anv: Advertise VK_KHR_shader_subgroup_extended_types
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "util/xmlpool.h"
44 #include "git_sha1.h"
45 #include "vk_util.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57 DRI_CONF_END;
58
59 /* This is probably far to big but it reflects the max size used for messages
60 * in OpenGLs KHR_debug.
61 */
62 #define MAX_DEBUG_MESSAGE_LENGTH 4096
63
64 static void
65 compiler_debug_log(void *data, const char *fmt, ...)
66 {
67 char str[MAX_DEBUG_MESSAGE_LENGTH];
68 struct anv_device *device = (struct anv_device *)data;
69
70 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
71 return;
72
73 va_list args;
74 va_start(args, fmt);
75 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
76 va_end(args);
77
78 vk_debug_report(&device->instance->debug_report_callbacks,
79 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
80 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
81 0, 0, 0, "anv", str);
82 }
83
84 static void
85 compiler_perf_log(void *data, const char *fmt, ...)
86 {
87 va_list args;
88 va_start(args, fmt);
89
90 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
91 intel_logd_v(fmt, args);
92
93 va_end(args);
94 }
95
96 static uint64_t
97 anv_compute_heap_size(int fd, uint64_t gtt_size)
98 {
99 /* Query the total ram from the system */
100 struct sysinfo info;
101 sysinfo(&info);
102
103 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
104
105 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
106 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
107 */
108 uint64_t available_ram;
109 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
110 available_ram = total_ram / 2;
111 else
112 available_ram = total_ram * 3 / 4;
113
114 /* We also want to leave some padding for things we allocate in the driver,
115 * so don't go over 3/4 of the GTT either.
116 */
117 uint64_t available_gtt = gtt_size * 3 / 4;
118
119 return MIN2(available_ram, available_gtt);
120 }
121
122 static VkResult
123 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
124 {
125 uint64_t gtt_size;
126 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
127 &gtt_size) == -1) {
128 /* If, for whatever reason, we can't actually get the GTT size from the
129 * kernel (too old?) fall back to the aperture size.
130 */
131 anv_perf_warn(NULL, NULL,
132 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
133
134 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
135 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
136 "failed to get aperture size: %m");
137 }
138 }
139
140 device->supports_48bit_addresses = (device->info.gen >= 8) &&
141 gtt_size > (4ULL << 30 /* GiB */);
142
143 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
144
145 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
146 /* When running with an overridden PCI ID, we may get a GTT size from
147 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
148 * address support can still fail. Just clamp the address space size to
149 * 2 GiB if we don't have 48-bit support.
150 */
151 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
152 "not support for 48-bit addresses",
153 __FILE__, __LINE__);
154 heap_size = 2ull << 30;
155 }
156
157 if (heap_size <= 3ull * (1ull << 30)) {
158 /* In this case, everything fits nicely into the 32-bit address space,
159 * so there's no need for supporting 48bit addresses on client-allocated
160 * memory objects.
161 */
162 device->memory.heap_count = 1;
163 device->memory.heaps[0] = (struct anv_memory_heap) {
164 .vma_start = LOW_HEAP_MIN_ADDRESS,
165 .vma_size = LOW_HEAP_SIZE,
166 .size = heap_size,
167 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
168 .supports_48bit_addresses = false,
169 };
170 } else {
171 /* Not everything will fit nicely into a 32-bit address space. In this
172 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
173 * larger 48-bit heap. If we're in this case, then we have a total heap
174 * size larger than 3GiB which most likely means they have 8 GiB of
175 * video memory and so carving off 1 GiB for the 32-bit heap should be
176 * reasonable.
177 */
178 const uint64_t heap_size_32bit = 1ull << 30;
179 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
180
181 assert(device->supports_48bit_addresses);
182
183 device->memory.heap_count = 2;
184 device->memory.heaps[0] = (struct anv_memory_heap) {
185 .vma_start = HIGH_HEAP_MIN_ADDRESS,
186 /* Leave the last 4GiB out of the high vma range, so that no state
187 * base address + size can overflow 48 bits. For more information see
188 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
189 */
190 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
191 .size = heap_size_48bit,
192 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
193 .supports_48bit_addresses = true,
194 };
195 device->memory.heaps[1] = (struct anv_memory_heap) {
196 .vma_start = LOW_HEAP_MIN_ADDRESS,
197 .vma_size = LOW_HEAP_SIZE,
198 .size = heap_size_32bit,
199 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
200 .supports_48bit_addresses = false,
201 };
202 }
203
204 uint32_t type_count = 0;
205 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
206 uint32_t valid_buffer_usage = ~0;
207
208 /* There appears to be a hardware issue in the VF cache where it only
209 * considers the bottom 32 bits of memory addresses. If you happen to
210 * have two vertex buffers which get placed exactly 4 GiB apart and use
211 * them in back-to-back draw calls, you can get collisions. In order to
212 * solve this problem, we require vertex and index buffers be bound to
213 * memory allocated out of the 32-bit heap.
214 */
215 if (device->memory.heaps[heap].supports_48bit_addresses) {
216 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
217 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
218 }
219
220 if (device->info.has_llc) {
221 /* Big core GPUs share LLC with the CPU and thus one memory type can be
222 * both cached and coherent at the same time.
223 */
224 device->memory.types[type_count++] = (struct anv_memory_type) {
225 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
226 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
227 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
228 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
229 .heapIndex = heap,
230 .valid_buffer_usage = valid_buffer_usage,
231 };
232 } else {
233 /* The spec requires that we expose a host-visible, coherent memory
234 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
235 * to give the application a choice between cached, but not coherent and
236 * coherent but uncached (WC though).
237 */
238 device->memory.types[type_count++] = (struct anv_memory_type) {
239 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
240 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
241 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
242 .heapIndex = heap,
243 .valid_buffer_usage = valid_buffer_usage,
244 };
245 device->memory.types[type_count++] = (struct anv_memory_type) {
246 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
247 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
248 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
249 .heapIndex = heap,
250 .valid_buffer_usage = valid_buffer_usage,
251 };
252 }
253 }
254 device->memory.type_count = type_count;
255
256 return VK_SUCCESS;
257 }
258
259 static VkResult
260 anv_physical_device_init_uuids(struct anv_physical_device *device)
261 {
262 const struct build_id_note *note =
263 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
264 if (!note) {
265 return vk_errorf(device->instance, device,
266 VK_ERROR_INITIALIZATION_FAILED,
267 "Failed to find build-id");
268 }
269
270 unsigned build_id_len = build_id_length(note);
271 if (build_id_len < 20) {
272 return vk_errorf(device->instance, device,
273 VK_ERROR_INITIALIZATION_FAILED,
274 "build-id too short. It needs to be a SHA");
275 }
276
277 memcpy(device->driver_build_sha1, build_id_data(note), 20);
278
279 struct mesa_sha1 sha1_ctx;
280 uint8_t sha1[20];
281 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
282
283 /* The pipeline cache UUID is used for determining when a pipeline cache is
284 * invalid. It needs both a driver build and the PCI ID of the device.
285 */
286 _mesa_sha1_init(&sha1_ctx);
287 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
288 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
289 sizeof(device->chipset_id));
290 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
291 sizeof(device->always_use_bindless));
292 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
293 sizeof(device->has_a64_buffer_access));
294 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
295 sizeof(device->has_bindless_images));
296 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
297 sizeof(device->has_bindless_samplers));
298 _mesa_sha1_final(&sha1_ctx, sha1);
299 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
300
301 /* The driver UUID is used for determining sharability of images and memory
302 * between two Vulkan instances in separate processes. People who want to
303 * share memory need to also check the device UUID (below) so all this
304 * needs to be is the build-id.
305 */
306 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
307
308 /* The device UUID uniquely identifies the given device within the machine.
309 * Since we never have more than one device, this doesn't need to be a real
310 * UUID. However, on the off-chance that someone tries to use this to
311 * cache pre-tiled images or something of the like, we use the PCI ID and
312 * some bits of ISL info to ensure that this is safe.
313 */
314 _mesa_sha1_init(&sha1_ctx);
315 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
316 sizeof(device->chipset_id));
317 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
318 sizeof(device->isl_dev.has_bit6_swizzling));
319 _mesa_sha1_final(&sha1_ctx, sha1);
320 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
321
322 return VK_SUCCESS;
323 }
324
325 static void
326 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
327 {
328 #ifdef ENABLE_SHADER_CACHE
329 char renderer[10];
330 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
331 device->chipset_id);
332 assert(len == sizeof(renderer) - 2);
333
334 char timestamp[41];
335 _mesa_sha1_format(timestamp, device->driver_build_sha1);
336
337 const uint64_t driver_flags =
338 brw_get_compiler_config_value(device->compiler);
339 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
340 #else
341 device->disk_cache = NULL;
342 #endif
343 }
344
345 static void
346 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
347 {
348 #ifdef ENABLE_SHADER_CACHE
349 if (device->disk_cache)
350 disk_cache_destroy(device->disk_cache);
351 #else
352 assert(device->disk_cache == NULL);
353 #endif
354 }
355
356 static uint64_t
357 get_available_system_memory()
358 {
359 char *meminfo = os_read_file("/proc/meminfo");
360 if (!meminfo)
361 return 0;
362
363 char *str = strstr(meminfo, "MemAvailable:");
364 if (!str) {
365 free(meminfo);
366 return 0;
367 }
368
369 uint64_t kb_mem_available;
370 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
371 free(meminfo);
372 return kb_mem_available << 10;
373 }
374
375 free(meminfo);
376 return 0;
377 }
378
379 static VkResult
380 anv_physical_device_init(struct anv_physical_device *device,
381 struct anv_instance *instance,
382 drmDevicePtr drm_device)
383 {
384 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
385 const char *path = drm_device->nodes[DRM_NODE_RENDER];
386 VkResult result;
387 int fd;
388 int master_fd = -1;
389
390 brw_process_intel_debug_variable();
391
392 fd = open(path, O_RDWR | O_CLOEXEC);
393 if (fd < 0)
394 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
395
396 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
397 device->instance = instance;
398
399 assert(strlen(path) < ARRAY_SIZE(device->path));
400 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
401
402 if (!gen_get_device_info_from_fd(fd, &device->info)) {
403 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
404 goto fail;
405 }
406 device->chipset_id = device->info.chipset_id;
407 device->no_hw = device->info.no_hw;
408
409 if (getenv("INTEL_NO_HW") != NULL)
410 device->no_hw = true;
411
412 device->pci_info.domain = drm_device->businfo.pci->domain;
413 device->pci_info.bus = drm_device->businfo.pci->bus;
414 device->pci_info.device = drm_device->businfo.pci->dev;
415 device->pci_info.function = drm_device->businfo.pci->func;
416
417 device->name = gen_get_device_name(device->chipset_id);
418
419 if (device->info.is_haswell) {
420 intel_logw("Haswell Vulkan support is incomplete");
421 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
422 intel_logw("Ivy Bridge Vulkan support is incomplete");
423 } else if (device->info.gen == 7 && device->info.is_baytrail) {
424 intel_logw("Bay Trail Vulkan support is incomplete");
425 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
426 /* Gen8-11 fully supported */
427 } else if (device->info.gen == 12) {
428 intel_logw("Vulkan is not yet fully supported on gen12");
429 } else {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INCOMPATIBLE_DRIVER,
432 "Vulkan not yet supported on %s", device->name);
433 goto fail;
434 }
435
436 device->cmd_parser_version = -1;
437 if (device->info.gen == 7) {
438 device->cmd_parser_version =
439 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
440 if (device->cmd_parser_version == -1) {
441 result = vk_errorf(device->instance, device,
442 VK_ERROR_INITIALIZATION_FAILED,
443 "failed to get command parser version");
444 goto fail;
445 }
446 }
447
448 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
449 result = vk_errorf(device->instance, device,
450 VK_ERROR_INITIALIZATION_FAILED,
451 "kernel missing gem wait");
452 goto fail;
453 }
454
455 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
456 result = vk_errorf(device->instance, device,
457 VK_ERROR_INITIALIZATION_FAILED,
458 "kernel missing execbuf2");
459 goto fail;
460 }
461
462 if (!device->info.has_llc &&
463 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
464 result = vk_errorf(device->instance, device,
465 VK_ERROR_INITIALIZATION_FAILED,
466 "kernel missing wc mmap");
467 goto fail;
468 }
469
470 result = anv_physical_device_init_heaps(device, fd);
471 if (result != VK_SUCCESS)
472 goto fail;
473
474 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
475 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
476 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
477 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
478 device->has_syncobj_wait = device->has_syncobj &&
479 anv_gem_supports_syncobj_wait(fd);
480 device->has_context_priority = anv_gem_has_context_priority(fd);
481
482 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
483 && device->supports_48bit_addresses;
484
485 device->has_context_isolation =
486 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
487
488 device->always_use_bindless =
489 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
490
491 /* We first got the A64 messages on broadwell and we can only use them if
492 * we can pass addresses directly into the shader which requires softpin.
493 */
494 device->has_a64_buffer_access = device->info.gen >= 8 &&
495 device->use_softpin;
496
497 /* We first get bindless image access on Skylake and we can only really do
498 * it if we don't have any relocations so we need softpin.
499 */
500 device->has_bindless_images = device->info.gen >= 9 &&
501 device->use_softpin;
502
503 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
504 * because it's just a matter of setting the sampler address in the sample
505 * message header. However, we've not bothered to wire it up for vec4 so
506 * we leave it disabled on gen7.
507 */
508 device->has_bindless_samplers = device->info.gen >= 8;
509
510 device->has_mem_available = get_available_system_memory() != 0;
511
512 /* Starting with Gen10, the timestamp frequency of the command streamer may
513 * vary from one part to another. We can query the value from the kernel.
514 */
515 if (device->info.gen >= 10) {
516 int timestamp_frequency =
517 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
518
519 if (timestamp_frequency < 0)
520 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
521 else
522 device->info.timestamp_frequency = timestamp_frequency;
523 }
524
525 /* GENs prior to 8 do not support EU/Subslice info */
526 if (device->info.gen >= 8) {
527 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
528 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
529
530 /* Without this information, we cannot get the right Braswell
531 * brandstrings, and we have to use conservative numbers for GPGPU on
532 * many platforms, but otherwise, things will just work.
