anv: Add support for the variablePointers feature
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include <drm_fourcc.h>
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/mesa-sha1.h"
39 #include "vk_util.h"
40
41 #include "genxml/gen7_pack.h"
42
43 static void
44 compiler_debug_log(void *data, const char *fmt, ...)
45 { }
46
47 static void
48 compiler_perf_log(void *data, const char *fmt, ...)
49 {
50 va_list args;
51 va_start(args, fmt);
52
53 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
54 intel_logd_v(fmt, args);
55
56 va_end(args);
57 }
58
59 static VkResult
60 anv_compute_heap_size(int fd, uint64_t *heap_size)
61 {
62 uint64_t gtt_size;
63 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
64 &gtt_size) == -1) {
65 /* If, for whatever reason, we can't actually get the GTT size from the
66 * kernel (too old?) fall back to the aperture size.
67 */
68 anv_perf_warn(NULL, NULL,
69 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
70
71 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
72 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
73 "failed to get aperture size: %m");
74 }
75 }
76
77 /* Query the total ram from the system */
78 struct sysinfo info;
79 sysinfo(&info);
80
81 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
82
83 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
84 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
85 */
86 uint64_t available_ram;
87 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
88 available_ram = total_ram / 2;
89 else
90 available_ram = total_ram * 3 / 4;
91
92 /* We also want to leave some padding for things we allocate in the driver,
93 * so don't go over 3/4 of the GTT either.
94 */
95 uint64_t available_gtt = gtt_size * 3 / 4;
96
97 *heap_size = MIN2(available_ram, available_gtt);
98
99 return VK_SUCCESS;
100 }
101
102 static VkResult
103 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
104 {
105 /* The kernel query only tells us whether or not the kernel supports the
106 * EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and not whether or not the
107 * hardware has actual 48bit address support.
108 */
109 device->supports_48bit_addresses =
110 (device->info.gen >= 8) && anv_gem_supports_48b_addresses(fd);
111
112 uint64_t heap_size;
113 VkResult result = anv_compute_heap_size(fd, &heap_size);
114 if (result != VK_SUCCESS)
115 return result;
116
117 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
118 /* When running with an overridden PCI ID, we may get a GTT size from
119 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
120 * address support can still fail. Just clamp the address space size to
121 * 2 GiB if we don't have 48-bit support.
122 */
123 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
124 "not support for 48-bit addresses",
125 __FILE__, __LINE__);
126 heap_size = 2ull << 30;
127 }
128
129 if (heap_size <= 3ull * (1ull << 30)) {
130 /* In this case, everything fits nicely into the 32-bit address space,
131 * so there's no need for supporting 48bit addresses on client-allocated
132 * memory objects.
133 */
134 device->memory.heap_count = 1;
135 device->memory.heaps[0] = (struct anv_memory_heap) {
136 .size = heap_size,
137 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
138 .supports_48bit_addresses = false,
139 };
140 } else {
141 /* Not everything will fit nicely into a 32-bit address space. In this
142 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
143 * larger 48-bit heap. If we're in this case, then we have a total heap
144 * size larger than 3GiB which most likely means they have 8 GiB of
145 * video memory and so carving off 1 GiB for the 32-bit heap should be
146 * reasonable.
147 */
148 const uint64_t heap_size_32bit = 1ull << 30;
149 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
150
151 assert(device->supports_48bit_addresses);
152
153 device->memory.heap_count = 2;
154 device->memory.heaps[0] = (struct anv_memory_heap) {
155 .size = heap_size_48bit,
156 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
157 .supports_48bit_addresses = true,
158 };
159 device->memory.heaps[1] = (struct anv_memory_heap) {
160 .size = heap_size_32bit,
161 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
162 .supports_48bit_addresses = false,
163 };
164 }
165
166 uint32_t type_count = 0;
167 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
168 uint32_t valid_buffer_usage = ~0;
169
170 /* There appears to be a hardware issue in the VF cache where it only
171 * considers the bottom 32 bits of memory addresses. If you happen to
172 * have two vertex buffers which get placed exactly 4 GiB apart and use
173 * them in back-to-back draw calls, you can get collisions. In order to
174 * solve this problem, we require vertex and index buffers be bound to
175 * memory allocated out of the 32-bit heap.
176 */
177 if (device->memory.heaps[heap].supports_48bit_addresses) {
178 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
179 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
180 }
181
182 if (device->info.has_llc) {
183 /* Big core GPUs share LLC with the CPU and thus one memory type can be
184 * both cached and coherent at the same time.
185 */
186 device->memory.types[type_count++] = (struct anv_memory_type) {
187 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
188 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
189 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
190 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
191 .heapIndex = heap,
192 .valid_buffer_usage = valid_buffer_usage,
193 };
194 } else {
195 /* The spec requires that we expose a host-visible, coherent memory
196 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
197 * to give the application a choice between cached, but not coherent and
198 * coherent but uncached (WC though).
199 */
200 device->memory.types[type_count++] = (struct anv_memory_type) {
201 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
202 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
203 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
204 .heapIndex = heap,
205 .valid_buffer_usage = valid_buffer_usage,
206 };
207 device->memory.types[type_count++] = (struct anv_memory_type) {
208 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
209 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
210 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
211 .heapIndex = heap,
212 .valid_buffer_usage = valid_buffer_usage,
213 };
214 }
215 }
216 device->memory.type_count = type_count;
217
218 return VK_SUCCESS;
219 }
220
221 static VkResult
222 anv_physical_device_init_uuids(struct anv_physical_device *device)
223 {
224 const struct build_id_note *note =
225 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
226 if (!note) {
227 return vk_errorf(device->instance, device,
228 VK_ERROR_INITIALIZATION_FAILED,
229 "Failed to find build-id");
230 }
231
232 unsigned build_id_len = build_id_length(note);
233 if (build_id_len < 20) {
234 return vk_errorf(device->instance, device,
235 VK_ERROR_INITIALIZATION_FAILED,
236 "build-id too short. It needs to be a SHA");
237 }
238
239 struct mesa_sha1 sha1_ctx;
240 uint8_t sha1[20];
241 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
242
243 /* The pipeline cache UUID is used for determining when a pipeline cache is
244 * invalid. It needs both a driver build and the PCI ID of the device.
245 */
246 _mesa_sha1_init(&sha1_ctx);
247 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
248 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
249 sizeof(device->chipset_id));
250 _mesa_sha1_final(&sha1_ctx, sha1);
251 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
252
253 /* The driver UUID is used for determining sharability of images and memory
254 * between two Vulkan instances in separate processes. People who want to
255 * share memory need to also check the device UUID (below) so all this
256 * needs to be is the build-id.
257 */
258 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
259
260 /* The device UUID uniquely identifies the given device within the machine.
261 * Since we never have more than one device, this doesn't need to be a real
262 * UUID. However, on the off-chance that someone tries to use this to
263 * cache pre-tiled images or something of the like, we use the PCI ID and
264 * some bits of ISL info to ensure that this is safe.
265 */
266 _mesa_sha1_init(&sha1_ctx);
267 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
268 sizeof(device->chipset_id));
269 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
270 sizeof(device->isl_dev.has_bit6_swizzling));
271 _mesa_sha1_final(&sha1_ctx, sha1);
272 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
273
274 return VK_SUCCESS;
275 }
276
277 static VkResult
278 anv_physical_device_init(struct anv_physical_device *device,
279 struct anv_instance *instance,
280 const char *path)
281 {
282 VkResult result;
283 int fd;
284
285 brw_process_intel_debug_variable();
286
287 fd = open(path, O_RDWR | O_CLOEXEC);
288 if (fd < 0)
289 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
290
291 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
292 device->instance = instance;
293
294 assert(strlen(path) < ARRAY_SIZE(device->path));
295 strncpy(device->path, path, ARRAY_SIZE(device->path));
296
297 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
298 if (!device->chipset_id) {
299 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
300 goto fail;
301 }
302
303 device->name = gen_get_device_name(device->chipset_id);
304 if (!gen_get_device_info(device->chipset_id, &device->info)) {
305 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
306 goto fail;
307 }
308
309 if (device->info.is_haswell) {
310 intel_logw("Haswell Vulkan support is incomplete");
311 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
312 intel_logw("Ivy Bridge Vulkan support is incomplete");
313 } else if (device->info.gen == 7 && device->info.is_baytrail) {
314 intel_logw("Bay Trail Vulkan support is incomplete");
315 } else if (device->info.gen >= 8 && device->info.gen <= 9) {
316 /* Broadwell, Cherryview, Skylake, Broxton, Kabylake, Coffelake is as
317 * fully supported as anything */
318 } else if (device->info.gen == 10) {
319 intel_logw("Cannonlake Vulkan support is alpha");
320 } else {
321 result = vk_errorf(device->instance, device,
322 VK_ERROR_INCOMPATIBLE_DRIVER,
323 "Vulkan not yet supported on %s", device->name);
324 goto fail;
325 }
326
327 device->cmd_parser_version = -1;
328 if (device->info.gen == 7) {
329 device->cmd_parser_version =
330 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
331 if (device->cmd_parser_version == -1) {
332 result = vk_errorf(device->instance, device,
333 VK_ERROR_INITIALIZATION_FAILED,
334 "failed to get command parser version");
335 goto fail;
336 }
337 }
338
339 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
340 result = vk_errorf(device->instance, device,
341 VK_ERROR_INITIALIZATION_FAILED,
342 "kernel missing gem wait");
343 goto fail;
344 }
345
346 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
347 result = vk_errorf(device->instance, device,
348 VK_ERROR_INITIALIZATION_FAILED,
349 "kernel missing execbuf2");
350 goto fail;
351 }
352
353 if (!device->info.has_llc &&
354 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
355 result = vk_errorf(device->instance, device,
356 VK_ERROR_INITIALIZATION_FAILED,
357 "kernel missing wc mmap");
358 goto fail;
359 }
360
361 result = anv_physical_device_init_heaps(device, fd);
362 if (result != VK_SUCCESS)
363 goto fail;
364
365 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
366 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
367 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
368 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
369 device->has_syncobj_wait = device->has_syncobj &&
370 anv_gem_supports_syncobj_wait(fd);
371
372 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
373
374 /* Starting with Gen10, the timestamp frequency of the command streamer may
375 * vary from one part to another. We can query the value from the kernel.
