anv: Better support for Android logging (v2)
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32
33 #include "anv_private.h"
34 #include "util/strtod.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/mesa-sha1.h"
38 #include "vk_util.h"
39
40 #include "genxml/gen7_pack.h"
41
42 static void
43 compiler_debug_log(void *data, const char *fmt, ...)
44 { }
45
46 static void
47 compiler_perf_log(void *data, const char *fmt, ...)
48 {
49 va_list args;
50 va_start(args, fmt);
51
52 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
53 intel_logd_v(fmt, args);
54
55 va_end(args);
56 }
57
58 static VkResult
59 anv_compute_heap_size(int fd, uint64_t *heap_size)
60 {
61 uint64_t gtt_size;
62 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
63 &gtt_size) == -1) {
64 /* If, for whatever reason, we can't actually get the GTT size from the
65 * kernel (too old?) fall back to the aperture size.
66 */
67 anv_perf_warn(NULL, NULL,
68 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
69
70 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
71 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
72 "failed to get aperture size: %m");
73 }
74 }
75
76 /* Query the total ram from the system */
77 struct sysinfo info;
78 sysinfo(&info);
79
80 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
81
82 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
83 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
84 */
85 uint64_t available_ram;
86 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
87 available_ram = total_ram / 2;
88 else
89 available_ram = total_ram * 3 / 4;
90
91 /* We also want to leave some padding for things we allocate in the driver,
92 * so don't go over 3/4 of the GTT either.
93 */
94 uint64_t available_gtt = gtt_size * 3 / 4;
95
96 *heap_size = MIN2(available_ram, available_gtt);
97
98 return VK_SUCCESS;
99 }
100
101 static VkResult
102 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
103 {
104 /* The kernel query only tells us whether or not the kernel supports the
105 * EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and not whether or not the
106 * hardware has actual 48bit address support.
107 */
108 device->supports_48bit_addresses =
109 (device->info.gen >= 8) && anv_gem_supports_48b_addresses(fd);
110
111 uint64_t heap_size;
112 VkResult result = anv_compute_heap_size(fd, &heap_size);
113 if (result != VK_SUCCESS)
114 return result;
115
116 if (heap_size <= 3ull * (1ull << 30)) {
117 /* In this case, everything fits nicely into the 32-bit address space,
118 * so there's no need for supporting 48bit addresses on client-allocated
119 * memory objects.
120 */
121 device->memory.heap_count = 1;
122 device->memory.heaps[0] = (struct anv_memory_heap) {
123 .size = heap_size,
124 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
125 .supports_48bit_addresses = false,
126 };
127 } else {
128 /* Not everything will fit nicely into a 32-bit address space. In this
129 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
130 * larger 48-bit heap. If we're in this case, then we have a total heap
131 * size larger than 3GiB which most likely means they have 8 GiB of
132 * video memory and so carving off 1 GiB for the 32-bit heap should be
133 * reasonable.
134 */
135 const uint64_t heap_size_32bit = 1ull << 30;
136 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
137
138 assert(device->supports_48bit_addresses);
139
140 device->memory.heap_count = 2;
141 device->memory.heaps[0] = (struct anv_memory_heap) {
142 .size = heap_size_48bit,
143 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
144 .supports_48bit_addresses = true,
145 };
146 device->memory.heaps[1] = (struct anv_memory_heap) {
147 .size = heap_size_32bit,
148 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
149 .supports_48bit_addresses = false,
150 };
151 }
152
153 uint32_t type_count = 0;
154 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
155 uint32_t valid_buffer_usage = ~0;
156
157 /* There appears to be a hardware issue in the VF cache where it only
158 * considers the bottom 32 bits of memory addresses. If you happen to
159 * have two vertex buffers which get placed exactly 4 GiB apart and use
160 * them in back-to-back draw calls, you can get collisions. In order to
161 * solve this problem, we require vertex and index buffers be bound to
162 * memory allocated out of the 32-bit heap.
