anv: fix descriptor limits on gen8
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "util/xmlpool.h"
44 #include "git_sha1.h"
45 #include "vk_util.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57 DRI_CONF_END;
58
59 /* This is probably far to big but it reflects the max size used for messages
60 * in OpenGLs KHR_debug.
61 */
62 #define MAX_DEBUG_MESSAGE_LENGTH 4096
63
64 static void
65 compiler_debug_log(void *data, const char *fmt, ...)
66 {
67 char str[MAX_DEBUG_MESSAGE_LENGTH];
68 struct anv_device *device = (struct anv_device *)data;
69
70 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
71 return;
72
73 va_list args;
74 va_start(args, fmt);
75 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
76 va_end(args);
77
78 vk_debug_report(&device->instance->debug_report_callbacks,
79 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
80 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
81 0, 0, 0, "anv", str);
82 }
83
84 static void
85 compiler_perf_log(void *data, const char *fmt, ...)
86 {
87 va_list args;
88 va_start(args, fmt);
89
90 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
91 intel_logd_v(fmt, args);
92
93 va_end(args);
94 }
95
96 static uint64_t
97 anv_compute_heap_size(int fd, uint64_t gtt_size)
98 {
99 /* Query the total ram from the system */
100 struct sysinfo info;
101 sysinfo(&info);
102
103 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
104
105 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
106 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
107 */
108 uint64_t available_ram;
109 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
110 available_ram = total_ram / 2;
111 else
112 available_ram = total_ram * 3 / 4;
113
114 /* We also want to leave some padding for things we allocate in the driver,
115 * so don't go over 3/4 of the GTT either.
116 */
117 uint64_t available_gtt = gtt_size * 3 / 4;
118
119 return MIN2(available_ram, available_gtt);
120 }
121
122 static VkResult
123 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
124 {
125 uint64_t gtt_size;
126 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
127 &gtt_size) == -1) {
128 /* If, for whatever reason, we can't actually get the GTT size from the
129 * kernel (too old?) fall back to the aperture size.
130 */
131 anv_perf_warn(NULL, NULL,
132 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
133
134 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
135 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
136 "failed to get aperture size: %m");
137 }
138 }
139
140 device->supports_48bit_addresses = (device->info.gen >= 8) &&
141 gtt_size > (4ULL << 30 /* GiB */);
142
143 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
144
145 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
146 /* When running with an overridden PCI ID, we may get a GTT size from
147 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
148 * address support can still fail. Just clamp the address space size to
149 * 2 GiB if we don't have 48-bit support.
150 */
151 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
152 "not support for 48-bit addresses",
153 __FILE__, __LINE__);
154 heap_size = 2ull << 30;
155 }
156
157 if (heap_size <= 3ull * (1ull << 30)) {
158 /* In this case, everything fits nicely into the 32-bit address space,
159 * so there's no need for supporting 48bit addresses on client-allocated
160 * memory objects.
161 */
162 device->memory.heap_count = 1;
163 device->memory.heaps[0] = (struct anv_memory_heap) {
164 .vma_start = LOW_HEAP_MIN_ADDRESS,
165 .vma_size = LOW_HEAP_SIZE,
166 .size = heap_size,
167 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
168 .supports_48bit_addresses = false,
169 };
170 } else {
171 /* Not everything will fit nicely into a 32-bit address space. In this
172 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
173 * larger 48-bit heap. If we're in this case, then we have a total heap
174 * size larger than 3GiB which most likely means they have 8 GiB of
175 * video memory and so carving off 1 GiB for the 32-bit heap should be
176 * reasonable.
177 */
178 const uint64_t heap_size_32bit = 1ull << 30;
179 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
180
181 assert(device->supports_48bit_addresses);
182
183 device->memory.heap_count = 2;
184 device->memory.heaps[0] = (struct anv_memory_heap) {
185 .vma_start = HIGH_HEAP_MIN_ADDRESS,
186 /* Leave the last 4GiB out of the high vma range, so that no state
187 * base address + size can overflow 48 bits. For more information see
188 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
189 */
190 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
191 .size = heap_size_48bit,
192 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
193 .supports_48bit_addresses = true,
194 };
195 device->memory.heaps[1] = (struct anv_memory_heap) {
196 .vma_start = LOW_HEAP_MIN_ADDRESS,
197 .vma_size = LOW_HEAP_SIZE,
198 .size = heap_size_32bit,
199 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
200 .supports_48bit_addresses = false,
201 };
202 }
203
204 uint32_t type_count = 0;
205 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
206 uint32_t valid_buffer_usage = ~0;
207
208 /* There appears to be a hardware issue in the VF cache where it only
209 * considers the bottom 32 bits of memory addresses. If you happen to
210 * have two vertex buffers which get placed exactly 4 GiB apart and use
211 * them in back-to-back draw calls, you can get collisions. In order to
212 * solve this problem, we require vertex and index buffers be bound to
213 * memory allocated out of the 32-bit heap.
214 */
215 if (device->memory.heaps[heap].supports_48bit_addresses) {
216 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
217 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
218 }
219
220 if (device->info.has_llc) {
221 /* Big core GPUs share LLC with the CPU and thus one memory type can be
222 * both cached and coherent at the same time.
223 */
224 device->memory.types[type_count++] = (struct anv_memory_type) {
225 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
226 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
227 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
228 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
229 .heapIndex = heap,
230 .valid_buffer_usage = valid_buffer_usage,
231 };
232 } else {
233 /* The spec requires that we expose a host-visible, coherent memory
234 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
235 * to give the application a choice between cached, but not coherent and
236 * coherent but uncached (WC though).
237 */
238 device->memory.types[type_count++] = (struct anv_memory_type) {
239 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
240 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
241 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
242 .heapIndex = heap,
243 .valid_buffer_usage = valid_buffer_usage,
244 };
245 device->memory.types[type_count++] = (struct anv_memory_type) {
246 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
247 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
248 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
249 .heapIndex = heap,
250 .valid_buffer_usage = valid_buffer_usage,
251 };
252 }
253 }
254 device->memory.type_count = type_count;
255
256 return VK_SUCCESS;
257 }
258
259 static VkResult
260 anv_physical_device_init_uuids(struct anv_physical_device *device)
261 {
262 const struct build_id_note *note =
263 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
264 if (!note) {
265 return vk_errorf(device->instance, device,
266 VK_ERROR_INITIALIZATION_FAILED,
267 "Failed to find build-id");
268 }
269
270 unsigned build_id_len = build_id_length(note);
271 if (build_id_len < 20) {
272 return vk_errorf(device->instance, device,
273 VK_ERROR_INITIALIZATION_FAILED,
274 "build-id too short. It needs to be a SHA");
275 }
276
277 memcpy(device->driver_build_sha1, build_id_data(note), 20);
278
279 struct mesa_sha1 sha1_ctx;
280 uint8_t sha1[20];
281 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
282
283 /* The pipeline cache UUID is used for determining when a pipeline cache is
284 * invalid. It needs both a driver build and the PCI ID of the device.
285 */
286 _mesa_sha1_init(&sha1_ctx);
287 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
288 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
289 sizeof(device->chipset_id));
290 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
291 sizeof(device->always_use_bindless));
292 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
293 sizeof(device->has_a64_buffer_access));
294 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
295 sizeof(device->has_bindless_images));
296 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
297 sizeof(device->has_bindless_samplers));
298 _mesa_sha1_final(&sha1_ctx, sha1);
299 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
300
301 /* The driver UUID is used for determining sharability of images and memory
302 * between two Vulkan instances in separate processes. People who want to
303 * share memory need to also check the device UUID (below) so all this
304 * needs to be is the build-id.
305 */
306 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
307
308 /* The device UUID uniquely identifies the given device within the machine.
309 * Since we never have more than one device, this doesn't need to be a real
310 * UUID. However, on the off-chance that someone tries to use this to
311 * cache pre-tiled images or something of the like, we use the PCI ID and
312 * some bits of ISL info to ensure that this is safe.
313 */
314 _mesa_sha1_init(&sha1_ctx);
315 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
316 sizeof(device->chipset_id));
317 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
318 sizeof(device->isl_dev.has_bit6_swizzling));
319 _mesa_sha1_final(&sha1_ctx, sha1);
320 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
321
322 return VK_SUCCESS;
323 }
324
325 static void
326 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
327 {
328 #ifdef ENABLE_SHADER_CACHE
329 char renderer[10];
330 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
331 device->chipset_id);
332 assert(len == sizeof(renderer) - 2);
333
334 char timestamp[41];
335 _mesa_sha1_format(timestamp, device->driver_build_sha1);
336
337 const uint64_t driver_flags =
338 brw_get_compiler_config_value(device->compiler);
339 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
340 #else
341 device->disk_cache = NULL;
342 #endif
343 }
344
345 static void
346 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
347 {
348 #ifdef ENABLE_SHADER_CACHE
349 if (device->disk_cache)
350 disk_cache_destroy(device->disk_cache);
351 #else
352 assert(device->disk_cache == NULL);
353 #endif
354 }
355
356 static uint64_t
357 get_available_system_memory()
358 {
359 char *meminfo = os_read_file("/proc/meminfo");
360 if (!meminfo)
361 return 0;
362
363 char *str = strstr(meminfo, "MemAvailable:");
364 if (!str) {
365 free(meminfo);
366 return 0;
367 }
368
369 uint64_t kb_mem_available;
370 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
371 free(meminfo);
372 return kb_mem_available << 10;
373 }
374
375 free(meminfo);
376 return 0;
377 }
378
379 static VkResult
380 anv_physical_device_init(struct anv_physical_device *device,
381 struct anv_instance *instance,
382 drmDevicePtr drm_device)
383 {
384 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
385 const char *path = drm_device->nodes[DRM_NODE_RENDER];
386 VkResult result;
387 int fd;
388 int master_fd = -1;
389
390 brw_process_intel_debug_variable();
391
392 fd = open(path, O_RDWR | O_CLOEXEC);
393 if (fd < 0)
394 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
395
396 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
397 device->instance = instance;
398
399 assert(strlen(path) < ARRAY_SIZE(device->path));
400 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
401
402 if (!gen_get_device_info_from_fd(fd, &device->info)) {
403 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
404 goto fail;
405 }
406 device->chipset_id = device->info.chipset_id;
407 device->no_hw = device->info.no_hw;
408
409 if (getenv("INTEL_NO_HW") != NULL)
410 device->no_hw = true;
411
412 device->pci_info.domain = drm_device->businfo.pci->domain;
413 device->pci_info.bus = drm_device->businfo.pci->bus;
414 device->pci_info.device = drm_device->businfo.pci->dev;
415 device->pci_info.function = drm_device->businfo.pci->func;
416
417 device->name = gen_get_device_name(device->chipset_id);
418
419 if (device->info.is_haswell) {
420 intel_logw("Haswell Vulkan support is incomplete");
421 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
422 intel_logw("Ivy Bridge Vulkan support is incomplete");
423 } else if (device->info.gen == 7 && device->info.is_baytrail) {
424 intel_logw("Bay Trail Vulkan support is incomplete");
425 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
426 /* Gen8-11 fully supported */
427 } else if (device->info.gen == 12) {
428 intel_logw("Vulkan is not yet fully supported on gen12");
429 } else {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INCOMPATIBLE_DRIVER,
432 "Vulkan not yet supported on %s", device->name);
433 goto fail;
434 }
435
436 device->cmd_parser_version = -1;
437 if (device->info.gen == 7) {
438 device->cmd_parser_version =
439 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
440 if (device->cmd_parser_version == -1) {
441 result = vk_errorf(device->instance, device,
442 VK_ERROR_INITIALIZATION_FAILED,
443 "failed to get command parser version");
444 goto fail;
445 }
446 }
447
448 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
449 result = vk_errorf(device->instance, device,
450 VK_ERROR_INITIALIZATION_FAILED,
451 "kernel missing gem wait");
452 goto fail;
453 }
454
455 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
456 result = vk_errorf(device->instance, device,
457 VK_ERROR_INITIALIZATION_FAILED,
458 "kernel missing execbuf2");
459 goto fail;
460 }
461
462 if (!device->info.has_llc &&
463 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
464 result = vk_errorf(device->instance, device,
465 VK_ERROR_INITIALIZATION_FAILED,
466 "kernel missing wc mmap");
467 goto fail;
468 }
469
470 result = anv_physical_device_init_heaps(device, fd);
471 if (result != VK_SUCCESS)
472 goto fail;
473
474 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
475 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
476 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
477 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
478 device->has_syncobj_wait = device->has_syncobj &&
479 anv_gem_supports_syncobj_wait(fd);
480 device->has_context_priority = anv_gem_has_context_priority(fd);
481
482 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
483 && device->supports_48bit_addresses;
484
485 device->has_context_isolation =
486 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
487
488 device->always_use_bindless =
489 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
490
491 /* We first got the A64 messages on broadwell and we can only use them if
492 * we can pass addresses directly into the shader which requires softpin.
493 */
494 device->has_a64_buffer_access = device->info.gen >= 8 &&
495 device->use_softpin;
496
497 /* We first get bindless image access on Skylake and we can only really do
498 * it if we don't have any relocations so we need softpin.
499 */
500 device->has_bindless_images = device->info.gen >= 9 &&
501 device->use_softpin;
502
503 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
504 * because it's just a matter of setting the sampler address in the sample
505 * message header. However, we've not bothered to wire it up for vec4 so
506 * we leave it disabled on gen7.
507 */
508 device->has_bindless_samplers = device->info.gen >= 8;
509
510 device->has_mem_available = get_available_system_memory() != 0;
511
512 /* Starting with Gen10, the timestamp frequency of the command streamer may
513 * vary from one part to another. We can query the value from the kernel.
514 */
515 if (device->info.gen >= 10) {
516 int timestamp_frequency =
517 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
518
519 if (timestamp_frequency < 0)
520 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
521 else
522 device->info.timestamp_frequency = timestamp_frequency;
523 }
524
525 /* GENs prior to 8 do not support EU/Subslice info */
526 if (device->info.gen >= 8) {
527 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
528 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
529
530 /* Without this information, we cannot get the right Braswell
531 * brandstrings, and we have to use conservative numbers for GPGPU on
532 * many platforms, but otherwise, things will just work.