376 */
377 if (device->info.gen >= 10) {
378 int timestamp_frequency =
379 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
380
381 if (timestamp_frequency < 0)
382 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
383 else
384 device->info.timestamp_frequency = timestamp_frequency;
385 }
386
387 /* GENs prior to 8 do not support EU/Subslice info */
388 if (device->info.gen >= 8) {
389 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
390 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
391
392 /* Without this information, we cannot get the right Braswell
393 * brandstrings, and we have to use conservative numbers for GPGPU on
394 * many platforms, but otherwise, things will just work.
395 */
396 if (device->subslice_total < 1 || device->eu_total < 1) {
397 intel_logw("Kernel 4.1 required to properly query GPU properties");
398 }
399 } else if (device->info.gen == 7) {
400 device->subslice_total = 1 << (device->info.gt - 1);
401 }
402
403 if (device->info.is_cherryview &&
404 device->subslice_total > 0 && device->eu_total > 0) {
405 /* Logical CS threads = EUs per subslice * num threads per EU */
406 uint32_t max_cs_threads =
407 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
408
409 /* Fuse configurations may give more threads than expected, never less. */
410 if (max_cs_threads > device->info.max_cs_threads)
411 device->info.max_cs_threads = max_cs_threads;
412 }
413
414 device->compiler = brw_compiler_create(NULL, &device->info);
415 if (device->compiler == NULL) {
416 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
417 goto fail;
418 }
419 device->compiler->shader_debug_log = compiler_debug_log;
420 device->compiler->shader_perf_log = compiler_perf_log;
421 device->compiler->supports_pull_constants = false;
422
423 isl_device_init(&device->isl_dev, &device->info, swizzled);
424
425 result = anv_physical_device_init_uuids(device);
426 if (result != VK_SUCCESS)
427 goto fail;
428
429 result = anv_init_wsi(device);
430 if (result != VK_SUCCESS) {
431 ralloc_free(device->compiler);
432 goto fail;
433 }
434
435 device->local_fd = fd;
436 return VK_SUCCESS;
437
438 fail:
439 close(fd);
440 return result;
441 }
442
443 static void
444 anv_physical_device_finish(struct anv_physical_device *device)
445 {
446 anv_finish_wsi(device);
447 ralloc_free(device->compiler);
448 close(device->local_fd);
449 }
450
451 static void *
452 default_alloc_func(void *pUserData, size_t size, size_t align,
453 VkSystemAllocationScope allocationScope)
454 {
455 return malloc(size);
456 }
457
458 static void *
459 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
460 size_t align, VkSystemAllocationScope allocationScope)
461 {
462 return realloc(pOriginal, size);
463 }
464
465 static void
466 default_free_func(void *pUserData, void *pMemory)
467 {
468 free(pMemory);
469 }
470
471 static const VkAllocationCallbacks default_alloc = {
472 .pUserData = NULL,
473 .pfnAllocation = default_alloc_func,
474 .pfnReallocation = default_realloc_func,
475 .pfnFree = default_free_func,
476 };
477
478 VkResult anv_CreateInstance(
479 const VkInstanceCreateInfo* pCreateInfo,
480 const VkAllocationCallbacks* pAllocator,
481 VkInstance* pInstance)
482 {
483 struct anv_instance *instance;
484
485 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
486
487 /* Check if user passed a debug report callback to be used during
488 * Create/Destroy of instance.
489 */
490 const VkDebugReportCallbackCreateInfoEXT *ctor_cb =
491 vk_find_struct_const(pCreateInfo->pNext,
492 DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT);
493
494 uint32_t client_version;
495 if (pCreateInfo->pApplicationInfo &&
496 pCreateInfo->pApplicationInfo->apiVersion != 0) {
497 client_version = pCreateInfo->pApplicationInfo->apiVersion;
498 } else {
499 client_version = VK_MAKE_VERSION(1, 0, 0);
500 }
501
502 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
503 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
504
505 if (ctor_cb && ctor_cb->flags & VK_DEBUG_REPORT_ERROR_BIT_EXT)
506 ctor_cb->pfnCallback(VK_DEBUG_REPORT_ERROR_BIT_EXT,
507 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT,
508 VK_NULL_HANDLE, /* No handle available yet. */
509 __LINE__,
510 0,
511 "anv",
512 "incompatible driver version",
513 ctor_cb->pUserData);
514
515 return vk_errorf(NULL, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
516 "Client requested version %d.%d.%d",
517 VK_VERSION_MAJOR(client_version),
518 VK_VERSION_MINOR(client_version),
519 VK_VERSION_PATCH(client_version));
520 }
521
522 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
523 const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
524 if (!anv_instance_extension_supported(ext_name))
525 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
526 }
527
528 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
529 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
530 if (!instance)
531 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
532
533 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
534
535 if (pAllocator)
536 instance->alloc = *pAllocator;
537 else
538 instance->alloc = default_alloc;
539
540 instance->apiVersion = client_version;
541 instance->physicalDeviceCount = -1;
542
543 if (pthread_mutex_init(&instance->callbacks_mutex, NULL) != 0) {
544 vk_free2(&default_alloc, pAllocator, instance);
545 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
546 }
547
548 list_inithead(&instance->callbacks);
549
550 /* Store report debug callback to be used during DestroyInstance. */
551 if (ctor_cb) {
552 instance->destroy_debug_cb.flags = ctor_cb->flags;
553 instance->destroy_debug_cb.callback = ctor_cb->pfnCallback;
554 instance->destroy_debug_cb.data = ctor_cb->pUserData;
555 }
556
557 _mesa_locale_init();
558
559 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
560
561 *pInstance = anv_instance_to_handle(instance);
562
563 return VK_SUCCESS;
564 }
565
566 void anv_DestroyInstance(
567 VkInstance _instance,
568 const VkAllocationCallbacks* pAllocator)
569 {
570 ANV_FROM_HANDLE(anv_instance, instance, _instance);
571
572 if (!instance)
573 return;
574
575 if (instance->physicalDeviceCount > 0) {
576 /* We support at most one physical device. */
577 assert(instance->physicalDeviceCount == 1);
578 anv_physical_device_finish(&instance->physicalDevice);
579 }
580
581 VG(VALGRIND_DESTROY_MEMPOOL(instance));
582
583 pthread_mutex_destroy(&instance->callbacks_mutex);
584
585 _mesa_locale_fini();
586
587 vk_free(&instance->alloc, instance);
588 }
589
590 static VkResult
591 anv_enumerate_devices(struct anv_instance *instance)
592 {
593 /* TODO: Check for more devices ? */
594 drmDevicePtr devices[8];
595 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
596 int max_devices;
597
598 instance->physicalDeviceCount = 0;
599
600 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
601 if (max_devices < 1)
602 return VK_ERROR_INCOMPATIBLE_DRIVER;
603
604 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
605 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
606 devices[i]->bustype == DRM_BUS_PCI &&
607 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
608
609 result = anv_physical_device_init(&instance->physicalDevice,
610 instance,
611 devices[i]->nodes[DRM_NODE_RENDER]);
612 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
613 break;
614 }
615 }
616 drmFreeDevices(devices, max_devices);
617
618 if (result == VK_SUCCESS)
619 instance->physicalDeviceCount = 1;
620
621 return result;
622 }
623
624
625 VkResult anv_EnumeratePhysicalDevices(
626 VkInstance _instance,
627 uint32_t* pPhysicalDeviceCount,
628 VkPhysicalDevice* pPhysicalDevices)
629 {
630 ANV_FROM_HANDLE(anv_instance, instance, _instance);
631 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
632 VkResult result;
633
634 if (instance->physicalDeviceCount < 0) {
635 result = anv_enumerate_devices(instance);
636 if (result != VK_SUCCESS &&
637 result != VK_ERROR_INCOMPATIBLE_DRIVER)
638 return result;
639 }
640
641 if (instance->physicalDeviceCount > 0) {
642 assert(instance->physicalDeviceCount == 1);
643 vk_outarray_append(&out, i) {
644 *i = anv_physical_device_to_handle(&instance->physicalDevice);
645 }
646 }
647
648 return vk_outarray_status(&out);
649 }
650
651 void anv_GetPhysicalDeviceFeatures(
652 VkPhysicalDevice physicalDevice,
653 VkPhysicalDeviceFeatures* pFeatures)
654 {
655 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
656
657 *pFeatures = (VkPhysicalDeviceFeatures) {
658 .robustBufferAccess = true,
659 .fullDrawIndexUint32 = true,
660 .imageCubeArray = true,
661 .independentBlend = true,
662 .geometryShader = true,
663 .tessellationShader = true,
664 .sampleRateShading = true,
665 .dualSrcBlend = true,
666 .logicOp = true,
667 .multiDrawIndirect = true,
668 .drawIndirectFirstInstance = true,
669 .depthClamp = true,
670 .depthBiasClamp = true,
671 .fillModeNonSolid = true,
672 .depthBounds = false,
673 .wideLines = true,
674 .largePoints = true,
675 .alphaToOne = true,
676 .multiViewport = true,