163 */
164 if (device->memory.heaps[heap].supports_48bit_addresses) {
165 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
166 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
167 }
168
169 if (device->info.has_llc) {
170 /* Big core GPUs share LLC with the CPU and thus one memory type can be
171 * both cached and coherent at the same time.
172 */
173 device->memory.types[type_count++] = (struct anv_memory_type) {
174 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
175 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
176 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
177 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
178 .heapIndex = heap,
179 .valid_buffer_usage = valid_buffer_usage,
180 };
181 } else {
182 /* The spec requires that we expose a host-visible, coherent memory
183 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
184 * to give the application a choice between cached, but not coherent and
185 * coherent but uncached (WC though).
186 */
187 device->memory.types[type_count++] = (struct anv_memory_type) {
188 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
189 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
190 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
191 .heapIndex = heap,
192 .valid_buffer_usage = valid_buffer_usage,
193 };
194 device->memory.types[type_count++] = (struct anv_memory_type) {
195 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
196 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
197 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
198 .heapIndex = heap,
199 .valid_buffer_usage = valid_buffer_usage,
200 };
201 }
202 }
203 device->memory.type_count = type_count;
204
205 return VK_SUCCESS;
206 }
207
208 static VkResult
209 anv_physical_device_init_uuids(struct anv_physical_device *device)
210 {
211 const struct build_id_note *note =
212 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
213 if (!note) {
214 return vk_errorf(device->instance, device,
215 VK_ERROR_INITIALIZATION_FAILED,
216 "Failed to find build-id");
217 }
218
219 unsigned build_id_len = build_id_length(note);
220 if (build_id_len < 20) {
221 return vk_errorf(device->instance, device,
222 VK_ERROR_INITIALIZATION_FAILED,
223 "build-id too short. It needs to be a SHA");
224 }
225
226 struct mesa_sha1 sha1_ctx;
227 uint8_t sha1[20];
228 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
229
230 /* The pipeline cache UUID is used for determining when a pipeline cache is
231 * invalid. It needs both a driver build and the PCI ID of the device.
232 */
233 _mesa_sha1_init(&sha1_ctx);
234 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
235 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
236 sizeof(device->chipset_id));
237 _mesa_sha1_final(&sha1_ctx, sha1);
238 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
239
240 /* The driver UUID is used for determining sharability of images and memory
241 * between two Vulkan instances in separate processes. People who want to
242 * share memory need to also check the device UUID (below) so all this
243 * needs to be is the build-id.
244 */
245 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
246
247 /* The device UUID uniquely identifies the given device within the machine.
248 * Since we never have more than one device, this doesn't need to be a real
249 * UUID. However, on the off-chance that someone tries to use this to
250 * cache pre-tiled images or something of the like, we use the PCI ID and
251 * some bits of ISL info to ensure that this is safe.
