anv: Implement VK_KHR_imageless_framebuffer
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_defines.h"
46 #include "compiler/glsl_types.h"
47
48 #include "genxml/gen7_pack.h"
49
50 /* This is probably far to big but it reflects the max size used for messages
51 * in OpenGLs KHR_debug.
52 */
53 #define MAX_DEBUG_MESSAGE_LENGTH 4096
54
55 static void
56 compiler_debug_log(void *data, const char *fmt, ...)
57 {
58 char str[MAX_DEBUG_MESSAGE_LENGTH];
59 struct anv_device *device = (struct anv_device *)data;
60
61 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
62 return;
63
64 va_list args;
65 va_start(args, fmt);
66 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
67 va_end(args);
68
69 vk_debug_report(&device->instance->debug_report_callbacks,
70 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
71 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
72 0, 0, 0, "anv", str);
73 }
74
75 static void
76 compiler_perf_log(void *data, const char *fmt, ...)
77 {
78 va_list args;
79 va_start(args, fmt);
80
81 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
82 intel_logd_v(fmt, args);
83
84 va_end(args);
85 }
86
87 static uint64_t
88 anv_compute_heap_size(int fd, uint64_t gtt_size)
89 {
90 /* Query the total ram from the system */
91 struct sysinfo info;
92 sysinfo(&info);
93
94 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
95
96 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
97 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
98 */
99 uint64_t available_ram;
100 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
101 available_ram = total_ram / 2;
102 else
103 available_ram = total_ram * 3 / 4;
104
105 /* We also want to leave some padding for things we allocate in the driver,
106 * so don't go over 3/4 of the GTT either.
107 */
108 uint64_t available_gtt = gtt_size * 3 / 4;
109
110 return MIN2(available_ram, available_gtt);
111 }
112
113 static VkResult
114 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
115 {
116 uint64_t gtt_size;
117 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
118 &gtt_size) == -1) {
119 /* If, for whatever reason, we can't actually get the GTT size from the
120 * kernel (too old?) fall back to the aperture size.
121 */
122 anv_perf_warn(NULL, NULL,
123 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
124
125 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
126 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
127 "failed to get aperture size: %m");
128 }
129 }
130
131 device->supports_48bit_addresses = (device->info.gen >= 8) &&
132 gtt_size > (4ULL << 30 /* GiB */);
133
134 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
135
136 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
137 /* When running with an overridden PCI ID, we may get a GTT size from
138 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
139 * address support can still fail. Just clamp the address space size to
140 * 2 GiB if we don't have 48-bit support.
141 */
142 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
143 "not support for 48-bit addresses",
144 __FILE__, __LINE__);
145 heap_size = 2ull << 30;
146 }
147
148 if (heap_size <= 3ull * (1ull << 30)) {
149 /* In this case, everything fits nicely into the 32-bit address space,
150 * so there's no need for supporting 48bit addresses on client-allocated
151 * memory objects.
152 */
153 device->memory.heap_count = 1;
154 device->memory.heaps[0] = (struct anv_memory_heap) {
155 .vma_start = LOW_HEAP_MIN_ADDRESS,
156 .vma_size = LOW_HEAP_SIZE,
157 .size = heap_size,
158 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
159 .supports_48bit_addresses = false,
160 };
161 } else {
162 /* Not everything will fit nicely into a 32-bit address space. In this
163 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
164 * larger 48-bit heap. If we're in this case, then we have a total heap
165 * size larger than 3GiB which most likely means they have 8 GiB of
166 * video memory and so carving off 1 GiB for the 32-bit heap should be
167 * reasonable.
168 */
169 const uint64_t heap_size_32bit = 1ull << 30;
170 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
171
172 assert(device->supports_48bit_addresses);
173
174 device->memory.heap_count = 2;
175 device->memory.heaps[0] = (struct anv_memory_heap) {
176 .vma_start = HIGH_HEAP_MIN_ADDRESS,
177 /* Leave the last 4GiB out of the high vma range, so that no state
178 * base address + size can overflow 48 bits. For more information see
179 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
180 */
181 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
182 .size = heap_size_48bit,
183 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
184 .supports_48bit_addresses = true,
185 };
186 device->memory.heaps[1] = (struct anv_memory_heap) {
187 .vma_start = LOW_HEAP_MIN_ADDRESS,
188 .vma_size = LOW_HEAP_SIZE,
189 .size = heap_size_32bit,
190 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
191 .supports_48bit_addresses = false,
192 };
193 }
194
195 uint32_t type_count = 0;
196 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
197 uint32_t valid_buffer_usage = ~0;
198
199 /* There appears to be a hardware issue in the VF cache where it only
200 * considers the bottom 32 bits of memory addresses. If you happen to
201 * have two vertex buffers which get placed exactly 4 GiB apart and use
202 * them in back-to-back draw calls, you can get collisions. In order to
203 * solve this problem, we require vertex and index buffers be bound to
204 * memory allocated out of the 32-bit heap.
205 */
206 if (device->memory.heaps[heap].supports_48bit_addresses) {
207 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
208 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
209 }
210
211 if (device->info.has_llc) {
212 /* Big core GPUs share LLC with the CPU and thus one memory type can be
213 * both cached and coherent at the same time.
214 */
215 device->memory.types[type_count++] = (struct anv_memory_type) {
216 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
217 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
218 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
219 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
220 .heapIndex = heap,
221 .valid_buffer_usage = valid_buffer_usage,
222 };
223 } else {
224 /* The spec requires that we expose a host-visible, coherent memory
225 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
226 * to give the application a choice between cached, but not coherent and
227 * coherent but uncached (WC though).
228 */
229 device->memory.types[type_count++] = (struct anv_memory_type) {
230 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
231 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
232 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
233 .heapIndex = heap,
234 .valid_buffer_usage = valid_buffer_usage,
235 };
236 device->memory.types[type_count++] = (struct anv_memory_type) {
237 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
238 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
239 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
240 .heapIndex = heap,
241 .valid_buffer_usage = valid_buffer_usage,
242 };
243 }
244 }
245 device->memory.type_count = type_count;
246
247 return VK_SUCCESS;
248 }
249
250 static VkResult
251 anv_physical_device_init_uuids(struct anv_physical_device *device)
252 {
253 const struct build_id_note *note =
254 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
255 if (!note) {
256 return vk_errorf(device->instance, device,
257 VK_ERROR_INITIALIZATION_FAILED,
258 "Failed to find build-id");
259 }
260
261 unsigned build_id_len = build_id_length(note);
262 if (build_id_len < 20) {
263 return vk_errorf(device->instance, device,
264 VK_ERROR_INITIALIZATION_FAILED,
265 "build-id too short. It needs to be a SHA");
266 }
267
268 memcpy(device->driver_build_sha1, build_id_data(note), 20);
269
270 struct mesa_sha1 sha1_ctx;
271 uint8_t sha1[20];
272 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
273
274 /* The pipeline cache UUID is used for determining when a pipeline cache is
275 * invalid. It needs both a driver build and the PCI ID of the device.
276 */
277 _mesa_sha1_init(&sha1_ctx);
278 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
279 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
280 sizeof(device->chipset_id));
281 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
282 sizeof(device->always_use_bindless));
283 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
284 sizeof(device->has_a64_buffer_access));
285 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
286 sizeof(device->has_bindless_images));
287 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
288 sizeof(device->has_bindless_samplers));
289 _mesa_sha1_final(&sha1_ctx, sha1);
290 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
291
292 /* The driver UUID is used for determining sharability of images and memory
293 * between two Vulkan instances in separate processes. People who want to
294 * share memory need to also check the device UUID (below) so all this
295 * needs to be is the build-id.
296 */
297 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
298
299 /* The device UUID uniquely identifies the given device within the machine.
300 * Since we never have more than one device, this doesn't need to be a real
301 * UUID. However, on the off-chance that someone tries to use this to
302 * cache pre-tiled images or something of the like, we use the PCI ID and
303 * some bits of ISL info to ensure that this is safe.
304 */
305 _mesa_sha1_init(&sha1_ctx);
306 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
307 sizeof(device->chipset_id));
308 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
309 sizeof(device->isl_dev.has_bit6_swizzling));
310 _mesa_sha1_final(&sha1_ctx, sha1);
311 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
312
313 return VK_SUCCESS;
314 }
315
316 static void
317 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
318 {
319 #ifdef ENABLE_SHADER_CACHE
320 char renderer[10];
321 MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
322 device->chipset_id);
323 assert(len == sizeof(renderer) - 2);
324
325 char timestamp[41];
326 _mesa_sha1_format(timestamp, device->driver_build_sha1);
327
328 const uint64_t driver_flags =
329 brw_get_compiler_config_value(device->compiler);
330 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
331 #else
332 device->disk_cache = NULL;
333 #endif
334 }
335
336 static void
337 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
338 {
339 #ifdef ENABLE_SHADER_CACHE
340 if (device->disk_cache)
341 disk_cache_destroy(device->disk_cache);
342 #else
343 assert(device->disk_cache == NULL);
344 #endif
345 }
346
347 static uint64_t
348 get_available_system_memory()
349 {
350 char *meminfo = os_read_file("/proc/meminfo");
351 if (!meminfo)
352 return 0;
353
354 char *str = strstr(meminfo, "MemAvailable:");
355 if (!str) {
356 free(meminfo);
357 return 0;
358 }
359
360 uint64_t kb_mem_available;
361 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
362 free(meminfo);
363 return kb_mem_available << 10;
364 }
365
366 free(meminfo);
367 return 0;
368 }
369
370 static VkResult
371 anv_physical_device_init(struct anv_physical_device *device,
372 struct anv_instance *instance,
373 drmDevicePtr drm_device)
374 {
375 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
376 const char *path = drm_device->nodes[DRM_NODE_RENDER];
377 VkResult result;
378 int fd;
379 int master_fd = -1;
380
381 brw_process_intel_debug_variable();
382
383 fd = open(path, O_RDWR | O_CLOEXEC);
384 if (fd < 0)
385 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
386
387 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
388 device->instance = instance;
389
390 assert(strlen(path) < ARRAY_SIZE(device->path));
391 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
392
393 device->no_hw = getenv("INTEL_NO_HW") != NULL;
394
395 const int pci_id_override = gen_get_pci_device_id_override();
396 if (pci_id_override < 0) {
397 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
398 if (!device->chipset_id) {
399 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
400 goto fail;
401 }
402 } else {
403 device->chipset_id = pci_id_override;
404 device->no_hw = true;
405 }
406
407 device->pci_info.domain = drm_device->businfo.pci->domain;
408 device->pci_info.bus = drm_device->businfo.pci->bus;
409 device->pci_info.device = drm_device->businfo.pci->dev;
410 device->pci_info.function = drm_device->businfo.pci->func;
411
412 device->name = gen_get_device_name(device->chipset_id);
413 if (!gen_get_device_info(device->chipset_id, &device->info)) {
414 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
415 goto fail;
416 }
417
418 if (device->info.is_haswell) {
419 intel_logw("Haswell Vulkan support is incomplete");
420 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
421 intel_logw("Ivy Bridge Vulkan support is incomplete");
422 } else if (device->info.gen == 7 && device->info.is_baytrail) {
423 intel_logw("Bay Trail Vulkan support is incomplete");
424 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
425 /* Gen8-11 fully supported */
426 } else {
427 result = vk_errorf(device->instance, device,
428 VK_ERROR_INCOMPATIBLE_DRIVER,
429 "Vulkan not yet supported on %s", device->name);
430 goto fail;
431 }
432
433 device->cmd_parser_version = -1;
434 if (device->info.gen == 7) {
435 device->cmd_parser_version =
436 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
437 if (device->cmd_parser_version == -1) {
438 result = vk_errorf(device->instance, device,
439 VK_ERROR_INITIALIZATION_FAILED,
440 "failed to get command parser version");
441 goto fail;
442 }
443 }
444
445 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
446 result = vk_errorf(device->instance, device,
447 VK_ERROR_INITIALIZATION_FAILED,
448 "kernel missing gem wait");
449 goto fail;
450 }
451
452 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
453 result = vk_errorf(device->instance, device,
454 VK_ERROR_INITIALIZATION_FAILED,
455 "kernel missing execbuf2");
456 goto fail;
457 }
458
459 if (!device->info.has_llc &&
460 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
461 result = vk_errorf(device->instance, device,
462 VK_ERROR_INITIALIZATION_FAILED,
463 "kernel missing wc mmap");
464 goto fail;
465 }
466
467 result = anv_physical_device_init_heaps(device, fd);
468 if (result != VK_SUCCESS)
469 goto fail;
470
471 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
472 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
473 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
474 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
475 device->has_syncobj_wait = device->has_syncobj &&
476 anv_gem_supports_syncobj_wait(fd);
477 device->has_context_priority = anv_gem_has_context_priority(fd);
478
479 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
480 && device->supports_48bit_addresses;
481
482 device->has_context_isolation =
483 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
484
485 device->always_use_bindless =
486 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
487
488 /* We first got the A64 messages on broadwell and we can only use them if
489 * we can pass addresses directly into the shader which requires softpin.
490 */
491 device->has_a64_buffer_access = device->info.gen >= 8 &&
492 device->use_softpin;
493
494 /* We first get bindless image access on Skylake and we can only really do
495 * it if we don't have any relocations so we need softpin.
496 */
497 device->has_bindless_images = device->info.gen >= 9 &&
498 device->use_softpin;
499
500 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
501 * because it's just a matter of setting the sampler address in the sample
502 * message header. However, we've not bothered to wire it up for vec4 so
503 * we leave it disabled on gen7.
504 */
505 device->has_bindless_samplers = device->info.gen >= 8;
506
507 device->has_mem_available = get_available_system_memory() != 0;
508
509 /* Starting with Gen10, the timestamp frequency of the command streamer may
510 * vary from one part to another. We can query the value from the kernel.