533 */
534 if (device->subslice_total < 1 || device->eu_total < 1) {
535 intel_logw("Kernel 4.1 required to properly query GPU properties");
536 }
537 } else if (device->info.gen == 7) {
538 device->subslice_total = 1 << (device->info.gt - 1);
539 }
540
541 if (device->info.is_cherryview &&
542 device->subslice_total > 0 && device->eu_total > 0) {
543 /* Logical CS threads = EUs per subslice * num threads per EU */
544 uint32_t max_cs_threads =
545 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
546
547 /* Fuse configurations may give more threads than expected, never less. */
548 if (max_cs_threads > device->info.max_cs_threads)
549 device->info.max_cs_threads = max_cs_threads;
550 }
551
552 device->compiler = brw_compiler_create(NULL, &device->info);
553 if (device->compiler == NULL) {
554 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
555 goto fail;
556 }
557 device->compiler->shader_debug_log = compiler_debug_log;
558 device->compiler->shader_perf_log = compiler_perf_log;
559 device->compiler->supports_pull_constants = false;
560 device->compiler->constant_buffer_0_is_relative =
561 device->info.gen < 8 || !device->has_context_isolation;
562 device->compiler->supports_shader_constants = true;
563
564 /* Broadwell PRM says:
565 *
566 * "Before Gen8, there was a historical configuration control field to
567 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
568 * different places: TILECTL[1:0], ARB_MODE[5:4], and
569 * DISP_ARB_CTL[14:13].
570 *
571 * For Gen8 and subsequent generations, the swizzle fields are all
572 * reserved, and the CPU's memory controller performs all address
573 * swizzling modifications."
574 */
575 bool swizzled =
576 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
577
578 isl_device_init(&device->isl_dev, &device->info, swizzled);
579
580 result = anv_physical_device_init_uuids(device);
581 if (result != VK_SUCCESS)
582 goto fail;
583
584 anv_physical_device_init_disk_cache(device);
585
586 if (instance->enabled_extensions.KHR_display) {
587 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
588 if (master_fd >= 0) {
589 /* prod the device with a GETPARAM call which will fail if
590 * we don't have permission to even render on this device
591 */
592 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
593 close(master_fd);
594 master_fd = -1;
595 }
596 }
597 }
598 device->master_fd = master_fd;
599
600 result = anv_init_wsi(device);
601 if (result != VK_SUCCESS) {
602 ralloc_free(device->compiler);
603 anv_physical_device_free_disk_cache(device);
604 goto fail;
605 }
606
607 anv_physical_device_get_supported_extensions(device,
608 &device->supported_extensions);
609
610
611 device->local_fd = fd;
612
613 return VK_SUCCESS;
614
615 fail:
616 close(fd);
617 if (master_fd != -1)
618 close(master_fd);
619 return result;
620 }
621
622 static void
623 anv_physical_device_finish(struct anv_physical_device *device)
624 {
625 anv_finish_wsi(device);
626 anv_physical_device_free_disk_cache(device);
627 ralloc_free(device->compiler);
628 close(device->local_fd);
629 if (device->master_fd >= 0)
630 close(device->master_fd);
631 }
632
633 static void *
634 default_alloc_func(void *pUserData, size_t size, size_t align,
635 VkSystemAllocationScope allocationScope)
636 {
637 return malloc(size);
638 }
639
640 static void *
641 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
642 size_t align, VkSystemAllocationScope allocationScope)
643 {
644 return realloc(pOriginal, size);
645 }
646
647 static void
648 default_free_func(void *pUserData, void *pMemory)
649 {
650 free(pMemory);
651 }
652
653 static const VkAllocationCallbacks default_alloc = {
654 .pUserData = NULL,
655 .pfnAllocation = default_alloc_func,
656 .pfnReallocation = default_realloc_func,
657 .pfnFree = default_free_func,
658 };
659
660 VkResult anv_EnumerateInstanceExtensionProperties(
661 const char* pLayerName,
662 uint32_t* pPropertyCount,
663 VkExtensionProperties* pProperties)
664 {
665 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
666
667 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
668 if (anv_instance_extensions_supported.extensions[i]) {
669 vk_outarray_append(&out, prop) {
670 *prop = anv_instance_extensions[i];
671 }
672 }
673 }
674
675 return vk_outarray_status(&out);
676 }
677
678 VkResult anv_CreateInstance(
679 const VkInstanceCreateInfo* pCreateInfo,
680 const VkAllocationCallbacks* pAllocator,
681 VkInstance* pInstance)
682 {
683 struct anv_instance *instance;
684 VkResult result;
685
686 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
687
688 struct anv_instance_extension_table enabled_extensions = {};
689 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
690 int idx;
691 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
692 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
693 anv_instance_extensions[idx].extensionName) == 0)
694 break;
695 }
696
697 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
698 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
699
700 if (!anv_instance_extensions_supported.extensions[idx])
701 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
702
703 enabled_extensions.extensions[idx] = true;
704 }
705
706 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
707 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
708 if (!instance)
709 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
710
711 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
712
713 if (pAllocator)
714 instance->alloc = *pAllocator;
715 else
716 instance->alloc = default_alloc;
717
718 instance->app_info = (struct anv_app_info) { .api_version = 0 };
719 if (pCreateInfo->pApplicationInfo) {
720 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
721
722 instance->app_info.app_name =
723 vk_strdup(&instance->alloc, app->pApplicationName,
724 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
725 instance->app_info.app_version = app->applicationVersion;
726
727 instance->app_info.engine_name =
728 vk_strdup(&instance->alloc, app->pEngineName,
729 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
730 instance->app_info.engine_version = app->engineVersion;
731
732 instance->app_info.api_version = app->apiVersion;
733 }
734
735 if (instance->app_info.api_version == 0)
736 instance->app_info.api_version = VK_API_VERSION_1_0;
737
738 instance->enabled_extensions = enabled_extensions;
739
740 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
741 /* Vulkan requires that entrypoints for extensions which have not been
742 * enabled must not be advertised.
743 */
744 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
745 &instance->enabled_extensions)) {
746 instance->dispatch.entrypoints[i] = NULL;
747 } else {
748 instance->dispatch.entrypoints[i] =
749 anv_instance_dispatch_table.entrypoints[i];
750 }
751 }
752
753 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
754 /* Vulkan requires that entrypoints for extensions which have not been
755 * enabled must not be advertised.
756 */
757 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
758 &instance->enabled_extensions, NULL)) {
759 instance->device_dispatch.entrypoints[i] = NULL;
760 } else {
761 instance->device_dispatch.entrypoints[i] =
762 anv_device_dispatch_table.entrypoints[i];
763 }
764 }
765
766 instance->physicalDeviceCount = -1;
767
768 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
769 if (result != VK_SUCCESS) {
770 vk_free2(&default_alloc, pAllocator, instance);
771 return vk_error(result);
772 }
773
774 instance->pipeline_cache_enabled =
775 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
776
777 _mesa_locale_init();
778 glsl_type_singleton_init_or_ref();
779
780 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
781
782 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
783 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
784 0, "anv", NULL,
785 instance->app_info.engine_name,
786 instance->app_info.engine_version);
787
788 *pInstance = anv_instance_to_handle(instance);
789
790 return VK_SUCCESS;
791 }
792
793 void anv_DestroyInstance(
794 VkInstance _instance,
795 const VkAllocationCallbacks* pAllocator)
796 {
797 ANV_FROM_HANDLE(anv_instance, instance, _instance);
798
799 if (!instance)
800 return;
801
802 if (instance->physicalDeviceCount > 0) {
803 /* We support at most one physical device. */
804 assert(instance->physicalDeviceCount == 1);
805 anv_physical_device_finish(&instance->physicalDevice);
806 }
807
808 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
809 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
810
811 VG(VALGRIND_DESTROY_MEMPOOL(instance));
812
813 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
814
815 glsl_type_singleton_decref();
816 _mesa_locale_fini();
817
818 driDestroyOptionCache(&instance->dri_options);
819 driDestroyOptionInfo(&instance->available_dri_options);
820
821 vk_free(&instance->alloc, instance);
822 }
823
824 static VkResult
825 anv_enumerate_devices(struct anv_instance *instance)
826 {
827 /* TODO: Check for more devices ? */
828 drmDevicePtr devices[8];
829 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
830 int max_devices;
831
832 instance->physicalDeviceCount = 0;
833
834 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
835 if (max_devices < 1)
836 return VK_ERROR_INCOMPATIBLE_DRIVER;
837
838 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
839 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
840 devices[i]->bustype == DRM_BUS_PCI &&
841 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
842
843 result = anv_physical_device_init(&instance->physicalDevice,
844 instance, devices[i]);
845 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
846 break;
847 }
848 }
849 drmFreeDevices(devices, max_devices);
850
851 if (result == VK_SUCCESS)
852 instance->physicalDeviceCount = 1;
853
854 return result;
855 }
856
857 static VkResult
858 anv_instance_ensure_physical_device(struct anv_instance *instance)
859 {
860 if (instance->physicalDeviceCount < 0) {
861 VkResult result = anv_enumerate_devices(instance);
862 if (result != VK_SUCCESS &&
863 result != VK_ERROR_INCOMPATIBLE_DRIVER)
864 return result;
865 }
866
867 return VK_SUCCESS;
868 }
869
870 VkResult anv_EnumeratePhysicalDevices(
871 VkInstance _instance,
872 uint32_t* pPhysicalDeviceCount,
873 VkPhysicalDevice* pPhysicalDevices)
874 {
875 ANV_FROM_HANDLE(anv_instance, instance, _instance);
876 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
877
878 VkResult result = anv_instance_ensure_physical_device(instance);
879 if (result != VK_SUCCESS)
880 return result;
881
882 if (instance->physicalDeviceCount == 0)
883 return VK_SUCCESS;
884
885 assert(instance->physicalDeviceCount == 1);
886 vk_outarray_append(&out, i) {
887 *i = anv_physical_device_to_handle(&instance->physicalDevice);
888 }
889
890 return vk_outarray_status(&out);
891 }
892
893 VkResult anv_EnumeratePhysicalDeviceGroups(
894 VkInstance _instance,
895 uint32_t* pPhysicalDeviceGroupCount,
896 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
897 {
898 ANV_FROM_HANDLE(anv_instance, instance, _instance);
899 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
900 pPhysicalDeviceGroupCount);
901
902 VkResult result = anv_instance_ensure_physical_device(instance);
903 if (result != VK_SUCCESS)
904 return result;
905
906 if (instance->physicalDeviceCount == 0)
907 return VK_SUCCESS;
908
909 assert(instance->physicalDeviceCount == 1);
910
911 vk_outarray_append(&out, p) {
912 p->physicalDeviceCount = 1;
913 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
914 p->physicalDevices[0] =
915 anv_physical_device_to_handle(&instance->physicalDevice);
916 p->subsetAllocation = false;
917
918 vk_foreach_struct(ext, p->pNext)
919 anv_debug_ignored_stype(ext->sType);
920 }
921
922 return vk_outarray_status(&out);
923 }
924
925 void anv_GetPhysicalDeviceFeatures(
926 VkPhysicalDevice physicalDevice,
927 VkPhysicalDeviceFeatures* pFeatures)
928 {
929 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
930
931 *pFeatures = (VkPhysicalDeviceFeatures) {
932 .robustBufferAccess = true,
933 .fullDrawIndexUint32 = true,
934 .imageCubeArray = true,
935 .independentBlend = true,
936 .geometryShader = true,
937 .tessellationShader = true,
938 .sampleRateShading = true,
939 .dualSrcBlend = true,
940 .logicOp = true,
941 .multiDrawIndirect = true,
942 .drawIndirectFirstInstance = true,
943 .depthClamp = true,
944 .depthBiasClamp = true,
945 .fillModeNonSolid = true,
946 .depthBounds = false,
947 .wideLines = true,
948 .largePoints = true,
949 .alphaToOne = true,
950 .multiViewport = true,
951 .samplerAnisotropy = true,
952 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
953 pdevice->info.is_baytrail,
954 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
955 .textureCompressionBC = true,
956 .occlusionQueryPrecise = true,
957 .pipelineStatisticsQuery = true,
958 .fragmentStoresAndAtomics = true,
959 .shaderTessellationAndGeometryPointSize = true,
960 .shaderImageGatherExtended = true,
961 .shaderStorageImageExtendedFormats = true,
962 .shaderStorageImageMultisample = false,
963 .shaderStorageImageReadWithoutFormat = false,
964 .shaderStorageImageWriteWithoutFormat = true,
965 .shaderUniformBufferArrayDynamicIndexing = true,
966 .shaderSampledImageArrayDynamicIndexing = true,
967 .shaderStorageBufferArrayDynamicIndexing = true,
968 .shaderStorageImageArrayDynamicIndexing = true,
969 .shaderClipDistance = true,
970 .shaderCullDistance = true,
971 .shaderFloat64 = pdevice->info.gen >= 8 &&
972 pdevice->info.has_64bit_types,
973 .shaderInt64 = pdevice->info.gen >= 8 &&
974 pdevice->info.has_64bit_types,
975 .shaderInt16 = pdevice->info.gen >= 8,
976 .shaderResourceMinLod = pdevice->info.gen >= 9,
977 .variableMultisampleRate = true,
978 .inheritedQueries = true,
979 };
980
981 /* We can't do image stores in vec4 shaders */
982 pFeatures->vertexPipelineStoresAndAtomics =
983 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
984 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
985
986 struct anv_app_info *app_info = &pdevice->instance->app_info;
987
988 /* The new DOOM and Wolfenstein games require depthBounds without
989 * checking for it. They seem to run fine without it so just claim it's
990 * there and accept the consequences.