252 */
253 _mesa_sha1_init(&sha1_ctx);
254 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
255 sizeof(device->chipset_id));
256 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
257 sizeof(device->isl_dev.has_bit6_swizzling));
258 _mesa_sha1_final(&sha1_ctx, sha1);
259 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
260
261 return VK_SUCCESS;
262 }
263
264 static VkResult
265 anv_physical_device_init(struct anv_physical_device *device,
266 struct anv_instance *instance,
267 const char *path)
268 {
269 VkResult result;
270 int fd;
271
272 brw_process_intel_debug_variable();
273
274 fd = open(path, O_RDWR | O_CLOEXEC);
275 if (fd < 0)
276 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
277
278 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
279 device->instance = instance;
280
281 assert(strlen(path) < ARRAY_SIZE(device->path));
282 strncpy(device->path, path, ARRAY_SIZE(device->path));
283
284 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
285 if (!device->chipset_id) {
286 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
287 goto fail;
288 }
289
290 device->name = gen_get_device_name(device->chipset_id);
291 if (!gen_get_device_info(device->chipset_id, &device->info)) {
292 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
293 goto fail;
294 }
295
296 if (device->info.is_haswell) {
297 intel_logw("Haswell Vulkan support is incomplete");
298 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
299 intel_logw("Ivy Bridge Vulkan support is incomplete");
300 } else if (device->info.gen == 7 && device->info.is_baytrail) {
301 intel_logw("Bay Trail Vulkan support is incomplete");
302 } else if (device->info.gen >= 8 && device->info.gen <= 9) {
303 /* Broadwell, Cherryview, Skylake, Broxton, Kabylake is as fully
304 * supported as anything */
305 } else {
306 result = vk_errorf(device->instance, device,
307 VK_ERROR_INCOMPATIBLE_DRIVER,
308 "Vulkan not yet supported on %s", device->name);
309 goto fail;
310 }
311
312 device->cmd_parser_version = -1;
313 if (device->info.gen == 7) {
314 device->cmd_parser_version =
315 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
316 if (device->cmd_parser_version == -1) {
317 result = vk_errorf(device->instance, device,
318 VK_ERROR_INITIALIZATION_FAILED,
319 "failed to get command parser version");
320 goto fail;
321 }
322 }
323
324 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
325 result = vk_errorf(device->instance, device,
326 VK_ERROR_INITIALIZATION_FAILED,
327 "kernel missing gem wait");
328 goto fail;
329 }
330
331 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
332 result = vk_errorf(device->instance, device,
333 VK_ERROR_INITIALIZATION_FAILED,
334 "kernel missing execbuf2");
335 goto fail;
336 }
337
338 if (!device->info.has_llc &&
339 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
340 result = vk_errorf(device->instance, device,
341 VK_ERROR_INITIALIZATION_FAILED,
342 "kernel missing wc mmap");
343 goto fail;
344 }
345
346 result = anv_physical_device_init_heaps(device, fd);
347 if (result != VK_SUCCESS)
348 goto fail;
349
350 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
351 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
352 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
353 device->has_syncobj_wait = device->has_syncobj &&
354 anv_gem_supports_syncobj_wait(fd);
355
356 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
357
358 /* GENs prior to 8 do not support EU/Subslice info */
359 if (device->info.gen >= 8) {
360 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
361 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
362
363 /* Without this information, we cannot get the right Braswell
364 * brandstrings, and we have to use conservative numbers for GPGPU on
365 * many platforms, but otherwise, things will just work.
366 */
367 if (device->subslice_total < 1 || device->eu_total < 1) {
368 intel_logw("Kernel 4.1 required to properly query GPU properties");
369 }
