1216 * Fortunately, this isn't a case most people care about.
1217 */
1218 features->smoothLines = pdevice->info.gen < 10;
1219 features->stippledRectangularLines = false;
1220 features->stippledBresenhamLines = true;
1221 features->stippledSmoothLines = false;
1222 break;
1223 }
1224
1225 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1226 VkPhysicalDeviceMultiviewFeatures *features =
1227 (VkPhysicalDeviceMultiviewFeatures *)ext;
1228 CORE_FEATURE(1, 1, multiview);
1229 CORE_FEATURE(1, 1, multiviewGeometryShader);
1230 CORE_FEATURE(1, 1, multiviewTessellationShader);
1231 break;
1232 }
1233
1234 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1235 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1236 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1237 CORE_FEATURE(1, 2, imagelessFramebuffer);
1238 break;
1239 }
1240
1241 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1242 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1243 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1244 features->pipelineExecutableInfo = true;
1245 break;
1246 }
1247
1248 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES_EXT: {
1249 VkPhysicalDevicePrivateDataFeaturesEXT *features = (void *)ext;
1250 features->privateData = true;
1251 break;
1252 }
1253
1254 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1255 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1256 CORE_FEATURE(1, 1, protectedMemory);
1257 break;
1258 }
1259
1260 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
1261 VkPhysicalDeviceRobustness2FeaturesEXT *features = (void *)ext;
1262 features->robustBufferAccess2 = true;
1263 features->robustImageAccess2 = true;
1264 features->nullDescriptor = true;
1265 break;
1266 }
1267
1268 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1269 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1270 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1271 CORE_FEATURE(1, 1, samplerYcbcrConversion);
1272 break;
1273 }
1274
1275 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1276 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1277 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1278 CORE_FEATURE(1, 2, scalarBlockLayout);
1279 break;
1280 }
1281
1282 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1283 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1284 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1285 CORE_FEATURE(1, 2, separateDepthStencilLayouts);
1286 break;
1287 }
1288
1289 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1290 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1291 CORE_FEATURE(1, 2, shaderBufferInt64Atomics);
1292 CORE_FEATURE(1, 2, shaderSharedInt64Atomics);
1293 break;
1294 }
1295
1296 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1297 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1298 features->shaderDemoteToHelperInvocation = true;
1299 break;
1300 }
1301
1302 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1303 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1304 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1305 features->shaderSubgroupClock = true;
1306 features->shaderDeviceClock = false;
1307 break;
1308 }
1309
1310 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1311 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1312 CORE_FEATURE(1, 1, shaderDrawParameters);
1313 break;
1314 }
1315
1316 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1317 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1318 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1319 CORE_FEATURE(1, 2, shaderSubgroupExtendedTypes);
1320 break;
1321 }
1322
1323 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1324 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1325 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1326 features->subgroupSizeControl = true;
1327 features->computeFullSubgroups = true;
1328 break;
1329 }
1330
1331 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1332 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1333 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1334 features->texelBufferAlignment = true;
1335 break;
1336 }
1337
1338 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
1339 VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
1340 (VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
1341 CORE_FEATURE(1, 2, timelineSemaphore);
1342 break;
1343 }
1344
1345 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1346 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1347 CORE_FEATURE(1, 1, variablePointersStorageBuffer);
1348 CORE_FEATURE(1, 1, variablePointers);
1349 break;
1350 }
1351
1352 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1353 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1354 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1355 features->transformFeedback = true;
1356 features->geometryStreams = true;
1357 break;
1358 }
1359
1360 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1361 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1362 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1363 CORE_FEATURE(1, 2, uniformBufferStandardLayout);
1364 break;
1365 }
1366
1367 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1368 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1369 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1370 features->vertexAttributeInstanceRateDivisor = true;
1371 features->vertexAttributeInstanceRateZeroDivisor = true;
1372 break;
1373 }
1374
1375 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES:
1376 anv_get_physical_device_features_1_1(pdevice, (void *)ext);
1377 break;
1378
1379 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES:
1380 anv_get_physical_device_features_1_2(pdevice, (void *)ext);
1381 break;
1382
1383 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1384 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1385 CORE_FEATURE(1, 2, vulkanMemoryModel);
1386 CORE_FEATURE(1, 2, vulkanMemoryModelDeviceScope);
1387 CORE_FEATURE(1, 2, vulkanMemoryModelAvailabilityVisibilityChains);
1388 break;
1389 }
1390
1391 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1392 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1393 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1394 features->ycbcrImageArrays = true;
1395 break;
1396 }
1397
1398 default:
1399 anv_debug_ignored_stype(ext->sType);
1400 break;
1401 }
1402 }
1403
1404 #undef CORE_FEATURE
1405 }
1406
1407 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1408
1409 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1410 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1411
1412 #define MAX_CUSTOM_BORDER_COLORS 4096
1413
1414 void anv_GetPhysicalDeviceProperties(
1415 VkPhysicalDevice physicalDevice,
1416 VkPhysicalDeviceProperties* pProperties)
1417 {
1418 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1419 const struct gen_device_info *devinfo = &pdevice->info;
1420
1421 /* See assertions made when programming the buffer surface state. */
1422 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1423 (1ul << 30) : (1ul << 27);
1424
1425 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1426 const uint32_t max_textures =
1427 pdevice->has_bindless_images ? UINT16_MAX : 128;
1428 const uint32_t max_samplers =
1429 pdevice->has_bindless_samplers ? UINT16_MAX :
1430 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1431 const uint32_t max_images =
1432 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1433
1434 /* If we can use bindless for everything, claim a high per-stage limit,
1435 * otherwise use the binding table size, minus the slots reserved for
1436 * render targets and one slot for the descriptor buffer. */
1437 const uint32_t max_per_stage =
1438 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1439 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1440
1441 /* Limit max_threads to 64 for the GPGPU_WALKER command */
1442 const uint32_t max_workgroup_size = 32 * MIN2(64, devinfo->max_cs_threads);
1443
1444 VkSampleCountFlags sample_counts =
1445 isl_device_get_sample_counts(&pdevice->isl_dev);
1446
1447
1448 VkPhysicalDeviceLimits limits = {
1449 .maxImageDimension1D = (1 << 14),
1450 .maxImageDimension2D = (1 << 14),
1451 .maxImageDimension3D = (1 << 11),
1452 .maxImageDimensionCube = (1 << 14),
1453 .maxImageArrayLayers = (1 << 11),
1454 .maxTexelBufferElements = 128 * 1024 * 1024,
1455 .maxUniformBufferRange = (1ul << 27),
1456 .maxStorageBufferRange = max_raw_buffer_sz,
1457 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1458 .maxMemoryAllocationCount = UINT32_MAX,
1459 .maxSamplerAllocationCount = 64 * 1024,
1460 .bufferImageGranularity = 64, /* A cache line */
1461 .sparseAddressSpaceSize = 0,
1462 .maxBoundDescriptorSets = MAX_SETS,
1463 .maxPerStageDescriptorSamplers = max_samplers,
1464 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1465 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1466 .maxPerStageDescriptorSampledImages = max_textures,
1467 .maxPerStageDescriptorStorageImages = max_images,
1468 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1469 .maxPerStageResources = max_per_stage,
1470 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1471 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1472 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1473 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1474 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1475 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1476 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1477 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1478 .maxVertexInputAttributes = MAX_VBS,
1479 .maxVertexInputBindings = MAX_VBS,
1480 .maxVertexInputAttributeOffset = 2047,
1481 .maxVertexInputBindingStride = 2048,
1482 .maxVertexOutputComponents = 128,
1483 .maxTessellationGenerationLevel = 64,
1484 .maxTessellationPatchSize = 32,
1485 .maxTessellationControlPerVertexInputComponents = 128,
1486 .maxTessellationControlPerVertexOutputComponents = 128,
1487 .maxTessellationControlPerPatchOutputComponents = 128,
1488 .maxTessellationControlTotalOutputComponents = 2048,
1489 .maxTessellationEvaluationInputComponents = 128,
1490 .maxTessellationEvaluationOutputComponents = 128,
1491 .maxGeometryShaderInvocations = 32,
1492 .maxGeometryInputComponents = 64,
1493 .maxGeometryOutputComponents = 128,
1494 .maxGeometryOutputVertices = 256,
1495 .maxGeometryTotalOutputComponents = 1024,
1496 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1497 .maxFragmentOutputAttachments = 8,
1498 .maxFragmentDualSrcAttachments = 1,
1499 .maxFragmentCombinedOutputResources = 8,
1500 .maxComputeSharedMemorySize = 64 * 1024,
1501 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1502 .maxComputeWorkGroupInvocations = max_workgroup_size,
1503 .maxComputeWorkGroupSize = {
1504 max_workgroup_size,
1505 max_workgroup_size,
1506 max_workgroup_size,
1507 },
1508 .subPixelPrecisionBits = 8,
1509 .subTexelPrecisionBits = 8,
1510 .mipmapPrecisionBits = 8,
1511 .maxDrawIndexedIndexValue = UINT32_MAX,
1512 .maxDrawIndirectCount = UINT32_MAX,
1513 .maxSamplerLodBias = 16,
1514 .maxSamplerAnisotropy = 16,
1515 .maxViewports = MAX_VIEWPORTS,
1516 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1517 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1518 .viewportSubPixelBits = 13, /* We take a float? */
1519 .minMemoryMapAlignment = 4096, /* A page */
1520 /* The dataport requires texel alignment so we need to assume a worst
1521 * case of R32G32B32A32 which is 16 bytes.
1522 */
1523 .minTexelBufferOffsetAlignment = 16,
1524 .minUniformBufferOffsetAlignment = ANV_UBO_ALIGNMENT,
1525 .minStorageBufferOffsetAlignment = 4,
1526 .minTexelOffset = -8,
1527 .maxTexelOffset = 7,
1528 .minTexelGatherOffset = -32,
1529 .maxTexelGatherOffset = 31,
1530 .minInterpolationOffset = -0.5,
1531 .maxInterpolationOffset = 0.4375,
1532 .subPixelInterpolationOffsetBits = 4,
1533 .maxFramebufferWidth = (1 << 14),
1534 .maxFramebufferHeight = (1 << 14),
1535 .maxFramebufferLayers = (1 << 11),
1536 .framebufferColorSampleCounts = sample_counts,
1537 .framebufferDepthSampleCounts = sample_counts,
1538 .framebufferStencilSampleCounts = sample_counts,
1539 .framebufferNoAttachmentsSampleCounts = sample_counts,
1540 .maxColorAttachments = MAX_RTS,
1541 .sampledImageColorSampleCounts = sample_counts,
1542 .sampledImageIntegerSampleCounts = sample_counts,
1543 .sampledImageDepthSampleCounts = sample_counts,
1544 .sampledImageStencilSampleCounts = sample_counts,
1545 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1546 .maxSampleMaskWords = 1,
1547 .timestampComputeAndGraphics = true,
1548 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1549 .maxClipDistances = 8,
1550 .maxCullDistances = 8,
1551 .maxCombinedClipAndCullDistances = 8,
1552 .discreteQueuePriorities = 2,
1553 .pointSizeRange = { 0.125, 255.875 },
1554 .lineWidthRange = {
1555 0.0,
1556 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1557 2047.9921875 : 7.9921875,
1558 },
1559 .pointSizeGranularity = (1.0 / 8.0),
1560 .lineWidthGranularity = (1.0 / 128.0),
1561 .strictLines = false,
1562 .standardSampleLocations = true,
1563 .optimalBufferCopyOffsetAlignment = 128,
1564 .optimalBufferCopyRowPitchAlignment = 128,
1565 .nonCoherentAtomSize = 64,
1566 };
1567
1568 *pProperties = (VkPhysicalDeviceProperties) {
1569 .apiVersion = anv_physical_device_api_version(pdevice),
1570 .driverVersion = vk_get_driver_version(),
1571 .vendorID = 0x8086,
1572 .deviceID = pdevice->info.chipset_id,
1573 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1574 .limits = limits,
1575 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1576 };
1577
1578 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1579 "%s", pdevice->name);
1580 memcpy(pProperties->pipelineCacheUUID,
1581 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1582 }
1583
1584 static void
1585 anv_get_physical_device_properties_1_1(struct anv_physical_device *pdevice,
1586 VkPhysicalDeviceVulkan11Properties *p)
1587 {
1588 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
1589
1590 memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1591 memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1592 memset(p->deviceLUID, 0, VK_LUID_SIZE);
1593 p->deviceNodeMask = 0;
1594 p->deviceLUIDValid = false;
1595
1596 p->subgroupSize = BRW_SUBGROUP_SIZE;
1597 VkShaderStageFlags scalar_stages = 0;
1598 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1599 if (pdevice->compiler->scalar_stage[stage])
1600 scalar_stages |= mesa_to_vk_shader_stage(stage);
1601 }
1602 p->subgroupSupportedStages = scalar_stages;
1603 p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1604 VK_SUBGROUP_FEATURE_VOTE_BIT |
1605 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1606 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1607 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1608 VK_SUBGROUP_FEATURE_QUAD_BIT;
1609 if (pdevice->info.gen >= 8) {
1610 /* TODO: There's no technical reason why these can't be made to
1611 * work on gen7 but they don't at the moment so it's best to leave
1612 * the feature disabled than enabled and broken.