533 */
534 if (device->subslice_total < 1 || device->eu_total < 1) {
535 intel_logw("Kernel 4.1 required to properly query GPU properties");
536 }
537 } else if (device->info.gen == 7) {
538 device->subslice_total = 1 << (device->info.gt - 1);
539 }
540
541 if (device->info.is_cherryview &&
542 device->subslice_total > 0 && device->eu_total > 0) {
543 /* Logical CS threads = EUs per subslice * num threads per EU */
544 uint32_t max_cs_threads =
545 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
546
547 /* Fuse configurations may give more threads than expected, never less. */
548 if (max_cs_threads > device->info.max_cs_threads)
549 device->info.max_cs_threads = max_cs_threads;
550 }
551
552 device->compiler = brw_compiler_create(NULL, &device->info);
553 if (device->compiler == NULL) {
554 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
555 goto fail;
556 }
557 device->compiler->shader_debug_log = compiler_debug_log;
558 device->compiler->shader_perf_log = compiler_perf_log;
559 device->compiler->supports_pull_constants = false;
560 device->compiler->constant_buffer_0_is_relative =
561 device->info.gen < 8 || !device->has_context_isolation;
562 device->compiler->supports_shader_constants = true;
563
564 /* Broadwell PRM says:
565 *
566 * "Before Gen8, there was a historical configuration control field to
567 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
568 * different places: TILECTL[1:0], ARB_MODE[5:4], and
569 * DISP_ARB_CTL[14:13].
570 *
571 * For Gen8 and subsequent generations, the swizzle fields are all
572 * reserved, and the CPU's memory controller performs all address
573 * swizzling modifications."
574 */
575 bool swizzled =
576 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
577
578 isl_device_init(&device->isl_dev, &device->info, swizzled);
579
580 result = anv_physical_device_init_uuids(device);
581 if (result != VK_SUCCESS)
582 goto fail;
583
584 anv_physical_device_init_disk_cache(device);
585
586 if (instance->enabled_extensions.KHR_display) {
587 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
588 if (master_fd >= 0) {
589 /* prod the device with a GETPARAM call which will fail if
590 * we don't have permission to even render on this device
591 */
592 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
593 close(master_fd);
594 master_fd = -1;
595 }
596 }
597 }
598 device->master_fd = master_fd;
599
600 result = anv_init_wsi(device);
601 if (result != VK_SUCCESS) {
602 ralloc_free(device->compiler);
603 anv_physical_device_free_disk_cache(device);
604 goto fail;
605 }
606
607 anv_physical_device_get_supported_extensions(device,
608 &device->supported_extensions);
609
610
611 device->local_fd = fd;
612
613 return VK_SUCCESS;
614
615 fail:
616 close(fd);
617 if (master_fd != -1)
618 close(master_fd);
619 return result;
620 }
621
622 static void
623 anv_physical_device_finish(struct anv_physical_device *device)
624 {
625 anv_finish_wsi(device);
626 anv_physical_device_free_disk_cache(device);
627 ralloc_free(device->compiler);
628 close(device->local_fd);
629 if (device->master_fd >= 0)
630 close(device->master_fd);
631 }
632
633 static void *
634 default_alloc_func(void *pUserData, size_t size, size_t align,
635 VkSystemAllocationScope allocationScope)
636 {
637 return malloc(size);
638 }
639
640 static void *
641 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
642 size_t align, VkSystemAllocationScope allocationScope)
643 {
644 return realloc(pOriginal, size);
645 }
646
647 static void
648 default_free_func(void *pUserData, void *pMemory)
649 {
650 free(pMemory);
651 }
652
653 static const VkAllocationCallbacks default_alloc = {
654 .pUserData = NULL,
655 .pfnAllocation = default_alloc_func,
656 .pfnReallocation = default_realloc_func,
657 .pfnFree = default_free_func,
658 };
659
660 VkResult anv_EnumerateInstanceExtensionProperties(
661 const char* pLayerName,
662 uint32_t* pPropertyCount,
663 VkExtensionProperties* pProperties)
664 {
665 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
666
667 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
668 if (anv_instance_extensions_supported.extensions[i]) {
669 vk_outarray_append(&out, prop) {
670 *prop = anv_instance_extensions[i];
671 }
672 }
673 }
674
675 return vk_outarray_status(&out);
676 }
677
678 VkResult anv_CreateInstance(
679 const VkInstanceCreateInfo* pCreateInfo,
680 const VkAllocationCallbacks* pAllocator,
681 VkInstance* pInstance)
682 {
683 struct anv_instance *instance;
684 VkResult result;
685
686 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
687
688 struct anv_instance_extension_table enabled_extensions = {};
689 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
690 int idx;
691 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
692 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
693 anv_instance_extensions[idx].extensionName) == 0)
694 break;
695 }
696
697 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
698 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
699
700 if (!anv_instance_extensions_supported.extensions[idx])
701 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
702
703 enabled_extensions.extensions[idx] = true;
704 }
705
706 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
707 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
708 if (!instance)
709 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
710
711 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
712
713 if (pAllocator)
714 instance->alloc = *pAllocator;
715 else
716 instance->alloc = default_alloc;
717
718 instance->app_info = (struct anv_app_info) { .api_version = 0 };
719 if (pCreateInfo->pApplicationInfo) {
720 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
721
722 instance->app_info.app_name =
723 vk_strdup(&instance->alloc, app->pApplicationName,
724 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
725 instance->app_info.app_version = app->applicationVersion;
726
727 instance->app_info.engine_name =
728 vk_strdup(&instance->alloc, app->pEngineName,
729 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
730 instance->app_info.engine_version = app->engineVersion;
731
732 instance->app_info.api_version = app->apiVersion;
733 }
734
735 if (instance->app_info.api_version == 0)
736 instance->app_info.api_version = VK_API_VERSION_1_0;
737
738 instance->enabled_extensions = enabled_extensions;
739
740 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
741 /* Vulkan requires that entrypoints for extensions which have not been
742 * enabled must not be advertised.
743 */
744 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
745 &instance->enabled_extensions)) {
746 instance->dispatch.entrypoints[i] = NULL;
747 } else {
748 instance->dispatch.entrypoints[i] =
749 anv_instance_dispatch_table.entrypoints[i];
750 }
751 }
752
753 struct anv_physical_device *pdevice = &instance->physicalDevice;
754 for (unsigned i = 0; i < ARRAY_SIZE(pdevice->dispatch.entrypoints); i++) {
755 /* Vulkan requires that entrypoints for extensions which have not been
756 * enabled must not be advertised.
757 */
758 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
759 &instance->enabled_extensions)) {
760 pdevice->dispatch.entrypoints[i] = NULL;
761 } else {
762 pdevice->dispatch.entrypoints[i] =
763 anv_physical_device_dispatch_table.entrypoints[i];
764 }
765 }
766
767 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
768 /* Vulkan requires that entrypoints for extensions which have not been
769 * enabled must not be advertised.
770 */
771 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
772 &instance->enabled_extensions, NULL)) {
773 instance->device_dispatch.entrypoints[i] = NULL;
774 } else {
775 instance->device_dispatch.entrypoints[i] =
776 anv_device_dispatch_table.entrypoints[i];
777 }
778 }
779
780 instance->physicalDeviceCount = -1;
781
782 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
783 if (result != VK_SUCCESS) {
784 vk_free2(&default_alloc, pAllocator, instance);
785 return vk_error(result);
786 }
787
788 instance->pipeline_cache_enabled =
789 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
790
791 _mesa_locale_init();
792 glsl_type_singleton_init_or_ref();
793
794 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
795
796 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
797 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
798 0, "anv", NULL,
799 instance->app_info.engine_name,
800 instance->app_info.engine_version);
801
802 *pInstance = anv_instance_to_handle(instance);
803
804 return VK_SUCCESS;
805 }
806
807 void anv_DestroyInstance(
808 VkInstance _instance,
809 const VkAllocationCallbacks* pAllocator)
810 {
811 ANV_FROM_HANDLE(anv_instance, instance, _instance);
812
813 if (!instance)
814 return;
815
816 if (instance->physicalDeviceCount > 0) {
817 /* We support at most one physical device. */
818 assert(instance->physicalDeviceCount == 1);
819 anv_physical_device_finish(&instance->physicalDevice);
820 }
821
822 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
823 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
824
825 VG(VALGRIND_DESTROY_MEMPOOL(instance));
826
827 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
828
829 glsl_type_singleton_decref();
830 _mesa_locale_fini();
831
832 driDestroyOptionCache(&instance->dri_options);
833 driDestroyOptionInfo(&instance->available_dri_options);
834
835 vk_free(&instance->alloc, instance);
836 }
837
838 static VkResult
839 anv_enumerate_devices(struct anv_instance *instance)
840 {
841 /* TODO: Check for more devices ? */
842 drmDevicePtr devices[8];
843 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
844 int max_devices;
845
846 instance->physicalDeviceCount = 0;
847
848 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
849 if (max_devices < 1)
850 return VK_ERROR_INCOMPATIBLE_DRIVER;
851
852 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
853 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
854 devices[i]->bustype == DRM_BUS_PCI &&
855 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
856
857 result = anv_physical_device_init(&instance->physicalDevice,
858 instance, devices[i]);
859 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
860 break;
861 }
862 }
863 drmFreeDevices(devices, max_devices);
864
865 if (result == VK_SUCCESS)
866 instance->physicalDeviceCount = 1;
867
868 return result;
869 }
870
871 static VkResult
872 anv_instance_ensure_physical_device(struct anv_instance *instance)
873 {
874 if (instance->physicalDeviceCount < 0) {
875 VkResult result = anv_enumerate_devices(instance);
876 if (result != VK_SUCCESS &&
877 result != VK_ERROR_INCOMPATIBLE_DRIVER)
878 return result;
879 }
880
881 return VK_SUCCESS;
882 }
883
884 VkResult anv_EnumeratePhysicalDevices(
885 VkInstance _instance,
886 uint32_t* pPhysicalDeviceCount,
887 VkPhysicalDevice* pPhysicalDevices)
888 {
889 ANV_FROM_HANDLE(anv_instance, instance, _instance);
890 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
891
892 VkResult result = anv_instance_ensure_physical_device(instance);
893 if (result != VK_SUCCESS)
894 return result;
895
896 if (instance->physicalDeviceCount == 0)
897 return VK_SUCCESS;
898
899 assert(instance->physicalDeviceCount == 1);
900 vk_outarray_append(&out, i) {
901 *i = anv_physical_device_to_handle(&instance->physicalDevice);
902 }
903
904 return vk_outarray_status(&out);
905 }
906
907 VkResult anv_EnumeratePhysicalDeviceGroups(
908 VkInstance _instance,
909 uint32_t* pPhysicalDeviceGroupCount,
910 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
911 {
912 ANV_FROM_HANDLE(anv_instance, instance, _instance);
913 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
914 pPhysicalDeviceGroupCount);
915
916 VkResult result = anv_instance_ensure_physical_device(instance);
917 if (result != VK_SUCCESS)
918 return result;
919
920 if (instance->physicalDeviceCount == 0)
921 return VK_SUCCESS;
922
923 assert(instance->physicalDeviceCount == 1);
924
925 vk_outarray_append(&out, p) {
926 p->physicalDeviceCount = 1;
927 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
928 p->physicalDevices[0] =
929 anv_physical_device_to_handle(&instance->physicalDevice);
930 p->subsetAllocation = false;
931
932 vk_foreach_struct(ext, p->pNext)
933 anv_debug_ignored_stype(ext->sType);
934 }
935
936 return vk_outarray_status(&out);
937 }
938
939 void anv_GetPhysicalDeviceFeatures(
940 VkPhysicalDevice physicalDevice,
941 VkPhysicalDeviceFeatures* pFeatures)
942 {
943 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
944
945 *pFeatures = (VkPhysicalDeviceFeatures) {
946 .robustBufferAccess = true,
947 .fullDrawIndexUint32 = true,
948 .imageCubeArray = true,
949 .independentBlend = true,
950 .geometryShader = true,
951 .tessellationShader = true,
952 .sampleRateShading = true,
953 .dualSrcBlend = true,
954 .logicOp = true,
955 .multiDrawIndirect = true,
956 .drawIndirectFirstInstance = true,
957 .depthClamp = true,
958 .depthBiasClamp = true,
959 .fillModeNonSolid = true,
960 .depthBounds = false,
961 .wideLines = true,
962 .largePoints = true,
963 .alphaToOne = true,
964 .multiViewport = true,
965 .samplerAnisotropy = true,
966 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
967 pdevice->info.is_baytrail,
968 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
969 .textureCompressionBC = true,
970 .occlusionQueryPrecise = true,
971 .pipelineStatisticsQuery = true,
972 .fragmentStoresAndAtomics = true,
973 .shaderTessellationAndGeometryPointSize = true,
974 .shaderImageGatherExtended = true,
975 .shaderStorageImageExtendedFormats = true,
976 .shaderStorageImageMultisample = false,
977 .shaderStorageImageReadWithoutFormat = false,
978 .shaderStorageImageWriteWithoutFormat = true,
979 .shaderUniformBufferArrayDynamicIndexing = true,
980 .shaderSampledImageArrayDynamicIndexing = true,
981 .shaderStorageBufferArrayDynamicIndexing = true,
982 .shaderStorageImageArrayDynamicIndexing = true,
983 .shaderClipDistance = true,
984 .shaderCullDistance = true,
985 .shaderFloat64 = pdevice->info.gen >= 8 &&
986 pdevice->info.has_64bit_types,
987 .shaderInt64 = pdevice->info.gen >= 8 &&
988 pdevice->info.has_64bit_types,
989 .shaderInt16 = pdevice->info.gen >= 8,
990 .shaderResourceMinLod = pdevice->info.gen >= 9,
991 .variableMultisampleRate = true,
992 .inheritedQueries = true,
993 };
994
995 /* We can't do image stores in vec4 shaders */
996 pFeatures->vertexPipelineStoresAndAtomics =
997 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
998 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
999
1000 struct anv_app_info *app_info = &pdevice->instance->app_info;
1001
1002 /* The new DOOM and Wolfenstein games require depthBounds without
1003 * checking for it. They seem to run fine without it so just claim it's
1004 * there and accept the consequences.