370 } else if (device->info.gen == 7) {
371 device->subslice_total = 1 << (device->info.gt - 1);
372 }
373
374 if (device->info.is_cherryview &&
375 device->subslice_total > 0 && device->eu_total > 0) {
376 /* Logical CS threads = EUs per subslice * num threads per EU */
377 uint32_t max_cs_threads =
378 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
379
380 /* Fuse configurations may give more threads than expected, never less. */
381 if (max_cs_threads > device->info.max_cs_threads)
382 device->info.max_cs_threads = max_cs_threads;
383 }
384
385 device->compiler = brw_compiler_create(NULL, &device->info);
386 if (device->compiler == NULL) {
387 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
388 goto fail;
389 }
390 device->compiler->shader_debug_log = compiler_debug_log;
391 device->compiler->shader_perf_log = compiler_perf_log;
392 device->compiler->supports_pull_constants = false;
393
394 isl_device_init(&device->isl_dev, &device->info, swizzled);
395
396 result = anv_physical_device_init_uuids(device);
397 if (result != VK_SUCCESS)
398 goto fail;
399
400 result = anv_init_wsi(device);
401 if (result != VK_SUCCESS) {
402 ralloc_free(device->compiler);
403 goto fail;
404 }
405
406 device->local_fd = fd;
407 return VK_SUCCESS;
408
409 fail:
410 close(fd);
411 return result;
412 }
413
414 static void
415 anv_physical_device_finish(struct anv_physical_device *device)
416 {
417 anv_finish_wsi(device);
418 ralloc_free(device->compiler);
419 close(device->local_fd);
420 }
421
422 static void *
423 default_alloc_func(void *pUserData, size_t size, size_t align,
424 VkSystemAllocationScope allocationScope)
425 {
426 return malloc(size);
427 }
428
429 static void *
430 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
431 size_t align, VkSystemAllocationScope allocationScope)
432 {
433 return realloc(pOriginal, size);
434 }
435
436 static void
437 default_free_func(void *pUserData, void *pMemory)
438 {
439 free(pMemory);
440 }
441
442 static const VkAllocationCallbacks default_alloc = {
443 .pUserData = NULL,
444 .pfnAllocation = default_alloc_func,
445 .pfnReallocation = default_realloc_func,
446 .pfnFree = default_free_func,
447 };
448
449 VkResult anv_CreateInstance(
450 const VkInstanceCreateInfo* pCreateInfo,
451 const VkAllocationCallbacks* pAllocator,
452 VkInstance* pInstance)
453 {
454 struct anv_instance *instance;
455
456 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
457
458 /* Check if user passed a debug report callback to be used during
459 * Create/Destroy of instance.
460 */
461 const VkDebugReportCallbackCreateInfoEXT *ctor_cb =
462 vk_find_struct_const(pCreateInfo->pNext,
463 DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT);
464
465 uint32_t client_version;
466 if (pCreateInfo->pApplicationInfo &&
467 pCreateInfo->pApplicationInfo->apiVersion != 0) {
468 client_version = pCreateInfo->pApplicationInfo->apiVersion;
469 } else {
470 client_version = VK_MAKE_VERSION(1, 0, 0);
471 }
472
473 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
474 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
475
476 if (ctor_cb && ctor_cb->flags & VK_DEBUG_REPORT_ERROR_BIT_EXT)
477 ctor_cb->pfnCallback(VK_DEBUG_REPORT_ERROR_BIT_EXT,
478 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT,
479 VK_NULL_HANDLE, /* No handle available yet. */
480 __LINE__,
481 0,
482 "anv",
483 "incompatible driver version",
484 ctor_cb->pUserData);
485
486 return vk_errorf(NULL, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
487 "Client requested version %d.%d.%d",
488 VK_VERSION_MAJOR(client_version),
489 VK_VERSION_MINOR(client_version),
490 VK_VERSION_PATCH(client_version));
491 }
492
493 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
494 const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
495 if (!anv_instance_extension_supported(ext_name))
496 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
497 }
498
499 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