1613 */
1614 p->subgroupSupportedOperations |= VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1615 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1616 }
1617 p->subgroupQuadOperationsInAllStages = pdevice->info.gen >= 8;
1618
1619 p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1620 p->maxMultiviewViewCount = 16;
1621 p->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1622 p->protectedNoFault = false;
1623 /* This value doesn't matter for us today as our per-stage descriptors are
1624 * the real limit.
1625 */
1626 p->maxPerSetDescriptors = 1024;
1627 p->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1628 }
1629
1630 static void
1631 anv_get_physical_device_properties_1_2(struct anv_physical_device *pdevice,
1632 VkPhysicalDeviceVulkan12Properties *p)
1633 {
1634 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
1635
1636 p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1637 memset(p->driverName, 0, sizeof(p->driverName));
1638 snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1639 "Intel open-source Mesa driver");
1640 memset(p->driverInfo, 0, sizeof(p->driverInfo));
1641 snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1642 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1643 p->conformanceVersion = (VkConformanceVersionKHR) {
1644 .major = 1,
1645 .minor = 2,
1646 .subminor = 0,
1647 .patch = 0,
1648 };
1649
1650 p->denormBehaviorIndependence =
1651 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1652 p->roundingModeIndependence =
1653 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1654
1655 /* Broadwell does not support HF denorms and there are restrictions
1656 * other gens. According to Kabylake's PRM:
1657 *
1658 * "math - Extended Math Function
1659 * [...]
1660 * Restriction : Half-float denorms are always retained."
1661 */
1662 p->shaderDenormFlushToZeroFloat16 = false;
1663 p->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1664 p->shaderRoundingModeRTEFloat16 = true;
1665 p->shaderRoundingModeRTZFloat16 = true;
1666 p->shaderSignedZeroInfNanPreserveFloat16 = true;
1667
1668 p->shaderDenormFlushToZeroFloat32 = true;
1669 p->shaderDenormPreserveFloat32 = true;
1670 p->shaderRoundingModeRTEFloat32 = true;
1671 p->shaderRoundingModeRTZFloat32 = true;
1672 p->shaderSignedZeroInfNanPreserveFloat32 = true;
1673
1674 p->shaderDenormFlushToZeroFloat64 = true;
1675 p->shaderDenormPreserveFloat64 = true;
1676 p->shaderRoundingModeRTEFloat64 = true;
1677 p->shaderRoundingModeRTZFloat64 = true;
1678 p->shaderSignedZeroInfNanPreserveFloat64 = true;
1679
1680 /* It's a bit hard to exactly map our implementation to the limits
1681 * described here. The bindless surface handle in the extended
1682 * message descriptors is 20 bits and it's an index into the table of
1683 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1684 * address. Given that most things consume two surface states per
1685 * view (general/sampled for textures and write-only/read-write for
1686 * images), we claim 2^19 things.
1687 *
1688 * For SSBOs, we just use A64 messages so there is no real limit
1689 * there beyond the limit on the total size of a descriptor set.
1690 */
1691 const unsigned max_bindless_views = 1 << 19;
1692 p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1693 p->shaderUniformBufferArrayNonUniformIndexingNative = false;
1694 p->shaderSampledImageArrayNonUniformIndexingNative = false;
1695 p->shaderStorageBufferArrayNonUniformIndexingNative = true;
1696 p->shaderStorageImageArrayNonUniformIndexingNative = false;
1697 p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1698 p->robustBufferAccessUpdateAfterBind = true;
1699 p->quadDivergentImplicitLod = false;
1700 p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1701 p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1702 p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1703 p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1704 p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1705 p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1706 p->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1707 p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1708 p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1709 p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1710 p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1711 p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1712 p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1713 p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1714 p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1715
1716 /* We support all of the depth resolve modes */
1717 p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1718 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1719 VK_RESOLVE_MODE_MIN_BIT_KHR |
1720 VK_RESOLVE_MODE_MAX_BIT_KHR;
1721 /* Average doesn't make sense for stencil so we don't support that */
1722 p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1723 if (pdevice->info.gen >= 8) {
1724 /* The advanced stencil resolve modes currently require stencil
1725 * sampling be supported by the hardware.
1726 */
1727 p->supportedStencilResolveModes |= VK_RESOLVE_MODE_MIN_BIT_KHR |
1728 VK_RESOLVE_MODE_MAX_BIT_KHR;
1729 }
1730 p->independentResolveNone = true;
1731 p->independentResolve = true;
1732
1733 p->filterMinmaxSingleComponentFormats = pdevice->info.gen >= 9;
1734 p->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1735
1736 p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1737
1738 p->framebufferIntegerColorSampleCounts =
1739 isl_device_get_sample_counts(&pdevice->isl_dev);
1740 }
1741
1742 void anv_GetPhysicalDeviceProperties2(
1743 VkPhysicalDevice physicalDevice,
1744 VkPhysicalDeviceProperties2* pProperties)
1745 {
1746 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1747
1748 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1749
1750 VkPhysicalDeviceVulkan11Properties core_1_1 = {
1751 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
1752 };
1753 anv_get_physical_device_properties_1_1(pdevice, &core_1_1);
1754
1755 VkPhysicalDeviceVulkan12Properties core_1_2 = {
1756 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
1757 };
1758 anv_get_physical_device_properties_1_2(pdevice, &core_1_2);
1759
1760 #define CORE_RENAMED_PROPERTY(major, minor, ext_property, core_property) \
1761 memcpy(&properties->ext_property, &core_##major##_##minor.core_property, \
1762 sizeof(core_##major##_##minor.core_property))
1763
1764 #define CORE_PROPERTY(major, minor, property) \
1765 CORE_RENAMED_PROPERTY(major, minor, property, property)
1766
1767 vk_foreach_struct(ext, pProperties->pNext) {
1768 switch (ext->sType) {
1769 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
1770 VkPhysicalDeviceCustomBorderColorPropertiesEXT *properties =
1771 (VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
1772 properties->maxCustomBorderColorSamplers = MAX_CUSTOM_BORDER_COLORS;
1773 break;
1774 }
1775
1776 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1777 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *properties =
1778 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1779 CORE_PROPERTY(1, 2, supportedDepthResolveModes);
1780 CORE_PROPERTY(1, 2, supportedStencilResolveModes);
1781 CORE_PROPERTY(1, 2, independentResolveNone);
1782 CORE_PROPERTY(1, 2, independentResolve);
1783 break;
1784 }
1785
1786 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1787 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *properties =
1788 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1789 CORE_PROPERTY(1, 2, maxUpdateAfterBindDescriptorsInAllPools);
1790 CORE_PROPERTY(1, 2, shaderUniformBufferArrayNonUniformIndexingNative);
1791 CORE_PROPERTY(1, 2, shaderSampledImageArrayNonUniformIndexingNative);
1792 CORE_PROPERTY(1, 2, shaderStorageBufferArrayNonUniformIndexingNative);
1793 CORE_PROPERTY(1, 2, shaderStorageImageArrayNonUniformIndexingNative);
1794 CORE_PROPERTY(1, 2, shaderInputAttachmentArrayNonUniformIndexingNative);
1795 CORE_PROPERTY(1, 2, robustBufferAccessUpdateAfterBind);
1796 CORE_PROPERTY(1, 2, quadDivergentImplicitLod);
1797 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSamplers);
1798 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindUniformBuffers);
1799 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageBuffers);
1800 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSampledImages);
1801 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageImages);
1802 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindInputAttachments);
1803 CORE_PROPERTY(1, 2, maxPerStageUpdateAfterBindResources);
1804 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSamplers);
1805 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffers);
1806 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic);
1807 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffers);
1808 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic);
1809 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSampledImages);
1810 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageImages);
1811 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindInputAttachments);
1812 break;
1813 }
1814
1815 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1816 VkPhysicalDeviceDriverPropertiesKHR *properties =
1817 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1818 CORE_PROPERTY(1, 2, driverID);
1819 CORE_PROPERTY(1, 2, driverName);
1820 CORE_PROPERTY(1, 2, driverInfo);
1821 CORE_PROPERTY(1, 2, conformanceVersion);
1822 break;
1823 }
1824
1825 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1826 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1827 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1828 /* Userptr needs page aligned memory. */
1829 props->minImportedHostPointerAlignment = 4096;
1830 break;
1831 }
1832
1833 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1834 VkPhysicalDeviceIDProperties *properties =
1835 (VkPhysicalDeviceIDProperties *)ext;
1836 CORE_PROPERTY(1, 1, deviceUUID);
1837 CORE_PROPERTY(1, 1, driverUUID);
1838 CORE_PROPERTY(1, 1, deviceLUID);
1839 CORE_PROPERTY(1, 1, deviceLUIDValid);
1840 break;
1841 }
1842
1843 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1844 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1845 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1846 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1847 props->maxPerStageDescriptorInlineUniformBlocks =
1848 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1849 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1850 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1851 props->maxDescriptorSetInlineUniformBlocks =
1852 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1853 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1854 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1855 break;
1856 }
1857
1858 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1859 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1860 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1861 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1862 * Sampling Rules - Legacy Mode", it says the following:
1863 *
1864 * "Note that the device divides a pixel into a 16x16 array of
1865 * subpixels, referenced by their upper left corners."
1866 *
1867 * This is the only known reference in the PRMs to the subpixel
1868 * precision of line rasterization and a "16x16 array of subpixels"
1869 * implies 4 subpixel precision bits. Empirical testing has shown
1870 * that 4 subpixel precision bits applies to all line rasterization
1871 * types.
1872 */
1873 props->lineSubPixelPrecisionBits = 4;
1874 break;
1875 }
1876
1877 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1878 VkPhysicalDeviceMaintenance3Properties *properties =
1879 (VkPhysicalDeviceMaintenance3Properties *)ext;
1880 /* This value doesn't matter for us today as our per-stage
1881 * descriptors are the real limit.
1882 */
1883 CORE_PROPERTY(1, 1, maxPerSetDescriptors);
1884 CORE_PROPERTY(1, 1, maxMemoryAllocationSize);
1885 break;
1886 }
1887
1888 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1889 VkPhysicalDeviceMultiviewProperties *properties =
1890 (VkPhysicalDeviceMultiviewProperties *)ext;
1891 CORE_PROPERTY(1, 1, maxMultiviewViewCount);
1892 CORE_PROPERTY(1, 1, maxMultiviewInstanceIndex);
1893 break;
1894 }
1895
1896 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1897 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1898 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1899 properties->pciDomain = pdevice->pci_info.domain;
1900 properties->pciBus = pdevice->pci_info.bus;
1901 properties->pciDevice = pdevice->pci_info.device;
1902 properties->pciFunction = pdevice->pci_info.function;
1903 break;
1904 }
1905
1906 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1907 VkPhysicalDevicePointClippingProperties *properties =
1908 (VkPhysicalDevicePointClippingProperties *) ext;
1909 CORE_PROPERTY(1, 1, pointClippingBehavior);
1910 break;
1911 }
1912
1913 #pragma GCC diagnostic push
1914 #pragma GCC diagnostic ignored "-Wswitch"
1915 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1916 VkPhysicalDevicePresentationPropertiesANDROID *props =
1917 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1918 props->sharedImage = VK_FALSE;
1919 break;
1920 }
1921 #pragma GCC diagnostic pop
1922
1923 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1924 VkPhysicalDeviceProtectedMemoryProperties *properties =
1925 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1926 CORE_PROPERTY(1, 1, protectedNoFault);
1927 break;
1928 }
1929
1930 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1931 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1932 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1933 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1934 break;
1935 }
1936
1937 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
1938 VkPhysicalDeviceRobustness2PropertiesEXT *properties = (void *)ext;
1939 properties->robustStorageBufferAccessSizeAlignment =
1940 ANV_SSBO_BOUNDS_CHECK_ALIGNMENT;
1941 properties->robustUniformBufferAccessSizeAlignment =
1942 ANV_UBO_ALIGNMENT;
1943 break;
1944 }
1945
1946 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1947 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1948 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1949 CORE_PROPERTY(1, 2, filterMinmaxImageComponentMapping);
1950 CORE_PROPERTY(1, 2, filterMinmaxSingleComponentFormats);
1951 break;
1952 }
1953
1954 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1955 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1956 CORE_PROPERTY(1, 1, subgroupSize);
1957 CORE_RENAMED_PROPERTY(1, 1, supportedStages,
1958 subgroupSupportedStages);
1959 CORE_RENAMED_PROPERTY(1, 1, supportedOperations,
1960 subgroupSupportedOperations);
1961 CORE_RENAMED_PROPERTY(1, 1, quadOperationsInAllStages,
1962 subgroupQuadOperationsInAllStages);
1963 break;
1964 }
1965
1966 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1967 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1968 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1969 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1970 props->minSubgroupSize = 8;
1971 props->maxSubgroupSize = 32;
1972 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1973 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1974 break;
1975 }
1976 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1977 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1978 CORE_PROPERTY(1, 2, denormBehaviorIndependence);
1979 CORE_PROPERTY(1, 2, roundingModeIndependence);
1980 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat16);
1981 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat16);
1982 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat16);
1983 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat16);
1984 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat16);
1985 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat32);
1986 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat32);
1987 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat32);
1988 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat32);
1989 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat32);
1990 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat64);
1991 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat64);
1992 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat64);
1993 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat64);
1994 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat64);
1995 break;
1996 }
1997
1998 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1999 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
2000 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
2001
2002 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
2003 * Base Address:
2004 *
2005 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
2006 * specifies the base address of the first element of the surface,
2007 * computed in software by adding the surface base address to the
2008 * byte offset of the element in the buffer. The base address must
2009 * be aligned to element size."