511 */
512 if (device->info.gen >= 10) {
513 int timestamp_frequency =
514 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
515
516 if (timestamp_frequency < 0)
517 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
518 else
519 device->info.timestamp_frequency = timestamp_frequency;
520 }
521
522 /* GENs prior to 8 do not support EU/Subslice info */
523 if (device->info.gen >= 8) {
524 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
525 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
526
527 /* Without this information, we cannot get the right Braswell
528 * brandstrings, and we have to use conservative numbers for GPGPU on
529 * many platforms, but otherwise, things will just work.
530 */
531 if (device->subslice_total < 1 || device->eu_total < 1) {
532 intel_logw("Kernel 4.1 required to properly query GPU properties");
533 }
534 } else if (device->info.gen == 7) {
535 device->subslice_total = 1 << (device->info.gt - 1);
536 }
537
538 if (device->info.is_cherryview &&
539 device->subslice_total > 0 && device->eu_total > 0) {
540 /* Logical CS threads = EUs per subslice * num threads per EU */
541 uint32_t max_cs_threads =
542 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
543
544 /* Fuse configurations may give more threads than expected, never less. */
545 if (max_cs_threads > device->info.max_cs_threads)
546 device->info.max_cs_threads = max_cs_threads;
547 }
548
549 device->compiler = brw_compiler_create(NULL, &device->info);
550 if (device->compiler == NULL) {
551 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
552 goto fail;
553 }
554 device->compiler->shader_debug_log = compiler_debug_log;
555 device->compiler->shader_perf_log = compiler_perf_log;
556 device->compiler->supports_pull_constants = false;
557 device->compiler->constant_buffer_0_is_relative =
558 device->info.gen < 8 || !device->has_context_isolation;
559 device->compiler->supports_shader_constants = true;
560
561 /* Broadwell PRM says:
562 *
563 * "Before Gen8, there was a historical configuration control field to
564 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
565 * different places: TILECTL[1:0], ARB_MODE[5:4], and
566 * DISP_ARB_CTL[14:13].
567 *
568 * For Gen8 and subsequent generations, the swizzle fields are all
569 * reserved, and the CPU's memory controller performs all address
570 * swizzling modifications."
571 */
572 bool swizzled =
573 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
574
575 isl_device_init(&device->isl_dev, &device->info, swizzled);
576
577 result = anv_physical_device_init_uuids(device);
578 if (result != VK_SUCCESS)
579 goto fail;
580
581 anv_physical_device_init_disk_cache(device);
582
583 if (instance->enabled_extensions.KHR_display) {
584 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
585 if (master_fd >= 0) {
586 /* prod the device with a GETPARAM call which will fail if
587 * we don't have permission to even render on this device
588 */
589 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
590 close(master_fd);
591 master_fd = -1;
592 }
593 }
594 }
595 device->master_fd = master_fd;
596
597 result = anv_init_wsi(device);
598 if (result != VK_SUCCESS) {
599 ralloc_free(device->compiler);
600 anv_physical_device_free_disk_cache(device);
601 goto fail;
602 }
603
604 anv_physical_device_get_supported_extensions(device,
605 &device->supported_extensions);
606
607
608 device->local_fd = fd;
609
610 return VK_SUCCESS;
611
612 fail:
613 close(fd);
614 if (master_fd != -1)
615 close(master_fd);
616 return result;
617 }
618
619 static void
620 anv_physical_device_finish(struct anv_physical_device *device)
621 {
622 anv_finish_wsi(device);
623 anv_physical_device_free_disk_cache(device);
624 ralloc_free(device->compiler);
625 close(device->local_fd);
626 if (device->master_fd >= 0)
627 close(device->master_fd);
628 }
629
630 static void *
631 default_alloc_func(void *pUserData, size_t size, size_t align,
632 VkSystemAllocationScope allocationScope)
633 {
634 return malloc(size);
635 }
636
637 static void *
638 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
639 size_t align, VkSystemAllocationScope allocationScope)
640 {
641 return realloc(pOriginal, size);
642 }
643
644 static void
645 default_free_func(void *pUserData, void *pMemory)
646 {
647 free(pMemory);
648 }
649
650 static const VkAllocationCallbacks default_alloc = {
651 .pUserData = NULL,
652 .pfnAllocation = default_alloc_func,
653 .pfnReallocation = default_realloc_func,
654 .pfnFree = default_free_func,
655 };
656
657 VkResult anv_EnumerateInstanceExtensionProperties(
658 const char* pLayerName,
659 uint32_t* pPropertyCount,
660 VkExtensionProperties* pProperties)
661 {
662 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
663
664 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
665 if (anv_instance_extensions_supported.extensions[i]) {
666 vk_outarray_append(&out, prop) {
667 *prop = anv_instance_extensions[i];
668 }
669 }
670 }
671
672 return vk_outarray_status(&out);
673 }
674
675 VkResult anv_CreateInstance(
676 const VkInstanceCreateInfo* pCreateInfo,
677 const VkAllocationCallbacks* pAllocator,
678 VkInstance* pInstance)
679 {
680 struct anv_instance *instance;
681 VkResult result;
682
683 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
684
685 struct anv_instance_extension_table enabled_extensions = {};
686 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
687 int idx;
688 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
689 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
690 anv_instance_extensions[idx].extensionName) == 0)
691 break;
692 }
693
694 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
695 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
696
697 if (!anv_instance_extensions_supported.extensions[idx])
698 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
699
700 enabled_extensions.extensions[idx] = true;
701 }
702
703 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
704 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
705 if (!instance)
706 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
707
708 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
709
710 if (pAllocator)
711 instance->alloc = *pAllocator;
712 else
713 instance->alloc = default_alloc;
714
715 instance->app_info = (struct anv_app_info) { .api_version = 0 };
716 if (pCreateInfo->pApplicationInfo) {
717 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
718
719 instance->app_info.app_name =
720 vk_strdup(&instance->alloc, app->pApplicationName,
721 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
722 instance->app_info.app_version = app->applicationVersion;
723
724 instance->app_info.engine_name =
725 vk_strdup(&instance->alloc, app->pEngineName,
726 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
727 instance->app_info.engine_version = app->engineVersion;
728
729 instance->app_info.api_version = app->apiVersion;
730 }
731
732 if (instance->app_info.api_version == 0)
733 instance->app_info.api_version = VK_API_VERSION_1_0;
734
735 instance->enabled_extensions = enabled_extensions;
736
737 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
738 /* Vulkan requires that entrypoints for extensions which have not been
739 * enabled must not be advertised.
740 */
741 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
742 &instance->enabled_extensions)) {
743 instance->dispatch.entrypoints[i] = NULL;
744 } else {
745 instance->dispatch.entrypoints[i] =
746 anv_instance_dispatch_table.entrypoints[i];
747 }
748 }
749
750 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
751 /* Vulkan requires that entrypoints for extensions which have not been
752 * enabled must not be advertised.
753 */
754 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
755 &instance->enabled_extensions, NULL)) {
756 instance->device_dispatch.entrypoints[i] = NULL;
757 } else {
758 instance->device_dispatch.entrypoints[i] =
759 anv_device_dispatch_table.entrypoints[i];
760 }
761 }
762
763 instance->physicalDeviceCount = -1;
764
765 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
766 if (result != VK_SUCCESS) {
767 vk_free2(&default_alloc, pAllocator, instance);
768 return vk_error(result);
769 }
770
771 instance->pipeline_cache_enabled =
772 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
773
774 _mesa_locale_init();
775 glsl_type_singleton_init_or_ref();
776
777 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
778
779 *pInstance = anv_instance_to_handle(instance);
780
781 return VK_SUCCESS;
782 }
783
784 void anv_DestroyInstance(
785 VkInstance _instance,
786 const VkAllocationCallbacks* pAllocator)
787 {
788 ANV_FROM_HANDLE(anv_instance, instance, _instance);
789
790 if (!instance)
791 return;
792
793 if (instance->physicalDeviceCount > 0) {
794 /* We support at most one physical device. */
795 assert(instance->physicalDeviceCount == 1);
796 anv_physical_device_finish(&instance->physicalDevice);
797 }
798
799 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
800 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
801
802 VG(VALGRIND_DESTROY_MEMPOOL(instance));
803
804 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
805
806 glsl_type_singleton_decref();
807 _mesa_locale_fini();
808
809 vk_free(&instance->alloc, instance);
810 }
811
812 static VkResult
813 anv_enumerate_devices(struct anv_instance *instance)
814 {
815 /* TODO: Check for more devices ? */
816 drmDevicePtr devices[8];
817 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
818 int max_devices;
819
820 instance->physicalDeviceCount = 0;
821
822 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
823 if (max_devices < 1)
824 return VK_ERROR_INCOMPATIBLE_DRIVER;
825
826 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
827 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
828 devices[i]->bustype == DRM_BUS_PCI &&
829 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
830
831 result = anv_physical_device_init(&instance->physicalDevice,
832 instance, devices[i]);
833 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
834 break;
835 }
836 }
837 drmFreeDevices(devices, max_devices);
838
839 if (result == VK_SUCCESS)
840 instance->physicalDeviceCount = 1;
841
842 return result;
843 }
844
845 static VkResult
846 anv_instance_ensure_physical_device(struct anv_instance *instance)
847 {
848 if (instance->physicalDeviceCount < 0) {
849 VkResult result = anv_enumerate_devices(instance);
850 if (result != VK_SUCCESS &&
851 result != VK_ERROR_INCOMPATIBLE_DRIVER)
852 return result;
853 }
854
855 return VK_SUCCESS;
856 }
857
858 VkResult anv_EnumeratePhysicalDevices(
859 VkInstance _instance,
860 uint32_t* pPhysicalDeviceCount,
861 VkPhysicalDevice* pPhysicalDevices)
862 {
863 ANV_FROM_HANDLE(anv_instance, instance, _instance);
864 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
865
866 VkResult result = anv_instance_ensure_physical_device(instance);
867 if (result != VK_SUCCESS)
868 return result;
869
870 if (instance->physicalDeviceCount == 0)
871 return VK_SUCCESS;
872
873 assert(instance->physicalDeviceCount == 1);
874 vk_outarray_append(&out, i) {
875 *i = anv_physical_device_to_handle(&instance->physicalDevice);
876 }
877
878 return vk_outarray_status(&out);
879 }
880
881 VkResult anv_EnumeratePhysicalDeviceGroups(
882 VkInstance _instance,
883 uint32_t* pPhysicalDeviceGroupCount,
884 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
885 {
886 ANV_FROM_HANDLE(anv_instance, instance, _instance);
887 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
888 pPhysicalDeviceGroupCount);
889
890 VkResult result = anv_instance_ensure_physical_device(instance);
891 if (result != VK_SUCCESS)
892 return result;
893
894 if (instance->physicalDeviceCount == 0)
895 return VK_SUCCESS;
896
897 assert(instance->physicalDeviceCount == 1);
898
899 vk_outarray_append(&out, p) {
900 p->physicalDeviceCount = 1;
901 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
902 p->physicalDevices[0] =
903 anv_physical_device_to_handle(&instance->physicalDevice);
904 p->subsetAllocation = false;
905
906 vk_foreach_struct(ext, p->pNext)
907 anv_debug_ignored_stype(ext->sType);
908 }
909
910 return vk_outarray_status(&out);
911 }
912
913 void anv_GetPhysicalDeviceFeatures(
914 VkPhysicalDevice physicalDevice,
915 VkPhysicalDeviceFeatures* pFeatures)
916 {
917 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
918
919 *pFeatures = (VkPhysicalDeviceFeatures) {
920 .robustBufferAccess = true,
921 .fullDrawIndexUint32 = true,
922 .imageCubeArray = true,
923 .independentBlend = true,
924 .geometryShader = true,
925 .tessellationShader = true,
926 .sampleRateShading = true,
927 .dualSrcBlend = true,
928 .logicOp = true,
929 .multiDrawIndirect = true,
930 .drawIndirectFirstInstance = true,
931 .depthClamp = true,
932 .depthBiasClamp = true,
933 .fillModeNonSolid = true,
934 .depthBounds = false,
935 .wideLines = true,
936 .largePoints = true,
937 .alphaToOne = true,
938 .multiViewport = true,
939 .samplerAnisotropy = true,
940 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
941 pdevice->info.is_baytrail,
942 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
943 .textureCompressionBC = true,
944 .occlusionQueryPrecise = true,
945 .pipelineStatisticsQuery = true,
946 .fragmentStoresAndAtomics = true,
947 .shaderTessellationAndGeometryPointSize = true,
948 .shaderImageGatherExtended = true,
949 .shaderStorageImageExtendedFormats = true,
950 .shaderStorageImageMultisample = false,
951 .shaderStorageImageReadWithoutFormat = false,
952 .shaderStorageImageWriteWithoutFormat = true,
953 .shaderUniformBufferArrayDynamicIndexing = true,
954 .shaderSampledImageArrayDynamicIndexing = true,
955 .shaderStorageBufferArrayDynamicIndexing = true,
956 .shaderStorageImageArrayDynamicIndexing = true,
957 .shaderClipDistance = true,
958 .shaderCullDistance = true,
959 .shaderFloat64 = pdevice->info.gen >= 8 &&
960 pdevice->info.has_64bit_types,
961 .shaderInt64 = pdevice->info.gen >= 8 &&
962 pdevice->info.has_64bit_types,
963 .shaderInt16 = pdevice->info.gen >= 8,
964 .shaderResourceMinLod = pdevice->info.gen >= 9,
965 .variableMultisampleRate = true,
966 .inheritedQueries = true,
967 };
968
969 /* We can't do image stores in vec4 shaders */
970 pFeatures->vertexPipelineStoresAndAtomics =
971 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
972 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
973
974 struct anv_app_info *app_info = &pdevice->instance->app_info;
975
976 /* The new DOOM and Wolfenstein games require depthBounds without
977 * checking for it. They seem to run fine without it so just claim it's
978 * there and accept the consequences.