677 .samplerAnisotropy = true,
678 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
679 pdevice->info.is_baytrail,
680 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
681 .textureCompressionBC = true,
682 .occlusionQueryPrecise = true,
683 .pipelineStatisticsQuery = true,
684 .fragmentStoresAndAtomics = true,
685 .shaderTessellationAndGeometryPointSize = true,
686 .shaderImageGatherExtended = true,
687 .shaderStorageImageExtendedFormats = true,
688 .shaderStorageImageMultisample = false,
689 .shaderStorageImageReadWithoutFormat = false,
690 .shaderStorageImageWriteWithoutFormat = true,
691 .shaderUniformBufferArrayDynamicIndexing = true,
692 .shaderSampledImageArrayDynamicIndexing = true,
693 .shaderStorageBufferArrayDynamicIndexing = true,
694 .shaderStorageImageArrayDynamicIndexing = true,
695 .shaderClipDistance = true,
696 .shaderCullDistance = true,
697 .shaderFloat64 = pdevice->info.gen >= 8,
698 .shaderInt64 = pdevice->info.gen >= 8,
699 .shaderInt16 = false,
700 .shaderResourceMinLod = false,
701 .variableMultisampleRate = false,
702 .inheritedQueries = true,
703 };
704
705 /* We can't do image stores in vec4 shaders */
706 pFeatures->vertexPipelineStoresAndAtomics =
707 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
708 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
709 }
710
711 void anv_GetPhysicalDeviceFeatures2KHR(
712 VkPhysicalDevice physicalDevice,
713 VkPhysicalDeviceFeatures2KHR* pFeatures)
714 {
715 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
716
717 vk_foreach_struct(ext, pFeatures->pNext) {
718 switch (ext->sType) {
719 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHX: {
720 VkPhysicalDeviceMultiviewFeaturesKHX *features =
721 (VkPhysicalDeviceMultiviewFeaturesKHX *)ext;
722 features->multiview = true;
723 features->multiviewGeometryShader = true;
724 features->multiviewTessellationShader = true;
725 break;
726 }
727
728 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES_KHR: {
729 VkPhysicalDeviceVariablePointerFeaturesKHR *features = (void *)ext;
730 features->variablePointersStorageBuffer = true;
731 features->variablePointers = true;
732 break;
733 }
734
735 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES_KHR: {
736 VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR *features =
737 (VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR *) ext;
738 features->samplerYcbcrConversion = true;
739 break;
740 }
741
742 default:
743 anv_debug_ignored_stype(ext->sType);
744 break;
745 }
746 }
747 }
748
749 void anv_GetPhysicalDeviceProperties(
750 VkPhysicalDevice physicalDevice,
751 VkPhysicalDeviceProperties* pProperties)
752 {
753 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
754 const struct gen_device_info *devinfo = &pdevice->info;
755
756 /* See assertions made when programming the buffer surface state. */
757 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
758 (1ul << 30) : (1ul << 27);
759
760 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
761 128 : 16;
762
763 VkSampleCountFlags sample_counts =
764 isl_device_get_sample_counts(&pdevice->isl_dev);
765
766 VkPhysicalDeviceLimits limits = {
767 .maxImageDimension1D = (1 << 14),
768 .maxImageDimension2D = (1 << 14),
769 .maxImageDimension3D = (1 << 11),
770 .maxImageDimensionCube = (1 << 14),
771 .maxImageArrayLayers = (1 << 11),
772 .maxTexelBufferElements = 128 * 1024 * 1024,
773 .maxUniformBufferRange = (1ul << 27),
774 .maxStorageBufferRange = max_raw_buffer_sz,
775 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
776 .maxMemoryAllocationCount = UINT32_MAX,
777 .maxSamplerAllocationCount = 64 * 1024,
778 .bufferImageGranularity = 64, /* A cache line */
779 .sparseAddressSpaceSize = 0,
780 .maxBoundDescriptorSets = MAX_SETS,
781 .maxPerStageDescriptorSamplers = max_samplers,
782 .maxPerStageDescriptorUniformBuffers = 64,
783 .maxPerStageDescriptorStorageBuffers = 64,
784 .maxPerStageDescriptorSampledImages = max_samplers,
785 .maxPerStageDescriptorStorageImages = 64,
786 .maxPerStageDescriptorInputAttachments = 64,
787 .maxPerStageResources = 250,
788 .maxDescriptorSetSamplers = 256,
789 .maxDescriptorSetUniformBuffers = 256,
790 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
791 .maxDescriptorSetStorageBuffers = 256,
792 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
793 .maxDescriptorSetSampledImages = 256,
794 .maxDescriptorSetStorageImages = 256,
795 .maxDescriptorSetInputAttachments = 256,
796 .maxVertexInputAttributes = MAX_VBS,
797 .maxVertexInputBindings = MAX_VBS,
798 .maxVertexInputAttributeOffset = 2047,
799 .maxVertexInputBindingStride = 2048,
800 .maxVertexOutputComponents = 128,
801 .maxTessellationGenerationLevel = 64,
802 .maxTessellationPatchSize = 32,
803 .maxTessellationControlPerVertexInputComponents = 128,
804 .maxTessellationControlPerVertexOutputComponents = 128,
805 .maxTessellationControlPerPatchOutputComponents = 128,
806 .maxTessellationControlTotalOutputComponents = 2048,
807 .maxTessellationEvaluationInputComponents = 128,
808 .maxTessellationEvaluationOutputComponents = 128,
809 .maxGeometryShaderInvocations = 32,
810 .maxGeometryInputComponents = 64,
811 .maxGeometryOutputComponents = 128,
812 .maxGeometryOutputVertices = 256,
813 .maxGeometryTotalOutputComponents = 1024,
814 .maxFragmentInputComponents = 128,
815 .maxFragmentOutputAttachments = 8,
816 .maxFragmentDualSrcAttachments = 1,
817 .maxFragmentCombinedOutputResources = 8,
818 .maxComputeSharedMemorySize = 32768,
819 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
820 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
821 .maxComputeWorkGroupSize = {
822 16 * devinfo->max_cs_threads,
823 16 * devinfo->max_cs_threads,
824 16 * devinfo->max_cs_threads,
825 },
826 .subPixelPrecisionBits = 4 /* FIXME */,
827 .subTexelPrecisionBits = 4 /* FIXME */,
828 .mipmapPrecisionBits = 4 /* FIXME */,
829 .maxDrawIndexedIndexValue = UINT32_MAX,
830 .maxDrawIndirectCount = UINT32_MAX,
831 .maxSamplerLodBias = 16,
832 .maxSamplerAnisotropy = 16,
833 .maxViewports = MAX_VIEWPORTS,
834 .maxViewportDimensions = { (1 << 14), (1 << 14) },
835 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
836 .viewportSubPixelBits = 13, /* We take a float? */
837 .minMemoryMapAlignment = 4096, /* A page */
838 .minTexelBufferOffsetAlignment = 1,
839 .minUniformBufferOffsetAlignment = 16,
840 .minStorageBufferOffsetAlignment = 4,
841 .minTexelOffset = -8,
842 .maxTexelOffset = 7,
843 .minTexelGatherOffset = -32,
844 .maxTexelGatherOffset = 31,
845 .minInterpolationOffset = -0.5,
846 .maxInterpolationOffset = 0.4375,
847 .subPixelInterpolationOffsetBits = 4,
848 .maxFramebufferWidth = (1 << 14),
849 .maxFramebufferHeight = (1 << 14),
850 .maxFramebufferLayers = (1 << 11),
851 .framebufferColorSampleCounts = sample_counts,
852 .framebufferDepthSampleCounts = sample_counts,
853 .framebufferStencilSampleCounts = sample_counts,
854 .framebufferNoAttachmentsSampleCounts = sample_counts,
855 .maxColorAttachments = MAX_RTS,
856 .sampledImageColorSampleCounts = sample_counts,
857 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
858 .sampledImageDepthSampleCounts = sample_counts,
859 .sampledImageStencilSampleCounts = sample_counts,
860 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
861 .maxSampleMaskWords = 1,
862 .timestampComputeAndGraphics = false,
863 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
864 .maxClipDistances = 8,
865 .maxCullDistances = 8,
866 .maxCombinedClipAndCullDistances = 8,
867 .discreteQueuePriorities = 1,
868 .pointSizeRange = { 0.125, 255.875 },
869 .lineWidthRange = { 0.0, 7.9921875 },
870 .pointSizeGranularity = (1.0 / 8.0),
871 .lineWidthGranularity = (1.0 / 128.0),
872 .strictLines = false, /* FINISHME */
873 .standardSampleLocations = true,
874 .optimalBufferCopyOffsetAlignment = 128,
875 .optimalBufferCopyRowPitchAlignment = 128,
876 .nonCoherentAtomSize = 64,
877 };
878
879 *pProperties = (VkPhysicalDeviceProperties) {
880 .apiVersion = anv_physical_device_api_version(pdevice),
881 .driverVersion = vk_get_driver_version(),
882 .vendorID = 0x8086,
883 .deviceID = pdevice->chipset_id,
884 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
885 .limits = limits,
886 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
887 };
888
889 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
890 "%s", pdevice->name);
891 memcpy(pProperties->pipelineCacheUUID,
892 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
893 }
894
895 void anv_GetPhysicalDeviceProperties2KHR(
896 VkPhysicalDevice physicalDevice,
897 VkPhysicalDeviceProperties2KHR* pProperties)
898 {
899 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
900
901 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
902
903 vk_foreach_struct(ext, pProperties->pNext) {
904 switch (ext->sType) {
905 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
906 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
907 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
908
909 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
910 break;