991 */
992 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
993 pFeatures->depthBounds = true;
994 }
995
996 void anv_GetPhysicalDeviceFeatures2(
997 VkPhysicalDevice physicalDevice,
998 VkPhysicalDeviceFeatures2* pFeatures)
999 {
1000 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1001 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1002
1003 vk_foreach_struct(ext, pFeatures->pNext) {
1004 switch (ext->sType) {
1005 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1006 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1007 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1008 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1009 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1010 features->storagePushConstant8 = pdevice->info.gen >= 8;
1011 break;
1012 }
1013
1014 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1015 VkPhysicalDevice16BitStorageFeatures *features =
1016 (VkPhysicalDevice16BitStorageFeatures *)ext;
1017 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1018 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1019 features->storagePushConstant16 = pdevice->info.gen >= 8;
1020 features->storageInputOutput16 = false;
1021 break;
1022 }
1023
1024 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1025 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1026 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1027 features->bufferDeviceAddressCaptureReplay = false;
1028 features->bufferDeviceAddressMultiDevice = false;
1029 break;
1030 }
1031
1032 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1033 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1034 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1035 features->computeDerivativeGroupQuads = true;
1036 features->computeDerivativeGroupLinear = true;
1037 break;
1038 }
1039
1040 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1041 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1042 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1043 features->conditionalRendering = pdevice->info.gen >= 8 ||
1044 pdevice->info.is_haswell;
1045 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1046 pdevice->info.is_haswell;
1047 break;
1048 }
1049
1050 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1051 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1052 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1053 features->depthClipEnable = true;
1054 break;
1055 }
1056
1057 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1058 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1059 features->shaderFloat16 = pdevice->info.gen >= 8;
1060 features->shaderInt8 = pdevice->info.gen >= 8;
1061 break;
1062 }
1063
1064 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1065 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1066 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1067 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1068 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1069 features->fragmentShaderShadingRateInterlock = false;
1070 break;
1071 }
1072
1073 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1074 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1075 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1076 features->hostQueryReset = true;
1077 break;
1078 }
1079
1080 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1081 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1082 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1083 features->shaderInputAttachmentArrayDynamicIndexing = false;
1084 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1085 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1086 features->shaderUniformBufferArrayNonUniformIndexing = false;
1087 features->shaderSampledImageArrayNonUniformIndexing = true;
1088 features->shaderStorageBufferArrayNonUniformIndexing = true;
1089 features->shaderStorageImageArrayNonUniformIndexing = true;
1090 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1091 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1092 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1093 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1094 features->descriptorBindingSampledImageUpdateAfterBind = true;
1095 features->descriptorBindingStorageImageUpdateAfterBind = true;
1096 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1097 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1098 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1099 features->descriptorBindingUpdateUnusedWhilePending = true;
1100 features->descriptorBindingPartiallyBound = true;
1101 features->descriptorBindingVariableDescriptorCount = false;
1102 features->runtimeDescriptorArray = true;
1103 break;
1104 }
1105
1106 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1107 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1108 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1109 features->indexTypeUint8 = true;
1110 break;
1111 }
1112
1113 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1114 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1115 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1116 features->inlineUniformBlock = true;
1117 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1118 break;
1119 }
1120
1121 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1122 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1123 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1124 features->rectangularLines = true;
1125 features->bresenhamLines = true;
1126 features->smoothLines = true;
1127 features->stippledRectangularLines = false;
1128 features->stippledBresenhamLines = true;
1129 features->stippledSmoothLines = false;
1130 break;
1131 }
1132
1133 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1134 VkPhysicalDeviceMultiviewFeatures *features =
1135 (VkPhysicalDeviceMultiviewFeatures *)ext;
1136 features->multiview = true;
1137 features->multiviewGeometryShader = true;
1138 features->multiviewTessellationShader = true;
1139 break;
1140 }
1141
1142 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1143 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1144 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1145 features->imagelessFramebuffer = true;
1146 break;
1147 }
1148
1149 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1150 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1151 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1152 features->pipelineExecutableInfo = true;
1153 break;
1154 }
1155
1156 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1157 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1158 features->protectedMemory = false;
1159 break;
1160 }
1161
1162 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1163 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1164 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1165 features->samplerYcbcrConversion = true;
1166 break;
1167 }
1168
1169 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1170 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1171 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1172 features->scalarBlockLayout = true;
1173 break;
1174 }
1175
1176 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1177 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1178 features->shaderBufferInt64Atomics =
1179 pdevice->info.gen >= 9 && pdevice->use_softpin;
1180 features->shaderSharedInt64Atomics = VK_FALSE;
1181 break;
1182 }
1183
1184 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1185 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1186 features->shaderDemoteToHelperInvocation = true;
1187 break;
1188 }
1189
1190 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1191 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1192 features->shaderDrawParameters = true;
1193 break;
1194 }
1195
1196 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1197 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1198 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1199 features->subgroupSizeControl = true;
1200 features->computeFullSubgroups = true;
1201 break;
1202 }
1203
1204 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1205 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1206 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1207 features->texelBufferAlignment = true;
1208 break;
1209 }
1210
1211 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1212 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1213 features->variablePointersStorageBuffer = true;
1214 features->variablePointers = true;
1215 break;
1216 }
1217
1218 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1219 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1220 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1221 features->transformFeedback = true;
1222 features->geometryStreams = true;
1223 break;
1224 }
1225
1226 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1227 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1228 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1229 features->uniformBufferStandardLayout = true;
1230 break;
1231 }
1232
1233 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1234 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1235 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1236 features->vertexAttributeInstanceRateDivisor = true;
1237 features->vertexAttributeInstanceRateZeroDivisor = true;
1238 break;
1239 }
1240
1241 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1242 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1243 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1244 features->ycbcrImageArrays = true;
1245 break;
1246 }
1247
1248 default:
1249 anv_debug_ignored_stype(ext->sType);
1250 break;
1251 }
1252 }
1253 }
1254
1255 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1256
1257 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1258 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1259
1260 void anv_GetPhysicalDeviceProperties(
1261 VkPhysicalDevice physicalDevice,
1262 VkPhysicalDeviceProperties* pProperties)
1263 {
1264 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1265 const struct gen_device_info *devinfo = &pdevice->info;
1266
1267 /* See assertions made when programming the buffer surface state. */
1268 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1269 (1ul << 30) : (1ul << 27);
1270
1271 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1272 const uint32_t max_textures =
1273 pdevice->has_bindless_images ? UINT16_MAX : 128;
1274 const uint32_t max_samplers =
1275 pdevice->has_bindless_samplers ? UINT16_MAX :
1276 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1277 const uint32_t max_images =
1278 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1279
1280 /* If we can use bindless for everything, claim a high per-stage limit,
1281 * otherwise use the binding table size, minus the slots reserved for
1282 * render targets and one slot for the descriptor buffer. */
1283 const uint32_t max_per_stage =
1284 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1285 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1286
1287 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1288
1289 VkSampleCountFlags sample_counts =
1290 isl_device_get_sample_counts(&pdevice->isl_dev);
1291
1292
1293 VkPhysicalDeviceLimits limits = {
1294 .maxImageDimension1D = (1 << 14),
1295 .maxImageDimension2D = (1 << 14),
1296 .maxImageDimension3D = (1 << 11),
1297 .maxImageDimensionCube = (1 << 14),
1298 .maxImageArrayLayers = (1 << 11),
1299 .maxTexelBufferElements = 128 * 1024 * 1024,
1300 .maxUniformBufferRange = (1ul << 27),
1301 .maxStorageBufferRange = max_raw_buffer_sz,
1302 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1303 .maxMemoryAllocationCount = UINT32_MAX,
1304 .maxSamplerAllocationCount = 64 * 1024,
1305 .bufferImageGranularity = 64, /* A cache line */
1306 .sparseAddressSpaceSize = 0,
1307 .maxBoundDescriptorSets = MAX_SETS,
1308 .maxPerStageDescriptorSamplers = max_samplers,
1309 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1310 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1311 .maxPerStageDescriptorSampledImages = max_textures,
1312 .maxPerStageDescriptorStorageImages = max_images,
1313 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1314 .maxPerStageResources = max_per_stage,
1315 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1316 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1317 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1318 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1319 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1320 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1321 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1322 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1323 .maxVertexInputAttributes = MAX_VBS,
1324 .maxVertexInputBindings = MAX_VBS,
1325 .maxVertexInputAttributeOffset = 2047,
1326 .maxVertexInputBindingStride = 2048,
1327 .maxVertexOutputComponents = 128,
1328 .maxTessellationGenerationLevel = 64,
1329 .maxTessellationPatchSize = 32,
1330 .maxTessellationControlPerVertexInputComponents = 128,
1331 .maxTessellationControlPerVertexOutputComponents = 128,
1332 .maxTessellationControlPerPatchOutputComponents = 128,
1333 .maxTessellationControlTotalOutputComponents = 2048,
1334 .maxTessellationEvaluationInputComponents = 128,
1335 .maxTessellationEvaluationOutputComponents = 128,
1336 .maxGeometryShaderInvocations = 32,
1337 .maxGeometryInputComponents = 64,
1338 .maxGeometryOutputComponents = 128,
1339 .maxGeometryOutputVertices = 256,
1340 .maxGeometryTotalOutputComponents = 1024,
1341 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1342 .maxFragmentOutputAttachments = 8,
1343 .maxFragmentDualSrcAttachments = 1,
1344 .maxFragmentCombinedOutputResources = 8,
1345 .maxComputeSharedMemorySize = 64 * 1024,
1346 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1347 .maxComputeWorkGroupInvocations = max_workgroup_size,
1348 .maxComputeWorkGroupSize = {
1349 max_workgroup_size,
1350 max_workgroup_size,
1351 max_workgroup_size,
1352 },
1353 .subPixelPrecisionBits = 8,
1354 .subTexelPrecisionBits = 8,
1355 .mipmapPrecisionBits = 8,
1356 .maxDrawIndexedIndexValue = UINT32_MAX,
1357 .maxDrawIndirectCount = UINT32_MAX,
1358 .maxSamplerLodBias = 16,
1359 .maxSamplerAnisotropy = 16,
1360 .maxViewports = MAX_VIEWPORTS,
1361 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1362 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1363 .viewportSubPixelBits = 13, /* We take a float? */
1364 .minMemoryMapAlignment = 4096, /* A page */
1365 /* The dataport requires texel alignment so we need to assume a worst
1366 * case of R32G32B32A32 which is 16 bytes.
1367 */
1368 .minTexelBufferOffsetAlignment = 16,
1369 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1370 .minUniformBufferOffsetAlignment = 32,
1371 .minStorageBufferOffsetAlignment = 4,
1372 .minTexelOffset = -8,
1373 .maxTexelOffset = 7,
1374 .minTexelGatherOffset = -32,
1375 .maxTexelGatherOffset = 31,
1376 .minInterpolationOffset = -0.5,
1377 .maxInterpolationOffset = 0.4375,
1378 .subPixelInterpolationOffsetBits = 4,
1379 .maxFramebufferWidth = (1 << 14),
1380 .maxFramebufferHeight = (1 << 14),
1381 .maxFramebufferLayers = (1 << 11),
1382 .framebufferColorSampleCounts = sample_counts,
1383 .framebufferDepthSampleCounts = sample_counts,
1384 .framebufferStencilSampleCounts = sample_counts,
1385 .framebufferNoAttachmentsSampleCounts = sample_counts,
1386 .maxColorAttachments = MAX_RTS,
1387 .sampledImageColorSampleCounts = sample_counts,
1388 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1389 .sampledImageDepthSampleCounts = sample_counts,
1390 .sampledImageStencilSampleCounts = sample_counts,
1391 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1392 .maxSampleMaskWords = 1,
1393 .timestampComputeAndGraphics = true,
1394 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1395 .maxClipDistances = 8,
1396 .maxCullDistances = 8,
1397 .maxCombinedClipAndCullDistances = 8,
1398 .discreteQueuePriorities = 2,
1399 .pointSizeRange = { 0.125, 255.875 },
1400 .lineWidthRange = {
1401 0.0,
1402 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1403 2047.9921875 : 7.9921875,
1404 },
1405 .pointSizeGranularity = (1.0 / 8.0),
1406 .lineWidthGranularity = (1.0 / 128.0),
1407 .strictLines = false,
1408 .standardSampleLocations = true,
1409 .optimalBufferCopyOffsetAlignment = 128,
1410 .optimalBufferCopyRowPitchAlignment = 128,
1411 .nonCoherentAtomSize = 64,
1412 };
1413
1414 *pProperties = (VkPhysicalDeviceProperties) {
1415 .apiVersion = anv_physical_device_api_version(pdevice),
1416 .driverVersion = vk_get_driver_version(),
1417 .vendorID = 0x8086,
1418 .deviceID = pdevice->chipset_id,
1419 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1420 .limits = limits,
1421 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1422 };
1423
1424 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1425 "%s", pdevice->name);
1426 memcpy(pProperties->pipelineCacheUUID,
1427 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1428 }
1429
1430 void anv_GetPhysicalDeviceProperties2(
1431 VkPhysicalDevice physicalDevice,
1432 VkPhysicalDeviceProperties2* pProperties)
1433 {
1434 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1435
1436 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1437
1438 vk_foreach_struct(ext, pProperties->pNext) {
1439 switch (ext->sType) {
1440 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1441 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1442 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1443
1444 /* We support all of the depth resolve modes */
1445 props->supportedDepthResolveModes =
1446 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1447 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1448 VK_RESOLVE_MODE_MIN_BIT_KHR |
1449 VK_RESOLVE_MODE_MAX_BIT_KHR;
1450
1451 /* Average doesn't make sense for stencil so we don't support that */
1452 props->supportedStencilResolveModes =
1453 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1454 if (pdevice->info.gen >= 8) {
1455 /* The advanced stencil resolve modes currently require stencil
1456 * sampling be supported by the hardware.
1457 */
1458 props->supportedStencilResolveModes |=
1459 VK_RESOLVE_MODE_MIN_BIT_KHR |
1460 VK_RESOLVE_MODE_MAX_BIT_KHR;
1461 }
1462
1463 props->independentResolveNone = true;
1464 props->independentResolve = true;
1465 break;
1466 }
1467
1468 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1469 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1470 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1471
1472 /* It's a bit hard to exactly map our implementation to the limits
1473 * described here. The bindless surface handle in the extended
1474 * message descriptors is 20 bits and it's an index into the table of
1475 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1476 * address. Given that most things consume two surface states per
1477 * view (general/sampled for textures and write-only/read-write for
1478 * images), we claim 2^19 things.
1479 *
1480 * For SSBOs, we just use A64 messages so there is no real limit
1481 * there beyond the limit on the total size of a descriptor set.