979 */
980 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
981 pFeatures->depthBounds = true;
982 }
983
984 void anv_GetPhysicalDeviceFeatures2(
985 VkPhysicalDevice physicalDevice,
986 VkPhysicalDeviceFeatures2* pFeatures)
987 {
988 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
989 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
990
991 vk_foreach_struct(ext, pFeatures->pNext) {
992 switch (ext->sType) {
993 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
994 VkPhysicalDevice8BitStorageFeaturesKHR *features =
995 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
996 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
997 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
998 features->storagePushConstant8 = pdevice->info.gen >= 8;
999 break;
1000 }
1001
1002 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1003 VkPhysicalDevice16BitStorageFeatures *features =
1004 (VkPhysicalDevice16BitStorageFeatures *)ext;
1005 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1006 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1007 features->storagePushConstant16 = pdevice->info.gen >= 8;
1008 features->storageInputOutput16 = false;
1009 break;
1010 }
1011
1012 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1013 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1014 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1015 features->bufferDeviceAddressCaptureReplay = false;
1016 features->bufferDeviceAddressMultiDevice = false;
1017 break;
1018 }
1019
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1021 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1022 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1023 features->computeDerivativeGroupQuads = true;
1024 features->computeDerivativeGroupLinear = true;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1029 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1030 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1031 features->conditionalRendering = pdevice->info.gen >= 8 ||
1032 pdevice->info.is_haswell;
1033 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1034 pdevice->info.is_haswell;
1035 break;
1036 }
1037
1038 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1039 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1040 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1041 features->depthClipEnable = true;
1042 break;
1043 }
1044
1045 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1046 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1047 features->shaderFloat16 = pdevice->info.gen >= 8;
1048 features->shaderInt8 = pdevice->info.gen >= 8;
1049 break;
1050 }
1051
1052 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1053 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1054 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1055 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1056 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1057 features->fragmentShaderShadingRateInterlock = false;
1058 break;
1059 }
1060
1061 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1062 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1063 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1064 features->hostQueryReset = true;
1065 break;
1066 }
1067
1068 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1069 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1070 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1071 features->shaderInputAttachmentArrayDynamicIndexing = false;
1072 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1073 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1074 features->shaderUniformBufferArrayNonUniformIndexing = false;
1075 features->shaderSampledImageArrayNonUniformIndexing = true;
1076 features->shaderStorageBufferArrayNonUniformIndexing = true;
1077 features->shaderStorageImageArrayNonUniformIndexing = true;
1078 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1079 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1080 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1081 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1082 features->descriptorBindingSampledImageUpdateAfterBind = true;
1083 features->descriptorBindingStorageImageUpdateAfterBind = true;
1084 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1085 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1086 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1087 features->descriptorBindingUpdateUnusedWhilePending = true;
1088 features->descriptorBindingPartiallyBound = true;
1089 features->descriptorBindingVariableDescriptorCount = false;
1090 features->runtimeDescriptorArray = true;
1091 break;
1092 }
1093
1094 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1095 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1096 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1097 features->inlineUniformBlock = true;
1098 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1099 break;
1100 }
1101
1102 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1103 VkPhysicalDeviceMultiviewFeatures *features =
1104 (VkPhysicalDeviceMultiviewFeatures *)ext;
1105 features->multiview = true;
1106 features->multiviewGeometryShader = true;
1107 features->multiviewTessellationShader = true;
1108 break;
1109 }
1110
1111 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1112 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1113 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1114 features->imagelessFramebuffer = true;
1115 break;
1116 }
1117
1118 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1119 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1120 features->protectedMemory = false;
1121 break;
1122 }
1123
1124 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1125 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1126 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1127 features->samplerYcbcrConversion = true;
1128 break;
1129 }
1130
1131 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1132 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1133 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1134 features->scalarBlockLayout = true;
1135 break;
1136 }
1137
1138 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1139 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1140 features->shaderBufferInt64Atomics =
1141 pdevice->info.gen >= 9 && pdevice->use_softpin;
1142 features->shaderSharedInt64Atomics = VK_FALSE;
1143 break;
1144 }
1145
1146 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1147 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1148 features->shaderDemoteToHelperInvocation = true;
1149 break;
1150 }
1151
1152 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1153 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1154 features->shaderDrawParameters = true;
1155 break;
1156 }
1157
1158 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1159 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1160 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1161 features->texelBufferAlignment = true;
1162 break;
1163 }
1164
1165 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1166 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1167 features->variablePointersStorageBuffer = true;
1168 features->variablePointers = true;
1169 break;
1170 }
1171
1172 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1173 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1174 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1175 features->transformFeedback = true;
1176 features->geometryStreams = true;
1177 break;
1178 }
1179
1180 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1181 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1182 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1183 features->uniformBufferStandardLayout = true;
1184 break;
1185 }
1186
1187 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1188 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1189 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1190 features->vertexAttributeInstanceRateDivisor = true;
1191 features->vertexAttributeInstanceRateZeroDivisor = true;
1192 break;
1193 }
1194
1195 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1196 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1197 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1198 features->ycbcrImageArrays = true;
1199 break;
1200 }
1201
1202 default:
1203 anv_debug_ignored_stype(ext->sType);
1204 break;
1205 }
1206 }
1207 }
1208
1209 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1210
1211 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1212 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1213
1214 void anv_GetPhysicalDeviceProperties(
1215 VkPhysicalDevice physicalDevice,
1216 VkPhysicalDeviceProperties* pProperties)
1217 {
1218 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1219 const struct gen_device_info *devinfo = &pdevice->info;
1220
1221 /* See assertions made when programming the buffer surface state. */
1222 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1223 (1ul << 30) : (1ul << 27);
1224
1225 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1226 const uint32_t max_textures =
1227 pdevice->has_bindless_images ? UINT16_MAX : 128;
1228 const uint32_t max_samplers =
1229 pdevice->has_bindless_samplers ? UINT16_MAX :
1230 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1231 const uint32_t max_images =
1232 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1233
1234 /* The moment we have anything bindless, claim a high per-stage limit */
1235 const uint32_t max_per_stage =
1236 pdevice->has_a64_buffer_access ? UINT32_MAX :
1237 MAX_BINDING_TABLE_SIZE - MAX_RTS;
1238
1239 VkSampleCountFlags sample_counts =
1240 isl_device_get_sample_counts(&pdevice->isl_dev);
1241
1242
1243 VkPhysicalDeviceLimits limits = {
1244 .maxImageDimension1D = (1 << 14),
1245 .maxImageDimension2D = (1 << 14),
1246 .maxImageDimension3D = (1 << 11),
1247 .maxImageDimensionCube = (1 << 14),
1248 .maxImageArrayLayers = (1 << 11),
1249 .maxTexelBufferElements = 128 * 1024 * 1024,
1250 .maxUniformBufferRange = (1ul << 27),
1251 .maxStorageBufferRange = max_raw_buffer_sz,
1252 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1253 .maxMemoryAllocationCount = UINT32_MAX,
1254 .maxSamplerAllocationCount = 64 * 1024,
1255 .bufferImageGranularity = 64, /* A cache line */
1256 .sparseAddressSpaceSize = 0,
1257 .maxBoundDescriptorSets = MAX_SETS,
1258 .maxPerStageDescriptorSamplers = max_samplers,
1259 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1260 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1261 .maxPerStageDescriptorSampledImages = max_textures,
1262 .maxPerStageDescriptorStorageImages = max_images,
1263 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1264 .maxPerStageResources = max_per_stage,
1265 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1266 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1267 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1268 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1269 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1270 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1271 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1272 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1273 .maxVertexInputAttributes = MAX_VBS,
1274 .maxVertexInputBindings = MAX_VBS,
1275 .maxVertexInputAttributeOffset = 2047,
1276 .maxVertexInputBindingStride = 2048,
1277 .maxVertexOutputComponents = 128,
1278 .maxTessellationGenerationLevel = 64,
1279 .maxTessellationPatchSize = 32,
1280 .maxTessellationControlPerVertexInputComponents = 128,
1281 .maxTessellationControlPerVertexOutputComponents = 128,
1282 .maxTessellationControlPerPatchOutputComponents = 128,
1283 .maxTessellationControlTotalOutputComponents = 2048,
1284 .maxTessellationEvaluationInputComponents = 128,
1285 .maxTessellationEvaluationOutputComponents = 128,
1286 .maxGeometryShaderInvocations = 32,
1287 .maxGeometryInputComponents = 64,
1288 .maxGeometryOutputComponents = 128,
1289 .maxGeometryOutputVertices = 256,
1290 .maxGeometryTotalOutputComponents = 1024,
1291 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1292 .maxFragmentOutputAttachments = 8,
1293 .maxFragmentDualSrcAttachments = 1,
1294 .maxFragmentCombinedOutputResources = 8,
1295 .maxComputeSharedMemorySize = 64 * 1024,
1296 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1297 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1298 .maxComputeWorkGroupSize = {
1299 16 * devinfo->max_cs_threads,
1300 16 * devinfo->max_cs_threads,
1301 16 * devinfo->max_cs_threads,
1302 },
1303 .subPixelPrecisionBits = 8,
1304 .subTexelPrecisionBits = 8,
1305 .mipmapPrecisionBits = 8,
1306 .maxDrawIndexedIndexValue = UINT32_MAX,
1307 .maxDrawIndirectCount = UINT32_MAX,
1308 .maxSamplerLodBias = 16,
1309 .maxSamplerAnisotropy = 16,
1310 .maxViewports = MAX_VIEWPORTS,
1311 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1312 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1313 .viewportSubPixelBits = 13, /* We take a float? */
1314 .minMemoryMapAlignment = 4096, /* A page */
1315 /* The dataport requires texel alignment so we need to assume a worst
1316 * case of R32G32B32A32 which is 16 bytes.
1317 */
1318 .minTexelBufferOffsetAlignment = 16,
1319 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1320 .minUniformBufferOffsetAlignment = 32,
1321 .minStorageBufferOffsetAlignment = 4,
1322 .minTexelOffset = -8,
1323 .maxTexelOffset = 7,
1324 .minTexelGatherOffset = -32,
1325 .maxTexelGatherOffset = 31,
1326 .minInterpolationOffset = -0.5,
1327 .maxInterpolationOffset = 0.4375,
1328 .subPixelInterpolationOffsetBits = 4,
1329 .maxFramebufferWidth = (1 << 14),
1330 .maxFramebufferHeight = (1 << 14),
1331 .maxFramebufferLayers = (1 << 11),
1332 .framebufferColorSampleCounts = sample_counts,
1333 .framebufferDepthSampleCounts = sample_counts,
1334 .framebufferStencilSampleCounts = sample_counts,
1335 .framebufferNoAttachmentsSampleCounts = sample_counts,
1336 .maxColorAttachments = MAX_RTS,
1337 .sampledImageColorSampleCounts = sample_counts,
1338 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1339 .sampledImageDepthSampleCounts = sample_counts,
1340 .sampledImageStencilSampleCounts = sample_counts,
1341 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1342 .maxSampleMaskWords = 1,
1343 .timestampComputeAndGraphics = true,
1344 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1345 .maxClipDistances = 8,
1346 .maxCullDistances = 8,
1347 .maxCombinedClipAndCullDistances = 8,
1348 .discreteQueuePriorities = 2,
1349 .pointSizeRange = { 0.125, 255.875 },
1350 .lineWidthRange = { 0.0, 7.9921875 },
1351 .pointSizeGranularity = (1.0 / 8.0),
1352 .lineWidthGranularity = (1.0 / 128.0),
1353 .strictLines = false, /* FINISHME */
1354 .standardSampleLocations = true,
1355 .optimalBufferCopyOffsetAlignment = 128,
1356 .optimalBufferCopyRowPitchAlignment = 128,
1357 .nonCoherentAtomSize = 64,
1358 };
1359
1360 *pProperties = (VkPhysicalDeviceProperties) {
1361 .apiVersion = anv_physical_device_api_version(pdevice),
1362 .driverVersion = vk_get_driver_version(),
1363 .vendorID = 0x8086,
1364 .deviceID = pdevice->chipset_id,
1365 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1366 .limits = limits,
1367 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1368 };
1369
1370 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1371 "%s", pdevice->name);
1372 memcpy(pProperties->pipelineCacheUUID,
1373 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1374 }
1375
1376 void anv_GetPhysicalDeviceProperties2(
1377 VkPhysicalDevice physicalDevice,
1378 VkPhysicalDeviceProperties2* pProperties)
1379 {
1380 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1381
1382 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1383
1384 vk_foreach_struct(ext, pProperties->pNext) {
1385 switch (ext->sType) {
1386 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1387 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1388 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1389
1390 /* We support all of the depth resolve modes */
1391 props->supportedDepthResolveModes =
1392 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1393 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1394 VK_RESOLVE_MODE_MIN_BIT_KHR |
1395 VK_RESOLVE_MODE_MAX_BIT_KHR;
1396
1397 /* Average doesn't make sense for stencil so we don't support that */
1398 props->supportedStencilResolveModes =
1399 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1400 if (pdevice->info.gen >= 8) {
1401 /* The advanced stencil resolve modes currently require stencil
1402 * sampling be supported by the hardware.
1403 */
1404 props->supportedStencilResolveModes |=
1405 VK_RESOLVE_MODE_MIN_BIT_KHR |
1406 VK_RESOLVE_MODE_MAX_BIT_KHR;
1407 }
1408
1409 props->independentResolveNone = true;
1410 props->independentResolve = true;
1411 break;
1412 }
1413
1414 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1415 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1416 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1417
1418 /* It's a bit hard to exactly map our implementation to the limits
1419 * described here. The bindless surface handle in the extended
1420 * message descriptors is 20 bits and it's an index into the table of
1421 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1422 * address. Given that most things consume two surface states per
1423 * view (general/sampled for textures and write-only/read-write for
1424 * images), we claim 2^19 things.
1425 *
1426 * For SSBOs, we just use A64 messages so there is no real limit
1427 * there beyond the limit on the total size of a descriptor set.