911 }
912
913 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHR: {
914 VkPhysicalDeviceIDPropertiesKHR *id_props =
915 (VkPhysicalDeviceIDPropertiesKHR *)ext;
916 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
917 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
918 /* The LUID is for Windows. */
919 id_props->deviceLUIDValid = false;
920 break;
921 }
922
923 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHX: {
924 VkPhysicalDeviceMultiviewPropertiesKHX *properties =
925 (VkPhysicalDeviceMultiviewPropertiesKHX *)ext;
926 properties->maxMultiviewViewCount = 16;
927 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
928 break;
929 }
930
931 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES_KHR: {
932 VkPhysicalDevicePointClippingPropertiesKHR *properties =
933 (VkPhysicalDevicePointClippingPropertiesKHR *) ext;
934 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES_KHR;
935 anv_finishme("Implement pop-free point clipping");
936 break;
937 }
938
939 default:
940 anv_debug_ignored_stype(ext->sType);
941 break;
942 }
943 }
944 }
945
946 /* We support exactly one queue family. */
947 static const VkQueueFamilyProperties
948 anv_queue_family_properties = {
949 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
950 VK_QUEUE_COMPUTE_BIT |
951 VK_QUEUE_TRANSFER_BIT,
952 .queueCount = 1,
953 .timestampValidBits = 36, /* XXX: Real value here */
954 .minImageTransferGranularity = { 1, 1, 1 },
955 };
956
957 void anv_GetPhysicalDeviceQueueFamilyProperties(
958 VkPhysicalDevice physicalDevice,
959 uint32_t* pCount,
960 VkQueueFamilyProperties* pQueueFamilyProperties)
961 {
962 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
963
964 vk_outarray_append(&out, p) {
965 *p = anv_queue_family_properties;
966 }
967 }
968
969 void anv_GetPhysicalDeviceQueueFamilyProperties2KHR(
970 VkPhysicalDevice physicalDevice,
971 uint32_t* pQueueFamilyPropertyCount,
972 VkQueueFamilyProperties2KHR* pQueueFamilyProperties)
973 {
974
975 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
976
977 vk_outarray_append(&out, p) {
978 p->queueFamilyProperties = anv_queue_family_properties;
979
980 vk_foreach_struct(s, p->pNext) {
981 anv_debug_ignored_stype(s->sType);
982 }
983 }
984 }
985
986 void anv_GetPhysicalDeviceMemoryProperties(
987 VkPhysicalDevice physicalDevice,
988 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
989 {
990 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
991
992 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
993 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
994 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
995 .propertyFlags = physical_device->memory.types[i].propertyFlags,
996 .heapIndex = physical_device->memory.types[i].heapIndex,
997 };
998 }
999
1000 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1001 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1002 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1003 .size = physical_device->memory.heaps[i].size,
1004 .flags = physical_device->memory.heaps[i].flags,
1005 };
1006 }
1007 }
1008
1009 void anv_GetPhysicalDeviceMemoryProperties2KHR(
1010 VkPhysicalDevice physicalDevice,
1011 VkPhysicalDeviceMemoryProperties2KHR* pMemoryProperties)
1012 {
1013 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1014 &pMemoryProperties->memoryProperties);
1015
1016 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1017 switch (ext->sType) {
1018 default:
1019 anv_debug_ignored_stype(ext->sType);
1020 break;
1021 }
1022 }
1023 }
1024
1025 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1026 VkInstance instance,
1027 const char* pName)
1028 {
1029 return anv_lookup_entrypoint(NULL, pName);
1030 }
1031
1032 /* With version 1+ of the loader interface the ICD should expose
1033 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1034 */
1035 PUBLIC
1036 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1037 VkInstance instance,
1038 const char* pName);
1039
1040 PUBLIC
1041 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1042 VkInstance instance,
1043 const char* pName)
1044 {
1045 return anv_GetInstanceProcAddr(instance, pName);
1046 }
1047
1048 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1049 VkDevice _device,
1050 const char* pName)
1051 {
1052 ANV_FROM_HANDLE(anv_device, device, _device);
1053 return anv_lookup_entrypoint(&device->info, pName);
1054 }
1055
1056 static void
1057 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1058 {
1059 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1060 queue->device = device;
1061 queue->pool = &device->surface_state_pool;
1062 }
1063
1064 static void
1065 anv_queue_finish(struct anv_queue *queue)
1066 {
1067 }
1068
1069 static struct anv_state
1070 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1071 {
1072 struct anv_state state;
1073
1074 state = anv_state_pool_alloc(pool, size, align);
1075 memcpy(state.map, p, size);
1076
1077 anv_state_flush(pool->block_pool.device, state);
1078
1079 return state;
1080 }
1081
1082 struct gen8_border_color {
1083 union {
1084 float float32[4];
1085 uint32_t uint32[4];
1086 };
1087 /* Pad out to 64 bytes */
1088 uint32_t _pad[12];
1089 };
1090
1091 static void
1092 anv_device_init_border_colors(struct anv_device *device)
1093 {
1094 static const struct gen8_border_color border_colors[] = {
1095 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1096 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1097 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1098 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1099 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1100 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1101 };
1102
1103 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1104 sizeof(border_colors), 64,
1105 border_colors);
1106 }
1107
1108 static void
1109 anv_device_init_trivial_batch(struct anv_device *device)
1110 {
1111 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1112
1113 if (device->instance->physicalDevice.has_exec_async)
1114 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1115
1116 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1117 0, 4096, 0);
1118
1119 struct anv_batch batch = {
1120 .start = map,
1121 .next = map,
1122 .end = map + 4096,
1123 };
1124
1125 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1126 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1127
1128 if (!device->info.has_llc)
1129 gen_clflush_range(map, batch.next - map);
1130
1131 anv_gem_munmap(map, device->trivial_batch_bo.size);
1132 }
1133
1134 VkResult anv_CreateDevice(
1135 VkPhysicalDevice physicalDevice,
1136 const VkDeviceCreateInfo* pCreateInfo,
1137 const VkAllocationCallbacks* pAllocator,
1138 VkDevice* pDevice)
1139 {
1140 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1141 VkResult result;
1142 struct anv_device *device;
1143
1144 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1145
1146 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1147 const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
1148 if (!anv_physical_device_extension_supported(physical_device, ext_name))
1149 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1150 }
1151
1152 /* Check enabled features */
1153 if (pCreateInfo->pEnabledFeatures) {
1154 VkPhysicalDeviceFeatures supported_features;
1155 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1156 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1157 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1158 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1159 for (uint32_t i = 0; i < num_features; i++) {
1160 if (enabled_feature[i] && !supported_feature[i])
1161 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1162 }
1163 }
1164
1165 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1166 sizeof(*device), 8,
1167 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1168 if (!device)
1169 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1170
1171 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1172 device->instance = physical_device->instance;
1173 device->chipset_id = physical_device->chipset_id;
1174 device->lost = false;
1175
1176 if (pAllocator)
1177 device->alloc = *pAllocator;
1178 else
1179 device->alloc = physical_device->instance->alloc;
1180
1181 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1182 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1183 if (device->fd == -1) {
1184 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1185 goto fail_device;
1186 }
1187
1188 device->context_id = anv_gem_create_context(device);
1189 if (device->context_id == -1) {
1190 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1191 goto fail_fd;
1192 }
1193
1194 device->info = physical_device->info;
1195 device->isl_dev = physical_device->isl_dev;
1196
1197 /* On Broadwell and later, we can use batch chaining to more efficiently
1198 * implement growing command buffers. Prior to Haswell, the kernel
1199 * command parser gets in the way and we have to fall back to growing
1200 * the batch.