1482 */
1483 const unsigned max_bindless_views = 1 << 19;
1484
1485 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1486 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1487 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1488 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1489 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1490 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1491 props->robustBufferAccessUpdateAfterBind = true;
1492 props->quadDivergentImplicitLod = false;
1493 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1494 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1495 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1496 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1497 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1498 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1499 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1500 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1501 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1502 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1503 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1504 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1505 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1506 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1507 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1508 break;
1509 }
1510
1511 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1512 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1513 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1514
1515 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1516 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1517 "Intel open-source Mesa driver");
1518
1519 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1520 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1521
1522 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1523 .major = 1,
1524 .minor = 1,
1525 .subminor = 2,
1526 .patch = 0,
1527 };
1528 break;
1529 }
1530
1531 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1532 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1533 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1534 /* Userptr needs page aligned memory. */
1535 props->minImportedHostPointerAlignment = 4096;
1536 break;
1537 }
1538
1539 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1540 VkPhysicalDeviceIDProperties *id_props =
1541 (VkPhysicalDeviceIDProperties *)ext;
1542 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1543 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1544 /* The LUID is for Windows. */
1545 id_props->deviceLUIDValid = false;
1546 break;
1547 }
1548
1549 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1550 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1551 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1552 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1553 props->maxPerStageDescriptorInlineUniformBlocks =
1554 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1555 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1556 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1557 props->maxDescriptorSetInlineUniformBlocks =
1558 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1559 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1560 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1561 break;
1562 }
1563
1564 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1565 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1566 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1567 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1568 * Sampling Rules - Legacy Mode", it says the following:
1569 *
1570 * "Note that the device divides a pixel into a 16x16 array of
1571 * subpixels, referenced by their upper left corners."
1572 *
1573 * This is the only known reference in the PRMs to the subpixel
1574 * precision of line rasterization and a "16x16 array of subpixels"
1575 * implies 4 subpixel precision bits. Empirical testing has shown
1576 * that 4 subpixel precision bits applies to all line rasterization
1577 * types.
1578 */
1579 props->lineSubPixelPrecisionBits = 4;
1580 break;
1581 }
1582
1583 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1584 VkPhysicalDeviceMaintenance3Properties *props =
1585 (VkPhysicalDeviceMaintenance3Properties *)ext;
1586 /* This value doesn't matter for us today as our per-stage
1587 * descriptors are the real limit.
1588 */
1589 props->maxPerSetDescriptors = 1024;
1590 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1591 break;
1592 }
1593
1594 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1595 VkPhysicalDeviceMultiviewProperties *properties =
1596 (VkPhysicalDeviceMultiviewProperties *)ext;
1597 properties->maxMultiviewViewCount = 16;
1598 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1599 break;
1600 }
1601
1602 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1603 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1604 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1605 properties->pciDomain = pdevice->pci_info.domain;
1606 properties->pciBus = pdevice->pci_info.bus;
1607 properties->pciDevice = pdevice->pci_info.device;
1608 properties->pciFunction = pdevice->pci_info.function;
1609 break;
1610 }
1611
1612 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1613 VkPhysicalDevicePointClippingProperties *properties =
1614 (VkPhysicalDevicePointClippingProperties *) ext;
1615 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1616 break;
1617 }
1618
1619 #pragma GCC diagnostic push
1620 #pragma GCC diagnostic ignored "-Wswitch"
1621 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1622 VkPhysicalDevicePresentationPropertiesANDROID *props =
1623 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1624 props->sharedImage = VK_FALSE;
1625 break;
1626 }
1627 #pragma GCC diagnostic pop
1628
1629 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1630 VkPhysicalDeviceProtectedMemoryProperties *props =
1631 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1632 props->protectedNoFault = false;
1633 break;
1634 }
1635
1636 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1637 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1638 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1639
1640 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1641 break;
1642 }
1643
1644 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1645 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1646 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1647 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1648 properties->filterMinmaxSingleComponentFormats = true;
1649 break;
1650 }
1651
1652 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1653 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1654
1655 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1656
1657 VkShaderStageFlags scalar_stages = 0;
1658 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1659 if (pdevice->compiler->scalar_stage[stage])
1660 scalar_stages |= mesa_to_vk_shader_stage(stage);
1661 }
1662 properties->supportedStages = scalar_stages;
1663
1664 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1665 VK_SUBGROUP_FEATURE_VOTE_BIT |
1666 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1667 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1668 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1669 VK_SUBGROUP_FEATURE_QUAD_BIT;
1670 if (pdevice->info.gen >= 8) {
1671 /* TODO: There's no technical reason why these can't be made to
1672 * work on gen7 but they don't at the moment so it's best to leave
1673 * the feature disabled than enabled and broken.
1674 */
1675 properties->supportedOperations |=
1676 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1677 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1678 }
1679 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1680 break;
1681 }
1682
1683 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1684 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1685 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1686 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1687 props->minSubgroupSize = 8;
1688 props->maxSubgroupSize = 32;
1689 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1690 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1691 break;
1692 }
1693 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1694 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1695 properties->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1696 properties->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1697
1698 /* Broadwell does not support HF denorms and there are restrictions
1699 * other gens. According to Kabylake's PRM:
1700 *
1701 * "math - Extended Math Function
1702 * [...]
1703 * Restriction : Half-float denorms are always retained."
1704 */
1705 properties->shaderDenormFlushToZeroFloat16 = false;
1706 properties->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1707 properties->shaderRoundingModeRTEFloat16 = true;
1708 properties->shaderRoundingModeRTZFloat16 = true;
1709 properties->shaderSignedZeroInfNanPreserveFloat16 = true;
1710
1711 properties->shaderDenormFlushToZeroFloat32 = true;
1712 properties->shaderDenormPreserveFloat32 = true;
1713 properties->shaderRoundingModeRTEFloat32 = true;
1714 properties->shaderRoundingModeRTZFloat32 = true;
1715 properties->shaderSignedZeroInfNanPreserveFloat32 = true;
1716
1717 properties->shaderDenormFlushToZeroFloat64 = true;
1718 properties->shaderDenormPreserveFloat64 = true;
1719 properties->shaderRoundingModeRTEFloat64 = true;
1720 properties->shaderRoundingModeRTZFloat64 = true;
1721 properties->shaderSignedZeroInfNanPreserveFloat64 = true;
1722 break;
1723 }
1724
1725 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1726 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1727 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1728
1729 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1730 * Base Address:
1731 *
1732 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1733 * specifies the base address of the first element of the surface,
1734 * computed in software by adding the surface base address to the
1735 * byte offset of the element in the buffer. The base address must
1736 * be aligned to element size."
1737 *
1738 * The typed dataport messages require that things be texel aligned.
1739 * Otherwise, we may just load/store the wrong data or, in the worst
1740 * case, there may be hangs.
1741 */
1742 props->storageTexelBufferOffsetAlignmentBytes = 16;
1743 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1744
1745 /* The sampler, however, is much more forgiving and it can handle
1746 * arbitrary byte alignment for linear and buffer surfaces. It's
1747 * hard to find a good PRM citation for this but years of empirical
1748 * experience demonstrate that this is true.
1749 */
1750 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1751 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1752 break;
1753 }
1754
1755 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1756 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1757 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1758
1759 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1760 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1761 props->maxTransformFeedbackBufferSize = (1ull << 32);
1762 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1763 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1764 props->maxTransformFeedbackBufferDataStride = 2048;
1765 props->transformFeedbackQueries = true;
1766 props->transformFeedbackStreamsLinesTriangles = false;
1767 props->transformFeedbackRasterizationStreamSelect = false;
1768 props->transformFeedbackDraw = true;
1769 break;
1770 }
1771
1772 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1773 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1774 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1775 /* We have to restrict this a bit for multiview */
1776 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1777 break;
1778 }
1779
1780 default:
1781 anv_debug_ignored_stype(ext->sType);
1782 break;
1783 }
1784 }
1785 }
1786
1787 /* We support exactly one queue family. */
1788 static const VkQueueFamilyProperties
1789 anv_queue_family_properties = {
1790 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1791 VK_QUEUE_COMPUTE_BIT |
1792 VK_QUEUE_TRANSFER_BIT,
1793 .queueCount = 1,
1794 .timestampValidBits = 36, /* XXX: Real value here */
1795 .minImageTransferGranularity = { 1, 1, 1 },
1796 };
1797
1798 void anv_GetPhysicalDeviceQueueFamilyProperties(
1799 VkPhysicalDevice physicalDevice,
1800 uint32_t* pCount,
1801 VkQueueFamilyProperties* pQueueFamilyProperties)
1802 {
1803 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1804
1805 vk_outarray_append(&out, p) {
1806 *p = anv_queue_family_properties;
1807 }
1808 }
1809
1810 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1811 VkPhysicalDevice physicalDevice,
1812 uint32_t* pQueueFamilyPropertyCount,
1813 VkQueueFamilyProperties2* pQueueFamilyProperties)
1814 {
1815
1816 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1817
1818 vk_outarray_append(&out, p) {
1819 p->queueFamilyProperties = anv_queue_family_properties;
1820
1821 vk_foreach_struct(s, p->pNext) {
1822 anv_debug_ignored_stype(s->sType);
1823 }
1824 }
1825 }
1826
1827 void anv_GetPhysicalDeviceMemoryProperties(
1828 VkPhysicalDevice physicalDevice,
1829 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1830 {
1831 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1832
1833 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1834 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1835 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1836 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1837 .heapIndex = physical_device->memory.types[i].heapIndex,
1838 };
1839 }
1840
1841 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1842 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1843 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1844 .size = physical_device->memory.heaps[i].size,
1845 .flags = physical_device->memory.heaps[i].flags,
1846 };
1847 }
1848 }
1849
1850 static void
1851 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1852 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1853 {
1854 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1855 uint64_t sys_available = get_available_system_memory();
1856 assert(sys_available > 0);
1857
1858 VkDeviceSize total_heaps_size = 0;
1859 for (size_t i = 0; i < device->memory.heap_count; i++)
1860 total_heaps_size += device->memory.heaps[i].size;
1861
1862 for (size_t i = 0; i < device->memory.heap_count; i++) {
1863 VkDeviceSize heap_size = device->memory.heaps[i].size;
1864 VkDeviceSize heap_used = device->memory.heaps[i].used;
1865 VkDeviceSize heap_budget;
1866
1867 double heap_proportion = (double) heap_size / total_heaps_size;
1868 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1869
1870 /*
1871 * Let's not incite the app to starve the system: report at most 90% of
1872 * available system memory.
1873 */
1874 uint64_t heap_available = sys_available_prop * 9 / 10;
1875 heap_budget = MIN2(heap_size, heap_used + heap_available);
1876
1877 /*
1878 * Round down to the nearest MB
1879 */
1880 heap_budget &= ~((1ull << 20) - 1);
1881
1882 /*
1883 * The heapBudget value must be non-zero for array elements less than
1884 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1885 * value must be less than or equal to VkMemoryHeap::size for each heap.
1886 */
1887 assert(0 < heap_budget && heap_budget <= heap_size);
1888
1889 memoryBudget->heapUsage[i] = heap_used;
1890 memoryBudget->heapBudget[i] = heap_budget;
1891 }
1892
1893 /* The heapBudget and heapUsage values must be zero for array elements
1894 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1895 */
1896 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1897 memoryBudget->heapBudget[i] = 0;
1898 memoryBudget->heapUsage[i] = 0;
1899 }
1900 }
1901
1902 void anv_GetPhysicalDeviceMemoryProperties2(
1903 VkPhysicalDevice physicalDevice,
1904 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1905 {
1906 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1907 &pMemoryProperties->memoryProperties);
1908
1909 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1910 switch (ext->sType) {
1911 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1912 anv_get_memory_budget(physicalDevice, (void*)ext);
1913 break;
1914 default:
1915 anv_debug_ignored_stype(ext->sType);
1916 break;
1917 }
1918 }
1919 }
1920
1921 void
1922 anv_GetDeviceGroupPeerMemoryFeatures(
1923 VkDevice device,
1924 uint32_t heapIndex,
1925 uint32_t localDeviceIndex,
1926 uint32_t remoteDeviceIndex,
1927 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1928 {
1929 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1930 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1931 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1932 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1933 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1934 }
1935
1936 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1937 VkInstance _instance,
1938 const char* pName)
1939 {
1940 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1941
1942 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1943 * when we have to return valid function pointers, NULL, or it's left
1944 * undefined. See the table for exact details.
1945 */
1946 if (pName == NULL)
1947 return NULL;
1948
1949 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1950 if (strcmp(pName, "vk" #entrypoint) == 0) \
1951 return (PFN_vkVoidFunction)anv_##entrypoint
1952
1953 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1954 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1955 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1956 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1957
1958 #undef LOOKUP_ANV_ENTRYPOINT
1959
1960 if (instance == NULL)
1961 return NULL;
1962
1963 int idx = anv_get_instance_entrypoint_index(pName);
1964 if (idx >= 0)
1965 return instance->dispatch.entrypoints[idx];
1966
1967 idx = anv_get_device_entrypoint_index(pName);
1968 if (idx >= 0)
1969 return instance->device_dispatch.entrypoints[idx];
1970
1971 return NULL;
1972 }
1973
1974 /* With version 1+ of the loader interface the ICD should expose
1975 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1976 */
1977 PUBLIC
1978 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1979 VkInstance instance,
1980 const char* pName);
1981
1982 PUBLIC
1983 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1984 VkInstance instance,
1985 const char* pName)
1986 {
1987 return anv_GetInstanceProcAddr(instance, pName);
1988 }
1989
1990 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1991 VkDevice _device,
1992 const char* pName)
1993 {
1994 ANV_FROM_HANDLE(anv_device, device, _device);
1995
1996 if (!device || !pName)
1997 return NULL;
1998
1999 int idx = anv_get_device_entrypoint_index(pName);
2000 if (idx < 0)
2001 return NULL;
2002
2003 return device->dispatch.entrypoints[idx];
2004 }
2005
2006 VkResult
2007 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2008 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2009 const VkAllocationCallbacks* pAllocator,
2010 VkDebugReportCallbackEXT* pCallback)
2011 {
2012 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2013 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2014 pCreateInfo, pAllocator, &instance->alloc,
2015 pCallback);
2016 }
2017
2018 void
2019 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2020 VkDebugReportCallbackEXT _callback,
2021 const VkAllocationCallbacks* pAllocator)
2022 {
2023 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2024 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2025 _callback, pAllocator, &instance->alloc);
2026 }
2027
2028 void
2029 anv_DebugReportMessageEXT(VkInstance _instance,
2030 VkDebugReportFlagsEXT flags,
2031 VkDebugReportObjectTypeEXT objectType,
2032 uint64_t object,
2033 size_t location,
2034 int32_t messageCode,
2035 const char* pLayerPrefix,
2036 const char* pMessage)
2037 {
2038 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2039 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2040 object, location, messageCode, pLayerPrefix, pMessage);
2041 }
2042
2043 static void
2044 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
2045 {
2046 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2047 queue->device = device;
2048 queue->flags = 0;
2049 }
2050
2051 static void
2052 anv_queue_finish(struct anv_queue *queue)
2053 {
2054 }
2055
2056 static struct anv_state
2057 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2058 {
2059 struct anv_state state;
2060
2061 state = anv_state_pool_alloc(pool, size, align);
2062 memcpy(state.map, p, size);
2063
2064 return state;
2065 }
2066
2067 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2068 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2069 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2070 * color as a separate entry /after/ the float color. The layout of this entry
2071 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2072 *
2073 * Since we don't know the format/bpp, we can't make any of the border colors
2074 * containing '1' work for all formats, as it would be in the wrong place for
2075 * some of them. We opt to make 32-bit integers work as this seems like the
2076 * most common option. Fortunately, transparent black works regardless, as
2077 * all zeroes is the same in every bit-size.