1428 */
1429 const unsigned max_bindless_views = 1 << 19;
1430
1431 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1432 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1433 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1434 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1435 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1436 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1437 props->robustBufferAccessUpdateAfterBind = true;
1438 props->quadDivergentImplicitLod = false;
1439 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1440 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1441 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1442 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1443 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1444 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1445 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1446 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1447 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1448 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1449 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1450 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1451 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1452 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1453 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1454 break;
1455 }
1456
1457 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1458 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1459 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1460
1461 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1462 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1463 "Intel open-source Mesa driver");
1464
1465 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1466 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1467
1468 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1469 .major = 1,
1470 .minor = 1,
1471 .subminor = 2,
1472 .patch = 0,
1473 };
1474 break;
1475 }
1476
1477 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1478 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1479 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1480 /* Userptr needs page aligned memory. */
1481 props->minImportedHostPointerAlignment = 4096;
1482 break;
1483 }
1484
1485 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1486 VkPhysicalDeviceIDProperties *id_props =
1487 (VkPhysicalDeviceIDProperties *)ext;
1488 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1489 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1490 /* The LUID is for Windows. */
1491 id_props->deviceLUIDValid = false;
1492 break;
1493 }
1494
1495 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1496 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1497 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1498 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1499 props->maxPerStageDescriptorInlineUniformBlocks =
1500 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1501 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1502 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1503 props->maxDescriptorSetInlineUniformBlocks =
1504 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1505 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1506 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1507 break;
1508 }
1509
1510 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1511 VkPhysicalDeviceMaintenance3Properties *props =
1512 (VkPhysicalDeviceMaintenance3Properties *)ext;
1513 /* This value doesn't matter for us today as our per-stage
1514 * descriptors are the real limit.
1515 */
1516 props->maxPerSetDescriptors = 1024;
1517 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1518 break;
1519 }
1520
1521 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1522 VkPhysicalDeviceMultiviewProperties *properties =
1523 (VkPhysicalDeviceMultiviewProperties *)ext;
1524 properties->maxMultiviewViewCount = 16;
1525 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1526 break;
1527 }
1528
1529 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1530 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1531 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1532 properties->pciDomain = pdevice->pci_info.domain;
1533 properties->pciBus = pdevice->pci_info.bus;
1534 properties->pciDevice = pdevice->pci_info.device;
1535 properties->pciFunction = pdevice->pci_info.function;
1536 break;
1537 }
1538
1539 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1540 VkPhysicalDevicePointClippingProperties *properties =
1541 (VkPhysicalDevicePointClippingProperties *) ext;
1542 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1543 break;
1544 }
1545
1546 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1547 VkPhysicalDeviceProtectedMemoryProperties *props =
1548 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1549 props->protectedNoFault = false;
1550 break;
1551 }
1552
1553 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1554 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1555 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1556
1557 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1558 break;
1559 }
1560
1561 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1562 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1563 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1564 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1565 properties->filterMinmaxSingleComponentFormats = true;
1566 break;
1567 }
1568
1569 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1570 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1571
1572 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1573
1574 VkShaderStageFlags scalar_stages = 0;
1575 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1576 if (pdevice->compiler->scalar_stage[stage])
1577 scalar_stages |= mesa_to_vk_shader_stage(stage);
1578 }
1579 properties->supportedStages = scalar_stages;
1580
1581 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1582 VK_SUBGROUP_FEATURE_VOTE_BIT |
1583 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1584 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1585 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1586 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1587 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1588 VK_SUBGROUP_FEATURE_QUAD_BIT;
1589 properties->quadOperationsInAllStages = true;
1590 break;
1591 }
1592
1593 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1594 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1595 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1596
1597 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1598 * Base Address:
1599 *
1600 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1601 * specifies the base address of the first element of the surface,
1602 * computed in software by adding the surface base address to the
1603 * byte offset of the element in the buffer. The base address must
1604 * be aligned to element size."
1605 *
1606 * The typed dataport messages require that things be texel aligned.
1607 * Otherwise, we may just load/store the wrong data or, in the worst
1608 * case, there may be hangs.
1609 */
1610 props->storageTexelBufferOffsetAlignmentBytes = 16;
1611 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1612
1613 /* The sampler, however, is much more forgiving and it can handle
1614 * arbitrary byte alignment for linear and buffer surfaces. It's
1615 * hard to find a good PRM citation for this but years of empirical
1616 * experience demonstrate that this is true.
1617 */
1618 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1619 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1620 break;
1621 }
1622
1623 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1624 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1625 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1626
1627 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1628 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1629 props->maxTransformFeedbackBufferSize = (1ull << 32);
1630 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1631 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1632 props->maxTransformFeedbackBufferDataStride = 2048;
1633 props->transformFeedbackQueries = true;
1634 props->transformFeedbackStreamsLinesTriangles = false;
1635 props->transformFeedbackRasterizationStreamSelect = false;
1636 props->transformFeedbackDraw = true;
1637 break;
1638 }
1639
1640 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1641 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1642 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1643 /* We have to restrict this a bit for multiview */
1644 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1645 break;
1646 }
1647
1648 default:
1649 anv_debug_ignored_stype(ext->sType);
1650 break;
1651 }
1652 }
1653 }
1654
1655 /* We support exactly one queue family. */
1656 static const VkQueueFamilyProperties
1657 anv_queue_family_properties = {
1658 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1659 VK_QUEUE_COMPUTE_BIT |
1660 VK_QUEUE_TRANSFER_BIT,
1661 .queueCount = 1,
1662 .timestampValidBits = 36, /* XXX: Real value here */
1663 .minImageTransferGranularity = { 1, 1, 1 },
1664 };
1665
1666 void anv_GetPhysicalDeviceQueueFamilyProperties(
1667 VkPhysicalDevice physicalDevice,
1668 uint32_t* pCount,
1669 VkQueueFamilyProperties* pQueueFamilyProperties)
1670 {
1671 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1672
1673 vk_outarray_append(&out, p) {
1674 *p = anv_queue_family_properties;
1675 }
1676 }
1677
1678 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1679 VkPhysicalDevice physicalDevice,
1680 uint32_t* pQueueFamilyPropertyCount,
1681 VkQueueFamilyProperties2* pQueueFamilyProperties)
1682 {
1683
1684 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1685
1686 vk_outarray_append(&out, p) {
1687 p->queueFamilyProperties = anv_queue_family_properties;
1688
1689 vk_foreach_struct(s, p->pNext) {
1690 anv_debug_ignored_stype(s->sType);
1691 }
1692 }
1693 }
1694
1695 void anv_GetPhysicalDeviceMemoryProperties(
1696 VkPhysicalDevice physicalDevice,
1697 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1698 {
1699 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1700
1701 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1702 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1703 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1704 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1705 .heapIndex = physical_device->memory.types[i].heapIndex,
1706 };
1707 }
1708
1709 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1710 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1711 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1712 .size = physical_device->memory.heaps[i].size,
1713 .flags = physical_device->memory.heaps[i].flags,
1714 };
1715 }
1716 }
1717
1718 static void
1719 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1720 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1721 {
1722 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1723 uint64_t sys_available = get_available_system_memory();
1724 assert(sys_available > 0);
1725
1726 VkDeviceSize total_heaps_size = 0;
1727 for (size_t i = 0; i < device->memory.heap_count; i++)
1728 total_heaps_size += device->memory.heaps[i].size;
1729
1730 for (size_t i = 0; i < device->memory.heap_count; i++) {
1731 VkDeviceSize heap_size = device->memory.heaps[i].size;
1732 VkDeviceSize heap_used = device->memory.heaps[i].used;
1733 VkDeviceSize heap_budget;
1734
1735 double heap_proportion = (double) heap_size / total_heaps_size;
1736 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1737
1738 /*
1739 * Let's not incite the app to starve the system: report at most 90% of
1740 * available system memory.
1741 */
1742 uint64_t heap_available = sys_available_prop * 9 / 10;
1743 heap_budget = MIN2(heap_size, heap_used + heap_available);
1744
1745 /*
1746 * Round down to the nearest MB
1747 */
1748 heap_budget &= ~((1ull << 20) - 1);
1749
1750 /*
1751 * The heapBudget value must be non-zero for array elements less than
1752 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1753 * value must be less than or equal to VkMemoryHeap::size for each heap.
1754 */
1755 assert(0 < heap_budget && heap_budget <= heap_size);
1756
1757 memoryBudget->heapUsage[i] = heap_used;
1758 memoryBudget->heapBudget[i] = heap_budget;
1759 }
1760
1761 /* The heapBudget and heapUsage values must be zero for array elements
1762 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1763 */
1764 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1765 memoryBudget->heapBudget[i] = 0;
1766 memoryBudget->heapUsage[i] = 0;
1767 }
1768 }
1769
1770 void anv_GetPhysicalDeviceMemoryProperties2(
1771 VkPhysicalDevice physicalDevice,
1772 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1773 {
1774 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1775 &pMemoryProperties->memoryProperties);
1776
1777 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1778 switch (ext->sType) {
1779 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1780 anv_get_memory_budget(physicalDevice, (void*)ext);
1781 break;
1782 default:
1783 anv_debug_ignored_stype(ext->sType);
1784 break;
1785 }
1786 }
1787 }
1788
1789 void
1790 anv_GetDeviceGroupPeerMemoryFeatures(
1791 VkDevice device,
1792 uint32_t heapIndex,
1793 uint32_t localDeviceIndex,
1794 uint32_t remoteDeviceIndex,
1795 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1796 {
1797 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1798 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1799 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1800 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1801 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1802 }
1803
1804 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1805 VkInstance _instance,
1806 const char* pName)
1807 {
1808 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1809
1810 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1811 * when we have to return valid function pointers, NULL, or it's left
1812 * undefined. See the table for exact details.
1813 */
1814 if (pName == NULL)
1815 return NULL;
1816
1817 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1818 if (strcmp(pName, "vk" #entrypoint) == 0) \
1819 return (PFN_vkVoidFunction)anv_##entrypoint
1820
1821 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1822 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1823 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1824 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1825
1826 #undef LOOKUP_ANV_ENTRYPOINT
1827
1828 if (instance == NULL)
1829 return NULL;
1830
1831 int idx = anv_get_instance_entrypoint_index(pName);
1832 if (idx >= 0)
1833 return instance->dispatch.entrypoints[idx];
1834
1835 idx = anv_get_device_entrypoint_index(pName);
1836 if (idx >= 0)
1837 return instance->device_dispatch.entrypoints[idx];
1838
1839 return NULL;
1840 }
1841
1842 /* With version 1+ of the loader interface the ICD should expose
1843 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1844 */
1845 PUBLIC
1846 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1847 VkInstance instance,
1848 const char* pName);
1849
1850 PUBLIC
1851 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1852 VkInstance instance,
1853 const char* pName)
1854 {
1855 return anv_GetInstanceProcAddr(instance, pName);
1856 }
1857
1858 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1859 VkDevice _device,
1860 const char* pName)
1861 {
1862 ANV_FROM_HANDLE(anv_device, device, _device);
1863
1864 if (!device || !pName)
1865 return NULL;
1866
1867 int idx = anv_get_device_entrypoint_index(pName);
1868 if (idx < 0)
1869 return NULL;
1870
1871 return device->dispatch.entrypoints[idx];
1872 }
1873
1874 VkResult
1875 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1876 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1877 const VkAllocationCallbacks* pAllocator,
1878 VkDebugReportCallbackEXT* pCallback)
1879 {
1880 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1881 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1882 pCreateInfo, pAllocator, &instance->alloc,
1883 pCallback);
1884 }
1885
1886 void
1887 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1888 VkDebugReportCallbackEXT _callback,
1889 const VkAllocationCallbacks* pAllocator)
1890 {
1891 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1892 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1893 _callback, pAllocator, &instance->alloc);
1894 }
1895
1896 void
1897 anv_DebugReportMessageEXT(VkInstance _instance,
1898 VkDebugReportFlagsEXT flags,
1899 VkDebugReportObjectTypeEXT objectType,
1900 uint64_t object,
1901 size_t location,
1902 int32_t messageCode,
1903 const char* pLayerPrefix,
1904 const char* pMessage)
1905 {
1906 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1907 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1908 object, location, messageCode, pLayerPrefix, pMessage);
1909 }
1910
1911 static void
1912 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1913 {
1914 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1915 queue->device = device;
1916 queue->flags = 0;
1917 }
1918
1919 static void
1920 anv_queue_finish(struct anv_queue *queue)
1921 {
1922 }
1923
1924 static struct anv_state
1925 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1926 {
1927 struct anv_state state;
1928
1929 state = anv_state_pool_alloc(pool, size, align);
1930 memcpy(state.map, p, size);
1931
1932 return state;
1933 }
1934
1935 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
1936 * straightforward 32-bit float color in the first 64 bytes. Instead of using
1937 * a nice float/integer union like Gen8+, Haswell specifies the integer border
1938 * color as a separate entry /after/ the float color. The layout of this entry
1939 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
1940 *
1941 * Since we don't know the format/bpp, we can't make any of the border colors
1942 * containing '1' work for all formats, as it would be in the wrong place for
1943 * some of them. We opt to make 32-bit integers work as this seems like the
1944 * most common option. Fortunately, transparent black works regardless, as
1945 * all zeroes is the same in every bit-size.