2010 *
2011 * The typed dataport messages require that things be texel aligned.
2012 * Otherwise, we may just load/store the wrong data or, in the worst
2013 * case, there may be hangs.
2014 */
2015 props->storageTexelBufferOffsetAlignmentBytes = 16;
2016 props->storageTexelBufferOffsetSingleTexelAlignment = true;
2017
2018 /* The sampler, however, is much more forgiving and it can handle
2019 * arbitrary byte alignment for linear and buffer surfaces. It's
2020 * hard to find a good PRM citation for this but years of empirical
2021 * experience demonstrate that this is true.
2022 */
2023 props->uniformTexelBufferOffsetAlignmentBytes = 1;
2024 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
2025 break;
2026 }
2027
2028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
2029 VkPhysicalDeviceTimelineSemaphorePropertiesKHR *properties =
2030 (VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
2031 CORE_PROPERTY(1, 2, maxTimelineSemaphoreValueDifference);
2032 break;
2033 }
2034
2035 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
2036 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
2037 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
2038
2039 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
2040 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
2041 props->maxTransformFeedbackBufferSize = (1ull << 32);
2042 props->maxTransformFeedbackStreamDataSize = 128 * 4;
2043 props->maxTransformFeedbackBufferDataSize = 128 * 4;
2044 props->maxTransformFeedbackBufferDataStride = 2048;
2045 props->transformFeedbackQueries = true;
2046 props->transformFeedbackStreamsLinesTriangles = false;
2047 props->transformFeedbackRasterizationStreamSelect = false;
2048 props->transformFeedbackDraw = true;
2049 break;
2050 }
2051
2052 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
2053 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
2054 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
2055 /* We have to restrict this a bit for multiview */
2056 props->maxVertexAttribDivisor = UINT32_MAX / 16;
2057 break;
2058 }
2059
2060 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES:
2061 anv_get_physical_device_properties_1_1(pdevice, (void *)ext);
2062 break;
2063
2064 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES:
2065 anv_get_physical_device_properties_1_2(pdevice, (void *)ext);
2066 break;
2067
2068 default:
2069 anv_debug_ignored_stype(ext->sType);
2070 break;
2071 }
2072 }
2073
2074 #undef CORE_RENAMED_PROPERTY
2075 #undef CORE_PROPERTY
2076 }
2077
2078 /* We support exactly one queue family. */
2079 static const VkQueueFamilyProperties
2080 anv_queue_family_properties = {
2081 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
2082 VK_QUEUE_COMPUTE_BIT |
2083 VK_QUEUE_TRANSFER_BIT,
2084 .queueCount = 1,
2085 .timestampValidBits = 36, /* XXX: Real value here */
2086 .minImageTransferGranularity = { 1, 1, 1 },
2087 };
2088
2089 void anv_GetPhysicalDeviceQueueFamilyProperties(
2090 VkPhysicalDevice physicalDevice,
2091 uint32_t* pCount,
2092 VkQueueFamilyProperties* pQueueFamilyProperties)
2093 {
2094 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
2095
2096 vk_outarray_append(&out, p) {
2097 *p = anv_queue_family_properties;
2098 }
2099 }
2100
2101 void anv_GetPhysicalDeviceQueueFamilyProperties2(
2102 VkPhysicalDevice physicalDevice,
2103 uint32_t* pQueueFamilyPropertyCount,
2104 VkQueueFamilyProperties2* pQueueFamilyProperties)
2105 {
2106
2107 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
2108
2109 vk_outarray_append(&out, p) {
2110 p->queueFamilyProperties = anv_queue_family_properties;
2111
2112 vk_foreach_struct(s, p->pNext) {
2113 anv_debug_ignored_stype(s->sType);
2114 }
2115 }
2116 }
2117
2118 void anv_GetPhysicalDeviceMemoryProperties(
2119 VkPhysicalDevice physicalDevice,
2120 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
2121 {
2122 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2123
2124 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
2125 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
2126 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
2127 .propertyFlags = physical_device->memory.types[i].propertyFlags,
2128 .heapIndex = physical_device->memory.types[i].heapIndex,
2129 };
2130 }
2131
2132 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
2133 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
2134 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
2135 .size = physical_device->memory.heaps[i].size,
2136 .flags = physical_device->memory.heaps[i].flags,
2137 };
2138 }
2139 }
2140
2141 static void
2142 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
2143 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
2144 {
2145 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2146 uint64_t sys_available = get_available_system_memory();
2147 assert(sys_available > 0);
2148
2149 VkDeviceSize total_heaps_size = 0;
2150 for (size_t i = 0; i < device->memory.heap_count; i++)
2151 total_heaps_size += device->memory.heaps[i].size;
2152
2153 for (size_t i = 0; i < device->memory.heap_count; i++) {
2154 VkDeviceSize heap_size = device->memory.heaps[i].size;
2155 VkDeviceSize heap_used = device->memory.heaps[i].used;
2156 VkDeviceSize heap_budget;
2157
2158 double heap_proportion = (double) heap_size / total_heaps_size;
2159 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
2160
2161 /*
2162 * Let's not incite the app to starve the system: report at most 90% of
2163 * available system memory.
2164 */
2165 uint64_t heap_available = sys_available_prop * 9 / 10;
2166 heap_budget = MIN2(heap_size, heap_used + heap_available);
2167
2168 /*
2169 * Round down to the nearest MB
2170 */
2171 heap_budget &= ~((1ull << 20) - 1);
2172
2173 /*
2174 * The heapBudget value must be non-zero for array elements less than
2175 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
2176 * value must be less than or equal to VkMemoryHeap::size for each heap.
2177 */
2178 assert(0 < heap_budget && heap_budget <= heap_size);
2179
2180 memoryBudget->heapUsage[i] = heap_used;
2181 memoryBudget->heapBudget[i] = heap_budget;
2182 }
2183
2184 /* The heapBudget and heapUsage values must be zero for array elements
2185 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
2186 */
2187 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
2188 memoryBudget->heapBudget[i] = 0;
2189 memoryBudget->heapUsage[i] = 0;
2190 }
2191 }
2192
2193 void anv_GetPhysicalDeviceMemoryProperties2(
2194 VkPhysicalDevice physicalDevice,
2195 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
2196 {
2197 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
2198 &pMemoryProperties->memoryProperties);
2199
2200 vk_foreach_struct(ext, pMemoryProperties->pNext) {
2201 switch (ext->sType) {
2202 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
2203 anv_get_memory_budget(physicalDevice, (void*)ext);
2204 break;
2205 default:
2206 anv_debug_ignored_stype(ext->sType);
2207 break;
2208 }
2209 }
2210 }
2211
2212 void
2213 anv_GetDeviceGroupPeerMemoryFeatures(
2214 VkDevice device,
2215 uint32_t heapIndex,
2216 uint32_t localDeviceIndex,
2217 uint32_t remoteDeviceIndex,
2218 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
2219 {
2220 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
2221 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
2222 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
2223 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
2224 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
2225 }
2226
2227 PFN_vkVoidFunction anv_GetInstanceProcAddr(
2228 VkInstance _instance,
2229 const char* pName)
2230 {
2231 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2232
2233 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
2234 * when we have to return valid function pointers, NULL, or it's left
2235 * undefined. See the table for exact details.
2236 */
2237 if (pName == NULL)
2238 return NULL;
2239
2240 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
2241 if (strcmp(pName, "vk" #entrypoint) == 0) \
2242 return (PFN_vkVoidFunction)anv_##entrypoint
2243
2244 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
2245 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
2246 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
2247 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
2248
2249 /* GetInstanceProcAddr() can also be called with a NULL instance.
2250 * See https://gitlab.khronos.org/vulkan/vulkan/issues/2057
2251 */
2252 LOOKUP_ANV_ENTRYPOINT(GetInstanceProcAddr);
2253
2254 #undef LOOKUP_ANV_ENTRYPOINT
2255
2256 if (instance == NULL)
2257 return NULL;
2258
2259 int idx = anv_get_instance_entrypoint_index(pName);
2260 if (idx >= 0)
2261 return instance->dispatch.entrypoints[idx];
2262
2263 idx = anv_get_physical_device_entrypoint_index(pName);
2264 if (idx >= 0)
2265 return instance->physical_device_dispatch.entrypoints[idx];
2266
2267 idx = anv_get_device_entrypoint_index(pName);
2268 if (idx >= 0)
2269 return instance->device_dispatch.entrypoints[idx];
2270
2271 return NULL;
2272 }
2273
2274 /* With version 1+ of the loader interface the ICD should expose
2275 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2276 */
2277 PUBLIC
2278 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2279 VkInstance instance,
2280 const char* pName);
2281
2282 PUBLIC
2283 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2284 VkInstance instance,
2285 const char* pName)
2286 {
2287 return anv_GetInstanceProcAddr(instance, pName);
2288 }
2289
2290 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2291 VkDevice _device,
2292 const char* pName)
2293 {
2294 ANV_FROM_HANDLE(anv_device, device, _device);
2295
2296 if (!device || !pName)
2297 return NULL;
2298
2299 int idx = anv_get_device_entrypoint_index(pName);
2300 if (idx < 0)
2301 return NULL;
2302
2303 return device->dispatch.entrypoints[idx];
2304 }
2305
2306 /* With version 4+ of the loader interface the ICD should expose
2307 * vk_icdGetPhysicalDeviceProcAddr()
2308 */
2309 PUBLIC
2310 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2311 VkInstance _instance,
2312 const char* pName);
2313
2314 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2315 VkInstance _instance,
2316 const char* pName)
2317 {
2318 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2319
2320 if (!pName || !instance)
2321 return NULL;
2322
2323 int idx = anv_get_physical_device_entrypoint_index(pName);
2324 if (idx < 0)
2325 return NULL;
2326
2327 return instance->physical_device_dispatch.entrypoints[idx];
2328 }
2329
2330
2331 VkResult
2332 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2333 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2334 const VkAllocationCallbacks* pAllocator,
2335 VkDebugReportCallbackEXT* pCallback)
2336 {
2337 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2338 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2339 pCreateInfo, pAllocator, &instance->alloc,
2340 pCallback);
2341 }
2342
2343 void
2344 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2345 VkDebugReportCallbackEXT _callback,
2346 const VkAllocationCallbacks* pAllocator)
2347 {
2348 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2349 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2350 _callback, pAllocator, &instance->alloc);
2351 }
2352
2353 void
2354 anv_DebugReportMessageEXT(VkInstance _instance,
2355 VkDebugReportFlagsEXT flags,
2356 VkDebugReportObjectTypeEXT objectType,
2357 uint64_t object,
2358 size_t location,
2359 int32_t messageCode,
2360 const char* pLayerPrefix,
2361 const char* pMessage)
2362 {
2363 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2364 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2365 object, location, messageCode, pLayerPrefix, pMessage);
2366 }
2367
2368 static struct anv_state
2369 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2370 {
2371 struct anv_state state;
2372
2373 state = anv_state_pool_alloc(pool, size, align);
2374 memcpy(state.map, p, size);
2375
2376 return state;
2377 }
2378
2379 static void
2380 anv_device_init_border_colors(struct anv_device *device)
2381 {
2382 if (device->info.is_haswell) {
2383 static const struct hsw_border_color border_colors[] = {
2384 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2385 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2386 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2387 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2388 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2389 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2390 };
2391
2392 device->border_colors =
2393 anv_state_pool_emit_data(&device->dynamic_state_pool,
2394 sizeof(border_colors), 512, border_colors);
2395 } else {
2396 static const struct gen8_border_color border_colors[] = {
2397 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2398 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2399 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2400 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2401 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2402 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2403 };
2404
2405 device->border_colors =
2406 anv_state_pool_emit_data(&device->dynamic_state_pool,
2407 sizeof(border_colors), 64, border_colors);
2408 }
2409 }
2410
2411 static VkResult
2412 anv_device_init_trivial_batch(struct anv_device *device)
2413 {
2414 VkResult result = anv_device_alloc_bo(device, 4096,
2415 ANV_BO_ALLOC_MAPPED,
2416 0 /* explicit_address */,
2417 &device->trivial_batch_bo);
2418 if (result != VK_SUCCESS)
2419 return result;
2420
2421 struct anv_batch batch = {
2422 .start = device->trivial_batch_bo->map,
2423 .next = device->trivial_batch_bo->map,
2424 .end = device->trivial_batch_bo->map + 4096,
2425 };
2426
2427 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2428 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2429
2430 if (!device->info.has_llc)
2431 gen_clflush_range(batch.start, batch.next - batch.start);
2432
2433 return VK_SUCCESS;
2434 }
2435
2436 VkResult anv_EnumerateDeviceExtensionProperties(
2437 VkPhysicalDevice physicalDevice,
2438 const char* pLayerName,
2439 uint32_t* pPropertyCount,
2440 VkExtensionProperties* pProperties)
2441 {
2442 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2443 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2444
2445 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2446 if (device->supported_extensions.extensions[i]) {
2447 vk_outarray_append(&out, prop) {
2448 *prop = anv_device_extensions[i];
2449 }
2450 }
2451 }
2452
2453 return vk_outarray_status(&out);
2454 }
2455
2456 static void
2457 anv_device_init_dispatch(struct anv_device *device)
2458 {
2459 const struct anv_instance *instance = device->physical->instance;
2460
2461 const struct anv_device_dispatch_table *genX_table;
2462 switch (device->info.gen) {
2463 case 12:
2464 genX_table = &gen12_device_dispatch_table;
2465 break;
2466 case 11:
2467 genX_table = &gen11_device_dispatch_table;
2468 break;
2469 case 10:
2470 genX_table = &gen10_device_dispatch_table;
2471 break;
2472 case 9:
2473 genX_table = &gen9_device_dispatch_table;
2474 break;
2475 case 8:
2476 genX_table = &gen8_device_dispatch_table;
2477 break;
2478 case 7:
2479 if (device->info.is_haswell)
2480 genX_table = &gen75_device_dispatch_table;
2481 else
2482 genX_table = &gen7_device_dispatch_table;
2483 break;
2484 default:
2485 unreachable("unsupported gen\n");
2486 }
2487
2488 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2489 /* Vulkan requires that entrypoints for extensions which have not been
2490 * enabled must not be advertised.