500 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
501 if (!instance)
502 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
503
504 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
505
506 if (pAllocator)
507 instance->alloc = *pAllocator;
508 else
509 instance->alloc = default_alloc;
510
511 instance->apiVersion = client_version;
512 instance->physicalDeviceCount = -1;
513
514 if (pthread_mutex_init(&instance->callbacks_mutex, NULL) != 0) {
515 vk_free2(&default_alloc, pAllocator, instance);
516 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
517 }
518
519 list_inithead(&instance->callbacks);
520
521 /* Store report debug callback to be used during DestroyInstance. */
522 if (ctor_cb) {
523 instance->destroy_debug_cb.flags = ctor_cb->flags;
524 instance->destroy_debug_cb.callback = ctor_cb->pfnCallback;
525 instance->destroy_debug_cb.data = ctor_cb->pUserData;
526 }
527
528 _mesa_locale_init();
529
530 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
531
532 *pInstance = anv_instance_to_handle(instance);
533
534 return VK_SUCCESS;
535 }
536
537 void anv_DestroyInstance(
538 VkInstance _instance,
539 const VkAllocationCallbacks* pAllocator)
540 {
541 ANV_FROM_HANDLE(anv_instance, instance, _instance);
542
543 if (!instance)
544 return;
545
546 if (instance->physicalDeviceCount > 0) {
547 /* We support at most one physical device. */
548 assert(instance->physicalDeviceCount == 1);
549 anv_physical_device_finish(&instance->physicalDevice);
550 }
551
552 VG(VALGRIND_DESTROY_MEMPOOL(instance));
553
554 pthread_mutex_destroy(&instance->callbacks_mutex);
555
556 _mesa_locale_fini();
557
558 vk_free(&instance->alloc, instance);
559 }
560
561 static VkResult
562 anv_enumerate_devices(struct anv_instance *instance)
563 {
564 /* TODO: Check for more devices ? */
565 drmDevicePtr devices[8];
566 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
567 int max_devices;
568
569 instance->physicalDeviceCount = 0;
570
571 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
572 if (max_devices < 1)
573 return VK_ERROR_INCOMPATIBLE_DRIVER;
574
575 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
576 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
577 devices[i]->bustype == DRM_BUS_PCI &&
578 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
579
580 result = anv_physical_device_init(&instance->physicalDevice,
581 instance,
582 devices[i]->nodes[DRM_NODE_RENDER]);
583 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
584 break;
585 }
586 }
587 drmFreeDevices(devices, max_devices);
588
589 if (result == VK_SUCCESS)
590 instance->physicalDeviceCount = 1;
591
592 return result;
593 }
594
595
596 VkResult anv_EnumeratePhysicalDevices(
597 VkInstance _instance,
598 uint32_t* pPhysicalDeviceCount,
599 VkPhysicalDevice* pPhysicalDevices)
600 {
601 ANV_FROM_HANDLE(anv_instance, instance, _instance);
602 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
603 VkResult result;
604
605 if (instance->physicalDeviceCount < 0) {
606 result = anv_enumerate_devices(instance);
607 if (result != VK_SUCCESS &&
608 result != VK_ERROR_INCOMPATIBLE_DRIVER)
609 return result;
610 }
611
612 if (instance->physicalDeviceCount > 0) {
613 assert(instance->physicalDeviceCount == 1);
614 vk_outarray_append(&out, i) {
615 *i = anv_physical_device_to_handle(&instance->physicalDevice);
616 }
617 }
618
619 return vk_outarray_status(&out);
620 }
621
622 void anv_GetPhysicalDeviceFeatures(
623 VkPhysicalDevice physicalDevice,
624 VkPhysicalDeviceFeatures* pFeatures)
625 {
626 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
627
628 *pFeatures = (VkPhysicalDeviceFeatures) {
629 .robustBufferAccess = true,
630 .fullDrawIndexUint32 = true,
631 .imageCubeArray = true,
632 .independentBlend = true,
633 .geometryShader = true,
634 .tessellationShader = true,
635 .sampleRateShading = true,
636 .dualSrcBlend = true,
637 .logicOp = true,
638 .multiDrawIndirect = true,
639 .drawIndirectFirstInstance = true,