1946 */
1947 struct hsw_border_color {
1948 float float32[4];
1949 uint32_t _pad0[12];
1950 uint32_t uint32[4];
1951 uint32_t _pad1[108];
1952 };
1953
1954 struct gen8_border_color {
1955 union {
1956 float float32[4];
1957 uint32_t uint32[4];
1958 };
1959 /* Pad out to 64 bytes */
1960 uint32_t _pad[12];
1961 };
1962
1963 static void
1964 anv_device_init_border_colors(struct anv_device *device)
1965 {
1966 if (device->info.is_haswell) {
1967 static const struct hsw_border_color border_colors[] = {
1968 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1969 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1970 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1971 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1972 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1973 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1974 };
1975
1976 device->border_colors =
1977 anv_state_pool_emit_data(&device->dynamic_state_pool,
1978 sizeof(border_colors), 512, border_colors);
1979 } else {
1980 static const struct gen8_border_color border_colors[] = {
1981 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1982 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1983 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1984 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1985 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1986 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1987 };
1988
1989 device->border_colors =
1990 anv_state_pool_emit_data(&device->dynamic_state_pool,
1991 sizeof(border_colors), 64, border_colors);
1992 }
1993 }
1994
1995 static void
1996 anv_device_init_trivial_batch(struct anv_device *device)
1997 {
1998 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1999
2000 if (device->instance->physicalDevice.has_exec_async)
2001 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
2002
2003 if (device->instance->physicalDevice.use_softpin)
2004 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
2005
2006 anv_vma_alloc(device, &device->trivial_batch_bo);
2007
2008 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
2009 0, 4096, 0);
2010
2011 struct anv_batch batch = {
2012 .start = map,
2013 .next = map,
2014 .end = map + 4096,
2015 };
2016
2017 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2018 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2019
2020 if (!device->info.has_llc)
2021 gen_clflush_range(map, batch.next - map);
2022
2023 anv_gem_munmap(map, device->trivial_batch_bo.size);
2024 }
2025
2026 VkResult anv_EnumerateDeviceExtensionProperties(
2027 VkPhysicalDevice physicalDevice,
2028 const char* pLayerName,
2029 uint32_t* pPropertyCount,
2030 VkExtensionProperties* pProperties)
2031 {
2032 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2033 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2034
2035 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2036 if (device->supported_extensions.extensions[i]) {
2037 vk_outarray_append(&out, prop) {
2038 *prop = anv_device_extensions[i];
2039 }
2040 }
2041 }
2042
2043 return vk_outarray_status(&out);
2044 }
2045
2046 static void
2047 anv_device_init_dispatch(struct anv_device *device)
2048 {
2049 const struct anv_device_dispatch_table *genX_table;
2050 switch (device->info.gen) {
2051 case 11:
2052 genX_table = &gen11_device_dispatch_table;
2053 break;
2054 case 10:
2055 genX_table = &gen10_device_dispatch_table;
2056 break;
2057 case 9:
2058 genX_table = &gen9_device_dispatch_table;
2059 break;
2060 case 8:
2061 genX_table = &gen8_device_dispatch_table;
2062 break;
2063 case 7:
2064 if (device->info.is_haswell)
2065 genX_table = &gen75_device_dispatch_table;
2066 else
2067 genX_table = &gen7_device_dispatch_table;
2068 break;
2069 default:
2070 unreachable("unsupported gen\n");
2071 }
2072
2073 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2074 /* Vulkan requires that entrypoints for extensions which have not been
2075 * enabled must not be advertised.
2076 */
2077 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2078 &device->instance->enabled_extensions,
2079 &device->enabled_extensions)) {
2080 device->dispatch.entrypoints[i] = NULL;
2081 } else if (genX_table->entrypoints[i]) {
2082 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2083 } else {
2084 device->dispatch.entrypoints[i] =
2085 anv_device_dispatch_table.entrypoints[i];
2086 }
2087 }
2088 }
2089
2090 static int
2091 vk_priority_to_gen(int priority)
2092 {
2093 switch (priority) {
2094 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2095 return GEN_CONTEXT_LOW_PRIORITY;
2096 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2097 return GEN_CONTEXT_MEDIUM_PRIORITY;
2098 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2099 return GEN_CONTEXT_HIGH_PRIORITY;
2100 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2101 return GEN_CONTEXT_REALTIME_PRIORITY;
2102 default:
2103 unreachable("Invalid priority");
2104 }
2105 }
2106
2107 static void
2108 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2109 {
2110 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2111
2112 if (device->instance->physicalDevice.has_exec_async)
2113 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2114
2115 if (device->instance->physicalDevice.use_softpin)
2116 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2117
2118 anv_vma_alloc(device, &device->hiz_clear_bo);
2119
2120 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2121 0, 4096, 0);
2122
2123 union isl_color_value hiz_clear = { .u32 = { 0, } };
2124 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2125
2126 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2127 anv_gem_munmap(map, device->hiz_clear_bo.size);
2128 }
2129
2130 static bool
2131 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2132 struct anv_block_pool *pool,
2133 uint64_t address)
2134 {
2135 for (uint32_t i = 0; i < pool->nbos; i++) {
2136 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2137 uint32_t bo_size = pool->bos[i].size;
2138 if (address >= bo_address && address < (bo_address + bo_size)) {
2139 *ret = (struct gen_batch_decode_bo) {
2140 .addr = bo_address,
2141 .size = bo_size,
2142 .map = pool->bos[i].map,
2143 };
2144 return true;
2145 }
2146 }
2147 return false;
2148 }
2149
2150 /* Finding a buffer for batch decoding */
2151 static struct gen_batch_decode_bo
2152 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2153 {
2154 struct anv_device *device = v_batch;
2155 struct gen_batch_decode_bo ret_bo = {};
2156
2157 assert(ppgtt);
2158
2159 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2160 return ret_bo;
2161 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2162 return ret_bo;
2163 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2164 return ret_bo;
2165 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2166 return ret_bo;
2167
2168 if (!device->cmd_buffer_being_decoded)
2169 return (struct gen_batch_decode_bo) { };
2170
2171 struct anv_batch_bo **bo;
2172
2173 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2174 /* The decoder zeroes out the top 16 bits, so we need to as well */
2175 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2176
2177 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2178 return (struct gen_batch_decode_bo) {
2179 .addr = bo_address,
2180 .size = (*bo)->bo.size,
2181 .map = (*bo)->bo.map,
2182 };
2183 }
2184 }
2185
2186 return (struct gen_batch_decode_bo) { };
2187 }
2188
2189 VkResult anv_CreateDevice(
2190 VkPhysicalDevice physicalDevice,
2191 const VkDeviceCreateInfo* pCreateInfo,
2192 const VkAllocationCallbacks* pAllocator,
2193 VkDevice* pDevice)
2194 {
2195 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2196 VkResult result;
2197 struct anv_device *device;
2198
2199 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2200
2201 struct anv_device_extension_table enabled_extensions = { };
2202 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2203 int idx;
2204 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2205 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2206 anv_device_extensions[idx].extensionName) == 0)
2207 break;
2208 }
2209
2210 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2211 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2212
2213 if (!physical_device->supported_extensions.extensions[idx])
2214 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2215
2216 enabled_extensions.extensions[idx] = true;
2217 }
2218
2219 /* Check enabled features */
2220 if (pCreateInfo->pEnabledFeatures) {
2221 VkPhysicalDeviceFeatures supported_features;
2222 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2223 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2224 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2225 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2226 for (uint32_t i = 0; i < num_features; i++) {
2227 if (enabled_feature[i] && !supported_feature[i])
2228 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2229 }
2230 }
2231
2232 /* Check requested queues and fail if we are requested to create any
2233 * queues with flags we don't support.
2234 */
2235 assert(pCreateInfo->queueCreateInfoCount > 0);
2236 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2237 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2238 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2239 }
2240
2241 /* Check if client specified queue priority. */
2242 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2243 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2244 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2245
2246 VkQueueGlobalPriorityEXT priority =
2247 queue_priority ? queue_priority->globalPriority :
2248 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2249
2250 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2251 sizeof(*device), 8,
2252 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2253 if (!device)
2254 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2255
2256 if (INTEL_DEBUG & DEBUG_BATCH) {
2257 const unsigned decode_flags =
2258 GEN_BATCH_DECODE_FULL |
2259 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2260 GEN_BATCH_DECODE_OFFSETS |
2261 GEN_BATCH_DECODE_FLOATS;
2262
2263 gen_batch_decode_ctx_init(&device->decoder_ctx,
2264 &physical_device->info,
2265 stderr, decode_flags, NULL,
2266 decode_get_bo, NULL, device);
2267 }
2268
2269 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2270 device->instance = physical_device->instance;
2271 device->chipset_id = physical_device->chipset_id;
2272 device->no_hw = physical_device->no_hw;
2273 device->_lost = false;
2274
2275 if (pAllocator)
2276 device->alloc = *pAllocator;
2277 else
2278 device->alloc = physical_device->instance->alloc;
2279
2280 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2281 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2282 if (device->fd == -1) {
2283 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2284 goto fail_device;
2285 }
2286
2287 device->context_id = anv_gem_create_context(device);
2288 if (device->context_id == -1) {
2289 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2290 goto fail_fd;
2291 }
2292
2293 if (physical_device->use_softpin) {
2294 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2295 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2296 goto fail_fd;
2297 }
2298
2299 /* keep the page with address zero out of the allocator */
2300 struct anv_memory_heap *low_heap =
2301 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2302 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2303 device->vma_lo_available = low_heap->size;
2304
2305 struct anv_memory_heap *high_heap =
2306 &physical_device->memory.heaps[0];
2307 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2308 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2309 high_heap->size;
2310 }
2311
2312 list_inithead(&device->memory_objects);
2313
2314 /* As per spec, the driver implementation may deny requests to acquire
2315 * a priority above the default priority (MEDIUM) if the caller does not
2316 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2317 * is returned.
2318 */
2319 if (physical_device->has_context_priority) {
2320 int err = anv_gem_set_context_param(device->fd, device->context_id,
2321 I915_CONTEXT_PARAM_PRIORITY,
2322 vk_priority_to_gen(priority));
2323 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2324 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2325 goto fail_fd;
2326 }
2327 }
2328
2329 device->info = physical_device->info;
2330 device->isl_dev = physical_device->isl_dev;
2331
2332 /* On Broadwell and later, we can use batch chaining to more efficiently
2333 * implement growing command buffers. Prior to Haswell, the kernel
2334 * command parser gets in the way and we have to fall back to growing
2335 * the batch.
2336 */
2337 device->can_chain_batches = device->info.gen >= 8;
2338
2339 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2340 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2341 device->enabled_extensions = enabled_extensions;
2342
2343 anv_device_init_dispatch(device);
2344
2345 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2346 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2347 goto fail_context_id;
2348 }
2349
2350 pthread_condattr_t condattr;
2351 if (pthread_condattr_init(&condattr) != 0) {
2352 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2353 goto fail_mutex;
2354 }
2355 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2356 pthread_condattr_destroy(&condattr);
2357 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2358 goto fail_mutex;
2359 }
2360 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2361 pthread_condattr_destroy(&condattr);
2362 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2363 goto fail_mutex;
2364 }
2365 pthread_condattr_destroy(&condattr);
2366
2367 uint64_t bo_flags =
2368 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2369 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2370 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2371 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2372
2373 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2374
2375 result = anv_bo_cache_init(&device->bo_cache);
2376 if (result != VK_SUCCESS)
2377 goto fail_batch_bo_pool;
2378
2379 if (!physical_device->use_softpin)
2380 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2381
2382 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2383 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2384 16384,
2385 bo_flags);
2386 if (result != VK_SUCCESS)
2387 goto fail_bo_cache;
2388
2389 result = anv_state_pool_init(&device->instruction_state_pool, device,
2390 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2391 16384,
2392 bo_flags);
2393 if (result != VK_SUCCESS)
2394 goto fail_dynamic_state_pool;
2395
2396 result = anv_state_pool_init(&device->surface_state_pool, device,
2397 SURFACE_STATE_POOL_MIN_ADDRESS,
2398 4096,
2399 bo_flags);
2400 if (result != VK_SUCCESS)
2401 goto fail_instruction_state_pool;
2402
2403 if (physical_device->use_softpin) {
2404 result = anv_state_pool_init(&device->binding_table_pool, device,
2405 BINDING_TABLE_POOL_MIN_ADDRESS,
2406 4096,
2407 bo_flags);
2408 if (result != VK_SUCCESS)
2409 goto fail_surface_state_pool;
2410 }
2411
2412 result = anv_bo_init_new(&device->workaround_bo, device, 4096);
2413 if (result != VK_SUCCESS)
2414 goto fail_binding_table_pool;
2415
2416 if (physical_device->use_softpin)
2417 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2418
2419 if (!anv_vma_alloc(device, &device->workaround_bo))
2420 goto fail_workaround_bo;
2421
2422 anv_device_init_trivial_batch(device);
2423
2424 if (device->info.gen >= 10)
2425 anv_device_init_hiz_clear_value_bo(device);
2426
2427 anv_scratch_pool_init(device, &device->scratch_pool);
2428
2429 anv_queue_init(device, &device->queue);
2430
2431 switch (device->info.gen) {
2432 case 7:
2433 if (!device->info.is_haswell)
2434 result = gen7_init_device_state(device);
2435 else
2436 result = gen75_init_device_state(device);
2437 break;
2438 case 8:
2439 result = gen8_init_device_state(device);
2440 break;
2441 case 9:
2442 result = gen9_init_device_state(device);
2443 break;
2444 case 10:
2445 result = gen10_init_device_state(device);
2446 break;
2447 case 11:
2448 result = gen11_init_device_state(device);
2449 break;
2450 default:
2451 /* Shouldn't get here as we don't create physical devices for any other
2452 * gens. */
2453 unreachable("unhandled gen");
2454 }
2455 if (result != VK_SUCCESS)
2456 goto fail_workaround_bo;
2457
2458 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2459
2460 anv_device_init_blorp(device);
2461
2462 anv_device_init_border_colors(device);
2463
2464 *pDevice = anv_device_to_handle(device);
2465
2466 return VK_SUCCESS;
2467
2468 fail_workaround_bo:
2469 anv_queue_finish(&device->queue);
2470 anv_scratch_pool_finish(device, &device->scratch_pool);
2471 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2472 anv_gem_close(device, device->workaround_bo.gem_handle);
2473 fail_binding_table_pool:
2474 if (physical_device->use_softpin)
2475 anv_state_pool_finish(&device->binding_table_pool);
2476 fail_surface_state_pool:
2477 anv_state_pool_finish(&device->surface_state_pool);
2478 fail_instruction_state_pool:
2479 anv_state_pool_finish(&device->instruction_state_pool);
2480 fail_dynamic_state_pool:
2481 anv_state_pool_finish(&device->dynamic_state_pool);
2482 fail_bo_cache:
2483 anv_bo_cache_finish(&device->bo_cache);
2484 fail_batch_bo_pool:
2485 anv_bo_pool_finish(&device->batch_bo_pool);
2486 pthread_cond_destroy(&device->queue_submit);
2487 fail_mutex:
2488 pthread_mutex_destroy(&device->mutex);
2489 fail_context_id:
2490 anv_gem_destroy_context(device, device->context_id);
2491 fail_fd:
2492 close(device->fd);
2493 fail_device:
2494 vk_free(&device->alloc, device);
2495
2496 return result;
2497 }
2498
2499 void anv_DestroyDevice(
2500 VkDevice _device,
2501 const VkAllocationCallbacks* pAllocator)
2502 {
2503 ANV_FROM_HANDLE(anv_device, device, _device);
2504 struct anv_physical_device *physical_device;
2505
2506 if (!device)
2507 return;
2508
2509 physical_device = &device->instance->physicalDevice;
2510
2511 anv_device_finish_blorp(device);
2512
2513 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2514
2515 anv_queue_finish(&device->queue);
2516
2517 #ifdef HAVE_VALGRIND
2518 /* We only need to free these to prevent valgrind errors. The backing
2519 * BO will go away in a couple of lines so we don't actually leak.