1005 */
1006 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
1007 pFeatures->depthBounds = true;
1008 }
1009
1010 void anv_GetPhysicalDeviceFeatures2(
1011 VkPhysicalDevice physicalDevice,
1012 VkPhysicalDeviceFeatures2* pFeatures)
1013 {
1014 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1015 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1016
1017 vk_foreach_struct(ext, pFeatures->pNext) {
1018 switch (ext->sType) {
1019 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1020 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1021 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1022 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1023 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1024 features->storagePushConstant8 = pdevice->info.gen >= 8;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1029 VkPhysicalDevice16BitStorageFeatures *features =
1030 (VkPhysicalDevice16BitStorageFeatures *)ext;
1031 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1032 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1033 features->storagePushConstant16 = pdevice->info.gen >= 8;
1034 features->storageInputOutput16 = false;
1035 break;
1036 }
1037
1038 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1039 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1040 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1041 features->bufferDeviceAddressCaptureReplay = false;
1042 features->bufferDeviceAddressMultiDevice = false;
1043 break;
1044 }
1045
1046 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1047 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1048 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1049 features->computeDerivativeGroupQuads = true;
1050 features->computeDerivativeGroupLinear = true;
1051 break;
1052 }
1053
1054 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1055 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1056 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1057 features->conditionalRendering = pdevice->info.gen >= 8 ||
1058 pdevice->info.is_haswell;
1059 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1060 pdevice->info.is_haswell;
1061 break;
1062 }
1063
1064 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1065 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1066 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1067 features->depthClipEnable = true;
1068 break;
1069 }
1070
1071 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1072 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1073 features->shaderFloat16 = pdevice->info.gen >= 8;
1074 features->shaderInt8 = pdevice->info.gen >= 8;
1075 break;
1076 }
1077
1078 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1079 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1080 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1081 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1082 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1083 features->fragmentShaderShadingRateInterlock = false;
1084 break;
1085 }
1086
1087 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1088 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1089 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1090 features->hostQueryReset = true;
1091 break;
1092 }
1093
1094 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1095 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1096 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1097 features->shaderInputAttachmentArrayDynamicIndexing = false;
1098 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1099 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1100 features->shaderUniformBufferArrayNonUniformIndexing = false;
1101 features->shaderSampledImageArrayNonUniformIndexing = true;
1102 features->shaderStorageBufferArrayNonUniformIndexing = true;
1103 features->shaderStorageImageArrayNonUniformIndexing = true;
1104 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1105 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1106 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1107 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1108 features->descriptorBindingSampledImageUpdateAfterBind = true;
1109 features->descriptorBindingStorageImageUpdateAfterBind = true;
1110 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1111 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1112 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1113 features->descriptorBindingUpdateUnusedWhilePending = true;
1114 features->descriptorBindingPartiallyBound = true;
1115 features->descriptorBindingVariableDescriptorCount = false;
1116 features->runtimeDescriptorArray = true;
1117 break;
1118 }
1119
1120 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1121 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1122 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1123 features->indexTypeUint8 = true;
1124 break;
1125 }
1126
1127 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1128 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1129 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1130 features->inlineUniformBlock = true;
1131 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1132 break;
1133 }
1134
1135 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1136 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1137 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1138 features->rectangularLines = true;
1139 features->bresenhamLines = true;
1140 features->smoothLines = true;
1141 features->stippledRectangularLines = false;
1142 features->stippledBresenhamLines = true;
1143 features->stippledSmoothLines = false;
1144 break;
1145 }
1146
1147 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1148 VkPhysicalDeviceMultiviewFeatures *features =
1149 (VkPhysicalDeviceMultiviewFeatures *)ext;
1150 features->multiview = true;
1151 features->multiviewGeometryShader = true;
1152 features->multiviewTessellationShader = true;
1153 break;
1154 }
1155
1156 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1157 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1158 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1159 features->imagelessFramebuffer = true;
1160 break;
1161 }
1162
1163 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1164 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1165 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1166 features->pipelineExecutableInfo = true;
1167 break;
1168 }
1169
1170 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1171 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1172 features->protectedMemory = false;
1173 break;
1174 }
1175
1176 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1177 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1178 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1179 features->samplerYcbcrConversion = true;
1180 break;
1181 }
1182
1183 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1184 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1185 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1186 features->scalarBlockLayout = true;
1187 break;
1188 }
1189
1190 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1191 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1192 features->shaderBufferInt64Atomics =
1193 pdevice->info.gen >= 9 && pdevice->use_softpin;
1194 features->shaderSharedInt64Atomics = VK_FALSE;
1195 break;
1196 }
1197
1198 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1199 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1200 features->shaderDemoteToHelperInvocation = true;
1201 break;
1202 }
1203
1204 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1205 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1206 features->shaderDrawParameters = true;
1207 break;
1208 }
1209
1210 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1211 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1212 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1213 features->shaderSubgroupExtendedTypes = true;
1214 break;
1215 }
1216
1217 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1218 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1219 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1220 features->subgroupSizeControl = true;
1221 features->computeFullSubgroups = true;
1222 break;
1223 }
1224
1225 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1226 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1227 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1228 features->texelBufferAlignment = true;
1229 break;
1230 }
1231
1232 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1233 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1234 features->variablePointersStorageBuffer = true;
1235 features->variablePointers = true;
1236 break;
1237 }
1238
1239 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1240 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1241 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1242 features->transformFeedback = true;
1243 features->geometryStreams = true;
1244 break;
1245 }
1246
1247 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1248 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1249 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1250 features->uniformBufferStandardLayout = true;
1251 break;
1252 }
1253
1254 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1255 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1256 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1257 features->vertexAttributeInstanceRateDivisor = true;
1258 features->vertexAttributeInstanceRateZeroDivisor = true;
1259 break;
1260 }
1261
1262 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1263 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1264 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1265 features->ycbcrImageArrays = true;
1266 break;
1267 }
1268
1269 default:
1270 anv_debug_ignored_stype(ext->sType);
1271 break;
1272 }
1273 }
1274 }
1275
1276 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1277
1278 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1279 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1280
1281 void anv_GetPhysicalDeviceProperties(
1282 VkPhysicalDevice physicalDevice,
1283 VkPhysicalDeviceProperties* pProperties)
1284 {
1285 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1286 const struct gen_device_info *devinfo = &pdevice->info;
1287
1288 /* See assertions made when programming the buffer surface state. */
1289 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1290 (1ul << 30) : (1ul << 27);
1291
1292 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1293 const uint32_t max_textures =
1294 pdevice->has_bindless_images ? UINT16_MAX : 128;
1295 const uint32_t max_samplers =
1296 pdevice->has_bindless_samplers ? UINT16_MAX :
1297 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1298 const uint32_t max_images =
1299 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1300
1301 /* If we can use bindless for everything, claim a high per-stage limit,
1302 * otherwise use the binding table size, minus the slots reserved for
1303 * render targets and one slot for the descriptor buffer. */
1304 const uint32_t max_per_stage =
1305 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1306 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1307
1308 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1309
1310 VkSampleCountFlags sample_counts =
1311 isl_device_get_sample_counts(&pdevice->isl_dev);
1312
1313
1314 VkPhysicalDeviceLimits limits = {
1315 .maxImageDimension1D = (1 << 14),
1316 .maxImageDimension2D = (1 << 14),
1317 .maxImageDimension3D = (1 << 11),
1318 .maxImageDimensionCube = (1 << 14),
1319 .maxImageArrayLayers = (1 << 11),
1320 .maxTexelBufferElements = 128 * 1024 * 1024,
1321 .maxUniformBufferRange = (1ul << 27),
1322 .maxStorageBufferRange = max_raw_buffer_sz,
1323 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1324 .maxMemoryAllocationCount = UINT32_MAX,
1325 .maxSamplerAllocationCount = 64 * 1024,
1326 .bufferImageGranularity = 64, /* A cache line */
1327 .sparseAddressSpaceSize = 0,
1328 .maxBoundDescriptorSets = MAX_SETS,
1329 .maxPerStageDescriptorSamplers = max_samplers,
1330 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1331 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1332 .maxPerStageDescriptorSampledImages = max_textures,
1333 .maxPerStageDescriptorStorageImages = max_images,
1334 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1335 .maxPerStageResources = max_per_stage,
1336 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1337 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1338 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1339 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1340 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1341 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1342 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1343 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1344 .maxVertexInputAttributes = MAX_VBS,
1345 .maxVertexInputBindings = MAX_VBS,
1346 .maxVertexInputAttributeOffset = 2047,
1347 .maxVertexInputBindingStride = 2048,
1348 .maxVertexOutputComponents = 128,
1349 .maxTessellationGenerationLevel = 64,
1350 .maxTessellationPatchSize = 32,
1351 .maxTessellationControlPerVertexInputComponents = 128,
1352 .maxTessellationControlPerVertexOutputComponents = 128,
1353 .maxTessellationControlPerPatchOutputComponents = 128,
1354 .maxTessellationControlTotalOutputComponents = 2048,
1355 .maxTessellationEvaluationInputComponents = 128,
1356 .maxTessellationEvaluationOutputComponents = 128,
1357 .maxGeometryShaderInvocations = 32,
1358 .maxGeometryInputComponents = 64,
1359 .maxGeometryOutputComponents = 128,
1360 .maxGeometryOutputVertices = 256,
1361 .maxGeometryTotalOutputComponents = 1024,
1362 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1363 .maxFragmentOutputAttachments = 8,
1364 .maxFragmentDualSrcAttachments = 1,
1365 .maxFragmentCombinedOutputResources = 8,
1366 .maxComputeSharedMemorySize = 64 * 1024,
1367 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1368 .maxComputeWorkGroupInvocations = max_workgroup_size,
1369 .maxComputeWorkGroupSize = {
1370 max_workgroup_size,
1371 max_workgroup_size,
1372 max_workgroup_size,
1373 },
1374 .subPixelPrecisionBits = 8,
1375 .subTexelPrecisionBits = 8,
1376 .mipmapPrecisionBits = 8,
1377 .maxDrawIndexedIndexValue = UINT32_MAX,
1378 .maxDrawIndirectCount = UINT32_MAX,
1379 .maxSamplerLodBias = 16,
1380 .maxSamplerAnisotropy = 16,
1381 .maxViewports = MAX_VIEWPORTS,
1382 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1383 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1384 .viewportSubPixelBits = 13, /* We take a float? */
1385 .minMemoryMapAlignment = 4096, /* A page */
1386 /* The dataport requires texel alignment so we need to assume a worst
1387 * case of R32G32B32A32 which is 16 bytes.
1388 */
1389 .minTexelBufferOffsetAlignment = 16,
1390 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1391 .minUniformBufferOffsetAlignment = 32,
1392 .minStorageBufferOffsetAlignment = 4,
1393 .minTexelOffset = -8,
1394 .maxTexelOffset = 7,
1395 .minTexelGatherOffset = -32,
1396 .maxTexelGatherOffset = 31,
1397 .minInterpolationOffset = -0.5,
1398 .maxInterpolationOffset = 0.4375,
1399 .subPixelInterpolationOffsetBits = 4,
1400 .maxFramebufferWidth = (1 << 14),
1401 .maxFramebufferHeight = (1 << 14),
1402 .maxFramebufferLayers = (1 << 11),
1403 .framebufferColorSampleCounts = sample_counts,
1404 .framebufferDepthSampleCounts = sample_counts,
1405 .framebufferStencilSampleCounts = sample_counts,
1406 .framebufferNoAttachmentsSampleCounts = sample_counts,
1407 .maxColorAttachments = MAX_RTS,
1408 .sampledImageColorSampleCounts = sample_counts,
1409 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1410 .sampledImageDepthSampleCounts = sample_counts,
1411 .sampledImageStencilSampleCounts = sample_counts,
1412 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1413 .maxSampleMaskWords = 1,
1414 .timestampComputeAndGraphics = true,
1415 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1416 .maxClipDistances = 8,
1417 .maxCullDistances = 8,
1418 .maxCombinedClipAndCullDistances = 8,
1419 .discreteQueuePriorities = 2,
1420 .pointSizeRange = { 0.125, 255.875 },
1421 .lineWidthRange = {
1422 0.0,
1423 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1424 2047.9921875 : 7.9921875,
1425 },
1426 .pointSizeGranularity = (1.0 / 8.0),
1427 .lineWidthGranularity = (1.0 / 128.0),
1428 .strictLines = false,
1429 .standardSampleLocations = true,
1430 .optimalBufferCopyOffsetAlignment = 128,
1431 .optimalBufferCopyRowPitchAlignment = 128,
1432 .nonCoherentAtomSize = 64,
1433 };
1434
1435 *pProperties = (VkPhysicalDeviceProperties) {
1436 .apiVersion = anv_physical_device_api_version(pdevice),
1437 .driverVersion = vk_get_driver_version(),
1438 .vendorID = 0x8086,
1439 .deviceID = pdevice->chipset_id,
1440 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1441 .limits = limits,
1442 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1443 };
1444
1445 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1446 "%s", pdevice->name);
1447 memcpy(pProperties->pipelineCacheUUID,
1448 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1449 }
1450
1451 void anv_GetPhysicalDeviceProperties2(
1452 VkPhysicalDevice physicalDevice,
1453 VkPhysicalDeviceProperties2* pProperties)
1454 {
1455 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1456
1457 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1458
1459 vk_foreach_struct(ext, pProperties->pNext) {
1460 switch (ext->sType) {
1461 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1462 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1463 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1464
1465 /* We support all of the depth resolve modes */
1466 props->supportedDepthResolveModes =
1467 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1468 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1469 VK_RESOLVE_MODE_MIN_BIT_KHR |
1470 VK_RESOLVE_MODE_MAX_BIT_KHR;
1471
1472 /* Average doesn't make sense for stencil so we don't support that */
1473 props->supportedStencilResolveModes =
1474 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1475 if (pdevice->info.gen >= 8) {
1476 /* The advanced stencil resolve modes currently require stencil
1477 * sampling be supported by the hardware.
1478 */
1479 props->supportedStencilResolveModes |=
1480 VK_RESOLVE_MODE_MIN_BIT_KHR |
1481 VK_RESOLVE_MODE_MAX_BIT_KHR;
1482 }
1483
1484 props->independentResolveNone = true;
1485 props->independentResolve = true;
1486 break;
1487 }
1488
1489 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1490 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1491 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1492
1493 /* It's a bit hard to exactly map our implementation to the limits
1494 * described here. The bindless surface handle in the extended
1495 * message descriptors is 20 bits and it's an index into the table of
1496 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1497 * address. Given that most things consume two surface states per
1498 * view (general/sampled for textures and write-only/read-write for
1499 * images), we claim 2^19 things.
1500 *
1501 * For SSBOs, we just use A64 messages so there is no real limit
1502 * there beyond the limit on the total size of a descriptor set.