1201 */
1202 device->can_chain_batches = device->info.gen >= 8;
1203
1204 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1205 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1206
1207 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
1208 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1209 goto fail_context_id;
1210 }
1211
1212 pthread_condattr_t condattr;
1213 if (pthread_condattr_init(&condattr) != 0) {
1214 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1215 goto fail_mutex;
1216 }
1217 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
1218 pthread_condattr_destroy(&condattr);
1219 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1220 goto fail_mutex;
1221 }
1222 if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
1223 pthread_condattr_destroy(&condattr);
1224 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1225 goto fail_mutex;
1226 }
1227 pthread_condattr_destroy(&condattr);
1228
1229 uint64_t bo_flags =
1230 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
1231 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1232 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1233
1234 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
1235
1236 result = anv_bo_cache_init(&device->bo_cache);
1237 if (result != VK_SUCCESS)
1238 goto fail_batch_bo_pool;
1239
1240 /* For the state pools we explicitly disable 48bit. */
1241 bo_flags = physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0;
1242
1243 result = anv_state_pool_init(&device->dynamic_state_pool, device, 16384,
1244 bo_flags);
1245 if (result != VK_SUCCESS)
1246 goto fail_bo_cache;
1247
1248 result = anv_state_pool_init(&device->instruction_state_pool, device, 16384,
1249 bo_flags |
1250 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0));
1251 if (result != VK_SUCCESS)
1252 goto fail_dynamic_state_pool;
1253
1254 result = anv_state_pool_init(&device->surface_state_pool, device, 4096,
1255 bo_flags);
1256 if (result != VK_SUCCESS)
1257 goto fail_instruction_state_pool;
1258
1259 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
1260 if (result != VK_SUCCESS)
1261 goto fail_surface_state_pool;
1262
1263 anv_device_init_trivial_batch(device);
1264
1265 anv_scratch_pool_init(device, &device->scratch_pool);
1266
1267 anv_queue_init(device, &device->queue);
1268
1269 switch (device->info.gen) {
1270 case 7:
1271 if (!device->info.is_haswell)
1272 result = gen7_init_device_state(device);
1273 else
1274 result = gen75_init_device_state(device);
1275 break;
1276 case 8:
1277 result = gen8_init_device_state(device);
1278 break;
1279 case 9:
1280 result = gen9_init_device_state(device);
1281 break;
1282 case 10:
1283 result = gen10_init_device_state(device);
1284 break;
1285 default:
1286 /* Shouldn't get here as we don't create physical devices for any other
1287 * gens. */
1288 unreachable("unhandled gen");
1289 }
1290 if (result != VK_SUCCESS)
1291 goto fail_workaround_bo;
1292
1293 anv_device_init_blorp(device);
1294
1295 anv_device_init_border_colors(device);
1296
1297 *pDevice = anv_device_to_handle(device);
1298
1299 return VK_SUCCESS;
1300
1301 fail_workaround_bo:
1302 anv_queue_finish(&device->queue);
1303 anv_scratch_pool_finish(device, &device->scratch_pool);
1304 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1305 anv_gem_close(device, device->workaround_bo.gem_handle);
1306 fail_surface_state_pool:
1307 anv_state_pool_finish(&device->surface_state_pool);
1308 fail_instruction_state_pool:
1309 anv_state_pool_finish(&device->instruction_state_pool);
1310 fail_dynamic_state_pool:
1311 anv_state_pool_finish(&device->dynamic_state_pool);
1312 fail_bo_cache:
1313 anv_bo_cache_finish(&device->bo_cache);
1314 fail_batch_bo_pool:
1315 anv_bo_pool_finish(&device->batch_bo_pool);
1316 pthread_cond_destroy(&device->queue_submit);
1317 fail_mutex:
1318 pthread_mutex_destroy(&device->mutex);
1319 fail_context_id:
1320 anv_gem_destroy_context(device, device->context_id);
1321 fail_fd:
1322 close(device->fd);
1323 fail_device:
1324 vk_free(&device->alloc, device);
1325
1326 return result;
1327 }
1328
1329 void anv_DestroyDevice(
1330 VkDevice _device,
1331 const VkAllocationCallbacks* pAllocator)
1332 {
1333 ANV_FROM_HANDLE(anv_device, device, _device);
1334
1335 if (!device)
1336 return;
1337
1338 anv_device_finish_blorp(device);
1339
1340 anv_queue_finish(&device->queue);
1341
1342 #ifdef HAVE_VALGRIND
1343 /* We only need to free these to prevent valgrind errors. The backing
1344 * BO will go away in a couple of lines so we don't actually leak.
1345 */
1346 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1347 #endif
1348
1349 anv_scratch_pool_finish(device, &device->scratch_pool);
1350
1351 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1352 anv_gem_close(device, device->workaround_bo.gem_handle);
1353
1354 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
1355
1356 anv_state_pool_finish(&device->surface_state_pool);
1357 anv_state_pool_finish(&device->instruction_state_pool);
1358 anv_state_pool_finish(&device->dynamic_state_pool);
1359
1360 anv_bo_cache_finish(&device->bo_cache);
1361
1362 anv_bo_pool_finish(&device->batch_bo_pool);
1363
1364 pthread_cond_destroy(&device->queue_submit);
1365 pthread_mutex_destroy(&device->mutex);
1366
1367 anv_gem_destroy_context(device, device->context_id);
1368
1369 close(device->fd);
1370
1371 vk_free(&device->alloc, device);
1372 }
1373
1374 VkResult anv_EnumerateInstanceLayerProperties(
1375 uint32_t* pPropertyCount,
1376 VkLayerProperties* pProperties)
1377 {
1378 if (pProperties == NULL) {
1379 *pPropertyCount = 0;
1380 return VK_SUCCESS;
1381 }
1382
1383 /* None supported at this time */
1384 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1385 }
1386
1387 VkResult anv_EnumerateDeviceLayerProperties(
1388 VkPhysicalDevice physicalDevice,
1389 uint32_t* pPropertyCount,
1390 VkLayerProperties* pProperties)
1391 {
1392 if (pProperties == NULL) {
1393 *pPropertyCount = 0;
1394 return VK_SUCCESS;
1395 }
1396
1397 /* None supported at this time */
1398 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1399 }
1400
1401 void anv_GetDeviceQueue(
1402 VkDevice _device,
1403 uint32_t queueNodeIndex,
1404 uint32_t queueIndex,
1405 VkQueue* pQueue)
1406 {
1407 ANV_FROM_HANDLE(anv_device, device, _device);
1408
1409 assert(queueIndex == 0);
1410
1411 *pQueue = anv_queue_to_handle(&device->queue);
1412 }
1413
1414 VkResult
1415 anv_device_query_status(struct anv_device *device)
1416 {
1417 /* This isn't likely as most of the callers of this function already check
1418 * for it. However, it doesn't hurt to check and it potentially lets us
1419 * avoid an ioctl.
1420 */
1421 if (unlikely(device->lost))
1422 return VK_ERROR_DEVICE_LOST;
1423
1424 uint32_t active, pending;
1425 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
1426 if (ret == -1) {
1427 /* We don't know the real error. */
1428 device->lost = true;
1429 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1430 "get_reset_stats failed: %m");
1431 }
1432
1433 if (active) {
1434 device->lost = true;
1435 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1436 "GPU hung on one of our command buffers");
1437 } else if (pending) {
1438 device->lost = true;
1439 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1440 "GPU hung with commands in-flight");
1441 }
1442
1443 return VK_SUCCESS;
1444 }
1445
1446 VkResult
1447 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
1448 {
1449 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
1450 * Other usages of the BO (such as on different hardware) will not be
1451 * flagged as "busy" by this ioctl. Use with care.
1452 */
1453 int ret = anv_gem_busy(device, bo->gem_handle);
1454 if (ret == 1) {
1455 return VK_NOT_READY;
1456 } else if (ret == -1) {
1457 /* We don't know the real error. */
1458 device->lost = true;
1459 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1460 "gem wait failed: %m");
1461 }
1462
1463 /* Query for device status after the busy call. If the BO we're checking
1464 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
1465 * client because it clearly doesn't have valid data. Yes, this most
1466 * likely means an ioctl, but we just did an ioctl to query the busy status
1467 * so it's no great loss.
1468 */
1469 return anv_device_query_status(device);
1470 }
1471
1472 VkResult
1473 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1474 int64_t timeout)
1475 {
1476 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
1477 if (ret == -1 && errno == ETIME) {
1478 return VK_TIMEOUT;
1479 } else if (ret == -1) {
1480 /* We don't know the real error. */
1481 device->lost = true;
1482 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1483 "gem wait failed: %m");
1484 }
1485
1486 /* Query for device status after the wait. If the BO we're waiting on got
1487 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
1488 * because it clearly doesn't have valid data. Yes, this most likely means
1489 * an ioctl, but we just did an ioctl to wait so it's no great loss.