2491 */
2492 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
2493 &instance->enabled_extensions,
2494 &device->enabled_extensions)) {
2495 device->dispatch.entrypoints[i] = NULL;
2496 } else if (genX_table->entrypoints[i]) {
2497 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2498 } else {
2499 device->dispatch.entrypoints[i] =
2500 anv_device_dispatch_table.entrypoints[i];
2501 }
2502 }
2503 }
2504
2505 static int
2506 vk_priority_to_gen(int priority)
2507 {
2508 switch (priority) {
2509 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2510 return GEN_CONTEXT_LOW_PRIORITY;
2511 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2512 return GEN_CONTEXT_MEDIUM_PRIORITY;
2513 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2514 return GEN_CONTEXT_HIGH_PRIORITY;
2515 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2516 return GEN_CONTEXT_REALTIME_PRIORITY;
2517 default:
2518 unreachable("Invalid priority");
2519 }
2520 }
2521
2522 static VkResult
2523 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2524 {
2525 VkResult result = anv_device_alloc_bo(device, 4096,
2526 ANV_BO_ALLOC_MAPPED,
2527 0 /* explicit_address */,
2528 &device->hiz_clear_bo);
2529 if (result != VK_SUCCESS)
2530 return result;
2531
2532 union isl_color_value hiz_clear = { .u32 = { 0, } };
2533 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2534
2535 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2536
2537 if (!device->info.has_llc)
2538 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2539
2540 return VK_SUCCESS;
2541 }
2542
2543 static bool
2544 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2545 struct anv_block_pool *pool,
2546 uint64_t address)
2547 {
2548 anv_block_pool_foreach_bo(bo, pool) {
2549 uint64_t bo_address = gen_48b_address(bo->offset);
2550 if (address >= bo_address && address < (bo_address + bo->size)) {
2551 *ret = (struct gen_batch_decode_bo) {
2552 .addr = bo_address,
2553 .size = bo->size,
2554 .map = bo->map,
2555 };
2556 return true;
2557 }
2558 }
2559 return false;
2560 }
2561
2562 /* Finding a buffer for batch decoding */
2563 static struct gen_batch_decode_bo
2564 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2565 {
2566 struct anv_device *device = v_batch;
2567 struct gen_batch_decode_bo ret_bo = {};
2568
2569 assert(ppgtt);
2570
2571 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2572 return ret_bo;
2573 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2574 return ret_bo;
2575 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2576 return ret_bo;
2577 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2578 return ret_bo;
2579
2580 if (!device->cmd_buffer_being_decoded)
2581 return (struct gen_batch_decode_bo) { };
2582
2583 struct anv_batch_bo **bo;
2584
2585 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2586 /* The decoder zeroes out the top 16 bits, so we need to as well */
2587 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2588
2589 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2590 return (struct gen_batch_decode_bo) {
2591 .addr = bo_address,
2592 .size = (*bo)->bo->size,
2593 .map = (*bo)->bo->map,
2594 };
2595 }
2596 }
2597
2598 return (struct gen_batch_decode_bo) { };
2599 }
2600
2601 struct gen_aux_map_buffer {
2602 struct gen_buffer base;
2603 struct anv_state state;
2604 };
2605
2606 static struct gen_buffer *
2607 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2608 {
2609 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2610 if (!buf)
2611 return NULL;
2612
2613 struct anv_device *device = (struct anv_device*)driver_ctx;
2614 assert(device->physical->supports_48bit_addresses &&
2615 device->physical->use_softpin);
2616
2617 struct anv_state_pool *pool = &device->dynamic_state_pool;
2618 buf->state = anv_state_pool_alloc(pool, size, size);
2619
2620 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2621 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2622 buf->base.map = buf->state.map;
2623 buf->base.driver_bo = &buf->state;
2624 return &buf->base;
2625 }
2626
2627 static void
2628 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2629 {
2630 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2631 struct anv_device *device = (struct anv_device*)driver_ctx;
2632 struct anv_state_pool *pool = &device->dynamic_state_pool;
2633 anv_state_pool_free(pool, buf->state);
2634 free(buf);
2635 }
2636
2637 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2638 .alloc = gen_aux_map_buffer_alloc,
2639 .free = gen_aux_map_buffer_free,
2640 };
2641
2642 static VkResult
2643 check_physical_device_features(VkPhysicalDevice physicalDevice,
2644 const VkPhysicalDeviceFeatures *features)
2645 {
2646 VkPhysicalDeviceFeatures supported_features;
2647 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2648 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2649 VkBool32 *enabled_feature = (VkBool32 *)features;
2650 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2651 for (uint32_t i = 0; i < num_features; i++) {
2652 if (enabled_feature[i] && !supported_feature[i])
2653 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2654 }
2655
2656 return VK_SUCCESS;
2657 }
2658
2659 VkResult anv_CreateDevice(
2660 VkPhysicalDevice physicalDevice,
2661 const VkDeviceCreateInfo* pCreateInfo,
2662 const VkAllocationCallbacks* pAllocator,
2663 VkDevice* pDevice)
2664 {
2665 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2666 VkResult result;
2667 struct anv_device *device;
2668
2669 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2670
2671 struct anv_device_extension_table enabled_extensions = { };
2672 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2673 int idx;
2674 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2675 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2676 anv_device_extensions[idx].extensionName) == 0)
2677 break;
2678 }
2679
2680 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2681 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2682
2683 if (!physical_device->supported_extensions.extensions[idx])
2684 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2685
2686 enabled_extensions.extensions[idx] = true;
2687 }
2688
2689 /* Check enabled features */
2690 bool robust_buffer_access = false;
2691 if (pCreateInfo->pEnabledFeatures) {
2692 result = check_physical_device_features(physicalDevice,
2693 pCreateInfo->pEnabledFeatures);
2694 if (result != VK_SUCCESS)
2695 return result;
2696
2697 if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
2698 robust_buffer_access = true;
2699 }
2700
2701 vk_foreach_struct_const(ext, pCreateInfo->pNext) {
2702 switch (ext->sType) {
2703 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
2704 const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
2705 result = check_physical_device_features(physicalDevice,
2706 &features->features);
2707 if (result != VK_SUCCESS)
2708 return result;
2709
2710 if (features->features.robustBufferAccess)
2711 robust_buffer_access = true;
2712 break;
2713 }
2714
2715 default:
2716 /* Don't warn */
2717 break;
2718 }
2719 }
2720
2721 /* Check requested queues and fail if we are requested to create any
2722 * queues with flags we don't support.
2723 */
2724 assert(pCreateInfo->queueCreateInfoCount > 0);
2725 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2726 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2727 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2728 }
2729
2730 /* Check if client specified queue priority. */
2731 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2732 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2733 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2734
2735 VkQueueGlobalPriorityEXT priority =
2736 queue_priority ? queue_priority->globalPriority :
2737 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2738
2739 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2740 sizeof(*device), 8,
2741 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2742 if (!device)
2743 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2744
2745 vk_device_init(&device->vk, pCreateInfo,
2746 &physical_device->instance->alloc, pAllocator);
2747
2748 if (INTEL_DEBUG & DEBUG_BATCH) {
2749 const unsigned decode_flags =
2750 GEN_BATCH_DECODE_FULL |
2751 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2752 GEN_BATCH_DECODE_OFFSETS |
2753 GEN_BATCH_DECODE_FLOATS;
2754
2755 gen_batch_decode_ctx_init(&device->decoder_ctx,
2756 &physical_device->info,
2757 stderr, decode_flags, NULL,
2758 decode_get_bo, NULL, device);
2759 }
2760
2761 device->physical = physical_device;
2762 device->no_hw = physical_device->no_hw;
2763 device->_lost = false;
2764
2765 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2766 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2767 if (device->fd == -1) {
2768 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2769 goto fail_device;
2770 }
2771
2772 device->context_id = anv_gem_create_context(device);
2773 if (device->context_id == -1) {
2774 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2775 goto fail_fd;
2776 }
2777
2778 result = anv_queue_init(device, &device->queue);
2779 if (result != VK_SUCCESS)
2780 goto fail_context_id;
2781
2782 if (physical_device->use_softpin) {
2783 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2784 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2785 goto fail_queue;
2786 }
2787
2788 /* keep the page with address zero out of the allocator */
2789 util_vma_heap_init(&device->vma_lo,
2790 LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
2791
2792 util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS,
2793 CLIENT_VISIBLE_HEAP_SIZE);
2794
2795 /* Leave the last 4GiB out of the high vma range, so that no state
2796 * base address + size can overflow 48 bits. For more information see
2797 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
2798 */
2799 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
2800 physical_device->gtt_size - (1ull << 32) -
2801 HIGH_HEAP_MIN_ADDRESS);
2802 }
2803
2804 list_inithead(&device->memory_objects);
2805
2806 /* As per spec, the driver implementation may deny requests to acquire
2807 * a priority above the default priority (MEDIUM) if the caller does not
2808 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2809 * is returned.
2810 */
2811 if (physical_device->has_context_priority) {
2812 int err = anv_gem_set_context_param(device->fd, device->context_id,
2813 I915_CONTEXT_PARAM_PRIORITY,
2814 vk_priority_to_gen(priority));
2815 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2816 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2817 goto fail_vmas;
2818 }
2819 }
2820
2821 device->info = physical_device->info;
2822 device->isl_dev = physical_device->isl_dev;
2823
2824 /* On Broadwell and later, we can use batch chaining to more efficiently
2825 * implement growing command buffers. Prior to Haswell, the kernel
2826 * command parser gets in the way and we have to fall back to growing
2827 * the batch.
2828 */
2829 device->can_chain_batches = device->info.gen >= 8;
2830
2831 device->robust_buffer_access = robust_buffer_access;
2832 device->enabled_extensions = enabled_extensions;
2833
2834 anv_device_init_dispatch(device);
2835
2836 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2837 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2838 goto fail_queue;
2839 }
2840
2841 pthread_condattr_t condattr;
2842 if (pthread_condattr_init(&condattr) != 0) {
2843 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2844 goto fail_mutex;
2845 }
2846 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2847 pthread_condattr_destroy(&condattr);
2848 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2849 goto fail_mutex;
2850 }
2851 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2852 pthread_condattr_destroy(&condattr);
2853 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2854 goto fail_mutex;
2855 }
2856 pthread_condattr_destroy(&condattr);
2857
2858 result = anv_bo_cache_init(&device->bo_cache);
2859 if (result != VK_SUCCESS)
2860 goto fail_queue_cond;
2861
2862 anv_bo_pool_init(&device->batch_bo_pool, device);
2863
2864 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2865 DYNAMIC_STATE_POOL_MIN_ADDRESS, 0, 16384);
2866 if (result != VK_SUCCESS)
2867 goto fail_batch_bo_pool;
2868
2869 if (device->info.gen >= 8) {
2870 /* The border color pointer is limited to 24 bits, so we need to make
2871 * sure that any such color used at any point in the program doesn't
2872 * exceed that limit.
2873 * We achieve that by reserving all the custom border colors we support
2874 * right off the bat, so they are close to the base address.