2520 */
2521 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2522 #endif
2523
2524 anv_scratch_pool_finish(device, &device->scratch_pool);
2525
2526 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2527 anv_vma_free(device, &device->workaround_bo);
2528 anv_gem_close(device, device->workaround_bo.gem_handle);
2529
2530 anv_vma_free(device, &device->trivial_batch_bo);
2531 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2532 if (device->info.gen >= 10)
2533 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2534
2535 if (physical_device->use_softpin)
2536 anv_state_pool_finish(&device->binding_table_pool);
2537 anv_state_pool_finish(&device->surface_state_pool);
2538 anv_state_pool_finish(&device->instruction_state_pool);
2539 anv_state_pool_finish(&device->dynamic_state_pool);
2540
2541 anv_bo_cache_finish(&device->bo_cache);
2542
2543 anv_bo_pool_finish(&device->batch_bo_pool);
2544
2545 pthread_cond_destroy(&device->queue_submit);
2546 pthread_mutex_destroy(&device->mutex);
2547
2548 anv_gem_destroy_context(device, device->context_id);
2549
2550 if (INTEL_DEBUG & DEBUG_BATCH)
2551 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2552
2553 close(device->fd);
2554
2555 vk_free(&device->alloc, device);
2556 }
2557
2558 VkResult anv_EnumerateInstanceLayerProperties(
2559 uint32_t* pPropertyCount,
2560 VkLayerProperties* pProperties)
2561 {
2562 if (pProperties == NULL) {
2563 *pPropertyCount = 0;
2564 return VK_SUCCESS;
2565 }
2566
2567 /* None supported at this time */
2568 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2569 }
2570
2571 VkResult anv_EnumerateDeviceLayerProperties(
2572 VkPhysicalDevice physicalDevice,
2573 uint32_t* pPropertyCount,
2574 VkLayerProperties* pProperties)
2575 {
2576 if (pProperties == NULL) {
2577 *pPropertyCount = 0;
2578 return VK_SUCCESS;
2579 }
2580
2581 /* None supported at this time */
2582 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2583 }
2584
2585 void anv_GetDeviceQueue(
2586 VkDevice _device,
2587 uint32_t queueNodeIndex,
2588 uint32_t queueIndex,
2589 VkQueue* pQueue)
2590 {
2591 ANV_FROM_HANDLE(anv_device, device, _device);
2592
2593 assert(queueIndex == 0);
2594
2595 *pQueue = anv_queue_to_handle(&device->queue);
2596 }
2597
2598 void anv_GetDeviceQueue2(
2599 VkDevice _device,
2600 const VkDeviceQueueInfo2* pQueueInfo,
2601 VkQueue* pQueue)
2602 {
2603 ANV_FROM_HANDLE(anv_device, device, _device);
2604
2605 assert(pQueueInfo->queueIndex == 0);
2606
2607 if (pQueueInfo->flags == device->queue.flags)
2608 *pQueue = anv_queue_to_handle(&device->queue);
2609 else
2610 *pQueue = NULL;
2611 }
2612
2613 VkResult
2614 _anv_device_set_lost(struct anv_device *device,
2615 const char *file, int line,
2616 const char *msg, ...)
2617 {
2618 VkResult err;
2619 va_list ap;
2620
2621 device->_lost = true;
2622
2623 va_start(ap, msg);
2624 err = __vk_errorv(device->instance, device,
2625 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2626 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2627 va_end(ap);
2628
2629 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2630 abort();
2631
2632 return err;
2633 }
2634
2635 VkResult
2636 anv_device_query_status(struct anv_device *device)
2637 {
2638 /* This isn't likely as most of the callers of this function already check
2639 * for it. However, it doesn't hurt to check and it potentially lets us
2640 * avoid an ioctl.
2641 */
2642 if (anv_device_is_lost(device))
2643 return VK_ERROR_DEVICE_LOST;
2644
2645 uint32_t active, pending;
2646 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2647 if (ret == -1) {
2648 /* We don't know the real error. */
2649 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2650 }
2651
2652 if (active) {
2653 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2654 } else if (pending) {
2655 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2656 }
2657
2658 return VK_SUCCESS;
2659 }
2660
2661 VkResult
2662 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2663 {
2664 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2665 * Other usages of the BO (such as on different hardware) will not be
2666 * flagged as "busy" by this ioctl. Use with care.
2667 */
2668 int ret = anv_gem_busy(device, bo->gem_handle);
2669 if (ret == 1) {
2670 return VK_NOT_READY;
2671 } else if (ret == -1) {
2672 /* We don't know the real error. */
2673 return anv_device_set_lost(device, "gem wait failed: %m");
2674 }
2675
2676 /* Query for device status after the busy call. If the BO we're checking
2677 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2678 * client because it clearly doesn't have valid data. Yes, this most
2679 * likely means an ioctl, but we just did an ioctl to query the busy status
2680 * so it's no great loss.
2681 */
2682 return anv_device_query_status(device);
2683 }
2684
2685 VkResult
2686 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2687 int64_t timeout)
2688 {
2689 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2690 if (ret == -1 && errno == ETIME) {
2691 return VK_TIMEOUT;
2692 } else if (ret == -1) {
2693 /* We don't know the real error. */
2694 return anv_device_set_lost(device, "gem wait failed: %m");
2695 }
2696
2697 /* Query for device status after the wait. If the BO we're waiting on got
2698 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2699 * because it clearly doesn't have valid data. Yes, this most likely means
2700 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2701 */
2702 return anv_device_query_status(device);
2703 }
2704
2705 VkResult anv_DeviceWaitIdle(
2706 VkDevice _device)
2707 {
2708 ANV_FROM_HANDLE(anv_device, device, _device);
2709 if (anv_device_is_lost(device))
2710 return VK_ERROR_DEVICE_LOST;
2711
2712 struct anv_batch batch;
2713
2714 uint32_t cmds[8];
2715 batch.start = batch.next = cmds;
2716 batch.end = (void *) cmds + sizeof(cmds);
2717
2718 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2719 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2720
2721 return anv_device_submit_simple_batch(device, &batch);
2722 }
2723
2724 bool
2725 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2726 {
2727 if (!(bo->flags & EXEC_OBJECT_PINNED))
2728 return true;
2729
2730 pthread_mutex_lock(&device->vma_mutex);
2731
2732 bo->offset = 0;
2733
2734 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2735 device->vma_hi_available >= bo->size) {
2736 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2737 if (addr) {
2738 bo->offset = gen_canonical_address(addr);
2739 assert(addr == gen_48b_address(bo->offset));
2740 device->vma_hi_available -= bo->size;
2741 }
2742 }
2743
2744 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2745 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2746 if (addr) {
2747 bo->offset = gen_canonical_address(addr);
2748 assert(addr == gen_48b_address(bo->offset));
2749 device->vma_lo_available -= bo->size;
2750 }
2751 }
2752
2753 pthread_mutex_unlock(&device->vma_mutex);
2754
2755 return bo->offset != 0;
2756 }
2757
2758 void
2759 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2760 {
2761 if (!(bo->flags & EXEC_OBJECT_PINNED))
2762 return;
2763
2764 const uint64_t addr_48b = gen_48b_address(bo->offset);
2765
2766 pthread_mutex_lock(&device->vma_mutex);
2767
2768 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2769 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2770 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2771 device->vma_lo_available += bo->size;
2772 } else {
2773 MAYBE_UNUSED const struct anv_physical_device *physical_device =
2774 &device->instance->physicalDevice;
2775 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2776 addr_48b < (physical_device->memory.heaps[0].vma_start +
2777 physical_device->memory.heaps[0].vma_size));
2778 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2779 device->vma_hi_available += bo->size;
2780 }
2781
2782 pthread_mutex_unlock(&device->vma_mutex);
2783
2784 bo->offset = 0;
2785 }
2786
2787 VkResult
2788 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2789 {
2790 uint32_t gem_handle = anv_gem_create(device, size);
2791 if (!gem_handle)
2792 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2793
2794 anv_bo_init(bo, gem_handle, size);
2795
2796 return VK_SUCCESS;
2797 }
2798
2799 VkResult anv_AllocateMemory(
2800 VkDevice _device,
2801 const VkMemoryAllocateInfo* pAllocateInfo,
2802 const VkAllocationCallbacks* pAllocator,
2803 VkDeviceMemory* pMem)
2804 {
2805 ANV_FROM_HANDLE(anv_device, device, _device);
2806 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2807 struct anv_device_memory *mem;
2808 VkResult result = VK_SUCCESS;
2809
2810 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2811
2812 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2813 assert(pAllocateInfo->allocationSize > 0);
2814
2815 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2816 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2817
2818 /* FINISHME: Fail if allocation request exceeds heap size. */
2819
2820 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2821 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2822 if (mem == NULL)
2823 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2824
2825 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2826 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2827 mem->map = NULL;
2828 mem->map_size = 0;
2829 mem->ahw = NULL;
2830 mem->host_ptr = NULL;
2831
2832 uint64_t bo_flags = 0;
2833
2834 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2835 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2836 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2837
2838 const struct wsi_memory_allocate_info *wsi_info =
2839 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2840 if (wsi_info && wsi_info->implicit_sync) {
2841 /* We need to set the WRITE flag on window system buffers so that GEM
2842 * will know we're writing to them and synchronize uses on other rings
2843 * (eg if the display server uses the blitter ring).
2844 */
2845 bo_flags |= EXEC_OBJECT_WRITE;
2846 } else if (pdevice->has_exec_async) {
2847 bo_flags |= EXEC_OBJECT_ASYNC;
2848 }
2849
2850 if (pdevice->use_softpin)
2851 bo_flags |= EXEC_OBJECT_PINNED;
2852
2853 const VkExportMemoryAllocateInfo *export_info =
2854 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2855
2856 /* Check if we need to support Android HW buffer export. If so,
2857 * create AHardwareBuffer and import memory from it.
2858 */
2859 bool android_export = false;
2860 if (export_info && export_info->handleTypes &
2861 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2862 android_export = true;
2863
2864 /* Android memory import. */
2865 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2866 vk_find_struct_const(pAllocateInfo->pNext,
2867 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2868
2869 if (ahw_import_info) {
2870 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2871 if (result != VK_SUCCESS)
2872 goto fail;
2873
2874 goto success;
2875 } else if (android_export) {
2876 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2877 if (result != VK_SUCCESS)
2878 goto fail;
2879
2880 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2881 .buffer = mem->ahw,
2882 };
2883 result = anv_import_ahw_memory(_device, mem, &import_info);
2884 if (result != VK_SUCCESS)
2885 goto fail;
2886
2887 goto success;
2888 }
2889
2890 const VkImportMemoryFdInfoKHR *fd_info =
2891 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2892
2893 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2894 * ignored.
2895 */
2896 if (fd_info && fd_info->handleType) {
2897 /* At the moment, we support only the below handle types. */
2898 assert(fd_info->handleType ==
2899 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2900 fd_info->handleType ==
2901 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2902
2903 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2904 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2905 if (result != VK_SUCCESS)
2906 goto fail;
2907
2908 VkDeviceSize aligned_alloc_size =
2909 align_u64(pAllocateInfo->allocationSize, 4096);
2910
2911 /* For security purposes, we reject importing the bo if it's smaller
2912 * than the requested allocation size. This prevents a malicious client
2913 * from passing a buffer to a trusted client, lying about the size, and
2914 * telling the trusted client to try and texture from an image that goes
2915 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2916 * in the trusted client. The trusted client can protect itself against
2917 * this sort of attack but only if it can trust the buffer size.
2918 */
2919 if (mem->bo->size < aligned_alloc_size) {
2920 result = vk_errorf(device->instance, device,
2921 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2922 "aligned allocationSize too large for "
2923 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2924 "%"PRIu64"B > %"PRIu64"B",
2925 aligned_alloc_size, mem->bo->size);
2926 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2927 goto fail;
2928 }
2929
2930 /* From the Vulkan spec:
2931 *
2932 * "Importing memory from a file descriptor transfers ownership of
2933 * the file descriptor from the application to the Vulkan
2934 * implementation. The application must not perform any operations on
2935 * the file descriptor after a successful import."
2936 *
2937 * If the import fails, we leave the file descriptor open.