1490 */
1491 return anv_device_query_status(device);
1492 }
1493
1494 VkResult anv_DeviceWaitIdle(
1495 VkDevice _device)
1496 {
1497 ANV_FROM_HANDLE(anv_device, device, _device);
1498 if (unlikely(device->lost))
1499 return VK_ERROR_DEVICE_LOST;
1500
1501 struct anv_batch batch;
1502
1503 uint32_t cmds[8];
1504 batch.start = batch.next = cmds;
1505 batch.end = (void *) cmds + sizeof(cmds);
1506
1507 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1508 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1509
1510 return anv_device_submit_simple_batch(device, &batch);
1511 }
1512
1513 VkResult
1514 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1515 {
1516 uint32_t gem_handle = anv_gem_create(device, size);
1517 if (!gem_handle)
1518 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1519
1520 anv_bo_init(bo, gem_handle, size);
1521
1522 return VK_SUCCESS;
1523 }
1524
1525 VkResult anv_AllocateMemory(
1526 VkDevice _device,
1527 const VkMemoryAllocateInfo* pAllocateInfo,
1528 const VkAllocationCallbacks* pAllocator,
1529 VkDeviceMemory* pMem)
1530 {
1531 ANV_FROM_HANDLE(anv_device, device, _device);
1532 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1533 struct anv_device_memory *mem;
1534 VkResult result = VK_SUCCESS;
1535
1536 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1537
1538 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
1539 assert(pAllocateInfo->allocationSize > 0);
1540
1541 /* The kernel relocation API has a limitation of a 32-bit delta value
1542 * applied to the address before it is written which, in spite of it being
1543 * unsigned, is treated as signed . Because of the way that this maps to
1544 * the Vulkan API, we cannot handle an offset into a buffer that does not
1545 * fit into a signed 32 bits. The only mechanism we have for dealing with
1546 * this at the moment is to limit all VkDeviceMemory objects to a maximum
1547 * of 2GB each. The Vulkan spec allows us to do this:
1548 *
1549 * "Some platforms may have a limit on the maximum size of a single
1550 * allocation. For example, certain systems may fail to create
1551 * allocations with a size greater than or equal to 4GB. Such a limit is
1552 * implementation-dependent, and if such a failure occurs then the error
1553 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
1554 *
1555 * We don't use vk_error here because it's not an error so much as an
1556 * indication to the application that the allocation is too large.
1557 */
1558 if (pAllocateInfo->allocationSize > (1ull << 31))
1559 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1560
1561 /* FINISHME: Fail if allocation request exceeds heap size. */
1562
1563 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1564 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1565 if (mem == NULL)
1566 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1567
1568 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
1569 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
1570 mem->map = NULL;
1571 mem->map_size = 0;
1572
1573 const VkImportMemoryFdInfoKHR *fd_info =
1574 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
1575
1576 /* The Vulkan spec permits handleType to be 0, in which case the struct is
1577 * ignored.
1578 */
1579 if (fd_info && fd_info->handleType) {
1580 /* At the moment, we support only the below handle types. */
1581 assert(fd_info->handleType ==
1582 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR ||
1583 fd_info->handleType ==
1584 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
1585
1586 result = anv_bo_cache_import(device, &device->bo_cache,
1587 fd_info->fd, &mem->bo);
1588 if (result != VK_SUCCESS)
1589 goto fail;
1590
1591 VkDeviceSize aligned_alloc_size =
1592 align_u64(pAllocateInfo->allocationSize, 4096);
1593
1594 /* For security purposes, we reject importing the bo if it's smaller
1595 * than the requested allocation size. This prevents a malicious client
1596 * from passing a buffer to a trusted client, lying about the size, and
1597 * telling the trusted client to try and texture from an image that goes
1598 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
1599 * in the trusted client. The trusted client can protect itself against
1600 * this sort of attack but only if it can trust the buffer size.
1601 */
1602 if (mem->bo->size < aligned_alloc_size) {
1603 result = vk_errorf(device->instance, device,
1604 VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
1605 "aligned allocationSize too large for "
1606 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR: "
1607 "%"PRIu64"B > %"PRIu64"B",
1608 aligned_alloc_size, mem->bo->size);
1609 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1610 goto fail;
1611 }
1612
1613 /* From the Vulkan spec:
1614 *
1615 * "Importing memory from a file descriptor transfers ownership of
1616 * the file descriptor from the application to the Vulkan
1617 * implementation. The application must not perform any operations on
1618 * the file descriptor after a successful import."
1619 *
1620 * If the import fails, we leave the file descriptor open.
1621 */
1622 close(fd_info->fd);
1623 } else {
1624 result = anv_bo_cache_alloc(device, &device->bo_cache,
1625 pAllocateInfo->allocationSize,
1626 &mem->bo);
1627 if (result != VK_SUCCESS)
1628 goto fail;
1629
1630 const VkMemoryDedicatedAllocateInfoKHR *dedicated_info =
1631 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO_KHR);
1632 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
1633 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
1634
1635 /* For images using modifiers, we require a dedicated allocation
1636 * and we set the BO tiling to match the tiling of the underlying
1637 * modifier. This is a bit unfortunate as this is completely
1638 * pointless for Vulkan. However, GL needs to be able to map things
1639 * so it needs the tiling to be set. The only way to do this in a
1640 * non-racy way is to set the tiling in the creator of the BO so that
1641 * makes it our job.
1642 *
1643 * One of these days, once the GL driver learns to not map things
1644 * through the GTT in random places, we can drop this and start
1645 * allowing multiple modified images in the same BO.
1646 */
1647 if (image->drm_format_mod != DRM_FORMAT_MOD_INVALID) {
1648 assert(isl_drm_modifier_get_info(image->drm_format_mod)->tiling ==
1649 image->planes[0].surface.isl.tiling);
1650 const uint32_t i915_tiling =
1651 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
1652 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
1653 image->planes[0].surface.isl.row_pitch,
1654 i915_tiling);
1655 if (ret) {
1656 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1657 return vk_errorf(device->instance, NULL,
1658 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1659 "failed to set BO tiling: %m");
1660 }
1661 }
1662 }
1663 }
1664
1665 assert(mem->type->heapIndex < pdevice->memory.heap_count);
1666 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
1667 mem->bo->flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1668
1669 const struct wsi_memory_allocate_info *wsi_info =
1670 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
1671 if (wsi_info && wsi_info->implicit_sync) {
1672 /* We need to set the WRITE flag on window system buffers so that GEM
1673 * will know we're writing to them and synchronize uses on other rings
1674 * (eg if the display server uses the blitter ring).
1675 */
1676 mem->bo->flags |= EXEC_OBJECT_WRITE;
1677 } else if (pdevice->has_exec_async) {
1678 mem->bo->flags |= EXEC_OBJECT_ASYNC;
1679 }
1680
1681 *pMem = anv_device_memory_to_handle(mem);
1682
1683 return VK_SUCCESS;
1684
1685 fail:
1686 vk_free2(&device->alloc, pAllocator, mem);
1687
1688 return result;
1689 }
1690
1691 VkResult anv_GetMemoryFdKHR(
1692 VkDevice device_h,
1693 const VkMemoryGetFdInfoKHR* pGetFdInfo,
1694 int* pFd)
1695 {
1696 ANV_FROM_HANDLE(anv_device, dev, device_h);
1697 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
1698
1699 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
1700
1701 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR ||
1702 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
1703
1704 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
1705 }
1706
1707 VkResult anv_GetMemoryFdPropertiesKHR(
1708 VkDevice _device,
1709 VkExternalMemoryHandleTypeFlagBitsKHR handleType,
1710 int fd,
1711 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
1712 {
1713 ANV_FROM_HANDLE(anv_device, device, _device);
1714 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1715
1716 switch (handleType) {
1717 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
1718 /* dma-buf can be imported as any memory type */
1719 pMemoryFdProperties->memoryTypeBits =
1720 (1 << pdevice->memory.type_count) - 1;
1721 return VK_SUCCESS;
1722
1723 default:
1724 /* The valid usage section for this function says:
1725 *
1726 * "handleType must not be one of the handle types defined as
1727 * opaque."
1728 *
1729 * So opaque handle types fall into the default "unsupported" case.