2078 */
2079 struct hsw_border_color {
2080 float float32[4];
2081 uint32_t _pad0[12];
2082 uint32_t uint32[4];
2083 uint32_t _pad1[108];
2084 };
2085
2086 struct gen8_border_color {
2087 union {
2088 float float32[4];
2089 uint32_t uint32[4];
2090 };
2091 /* Pad out to 64 bytes */
2092 uint32_t _pad[12];
2093 };
2094
2095 static void
2096 anv_device_init_border_colors(struct anv_device *device)
2097 {
2098 if (device->info.is_haswell) {
2099 static const struct hsw_border_color border_colors[] = {
2100 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2101 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2102 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2103 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2104 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2105 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2106 };
2107
2108 device->border_colors =
2109 anv_state_pool_emit_data(&device->dynamic_state_pool,
2110 sizeof(border_colors), 512, border_colors);
2111 } else {
2112 static const struct gen8_border_color border_colors[] = {
2113 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2114 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2115 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2116 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2117 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2118 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2119 };
2120
2121 device->border_colors =
2122 anv_state_pool_emit_data(&device->dynamic_state_pool,
2123 sizeof(border_colors), 64, border_colors);
2124 }
2125 }
2126
2127 static void
2128 anv_device_init_trivial_batch(struct anv_device *device)
2129 {
2130 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
2131
2132 if (device->instance->physicalDevice.has_exec_async)
2133 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
2134
2135 if (device->instance->physicalDevice.use_softpin)
2136 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
2137
2138 anv_vma_alloc(device, &device->trivial_batch_bo);
2139
2140 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
2141 0, 4096, 0);
2142
2143 struct anv_batch batch = {
2144 .start = map,
2145 .next = map,
2146 .end = map + 4096,
2147 };
2148
2149 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2150 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2151
2152 if (!device->info.has_llc)
2153 gen_clflush_range(map, batch.next - map);
2154
2155 anv_gem_munmap(map, device->trivial_batch_bo.size);
2156 }
2157
2158 VkResult anv_EnumerateDeviceExtensionProperties(
2159 VkPhysicalDevice physicalDevice,
2160 const char* pLayerName,
2161 uint32_t* pPropertyCount,
2162 VkExtensionProperties* pProperties)
2163 {
2164 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2165 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2166
2167 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2168 if (device->supported_extensions.extensions[i]) {
2169 vk_outarray_append(&out, prop) {
2170 *prop = anv_device_extensions[i];
2171 }
2172 }
2173 }
2174
2175 return vk_outarray_status(&out);
2176 }
2177
2178 static void
2179 anv_device_init_dispatch(struct anv_device *device)
2180 {
2181 const struct anv_device_dispatch_table *genX_table;
2182 switch (device->info.gen) {
2183 case 12:
2184 genX_table = &gen12_device_dispatch_table;
2185 break;
2186 case 11:
2187 genX_table = &gen11_device_dispatch_table;
2188 break;
2189 case 10:
2190 genX_table = &gen10_device_dispatch_table;
2191 break;
2192 case 9:
2193 genX_table = &gen9_device_dispatch_table;
2194 break;
2195 case 8:
2196 genX_table = &gen8_device_dispatch_table;
2197 break;
2198 case 7:
2199 if (device->info.is_haswell)
2200 genX_table = &gen75_device_dispatch_table;
2201 else
2202 genX_table = &gen7_device_dispatch_table;
2203 break;
2204 default:
2205 unreachable("unsupported gen\n");
2206 }
2207
2208 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2209 /* Vulkan requires that entrypoints for extensions which have not been
2210 * enabled must not be advertised.
2211 */
2212 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2213 &device->instance->enabled_extensions,
2214 &device->enabled_extensions)) {
2215 device->dispatch.entrypoints[i] = NULL;
2216 } else if (genX_table->entrypoints[i]) {
2217 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2218 } else {
2219 device->dispatch.entrypoints[i] =
2220 anv_device_dispatch_table.entrypoints[i];
2221 }
2222 }
2223 }
2224
2225 static int
2226 vk_priority_to_gen(int priority)
2227 {
2228 switch (priority) {
2229 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2230 return GEN_CONTEXT_LOW_PRIORITY;
2231 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2232 return GEN_CONTEXT_MEDIUM_PRIORITY;
2233 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2234 return GEN_CONTEXT_HIGH_PRIORITY;
2235 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2236 return GEN_CONTEXT_REALTIME_PRIORITY;
2237 default:
2238 unreachable("Invalid priority");
2239 }
2240 }
2241
2242 static void
2243 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2244 {
2245 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2246
2247 if (device->instance->physicalDevice.has_exec_async)
2248 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2249
2250 if (device->instance->physicalDevice.use_softpin)
2251 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2252
2253 anv_vma_alloc(device, &device->hiz_clear_bo);
2254
2255 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2256 0, 4096, 0);
2257
2258 union isl_color_value hiz_clear = { .u32 = { 0, } };
2259 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2260
2261 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2262 anv_gem_munmap(map, device->hiz_clear_bo.size);
2263 }
2264
2265 static bool
2266 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2267 struct anv_block_pool *pool,
2268 uint64_t address)
2269 {
2270 for (uint32_t i = 0; i < pool->nbos; i++) {
2271 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2272 uint32_t bo_size = pool->bos[i].size;
2273 if (address >= bo_address && address < (bo_address + bo_size)) {
2274 *ret = (struct gen_batch_decode_bo) {
2275 .addr = bo_address,
2276 .size = bo_size,
2277 .map = pool->bos[i].map,
2278 };
2279 return true;
2280 }
2281 }
2282 return false;
2283 }
2284
2285 /* Finding a buffer for batch decoding */
2286 static struct gen_batch_decode_bo
2287 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2288 {
2289 struct anv_device *device = v_batch;
2290 struct gen_batch_decode_bo ret_bo = {};
2291
2292 assert(ppgtt);
2293
2294 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2295 return ret_bo;
2296 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2297 return ret_bo;
2298 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2299 return ret_bo;
2300 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2301 return ret_bo;
2302
2303 if (!device->cmd_buffer_being_decoded)
2304 return (struct gen_batch_decode_bo) { };
2305
2306 struct anv_batch_bo **bo;
2307
2308 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2309 /* The decoder zeroes out the top 16 bits, so we need to as well */
2310 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2311
2312 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2313 return (struct gen_batch_decode_bo) {
2314 .addr = bo_address,
2315 .size = (*bo)->bo.size,
2316 .map = (*bo)->bo.map,
2317 };
2318 }
2319 }
2320
2321 return (struct gen_batch_decode_bo) { };
2322 }
2323
2324 VkResult anv_CreateDevice(
2325 VkPhysicalDevice physicalDevice,
2326 const VkDeviceCreateInfo* pCreateInfo,
2327 const VkAllocationCallbacks* pAllocator,
2328 VkDevice* pDevice)
2329 {
2330 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2331 VkResult result;
2332 struct anv_device *device;
2333
2334 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2335
2336 struct anv_device_extension_table enabled_extensions = { };
2337 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2338 int idx;
2339 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2340 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2341 anv_device_extensions[idx].extensionName) == 0)
2342 break;
2343 }
2344
2345 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2346 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2347
2348 if (!physical_device->supported_extensions.extensions[idx])
2349 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2350
2351 enabled_extensions.extensions[idx] = true;
2352 }
2353
2354 /* Check enabled features */
2355 if (pCreateInfo->pEnabledFeatures) {
2356 VkPhysicalDeviceFeatures supported_features;
2357 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2358 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2359 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2360 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2361 for (uint32_t i = 0; i < num_features; i++) {
2362 if (enabled_feature[i] && !supported_feature[i])
2363 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2364 }
2365 }
2366
2367 /* Check requested queues and fail if we are requested to create any
2368 * queues with flags we don't support.
2369 */
2370 assert(pCreateInfo->queueCreateInfoCount > 0);
2371 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2372 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2373 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2374 }
2375
2376 /* Check if client specified queue priority. */
2377 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2378 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2379 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2380
2381 VkQueueGlobalPriorityEXT priority =
2382 queue_priority ? queue_priority->globalPriority :
2383 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2384
2385 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2386 sizeof(*device), 8,
2387 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2388 if (!device)
2389 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2390
2391 if (INTEL_DEBUG & DEBUG_BATCH) {
2392 const unsigned decode_flags =
2393 GEN_BATCH_DECODE_FULL |
2394 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2395 GEN_BATCH_DECODE_OFFSETS |
2396 GEN_BATCH_DECODE_FLOATS;
2397
2398 gen_batch_decode_ctx_init(&device->decoder_ctx,
2399 &physical_device->info,
2400 stderr, decode_flags, NULL,
2401 decode_get_bo, NULL, device);
2402 }
2403
2404 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2405 device->instance = physical_device->instance;
2406 device->chipset_id = physical_device->chipset_id;
2407 device->no_hw = physical_device->no_hw;
2408 device->_lost = false;
2409
2410 if (pAllocator)
2411 device->alloc = *pAllocator;
2412 else
2413 device->alloc = physical_device->instance->alloc;
2414
2415 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2416 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2417 if (device->fd == -1) {
2418 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2419 goto fail_device;
2420 }
2421
2422 device->context_id = anv_gem_create_context(device);
2423 if (device->context_id == -1) {
2424 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2425 goto fail_fd;
2426 }
2427
2428 if (physical_device->use_softpin) {
2429 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2430 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2431 goto fail_fd;
2432 }
2433
2434 /* keep the page with address zero out of the allocator */
2435 struct anv_memory_heap *low_heap =
2436 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2437 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2438 device->vma_lo_available = low_heap->size;
2439
2440 struct anv_memory_heap *high_heap =
2441 &physical_device->memory.heaps[0];
2442 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2443 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2444 high_heap->size;
2445 }
2446
2447 list_inithead(&device->memory_objects);
2448
2449 /* As per spec, the driver implementation may deny requests to acquire
2450 * a priority above the default priority (MEDIUM) if the caller does not
2451 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2452 * is returned.
2453 */
2454 if (physical_device->has_context_priority) {
2455 int err = anv_gem_set_context_param(device->fd, device->context_id,
2456 I915_CONTEXT_PARAM_PRIORITY,
2457 vk_priority_to_gen(priority));
2458 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2459 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2460 goto fail_fd;
2461 }
2462 }
2463
2464 device->info = physical_device->info;
2465 device->isl_dev = physical_device->isl_dev;
2466
2467 /* On Broadwell and later, we can use batch chaining to more efficiently
2468 * implement growing command buffers. Prior to Haswell, the kernel
2469 * command parser gets in the way and we have to fall back to growing
2470 * the batch.
2471 */
2472 device->can_chain_batches = device->info.gen >= 8;
2473
2474 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2475 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2476 device->enabled_extensions = enabled_extensions;
2477
2478 anv_device_init_dispatch(device);
2479
2480 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2481 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2482 goto fail_context_id;
2483 }
2484
2485 pthread_condattr_t condattr;
2486 if (pthread_condattr_init(&condattr) != 0) {
2487 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2488 goto fail_mutex;
2489 }
2490 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2491 pthread_condattr_destroy(&condattr);
2492 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2493 goto fail_mutex;
2494 }
2495 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2496 pthread_condattr_destroy(&condattr);
2497 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2498 goto fail_mutex;
2499 }
2500 pthread_condattr_destroy(&condattr);
2501
2502 uint64_t bo_flags =
2503 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2504 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2505 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2506 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2507
2508 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2509
2510 result = anv_bo_cache_init(&device->bo_cache);
2511 if (result != VK_SUCCESS)
2512 goto fail_batch_bo_pool;
2513
2514 if (!physical_device->use_softpin)
2515 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2516
2517 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2518 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2519 16384,
2520 bo_flags);
2521 if (result != VK_SUCCESS)
2522 goto fail_bo_cache;
2523
2524 result = anv_state_pool_init(&device->instruction_state_pool, device,
2525 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2526 16384,
2527 bo_flags);
2528 if (result != VK_SUCCESS)
2529 goto fail_dynamic_state_pool;
2530
2531 result = anv_state_pool_init(&device->surface_state_pool, device,
2532 SURFACE_STATE_POOL_MIN_ADDRESS,
2533 4096,
2534 bo_flags);
2535 if (result != VK_SUCCESS)
2536 goto fail_instruction_state_pool;
2537
2538 if (physical_device->use_softpin) {
2539 result = anv_state_pool_init(&device->binding_table_pool, device,
2540 BINDING_TABLE_POOL_MIN_ADDRESS,
2541 4096,
2542 bo_flags);
2543 if (result != VK_SUCCESS)
2544 goto fail_surface_state_pool;
2545 }
2546
2547 result = anv_bo_init_new(&device->workaround_bo, device, 4096);
2548 if (result != VK_SUCCESS)
2549 goto fail_binding_table_pool;
2550
2551 if (physical_device->use_softpin)
2552 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2553
2554 if (!anv_vma_alloc(device, &device->workaround_bo))
2555 goto fail_workaround_bo;
2556
2557 anv_device_init_trivial_batch(device);
2558
2559 if (device->info.gen >= 10)
2560 anv_device_init_hiz_clear_value_bo(device);
2561
2562 anv_scratch_pool_init(device, &device->scratch_pool);
2563
2564 anv_queue_init(device, &device->queue);
2565
2566 switch (device->info.gen) {
2567 case 7:
2568 if (!device->info.is_haswell)
2569 result = gen7_init_device_state(device);
2570 else
2571 result = gen75_init_device_state(device);
2572 break;
2573 case 8:
2574 result = gen8_init_device_state(device);
2575 break;
2576 case 9:
2577 result = gen9_init_device_state(device);
2578 break;
2579 case 10:
2580 result = gen10_init_device_state(device);
2581 break;
2582 case 11:
2583 result = gen11_init_device_state(device);
2584 break;
2585 case 12:
2586 result = gen12_init_device_state(device);
2587 break;
2588 default:
2589 /* Shouldn't get here as we don't create physical devices for any other
2590 * gens. */
2591 unreachable("unhandled gen");
2592 }
2593 if (result != VK_SUCCESS)
2594 goto fail_workaround_bo;
2595
2596 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2597
2598 anv_device_init_blorp(device);
2599
2600 anv_device_init_border_colors(device);
2601
2602 *pDevice = anv_device_to_handle(device);
2603
2604 return VK_SUCCESS;
2605
2606 fail_workaround_bo:
2607 anv_queue_finish(&device->queue);
2608 anv_scratch_pool_finish(device, &device->scratch_pool);
2609 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2610 anv_gem_close(device, device->workaround_bo.gem_handle);
2611 fail_binding_table_pool:
2612 if (physical_device->use_softpin)
2613 anv_state_pool_finish(&device->binding_table_pool);
2614 fail_surface_state_pool:
2615 anv_state_pool_finish(&device->surface_state_pool);
2616 fail_instruction_state_pool:
2617 anv_state_pool_finish(&device->instruction_state_pool);
2618 fail_dynamic_state_pool:
2619 anv_state_pool_finish(&device->dynamic_state_pool);
2620 fail_bo_cache:
2621 anv_bo_cache_finish(&device->bo_cache);
2622 fail_batch_bo_pool:
2623 anv_bo_pool_finish(&device->batch_bo_pool);
2624 pthread_cond_destroy(&device->queue_submit);
2625 fail_mutex:
2626 pthread_mutex_destroy(&device->mutex);
2627 fail_context_id:
2628 anv_gem_destroy_context(device, device->context_id);
2629 fail_fd:
2630 close(device->fd);
2631 fail_device:
2632 vk_free(&device->alloc, device);
2633
2634 return result;
2635 }
2636
2637 void anv_DestroyDevice(
2638 VkDevice _device,
2639 const VkAllocationCallbacks* pAllocator)
2640 {
2641 ANV_FROM_HANDLE(anv_device, device, _device);
2642 struct anv_physical_device *physical_device;
2643
2644 if (!device)
2645 return;
2646
2647 physical_device = &device->instance->physicalDevice;
2648
2649 anv_device_finish_blorp(device);
2650
2651 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2652
2653 anv_queue_finish(&device->queue);
2654
2655 #ifdef HAVE_VALGRIND
2656 /* We only need to free these to prevent valgrind errors. The backing
2657 * BO will go away in a couple of lines so we don't actually leak.