2938 */
2939 close(fd_info->fd);
2940 goto success;
2941 }
2942
2943 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2944 vk_find_struct_const(pAllocateInfo->pNext,
2945 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2946 if (host_ptr_info && host_ptr_info->handleType) {
2947 if (host_ptr_info->handleType ==
2948 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2949 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2950 goto fail;
2951 }
2952
2953 assert(host_ptr_info->handleType ==
2954 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2955
2956 result = anv_bo_cache_import_host_ptr(
2957 device, &device->bo_cache, host_ptr_info->pHostPointer,
2958 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2959
2960 if (result != VK_SUCCESS)
2961 goto fail;
2962
2963 mem->host_ptr = host_ptr_info->pHostPointer;
2964 goto success;
2965 }
2966
2967 /* Regular allocate (not importing memory). */
2968
2969 if (export_info && export_info->handleTypes)
2970 bo_flags |= ANV_BO_EXTERNAL;
2971
2972 result = anv_bo_cache_alloc(device, &device->bo_cache,
2973 pAllocateInfo->allocationSize, bo_flags,
2974 &mem->bo);
2975 if (result != VK_SUCCESS)
2976 goto fail;
2977
2978 const VkMemoryDedicatedAllocateInfo *dedicated_info =
2979 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
2980 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2981 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2982
2983 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2984 * the BO. In this case, we have a dedicated allocation.
2985 */
2986 if (image->needs_set_tiling) {
2987 const uint32_t i915_tiling =
2988 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2989 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2990 image->planes[0].surface.isl.row_pitch_B,
2991 i915_tiling);
2992 if (ret) {
2993 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2994 return vk_errorf(device->instance, NULL,
2995 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2996 "failed to set BO tiling: %m");
2997 }
2998 }
2999 }
3000
3001 success:
3002 pthread_mutex_lock(&device->mutex);
3003 list_addtail(&mem->link, &device->memory_objects);
3004 pthread_mutex_unlock(&device->mutex);
3005
3006 *pMem = anv_device_memory_to_handle(mem);
3007
3008 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3009 mem->bo->size);
3010
3011 return VK_SUCCESS;
3012
3013 fail:
3014 vk_free2(&device->alloc, pAllocator, mem);
3015
3016 return result;
3017 }
3018
3019 VkResult anv_GetMemoryFdKHR(
3020 VkDevice device_h,
3021 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3022 int* pFd)
3023 {
3024 ANV_FROM_HANDLE(anv_device, dev, device_h);
3025 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3026
3027 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3028
3029 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3030 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3031
3032 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
3033 }
3034
3035 VkResult anv_GetMemoryFdPropertiesKHR(
3036 VkDevice _device,
3037 VkExternalMemoryHandleTypeFlagBits handleType,
3038 int fd,
3039 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3040 {
3041 ANV_FROM_HANDLE(anv_device, device, _device);
3042 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3043
3044 switch (handleType) {
3045 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3046 /* dma-buf can be imported as any memory type */
3047 pMemoryFdProperties->memoryTypeBits =
3048 (1 << pdevice->memory.type_count) - 1;
3049 return VK_SUCCESS;
3050
3051 default:
3052 /* The valid usage section for this function says:
3053 *
3054 * "handleType must not be one of the handle types defined as
3055 * opaque."
3056 *
3057 * So opaque handle types fall into the default "unsupported" case.
3058 */
3059 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3060 }
3061 }
3062
3063 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3064 VkDevice _device,
3065 VkExternalMemoryHandleTypeFlagBits handleType,
3066 const void* pHostPointer,
3067 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3068 {
3069 ANV_FROM_HANDLE(anv_device, device, _device);
3070
3071 assert(pMemoryHostPointerProperties->sType ==
3072 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3073
3074 switch (handleType) {
3075 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3076 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3077
3078 /* Host memory can be imported as any memory type. */
3079 pMemoryHostPointerProperties->memoryTypeBits =
3080 (1ull << pdevice->memory.type_count) - 1;
3081
3082 return VK_SUCCESS;
3083 }
3084 default:
3085 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3086 }
3087 }
3088
3089 void anv_FreeMemory(
3090 VkDevice _device,
3091 VkDeviceMemory _mem,
3092 const VkAllocationCallbacks* pAllocator)
3093 {
3094 ANV_FROM_HANDLE(anv_device, device, _device);
3095 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3096 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3097
3098 if (mem == NULL)
3099 return;
3100
3101 pthread_mutex_lock(&device->mutex);
3102 list_del(&mem->link);
3103 pthread_mutex_unlock(&device->mutex);
3104
3105 if (mem->map)
3106 anv_UnmapMemory(_device, _mem);
3107
3108 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3109 -mem->bo->size);
3110
3111 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3112
3113 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3114 if (mem->ahw)
3115 AHardwareBuffer_release(mem->ahw);
3116 #endif
3117
3118 vk_free2(&device->alloc, pAllocator, mem);
3119 }
3120
3121 VkResult anv_MapMemory(
3122 VkDevice _device,
3123 VkDeviceMemory _memory,
3124 VkDeviceSize offset,
3125 VkDeviceSize size,
3126 VkMemoryMapFlags flags,
3127 void** ppData)
3128 {
3129 ANV_FROM_HANDLE(anv_device, device, _device);
3130 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3131
3132 if (mem == NULL) {
3133 *ppData = NULL;
3134 return VK_SUCCESS;
3135 }
3136
3137 if (mem->host_ptr) {
3138 *ppData = mem->host_ptr + offset;
3139 return VK_SUCCESS;
3140 }
3141
3142 if (size == VK_WHOLE_SIZE)
3143 size = mem->bo->size - offset;
3144
3145 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3146 *
3147 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3148 * assert(size != 0);
3149 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3150 * equal to the size of the memory minus offset
3151 */
3152 assert(size > 0);
3153 assert(offset + size <= mem->bo->size);
3154
3155 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3156 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3157 * at a time is valid. We could just mmap up front and return an offset
3158 * pointer here, but that may exhaust virtual memory on 32 bit
3159 * userspace. */
3160
3161 uint32_t gem_flags = 0;
3162
3163 if (!device->info.has_llc &&
3164 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3165 gem_flags |= I915_MMAP_WC;
3166
3167 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3168 uint64_t map_offset = offset & ~4095ull;
3169 assert(offset >= map_offset);
3170 uint64_t map_size = (offset + size) - map_offset;
3171
3172 /* Let's map whole pages */
3173 map_size = align_u64(map_size, 4096);
3174
3175 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3176 map_offset, map_size, gem_flags);
3177 if (map == MAP_FAILED)
3178 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3179
3180 mem->map = map;
3181 mem->map_size = map_size;
3182
3183 *ppData = mem->map + (offset - map_offset);
3184
3185 return VK_SUCCESS;
3186 }
3187
3188 void anv_UnmapMemory(
3189 VkDevice _device,
3190 VkDeviceMemory _memory)
3191 {
3192 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3193
3194 if (mem == NULL || mem->host_ptr)
3195 return;
3196
3197 anv_gem_munmap(mem->map, mem->map_size);
3198
3199 mem->map = NULL;
3200 mem->map_size = 0;
3201 }
3202
3203 static void
3204 clflush_mapped_ranges(struct anv_device *device,
3205 uint32_t count,
3206 const VkMappedMemoryRange *ranges)
3207 {
3208 for (uint32_t i = 0; i < count; i++) {
3209 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3210 if (ranges[i].offset >= mem->map_size)
3211 continue;
3212
3213 gen_clflush_range(mem->map + ranges[i].offset,
3214 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3215 }
3216 }
3217
3218 VkResult anv_FlushMappedMemoryRanges(
3219 VkDevice _device,
3220 uint32_t memoryRangeCount,
3221 const VkMappedMemoryRange* pMemoryRanges)
3222 {
3223 ANV_FROM_HANDLE(anv_device, device, _device);
3224
3225 if (device->info.has_llc)
3226 return VK_SUCCESS;
3227
3228 /* Make sure the writes we're flushing have landed. */
3229 __builtin_ia32_mfence();
3230
3231 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3232
3233 return VK_SUCCESS;
3234 }
3235
3236 VkResult anv_InvalidateMappedMemoryRanges(
3237 VkDevice _device,
3238 uint32_t memoryRangeCount,
3239 const VkMappedMemoryRange* pMemoryRanges)
3240 {
3241 ANV_FROM_HANDLE(anv_device, device, _device);
3242
3243 if (device->info.has_llc)
3244 return VK_SUCCESS;
3245
3246 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3247
3248 /* Make sure no reads get moved up above the invalidate. */
3249 __builtin_ia32_mfence();
3250
3251 return VK_SUCCESS;
3252 }
3253
3254 void anv_GetBufferMemoryRequirements(
3255 VkDevice _device,
3256 VkBuffer _buffer,
3257 VkMemoryRequirements* pMemoryRequirements)
3258 {
3259 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3260 ANV_FROM_HANDLE(anv_device, device, _device);
3261 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3262
3263 /* The Vulkan spec (git aaed022) says:
3264 *
3265 * memoryTypeBits is a bitfield and contains one bit set for every
3266 * supported memory type for the resource. The bit `1<<i` is set if and
3267 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3268 * structure for the physical device is supported.
3269 */
3270 uint32_t memory_types = 0;
3271 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3272 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3273 if ((valid_usage & buffer->usage) == buffer->usage)
3274 memory_types |= (1u << i);
3275 }
3276
3277 /* Base alignment requirement of a cache line */
3278 uint32_t alignment = 16;
3279
3280 /* We need an alignment of 32 for pushing UBOs */
3281 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3282 alignment = MAX2(alignment, 32);
3283
3284 pMemoryRequirements->size = buffer->size;
3285 pMemoryRequirements->alignment = alignment;
3286
3287 /* Storage and Uniform buffers should have their size aligned to
3288 * 32-bits to avoid boundary checks when last DWord is not complete.
3289 * This would ensure that not internal padding would be needed for
3290 * 16-bit types.
3291 */
3292 if (device->robust_buffer_access &&
3293 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3294 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3295 pMemoryRequirements->size = align_u64(buffer->size, 4);
3296
3297 pMemoryRequirements->memoryTypeBits = memory_types;
3298 }
3299
3300 void anv_GetBufferMemoryRequirements2(
3301 VkDevice _device,
3302 const VkBufferMemoryRequirementsInfo2* pInfo,
3303 VkMemoryRequirements2* pMemoryRequirements)
3304 {
3305 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3306 &pMemoryRequirements->memoryRequirements);
3307
3308 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3309 switch (ext->sType) {
3310 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3311 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3312 requirements->prefersDedicatedAllocation = false;
3313 requirements->requiresDedicatedAllocation = false;
3314 break;
3315 }
3316
3317 default:
3318 anv_debug_ignored_stype(ext->sType);
3319 break;
3320 }
3321 }
3322 }
3323
3324 void anv_GetImageMemoryRequirements(
3325 VkDevice _device,
3326 VkImage _image,
3327 VkMemoryRequirements* pMemoryRequirements)
3328 {
3329 ANV_FROM_HANDLE(anv_image, image, _image);
3330 ANV_FROM_HANDLE(anv_device, device, _device);
3331 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3332
3333 /* The Vulkan spec (git aaed022) says:
3334 *
3335 * memoryTypeBits is a bitfield and contains one bit set for every
3336 * supported memory type for the resource. The bit `1<<i` is set if and
3337 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3338 * structure for the physical device is supported.
3339 *
3340 * All types are currently supported for images.
3341 */
3342 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3343
3344 /* We must have image allocated or imported at this point. According to the
3345 * specification, external images must have been bound to memory before
3346 * calling GetImageMemoryRequirements.
3347 */
3348 assert(image->size > 0);
3349
3350 pMemoryRequirements->size = image->size;
3351 pMemoryRequirements->alignment = image->alignment;
3352 pMemoryRequirements->memoryTypeBits = memory_types;
3353 }
3354
3355 void anv_GetImageMemoryRequirements2(
3356 VkDevice _device,
3357 const VkImageMemoryRequirementsInfo2* pInfo,
3358 VkMemoryRequirements2* pMemoryRequirements)
3359 {
3360 ANV_FROM_HANDLE(anv_device, device, _device);
3361 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3362
3363 anv_GetImageMemoryRequirements(_device, pInfo->image,
3364 &pMemoryRequirements->memoryRequirements);
3365
3366 vk_foreach_struct_const(ext, pInfo->pNext) {
3367 switch (ext->sType) {
3368 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3369 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3370 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3371 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3372 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3373 plane_reqs->planeAspect);
3374
3375 assert(image->planes[plane].offset == 0);
3376
3377 /* The Vulkan spec (git aaed022) says:
3378 *
3379 * memoryTypeBits is a bitfield and contains one bit set for every
3380 * supported memory type for the resource. The bit `1<<i` is set
3381 * if and only if the memory type `i` in the
3382 * VkPhysicalDeviceMemoryProperties structure for the physical
3383 * device is supported.
3384 *
3385 * All types are currently supported for images.
3386 */
3387 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3388 (1ull << pdevice->memory.type_count) - 1;
3389
3390 /* We must have image allocated or imported at this point. According to the
3391 * specification, external images must have been bound to memory before
3392 * calling GetImageMemoryRequirements.
3393 */
3394 assert(image->planes[plane].size > 0);
3395
3396 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3397 pMemoryRequirements->memoryRequirements.alignment =
3398 image->planes[plane].alignment;
3399 break;
3400 }
3401
3402 default:
3403 anv_debug_ignored_stype(ext->sType);
3404 break;
3405 }
3406 }
3407
3408 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3409 switch (ext->sType) {
3410 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3411 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3412 if (image->needs_set_tiling || image->external_format) {
3413 /* If we need to set the tiling for external consumers, we need a
3414 * dedicated allocation.
3415 *
3416 * See also anv_AllocateMemory.