1730 */
1731 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
1732 }
1733 }
1734
1735 void anv_FreeMemory(
1736 VkDevice _device,
1737 VkDeviceMemory _mem,
1738 const VkAllocationCallbacks* pAllocator)
1739 {
1740 ANV_FROM_HANDLE(anv_device, device, _device);
1741 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1742
1743 if (mem == NULL)
1744 return;
1745
1746 if (mem->map)
1747 anv_UnmapMemory(_device, _mem);
1748
1749 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1750
1751 vk_free2(&device->alloc, pAllocator, mem);
1752 }
1753
1754 VkResult anv_MapMemory(
1755 VkDevice _device,
1756 VkDeviceMemory _memory,
1757 VkDeviceSize offset,
1758 VkDeviceSize size,
1759 VkMemoryMapFlags flags,
1760 void** ppData)
1761 {
1762 ANV_FROM_HANDLE(anv_device, device, _device);
1763 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1764
1765 if (mem == NULL) {
1766 *ppData = NULL;
1767 return VK_SUCCESS;
1768 }
1769
1770 if (size == VK_WHOLE_SIZE)
1771 size = mem->bo->size - offset;
1772
1773 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
1774 *
1775 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
1776 * assert(size != 0);
1777 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
1778 * equal to the size of the memory minus offset
1779 */
1780 assert(size > 0);
1781 assert(offset + size <= mem->bo->size);
1782
1783 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1784 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1785 * at a time is valid. We could just mmap up front and return an offset
1786 * pointer here, but that may exhaust virtual memory on 32 bit
1787 * userspace. */
1788
1789 uint32_t gem_flags = 0;
1790
1791 if (!device->info.has_llc &&
1792 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
1793 gem_flags |= I915_MMAP_WC;
1794
1795 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
1796 uint64_t map_offset = offset & ~4095ull;
1797 assert(offset >= map_offset);
1798 uint64_t map_size = (offset + size) - map_offset;
1799
1800 /* Let's map whole pages */
1801 map_size = align_u64(map_size, 4096);
1802
1803 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
1804 map_offset, map_size, gem_flags);
1805 if (map == MAP_FAILED)
1806 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1807
1808 mem->map = map;
1809 mem->map_size = map_size;
1810
1811 *ppData = mem->map + (offset - map_offset);
1812
1813 return VK_SUCCESS;
1814 }
1815
1816 void anv_UnmapMemory(
1817 VkDevice _device,
1818 VkDeviceMemory _memory)
1819 {
1820 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1821
1822 if (mem == NULL)
1823 return;
1824
1825 anv_gem_munmap(mem->map, mem->map_size);
1826
1827 mem->map = NULL;
1828 mem->map_size = 0;
1829 }
1830
1831 static void
1832 clflush_mapped_ranges(struct anv_device *device,
1833 uint32_t count,
1834 const VkMappedMemoryRange *ranges)
1835 {
1836 for (uint32_t i = 0; i < count; i++) {
1837 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1838 if (ranges[i].offset >= mem->map_size)
1839 continue;
1840
1841 gen_clflush_range(mem->map + ranges[i].offset,
1842 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
1843 }
1844 }
1845
1846 VkResult anv_FlushMappedMemoryRanges(
1847 VkDevice _device,
1848 uint32_t memoryRangeCount,
1849 const VkMappedMemoryRange* pMemoryRanges)
1850 {
1851 ANV_FROM_HANDLE(anv_device, device, _device);
1852
1853 if (device->info.has_llc)
1854 return VK_SUCCESS;
1855
1856 /* Make sure the writes we're flushing have landed. */
1857 __builtin_ia32_mfence();
1858
1859 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1860
1861 return VK_SUCCESS;
1862 }
1863
1864 VkResult anv_InvalidateMappedMemoryRanges(
1865 VkDevice _device,
1866 uint32_t memoryRangeCount,
1867 const VkMappedMemoryRange* pMemoryRanges)
1868 {
1869 ANV_FROM_HANDLE(anv_device, device, _device);
1870
1871 if (device->info.has_llc)
1872 return VK_SUCCESS;
1873
1874 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1875
1876 /* Make sure no reads get moved up above the invalidate. */
1877 __builtin_ia32_mfence();
1878
1879 return VK_SUCCESS;
1880 }
1881
1882 void anv_GetBufferMemoryRequirements(
1883 VkDevice _device,
1884 VkBuffer _buffer,
1885 VkMemoryRequirements* pMemoryRequirements)
1886 {
1887 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1888 ANV_FROM_HANDLE(anv_device, device, _device);
1889 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1890
1891 /* The Vulkan spec (git aaed022) says:
1892 *
1893 * memoryTypeBits is a bitfield and contains one bit set for every
1894 * supported memory type for the resource. The bit `1<<i` is set if and
1895 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1896 * structure for the physical device is supported.
1897 */
1898 uint32_t memory_types = 0;
1899 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
1900 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
1901 if ((valid_usage & buffer->usage) == buffer->usage)
1902 memory_types |= (1u << i);
1903 }
1904
1905 pMemoryRequirements->size = buffer->size;
1906 pMemoryRequirements->alignment = 16;
1907 pMemoryRequirements->memoryTypeBits = memory_types;
1908 }
1909
1910 void anv_GetBufferMemoryRequirements2KHR(
1911 VkDevice _device,
1912 const VkBufferMemoryRequirementsInfo2KHR* pInfo,
1913 VkMemoryRequirements2KHR* pMemoryRequirements)
1914 {
1915 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
1916 &pMemoryRequirements->memoryRequirements);
1917
1918 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
1919 switch (ext->sType) {
1920 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR: {
1921 VkMemoryDedicatedRequirementsKHR *requirements = (void *)ext;
1922 requirements->prefersDedicatedAllocation = VK_FALSE;
1923 requirements->requiresDedicatedAllocation = VK_FALSE;
1924 break;
1925 }
1926
1927 default:
1928 anv_debug_ignored_stype(ext->sType);
1929 break;
1930 }
1931 }
1932 }
1933
1934 void anv_GetImageMemoryRequirements(
1935 VkDevice _device,
1936 VkImage _image,
1937 VkMemoryRequirements* pMemoryRequirements)
1938 {
1939 ANV_FROM_HANDLE(anv_image, image, _image);
1940 ANV_FROM_HANDLE(anv_device, device, _device);
1941 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1942
1943 /* The Vulkan spec (git aaed022) says:
1944 *
1945 * memoryTypeBits is a bitfield and contains one bit set for every
1946 * supported memory type for the resource. The bit `1<<i` is set if and
1947 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1948 * structure for the physical device is supported.
1949 *
1950 * All types are currently supported for images.
1951 */
1952 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
1953
1954 pMemoryRequirements->size = image->size;
1955 pMemoryRequirements->alignment = image->alignment;
1956 pMemoryRequirements->memoryTypeBits = memory_types;
1957 }
1958
1959 void anv_GetImageMemoryRequirements2KHR(
1960 VkDevice _device,
1961 const VkImageMemoryRequirementsInfo2KHR* pInfo,
1962 VkMemoryRequirements2KHR* pMemoryRequirements)
1963 {
1964 ANV_FROM_HANDLE(anv_device, device, _device);
1965 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
1966
1967 anv_GetImageMemoryRequirements(_device, pInfo->image,
1968 &pMemoryRequirements->memoryRequirements);
1969
1970 vk_foreach_struct_const(ext, pInfo->pNext) {
1971 switch (ext->sType) {
1972 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO_KHR: {
1973 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1974 const VkImagePlaneMemoryRequirementsInfoKHR *plane_reqs =
1975 (const VkImagePlaneMemoryRequirementsInfoKHR *) ext;
1976 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
1977 plane_reqs->planeAspect);
1978
1979 assert(image->planes[plane].offset == 0);
1980
1981 /* The Vulkan spec (git aaed022) says:
1982 *
1983 * memoryTypeBits is a bitfield and contains one bit set for every
1984 * supported memory type for the resource. The bit `1<<i` is set
1985 * if and only if the memory type `i` in the
1986 * VkPhysicalDeviceMemoryProperties structure for the physical
1987 * device is supported.
1988 *
1989 * All types are currently supported for images.
1990 */
1991 pMemoryRequirements->memoryRequirements.memoryTypeBits =
1992 (1ull << pdevice->memory.type_count) - 1;
1993
1994 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
1995 pMemoryRequirements->memoryRequirements.alignment =
1996 image->planes[plane].alignment;
1997 break;
1998 }
1999
2000 default:
2001 anv_debug_ignored_stype(ext->sType);
2002 break;
2003 }
2004 }
2005
2006 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2007 switch (ext->sType) {
2008 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR: {
2009 VkMemoryDedicatedRequirementsKHR *requirements = (void *)ext;
2010 if (image->drm_format_mod != DRM_FORMAT_MOD_INVALID) {
2011 /* Require a dedicated allocation for images with modifiers.
2012 *
2013 * See also anv_AllocateMemory.