640 .depthClamp = true,
641 .depthBiasClamp = true,
642 .fillModeNonSolid = true,
643 .depthBounds = false,
644 .wideLines = true,
645 .largePoints = true,
646 .alphaToOne = true,
647 .multiViewport = true,
648 .samplerAnisotropy = true,
649 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
650 pdevice->info.is_baytrail,
651 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
652 .textureCompressionBC = true,
653 .occlusionQueryPrecise = true,
654 .pipelineStatisticsQuery = true,
655 .fragmentStoresAndAtomics = true,
656 .shaderTessellationAndGeometryPointSize = true,
657 .shaderImageGatherExtended = true,
658 .shaderStorageImageExtendedFormats = true,
659 .shaderStorageImageMultisample = false,
660 .shaderStorageImageReadWithoutFormat = false,
661 .shaderStorageImageWriteWithoutFormat = true,
662 .shaderUniformBufferArrayDynamicIndexing = true,
663 .shaderSampledImageArrayDynamicIndexing = true,
664 .shaderStorageBufferArrayDynamicIndexing = true,
665 .shaderStorageImageArrayDynamicIndexing = true,
666 .shaderClipDistance = true,
667 .shaderCullDistance = true,
668 .shaderFloat64 = pdevice->info.gen >= 8,
669 .shaderInt64 = pdevice->info.gen >= 8,
670 .shaderInt16 = false,
671 .shaderResourceMinLod = false,
672 .variableMultisampleRate = false,
673 .inheritedQueries = true,
674 };
675
676 /* We can't do image stores in vec4 shaders */
677 pFeatures->vertexPipelineStoresAndAtomics =
678 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
679 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
680 }
681
682 void anv_GetPhysicalDeviceFeatures2KHR(
683 VkPhysicalDevice physicalDevice,
684 VkPhysicalDeviceFeatures2KHR* pFeatures)
685 {
686 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
687
688 vk_foreach_struct(ext, pFeatures->pNext) {
689 switch (ext->sType) {
690 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHX: {
691 VkPhysicalDeviceMultiviewFeaturesKHX *features =
692 (VkPhysicalDeviceMultiviewFeaturesKHX *)ext;
693 features->multiview = true;
694 features->multiviewGeometryShader = true;
695 features->multiviewTessellationShader = true;
696 break;
697 }
698
699 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES_KHR: {
700 VkPhysicalDeviceVariablePointerFeaturesKHR *features = (void *)ext;
701 features->variablePointersStorageBuffer = true;
702 features->variablePointers = false;
703 break;
704 }
705
706 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES_KHR: {
707 VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR *features =
708 (VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR *) ext;
709 features->samplerYcbcrConversion = true;
710 break;
711 }
712
713 default:
714 anv_debug_ignored_stype(ext->sType);
715 break;
716 }
717 }
718 }
719
720 void anv_GetPhysicalDeviceProperties(
721 VkPhysicalDevice physicalDevice,
722 VkPhysicalDeviceProperties* pProperties)
723 {
724 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
725 const struct gen_device_info *devinfo = &pdevice->info;
726
727 /* See assertions made when programming the buffer surface state. */
728 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
729 (1ul << 30) : (1ul << 27);
730
731 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
732 128 : 16;
733
734 VkSampleCountFlags sample_counts =
735 isl_device_get_sample_counts(&pdevice->isl_dev);
736
737 VkPhysicalDeviceLimits limits = {
738 .maxImageDimension1D = (1 << 14),
739 .maxImageDimension2D = (1 << 14),
740 .maxImageDimension3D = (1 << 11),
741 .maxImageDimensionCube = (1 << 14),
742 .maxImageArrayLayers = (1 << 11),
743 .maxTexelBufferElements = 128 * 1024 * 1024,
744 .maxUniformBufferRange = (1ul << 27),
745 .maxStorageBufferRange = max_raw_buffer_sz,
746 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
747 .maxMemoryAllocationCount = UINT32_MAX,
748 .maxSamplerAllocationCount = 64 * 1024,
749 .bufferImageGranularity = 64, /* A cache line */
750 .sparseAddressSpaceSize = 0,
751 .maxBoundDescriptorSets = MAX_SETS,