3417 */
3418 requirements->prefersDedicatedAllocation = true;
3419 requirements->requiresDedicatedAllocation = true;
3420 } else {
3421 requirements->prefersDedicatedAllocation = false;
3422 requirements->requiresDedicatedAllocation = false;
3423 }
3424 break;
3425 }
3426
3427 default:
3428 anv_debug_ignored_stype(ext->sType);
3429 break;
3430 }
3431 }
3432 }
3433
3434 void anv_GetImageSparseMemoryRequirements(
3435 VkDevice device,
3436 VkImage image,
3437 uint32_t* pSparseMemoryRequirementCount,
3438 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3439 {
3440 *pSparseMemoryRequirementCount = 0;
3441 }
3442
3443 void anv_GetImageSparseMemoryRequirements2(
3444 VkDevice device,
3445 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3446 uint32_t* pSparseMemoryRequirementCount,
3447 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3448 {
3449 *pSparseMemoryRequirementCount = 0;
3450 }
3451
3452 void anv_GetDeviceMemoryCommitment(
3453 VkDevice device,
3454 VkDeviceMemory memory,
3455 VkDeviceSize* pCommittedMemoryInBytes)
3456 {
3457 *pCommittedMemoryInBytes = 0;
3458 }
3459
3460 static void
3461 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3462 {
3463 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3464 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3465
3466 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3467
3468 if (mem) {
3469 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3470 buffer->address = (struct anv_address) {
3471 .bo = mem->bo,
3472 .offset = pBindInfo->memoryOffset,
3473 };
3474 } else {
3475 buffer->address = ANV_NULL_ADDRESS;
3476 }
3477 }
3478
3479 VkResult anv_BindBufferMemory(
3480 VkDevice device,
3481 VkBuffer buffer,
3482 VkDeviceMemory memory,
3483 VkDeviceSize memoryOffset)
3484 {
3485 anv_bind_buffer_memory(
3486 &(VkBindBufferMemoryInfo) {
3487 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3488 .buffer = buffer,
3489 .memory = memory,
3490 .memoryOffset = memoryOffset,
3491 });
3492
3493 return VK_SUCCESS;
3494 }
3495
3496 VkResult anv_BindBufferMemory2(
3497 VkDevice device,
3498 uint32_t bindInfoCount,
3499 const VkBindBufferMemoryInfo* pBindInfos)
3500 {
3501 for (uint32_t i = 0; i < bindInfoCount; i++)
3502 anv_bind_buffer_memory(&pBindInfos[i]);
3503
3504 return VK_SUCCESS;
3505 }
3506
3507 VkResult anv_QueueBindSparse(
3508 VkQueue _queue,
3509 uint32_t bindInfoCount,
3510 const VkBindSparseInfo* pBindInfo,
3511 VkFence fence)
3512 {
3513 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3514 if (anv_device_is_lost(queue->device))
3515 return VK_ERROR_DEVICE_LOST;
3516
3517 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3518 }
3519
3520 // Event functions
3521
3522 VkResult anv_CreateEvent(
3523 VkDevice _device,
3524 const VkEventCreateInfo* pCreateInfo,
3525 const VkAllocationCallbacks* pAllocator,
3526 VkEvent* pEvent)
3527 {
3528 ANV_FROM_HANDLE(anv_device, device, _device);
3529 struct anv_state state;
3530 struct anv_event *event;
3531
3532 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3533
3534 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3535 sizeof(*event), 8);
3536 event = state.map;
3537 event->state = state;
3538 event->semaphore = VK_EVENT_RESET;
3539
3540 if (!device->info.has_llc) {
3541 /* Make sure the writes we're flushing have landed. */
3542 __builtin_ia32_mfence();
3543 __builtin_ia32_clflush(event);
3544 }
3545
3546 *pEvent = anv_event_to_handle(event);
3547
3548 return VK_SUCCESS;
3549 }
3550
3551 void anv_DestroyEvent(
3552 VkDevice _device,
3553 VkEvent _event,
3554 const VkAllocationCallbacks* pAllocator)
3555 {
3556 ANV_FROM_HANDLE(anv_device, device, _device);
3557 ANV_FROM_HANDLE(anv_event, event, _event);
3558
3559 if (!event)
3560 return;
3561
3562 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3563 }
3564
3565 VkResult anv_GetEventStatus(
3566 VkDevice _device,
3567 VkEvent _event)
3568 {
3569 ANV_FROM_HANDLE(anv_device, device, _device);
3570 ANV_FROM_HANDLE(anv_event, event, _event);
3571
3572 if (anv_device_is_lost(device))
3573 return VK_ERROR_DEVICE_LOST;
3574
3575 if (!device->info.has_llc) {
3576 /* Invalidate read cache before reading event written by GPU. */
3577 __builtin_ia32_clflush(event);
3578 __builtin_ia32_mfence();
3579
3580 }
3581
3582 return event->semaphore;
3583 }
3584
3585 VkResult anv_SetEvent(
3586 VkDevice _device,
3587 VkEvent _event)
3588 {
3589 ANV_FROM_HANDLE(anv_device, device, _device);
3590 ANV_FROM_HANDLE(anv_event, event, _event);
3591
3592 event->semaphore = VK_EVENT_SET;
3593
3594 if (!device->info.has_llc) {
3595 /* Make sure the writes we're flushing have landed. */
3596 __builtin_ia32_mfence();
3597 __builtin_ia32_clflush(event);
3598 }
3599
3600 return VK_SUCCESS;
3601 }
3602
3603 VkResult anv_ResetEvent(
3604 VkDevice _device,
3605 VkEvent _event)
3606 {
3607 ANV_FROM_HANDLE(anv_device, device, _device);
3608 ANV_FROM_HANDLE(anv_event, event, _event);
3609
3610 event->semaphore = VK_EVENT_RESET;
3611
3612 if (!device->info.has_llc) {
3613 /* Make sure the writes we're flushing have landed. */
3614 __builtin_ia32_mfence();
3615 __builtin_ia32_clflush(event);
3616 }
3617
3618 return VK_SUCCESS;
3619 }
3620
3621 // Buffer functions
3622
3623 VkResult anv_CreateBuffer(
3624 VkDevice _device,
3625 const VkBufferCreateInfo* pCreateInfo,
3626 const VkAllocationCallbacks* pAllocator,
3627 VkBuffer* pBuffer)
3628 {
3629 ANV_FROM_HANDLE(anv_device, device, _device);
3630 struct anv_buffer *buffer;
3631
3632 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3633
3634 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3635 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3636 if (buffer == NULL)
3637 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3638
3639 buffer->size = pCreateInfo->size;
3640 buffer->usage = pCreateInfo->usage;
3641 buffer->address = ANV_NULL_ADDRESS;
3642
3643 *pBuffer = anv_buffer_to_handle(buffer);
3644
3645 return VK_SUCCESS;
3646 }
3647
3648 void anv_DestroyBuffer(
3649 VkDevice _device,
3650 VkBuffer _buffer,
3651 const VkAllocationCallbacks* pAllocator)
3652 {
3653 ANV_FROM_HANDLE(anv_device, device, _device);
3654 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3655
3656 if (!buffer)
3657 return;
3658
3659 vk_free2(&device->alloc, pAllocator, buffer);
3660 }
3661
3662 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3663 VkDevice device,
3664 const VkBufferDeviceAddressInfoEXT* pInfo)
3665 {
3666 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3667
3668 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3669
3670 return anv_address_physical(buffer->address);
3671 }
3672
3673 void
3674 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3675 enum isl_format format,
3676 struct anv_address address,
3677 uint32_t range, uint32_t stride)
3678 {
3679 isl_buffer_fill_state(&device->isl_dev, state.map,
3680 .address = anv_address_physical(address),
3681 .mocs = device->default_mocs,
3682 .size_B = range,
3683 .format = format,
3684 .swizzle = ISL_SWIZZLE_IDENTITY,
3685 .stride_B = stride);
3686 }
3687
3688 void anv_DestroySampler(
3689 VkDevice _device,
3690 VkSampler _sampler,
3691 const VkAllocationCallbacks* pAllocator)
3692 {
3693 ANV_FROM_HANDLE(anv_device, device, _device);
3694 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3695
3696 if (!sampler)
3697 return;
3698
3699 if (sampler->bindless_state.map) {
3700 anv_state_pool_free(&device->dynamic_state_pool,
3701 sampler->bindless_state);
3702 }
3703
3704 vk_free2(&device->alloc, pAllocator, sampler);
3705 }
3706
3707 VkResult anv_CreateFramebuffer(
3708 VkDevice _device,
3709 const VkFramebufferCreateInfo* pCreateInfo,
3710 const VkAllocationCallbacks* pAllocator,
3711 VkFramebuffer* pFramebuffer)
3712 {
3713 ANV_FROM_HANDLE(anv_device, device, _device);
3714 struct anv_framebuffer *framebuffer;
3715
3716 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3717
3718 size_t size = sizeof(*framebuffer);
3719
3720 /* VK_KHR_imageless_framebuffer extension says:
3721 *
3722 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3723 * parameter pAttachments is ignored.
3724 */
3725 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3726 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3727 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3728 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3729 if (framebuffer == NULL)
3730 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3731
3732 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3733 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
3734 framebuffer->attachments[i] = iview;
3735 }
3736 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3737 } else {
3738 assert(device->enabled_extensions.KHR_imageless_framebuffer);
3739 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3740 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3741 if (framebuffer == NULL)
3742 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3743
3744 framebuffer->attachment_count = 0;
3745 }
3746
3747 framebuffer->width = pCreateInfo->width;
3748 framebuffer->height = pCreateInfo->height;
3749 framebuffer->layers = pCreateInfo->layers;
3750
3751 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3752
3753 return VK_SUCCESS;
3754 }
3755
3756 void anv_DestroyFramebuffer(
3757 VkDevice _device,
3758 VkFramebuffer _fb,
3759 const VkAllocationCallbacks* pAllocator)
3760 {
3761 ANV_FROM_HANDLE(anv_device, device, _device);
3762 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3763
3764 if (!fb)
3765 return;
3766
3767 vk_free2(&device->alloc, pAllocator, fb);
3768 }
3769
3770 static const VkTimeDomainEXT anv_time_domains[] = {
3771 VK_TIME_DOMAIN_DEVICE_EXT,
3772 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3773 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3774 };
3775
3776 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3777 VkPhysicalDevice physicalDevice,
3778 uint32_t *pTimeDomainCount,
3779 VkTimeDomainEXT *pTimeDomains)
3780 {
3781 int d;
3782 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3783
3784 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3785 vk_outarray_append(&out, i) {
3786 *i = anv_time_domains[d];
3787 }
3788 }
3789
3790 return vk_outarray_status(&out);
3791 }
3792
3793 static uint64_t
3794 anv_clock_gettime(clockid_t clock_id)
3795 {
3796 struct timespec current;
3797 int ret;
3798
3799 ret = clock_gettime(clock_id, &current);
3800 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3801 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3802 if (ret < 0)
3803 return 0;
3804
3805 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3806 }
3807
3808 #define TIMESTAMP 0x2358
3809
3810 VkResult anv_GetCalibratedTimestampsEXT(
3811 VkDevice _device,
3812 uint32_t timestampCount,
3813 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3814 uint64_t *pTimestamps,
3815 uint64_t *pMaxDeviation)
3816 {
3817 ANV_FROM_HANDLE(anv_device, device, _device);
3818 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3819 int ret;
3820 int d;
3821 uint64_t begin, end;
3822 uint64_t max_clock_period = 0;
3823
3824 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3825
3826 for (d = 0; d < timestampCount; d++) {
3827 switch (pTimestampInfos[d].timeDomain) {
3828 case VK_TIME_DOMAIN_DEVICE_EXT:
3829 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3830 &pTimestamps[d]);
3831
3832 if (ret != 0) {
3833 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3834 "register: %m");
3835 }
3836 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3837 max_clock_period = MAX2(max_clock_period, device_period);
3838 break;
3839 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3840 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3841 max_clock_period = MAX2(max_clock_period, 1);
3842 break;
3843
3844 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3845 pTimestamps[d] = begin;
3846 break;
3847 default:
3848 pTimestamps[d] = 0;
3849 break;
3850 }
3851 }
3852
3853 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3854
3855 /*
3856 * The maximum deviation is the sum of the interval over which we
3857 * perform the sampling and the maximum period of any sampled
3858 * clock. That's because the maximum skew between any two sampled
3859 * clock edges is when the sampled clock with the largest period is
3860 * sampled at the end of that period but right at the beginning of the
3861 * sampling interval and some other clock is sampled right at the
3862 * begining of its sampling period and right at the end of the
3863 * sampling interval. Let's assume the GPU has the longest clock
3864 * period and that the application is sampling GPU and monotonic:
3865 *
3866 * s e
3867 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3868 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3869 *
3870 * g
3871 * 0 1 2 3
3872 * GPU -----_____-----_____-----_____-----_____
3873 *
3874 * m
3875 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3876 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3877 *
3878 * Interval <----------------->
3879 * Deviation <-------------------------->
3880 *
3881 * s = read(raw) 2
3882 * g = read(GPU) 1
3883 * m = read(monotonic) 2
3884 * e = read(raw) b
3885 *
3886 * We round the sample interval up by one tick to cover sampling error
3887 * in the interval clock
3888 */
3889
3890 uint64_t sample_interval = end - begin + 1;
3891
3892 *pMaxDeviation = sample_interval + max_clock_period;
3893
3894 return VK_SUCCESS;
3895 }
3896
3897 /* vk_icd.h does not declare this function, so we declare it here to
3898 * suppress Wmissing-prototypes.
3899 */
3900 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3901 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3902
3903 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3904 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3905 {
3906 /* For the full details on loader interface versioning, see
3907 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3908 * What follows is a condensed summary, to help you navigate the large and
3909 * confusing official doc.
3910 *
3911 * - Loader interface v0 is incompatible with later versions. We don't
3912 * support it.
3913 *
3914 * - In loader interface v1:
3915 * - The first ICD entrypoint called by the loader is
3916 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3917 * entrypoint.
3918 * - The ICD must statically expose no other Vulkan symbol unless it is
3919 * linked with -Bsymbolic.
3920 * - Each dispatchable Vulkan handle created by the ICD must be
3921 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3922 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3923 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3924 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3925 * such loader-managed surfaces.
3926 *
3927 * - Loader interface v2 differs from v1 in:
3928 * - The first ICD entrypoint called by the loader is
3929 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3930 * statically expose this entrypoint.
3931 *
3932 * - Loader interface v3 differs from v2 in:
3933 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3934 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3935 * because the loader no longer does so.
3936 */
3937 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3938 return VK_SUCCESS;
3939 }