2875 */
2876 anv_state_reserved_pool_init(&device->custom_border_colors,
2877 &device->dynamic_state_pool,
2878 sizeof(struct gen8_border_color),
2879 MAX_CUSTOM_BORDER_COLORS, 64);
2880 }
2881
2882 result = anv_state_pool_init(&device->instruction_state_pool, device,
2883 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 0, 16384);
2884 if (result != VK_SUCCESS)
2885 goto fail_dynamic_state_pool;
2886
2887 result = anv_state_pool_init(&device->surface_state_pool, device,
2888 SURFACE_STATE_POOL_MIN_ADDRESS, 0, 4096);
2889 if (result != VK_SUCCESS)
2890 goto fail_instruction_state_pool;
2891
2892 if (physical_device->use_softpin) {
2893 int64_t bt_pool_offset = (int64_t)BINDING_TABLE_POOL_MIN_ADDRESS -
2894 (int64_t)SURFACE_STATE_POOL_MIN_ADDRESS;
2895 assert(INT32_MIN < bt_pool_offset && bt_pool_offset < 0);
2896 result = anv_state_pool_init(&device->binding_table_pool, device,
2897 SURFACE_STATE_POOL_MIN_ADDRESS,
2898 bt_pool_offset, 4096);
2899 if (result != VK_SUCCESS)
2900 goto fail_surface_state_pool;
2901 }
2902
2903 if (device->info.gen >= 12) {
2904 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2905 &physical_device->info);
2906 if (!device->aux_map_ctx)
2907 goto fail_binding_table_pool;
2908 }
2909
2910 result = anv_device_alloc_bo(device, 4096, 0 /* flags */,
2911 0 /* explicit_address */,
2912 &device->workaround_bo);
2913 if (result != VK_SUCCESS)
2914 goto fail_surface_aux_map_pool;
2915
2916 result = anv_device_init_trivial_batch(device);
2917 if (result != VK_SUCCESS)
2918 goto fail_workaround_bo;
2919
2920 /* Allocate a null surface state at surface state offset 0. This makes
2921 * NULL descriptor handling trivial because we can just memset structures
2922 * to zero and they have a valid descriptor.
2923 */
2924 device->null_surface_state =
2925 anv_state_pool_alloc(&device->surface_state_pool,
2926 device->isl_dev.ss.size,
2927 device->isl_dev.ss.align);
2928 isl_null_fill_state(&device->isl_dev, device->null_surface_state.map,
2929 isl_extent3d(1, 1, 1) /* This shouldn't matter */);
2930 assert(device->null_surface_state.offset == 0);
2931
2932 if (device->info.gen >= 10) {
2933 result = anv_device_init_hiz_clear_value_bo(device);
2934 if (result != VK_SUCCESS)
2935 goto fail_trivial_batch_bo;
2936 }
2937
2938 anv_scratch_pool_init(device, &device->scratch_pool);
2939
2940 switch (device->info.gen) {
2941 case 7:
2942 if (!device->info.is_haswell)
2943 result = gen7_init_device_state(device);
2944 else
2945 result = gen75_init_device_state(device);
2946 break;
2947 case 8:
2948 result = gen8_init_device_state(device);
2949 break;
2950 case 9:
2951 result = gen9_init_device_state(device);
2952 break;
2953 case 10:
2954 result = gen10_init_device_state(device);
2955 break;
2956 case 11:
2957 result = gen11_init_device_state(device);
2958 break;
2959 case 12:
2960 result = gen12_init_device_state(device);
2961 break;
2962 default:
2963 /* Shouldn't get here as we don't create physical devices for any other
2964 * gens. */
2965 unreachable("unhandled gen");
2966 }
2967 if (result != VK_SUCCESS)
2968 goto fail_workaround_bo;
2969
2970 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2971
2972 anv_device_init_blorp(device);
2973
2974 anv_device_init_border_colors(device);
2975
2976 anv_device_perf_init(device);
2977
2978 *pDevice = anv_device_to_handle(device);
2979
2980 return VK_SUCCESS;
2981
2982 fail_workaround_bo:
2983 anv_scratch_pool_finish(device, &device->scratch_pool);
2984 if (device->info.gen >= 10)
2985 anv_device_release_bo(device, device->hiz_clear_bo);
2986 anv_device_release_bo(device, device->workaround_bo);
2987 fail_trivial_batch_bo:
2988 anv_device_release_bo(device, device->trivial_batch_bo);
2989 fail_surface_aux_map_pool:
2990 if (device->info.gen >= 12) {
2991 gen_aux_map_finish(device->aux_map_ctx);
2992 device->aux_map_ctx = NULL;
2993 }
2994 fail_binding_table_pool:
2995 if (physical_device->use_softpin)
2996 anv_state_pool_finish(&device->binding_table_pool);
2997 fail_surface_state_pool:
2998 anv_state_pool_finish(&device->surface_state_pool);
2999 fail_instruction_state_pool:
3000 anv_state_pool_finish(&device->instruction_state_pool);
3001 fail_dynamic_state_pool:
3002 if (device->info.gen >= 8)
3003 anv_state_reserved_pool_finish(&device->custom_border_colors);
3004 anv_state_pool_finish(&device->dynamic_state_pool);
3005 fail_batch_bo_pool:
3006 anv_bo_pool_finish(&device->batch_bo_pool);
3007 anv_bo_cache_finish(&device->bo_cache);
3008 fail_queue_cond:
3009 pthread_cond_destroy(&device->queue_submit);
3010 fail_mutex:
3011 pthread_mutex_destroy(&device->mutex);
3012 fail_vmas:
3013 if (physical_device->use_softpin) {
3014 util_vma_heap_finish(&device->vma_hi);
3015 util_vma_heap_finish(&device->vma_cva);
3016 util_vma_heap_finish(&device->vma_lo);
3017 }
3018 fail_queue:
3019 anv_queue_finish(&device->queue);
3020 fail_context_id:
3021 anv_gem_destroy_context(device, device->context_id);
3022 fail_fd:
3023 close(device->fd);
3024 fail_device:
3025 vk_free(&device->vk.alloc, device);
3026
3027 return result;
3028 }
3029
3030 void anv_DestroyDevice(
3031 VkDevice _device,
3032 const VkAllocationCallbacks* pAllocator)
3033 {
3034 ANV_FROM_HANDLE(anv_device, device, _device);
3035
3036 if (!device)
3037 return;
3038
3039 anv_device_finish_blorp(device);
3040
3041 anv_pipeline_cache_finish(&device->default_pipeline_cache);
3042
3043 anv_queue_finish(&device->queue);
3044
3045 #ifdef HAVE_VALGRIND
3046 /* We only need to free these to prevent valgrind errors. The backing
3047 * BO will go away in a couple of lines so we don't actually leak.
3048 */
3049 if (device->info.gen >= 8)
3050 anv_state_reserved_pool_finish(&device->custom_border_colors);
3051 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
3052 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
3053 #endif
3054
3055 anv_scratch_pool_finish(device, &device->scratch_pool);
3056
3057 anv_device_release_bo(device, device->workaround_bo);
3058 anv_device_release_bo(device, device->trivial_batch_bo);
3059 if (device->info.gen >= 10)
3060 anv_device_release_bo(device, device->hiz_clear_bo);
3061
3062 if (device->info.gen >= 12) {
3063 gen_aux_map_finish(device->aux_map_ctx);
3064 device->aux_map_ctx = NULL;
3065 }
3066
3067 if (device->physical->use_softpin)
3068 anv_state_pool_finish(&device->binding_table_pool);
3069 anv_state_pool_finish(&device->surface_state_pool);
3070 anv_state_pool_finish(&device->instruction_state_pool);
3071 anv_state_pool_finish(&device->dynamic_state_pool);
3072
3073 anv_bo_pool_finish(&device->batch_bo_pool);
3074
3075 anv_bo_cache_finish(&device->bo_cache);
3076
3077 if (device->physical->use_softpin) {
3078 util_vma_heap_finish(&device->vma_hi);
3079 util_vma_heap_finish(&device->vma_cva);
3080 util_vma_heap_finish(&device->vma_lo);
3081 }
3082
3083 pthread_cond_destroy(&device->queue_submit);
3084 pthread_mutex_destroy(&device->mutex);
3085
3086 anv_gem_destroy_context(device, device->context_id);
3087
3088 if (INTEL_DEBUG & DEBUG_BATCH)
3089 gen_batch_decode_ctx_finish(&device->decoder_ctx);
3090
3091 close(device->fd);
3092
3093 vk_device_finish(&device->vk);
3094 vk_free(&device->vk.alloc, device);
3095 }
3096
3097 VkResult anv_EnumerateInstanceLayerProperties(
3098 uint32_t* pPropertyCount,
3099 VkLayerProperties* pProperties)
3100 {
3101 if (pProperties == NULL) {
3102 *pPropertyCount = 0;
3103 return VK_SUCCESS;
3104 }
3105
3106 /* None supported at this time */
3107 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3108 }
3109
3110 VkResult anv_EnumerateDeviceLayerProperties(
3111 VkPhysicalDevice physicalDevice,
3112 uint32_t* pPropertyCount,
3113 VkLayerProperties* pProperties)
3114 {
3115 if (pProperties == NULL) {
3116 *pPropertyCount = 0;
3117 return VK_SUCCESS;
3118 }
3119
3120 /* None supported at this time */
3121 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3122 }
3123
3124 void anv_GetDeviceQueue(
3125 VkDevice _device,
3126 uint32_t queueNodeIndex,
3127 uint32_t queueIndex,
3128 VkQueue* pQueue)
3129 {
3130 const VkDeviceQueueInfo2 info = {
3131 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
3132 .pNext = NULL,
3133 .flags = 0,
3134 .queueFamilyIndex = queueNodeIndex,
3135 .queueIndex = queueIndex,
3136 };
3137
3138 anv_GetDeviceQueue2(_device, &info, pQueue);
3139 }
3140
3141 void anv_GetDeviceQueue2(
3142 VkDevice _device,
3143 const VkDeviceQueueInfo2* pQueueInfo,
3144 VkQueue* pQueue)
3145 {
3146 ANV_FROM_HANDLE(anv_device, device, _device);
3147
3148 assert(pQueueInfo->queueIndex == 0);
3149
3150 if (pQueueInfo->flags == device->queue.flags)
3151 *pQueue = anv_queue_to_handle(&device->queue);
3152 else
3153 *pQueue = NULL;
3154 }
3155
3156 VkResult
3157 _anv_device_set_lost(struct anv_device *device,
3158 const char *file, int line,
3159 const char *msg, ...)
3160 {
3161 VkResult err;
3162 va_list ap;
3163
3164 p_atomic_inc(&device->_lost);
3165
3166 va_start(ap, msg);
3167 err = __vk_errorv(device->physical->instance, device,
3168 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3169 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3170 va_end(ap);
3171
3172 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3173 abort();
3174
3175 return err;
3176 }
3177
3178 VkResult
3179 _anv_queue_set_lost(struct anv_queue *queue,
3180 const char *file, int line,
3181 const char *msg, ...)
3182 {
3183 VkResult err;
3184 va_list ap;
3185
3186 p_atomic_inc(&queue->device->_lost);
3187
3188 va_start(ap, msg);
3189 err = __vk_errorv(queue->device->physical->instance, queue->device,
3190 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3191 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3192 va_end(ap);
3193
3194 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3195 abort();
3196
3197 return err;
3198 }
3199
3200 VkResult
3201 anv_device_query_status(struct anv_device *device)
3202 {
3203 /* This isn't likely as most of the callers of this function already check
3204 * for it. However, it doesn't hurt to check and it potentially lets us
3205 * avoid an ioctl.
3206 */
3207 if (anv_device_is_lost(device))
3208 return VK_ERROR_DEVICE_LOST;
3209
3210 uint32_t active, pending;
3211 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
3212 if (ret == -1) {
3213 /* We don't know the real error. */
3214 return anv_device_set_lost(device, "get_reset_stats failed: %m");
3215 }
3216
3217 if (active) {
3218 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
3219 } else if (pending) {
3220 return anv_device_set_lost(device, "GPU hung with commands in-flight");
3221 }
3222
3223 return VK_SUCCESS;
3224 }
3225
3226 VkResult
3227 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
3228 {
3229 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
3230 * Other usages of the BO (such as on different hardware) will not be
3231 * flagged as "busy" by this ioctl. Use with care.
3232 */
3233 int ret = anv_gem_busy(device, bo->gem_handle);
3234 if (ret == 1) {
3235 return VK_NOT_READY;
3236 } else if (ret == -1) {
3237 /* We don't know the real error. */
3238 return anv_device_set_lost(device, "gem wait failed: %m");
3239 }
3240
3241 /* Query for device status after the busy call. If the BO we're checking
3242 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
3243 * client because it clearly doesn't have valid data. Yes, this most
3244 * likely means an ioctl, but we just did an ioctl to query the busy status
3245 * so it's no great loss.
3246 */
3247 return anv_device_query_status(device);
3248 }
3249
3250 VkResult
3251 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
3252 int64_t timeout)
3253 {
3254 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
3255 if (ret == -1 && errno == ETIME) {
3256 return VK_TIMEOUT;
3257 } else if (ret == -1) {
3258 /* We don't know the real error. */
3259 return anv_device_set_lost(device, "gem wait failed: %m");
3260 }
3261
3262 /* Query for device status after the wait. If the BO we're waiting on got
3263 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
3264 * because it clearly doesn't have valid data. Yes, this most likely means
3265 * an ioctl, but we just did an ioctl to wait so it's no great loss.