1503 */
1504 const unsigned max_bindless_views = 1 << 19;
1505
1506 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1507 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1508 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1509 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1510 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1511 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1512 props->robustBufferAccessUpdateAfterBind = true;
1513 props->quadDivergentImplicitLod = false;
1514 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1515 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1516 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1517 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1518 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1519 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1520 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1521 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1522 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1523 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1524 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1525 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1526 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1527 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1528 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1529 break;
1530 }
1531
1532 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1533 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1534 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1535
1536 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1537 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1538 "Intel open-source Mesa driver");
1539
1540 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1541 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1542
1543 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1544 .major = 1,
1545 .minor = 1,
1546 .subminor = 2,
1547 .patch = 0,
1548 };
1549 break;
1550 }
1551
1552 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1553 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1554 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1555 /* Userptr needs page aligned memory. */
1556 props->minImportedHostPointerAlignment = 4096;
1557 break;
1558 }
1559
1560 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1561 VkPhysicalDeviceIDProperties *id_props =
1562 (VkPhysicalDeviceIDProperties *)ext;
1563 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1564 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1565 /* The LUID is for Windows. */
1566 id_props->deviceLUIDValid = false;
1567 break;
1568 }
1569
1570 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1571 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1572 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1573 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1574 props->maxPerStageDescriptorInlineUniformBlocks =
1575 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1576 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1577 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1578 props->maxDescriptorSetInlineUniformBlocks =
1579 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1580 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1581 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1582 break;
1583 }
1584
1585 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1586 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1587 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1588 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1589 * Sampling Rules - Legacy Mode", it says the following:
1590 *
1591 * "Note that the device divides a pixel into a 16x16 array of
1592 * subpixels, referenced by their upper left corners."
1593 *
1594 * This is the only known reference in the PRMs to the subpixel
1595 * precision of line rasterization and a "16x16 array of subpixels"
1596 * implies 4 subpixel precision bits. Empirical testing has shown
1597 * that 4 subpixel precision bits applies to all line rasterization
1598 * types.
1599 */
1600 props->lineSubPixelPrecisionBits = 4;
1601 break;
1602 }
1603
1604 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1605 VkPhysicalDeviceMaintenance3Properties *props =
1606 (VkPhysicalDeviceMaintenance3Properties *)ext;
1607 /* This value doesn't matter for us today as our per-stage
1608 * descriptors are the real limit.
1609 */
1610 props->maxPerSetDescriptors = 1024;
1611 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1612 break;
1613 }
1614
1615 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1616 VkPhysicalDeviceMultiviewProperties *properties =
1617 (VkPhysicalDeviceMultiviewProperties *)ext;
1618 properties->maxMultiviewViewCount = 16;
1619 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1620 break;
1621 }
1622
1623 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1624 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1625 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1626 properties->pciDomain = pdevice->pci_info.domain;
1627 properties->pciBus = pdevice->pci_info.bus;
1628 properties->pciDevice = pdevice->pci_info.device;
1629 properties->pciFunction = pdevice->pci_info.function;
1630 break;
1631 }
1632
1633 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1634 VkPhysicalDevicePointClippingProperties *properties =
1635 (VkPhysicalDevicePointClippingProperties *) ext;
1636 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1637 break;
1638 }
1639
1640 #pragma GCC diagnostic push
1641 #pragma GCC diagnostic ignored "-Wswitch"
1642 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1643 VkPhysicalDevicePresentationPropertiesANDROID *props =
1644 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1645 props->sharedImage = VK_FALSE;
1646 break;
1647 }
1648 #pragma GCC diagnostic pop
1649
1650 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1651 VkPhysicalDeviceProtectedMemoryProperties *props =
1652 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1653 props->protectedNoFault = false;
1654 break;
1655 }
1656
1657 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1658 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1659 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1660
1661 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1662 break;
1663 }
1664
1665 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1666 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1667 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1668 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1669 properties->filterMinmaxSingleComponentFormats = true;
1670 break;
1671 }
1672
1673 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1674 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1675
1676 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1677
1678 VkShaderStageFlags scalar_stages = 0;
1679 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1680 if (pdevice->compiler->scalar_stage[stage])
1681 scalar_stages |= mesa_to_vk_shader_stage(stage);
1682 }
1683 properties->supportedStages = scalar_stages;
1684
1685 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1686 VK_SUBGROUP_FEATURE_VOTE_BIT |
1687 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1688 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1689 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1690 VK_SUBGROUP_FEATURE_QUAD_BIT;
1691 if (pdevice->info.gen >= 8) {
1692 /* TODO: There's no technical reason why these can't be made to
1693 * work on gen7 but they don't at the moment so it's best to leave
1694 * the feature disabled than enabled and broken.
1695 */
1696 properties->supportedOperations |=
1697 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1698 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1699 }
1700 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1701 break;
1702 }
1703
1704 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1705 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1706 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1707 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1708 props->minSubgroupSize = 8;
1709 props->maxSubgroupSize = 32;
1710 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1711 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1712 break;
1713 }
1714 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1715 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1716 properties->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1717 properties->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1718
1719 /* Broadwell does not support HF denorms and there are restrictions
1720 * other gens. According to Kabylake's PRM:
1721 *
1722 * "math - Extended Math Function
1723 * [...]
1724 * Restriction : Half-float denorms are always retained."
1725 */
1726 properties->shaderDenormFlushToZeroFloat16 = false;
1727 properties->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1728 properties->shaderRoundingModeRTEFloat16 = true;
1729 properties->shaderRoundingModeRTZFloat16 = true;
1730 properties->shaderSignedZeroInfNanPreserveFloat16 = true;
1731
1732 properties->shaderDenormFlushToZeroFloat32 = true;
1733 properties->shaderDenormPreserveFloat32 = true;
1734 properties->shaderRoundingModeRTEFloat32 = true;
1735 properties->shaderRoundingModeRTZFloat32 = true;
1736 properties->shaderSignedZeroInfNanPreserveFloat32 = true;
1737
1738 properties->shaderDenormFlushToZeroFloat64 = true;
1739 properties->shaderDenormPreserveFloat64 = true;
1740 properties->shaderRoundingModeRTEFloat64 = true;
1741 properties->shaderRoundingModeRTZFloat64 = true;
1742 properties->shaderSignedZeroInfNanPreserveFloat64 = true;
1743 break;
1744 }
1745
1746 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1747 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1748 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1749
1750 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1751 * Base Address:
1752 *
1753 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1754 * specifies the base address of the first element of the surface,
1755 * computed in software by adding the surface base address to the
1756 * byte offset of the element in the buffer. The base address must
1757 * be aligned to element size."
1758 *
1759 * The typed dataport messages require that things be texel aligned.
1760 * Otherwise, we may just load/store the wrong data or, in the worst
1761 * case, there may be hangs.
1762 */
1763 props->storageTexelBufferOffsetAlignmentBytes = 16;
1764 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1765
1766 /* The sampler, however, is much more forgiving and it can handle
1767 * arbitrary byte alignment for linear and buffer surfaces. It's
1768 * hard to find a good PRM citation for this but years of empirical
1769 * experience demonstrate that this is true.
1770 */
1771 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1772 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1773 break;
1774 }
1775
1776 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1777 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1778 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1779
1780 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1781 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1782 props->maxTransformFeedbackBufferSize = (1ull << 32);
1783 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1784 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1785 props->maxTransformFeedbackBufferDataStride = 2048;
1786 props->transformFeedbackQueries = true;
1787 props->transformFeedbackStreamsLinesTriangles = false;
1788 props->transformFeedbackRasterizationStreamSelect = false;
1789 props->transformFeedbackDraw = true;
1790 break;
1791 }
1792
1793 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1794 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1795 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1796 /* We have to restrict this a bit for multiview */
1797 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1798 break;
1799 }
1800
1801 default:
1802 anv_debug_ignored_stype(ext->sType);
1803 break;
1804 }
1805 }
1806 }
1807
1808 /* We support exactly one queue family. */
1809 static const VkQueueFamilyProperties
1810 anv_queue_family_properties = {
1811 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1812 VK_QUEUE_COMPUTE_BIT |
1813 VK_QUEUE_TRANSFER_BIT,
1814 .queueCount = 1,
1815 .timestampValidBits = 36, /* XXX: Real value here */
1816 .minImageTransferGranularity = { 1, 1, 1 },
1817 };
1818
1819 void anv_GetPhysicalDeviceQueueFamilyProperties(
1820 VkPhysicalDevice physicalDevice,
1821 uint32_t* pCount,
1822 VkQueueFamilyProperties* pQueueFamilyProperties)
1823 {
1824 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1825
1826 vk_outarray_append(&out, p) {
1827 *p = anv_queue_family_properties;
1828 }
1829 }
1830
1831 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1832 VkPhysicalDevice physicalDevice,
1833 uint32_t* pQueueFamilyPropertyCount,
1834 VkQueueFamilyProperties2* pQueueFamilyProperties)
1835 {
1836
1837 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1838
1839 vk_outarray_append(&out, p) {
1840 p->queueFamilyProperties = anv_queue_family_properties;
1841
1842 vk_foreach_struct(s, p->pNext) {
1843 anv_debug_ignored_stype(s->sType);
1844 }
1845 }
1846 }
1847
1848 void anv_GetPhysicalDeviceMemoryProperties(
1849 VkPhysicalDevice physicalDevice,
1850 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1851 {
1852 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1853
1854 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1855 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1856 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1857 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1858 .heapIndex = physical_device->memory.types[i].heapIndex,
1859 };
1860 }
1861
1862 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1863 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1864 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1865 .size = physical_device->memory.heaps[i].size,
1866 .flags = physical_device->memory.heaps[i].flags,
1867 };
1868 }
1869 }
1870
1871 static void
1872 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1873 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1874 {
1875 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1876 uint64_t sys_available = get_available_system_memory();
1877 assert(sys_available > 0);
1878
1879 VkDeviceSize total_heaps_size = 0;
1880 for (size_t i = 0; i < device->memory.heap_count; i++)
1881 total_heaps_size += device->memory.heaps[i].size;
1882
1883 for (size_t i = 0; i < device->memory.heap_count; i++) {
1884 VkDeviceSize heap_size = device->memory.heaps[i].size;
1885 VkDeviceSize heap_used = device->memory.heaps[i].used;
1886 VkDeviceSize heap_budget;
1887
1888 double heap_proportion = (double) heap_size / total_heaps_size;
1889 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1890
1891 /*
1892 * Let's not incite the app to starve the system: report at most 90% of
1893 * available system memory.
1894 */
1895 uint64_t heap_available = sys_available_prop * 9 / 10;
1896 heap_budget = MIN2(heap_size, heap_used + heap_available);
1897
1898 /*
1899 * Round down to the nearest MB
1900 */
1901 heap_budget &= ~((1ull << 20) - 1);
1902
1903 /*
1904 * The heapBudget value must be non-zero for array elements less than
1905 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1906 * value must be less than or equal to VkMemoryHeap::size for each heap.
1907 */
1908 assert(0 < heap_budget && heap_budget <= heap_size);
1909
1910 memoryBudget->heapUsage[i] = heap_used;
1911 memoryBudget->heapBudget[i] = heap_budget;
1912 }
1913
1914 /* The heapBudget and heapUsage values must be zero for array elements
1915 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1916 */
1917 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1918 memoryBudget->heapBudget[i] = 0;
1919 memoryBudget->heapUsage[i] = 0;
1920 }
1921 }
1922
1923 void anv_GetPhysicalDeviceMemoryProperties2(
1924 VkPhysicalDevice physicalDevice,
1925 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1926 {
1927 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1928 &pMemoryProperties->memoryProperties);
1929
1930 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1931 switch (ext->sType) {
1932 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1933 anv_get_memory_budget(physicalDevice, (void*)ext);
1934 break;
1935 default:
1936 anv_debug_ignored_stype(ext->sType);
1937 break;
1938 }
1939 }
1940 }
1941
1942 void
1943 anv_GetDeviceGroupPeerMemoryFeatures(
1944 VkDevice device,
1945 uint32_t heapIndex,
1946 uint32_t localDeviceIndex,
1947 uint32_t remoteDeviceIndex,
1948 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1949 {
1950 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1951 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1952 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1953 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1954 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1955 }
1956
1957 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1958 VkInstance _instance,
1959 const char* pName)
1960 {
1961 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1962
1963 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1964 * when we have to return valid function pointers, NULL, or it's left
1965 * undefined. See the table for exact details.
1966 */
1967 if (pName == NULL)
1968 return NULL;
1969
1970 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1971 if (strcmp(pName, "vk" #entrypoint) == 0) \
1972 return (PFN_vkVoidFunction)anv_##entrypoint
1973
1974 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1975 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1976 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1977 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1978
1979 #undef LOOKUP_ANV_ENTRYPOINT
1980
1981 if (instance == NULL)
1982 return NULL;
1983
1984 int idx = anv_get_instance_entrypoint_index(pName);
1985 if (idx >= 0)
1986 return instance->dispatch.entrypoints[idx];
1987
1988 idx = anv_get_physical_device_entrypoint_index(pName);
1989 if (idx >= 0)
1990 return instance->physicalDevice.dispatch.entrypoints[idx];
1991
1992 idx = anv_get_device_entrypoint_index(pName);
1993 if (idx >= 0)
1994 return instance->device_dispatch.entrypoints[idx];
1995
1996 return NULL;
1997 }
1998
1999 /* With version 1+ of the loader interface the ICD should expose
2000 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2001 */
2002 PUBLIC
2003 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2004 VkInstance instance,
2005 const char* pName);
2006
2007 PUBLIC
2008 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2009 VkInstance instance,
2010 const char* pName)
2011 {
2012 return anv_GetInstanceProcAddr(instance, pName);
2013 }
2014
2015 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2016 VkDevice _device,
2017 const char* pName)
2018 {
2019 ANV_FROM_HANDLE(anv_device, device, _device);
2020
2021 if (!device || !pName)
2022 return NULL;
2023
2024 int idx = anv_get_device_entrypoint_index(pName);
2025 if (idx < 0)
2026 return NULL;
2027
2028 return device->dispatch.entrypoints[idx];
2029 }
2030
2031 /* With version 4+ of the loader interface the ICD should expose
2032 * vk_icdGetPhysicalDeviceProcAddr()
2033 */
2034 PUBLIC
2035 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2036 VkInstance _instance,
2037 const char* pName);
2038
2039 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2040 VkInstance _instance,
2041 const char* pName)
2042 {
2043 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2044
2045 if (!pName || !instance)
2046 return NULL;
2047
2048 int idx = anv_get_physical_device_entrypoint_index(pName);
2049 if (idx < 0)
2050 return NULL;
2051
2052 return instance->physicalDevice.dispatch.entrypoints[idx];
2053 }
2054
2055
2056 VkResult
2057 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2058 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2059 const VkAllocationCallbacks* pAllocator,
2060 VkDebugReportCallbackEXT* pCallback)
2061 {
2062 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2063 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2064 pCreateInfo, pAllocator, &instance->alloc,
2065 pCallback);
2066 }
2067
2068 void
2069 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2070 VkDebugReportCallbackEXT _callback,
2071 const VkAllocationCallbacks* pAllocator)
2072 {
2073 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2074 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2075 _callback, pAllocator, &instance->alloc);
2076 }
2077
2078 void
2079 anv_DebugReportMessageEXT(VkInstance _instance,
2080 VkDebugReportFlagsEXT flags,
2081 VkDebugReportObjectTypeEXT objectType,
2082 uint64_t object,
2083 size_t location,
2084 int32_t messageCode,
2085 const char* pLayerPrefix,
2086 const char* pMessage)
2087 {
2088 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2089 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2090 object, location, messageCode, pLayerPrefix, pMessage);
2091 }
2092
2093 static void
2094 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
2095 {
2096 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2097 queue->device = device;
2098 queue->flags = 0;
2099 }
2100
2101 static void
2102 anv_queue_finish(struct anv_queue *queue)
2103 {
2104 }
2105
2106 static struct anv_state
2107 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2108 {
2109 struct anv_state state;
2110
2111 state = anv_state_pool_alloc(pool, size, align);
2112 memcpy(state.map, p, size);
2113
2114 return state;
2115 }
2116
2117 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2118 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2119 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2120 * color as a separate entry /after/ the float color. The layout of this entry
2121 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2122 *
2123 * Since we don't know the format/bpp, we can't make any of the border colors
2124 * containing '1' work for all formats, as it would be in the wrong place for
2125 * some of them. We opt to make 32-bit integers work as this seems like the
2126 * most common option. Fortunately, transparent black works regardless, as
2127 * all zeroes is the same in every bit-size.