752 .maxPerStageDescriptorSamplers = max_samplers,
753 .maxPerStageDescriptorUniformBuffers = 64,
754 .maxPerStageDescriptorStorageBuffers = 64,
755 .maxPerStageDescriptorSampledImages = max_samplers,
756 .maxPerStageDescriptorStorageImages = 64,
757 .maxPerStageDescriptorInputAttachments = 64,
758 .maxPerStageResources = 250,
759 .maxDescriptorSetSamplers = 256,
760 .maxDescriptorSetUniformBuffers = 256,
761 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
762 .maxDescriptorSetStorageBuffers = 256,
763 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
764 .maxDescriptorSetSampledImages = 256,
765 .maxDescriptorSetStorageImages = 256,
766 .maxDescriptorSetInputAttachments = 256,
767 .maxVertexInputAttributes = MAX_VBS,
768 .maxVertexInputBindings = MAX_VBS,
769 .maxVertexInputAttributeOffset = 2047,
770 .maxVertexInputBindingStride = 2048,
771 .maxVertexOutputComponents = 128,
772 .maxTessellationGenerationLevel = 64,
773 .maxTessellationPatchSize = 32,
774 .maxTessellationControlPerVertexInputComponents = 128,
775 .maxTessellationControlPerVertexOutputComponents = 128,
776 .maxTessellationControlPerPatchOutputComponents = 128,
777 .maxTessellationControlTotalOutputComponents = 2048,
778 .maxTessellationEvaluationInputComponents = 128,
779 .maxTessellationEvaluationOutputComponents = 128,
780 .maxGeometryShaderInvocations = 32,
781 .maxGeometryInputComponents = 64,
782 .maxGeometryOutputComponents = 128,
783 .maxGeometryOutputVertices = 256,
784 .maxGeometryTotalOutputComponents = 1024,
785 .maxFragmentInputComponents = 128,
786 .maxFragmentOutputAttachments = 8,
787 .maxFragmentDualSrcAttachments = 1,
788 .maxFragmentCombinedOutputResources = 8,
789 .maxComputeSharedMemorySize = 32768,
790 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
791 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
792 .maxComputeWorkGroupSize = {
793 16 * devinfo->max_cs_threads,
794 16 * devinfo->max_cs_threads,
795 16 * devinfo->max_cs_threads,
796 },
797 .subPixelPrecisionBits = 4 /* FIXME */,
798 .subTexelPrecisionBits = 4 /* FIXME */,
799 .mipmapPrecisionBits = 4 /* FIXME */,
800 .maxDrawIndexedIndexValue = UINT32_MAX,
801 .maxDrawIndirectCount = UINT32_MAX,
802 .maxSamplerLodBias = 16,
803 .maxSamplerAnisotropy = 16,
804 .maxViewports = MAX_VIEWPORTS,
805 .maxViewportDimensions = { (1 << 14), (1 << 14) },
806 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
807 .viewportSubPixelBits = 13, /* We take a float? */
808 .minMemoryMapAlignment = 4096, /* A page */
809 .minTexelBufferOffsetAlignment = 1,
810 .minUniformBufferOffsetAlignment = 16,
811 .minStorageBufferOffsetAlignment = 4,
812 .minTexelOffset = -8,
813 .maxTexelOffset = 7,
814 .minTexelGatherOffset = -32,
815 .maxTexelGatherOffset = 31,
816 .minInterpolationOffset = -0.5,
817 .maxInterpolationOffset = 0.4375,
818 .subPixelInterpolationOffsetBits = 4,
819 .maxFramebufferWidth = (1 << 14),
820 .maxFramebufferHeight = (1 << 14),
821 .maxFramebufferLayers = (1 << 11),
822 .framebufferColorSampleCounts = sample_counts,
823 .framebufferDepthSampleCounts = sample_counts,
824 .framebufferStencilSampleCounts = sample_counts,
825 .framebufferNoAttachmentsSampleCounts = sample_counts,
826 .maxColorAttachments = MAX_RTS,
827 .sampledImageColorSampleCounts = sample_counts,
828 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
829 .sampledImageDepthSampleCounts = sample_counts,
830 .sampledImageStencilSampleCounts = sample_counts,
831 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
832 .maxSampleMaskWords = 1,
833 .timestampComputeAndGraphics = false,
834 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
835 .maxClipDistances = 8,
836 .maxCullDistances = 8,
837 .maxCombinedClipAndCullDistances = 8,
838 .discreteQueuePriorities = 1,
839 .pointSizeRange = { 0.125, 255.875 },
840 .lineWidthRange = { 0.0, 7.9921875 },
841 .pointSizeGranularity = (1.0 / 8.0),
842 .lineWidthGranularity = (1.0 / 128.0),
843 .strictLines = false, /* FINISHME */
844 .standardSampleLocations = true,