3266 */
3267 return anv_device_query_status(device);
3268 }
3269
3270 VkResult anv_DeviceWaitIdle(
3271 VkDevice _device)
3272 {
3273 ANV_FROM_HANDLE(anv_device, device, _device);
3274
3275 if (anv_device_is_lost(device))
3276 return VK_ERROR_DEVICE_LOST;
3277
3278 return anv_queue_submit_simple_batch(&device->queue, NULL);
3279 }
3280
3281 uint64_t
3282 anv_vma_alloc(struct anv_device *device,
3283 uint64_t size, uint64_t align,
3284 enum anv_bo_alloc_flags alloc_flags,
3285 uint64_t client_address)
3286 {
3287 pthread_mutex_lock(&device->vma_mutex);
3288
3289 uint64_t addr = 0;
3290
3291 if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) {
3292 if (client_address) {
3293 if (util_vma_heap_alloc_addr(&device->vma_cva,
3294 client_address, size)) {
3295 addr = client_address;
3296 }
3297 } else {
3298 addr = util_vma_heap_alloc(&device->vma_cva, size, align);
3299 }
3300 /* We don't want to fall back to other heaps */
3301 goto done;
3302 }
3303
3304 assert(client_address == 0);
3305
3306 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS))
3307 addr = util_vma_heap_alloc(&device->vma_hi, size, align);
3308
3309 if (addr == 0)
3310 addr = util_vma_heap_alloc(&device->vma_lo, size, align);
3311
3312 done:
3313 pthread_mutex_unlock(&device->vma_mutex);
3314
3315 assert(addr == gen_48b_address(addr));
3316 return gen_canonical_address(addr);
3317 }
3318
3319 void
3320 anv_vma_free(struct anv_device *device,
3321 uint64_t address, uint64_t size)
3322 {
3323 const uint64_t addr_48b = gen_48b_address(address);
3324
3325 pthread_mutex_lock(&device->vma_mutex);
3326
3327 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3328 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3329 util_vma_heap_free(&device->vma_lo, addr_48b, size);
3330 } else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS &&
3331 addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) {
3332 util_vma_heap_free(&device->vma_cva, addr_48b, size);
3333 } else {
3334 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
3335 util_vma_heap_free(&device->vma_hi, addr_48b, size);
3336 }
3337
3338 pthread_mutex_unlock(&device->vma_mutex);
3339 }
3340
3341 VkResult anv_AllocateMemory(
3342 VkDevice _device,
3343 const VkMemoryAllocateInfo* pAllocateInfo,
3344 const VkAllocationCallbacks* pAllocator,
3345 VkDeviceMemory* pMem)
3346 {
3347 ANV_FROM_HANDLE(anv_device, device, _device);
3348 struct anv_physical_device *pdevice = device->physical;
3349 struct anv_device_memory *mem;
3350 VkResult result = VK_SUCCESS;
3351
3352 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3353
3354 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3355 assert(pAllocateInfo->allocationSize > 0);
3356
3357 VkDeviceSize aligned_alloc_size =
3358 align_u64(pAllocateInfo->allocationSize, 4096);
3359
3360 if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
3361 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3362
3363 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3364 struct anv_memory_type *mem_type =
3365 &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3366 assert(mem_type->heapIndex < pdevice->memory.heap_count);
3367 struct anv_memory_heap *mem_heap =
3368 &pdevice->memory.heaps[mem_type->heapIndex];
3369
3370 uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
3371 if (mem_heap_used + aligned_alloc_size > mem_heap->size)
3372 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3373
3374 mem = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*mem), 8,
3375 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3376 if (mem == NULL)
3377 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3378
3379 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3380 vk_object_base_init(&device->vk, &mem->base, VK_OBJECT_TYPE_DEVICE_MEMORY);
3381 mem->type = mem_type;
3382 mem->map = NULL;
3383 mem->map_size = 0;
3384 mem->ahw = NULL;
3385 mem->host_ptr = NULL;
3386
3387 enum anv_bo_alloc_flags alloc_flags = 0;
3388
3389 const VkExportMemoryAllocateInfo *export_info = NULL;
3390 const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL;
3391 const VkImportMemoryFdInfoKHR *fd_info = NULL;
3392 const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL;
3393 const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
3394 VkMemoryAllocateFlags vk_flags = 0;
3395 uint64_t client_address = 0;
3396
3397 vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
3398 switch (ext->sType) {
3399 case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
3400 export_info = (void *)ext;
3401 break;
3402
3403 case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
3404 ahw_import_info = (void *)ext;
3405 break;
3406
3407 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
3408 fd_info = (void *)ext;
3409 break;
3410
3411 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
3412 host_ptr_info = (void *)ext;
3413 break;
3414
3415 case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: {
3416 const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext;
3417 vk_flags = flags_info->flags;
3418 break;
3419 }
3420
3421 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
3422 dedicated_info = (void *)ext;
3423 break;
3424
3425 case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO_KHR: {
3426 const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *addr_info =
3427 (const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *)ext;
3428 client_address = addr_info->opaqueCaptureAddress;
3429 break;
3430 }
3431
3432 default:
3433 anv_debug_ignored_stype(ext->sType);
3434 break;
3435 }
3436 }
3437
3438 /* By default, we want all VkDeviceMemory objects to support CCS */
3439 if (device->physical->has_implicit_ccs)
3440 alloc_flags |= ANV_BO_ALLOC_IMPLICIT_CCS;
3441
3442 if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR)
3443 alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
3444
3445 if ((export_info && export_info->handleTypes) ||
3446 (fd_info && fd_info->handleType) ||
3447 (host_ptr_info && host_ptr_info->handleType)) {
3448 /* Anything imported or exported is EXTERNAL */
3449 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3450
3451 /* We can't have implicit CCS on external memory with an AUX-table.
3452 * Doing so would require us to sync the aux tables across processes
3453 * which is impractical.
3454 */
3455 if (device->info.has_aux_map)
3456 alloc_flags &= ~ANV_BO_ALLOC_IMPLICIT_CCS;
3457 }
3458
3459 /* Check if we need to support Android HW buffer export. If so,
3460 * create AHardwareBuffer and import memory from it.
3461 */
3462 bool android_export = false;
3463 if (export_info && export_info->handleTypes &
3464 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3465 android_export = true;
3466
3467 if (ahw_import_info) {
3468 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3469 if (result != VK_SUCCESS)
3470 goto fail;
3471
3472 goto success;
3473 } else if (android_export) {
3474 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3475 if (result != VK_SUCCESS)
3476 goto fail;
3477
3478 const VkImportAndroidHardwareBufferInfoANDROID import_info = {
3479 .buffer = mem->ahw,
3480 };
3481 result = anv_import_ahw_memory(_device, mem, &import_info);
3482 if (result != VK_SUCCESS)
3483 goto fail;
3484
3485 goto success;
3486 }
3487
3488 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3489 * ignored.
3490 */
3491 if (fd_info && fd_info->handleType) {
3492 /* At the moment, we support only the below handle types. */
3493 assert(fd_info->handleType ==
3494 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3495 fd_info->handleType ==
3496 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3497
3498 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3499 client_address, &mem->bo);
3500 if (result != VK_SUCCESS)
3501 goto fail;
3502
3503 /* For security purposes, we reject importing the bo if it's smaller
3504 * than the requested allocation size. This prevents a malicious client
3505 * from passing a buffer to a trusted client, lying about the size, and
3506 * telling the trusted client to try and texture from an image that goes
3507 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3508 * in the trusted client. The trusted client can protect itself against
3509 * this sort of attack but only if it can trust the buffer size.
3510 */
3511 if (mem->bo->size < aligned_alloc_size) {
3512 result = vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
3513 "aligned allocationSize too large for "
3514 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3515 "%"PRIu64"B > %"PRIu64"B",
3516 aligned_alloc_size, mem->bo->size);
3517 anv_device_release_bo(device, mem->bo);
3518 goto fail;
3519 }
3520
3521 /* From the Vulkan spec:
3522 *
3523 * "Importing memory from a file descriptor transfers ownership of
3524 * the file descriptor from the application to the Vulkan
3525 * implementation. The application must not perform any operations on
3526 * the file descriptor after a successful import."
3527 *
3528 * If the import fails, we leave the file descriptor open.
3529 */
3530 close(fd_info->fd);
3531 goto success;
3532 }
3533
3534 if (host_ptr_info && host_ptr_info->handleType) {
3535 if (host_ptr_info->handleType ==
3536 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3537 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3538 goto fail;
3539 }
3540
3541 assert(host_ptr_info->handleType ==
3542 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3543
3544 result = anv_device_import_bo_from_host_ptr(device,
3545 host_ptr_info->pHostPointer,
3546 pAllocateInfo->allocationSize,
3547 alloc_flags,
3548 client_address,
3549 &mem->bo);
3550 if (result != VK_SUCCESS)
3551 goto fail;
3552
3553 mem->host_ptr = host_ptr_info->pHostPointer;
3554 goto success;
3555 }
3556
3557 /* Regular allocate (not importing memory). */
3558
3559 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3560 alloc_flags, client_address, &mem->bo);
3561 if (result != VK_SUCCESS)
3562 goto fail;
3563
3564 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3565 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3566
3567 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3568 * the BO. In this case, we have a dedicated allocation.
3569 */
3570 if (image->needs_set_tiling) {
3571 const uint32_t i915_tiling =
3572 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3573 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3574 image->planes[0].surface.isl.row_pitch_B,
3575 i915_tiling);
3576 if (ret) {
3577 anv_device_release_bo(device, mem->bo);
3578 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3579 "failed to set BO tiling: %m");
3580 goto fail;
3581 }
3582 }
3583 }
3584
3585 success:
3586 mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
3587 if (mem_heap_used > mem_heap->size) {
3588 p_atomic_add(&mem_heap->used, -mem->bo->size);
3589 anv_device_release_bo(device, mem->bo);
3590 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3591 "Out of heap memory");
3592 goto fail;
3593 }
3594
3595 pthread_mutex_lock(&device->mutex);
3596 list_addtail(&mem->link, &device->memory_objects);
3597 pthread_mutex_unlock(&device->mutex);
3598
3599 *pMem = anv_device_memory_to_handle(mem);
3600
3601 return VK_SUCCESS;
3602
3603 fail:
3604 vk_free2(&device->vk.alloc, pAllocator, mem);
3605
3606 return result;
3607 }
3608
3609 VkResult anv_GetMemoryFdKHR(
3610 VkDevice device_h,
3611 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3612 int* pFd)
3613 {
3614 ANV_FROM_HANDLE(anv_device, dev, device_h);
3615 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3616
3617 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3618
3619 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3620 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3621
3622 return anv_device_export_bo(dev, mem->bo, pFd);
3623 }
3624
3625 VkResult anv_GetMemoryFdPropertiesKHR(
3626 VkDevice _device,
3627 VkExternalMemoryHandleTypeFlagBits handleType,
3628 int fd,
3629 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3630 {
3631 ANV_FROM_HANDLE(anv_device, device, _device);
3632
3633 switch (handleType) {
3634 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3635 /* dma-buf can be imported as any memory type */
3636 pMemoryFdProperties->memoryTypeBits =
3637 (1 << device->physical->memory.type_count) - 1;
3638 return VK_SUCCESS;
3639
3640 default:
3641 /* The valid usage section for this function says:
3642 *
3643 * "handleType must not be one of the handle types defined as
3644 * opaque."
3645 *
3646 * So opaque handle types fall into the default "unsupported" case.