2128 */
2129 struct hsw_border_color {
2130 float float32[4];
2131 uint32_t _pad0[12];
2132 uint32_t uint32[4];
2133 uint32_t _pad1[108];
2134 };
2135
2136 struct gen8_border_color {
2137 union {
2138 float float32[4];
2139 uint32_t uint32[4];
2140 };
2141 /* Pad out to 64 bytes */
2142 uint32_t _pad[12];
2143 };
2144
2145 static void
2146 anv_device_init_border_colors(struct anv_device *device)
2147 {
2148 if (device->info.is_haswell) {
2149 static const struct hsw_border_color border_colors[] = {
2150 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2151 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2152 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2153 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2154 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2155 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2156 };
2157
2158 device->border_colors =
2159 anv_state_pool_emit_data(&device->dynamic_state_pool,
2160 sizeof(border_colors), 512, border_colors);
2161 } else {
2162 static const struct gen8_border_color border_colors[] = {
2163 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2164 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2165 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2166 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2167 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2168 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2169 };
2170
2171 device->border_colors =
2172 anv_state_pool_emit_data(&device->dynamic_state_pool,
2173 sizeof(border_colors), 64, border_colors);
2174 }
2175 }
2176
2177 static void
2178 anv_device_init_trivial_batch(struct anv_device *device)
2179 {
2180 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
2181
2182 if (device->instance->physicalDevice.has_exec_async)
2183 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
2184
2185 if (device->instance->physicalDevice.use_softpin)
2186 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
2187
2188 anv_vma_alloc(device, &device->trivial_batch_bo);
2189
2190 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
2191 0, 4096, 0);
2192
2193 struct anv_batch batch = {
2194 .start = map,
2195 .next = map,
2196 .end = map + 4096,
2197 };
2198
2199 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2200 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2201
2202 if (!device->info.has_llc)
2203 gen_clflush_range(map, batch.next - map);
2204
2205 anv_gem_munmap(map, device->trivial_batch_bo.size);
2206 }
2207
2208 VkResult anv_EnumerateDeviceExtensionProperties(
2209 VkPhysicalDevice physicalDevice,
2210 const char* pLayerName,
2211 uint32_t* pPropertyCount,
2212 VkExtensionProperties* pProperties)
2213 {
2214 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2215 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2216
2217 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2218 if (device->supported_extensions.extensions[i]) {
2219 vk_outarray_append(&out, prop) {
2220 *prop = anv_device_extensions[i];
2221 }
2222 }
2223 }
2224
2225 return vk_outarray_status(&out);
2226 }
2227
2228 static void
2229 anv_device_init_dispatch(struct anv_device *device)
2230 {
2231 const struct anv_device_dispatch_table *genX_table;
2232 switch (device->info.gen) {
2233 case 12:
2234 genX_table = &gen12_device_dispatch_table;
2235 break;
2236 case 11:
2237 genX_table = &gen11_device_dispatch_table;
2238 break;
2239 case 10:
2240 genX_table = &gen10_device_dispatch_table;
2241 break;
2242 case 9:
2243 genX_table = &gen9_device_dispatch_table;
2244 break;
2245 case 8:
2246 genX_table = &gen8_device_dispatch_table;
2247 break;
2248 case 7:
2249 if (device->info.is_haswell)
2250 genX_table = &gen75_device_dispatch_table;
2251 else
2252 genX_table = &gen7_device_dispatch_table;
2253 break;
2254 default:
2255 unreachable("unsupported gen\n");
2256 }
2257
2258 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2259 /* Vulkan requires that entrypoints for extensions which have not been
2260 * enabled must not be advertised.
2261 */
2262 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2263 &device->instance->enabled_extensions,
2264 &device->enabled_extensions)) {
2265 device->dispatch.entrypoints[i] = NULL;
2266 } else if (genX_table->entrypoints[i]) {
2267 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2268 } else {
2269 device->dispatch.entrypoints[i] =
2270 anv_device_dispatch_table.entrypoints[i];
2271 }
2272 }
2273 }
2274
2275 static int
2276 vk_priority_to_gen(int priority)
2277 {
2278 switch (priority) {
2279 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2280 return GEN_CONTEXT_LOW_PRIORITY;
2281 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2282 return GEN_CONTEXT_MEDIUM_PRIORITY;
2283 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2284 return GEN_CONTEXT_HIGH_PRIORITY;
2285 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2286 return GEN_CONTEXT_REALTIME_PRIORITY;
2287 default:
2288 unreachable("Invalid priority");
2289 }
2290 }
2291
2292 static void
2293 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2294 {
2295 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2296
2297 if (device->instance->physicalDevice.has_exec_async)
2298 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2299
2300 if (device->instance->physicalDevice.use_softpin)
2301 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2302
2303 anv_vma_alloc(device, &device->hiz_clear_bo);
2304
2305 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2306 0, 4096, 0);
2307
2308 union isl_color_value hiz_clear = { .u32 = { 0, } };
2309 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2310
2311 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2312 anv_gem_munmap(map, device->hiz_clear_bo.size);
2313 }
2314
2315 static bool
2316 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2317 struct anv_block_pool *pool,
2318 uint64_t address)
2319 {
2320 for (uint32_t i = 0; i < pool->nbos; i++) {
2321 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2322 uint32_t bo_size = pool->bos[i].size;
2323 if (address >= bo_address && address < (bo_address + bo_size)) {
2324 *ret = (struct gen_batch_decode_bo) {
2325 .addr = bo_address,
2326 .size = bo_size,
2327 .map = pool->bos[i].map,
2328 };
2329 return true;
2330 }
2331 }
2332 return false;
2333 }
2334
2335 /* Finding a buffer for batch decoding */
2336 static struct gen_batch_decode_bo
2337 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2338 {
2339 struct anv_device *device = v_batch;
2340 struct gen_batch_decode_bo ret_bo = {};
2341
2342 assert(ppgtt);
2343
2344 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2345 return ret_bo;
2346 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2347 return ret_bo;
2348 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2349 return ret_bo;
2350 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2351 return ret_bo;
2352
2353 if (!device->cmd_buffer_being_decoded)
2354 return (struct gen_batch_decode_bo) { };
2355
2356 struct anv_batch_bo **bo;
2357
2358 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2359 /* The decoder zeroes out the top 16 bits, so we need to as well */
2360 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2361
2362 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2363 return (struct gen_batch_decode_bo) {
2364 .addr = bo_address,
2365 .size = (*bo)->bo.size,
2366 .map = (*bo)->bo.map,
2367 };
2368 }
2369 }
2370
2371 return (struct gen_batch_decode_bo) { };
2372 }
2373
2374 VkResult anv_CreateDevice(
2375 VkPhysicalDevice physicalDevice,
2376 const VkDeviceCreateInfo* pCreateInfo,
2377 const VkAllocationCallbacks* pAllocator,
2378 VkDevice* pDevice)
2379 {
2380 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2381 VkResult result;
2382 struct anv_device *device;
2383
2384 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2385
2386 struct anv_device_extension_table enabled_extensions = { };
2387 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2388 int idx;
2389 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2390 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2391 anv_device_extensions[idx].extensionName) == 0)
2392 break;
2393 }
2394
2395 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2396 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2397
2398 if (!physical_device->supported_extensions.extensions[idx])
2399 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2400
2401 enabled_extensions.extensions[idx] = true;
2402 }
2403
2404 /* Check enabled features */
2405 if (pCreateInfo->pEnabledFeatures) {
2406 VkPhysicalDeviceFeatures supported_features;
2407 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2408 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2409 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2410 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2411 for (uint32_t i = 0; i < num_features; i++) {
2412 if (enabled_feature[i] && !supported_feature[i])
2413 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2414 }
2415 }
2416
2417 /* Check requested queues and fail if we are requested to create any
2418 * queues with flags we don't support.
2419 */
2420 assert(pCreateInfo->queueCreateInfoCount > 0);
2421 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2422 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2423 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2424 }
2425
2426 /* Check if client specified queue priority. */
2427 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2428 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2429 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2430
2431 VkQueueGlobalPriorityEXT priority =
2432 queue_priority ? queue_priority->globalPriority :
2433 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2434
2435 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2436 sizeof(*device), 8,
2437 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2438 if (!device)
2439 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2440
2441 if (INTEL_DEBUG & DEBUG_BATCH) {
2442 const unsigned decode_flags =
2443 GEN_BATCH_DECODE_FULL |
2444 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2445 GEN_BATCH_DECODE_OFFSETS |
2446 GEN_BATCH_DECODE_FLOATS;
2447
2448 gen_batch_decode_ctx_init(&device->decoder_ctx,
2449 &physical_device->info,
2450 stderr, decode_flags, NULL,
2451 decode_get_bo, NULL, device);
2452 }
2453
2454 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2455 device->instance = physical_device->instance;
2456 device->chipset_id = physical_device->chipset_id;
2457 device->no_hw = physical_device->no_hw;
2458 device->_lost = false;
2459
2460 if (pAllocator)
2461 device->alloc = *pAllocator;
2462 else
2463 device->alloc = physical_device->instance->alloc;
2464
2465 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2466 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2467 if (device->fd == -1) {
2468 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2469 goto fail_device;
2470 }
2471
2472 device->context_id = anv_gem_create_context(device);
2473 if (device->context_id == -1) {
2474 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2475 goto fail_fd;
2476 }
2477
2478 if (physical_device->use_softpin) {
2479 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2480 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2481 goto fail_fd;
2482 }
2483
2484 /* keep the page with address zero out of the allocator */
2485 struct anv_memory_heap *low_heap =
2486 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2487 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2488 device->vma_lo_available = low_heap->size;
2489
2490 struct anv_memory_heap *high_heap =
2491 &physical_device->memory.heaps[0];
2492 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2493 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2494 high_heap->size;
2495 }
2496
2497 list_inithead(&device->memory_objects);
2498
2499 /* As per spec, the driver implementation may deny requests to acquire
2500 * a priority above the default priority (MEDIUM) if the caller does not
2501 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2502 * is returned.
2503 */
2504 if (physical_device->has_context_priority) {
2505 int err = anv_gem_set_context_param(device->fd, device->context_id,
2506 I915_CONTEXT_PARAM_PRIORITY,
2507 vk_priority_to_gen(priority));
2508 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2509 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2510 goto fail_fd;
2511 }
2512 }
2513
2514 device->info = physical_device->info;
2515 device->isl_dev = physical_device->isl_dev;
2516
2517 /* On Broadwell and later, we can use batch chaining to more efficiently
2518 * implement growing command buffers. Prior to Haswell, the kernel
2519 * command parser gets in the way and we have to fall back to growing
2520 * the batch.