2658 */
2659 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2660 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2661 #endif
2662
2663 anv_scratch_pool_finish(device, &device->scratch_pool);
2664
2665 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2666 anv_vma_free(device, &device->workaround_bo);
2667 anv_gem_close(device, device->workaround_bo.gem_handle);
2668
2669 anv_vma_free(device, &device->trivial_batch_bo);
2670 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2671 if (device->info.gen >= 10)
2672 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2673
2674 if (physical_device->use_softpin)
2675 anv_state_pool_finish(&device->binding_table_pool);
2676 anv_state_pool_finish(&device->surface_state_pool);
2677 anv_state_pool_finish(&device->instruction_state_pool);
2678 anv_state_pool_finish(&device->dynamic_state_pool);
2679
2680 anv_bo_cache_finish(&device->bo_cache);
2681
2682 anv_bo_pool_finish(&device->batch_bo_pool);
2683
2684 pthread_cond_destroy(&device->queue_submit);
2685 pthread_mutex_destroy(&device->mutex);
2686
2687 anv_gem_destroy_context(device, device->context_id);
2688
2689 if (INTEL_DEBUG & DEBUG_BATCH)
2690 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2691
2692 close(device->fd);
2693
2694 vk_free(&device->alloc, device);
2695 }
2696
2697 VkResult anv_EnumerateInstanceLayerProperties(
2698 uint32_t* pPropertyCount,
2699 VkLayerProperties* pProperties)
2700 {
2701 if (pProperties == NULL) {
2702 *pPropertyCount = 0;
2703 return VK_SUCCESS;
2704 }
2705
2706 /* None supported at this time */
2707 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2708 }
2709
2710 VkResult anv_EnumerateDeviceLayerProperties(
2711 VkPhysicalDevice physicalDevice,
2712 uint32_t* pPropertyCount,
2713 VkLayerProperties* pProperties)
2714 {
2715 if (pProperties == NULL) {
2716 *pPropertyCount = 0;
2717 return VK_SUCCESS;
2718 }
2719
2720 /* None supported at this time */
2721 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2722 }
2723
2724 void anv_GetDeviceQueue(
2725 VkDevice _device,
2726 uint32_t queueNodeIndex,
2727 uint32_t queueIndex,
2728 VkQueue* pQueue)
2729 {
2730 ANV_FROM_HANDLE(anv_device, device, _device);
2731
2732 assert(queueIndex == 0);
2733
2734 *pQueue = anv_queue_to_handle(&device->queue);
2735 }
2736
2737 void anv_GetDeviceQueue2(
2738 VkDevice _device,
2739 const VkDeviceQueueInfo2* pQueueInfo,
2740 VkQueue* pQueue)
2741 {
2742 ANV_FROM_HANDLE(anv_device, device, _device);
2743
2744 assert(pQueueInfo->queueIndex == 0);
2745
2746 if (pQueueInfo->flags == device->queue.flags)
2747 *pQueue = anv_queue_to_handle(&device->queue);
2748 else
2749 *pQueue = NULL;
2750 }
2751
2752 VkResult
2753 _anv_device_set_lost(struct anv_device *device,
2754 const char *file, int line,
2755 const char *msg, ...)
2756 {
2757 VkResult err;
2758 va_list ap;
2759
2760 device->_lost = true;
2761
2762 va_start(ap, msg);
2763 err = __vk_errorv(device->instance, device,
2764 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2765 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2766 va_end(ap);
2767
2768 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2769 abort();
2770
2771 return err;
2772 }
2773
2774 VkResult
2775 anv_device_query_status(struct anv_device *device)
2776 {
2777 /* This isn't likely as most of the callers of this function already check
2778 * for it. However, it doesn't hurt to check and it potentially lets us
2779 * avoid an ioctl.
2780 */
2781 if (anv_device_is_lost(device))
2782 return VK_ERROR_DEVICE_LOST;
2783
2784 uint32_t active, pending;
2785 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2786 if (ret == -1) {
2787 /* We don't know the real error. */
2788 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2789 }
2790
2791 if (active) {
2792 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2793 } else if (pending) {
2794 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2795 }
2796
2797 return VK_SUCCESS;
2798 }
2799
2800 VkResult
2801 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2802 {
2803 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2804 * Other usages of the BO (such as on different hardware) will not be
2805 * flagged as "busy" by this ioctl. Use with care.
2806 */
2807 int ret = anv_gem_busy(device, bo->gem_handle);
2808 if (ret == 1) {
2809 return VK_NOT_READY;
2810 } else if (ret == -1) {
2811 /* We don't know the real error. */
2812 return anv_device_set_lost(device, "gem wait failed: %m");
2813 }
2814
2815 /* Query for device status after the busy call. If the BO we're checking
2816 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2817 * client because it clearly doesn't have valid data. Yes, this most
2818 * likely means an ioctl, but we just did an ioctl to query the busy status
2819 * so it's no great loss.
2820 */
2821 return anv_device_query_status(device);
2822 }
2823
2824 VkResult
2825 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2826 int64_t timeout)
2827 {
2828 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2829 if (ret == -1 && errno == ETIME) {
2830 return VK_TIMEOUT;
2831 } else if (ret == -1) {
2832 /* We don't know the real error. */
2833 return anv_device_set_lost(device, "gem wait failed: %m");
2834 }
2835
2836 /* Query for device status after the wait. If the BO we're waiting on got
2837 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2838 * because it clearly doesn't have valid data. Yes, this most likely means
2839 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2840 */
2841 return anv_device_query_status(device);
2842 }
2843
2844 VkResult anv_DeviceWaitIdle(
2845 VkDevice _device)
2846 {
2847 ANV_FROM_HANDLE(anv_device, device, _device);
2848 if (anv_device_is_lost(device))
2849 return VK_ERROR_DEVICE_LOST;
2850
2851 struct anv_batch batch;
2852
2853 uint32_t cmds[8];
2854 batch.start = batch.next = cmds;
2855 batch.end = (void *) cmds + sizeof(cmds);
2856
2857 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2858 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2859
2860 return anv_device_submit_simple_batch(device, &batch);
2861 }
2862
2863 bool
2864 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2865 {
2866 if (!(bo->flags & EXEC_OBJECT_PINNED))
2867 return true;
2868
2869 pthread_mutex_lock(&device->vma_mutex);
2870
2871 bo->offset = 0;
2872
2873 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2874 device->vma_hi_available >= bo->size) {
2875 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2876 if (addr) {
2877 bo->offset = gen_canonical_address(addr);
2878 assert(addr == gen_48b_address(bo->offset));
2879 device->vma_hi_available -= bo->size;
2880 }
2881 }
2882
2883 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2884 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2885 if (addr) {
2886 bo->offset = gen_canonical_address(addr);
2887 assert(addr == gen_48b_address(bo->offset));
2888 device->vma_lo_available -= bo->size;
2889 }
2890 }
2891
2892 pthread_mutex_unlock(&device->vma_mutex);
2893
2894 return bo->offset != 0;
2895 }
2896
2897 void
2898 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2899 {
2900 if (!(bo->flags & EXEC_OBJECT_PINNED))
2901 return;
2902
2903 const uint64_t addr_48b = gen_48b_address(bo->offset);
2904
2905 pthread_mutex_lock(&device->vma_mutex);
2906
2907 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2908 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2909 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2910 device->vma_lo_available += bo->size;
2911 } else {
2912 ASSERTED const struct anv_physical_device *physical_device =
2913 &device->instance->physicalDevice;
2914 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2915 addr_48b < (physical_device->memory.heaps[0].vma_start +
2916 physical_device->memory.heaps[0].vma_size));
2917 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2918 device->vma_hi_available += bo->size;
2919 }
2920
2921 pthread_mutex_unlock(&device->vma_mutex);
2922
2923 bo->offset = 0;
2924 }
2925
2926 VkResult
2927 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2928 {
2929 uint32_t gem_handle = anv_gem_create(device, size);
2930 if (!gem_handle)
2931 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2932
2933 anv_bo_init(bo, gem_handle, size);
2934
2935 return VK_SUCCESS;
2936 }
2937
2938 VkResult anv_AllocateMemory(
2939 VkDevice _device,
2940 const VkMemoryAllocateInfo* pAllocateInfo,
2941 const VkAllocationCallbacks* pAllocator,
2942 VkDeviceMemory* pMem)
2943 {
2944 ANV_FROM_HANDLE(anv_device, device, _device);
2945 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2946 struct anv_device_memory *mem;
2947 VkResult result = VK_SUCCESS;
2948
2949 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2950
2951 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2952 assert(pAllocateInfo->allocationSize > 0);
2953
2954 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2955 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2956
2957 /* FINISHME: Fail if allocation request exceeds heap size. */
2958
2959 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2960 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2961 if (mem == NULL)
2962 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2963
2964 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2965 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2966 mem->map = NULL;
2967 mem->map_size = 0;
2968 mem->ahw = NULL;
2969 mem->host_ptr = NULL;
2970
2971 uint64_t bo_flags = 0;
2972
2973 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2974 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2975 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2976
2977 const struct wsi_memory_allocate_info *wsi_info =
2978 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2979 if (wsi_info && wsi_info->implicit_sync) {
2980 /* We need to set the WRITE flag on window system buffers so that GEM
2981 * will know we're writing to them and synchronize uses on other rings
2982 * (eg if the display server uses the blitter ring).
2983 */
2984 bo_flags |= EXEC_OBJECT_WRITE;
2985 } else if (pdevice->has_exec_async) {
2986 bo_flags |= EXEC_OBJECT_ASYNC;
2987 }
2988
2989 if (pdevice->use_softpin)
2990 bo_flags |= EXEC_OBJECT_PINNED;
2991
2992 const VkExportMemoryAllocateInfo *export_info =
2993 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2994
2995 /* Check if we need to support Android HW buffer export. If so,
2996 * create AHardwareBuffer and import memory from it.
2997 */
2998 bool android_export = false;
2999 if (export_info && export_info->handleTypes &
3000 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3001 android_export = true;
3002
3003 /* Android memory import. */
3004 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
3005 vk_find_struct_const(pAllocateInfo->pNext,
3006 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
3007
3008 if (ahw_import_info) {
3009 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3010 if (result != VK_SUCCESS)
3011 goto fail;
3012
3013 goto success;
3014 } else if (android_export) {
3015 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3016 if (result != VK_SUCCESS)
3017 goto fail;
3018
3019 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
3020 .buffer = mem->ahw,
3021 };
3022 result = anv_import_ahw_memory(_device, mem, &import_info);
3023 if (result != VK_SUCCESS)
3024 goto fail;
3025
3026 goto success;
3027 }
3028
3029 const VkImportMemoryFdInfoKHR *fd_info =
3030 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
3031
3032 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3033 * ignored.
3034 */
3035 if (fd_info && fd_info->handleType) {
3036 /* At the moment, we support only the below handle types. */
3037 assert(fd_info->handleType ==
3038 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3039 fd_info->handleType ==
3040 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3041
3042 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
3043 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
3044 if (result != VK_SUCCESS)
3045 goto fail;
3046
3047 VkDeviceSize aligned_alloc_size =
3048 align_u64(pAllocateInfo->allocationSize, 4096);
3049
3050 /* For security purposes, we reject importing the bo if it's smaller
3051 * than the requested allocation size. This prevents a malicious client
3052 * from passing a buffer to a trusted client, lying about the size, and
3053 * telling the trusted client to try and texture from an image that goes
3054 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3055 * in the trusted client. The trusted client can protect itself against
3056 * this sort of attack but only if it can trust the buffer size.
3057 */
3058 if (mem->bo->size < aligned_alloc_size) {
3059 result = vk_errorf(device->instance, device,
3060 VK_ERROR_INVALID_EXTERNAL_HANDLE,
3061 "aligned allocationSize too large for "
3062 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3063 "%"PRIu64"B > %"PRIu64"B",
3064 aligned_alloc_size, mem->bo->size);
3065 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3066 goto fail;
3067 }
3068
3069 /* From the Vulkan spec:
3070 *
3071 * "Importing memory from a file descriptor transfers ownership of
3072 * the file descriptor from the application to the Vulkan
3073 * implementation. The application must not perform any operations on
3074 * the file descriptor after a successful import."