3647 */
3648 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3649 }
3650 }
3651
3652 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3653 VkDevice _device,
3654 VkExternalMemoryHandleTypeFlagBits handleType,
3655 const void* pHostPointer,
3656 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3657 {
3658 ANV_FROM_HANDLE(anv_device, device, _device);
3659
3660 assert(pMemoryHostPointerProperties->sType ==
3661 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3662
3663 switch (handleType) {
3664 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
3665 /* Host memory can be imported as any memory type. */
3666 pMemoryHostPointerProperties->memoryTypeBits =
3667 (1ull << device->physical->memory.type_count) - 1;
3668
3669 return VK_SUCCESS;
3670
3671 default:
3672 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3673 }
3674 }
3675
3676 void anv_FreeMemory(
3677 VkDevice _device,
3678 VkDeviceMemory _mem,
3679 const VkAllocationCallbacks* pAllocator)
3680 {
3681 ANV_FROM_HANDLE(anv_device, device, _device);
3682 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3683
3684 if (mem == NULL)
3685 return;
3686
3687 pthread_mutex_lock(&device->mutex);
3688 list_del(&mem->link);
3689 pthread_mutex_unlock(&device->mutex);
3690
3691 if (mem->map)
3692 anv_UnmapMemory(_device, _mem);
3693
3694 p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used,
3695 -mem->bo->size);
3696
3697 anv_device_release_bo(device, mem->bo);
3698
3699 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3700 if (mem->ahw)
3701 AHardwareBuffer_release(mem->ahw);
3702 #endif
3703
3704 vk_object_base_finish(&mem->base);
3705 vk_free2(&device->vk.alloc, pAllocator, mem);
3706 }
3707
3708 VkResult anv_MapMemory(
3709 VkDevice _device,
3710 VkDeviceMemory _memory,
3711 VkDeviceSize offset,
3712 VkDeviceSize size,
3713 VkMemoryMapFlags flags,
3714 void** ppData)
3715 {
3716 ANV_FROM_HANDLE(anv_device, device, _device);
3717 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3718
3719 if (mem == NULL) {
3720 *ppData = NULL;
3721 return VK_SUCCESS;
3722 }
3723
3724 if (mem->host_ptr) {
3725 *ppData = mem->host_ptr + offset;
3726 return VK_SUCCESS;
3727 }
3728
3729 if (size == VK_WHOLE_SIZE)
3730 size = mem->bo->size - offset;
3731
3732 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3733 *
3734 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3735 * assert(size != 0);
3736 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3737 * equal to the size of the memory minus offset
3738 */
3739 assert(size > 0);
3740 assert(offset + size <= mem->bo->size);
3741
3742 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3743 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3744 * at a time is valid. We could just mmap up front and return an offset
3745 * pointer here, but that may exhaust virtual memory on 32 bit
3746 * userspace. */
3747
3748 uint32_t gem_flags = 0;
3749
3750 if (!device->info.has_llc &&
3751 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3752 gem_flags |= I915_MMAP_WC;
3753
3754 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3755 uint64_t map_offset;
3756 if (!device->physical->has_mmap_offset)
3757 map_offset = offset & ~4095ull;
3758 else
3759 map_offset = 0;
3760 assert(offset >= map_offset);
3761 uint64_t map_size = (offset + size) - map_offset;
3762
3763 /* Let's map whole pages */
3764 map_size = align_u64(map_size, 4096);
3765
3766 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3767 map_offset, map_size, gem_flags);
3768 if (map == MAP_FAILED)
3769 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3770
3771 mem->map = map;
3772 mem->map_size = map_size;
3773
3774 *ppData = mem->map + (offset - map_offset);
3775
3776 return VK_SUCCESS;
3777 }
3778
3779 void anv_UnmapMemory(
3780 VkDevice _device,
3781 VkDeviceMemory _memory)
3782 {
3783 ANV_FROM_HANDLE(anv_device, device, _device);
3784 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3785
3786 if (mem == NULL || mem->host_ptr)
3787 return;
3788
3789 anv_gem_munmap(device, mem->map, mem->map_size);
3790
3791 mem->map = NULL;
3792 mem->map_size = 0;
3793 }
3794
3795 static void
3796 clflush_mapped_ranges(struct anv_device *device,
3797 uint32_t count,
3798 const VkMappedMemoryRange *ranges)
3799 {
3800 for (uint32_t i = 0; i < count; i++) {
3801 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3802 if (ranges[i].offset >= mem->map_size)
3803 continue;
3804
3805 gen_clflush_range(mem->map + ranges[i].offset,
3806 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3807 }
3808 }
3809
3810 VkResult anv_FlushMappedMemoryRanges(
3811 VkDevice _device,
3812 uint32_t memoryRangeCount,
3813 const VkMappedMemoryRange* pMemoryRanges)
3814 {
3815 ANV_FROM_HANDLE(anv_device, device, _device);
3816
3817 if (device->info.has_llc)
3818 return VK_SUCCESS;
3819
3820 /* Make sure the writes we're flushing have landed. */
3821 __builtin_ia32_mfence();
3822
3823 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3824
3825 return VK_SUCCESS;
3826 }
3827
3828 VkResult anv_InvalidateMappedMemoryRanges(
3829 VkDevice _device,
3830 uint32_t memoryRangeCount,
3831 const VkMappedMemoryRange* pMemoryRanges)
3832 {
3833 ANV_FROM_HANDLE(anv_device, device, _device);
3834
3835 if (device->info.has_llc)
3836 return VK_SUCCESS;
3837
3838 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3839
3840 /* Make sure no reads get moved up above the invalidate. */
3841 __builtin_ia32_mfence();
3842
3843 return VK_SUCCESS;
3844 }
3845
3846 void anv_GetBufferMemoryRequirements(
3847 VkDevice _device,
3848 VkBuffer _buffer,
3849 VkMemoryRequirements* pMemoryRequirements)
3850 {
3851 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3852 ANV_FROM_HANDLE(anv_device, device, _device);
3853
3854 /* The Vulkan spec (git aaed022) says:
3855 *
3856 * memoryTypeBits is a bitfield and contains one bit set for every
3857 * supported memory type for the resource. The bit `1<<i` is set if and
3858 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3859 * structure for the physical device is supported.
3860 */
3861 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3862
3863 /* Base alignment requirement of a cache line */
3864 uint32_t alignment = 16;
3865
3866 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3867 alignment = MAX2(alignment, ANV_UBO_ALIGNMENT);
3868
3869 pMemoryRequirements->size = buffer->size;
3870 pMemoryRequirements->alignment = alignment;
3871
3872 /* Storage and Uniform buffers should have their size aligned to
3873 * 32-bits to avoid boundary checks when last DWord is not complete.
3874 * This would ensure that not internal padding would be needed for
3875 * 16-bit types.
3876 */
3877 if (device->robust_buffer_access &&
3878 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3879 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3880 pMemoryRequirements->size = align_u64(buffer->size, 4);
3881
3882 pMemoryRequirements->memoryTypeBits = memory_types;
3883 }
3884
3885 void anv_GetBufferMemoryRequirements2(
3886 VkDevice _device,
3887 const VkBufferMemoryRequirementsInfo2* pInfo,
3888 VkMemoryRequirements2* pMemoryRequirements)
3889 {
3890 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3891 &pMemoryRequirements->memoryRequirements);
3892
3893 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3894 switch (ext->sType) {
3895 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3896 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3897 requirements->prefersDedicatedAllocation = false;
3898 requirements->requiresDedicatedAllocation = false;
3899 break;
3900 }
3901
3902 default:
3903 anv_debug_ignored_stype(ext->sType);
3904 break;
3905 }
3906 }
3907 }
3908
3909 void anv_GetImageMemoryRequirements(
3910 VkDevice _device,
3911 VkImage _image,
3912 VkMemoryRequirements* pMemoryRequirements)
3913 {
3914 ANV_FROM_HANDLE(anv_image, image, _image);
3915 ANV_FROM_HANDLE(anv_device, device, _device);
3916
3917 /* The Vulkan spec (git aaed022) says:
3918 *
3919 * memoryTypeBits is a bitfield and contains one bit set for every
3920 * supported memory type for the resource. The bit `1<<i` is set if and
3921 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3922 * structure for the physical device is supported.
3923 *
3924 * All types are currently supported for images.
3925 */
3926 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3927
3928 pMemoryRequirements->size = image->size;
3929 pMemoryRequirements->alignment = image->alignment;
3930 pMemoryRequirements->memoryTypeBits = memory_types;
3931 }
3932
3933 void anv_GetImageMemoryRequirements2(
3934 VkDevice _device,
3935 const VkImageMemoryRequirementsInfo2* pInfo,
3936 VkMemoryRequirements2* pMemoryRequirements)
3937 {
3938 ANV_FROM_HANDLE(anv_device, device, _device);
3939 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3940
3941 anv_GetImageMemoryRequirements(_device, pInfo->image,
3942 &pMemoryRequirements->memoryRequirements);
3943
3944 vk_foreach_struct_const(ext, pInfo->pNext) {
3945 switch (ext->sType) {
3946 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3947 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3948 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3949 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3950 plane_reqs->planeAspect);
3951
3952 assert(image->planes[plane].offset == 0);
3953
3954 /* The Vulkan spec (git aaed022) says:
3955 *
3956 * memoryTypeBits is a bitfield and contains one bit set for every
3957 * supported memory type for the resource. The bit `1<<i` is set
3958 * if and only if the memory type `i` in the
3959 * VkPhysicalDeviceMemoryProperties structure for the physical
3960 * device is supported.
3961 *
3962 * All types are currently supported for images.
3963 */
3964 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3965 (1ull << device->physical->memory.type_count) - 1;
3966
3967 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3968 pMemoryRequirements->memoryRequirements.alignment =
3969 image->planes[plane].alignment;
3970 break;
3971 }
3972
3973 default:
3974 anv_debug_ignored_stype(ext->sType);
3975 break;
3976 }
3977 }
3978
3979 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3980 switch (ext->sType) {
3981 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3982 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3983 if (image->needs_set_tiling || image->external_format) {
3984 /* If we need to set the tiling for external consumers, we need a
3985 * dedicated allocation.
3986 *
3987 * See also anv_AllocateMemory.
3988 */
3989 requirements->prefersDedicatedAllocation = true;
3990 requirements->requiresDedicatedAllocation = true;
3991 } else {
3992 requirements->prefersDedicatedAllocation = false;
3993 requirements->requiresDedicatedAllocation = false;
3994 }
3995 break;
3996 }
3997
3998 default:
3999 anv_debug_ignored_stype(ext->sType);
4000 break;
4001 }
4002 }
4003 }
4004
4005 void anv_GetImageSparseMemoryRequirements(
4006 VkDevice device,
4007 VkImage image,
4008 uint32_t* pSparseMemoryRequirementCount,
4009 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
4010 {
4011 *pSparseMemoryRequirementCount = 0;
4012 }
4013
4014 void anv_GetImageSparseMemoryRequirements2(
4015 VkDevice device,
4016 const VkImageSparseMemoryRequirementsInfo2* pInfo,
4017 uint32_t* pSparseMemoryRequirementCount,
4018 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
4019 {
4020 *pSparseMemoryRequirementCount = 0;
4021 }
4022
4023 void anv_GetDeviceMemoryCommitment(
4024 VkDevice device,
4025 VkDeviceMemory memory,
4026 VkDeviceSize* pCommittedMemoryInBytes)
4027 {
4028 *pCommittedMemoryInBytes = 0;
4029 }
4030
4031 static void
4032 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
4033 {
4034 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
4035 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
4036
4037 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
4038
4039 if (mem) {
4040 buffer->address = (struct anv_address) {
4041 .bo = mem->bo,
4042 .offset = pBindInfo->memoryOffset,
4043 };
4044 } else {
4045 buffer->address = ANV_NULL_ADDRESS;
4046 }
4047 }
4048
4049 VkResult anv_BindBufferMemory(
4050 VkDevice device,
4051 VkBuffer buffer,
4052 VkDeviceMemory memory,
4053 VkDeviceSize memoryOffset)
4054 {
4055 anv_bind_buffer_memory(
4056 &(VkBindBufferMemoryInfo) {
4057 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
4058 .buffer = buffer,
4059 .memory = memory,
4060 .memoryOffset = memoryOffset,
4061 });
4062
4063 return VK_SUCCESS;
4064 }
4065
4066 VkResult anv_BindBufferMemory2(
4067 VkDevice device,
4068 uint32_t bindInfoCount,
4069 const VkBindBufferMemoryInfo* pBindInfos)
4070 {
4071 for (uint32_t i = 0; i < bindInfoCount; i++)
4072 anv_bind_buffer_memory(&pBindInfos[i]);
4073
4074 return VK_SUCCESS;
4075 }
4076
4077 VkResult anv_QueueBindSparse(
4078 VkQueue _queue,
4079 uint32_t bindInfoCount,
4080 const VkBindSparseInfo* pBindInfo,
4081 VkFence fence)
4082 {
4083 ANV_FROM_HANDLE(anv_queue, queue, _queue);
4084 if (anv_device_is_lost(queue->device))
4085 return VK_ERROR_DEVICE_LOST;
4086
4087 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
4088 }
4089
4090 // Event functions
4091
4092 VkResult anv_CreateEvent(
4093 VkDevice _device,
4094 const VkEventCreateInfo* pCreateInfo,
4095 const VkAllocationCallbacks* pAllocator,
4096 VkEvent* pEvent)
4097 {
4098 ANV_FROM_HANDLE(anv_device, device, _device);
4099 struct anv_event *event;
4100
4101 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
4102
4103 event = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*event), 8,
4104 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4105 if (event == NULL)
4106 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4107
4108 vk_object_base_init(&device->vk, &event->base, VK_OBJECT_TYPE_EVENT);
4109 event->state = anv_state_pool_alloc(&device->dynamic_state_pool,
4110 sizeof(uint64_t), 8);
4111 *(uint64_t *)event->state.map = VK_EVENT_RESET;
4112
4113 *pEvent = anv_event_to_handle(event);
4114
4115 return VK_SUCCESS;
4116 }
4117
4118 void anv_DestroyEvent(
4119 VkDevice _device,
4120 VkEvent _event,
4121 const VkAllocationCallbacks* pAllocator)
4122 {
4123 ANV_FROM_HANDLE(anv_device, device, _device);
4124 ANV_FROM_HANDLE(anv_event, event, _event);
4125
4126 if (!event)
4127 return;
4128
4129 anv_state_pool_free(&device->dynamic_state_pool, event->state);
4130
4131 vk_object_base_finish(&event->base);
4132 vk_free2(&device->vk.alloc, pAllocator, event);
4133 }
4134
4135 VkResult anv_GetEventStatus(
4136 VkDevice _device,
4137 VkEvent _event)
4138 {
4139 ANV_FROM_HANDLE(anv_device, device, _device);
4140 ANV_FROM_HANDLE(anv_event, event, _event);
4141
4142 if (anv_device_is_lost(device))
4143 return VK_ERROR_DEVICE_LOST;
4144
4145 return *(uint64_t *)event->state.map;
4146 }
4147
4148 VkResult anv_SetEvent(
4149 VkDevice _device,
4150 VkEvent _event)
4151 {
4152 ANV_FROM_HANDLE(anv_event, event, _event);
4153
4154 *(uint64_t *)event->state.map = VK_EVENT_SET;
4155
4156 return VK_SUCCESS;
4157 }
4158
4159 VkResult anv_ResetEvent(
4160 VkDevice _device,
4161 VkEvent _event)
4162 {
4163 ANV_FROM_HANDLE(anv_event, event, _event);
4164
4165 *(uint64_t *)event->state.map = VK_EVENT_RESET;
4166
4167 return VK_SUCCESS;
4168 }
4169
4170 // Buffer functions
4171
4172 VkResult anv_CreateBuffer(
4173 VkDevice _device,
4174 const VkBufferCreateInfo* pCreateInfo,
4175 const VkAllocationCallbacks* pAllocator,
4176 VkBuffer* pBuffer)
4177 {
4178 ANV_FROM_HANDLE(anv_device, device, _device);
4179 struct anv_buffer *buffer;
4180
4181 /* Don't allow creating buffers bigger than our address space. The real
4182 * issue here is that we may align up the buffer size and we don't want
4183 * doing so to cause roll-over. However, no one has any business
4184 * allocating a buffer larger than our GTT size.