2521 */
2522 device->can_chain_batches = device->info.gen >= 8;
2523
2524 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2525 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2526 device->enabled_extensions = enabled_extensions;
2527
2528 anv_device_init_dispatch(device);
2529
2530 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2531 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2532 goto fail_context_id;
2533 }
2534
2535 pthread_condattr_t condattr;
2536 if (pthread_condattr_init(&condattr) != 0) {
2537 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2538 goto fail_mutex;
2539 }
2540 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2541 pthread_condattr_destroy(&condattr);
2542 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2543 goto fail_mutex;
2544 }
2545 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2546 pthread_condattr_destroy(&condattr);
2547 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2548 goto fail_mutex;
2549 }
2550 pthread_condattr_destroy(&condattr);
2551
2552 uint64_t bo_flags =
2553 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2554 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2555 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2556 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2557
2558 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2559
2560 result = anv_bo_cache_init(&device->bo_cache);
2561 if (result != VK_SUCCESS)
2562 goto fail_batch_bo_pool;
2563
2564 if (!physical_device->use_softpin)
2565 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2566
2567 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2568 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2569 16384,
2570 bo_flags);
2571 if (result != VK_SUCCESS)
2572 goto fail_bo_cache;
2573
2574 result = anv_state_pool_init(&device->instruction_state_pool, device,
2575 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2576 16384,
2577 bo_flags);
2578 if (result != VK_SUCCESS)
2579 goto fail_dynamic_state_pool;
2580
2581 result = anv_state_pool_init(&device->surface_state_pool, device,
2582 SURFACE_STATE_POOL_MIN_ADDRESS,
2583 4096,
2584 bo_flags);
2585 if (result != VK_SUCCESS)
2586 goto fail_instruction_state_pool;
2587
2588 if (physical_device->use_softpin) {
2589 result = anv_state_pool_init(&device->binding_table_pool, device,
2590 BINDING_TABLE_POOL_MIN_ADDRESS,
2591 4096,
2592 bo_flags);
2593 if (result != VK_SUCCESS)
2594 goto fail_surface_state_pool;
2595 }
2596
2597 result = anv_bo_init_new(&device->workaround_bo, device, 4096);
2598 if (result != VK_SUCCESS)
2599 goto fail_binding_table_pool;
2600
2601 if (physical_device->use_softpin)
2602 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2603
2604 if (!anv_vma_alloc(device, &device->workaround_bo))
2605 goto fail_workaround_bo;
2606
2607 anv_device_init_trivial_batch(device);
2608
2609 if (device->info.gen >= 10)
2610 anv_device_init_hiz_clear_value_bo(device);
2611
2612 anv_scratch_pool_init(device, &device->scratch_pool);
2613
2614 anv_queue_init(device, &device->queue);
2615
2616 switch (device->info.gen) {
2617 case 7:
2618 if (!device->info.is_haswell)
2619 result = gen7_init_device_state(device);
2620 else
2621 result = gen75_init_device_state(device);
2622 break;
2623 case 8:
2624 result = gen8_init_device_state(device);
2625 break;
2626 case 9:
2627 result = gen9_init_device_state(device);
2628 break;
2629 case 10:
2630 result = gen10_init_device_state(device);
2631 break;
2632 case 11:
2633 result = gen11_init_device_state(device);
2634 break;
2635 case 12:
2636 result = gen12_init_device_state(device);
2637 break;
2638 default:
2639 /* Shouldn't get here as we don't create physical devices for any other
2640 * gens. */
2641 unreachable("unhandled gen");
2642 }
2643 if (result != VK_SUCCESS)
2644 goto fail_workaround_bo;
2645
2646 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2647
2648 anv_device_init_blorp(device);
2649
2650 anv_device_init_border_colors(device);
2651
2652 *pDevice = anv_device_to_handle(device);
2653
2654 return VK_SUCCESS;
2655
2656 fail_workaround_bo:
2657 anv_queue_finish(&device->queue);
2658 anv_scratch_pool_finish(device, &device->scratch_pool);
2659 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2660 anv_gem_close(device, device->workaround_bo.gem_handle);
2661 fail_binding_table_pool:
2662 if (physical_device->use_softpin)
2663 anv_state_pool_finish(&device->binding_table_pool);
2664 fail_surface_state_pool:
2665 anv_state_pool_finish(&device->surface_state_pool);
2666 fail_instruction_state_pool:
2667 anv_state_pool_finish(&device->instruction_state_pool);
2668 fail_dynamic_state_pool:
2669 anv_state_pool_finish(&device->dynamic_state_pool);
2670 fail_bo_cache:
2671 anv_bo_cache_finish(&device->bo_cache);
2672 fail_batch_bo_pool:
2673 anv_bo_pool_finish(&device->batch_bo_pool);
2674 pthread_cond_destroy(&device->queue_submit);
2675 fail_mutex:
2676 pthread_mutex_destroy(&device->mutex);
2677 fail_context_id:
2678 anv_gem_destroy_context(device, device->context_id);
2679 fail_fd:
2680 close(device->fd);
2681 fail_device:
2682 vk_free(&device->alloc, device);
2683
2684 return result;
2685 }
2686
2687 void anv_DestroyDevice(
2688 VkDevice _device,
2689 const VkAllocationCallbacks* pAllocator)
2690 {
2691 ANV_FROM_HANDLE(anv_device, device, _device);
2692 struct anv_physical_device *physical_device;
2693
2694 if (!device)
2695 return;
2696
2697 physical_device = &device->instance->physicalDevice;
2698
2699 anv_device_finish_blorp(device);
2700
2701 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2702
2703 anv_queue_finish(&device->queue);
2704
2705 #ifdef HAVE_VALGRIND
2706 /* We only need to free these to prevent valgrind errors. The backing
2707 * BO will go away in a couple of lines so we don't actually leak.
2708 */
2709 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2710 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2711 #endif
2712
2713 anv_scratch_pool_finish(device, &device->scratch_pool);
2714
2715 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2716 anv_vma_free(device, &device->workaround_bo);
2717 anv_gem_close(device, device->workaround_bo.gem_handle);
2718
2719 anv_vma_free(device, &device->trivial_batch_bo);
2720 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2721 if (device->info.gen >= 10)
2722 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2723
2724 if (physical_device->use_softpin)
2725 anv_state_pool_finish(&device->binding_table_pool);
2726 anv_state_pool_finish(&device->surface_state_pool);
2727 anv_state_pool_finish(&device->instruction_state_pool);
2728 anv_state_pool_finish(&device->dynamic_state_pool);
2729
2730 anv_bo_cache_finish(&device->bo_cache);
2731
2732 anv_bo_pool_finish(&device->batch_bo_pool);
2733
2734 pthread_cond_destroy(&device->queue_submit);
2735 pthread_mutex_destroy(&device->mutex);
2736
2737 anv_gem_destroy_context(device, device->context_id);
2738
2739 if (INTEL_DEBUG & DEBUG_BATCH)
2740 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2741
2742 close(device->fd);
2743
2744 vk_free(&device->alloc, device);
2745 }
2746
2747 VkResult anv_EnumerateInstanceLayerProperties(
2748 uint32_t* pPropertyCount,
2749 VkLayerProperties* pProperties)
2750 {
2751 if (pProperties == NULL) {
2752 *pPropertyCount = 0;
2753 return VK_SUCCESS;
2754 }
2755
2756 /* None supported at this time */
2757 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2758 }
2759
2760 VkResult anv_EnumerateDeviceLayerProperties(
2761 VkPhysicalDevice physicalDevice,
2762 uint32_t* pPropertyCount,
2763 VkLayerProperties* pProperties)
2764 {
2765 if (pProperties == NULL) {
2766 *pPropertyCount = 0;
2767 return VK_SUCCESS;
2768 }
2769
2770 /* None supported at this time */
2771 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2772 }
2773
2774 void anv_GetDeviceQueue(
2775 VkDevice _device,
2776 uint32_t queueNodeIndex,
2777 uint32_t queueIndex,
2778 VkQueue* pQueue)
2779 {
2780 ANV_FROM_HANDLE(anv_device, device, _device);
2781
2782 assert(queueIndex == 0);
2783
2784 *pQueue = anv_queue_to_handle(&device->queue);
2785 }
2786
2787 void anv_GetDeviceQueue2(
2788 VkDevice _device,
2789 const VkDeviceQueueInfo2* pQueueInfo,
2790 VkQueue* pQueue)
2791 {
2792 ANV_FROM_HANDLE(anv_device, device, _device);
2793
2794 assert(pQueueInfo->queueIndex == 0);
2795
2796 if (pQueueInfo->flags == device->queue.flags)
2797 *pQueue = anv_queue_to_handle(&device->queue);
2798 else
2799 *pQueue = NULL;
2800 }
2801
2802 VkResult
2803 _anv_device_set_lost(struct anv_device *device,
2804 const char *file, int line,
2805 const char *msg, ...)
2806 {
2807 VkResult err;
2808 va_list ap;
2809
2810 device->_lost = true;
2811
2812 va_start(ap, msg);
2813 err = __vk_errorv(device->instance, device,
2814 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2815 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2816 va_end(ap);
2817
2818 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2819 abort();
2820
2821 return err;
2822 }
2823
2824 VkResult
2825 anv_device_query_status(struct anv_device *device)
2826 {
2827 /* This isn't likely as most of the callers of this function already check
2828 * for it. However, it doesn't hurt to check and it potentially lets us
2829 * avoid an ioctl.
2830 */
2831 if (anv_device_is_lost(device))
2832 return VK_ERROR_DEVICE_LOST;
2833
2834 uint32_t active, pending;
2835 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2836 if (ret == -1) {
2837 /* We don't know the real error. */
2838 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2839 }
2840
2841 if (active) {
2842 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2843 } else if (pending) {
2844 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2845 }
2846
2847 return VK_SUCCESS;
2848 }
2849
2850 VkResult
2851 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2852 {
2853 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2854 * Other usages of the BO (such as on different hardware) will not be
2855 * flagged as "busy" by this ioctl. Use with care.
2856 */
2857 int ret = anv_gem_busy(device, bo->gem_handle);
2858 if (ret == 1) {
2859 return VK_NOT_READY;
2860 } else if (ret == -1) {
2861 /* We don't know the real error. */
2862 return anv_device_set_lost(device, "gem wait failed: %m");
2863 }
2864
2865 /* Query for device status after the busy call. If the BO we're checking
2866 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2867 * client because it clearly doesn't have valid data. Yes, this most
2868 * likely means an ioctl, but we just did an ioctl to query the busy status
2869 * so it's no great loss.
2870 */
2871 return anv_device_query_status(device);
2872 }
2873
2874 VkResult
2875 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2876 int64_t timeout)
2877 {
2878 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2879 if (ret == -1 && errno == ETIME) {
2880 return VK_TIMEOUT;
2881 } else if (ret == -1) {
2882 /* We don't know the real error. */
2883 return anv_device_set_lost(device, "gem wait failed: %m");
2884 }
2885
2886 /* Query for device status after the wait. If the BO we're waiting on got
2887 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2888 * because it clearly doesn't have valid data. Yes, this most likely means
2889 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2890 */
2891 return anv_device_query_status(device);
2892 }
2893
2894 VkResult anv_DeviceWaitIdle(
2895 VkDevice _device)
2896 {
2897 ANV_FROM_HANDLE(anv_device, device, _device);
2898 if (anv_device_is_lost(device))
2899 return VK_ERROR_DEVICE_LOST;
2900
2901 struct anv_batch batch;
2902
2903 uint32_t cmds[8];
2904 batch.start = batch.next = cmds;
2905 batch.end = (void *) cmds + sizeof(cmds);
2906
2907 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2908 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2909
2910 return anv_device_submit_simple_batch(device, &batch);
2911 }
2912
2913 bool
2914 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2915 {
2916 if (!(bo->flags & EXEC_OBJECT_PINNED))
2917 return true;
2918
2919 pthread_mutex_lock(&device->vma_mutex);
2920
2921 bo->offset = 0;
2922
2923 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2924 device->vma_hi_available >= bo->size) {
2925 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2926 if (addr) {
2927 bo->offset = gen_canonical_address(addr);
2928 assert(addr == gen_48b_address(bo->offset));
2929 device->vma_hi_available -= bo->size;
2930 }
2931 }
2932
2933 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2934 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2935 if (addr) {
2936 bo->offset = gen_canonical_address(addr);
2937 assert(addr == gen_48b_address(bo->offset));
2938 device->vma_lo_available -= bo->size;
2939 }
2940 }
2941
2942 pthread_mutex_unlock(&device->vma_mutex);
2943
2944 return bo->offset != 0;
2945 }
2946
2947 void
2948 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2949 {
2950 if (!(bo->flags & EXEC_OBJECT_PINNED))
2951 return;
2952
2953 const uint64_t addr_48b = gen_48b_address(bo->offset);
2954
2955 pthread_mutex_lock(&device->vma_mutex);
2956
2957 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2958 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2959 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2960 device->vma_lo_available += bo->size;
2961 } else {
2962 ASSERTED const struct anv_physical_device *physical_device =
2963 &device->instance->physicalDevice;
2964 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2965 addr_48b < (physical_device->memory.heaps[0].vma_start +
2966 physical_device->memory.heaps[0].vma_size));
2967 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2968 device->vma_hi_available += bo->size;
2969 }
2970
2971 pthread_mutex_unlock(&device->vma_mutex);
2972
2973 bo->offset = 0;
2974 }
2975
2976 VkResult
2977 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2978 {
2979 uint32_t gem_handle = anv_gem_create(device, size);
2980 if (!gem_handle)
2981 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2982
2983 anv_bo_init(bo, gem_handle, size);
2984
2985 return VK_SUCCESS;
2986 }
2987
2988 VkResult anv_AllocateMemory(
2989 VkDevice _device,
2990 const VkMemoryAllocateInfo* pAllocateInfo,
2991 const VkAllocationCallbacks* pAllocator,
2992 VkDeviceMemory* pMem)
2993 {
2994 ANV_FROM_HANDLE(anv_device, device, _device);
2995 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2996 struct anv_device_memory *mem;
2997 VkResult result = VK_SUCCESS;
2998
2999 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3000
3001 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3002 assert(pAllocateInfo->allocationSize > 0);
3003
3004 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
3005 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
3006
3007 /* FINISHME: Fail if allocation request exceeds heap size. */
3008
3009 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3010 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3011 if (mem == NULL)
3012 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3013
3014 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3015 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3016 mem->map = NULL;
3017 mem->map_size = 0;
3018 mem->ahw = NULL;
3019 mem->host_ptr = NULL;
3020
3021 uint64_t bo_flags = 0;
3022
3023 assert(mem->type->heapIndex < pdevice->memory.heap_count);
3024 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
3025 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
3026
3027 const struct wsi_memory_allocate_info *wsi_info =
3028 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
3029 if (wsi_info && wsi_info->implicit_sync) {
3030 /* We need to set the WRITE flag on window system buffers so that GEM
3031 * will know we're writing to them and synchronize uses on other rings
3032 * (eg if the display server uses the blitter ring).
3033 */
3034 bo_flags |= EXEC_OBJECT_WRITE;
3035 } else if (pdevice->has_exec_async) {
3036 bo_flags |= EXEC_OBJECT_ASYNC;
3037 }
3038
3039 if (pdevice->use_softpin)
3040 bo_flags |= EXEC_OBJECT_PINNED;
3041
3042 const VkExportMemoryAllocateInfo *export_info =
3043 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
3044
3045 /* Check if we need to support Android HW buffer export. If so,
3046 * create AHardwareBuffer and import memory from it.
3047 */
3048 bool android_export = false;
3049 if (export_info && export_info->handleTypes &
3050 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3051 android_export = true;
3052
3053 /* Android memory import. */
3054 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
3055 vk_find_struct_const(pAllocateInfo->pNext,
3056 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
3057
3058 if (ahw_import_info) {
3059 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3060 if (result != VK_SUCCESS)
3061 goto fail;
3062
3063 goto success;
3064 } else if (android_export) {
3065 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3066 if (result != VK_SUCCESS)
3067 goto fail;
3068
3069 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
3070 .buffer = mem->ahw,
3071 };
3072 result = anv_import_ahw_memory(_device, mem, &import_info);
3073 if (result != VK_SUCCESS)
3074 goto fail;
3075
3076 goto success;
3077 }
3078
3079 const VkImportMemoryFdInfoKHR *fd_info =
3080 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
3081
3082 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3083 * ignored.
3084 */
3085 if (fd_info && fd_info->handleType) {
3086 /* At the moment, we support only the below handle types. */
3087 assert(fd_info->handleType ==
3088 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3089 fd_info->handleType ==
3090 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3091
3092 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
3093 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
3094 if (result != VK_SUCCESS)
3095 goto fail;
3096
3097 VkDeviceSize aligned_alloc_size =
3098 align_u64(pAllocateInfo->allocationSize, 4096);
3099
3100 /* For security purposes, we reject importing the bo if it's smaller
3101 * than the requested allocation size. This prevents a malicious client
3102 * from passing a buffer to a trusted client, lying about the size, and
3103 * telling the trusted client to try and texture from an image that goes
3104 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3105 * in the trusted client. The trusted client can protect itself against
3106 * this sort of attack but only if it can trust the buffer size.