3075 *
3076 * If the import fails, we leave the file descriptor open.
3077 */
3078 close(fd_info->fd);
3079 goto success;
3080 }
3081
3082 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
3083 vk_find_struct_const(pAllocateInfo->pNext,
3084 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
3085 if (host_ptr_info && host_ptr_info->handleType) {
3086 if (host_ptr_info->handleType ==
3087 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3088 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3089 goto fail;
3090 }
3091
3092 assert(host_ptr_info->handleType ==
3093 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3094
3095 result = anv_bo_cache_import_host_ptr(
3096 device, &device->bo_cache, host_ptr_info->pHostPointer,
3097 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
3098
3099 if (result != VK_SUCCESS)
3100 goto fail;
3101
3102 mem->host_ptr = host_ptr_info->pHostPointer;
3103 goto success;
3104 }
3105
3106 /* Regular allocate (not importing memory). */
3107
3108 if (export_info && export_info->handleTypes)
3109 bo_flags |= ANV_BO_EXTERNAL;
3110
3111 result = anv_bo_cache_alloc(device, &device->bo_cache,
3112 pAllocateInfo->allocationSize, bo_flags,
3113 &mem->bo);
3114 if (result != VK_SUCCESS)
3115 goto fail;
3116
3117 const VkMemoryDedicatedAllocateInfo *dedicated_info =
3118 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3119 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3120 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3121
3122 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3123 * the BO. In this case, we have a dedicated allocation.
3124 */
3125 if (image->needs_set_tiling) {
3126 const uint32_t i915_tiling =
3127 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3128 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3129 image->planes[0].surface.isl.row_pitch_B,
3130 i915_tiling);
3131 if (ret) {
3132 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3133 return vk_errorf(device->instance, NULL,
3134 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3135 "failed to set BO tiling: %m");
3136 }
3137 }
3138 }
3139
3140 success:
3141 pthread_mutex_lock(&device->mutex);
3142 list_addtail(&mem->link, &device->memory_objects);
3143 pthread_mutex_unlock(&device->mutex);
3144
3145 *pMem = anv_device_memory_to_handle(mem);
3146
3147 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3148 mem->bo->size);
3149
3150 return VK_SUCCESS;
3151
3152 fail:
3153 vk_free2(&device->alloc, pAllocator, mem);
3154
3155 return result;
3156 }
3157
3158 VkResult anv_GetMemoryFdKHR(
3159 VkDevice device_h,
3160 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3161 int* pFd)
3162 {
3163 ANV_FROM_HANDLE(anv_device, dev, device_h);
3164 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3165
3166 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3167
3168 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3169 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3170
3171 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
3172 }
3173
3174 VkResult anv_GetMemoryFdPropertiesKHR(
3175 VkDevice _device,
3176 VkExternalMemoryHandleTypeFlagBits handleType,
3177 int fd,
3178 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3179 {
3180 ANV_FROM_HANDLE(anv_device, device, _device);
3181 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3182
3183 switch (handleType) {
3184 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3185 /* dma-buf can be imported as any memory type */
3186 pMemoryFdProperties->memoryTypeBits =
3187 (1 << pdevice->memory.type_count) - 1;
3188 return VK_SUCCESS;
3189
3190 default:
3191 /* The valid usage section for this function says:
3192 *
3193 * "handleType must not be one of the handle types defined as
3194 * opaque."
3195 *
3196 * So opaque handle types fall into the default "unsupported" case.
3197 */
3198 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3199 }
3200 }
3201
3202 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3203 VkDevice _device,
3204 VkExternalMemoryHandleTypeFlagBits handleType,
3205 const void* pHostPointer,
3206 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3207 {
3208 ANV_FROM_HANDLE(anv_device, device, _device);
3209
3210 assert(pMemoryHostPointerProperties->sType ==
3211 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3212
3213 switch (handleType) {
3214 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3215 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3216
3217 /* Host memory can be imported as any memory type. */
3218 pMemoryHostPointerProperties->memoryTypeBits =
3219 (1ull << pdevice->memory.type_count) - 1;
3220
3221 return VK_SUCCESS;
3222 }
3223 default:
3224 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3225 }
3226 }
3227
3228 void anv_FreeMemory(
3229 VkDevice _device,
3230 VkDeviceMemory _mem,
3231 const VkAllocationCallbacks* pAllocator)
3232 {
3233 ANV_FROM_HANDLE(anv_device, device, _device);
3234 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3235 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3236
3237 if (mem == NULL)
3238 return;
3239
3240 pthread_mutex_lock(&device->mutex);
3241 list_del(&mem->link);
3242 pthread_mutex_unlock(&device->mutex);
3243
3244 if (mem->map)
3245 anv_UnmapMemory(_device, _mem);
3246
3247 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3248 -mem->bo->size);
3249
3250 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3251
3252 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3253 if (mem->ahw)
3254 AHardwareBuffer_release(mem->ahw);
3255 #endif
3256
3257 vk_free2(&device->alloc, pAllocator, mem);
3258 }
3259
3260 VkResult anv_MapMemory(
3261 VkDevice _device,
3262 VkDeviceMemory _memory,
3263 VkDeviceSize offset,
3264 VkDeviceSize size,
3265 VkMemoryMapFlags flags,
3266 void** ppData)
3267 {
3268 ANV_FROM_HANDLE(anv_device, device, _device);
3269 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3270
3271 if (mem == NULL) {
3272 *ppData = NULL;
3273 return VK_SUCCESS;
3274 }
3275
3276 if (mem->host_ptr) {
3277 *ppData = mem->host_ptr + offset;
3278 return VK_SUCCESS;
3279 }
3280
3281 if (size == VK_WHOLE_SIZE)
3282 size = mem->bo->size - offset;
3283
3284 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3285 *
3286 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3287 * assert(size != 0);
3288 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3289 * equal to the size of the memory minus offset
3290 */
3291 assert(size > 0);
3292 assert(offset + size <= mem->bo->size);
3293
3294 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3295 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3296 * at a time is valid. We could just mmap up front and return an offset
3297 * pointer here, but that may exhaust virtual memory on 32 bit
3298 * userspace. */
3299
3300 uint32_t gem_flags = 0;
3301
3302 if (!device->info.has_llc &&
3303 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3304 gem_flags |= I915_MMAP_WC;
3305
3306 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3307 uint64_t map_offset = offset & ~4095ull;
3308 assert(offset >= map_offset);
3309 uint64_t map_size = (offset + size) - map_offset;
3310
3311 /* Let's map whole pages */
3312 map_size = align_u64(map_size, 4096);
3313
3314 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3315 map_offset, map_size, gem_flags);
3316 if (map == MAP_FAILED)
3317 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3318
3319 mem->map = map;
3320 mem->map_size = map_size;
3321
3322 *ppData = mem->map + (offset - map_offset);
3323
3324 return VK_SUCCESS;
3325 }
3326
3327 void anv_UnmapMemory(
3328 VkDevice _device,
3329 VkDeviceMemory _memory)
3330 {
3331 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3332
3333 if (mem == NULL || mem->host_ptr)
3334 return;
3335
3336 anv_gem_munmap(mem->map, mem->map_size);
3337
3338 mem->map = NULL;
3339 mem->map_size = 0;
3340 }
3341
3342 static void
3343 clflush_mapped_ranges(struct anv_device *device,
3344 uint32_t count,
3345 const VkMappedMemoryRange *ranges)
3346 {
3347 for (uint32_t i = 0; i < count; i++) {
3348 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3349 if (ranges[i].offset >= mem->map_size)
3350 continue;
3351
3352 gen_clflush_range(mem->map + ranges[i].offset,
3353 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3354 }
3355 }
3356
3357 VkResult anv_FlushMappedMemoryRanges(
3358 VkDevice _device,
3359 uint32_t memoryRangeCount,
3360 const VkMappedMemoryRange* pMemoryRanges)
3361 {
3362 ANV_FROM_HANDLE(anv_device, device, _device);
3363
3364 if (device->info.has_llc)
3365 return VK_SUCCESS;
3366
3367 /* Make sure the writes we're flushing have landed. */
3368 __builtin_ia32_mfence();
3369
3370 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3371
3372 return VK_SUCCESS;
3373 }
3374
3375 VkResult anv_InvalidateMappedMemoryRanges(
3376 VkDevice _device,
3377 uint32_t memoryRangeCount,
3378 const VkMappedMemoryRange* pMemoryRanges)
3379 {
3380 ANV_FROM_HANDLE(anv_device, device, _device);
3381
3382 if (device->info.has_llc)
3383 return VK_SUCCESS;
3384
3385 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3386
3387 /* Make sure no reads get moved up above the invalidate. */
3388 __builtin_ia32_mfence();
3389
3390 return VK_SUCCESS;
3391 }
3392
3393 void anv_GetBufferMemoryRequirements(
3394 VkDevice _device,
3395 VkBuffer _buffer,
3396 VkMemoryRequirements* pMemoryRequirements)
3397 {
3398 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3399 ANV_FROM_HANDLE(anv_device, device, _device);
3400 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3401
3402 /* The Vulkan spec (git aaed022) says:
3403 *
3404 * memoryTypeBits is a bitfield and contains one bit set for every
3405 * supported memory type for the resource. The bit `1<<i` is set if and
3406 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3407 * structure for the physical device is supported.
3408 */
3409 uint32_t memory_types = 0;
3410 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3411 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3412 if ((valid_usage & buffer->usage) == buffer->usage)
3413 memory_types |= (1u << i);
3414 }
3415
3416 /* Base alignment requirement of a cache line */
3417 uint32_t alignment = 16;
3418
3419 /* We need an alignment of 32 for pushing UBOs */
3420 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3421 alignment = MAX2(alignment, 32);
3422
3423 pMemoryRequirements->size = buffer->size;
3424 pMemoryRequirements->alignment = alignment;
3425
3426 /* Storage and Uniform buffers should have their size aligned to
3427 * 32-bits to avoid boundary checks when last DWord is not complete.
3428 * This would ensure that not internal padding would be needed for
3429 * 16-bit types.
3430 */
3431 if (device->robust_buffer_access &&
3432 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3433 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3434 pMemoryRequirements->size = align_u64(buffer->size, 4);
3435
3436 pMemoryRequirements->memoryTypeBits = memory_types;
3437 }
3438
3439 void anv_GetBufferMemoryRequirements2(
3440 VkDevice _device,
3441 const VkBufferMemoryRequirementsInfo2* pInfo,
3442 VkMemoryRequirements2* pMemoryRequirements)
3443 {
3444 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3445 &pMemoryRequirements->memoryRequirements);
3446
3447 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3448 switch (ext->sType) {
3449 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3450 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3451 requirements->prefersDedicatedAllocation = false;
3452 requirements->requiresDedicatedAllocation = false;
3453 break;
3454 }
3455
3456 default:
3457 anv_debug_ignored_stype(ext->sType);
3458 break;
3459 }
3460 }
3461 }
3462
3463 void anv_GetImageMemoryRequirements(
3464 VkDevice _device,
3465 VkImage _image,
3466 VkMemoryRequirements* pMemoryRequirements)
3467 {
3468 ANV_FROM_HANDLE(anv_image, image, _image);
3469 ANV_FROM_HANDLE(anv_device, device, _device);
3470 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3471
3472 /* The Vulkan spec (git aaed022) says:
3473 *
3474 * memoryTypeBits is a bitfield and contains one bit set for every
3475 * supported memory type for the resource. The bit `1<<i` is set if and
3476 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3477 * structure for the physical device is supported.
3478 *
3479 * All types are currently supported for images.
3480 */
3481 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3482
3483 /* We must have image allocated or imported at this point. According to the
3484 * specification, external images must have been bound to memory before
3485 * calling GetImageMemoryRequirements.
3486 */
3487 assert(image->size > 0);
3488
3489 pMemoryRequirements->size = image->size;
3490 pMemoryRequirements->alignment = image->alignment;
3491 pMemoryRequirements->memoryTypeBits = memory_types;
3492 }
3493
3494 void anv_GetImageMemoryRequirements2(
3495 VkDevice _device,
3496 const VkImageMemoryRequirementsInfo2* pInfo,
3497 VkMemoryRequirements2* pMemoryRequirements)
3498 {
3499 ANV_FROM_HANDLE(anv_device, device, _device);
3500 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3501
3502 anv_GetImageMemoryRequirements(_device, pInfo->image,
3503 &pMemoryRequirements->memoryRequirements);
3504
3505 vk_foreach_struct_const(ext, pInfo->pNext) {
3506 switch (ext->sType) {
3507 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3508 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3509 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3510 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3511 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3512 plane_reqs->planeAspect);
3513
3514 assert(image->planes[plane].offset == 0);
3515
3516 /* The Vulkan spec (git aaed022) says:
3517 *
3518 * memoryTypeBits is a bitfield and contains one bit set for every
3519 * supported memory type for the resource. The bit `1<<i` is set
3520 * if and only if the memory type `i` in the
3521 * VkPhysicalDeviceMemoryProperties structure for the physical
3522 * device is supported.
3523 *
3524 * All types are currently supported for images.
3525 */
3526 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3527 (1ull << pdevice->memory.type_count) - 1;
3528
3529 /* We must have image allocated or imported at this point. According to the
3530 * specification, external images must have been bound to memory before
3531 * calling GetImageMemoryRequirements.
3532 */
3533 assert(image->planes[plane].size > 0);
3534
3535 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3536 pMemoryRequirements->memoryRequirements.alignment =
3537 image->planes[plane].alignment;
3538 break;
3539 }
3540
3541 default:
3542 anv_debug_ignored_stype(ext->sType);
3543 break;
3544 }
3545 }
3546
3547 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3548 switch (ext->sType) {
3549 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3550 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3551 if (image->needs_set_tiling || image->external_format) {
3552 /* If we need to set the tiling for external consumers, we need a
3553 * dedicated allocation.
3554 *
3555 * See also anv_AllocateMemory.