4185 */
4186 if (pCreateInfo->size > device->physical->gtt_size)
4187 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
4188
4189 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
4190
4191 buffer = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*buffer), 8,
4192 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4193 if (buffer == NULL)
4194 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4195
4196 vk_object_base_init(&device->vk, &buffer->base, VK_OBJECT_TYPE_BUFFER);
4197 buffer->size = pCreateInfo->size;
4198 buffer->usage = pCreateInfo->usage;
4199 buffer->address = ANV_NULL_ADDRESS;
4200
4201 *pBuffer = anv_buffer_to_handle(buffer);
4202
4203 return VK_SUCCESS;
4204 }
4205
4206 void anv_DestroyBuffer(
4207 VkDevice _device,
4208 VkBuffer _buffer,
4209 const VkAllocationCallbacks* pAllocator)
4210 {
4211 ANV_FROM_HANDLE(anv_device, device, _device);
4212 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4213
4214 if (!buffer)
4215 return;
4216
4217 vk_object_base_finish(&buffer->base);
4218 vk_free2(&device->vk.alloc, pAllocator, buffer);
4219 }
4220
4221 VkDeviceAddress anv_GetBufferDeviceAddress(
4222 VkDevice device,
4223 const VkBufferDeviceAddressInfoKHR* pInfo)
4224 {
4225 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
4226
4227 assert(!anv_address_is_null(buffer->address));
4228 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
4229
4230 return anv_address_physical(buffer->address);
4231 }
4232
4233 uint64_t anv_GetBufferOpaqueCaptureAddress(
4234 VkDevice device,
4235 const VkBufferDeviceAddressInfoKHR* pInfo)
4236 {
4237 return 0;
4238 }
4239
4240 uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress(
4241 VkDevice device,
4242 const VkDeviceMemoryOpaqueCaptureAddressInfoKHR* pInfo)
4243 {
4244 ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
4245
4246 assert(memory->bo->flags & EXEC_OBJECT_PINNED);
4247 assert(memory->bo->has_client_visible_address);
4248
4249 return gen_48b_address(memory->bo->offset);
4250 }
4251
4252 void
4253 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
4254 enum isl_format format,
4255 struct anv_address address,
4256 uint32_t range, uint32_t stride)
4257 {
4258 isl_buffer_fill_state(&device->isl_dev, state.map,
4259 .address = anv_address_physical(address),
4260 .mocs = device->isl_dev.mocs.internal,
4261 .size_B = range,
4262 .format = format,
4263 .swizzle = ISL_SWIZZLE_IDENTITY,
4264 .stride_B = stride);
4265 }
4266
4267 void anv_DestroySampler(
4268 VkDevice _device,
4269 VkSampler _sampler,
4270 const VkAllocationCallbacks* pAllocator)
4271 {
4272 ANV_FROM_HANDLE(anv_device, device, _device);
4273 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
4274
4275 if (!sampler)
4276 return;
4277
4278 if (sampler->bindless_state.map) {
4279 anv_state_pool_free(&device->dynamic_state_pool,
4280 sampler->bindless_state);
4281 }
4282
4283 if (sampler->custom_border_color.map) {
4284 anv_state_reserved_pool_free(&device->custom_border_colors,
4285 sampler->custom_border_color);
4286 }
4287
4288 vk_object_base_finish(&sampler->base);
4289 vk_free2(&device->vk.alloc, pAllocator, sampler);
4290 }
4291
4292 VkResult anv_CreateFramebuffer(
4293 VkDevice _device,
4294 const VkFramebufferCreateInfo* pCreateInfo,
4295 const VkAllocationCallbacks* pAllocator,
4296 VkFramebuffer* pFramebuffer)
4297 {
4298 ANV_FROM_HANDLE(anv_device, device, _device);
4299 struct anv_framebuffer *framebuffer;
4300
4301 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
4302
4303 size_t size = sizeof(*framebuffer);
4304
4305 /* VK_KHR_imageless_framebuffer extension says:
4306 *
4307 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
4308 * parameter pAttachments is ignored.
4309 */
4310 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
4311 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
4312 framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
4313 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4314 if (framebuffer == NULL)
4315 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4316
4317 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
4318 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
4319 framebuffer->attachments[i] = iview;
4320 }
4321 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4322 } else {
4323 framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
4324 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4325 if (framebuffer == NULL)
4326 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4327
4328 framebuffer->attachment_count = 0;
4329 }
4330
4331 vk_object_base_init(&device->vk, &framebuffer->base,
4332 VK_OBJECT_TYPE_FRAMEBUFFER);
4333
4334 framebuffer->width = pCreateInfo->width;
4335 framebuffer->height = pCreateInfo->height;
4336 framebuffer->layers = pCreateInfo->layers;
4337
4338 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4339
4340 return VK_SUCCESS;
4341 }
4342
4343 void anv_DestroyFramebuffer(
4344 VkDevice _device,
4345 VkFramebuffer _fb,
4346 const VkAllocationCallbacks* pAllocator)
4347 {
4348 ANV_FROM_HANDLE(anv_device, device, _device);
4349 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4350
4351 if (!fb)
4352 return;
4353
4354 vk_object_base_finish(&fb->base);
4355 vk_free2(&device->vk.alloc, pAllocator, fb);
4356 }
4357
4358 static const VkTimeDomainEXT anv_time_domains[] = {
4359 VK_TIME_DOMAIN_DEVICE_EXT,
4360 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4361 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4362 };
4363
4364 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4365 VkPhysicalDevice physicalDevice,
4366 uint32_t *pTimeDomainCount,
4367 VkTimeDomainEXT *pTimeDomains)
4368 {
4369 int d;
4370 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4371
4372 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4373 vk_outarray_append(&out, i) {
4374 *i = anv_time_domains[d];
4375 }
4376 }
4377
4378 return vk_outarray_status(&out);
4379 }
4380
4381 static uint64_t
4382 anv_clock_gettime(clockid_t clock_id)
4383 {
4384 struct timespec current;
4385 int ret;
4386
4387 ret = clock_gettime(clock_id, &current);
4388 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4389 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4390 if (ret < 0)
4391 return 0;
4392
4393 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4394 }
4395
4396 #define TIMESTAMP 0x2358
4397
4398 VkResult anv_GetCalibratedTimestampsEXT(
4399 VkDevice _device,
4400 uint32_t timestampCount,
4401 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4402 uint64_t *pTimestamps,
4403 uint64_t *pMaxDeviation)
4404 {
4405 ANV_FROM_HANDLE(anv_device, device, _device);
4406 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4407 int ret;
4408 int d;
4409 uint64_t begin, end;
4410 uint64_t max_clock_period = 0;
4411
4412 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4413
4414 for (d = 0; d < timestampCount; d++) {
4415 switch (pTimestampInfos[d].timeDomain) {
4416 case VK_TIME_DOMAIN_DEVICE_EXT:
4417 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4418 &pTimestamps[d]);
4419
4420 if (ret != 0) {
4421 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4422 "register: %m");
4423 }
4424 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4425 max_clock_period = MAX2(max_clock_period, device_period);
4426 break;
4427 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4428 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4429 max_clock_period = MAX2(max_clock_period, 1);
4430 break;
4431
4432 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4433 pTimestamps[d] = begin;
4434 break;
4435 default:
4436 pTimestamps[d] = 0;
4437 break;
4438 }
4439 }
4440
4441 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4442
4443 /*
4444 * The maximum deviation is the sum of the interval over which we
4445 * perform the sampling and the maximum period of any sampled
4446 * clock. That's because the maximum skew between any two sampled
4447 * clock edges is when the sampled clock with the largest period is
4448 * sampled at the end of that period but right at the beginning of the
4449 * sampling interval and some other clock is sampled right at the
4450 * begining of its sampling period and right at the end of the
4451 * sampling interval. Let's assume the GPU has the longest clock
4452 * period and that the application is sampling GPU and monotonic:
4453 *
4454 * s e
4455 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4456 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4457 *
4458 * g
4459 * 0 1 2 3
4460 * GPU -----_____-----_____-----_____-----_____
4461 *
4462 * m
4463 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4464 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4465 *
4466 * Interval <----------------->
4467 * Deviation <-------------------------->
4468 *
4469 * s = read(raw) 2
4470 * g = read(GPU) 1
4471 * m = read(monotonic) 2
4472 * e = read(raw) b
4473 *
4474 * We round the sample interval up by one tick to cover sampling error
4475 * in the interval clock
4476 */
4477
4478 uint64_t sample_interval = end - begin + 1;
4479
4480 *pMaxDeviation = sample_interval + max_clock_period;
4481
4482 return VK_SUCCESS;
4483 }
4484
4485 /* vk_icd.h does not declare this function, so we declare it here to
4486 * suppress Wmissing-prototypes.
4487 */
4488 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4489 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4490
4491 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4492 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4493 {
4494 /* For the full details on loader interface versioning, see
4495 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4496 * What follows is a condensed summary, to help you navigate the large and
4497 * confusing official doc.
4498 *
4499 * - Loader interface v0 is incompatible with later versions. We don't
4500 * support it.
4501 *
4502 * - In loader interface v1:
4503 * - The first ICD entrypoint called by the loader is
4504 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4505 * entrypoint.
4506 * - The ICD must statically expose no other Vulkan symbol unless it is
4507 * linked with -Bsymbolic.
4508 * - Each dispatchable Vulkan handle created by the ICD must be
4509 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4510 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4511 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4512 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4513 * such loader-managed surfaces.
4514 *
4515 * - Loader interface v2 differs from v1 in:
4516 * - The first ICD entrypoint called by the loader is
4517 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4518 * statically expose this entrypoint.
4519 *
4520 * - Loader interface v3 differs from v2 in:
4521 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4522 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4523 * because the loader no longer does so.
4524 *
4525 * - Loader interface v4 differs from v3 in:
4526 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4527 */
4528 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4529 return VK_SUCCESS;
4530 }
4531
4532 VkResult anv_CreatePrivateDataSlotEXT(
4533 VkDevice _device,
4534 const VkPrivateDataSlotCreateInfoEXT* pCreateInfo,
4535 const VkAllocationCallbacks* pAllocator,
4536 VkPrivateDataSlotEXT* pPrivateDataSlot)
4537 {
4538 ANV_FROM_HANDLE(anv_device, device, _device);
4539 return vk_private_data_slot_create(&device->vk, pCreateInfo, pAllocator,
4540 pPrivateDataSlot);
4541 }
4542
4543 void anv_DestroyPrivateDataSlotEXT(
4544 VkDevice _device,
4545 VkPrivateDataSlotEXT privateDataSlot,
4546 const VkAllocationCallbacks* pAllocator)
4547 {
4548 ANV_FROM_HANDLE(anv_device, device, _device);
4549 vk_private_data_slot_destroy(&device->vk, privateDataSlot, pAllocator);
4550 }
4551
4552 VkResult anv_SetPrivateDataEXT(
4553 VkDevice _device,
4554 VkObjectType objectType,
4555 uint64_t objectHandle,
4556 VkPrivateDataSlotEXT privateDataSlot,
4557 uint64_t data)
4558 {
4559 ANV_FROM_HANDLE(anv_device, device, _device);
4560 return vk_object_base_set_private_data(&device->vk,
4561 objectType, objectHandle,
4562 privateDataSlot, data);
4563 }
4564
4565 void anv_GetPrivateDataEXT(
4566 VkDevice _device,
4567 VkObjectType objectType,
4568 uint64_t objectHandle,
4569 VkPrivateDataSlotEXT privateDataSlot,
4570 uint64_t* pData)
4571 {
4572 ANV_FROM_HANDLE(anv_device, device, _device);
4573 vk_object_base_get_private_data(&device->vk,
4574 objectType, objectHandle,
4575 privateDataSlot, pData);
4576 }