2014 */
2015 requirements->prefersDedicatedAllocation = VK_TRUE;
2016 requirements->requiresDedicatedAllocation = VK_TRUE;
2017 } else {
2018 requirements->prefersDedicatedAllocation = VK_FALSE;
2019 requirements->requiresDedicatedAllocation = VK_FALSE;
2020 }
2021 break;
2022 }
2023
2024 default:
2025 anv_debug_ignored_stype(ext->sType);
2026 break;
2027 }
2028 }
2029 }
2030
2031 void anv_GetImageSparseMemoryRequirements(
2032 VkDevice device,
2033 VkImage image,
2034 uint32_t* pSparseMemoryRequirementCount,
2035 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
2036 {
2037 *pSparseMemoryRequirementCount = 0;
2038 }
2039
2040 void anv_GetImageSparseMemoryRequirements2KHR(
2041 VkDevice device,
2042 const VkImageSparseMemoryRequirementsInfo2KHR* pInfo,
2043 uint32_t* pSparseMemoryRequirementCount,
2044 VkSparseImageMemoryRequirements2KHR* pSparseMemoryRequirements)
2045 {
2046 *pSparseMemoryRequirementCount = 0;
2047 }
2048
2049 void anv_GetDeviceMemoryCommitment(
2050 VkDevice device,
2051 VkDeviceMemory memory,
2052 VkDeviceSize* pCommittedMemoryInBytes)
2053 {
2054 *pCommittedMemoryInBytes = 0;
2055 }
2056
2057 static void
2058 anv_bind_buffer_memory(const VkBindBufferMemoryInfoKHR *pBindInfo)
2059 {
2060 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
2061 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
2062
2063 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR);
2064
2065 if (mem) {
2066 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
2067 buffer->bo = mem->bo;
2068 buffer->offset = pBindInfo->memoryOffset;
2069 } else {
2070 buffer->bo = NULL;
2071 buffer->offset = 0;
2072 }
2073 }
2074
2075 VkResult anv_BindBufferMemory(
2076 VkDevice device,
2077 VkBuffer buffer,
2078 VkDeviceMemory memory,
2079 VkDeviceSize memoryOffset)
2080 {
2081 anv_bind_buffer_memory(
2082 &(VkBindBufferMemoryInfoKHR) {
2083 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR,
2084 .buffer = buffer,
2085 .memory = memory,
2086 .memoryOffset = memoryOffset,
2087 });
2088
2089 return VK_SUCCESS;
2090 }
2091
2092 VkResult anv_BindBufferMemory2KHR(
2093 VkDevice device,
2094 uint32_t bindInfoCount,
2095 const VkBindBufferMemoryInfoKHR* pBindInfos)
2096 {
2097 for (uint32_t i = 0; i < bindInfoCount; i++)
2098 anv_bind_buffer_memory(&pBindInfos[i]);
2099
2100 return VK_SUCCESS;
2101 }
2102
2103 VkResult anv_QueueBindSparse(
2104 VkQueue _queue,
2105 uint32_t bindInfoCount,
2106 const VkBindSparseInfo* pBindInfo,
2107 VkFence fence)
2108 {
2109 ANV_FROM_HANDLE(anv_queue, queue, _queue);
2110 if (unlikely(queue->device->lost))
2111 return VK_ERROR_DEVICE_LOST;
2112
2113 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2114 }
2115
2116 // Event functions
2117
2118 VkResult anv_CreateEvent(
2119 VkDevice _device,
2120 const VkEventCreateInfo* pCreateInfo,
2121 const VkAllocationCallbacks* pAllocator,
2122 VkEvent* pEvent)
2123 {
2124 ANV_FROM_HANDLE(anv_device, device, _device);
2125 struct anv_state state;
2126 struct anv_event *event;
2127
2128 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
2129
2130 state = anv_state_pool_alloc(&device->dynamic_state_pool,
2131 sizeof(*event), 8);
2132 event = state.map;
2133 event->state = state;
2134 event->semaphore = VK_EVENT_RESET;
2135
2136 if (!device->info.has_llc) {
2137 /* Make sure the writes we're flushing have landed. */
2138 __builtin_ia32_mfence();
2139 __builtin_ia32_clflush(event);
2140 }
2141
2142 *pEvent = anv_event_to_handle(event);
2143
2144 return VK_SUCCESS;
2145 }
2146
2147 void anv_DestroyEvent(
2148 VkDevice _device,
2149 VkEvent _event,
2150 const VkAllocationCallbacks* pAllocator)
2151 {
2152 ANV_FROM_HANDLE(anv_device, device, _device);
2153 ANV_FROM_HANDLE(anv_event, event, _event);
2154
2155 if (!event)
2156 return;
2157
2158 anv_state_pool_free(&device->dynamic_state_pool, event->state);
2159 }
2160
2161 VkResult anv_GetEventStatus(
2162 VkDevice _device,
2163 VkEvent _event)
2164 {
2165 ANV_FROM_HANDLE(anv_device, device, _device);
2166 ANV_FROM_HANDLE(anv_event, event, _event);
2167
2168 if (unlikely(device->lost))
2169 return VK_ERROR_DEVICE_LOST;
2170
2171 if (!device->info.has_llc) {
2172 /* Invalidate read cache before reading event written by GPU. */
2173 __builtin_ia32_clflush(event);
2174 __builtin_ia32_mfence();
2175
2176 }
2177
2178 return event->semaphore;
2179 }
2180
2181 VkResult anv_SetEvent(
2182 VkDevice _device,
2183 VkEvent _event)
2184 {
2185 ANV_FROM_HANDLE(anv_device, device, _device);
2186 ANV_FROM_HANDLE(anv_event, event, _event);
2187
2188 event->semaphore = VK_EVENT_SET;
2189
2190 if (!device->info.has_llc) {
2191 /* Make sure the writes we're flushing have landed. */
2192 __builtin_ia32_mfence();
2193 __builtin_ia32_clflush(event);
2194 }
2195
2196 return VK_SUCCESS;
2197 }
2198
2199 VkResult anv_ResetEvent(
2200 VkDevice _device,
2201 VkEvent _event)
2202 {
2203 ANV_FROM_HANDLE(anv_device, device, _device);
2204 ANV_FROM_HANDLE(anv_event, event, _event);
2205
2206 event->semaphore = VK_EVENT_RESET;
2207
2208 if (!device->info.has_llc) {
2209 /* Make sure the writes we're flushing have landed. */
2210 __builtin_ia32_mfence();
2211 __builtin_ia32_clflush(event);
2212 }
2213
2214 return VK_SUCCESS;
2215 }
2216
2217 // Buffer functions
2218
2219 VkResult anv_CreateBuffer(
2220 VkDevice _device,
2221 const VkBufferCreateInfo* pCreateInfo,
2222 const VkAllocationCallbacks* pAllocator,
2223 VkBuffer* pBuffer)
2224 {
2225 ANV_FROM_HANDLE(anv_device, device, _device);
2226 struct anv_buffer *buffer;
2227
2228 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
2229
2230 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
2231 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2232 if (buffer == NULL)
2233 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2234
2235 buffer->size = pCreateInfo->size;
2236 buffer->usage = pCreateInfo->usage;
2237 buffer->bo = NULL;
2238 buffer->offset = 0;
2239
2240 *pBuffer = anv_buffer_to_handle(buffer);
2241
2242 return VK_SUCCESS;
2243 }
2244
2245 void anv_DestroyBuffer(
2246 VkDevice _device,
2247 VkBuffer _buffer,
2248 const VkAllocationCallbacks* pAllocator)
2249 {
2250 ANV_FROM_HANDLE(anv_device, device, _device);
2251 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2252
2253 if (!buffer)
2254 return;
2255
2256 vk_free2(&device->alloc, pAllocator, buffer);
2257 }
2258
2259 void
2260 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
2261 enum isl_format format,
2262 uint32_t offset, uint32_t range, uint32_t stride)
2263 {
2264 isl_buffer_fill_state(&device->isl_dev, state.map,
2265 .address = offset,
2266 .mocs = device->default_mocs,
2267 .size = range,
2268 .format = format,
2269 .stride = stride);
2270
2271 anv_state_flush(device, state);
2272 }
2273
2274 void anv_DestroySampler(
2275 VkDevice _device,
2276 VkSampler _sampler,
2277 const VkAllocationCallbacks* pAllocator)
2278 {
2279 ANV_FROM_HANDLE(anv_device, device, _device);
2280 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
2281
2282 if (!sampler)
2283 return;
2284
2285 vk_free2(&device->alloc, pAllocator, sampler);
2286 }
2287
2288 VkResult anv_CreateFramebuffer(
2289 VkDevice _device,
2290 const VkFramebufferCreateInfo* pCreateInfo,
2291 const VkAllocationCallbacks* pAllocator,
2292 VkFramebuffer* pFramebuffer)
2293 {
2294 ANV_FROM_HANDLE(anv_device, device, _device);
2295 struct anv_framebuffer *framebuffer;
2296
2297 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2298
2299 size_t size = sizeof(*framebuffer) +
2300 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
2301 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
2302 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2303 if (framebuffer == NULL)
2304 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2305
2306 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2307 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2308 VkImageView _iview = pCreateInfo->pAttachments[i];
2309 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2310 }
2311
2312 framebuffer->width = pCreateInfo->width;
2313 framebuffer->height = pCreateInfo->height;
2314 framebuffer->layers = pCreateInfo->layers;
2315
2316 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2317
2318 return VK_SUCCESS;
2319 }
2320
2321 void anv_DestroyFramebuffer(
2322 VkDevice _device,
2323 VkFramebuffer _fb,
2324 const VkAllocationCallbacks* pAllocator)
2325 {
2326 ANV_FROM_HANDLE(anv_device, device, _device);
2327 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2328
2329 if (!fb)
2330 return;
2331
2332 vk_free2(&device->alloc, pAllocator, fb);
2333 }
2334
2335 /* vk_icd.h does not declare this function, so we declare it here to
2336 * suppress Wmissing-prototypes.
2337 */
2338 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2339 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
2340
2341 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2342 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
2343 {
2344 /* For the full details on loader interface versioning, see
2345 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
2346 * What follows is a condensed summary, to help you navigate the large and
2347 * confusing official doc.
2348 *
2349 * - Loader interface v0 is incompatible with later versions. We don't
2350 * support it.
2351 *
2352 * - In loader interface v1:
2353 * - The first ICD entrypoint called by the loader is
2354 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
2355 * entrypoint.
2356 * - The ICD must statically expose no other Vulkan symbol unless it is
2357 * linked with -Bsymbolic.
2358 * - Each dispatchable Vulkan handle created by the ICD must be
2359 * a pointer to a struct whose first member is VK_LOADER_DATA. The
2360 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
2361 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
2362 * vkDestroySurfaceKHR(). The ICD must be capable of working with
2363 * such loader-managed surfaces.
2364 *
2365 * - Loader interface v2 differs from v1 in:
2366 * - The first ICD entrypoint called by the loader is
2367 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
2368 * statically expose this entrypoint.
2369 *
2370 * - Loader interface v3 differs from v2 in:
2371 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
2372 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
2373 * because the loader no longer does so.
2374 */
2375 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
2376 return VK_SUCCESS;
2377 }