3107 */
3108 if (mem->bo->size < aligned_alloc_size) {
3109 result = vk_errorf(device->instance, device,
3110 VK_ERROR_INVALID_EXTERNAL_HANDLE,
3111 "aligned allocationSize too large for "
3112 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3113 "%"PRIu64"B > %"PRIu64"B",
3114 aligned_alloc_size, mem->bo->size);
3115 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3116 goto fail;
3117 }
3118
3119 /* From the Vulkan spec:
3120 *
3121 * "Importing memory from a file descriptor transfers ownership of
3122 * the file descriptor from the application to the Vulkan
3123 * implementation. The application must not perform any operations on
3124 * the file descriptor after a successful import."
3125 *
3126 * If the import fails, we leave the file descriptor open.
3127 */
3128 close(fd_info->fd);
3129 goto success;
3130 }
3131
3132 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
3133 vk_find_struct_const(pAllocateInfo->pNext,
3134 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
3135 if (host_ptr_info && host_ptr_info->handleType) {
3136 if (host_ptr_info->handleType ==
3137 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3138 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3139 goto fail;
3140 }
3141
3142 assert(host_ptr_info->handleType ==
3143 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3144
3145 result = anv_bo_cache_import_host_ptr(
3146 device, &device->bo_cache, host_ptr_info->pHostPointer,
3147 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
3148
3149 if (result != VK_SUCCESS)
3150 goto fail;
3151
3152 mem->host_ptr = host_ptr_info->pHostPointer;
3153 goto success;
3154 }
3155
3156 /* Regular allocate (not importing memory). */
3157
3158 if (export_info && export_info->handleTypes)
3159 bo_flags |= ANV_BO_EXTERNAL;
3160
3161 result = anv_bo_cache_alloc(device, &device->bo_cache,
3162 pAllocateInfo->allocationSize, bo_flags,
3163 &mem->bo);
3164 if (result != VK_SUCCESS)
3165 goto fail;
3166
3167 const VkMemoryDedicatedAllocateInfo *dedicated_info =
3168 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3169 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3170 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3171
3172 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3173 * the BO. In this case, we have a dedicated allocation.
3174 */
3175 if (image->needs_set_tiling) {
3176 const uint32_t i915_tiling =
3177 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3178 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3179 image->planes[0].surface.isl.row_pitch_B,
3180 i915_tiling);
3181 if (ret) {
3182 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3183 return vk_errorf(device->instance, NULL,
3184 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3185 "failed to set BO tiling: %m");
3186 }
3187 }
3188 }
3189
3190 success:
3191 pthread_mutex_lock(&device->mutex);
3192 list_addtail(&mem->link, &device->memory_objects);
3193 pthread_mutex_unlock(&device->mutex);
3194
3195 *pMem = anv_device_memory_to_handle(mem);
3196
3197 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3198 mem->bo->size);
3199
3200 return VK_SUCCESS;
3201
3202 fail:
3203 vk_free2(&device->alloc, pAllocator, mem);
3204
3205 return result;
3206 }
3207
3208 VkResult anv_GetMemoryFdKHR(
3209 VkDevice device_h,
3210 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3211 int* pFd)
3212 {
3213 ANV_FROM_HANDLE(anv_device, dev, device_h);
3214 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3215
3216 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3217
3218 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3219 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3220
3221 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
3222 }
3223
3224 VkResult anv_GetMemoryFdPropertiesKHR(
3225 VkDevice _device,
3226 VkExternalMemoryHandleTypeFlagBits handleType,
3227 int fd,
3228 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3229 {
3230 ANV_FROM_HANDLE(anv_device, device, _device);
3231 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3232
3233 switch (handleType) {
3234 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3235 /* dma-buf can be imported as any memory type */
3236 pMemoryFdProperties->memoryTypeBits =
3237 (1 << pdevice->memory.type_count) - 1;
3238 return VK_SUCCESS;
3239
3240 default:
3241 /* The valid usage section for this function says:
3242 *
3243 * "handleType must not be one of the handle types defined as
3244 * opaque."
3245 *
3246 * So opaque handle types fall into the default "unsupported" case.
3247 */
3248 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3249 }
3250 }
3251
3252 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3253 VkDevice _device,
3254 VkExternalMemoryHandleTypeFlagBits handleType,
3255 const void* pHostPointer,
3256 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3257 {
3258 ANV_FROM_HANDLE(anv_device, device, _device);
3259
3260 assert(pMemoryHostPointerProperties->sType ==
3261 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3262
3263 switch (handleType) {
3264 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3265 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3266
3267 /* Host memory can be imported as any memory type. */
3268 pMemoryHostPointerProperties->memoryTypeBits =
3269 (1ull << pdevice->memory.type_count) - 1;
3270
3271 return VK_SUCCESS;
3272 }
3273 default:
3274 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3275 }
3276 }
3277
3278 void anv_FreeMemory(
3279 VkDevice _device,
3280 VkDeviceMemory _mem,
3281 const VkAllocationCallbacks* pAllocator)
3282 {
3283 ANV_FROM_HANDLE(anv_device, device, _device);
3284 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3285 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3286
3287 if (mem == NULL)
3288 return;
3289
3290 pthread_mutex_lock(&device->mutex);
3291 list_del(&mem->link);
3292 pthread_mutex_unlock(&device->mutex);
3293
3294 if (mem->map)
3295 anv_UnmapMemory(_device, _mem);
3296
3297 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3298 -mem->bo->size);
3299
3300 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3301
3302 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3303 if (mem->ahw)
3304 AHardwareBuffer_release(mem->ahw);
3305 #endif
3306
3307 vk_free2(&device->alloc, pAllocator, mem);
3308 }
3309
3310 VkResult anv_MapMemory(
3311 VkDevice _device,
3312 VkDeviceMemory _memory,
3313 VkDeviceSize offset,
3314 VkDeviceSize size,
3315 VkMemoryMapFlags flags,
3316 void** ppData)
3317 {
3318 ANV_FROM_HANDLE(anv_device, device, _device);
3319 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3320
3321 if (mem == NULL) {
3322 *ppData = NULL;
3323 return VK_SUCCESS;
3324 }
3325
3326 if (mem->host_ptr) {
3327 *ppData = mem->host_ptr + offset;
3328 return VK_SUCCESS;
3329 }
3330
3331 if (size == VK_WHOLE_SIZE)
3332 size = mem->bo->size - offset;
3333
3334 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3335 *
3336 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3337 * assert(size != 0);
3338 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3339 * equal to the size of the memory minus offset
3340 */
3341 assert(size > 0);
3342 assert(offset + size <= mem->bo->size);
3343
3344 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3345 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3346 * at a time is valid. We could just mmap up front and return an offset
3347 * pointer here, but that may exhaust virtual memory on 32 bit
3348 * userspace. */
3349
3350 uint32_t gem_flags = 0;
3351
3352 if (!device->info.has_llc &&
3353 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3354 gem_flags |= I915_MMAP_WC;
3355
3356 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3357 uint64_t map_offset = offset & ~4095ull;
3358 assert(offset >= map_offset);
3359 uint64_t map_size = (offset + size) - map_offset;
3360
3361 /* Let's map whole pages */
3362 map_size = align_u64(map_size, 4096);
3363
3364 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3365 map_offset, map_size, gem_flags);
3366 if (map == MAP_FAILED)
3367 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3368
3369 mem->map = map;
3370 mem->map_size = map_size;
3371
3372 *ppData = mem->map + (offset - map_offset);
3373
3374 return VK_SUCCESS;
3375 }
3376
3377 void anv_UnmapMemory(
3378 VkDevice _device,
3379 VkDeviceMemory _memory)
3380 {
3381 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3382
3383 if (mem == NULL || mem->host_ptr)
3384 return;
3385
3386 anv_gem_munmap(mem->map, mem->map_size);
3387
3388 mem->map = NULL;
3389 mem->map_size = 0;
3390 }
3391
3392 static void
3393 clflush_mapped_ranges(struct anv_device *device,
3394 uint32_t count,
3395 const VkMappedMemoryRange *ranges)
3396 {
3397 for (uint32_t i = 0; i < count; i++) {
3398 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3399 if (ranges[i].offset >= mem->map_size)
3400 continue;
3401
3402 gen_clflush_range(mem->map + ranges[i].offset,
3403 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3404 }
3405 }
3406
3407 VkResult anv_FlushMappedMemoryRanges(
3408 VkDevice _device,
3409 uint32_t memoryRangeCount,
3410 const VkMappedMemoryRange* pMemoryRanges)
3411 {
3412 ANV_FROM_HANDLE(anv_device, device, _device);
3413
3414 if (device->info.has_llc)
3415 return VK_SUCCESS;
3416
3417 /* Make sure the writes we're flushing have landed. */
3418 __builtin_ia32_mfence();
3419
3420 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3421
3422 return VK_SUCCESS;
3423 }
3424
3425 VkResult anv_InvalidateMappedMemoryRanges(
3426 VkDevice _device,
3427 uint32_t memoryRangeCount,
3428 const VkMappedMemoryRange* pMemoryRanges)
3429 {
3430 ANV_FROM_HANDLE(anv_device, device, _device);
3431
3432 if (device->info.has_llc)
3433 return VK_SUCCESS;
3434
3435 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3436
3437 /* Make sure no reads get moved up above the invalidate. */
3438 __builtin_ia32_mfence();
3439
3440 return VK_SUCCESS;
3441 }
3442
3443 void anv_GetBufferMemoryRequirements(
3444 VkDevice _device,
3445 VkBuffer _buffer,
3446 VkMemoryRequirements* pMemoryRequirements)
3447 {
3448 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3449 ANV_FROM_HANDLE(anv_device, device, _device);
3450 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3451
3452 /* The Vulkan spec (git aaed022) says:
3453 *
3454 * memoryTypeBits is a bitfield and contains one bit set for every
3455 * supported memory type for the resource. The bit `1<<i` is set if and
3456 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3457 * structure for the physical device is supported.
3458 */
3459 uint32_t memory_types = 0;
3460 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3461 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3462 if ((valid_usage & buffer->usage) == buffer->usage)
3463 memory_types |= (1u << i);
3464 }
3465
3466 /* Base alignment requirement of a cache line */
3467 uint32_t alignment = 16;
3468
3469 /* We need an alignment of 32 for pushing UBOs */
3470 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3471 alignment = MAX2(alignment, 32);
3472
3473 pMemoryRequirements->size = buffer->size;
3474 pMemoryRequirements->alignment = alignment;
3475
3476 /* Storage and Uniform buffers should have their size aligned to
3477 * 32-bits to avoid boundary checks when last DWord is not complete.
3478 * This would ensure that not internal padding would be needed for
3479 * 16-bit types.
3480 */
3481 if (device->robust_buffer_access &&
3482 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3483 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3484 pMemoryRequirements->size = align_u64(buffer->size, 4);
3485
3486 pMemoryRequirements->memoryTypeBits = memory_types;
3487 }
3488
3489 void anv_GetBufferMemoryRequirements2(
3490 VkDevice _device,
3491 const VkBufferMemoryRequirementsInfo2* pInfo,
3492 VkMemoryRequirements2* pMemoryRequirements)
3493 {
3494 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3495 &pMemoryRequirements->memoryRequirements);
3496
3497 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3498 switch (ext->sType) {
3499 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3500 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3501 requirements->prefersDedicatedAllocation = false;
3502 requirements->requiresDedicatedAllocation = false;
3503 break;
3504 }
3505
3506 default:
3507 anv_debug_ignored_stype(ext->sType);
3508 break;
3509 }
3510 }
3511 }
3512
3513 void anv_GetImageMemoryRequirements(
3514 VkDevice _device,
3515 VkImage _image,
3516 VkMemoryRequirements* pMemoryRequirements)
3517 {
3518 ANV_FROM_HANDLE(anv_image, image, _image);
3519 ANV_FROM_HANDLE(anv_device, device, _device);
3520 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3521
3522 /* The Vulkan spec (git aaed022) says:
3523 *
3524 * memoryTypeBits is a bitfield and contains one bit set for every
3525 * supported memory type for the resource. The bit `1<<i` is set if and
3526 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3527 * structure for the physical device is supported.
3528 *
3529 * All types are currently supported for images.
3530 */
3531 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3532
3533 /* We must have image allocated or imported at this point. According to the
3534 * specification, external images must have been bound to memory before
3535 * calling GetImageMemoryRequirements.
3536 */
3537 assert(image->size > 0);
3538
3539 pMemoryRequirements->size = image->size;
3540 pMemoryRequirements->alignment = image->alignment;
3541 pMemoryRequirements->memoryTypeBits = memory_types;
3542 }
3543
3544 void anv_GetImageMemoryRequirements2(
3545 VkDevice _device,
3546 const VkImageMemoryRequirementsInfo2* pInfo,
3547 VkMemoryRequirements2* pMemoryRequirements)
3548 {
3549 ANV_FROM_HANDLE(anv_device, device, _device);
3550 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3551
3552 anv_GetImageMemoryRequirements(_device, pInfo->image,
3553 &pMemoryRequirements->memoryRequirements);
3554
3555 vk_foreach_struct_const(ext, pInfo->pNext) {
3556 switch (ext->sType) {
3557 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3558 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3559 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3560 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3561 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3562 plane_reqs->planeAspect);
3563
3564 assert(image->planes[plane].offset == 0);
3565
3566 /* The Vulkan spec (git aaed022) says:
3567 *
3568 * memoryTypeBits is a bitfield and contains one bit set for every
3569 * supported memory type for the resource. The bit `1<<i` is set
3570 * if and only if the memory type `i` in the
3571 * VkPhysicalDeviceMemoryProperties structure for the physical
3572 * device is supported.
3573 *
3574 * All types are currently supported for images.
3575 */
3576 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3577 (1ull << pdevice->memory.type_count) - 1;
3578
3579 /* We must have image allocated or imported at this point. According to the
3580 * specification, external images must have been bound to memory before
3581 * calling GetImageMemoryRequirements.
3582 */
3583 assert(image->planes[plane].size > 0);
3584
3585 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3586 pMemoryRequirements->memoryRequirements.alignment =
3587 image->planes[plane].alignment;
3588 break;
3589 }
3590
3591 default:
3592 anv_debug_ignored_stype(ext->sType);
3593 break;
3594 }
3595 }
3596
3597 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3598 switch (ext->sType) {
3599 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3600 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3601 if (image->needs_set_tiling || image->external_format) {
3602 /* If we need to set the tiling for external consumers, we need a
3603 * dedicated allocation.
3604 *
3605 * See also anv_AllocateMemory.