3556 */
3557 requirements->prefersDedicatedAllocation = true;
3558 requirements->requiresDedicatedAllocation = true;
3559 } else {
3560 requirements->prefersDedicatedAllocation = false;
3561 requirements->requiresDedicatedAllocation = false;
3562 }
3563 break;
3564 }
3565
3566 default:
3567 anv_debug_ignored_stype(ext->sType);
3568 break;
3569 }
3570 }
3571 }
3572
3573 void anv_GetImageSparseMemoryRequirements(
3574 VkDevice device,
3575 VkImage image,
3576 uint32_t* pSparseMemoryRequirementCount,
3577 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3578 {
3579 *pSparseMemoryRequirementCount = 0;
3580 }
3581
3582 void anv_GetImageSparseMemoryRequirements2(
3583 VkDevice device,
3584 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3585 uint32_t* pSparseMemoryRequirementCount,
3586 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3587 {
3588 *pSparseMemoryRequirementCount = 0;
3589 }
3590
3591 void anv_GetDeviceMemoryCommitment(
3592 VkDevice device,
3593 VkDeviceMemory memory,
3594 VkDeviceSize* pCommittedMemoryInBytes)
3595 {
3596 *pCommittedMemoryInBytes = 0;
3597 }
3598
3599 static void
3600 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3601 {
3602 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3603 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3604
3605 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3606
3607 if (mem) {
3608 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3609 buffer->address = (struct anv_address) {
3610 .bo = mem->bo,
3611 .offset = pBindInfo->memoryOffset,
3612 };
3613 } else {
3614 buffer->address = ANV_NULL_ADDRESS;
3615 }
3616 }
3617
3618 VkResult anv_BindBufferMemory(
3619 VkDevice device,
3620 VkBuffer buffer,
3621 VkDeviceMemory memory,
3622 VkDeviceSize memoryOffset)
3623 {
3624 anv_bind_buffer_memory(
3625 &(VkBindBufferMemoryInfo) {
3626 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3627 .buffer = buffer,
3628 .memory = memory,
3629 .memoryOffset = memoryOffset,
3630 });
3631
3632 return VK_SUCCESS;
3633 }
3634
3635 VkResult anv_BindBufferMemory2(
3636 VkDevice device,
3637 uint32_t bindInfoCount,
3638 const VkBindBufferMemoryInfo* pBindInfos)
3639 {
3640 for (uint32_t i = 0; i < bindInfoCount; i++)
3641 anv_bind_buffer_memory(&pBindInfos[i]);
3642
3643 return VK_SUCCESS;
3644 }
3645
3646 VkResult anv_QueueBindSparse(
3647 VkQueue _queue,
3648 uint32_t bindInfoCount,
3649 const VkBindSparseInfo* pBindInfo,
3650 VkFence fence)
3651 {
3652 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3653 if (anv_device_is_lost(queue->device))
3654 return VK_ERROR_DEVICE_LOST;
3655
3656 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3657 }
3658
3659 // Event functions
3660
3661 VkResult anv_CreateEvent(
3662 VkDevice _device,
3663 const VkEventCreateInfo* pCreateInfo,
3664 const VkAllocationCallbacks* pAllocator,
3665 VkEvent* pEvent)
3666 {
3667 ANV_FROM_HANDLE(anv_device, device, _device);
3668 struct anv_state state;
3669 struct anv_event *event;
3670
3671 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3672
3673 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3674 sizeof(*event), 8);
3675 event = state.map;
3676 event->state = state;
3677 event->semaphore = VK_EVENT_RESET;
3678
3679 if (!device->info.has_llc) {
3680 /* Make sure the writes we're flushing have landed. */
3681 __builtin_ia32_mfence();
3682 __builtin_ia32_clflush(event);
3683 }
3684
3685 *pEvent = anv_event_to_handle(event);
3686
3687 return VK_SUCCESS;
3688 }
3689
3690 void anv_DestroyEvent(
3691 VkDevice _device,
3692 VkEvent _event,
3693 const VkAllocationCallbacks* pAllocator)
3694 {
3695 ANV_FROM_HANDLE(anv_device, device, _device);
3696 ANV_FROM_HANDLE(anv_event, event, _event);
3697
3698 if (!event)
3699 return;
3700
3701 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3702 }
3703
3704 VkResult anv_GetEventStatus(
3705 VkDevice _device,
3706 VkEvent _event)
3707 {
3708 ANV_FROM_HANDLE(anv_device, device, _device);
3709 ANV_FROM_HANDLE(anv_event, event, _event);
3710
3711 if (anv_device_is_lost(device))
3712 return VK_ERROR_DEVICE_LOST;
3713
3714 if (!device->info.has_llc) {
3715 /* Invalidate read cache before reading event written by GPU. */
3716 __builtin_ia32_clflush(event);
3717 __builtin_ia32_mfence();
3718
3719 }
3720
3721 return event->semaphore;
3722 }
3723
3724 VkResult anv_SetEvent(
3725 VkDevice _device,
3726 VkEvent _event)
3727 {
3728 ANV_FROM_HANDLE(anv_device, device, _device);
3729 ANV_FROM_HANDLE(anv_event, event, _event);
3730
3731 event->semaphore = VK_EVENT_SET;
3732
3733 if (!device->info.has_llc) {
3734 /* Make sure the writes we're flushing have landed. */
3735 __builtin_ia32_mfence();
3736 __builtin_ia32_clflush(event);
3737 }
3738
3739 return VK_SUCCESS;
3740 }
3741
3742 VkResult anv_ResetEvent(
3743 VkDevice _device,
3744 VkEvent _event)
3745 {
3746 ANV_FROM_HANDLE(anv_device, device, _device);
3747 ANV_FROM_HANDLE(anv_event, event, _event);
3748
3749 event->semaphore = VK_EVENT_RESET;
3750
3751 if (!device->info.has_llc) {
3752 /* Make sure the writes we're flushing have landed. */
3753 __builtin_ia32_mfence();
3754 __builtin_ia32_clflush(event);
3755 }
3756
3757 return VK_SUCCESS;
3758 }
3759
3760 // Buffer functions
3761
3762 VkResult anv_CreateBuffer(
3763 VkDevice _device,
3764 const VkBufferCreateInfo* pCreateInfo,
3765 const VkAllocationCallbacks* pAllocator,
3766 VkBuffer* pBuffer)
3767 {
3768 ANV_FROM_HANDLE(anv_device, device, _device);
3769 struct anv_buffer *buffer;
3770
3771 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3772
3773 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3774 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3775 if (buffer == NULL)
3776 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3777
3778 buffer->size = pCreateInfo->size;
3779 buffer->usage = pCreateInfo->usage;
3780 buffer->address = ANV_NULL_ADDRESS;
3781
3782 *pBuffer = anv_buffer_to_handle(buffer);
3783
3784 return VK_SUCCESS;
3785 }
3786
3787 void anv_DestroyBuffer(
3788 VkDevice _device,
3789 VkBuffer _buffer,
3790 const VkAllocationCallbacks* pAllocator)
3791 {
3792 ANV_FROM_HANDLE(anv_device, device, _device);
3793 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3794
3795 if (!buffer)
3796 return;
3797
3798 vk_free2(&device->alloc, pAllocator, buffer);
3799 }
3800
3801 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3802 VkDevice device,
3803 const VkBufferDeviceAddressInfoEXT* pInfo)
3804 {
3805 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3806
3807 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3808
3809 return anv_address_physical(buffer->address);
3810 }
3811
3812 void
3813 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3814 enum isl_format format,
3815 struct anv_address address,
3816 uint32_t range, uint32_t stride)
3817 {
3818 isl_buffer_fill_state(&device->isl_dev, state.map,
3819 .address = anv_address_physical(address),
3820 .mocs = device->default_mocs,
3821 .size_B = range,
3822 .format = format,
3823 .swizzle = ISL_SWIZZLE_IDENTITY,
3824 .stride_B = stride);
3825 }
3826
3827 void anv_DestroySampler(
3828 VkDevice _device,
3829 VkSampler _sampler,
3830 const VkAllocationCallbacks* pAllocator)
3831 {
3832 ANV_FROM_HANDLE(anv_device, device, _device);
3833 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3834
3835 if (!sampler)
3836 return;
3837
3838 if (sampler->bindless_state.map) {
3839 anv_state_pool_free(&device->dynamic_state_pool,
3840 sampler->bindless_state);
3841 }
3842
3843 vk_free2(&device->alloc, pAllocator, sampler);
3844 }
3845
3846 VkResult anv_CreateFramebuffer(
3847 VkDevice _device,
3848 const VkFramebufferCreateInfo* pCreateInfo,
3849 const VkAllocationCallbacks* pAllocator,
3850 VkFramebuffer* pFramebuffer)
3851 {
3852 ANV_FROM_HANDLE(anv_device, device, _device);
3853 struct anv_framebuffer *framebuffer;
3854
3855 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3856
3857 size_t size = sizeof(*framebuffer);
3858
3859 /* VK_KHR_imageless_framebuffer extension says:
3860 *
3861 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3862 * parameter pAttachments is ignored.
3863 */
3864 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3865 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3866 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3867 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3868 if (framebuffer == NULL)
3869 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3870
3871 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3872 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
3873 framebuffer->attachments[i] = iview;
3874 }
3875 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3876 } else {
3877 assert(device->enabled_extensions.KHR_imageless_framebuffer);
3878 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3879 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3880 if (framebuffer == NULL)
3881 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3882
3883 framebuffer->attachment_count = 0;
3884 }
3885
3886 framebuffer->width = pCreateInfo->width;
3887 framebuffer->height = pCreateInfo->height;
3888 framebuffer->layers = pCreateInfo->layers;
3889
3890 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3891
3892 return VK_SUCCESS;
3893 }
3894
3895 void anv_DestroyFramebuffer(
3896 VkDevice _device,
3897 VkFramebuffer _fb,
3898 const VkAllocationCallbacks* pAllocator)
3899 {
3900 ANV_FROM_HANDLE(anv_device, device, _device);
3901 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3902
3903 if (!fb)
3904 return;
3905
3906 vk_free2(&device->alloc, pAllocator, fb);
3907 }
3908
3909 static const VkTimeDomainEXT anv_time_domains[] = {
3910 VK_TIME_DOMAIN_DEVICE_EXT,
3911 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3912 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3913 };
3914
3915 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3916 VkPhysicalDevice physicalDevice,
3917 uint32_t *pTimeDomainCount,
3918 VkTimeDomainEXT *pTimeDomains)
3919 {
3920 int d;
3921 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3922
3923 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3924 vk_outarray_append(&out, i) {
3925 *i = anv_time_domains[d];
3926 }
3927 }
3928
3929 return vk_outarray_status(&out);
3930 }
3931
3932 static uint64_t
3933 anv_clock_gettime(clockid_t clock_id)
3934 {
3935 struct timespec current;
3936 int ret;
3937
3938 ret = clock_gettime(clock_id, &current);
3939 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3940 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3941 if (ret < 0)
3942 return 0;
3943
3944 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3945 }
3946
3947 #define TIMESTAMP 0x2358
3948
3949 VkResult anv_GetCalibratedTimestampsEXT(
3950 VkDevice _device,
3951 uint32_t timestampCount,
3952 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3953 uint64_t *pTimestamps,
3954 uint64_t *pMaxDeviation)
3955 {
3956 ANV_FROM_HANDLE(anv_device, device, _device);
3957 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3958 int ret;
3959 int d;
3960 uint64_t begin, end;
3961 uint64_t max_clock_period = 0;
3962
3963 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3964
3965 for (d = 0; d < timestampCount; d++) {
3966 switch (pTimestampInfos[d].timeDomain) {
3967 case VK_TIME_DOMAIN_DEVICE_EXT:
3968 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3969 &pTimestamps[d]);
3970
3971 if (ret != 0) {
3972 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3973 "register: %m");
3974 }
3975 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3976 max_clock_period = MAX2(max_clock_period, device_period);
3977 break;
3978 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3979 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3980 max_clock_period = MAX2(max_clock_period, 1);
3981 break;
3982
3983 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3984 pTimestamps[d] = begin;
3985 break;
3986 default:
3987 pTimestamps[d] = 0;
3988 break;
3989 }
3990 }
3991
3992 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3993
3994 /*
3995 * The maximum deviation is the sum of the interval over which we
3996 * perform the sampling and the maximum period of any sampled
3997 * clock. That's because the maximum skew between any two sampled
3998 * clock edges is when the sampled clock with the largest period is
3999 * sampled at the end of that period but right at the beginning of the
4000 * sampling interval and some other clock is sampled right at the
4001 * begining of its sampling period and right at the end of the
4002 * sampling interval. Let's assume the GPU has the longest clock
4003 * period and that the application is sampling GPU and monotonic:
4004 *
4005 * s e
4006 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4007 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4008 *
4009 * g
4010 * 0 1 2 3
4011 * GPU -----_____-----_____-----_____-----_____
4012 *
4013 * m
4014 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4015 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4016 *
4017 * Interval <----------------->
4018 * Deviation <-------------------------->
4019 *
4020 * s = read(raw) 2
4021 * g = read(GPU) 1
4022 * m = read(monotonic) 2
4023 * e = read(raw) b
4024 *
4025 * We round the sample interval up by one tick to cover sampling error
4026 * in the interval clock
4027 */
4028
4029 uint64_t sample_interval = end - begin + 1;
4030
4031 *pMaxDeviation = sample_interval + max_clock_period;
4032
4033 return VK_SUCCESS;
4034 }
4035
4036 /* vk_icd.h does not declare this function, so we declare it here to
4037 * suppress Wmissing-prototypes.
4038 */
4039 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4040 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4041
4042 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4043 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4044 {
4045 /* For the full details on loader interface versioning, see
4046 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4047 * What follows is a condensed summary, to help you navigate the large and
4048 * confusing official doc.
4049 *
4050 * - Loader interface v0 is incompatible with later versions. We don't
4051 * support it.
4052 *
4053 * - In loader interface v1:
4054 * - The first ICD entrypoint called by the loader is
4055 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4056 * entrypoint.
4057 * - The ICD must statically expose no other Vulkan symbol unless it is
4058 * linked with -Bsymbolic.
4059 * - Each dispatchable Vulkan handle created by the ICD must be
4060 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4061 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4062 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4063 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4064 * such loader-managed surfaces.
4065 *
4066 * - Loader interface v2 differs from v1 in:
4067 * - The first ICD entrypoint called by the loader is
4068 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4069 * statically expose this entrypoint.
4070 *
4071 * - Loader interface v3 differs from v2 in:
4072 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4073 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4074 * because the loader no longer does so.
4075 */
4076 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
4077 return VK_SUCCESS;
4078 }