3606 */
3607 requirements->prefersDedicatedAllocation = true;
3608 requirements->requiresDedicatedAllocation = true;
3609 } else {
3610 requirements->prefersDedicatedAllocation = false;
3611 requirements->requiresDedicatedAllocation = false;
3612 }
3613 break;
3614 }
3615
3616 default:
3617 anv_debug_ignored_stype(ext->sType);
3618 break;
3619 }
3620 }
3621 }
3622
3623 void anv_GetImageSparseMemoryRequirements(
3624 VkDevice device,
3625 VkImage image,
3626 uint32_t* pSparseMemoryRequirementCount,
3627 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3628 {
3629 *pSparseMemoryRequirementCount = 0;
3630 }
3631
3632 void anv_GetImageSparseMemoryRequirements2(
3633 VkDevice device,
3634 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3635 uint32_t* pSparseMemoryRequirementCount,
3636 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3637 {
3638 *pSparseMemoryRequirementCount = 0;
3639 }
3640
3641 void anv_GetDeviceMemoryCommitment(
3642 VkDevice device,
3643 VkDeviceMemory memory,
3644 VkDeviceSize* pCommittedMemoryInBytes)
3645 {
3646 *pCommittedMemoryInBytes = 0;
3647 }
3648
3649 static void
3650 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3651 {
3652 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3653 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3654
3655 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3656
3657 if (mem) {
3658 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3659 buffer->address = (struct anv_address) {
3660 .bo = mem->bo,
3661 .offset = pBindInfo->memoryOffset,
3662 };
3663 } else {
3664 buffer->address = ANV_NULL_ADDRESS;
3665 }
3666 }
3667
3668 VkResult anv_BindBufferMemory(
3669 VkDevice device,
3670 VkBuffer buffer,
3671 VkDeviceMemory memory,
3672 VkDeviceSize memoryOffset)
3673 {
3674 anv_bind_buffer_memory(
3675 &(VkBindBufferMemoryInfo) {
3676 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3677 .buffer = buffer,
3678 .memory = memory,
3679 .memoryOffset = memoryOffset,
3680 });
3681
3682 return VK_SUCCESS;
3683 }
3684
3685 VkResult anv_BindBufferMemory2(
3686 VkDevice device,
3687 uint32_t bindInfoCount,
3688 const VkBindBufferMemoryInfo* pBindInfos)
3689 {
3690 for (uint32_t i = 0; i < bindInfoCount; i++)
3691 anv_bind_buffer_memory(&pBindInfos[i]);
3692
3693 return VK_SUCCESS;
3694 }
3695
3696 VkResult anv_QueueBindSparse(
3697 VkQueue _queue,
3698 uint32_t bindInfoCount,
3699 const VkBindSparseInfo* pBindInfo,
3700 VkFence fence)
3701 {
3702 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3703 if (anv_device_is_lost(queue->device))
3704 return VK_ERROR_DEVICE_LOST;
3705
3706 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3707 }
3708
3709 // Event functions
3710
3711 VkResult anv_CreateEvent(
3712 VkDevice _device,
3713 const VkEventCreateInfo* pCreateInfo,
3714 const VkAllocationCallbacks* pAllocator,
3715 VkEvent* pEvent)
3716 {
3717 ANV_FROM_HANDLE(anv_device, device, _device);
3718 struct anv_state state;
3719 struct anv_event *event;
3720
3721 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3722
3723 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3724 sizeof(*event), 8);
3725 event = state.map;
3726 event->state = state;
3727 event->semaphore = VK_EVENT_RESET;
3728
3729 if (!device->info.has_llc) {
3730 /* Make sure the writes we're flushing have landed. */
3731 __builtin_ia32_mfence();
3732 __builtin_ia32_clflush(event);
3733 }
3734
3735 *pEvent = anv_event_to_handle(event);
3736
3737 return VK_SUCCESS;
3738 }
3739
3740 void anv_DestroyEvent(
3741 VkDevice _device,
3742 VkEvent _event,
3743 const VkAllocationCallbacks* pAllocator)
3744 {
3745 ANV_FROM_HANDLE(anv_device, device, _device);
3746 ANV_FROM_HANDLE(anv_event, event, _event);
3747
3748 if (!event)
3749 return;
3750
3751 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3752 }
3753
3754 VkResult anv_GetEventStatus(
3755 VkDevice _device,
3756 VkEvent _event)
3757 {
3758 ANV_FROM_HANDLE(anv_device, device, _device);
3759 ANV_FROM_HANDLE(anv_event, event, _event);
3760
3761 if (anv_device_is_lost(device))
3762 return VK_ERROR_DEVICE_LOST;
3763
3764 if (!device->info.has_llc) {
3765 /* Invalidate read cache before reading event written by GPU. */
3766 __builtin_ia32_clflush(event);
3767 __builtin_ia32_mfence();
3768
3769 }
3770
3771 return event->semaphore;
3772 }
3773
3774 VkResult anv_SetEvent(
3775 VkDevice _device,
3776 VkEvent _event)
3777 {
3778 ANV_FROM_HANDLE(anv_device, device, _device);
3779 ANV_FROM_HANDLE(anv_event, event, _event);
3780
3781 event->semaphore = VK_EVENT_SET;
3782
3783 if (!device->info.has_llc) {
3784 /* Make sure the writes we're flushing have landed. */
3785 __builtin_ia32_mfence();
3786 __builtin_ia32_clflush(event);
3787 }
3788
3789 return VK_SUCCESS;
3790 }
3791
3792 VkResult anv_ResetEvent(
3793 VkDevice _device,
3794 VkEvent _event)
3795 {
3796 ANV_FROM_HANDLE(anv_device, device, _device);
3797 ANV_FROM_HANDLE(anv_event, event, _event);
3798
3799 event->semaphore = VK_EVENT_RESET;
3800
3801 if (!device->info.has_llc) {
3802 /* Make sure the writes we're flushing have landed. */
3803 __builtin_ia32_mfence();
3804 __builtin_ia32_clflush(event);
3805 }
3806
3807 return VK_SUCCESS;
3808 }
3809
3810 // Buffer functions
3811
3812 VkResult anv_CreateBuffer(
3813 VkDevice _device,
3814 const VkBufferCreateInfo* pCreateInfo,
3815 const VkAllocationCallbacks* pAllocator,
3816 VkBuffer* pBuffer)
3817 {
3818 ANV_FROM_HANDLE(anv_device, device, _device);
3819 struct anv_buffer *buffer;
3820
3821 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3822
3823 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3824 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3825 if (buffer == NULL)
3826 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3827
3828 buffer->size = pCreateInfo->size;
3829 buffer->usage = pCreateInfo->usage;
3830 buffer->address = ANV_NULL_ADDRESS;
3831
3832 *pBuffer = anv_buffer_to_handle(buffer);
3833
3834 return VK_SUCCESS;
3835 }
3836
3837 void anv_DestroyBuffer(
3838 VkDevice _device,
3839 VkBuffer _buffer,
3840 const VkAllocationCallbacks* pAllocator)
3841 {
3842 ANV_FROM_HANDLE(anv_device, device, _device);
3843 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3844
3845 if (!buffer)
3846 return;
3847
3848 vk_free2(&device->alloc, pAllocator, buffer);
3849 }
3850
3851 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3852 VkDevice device,
3853 const VkBufferDeviceAddressInfoEXT* pInfo)
3854 {
3855 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3856
3857 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3858
3859 return anv_address_physical(buffer->address);
3860 }
3861
3862 void
3863 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3864 enum isl_format format,
3865 struct anv_address address,
3866 uint32_t range, uint32_t stride)
3867 {
3868 isl_buffer_fill_state(&device->isl_dev, state.map,
3869 .address = anv_address_physical(address),
3870 .mocs = device->default_mocs,
3871 .size_B = range,
3872 .format = format,
3873 .swizzle = ISL_SWIZZLE_IDENTITY,
3874 .stride_B = stride);
3875 }
3876
3877 void anv_DestroySampler(
3878 VkDevice _device,
3879 VkSampler _sampler,
3880 const VkAllocationCallbacks* pAllocator)
3881 {
3882 ANV_FROM_HANDLE(anv_device, device, _device);
3883 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3884
3885 if (!sampler)
3886 return;
3887
3888 if (sampler->bindless_state.map) {
3889 anv_state_pool_free(&device->dynamic_state_pool,
3890 sampler->bindless_state);
3891 }
3892
3893 vk_free2(&device->alloc, pAllocator, sampler);
3894 }
3895
3896 VkResult anv_CreateFramebuffer(
3897 VkDevice _device,
3898 const VkFramebufferCreateInfo* pCreateInfo,
3899 const VkAllocationCallbacks* pAllocator,
3900 VkFramebuffer* pFramebuffer)
3901 {
3902 ANV_FROM_HANDLE(anv_device, device, _device);
3903 struct anv_framebuffer *framebuffer;
3904
3905 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3906
3907 size_t size = sizeof(*framebuffer);
3908
3909 /* VK_KHR_imageless_framebuffer extension says:
3910 *
3911 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3912 * parameter pAttachments is ignored.
3913 */
3914 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3915 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3916 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3917 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3918 if (framebuffer == NULL)
3919 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3920
3921 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3922 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
3923 framebuffer->attachments[i] = iview;
3924 }
3925 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3926 } else {
3927 assert(device->enabled_extensions.KHR_imageless_framebuffer);
3928 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3929 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3930 if (framebuffer == NULL)
3931 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3932
3933 framebuffer->attachment_count = 0;
3934 }
3935
3936 framebuffer->width = pCreateInfo->width;
3937 framebuffer->height = pCreateInfo->height;
3938 framebuffer->layers = pCreateInfo->layers;
3939
3940 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3941
3942 return VK_SUCCESS;
3943 }
3944
3945 void anv_DestroyFramebuffer(
3946 VkDevice _device,
3947 VkFramebuffer _fb,
3948 const VkAllocationCallbacks* pAllocator)
3949 {
3950 ANV_FROM_HANDLE(anv_device, device, _device);
3951 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3952
3953 if (!fb)
3954 return;
3955
3956 vk_free2(&device->alloc, pAllocator, fb);
3957 }
3958
3959 static const VkTimeDomainEXT anv_time_domains[] = {
3960 VK_TIME_DOMAIN_DEVICE_EXT,
3961 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3962 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3963 };
3964
3965 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3966 VkPhysicalDevice physicalDevice,
3967 uint32_t *pTimeDomainCount,
3968 VkTimeDomainEXT *pTimeDomains)
3969 {
3970 int d;
3971 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3972
3973 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3974 vk_outarray_append(&out, i) {
3975 *i = anv_time_domains[d];
3976 }
3977 }
3978
3979 return vk_outarray_status(&out);
3980 }
3981
3982 static uint64_t
3983 anv_clock_gettime(clockid_t clock_id)
3984 {
3985 struct timespec current;
3986 int ret;
3987
3988 ret = clock_gettime(clock_id, &current);
3989 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3990 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3991 if (ret < 0)
3992 return 0;
3993
3994 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3995 }
3996
3997 #define TIMESTAMP 0x2358
3998
3999 VkResult anv_GetCalibratedTimestampsEXT(
4000 VkDevice _device,
4001 uint32_t timestampCount,
4002 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4003 uint64_t *pTimestamps,
4004 uint64_t *pMaxDeviation)
4005 {
4006 ANV_FROM_HANDLE(anv_device, device, _device);
4007 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4008 int ret;
4009 int d;
4010 uint64_t begin, end;
4011 uint64_t max_clock_period = 0;
4012
4013 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4014
4015 for (d = 0; d < timestampCount; d++) {
4016 switch (pTimestampInfos[d].timeDomain) {
4017 case VK_TIME_DOMAIN_DEVICE_EXT:
4018 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4019 &pTimestamps[d]);
4020
4021 if (ret != 0) {
4022 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4023 "register: %m");
4024 }
4025 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4026 max_clock_period = MAX2(max_clock_period, device_period);
4027 break;
4028 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4029 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4030 max_clock_period = MAX2(max_clock_period, 1);
4031 break;
4032
4033 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4034 pTimestamps[d] = begin;
4035 break;
4036 default:
4037 pTimestamps[d] = 0;
4038 break;
4039 }
4040 }
4041
4042 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4043
4044 /*
4045 * The maximum deviation is the sum of the interval over which we
4046 * perform the sampling and the maximum period of any sampled
4047 * clock. That's because the maximum skew between any two sampled
4048 * clock edges is when the sampled clock with the largest period is
4049 * sampled at the end of that period but right at the beginning of the
4050 * sampling interval and some other clock is sampled right at the
4051 * begining of its sampling period and right at the end of the
4052 * sampling interval. Let's assume the GPU has the longest clock
4053 * period and that the application is sampling GPU and monotonic:
4054 *
4055 * s e
4056 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4057 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4058 *
4059 * g
4060 * 0 1 2 3
4061 * GPU -----_____-----_____-----_____-----_____
4062 *
4063 * m
4064 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4065 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4066 *
4067 * Interval <----------------->
4068 * Deviation <-------------------------->
4069 *
4070 * s = read(raw) 2
4071 * g = read(GPU) 1
4072 * m = read(monotonic) 2
4073 * e = read(raw) b
4074 *
4075 * We round the sample interval up by one tick to cover sampling error
4076 * in the interval clock
4077 */
4078
4079 uint64_t sample_interval = end - begin + 1;
4080
4081 *pMaxDeviation = sample_interval + max_clock_period;
4082
4083 return VK_SUCCESS;
4084 }
4085
4086 /* vk_icd.h does not declare this function, so we declare it here to
4087 * suppress Wmissing-prototypes.
4088 */
4089 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4090 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4091
4092 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4093 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4094 {
4095 /* For the full details on loader interface versioning, see
4096 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4097 * What follows is a condensed summary, to help you navigate the large and
4098 * confusing official doc.
4099 *
4100 * - Loader interface v0 is incompatible with later versions. We don't
4101 * support it.
4102 *
4103 * - In loader interface v1:
4104 * - The first ICD entrypoint called by the loader is
4105 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4106 * entrypoint.
4107 * - The ICD must statically expose no other Vulkan symbol unless it is
4108 * linked with -Bsymbolic.
4109 * - Each dispatchable Vulkan handle created by the ICD must be
4110 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4111 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4112 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4113 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4114 * such loader-managed surfaces.
4115 *
4116 * - Loader interface v2 differs from v1 in:
4117 * - The first ICD entrypoint called by the loader is
4118 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4119 * statically expose this entrypoint.
4120 *
4121 * - Loader interface v3 differs from v2 in:
4122 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4123 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4124 * because the loader no longer does so.
4125 *
4126 * - Loader interface v4 differs from v3 in:
4127 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4128 */
4129 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4130 return VK_SUCCESS;
4131 }