845 .optimalBufferCopyOffsetAlignment = 128,
846 .optimalBufferCopyRowPitchAlignment = 128,
847 .nonCoherentAtomSize = 64,
848 };
849
850 *pProperties = (VkPhysicalDeviceProperties) {
851 .apiVersion = anv_physical_device_api_version(pdevice),
852 .driverVersion = vk_get_driver_version(),
853 .vendorID = 0x8086,
854 .deviceID = pdevice->chipset_id,
855 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
856 .limits = limits,
857 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
858 };
859
860 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
861 "%s", pdevice->name);
862 memcpy(pProperties->pipelineCacheUUID,
863 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
864 }
865
866 void anv_GetPhysicalDeviceProperties2KHR(
867 VkPhysicalDevice physicalDevice,
868 VkPhysicalDeviceProperties2KHR* pProperties)
869 {
870 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
871
872 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
873
874 vk_foreach_struct(ext, pProperties->pNext) {
875 switch (ext->sType) {
876 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
877 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
878 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
879
880 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
881 break;
882 }
883
884 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHR: {
885 VkPhysicalDeviceIDPropertiesKHR *id_props =
886 (VkPhysicalDeviceIDPropertiesKHR *)ext;
887 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
888 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
889 /* The LUID is for Windows. */
890 id_props->deviceLUIDValid = false;
891 break;
892 }
893
894 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHX: {
895 VkPhysicalDeviceMultiviewPropertiesKHX *properties =
896 (VkPhysicalDeviceMultiviewPropertiesKHX *)ext;
897 properties->maxMultiviewViewCount = 16;
898 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
899 break;
900 }
901
902 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES_KHR: {
903 VkPhysicalDevicePointClippingPropertiesKHR *properties =
904 (VkPhysicalDevicePointClippingPropertiesKHR *) ext;
905 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES_KHR;
906 anv_finishme("Implement pop-free point clipping");
907 break;
908 }
909
910 default:
911 anv_debug_ignored_stype(ext->sType);
912 break;
913 }
914 }
915 }
916
917 /* We support exactly one queue family. */
918 static const VkQueueFamilyProperties
919 anv_queue_family_properties = {
920 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
921 VK_QUEUE_COMPUTE_BIT |
922 VK_QUEUE_TRANSFER_BIT,
923 .queueCount = 1,
924 .timestampValidBits = 36, /* XXX: Real value here */
925 .minImageTransferGranularity = { 1, 1, 1 },
926 };
927
928 void anv_GetPhysicalDeviceQueueFamilyProperties(
929 VkPhysicalDevice physicalDevice,
930 uint32_t* pCount,
931 VkQueueFamilyProperties* pQueueFamilyProperties)
932 {
933 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
934
935 vk_outarray_append(&out, p) {
936 *p = anv_queue_family_properties;
937 }
938 }
939
940 void anv_GetPhysicalDeviceQueueFamilyProperties2KHR(
941 VkPhysicalDevice physicalDevice,
942 uint32_t* pQueueFamilyPropertyCount,
943 VkQueueFamilyProperties2KHR* pQueueFamilyProperties)
944 {
945
946 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
947
948 vk_outarray_append(&out, p) {
949 p->queueFamilyProperties = anv_queue_family_properties;
950
951 vk_foreach_struct(s, p->pNext) {
952 anv_debug_ignored_stype(s->sType);
953 }
954 }
955 }
956
957 void anv_GetPhysicalDeviceMemoryProperties(
958 VkPhysicalDevice physicalDevice,
959 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
960 {
961 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
962
963 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
964 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
965 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
966 .propertyFlags = physical_device->memory.types[i].propertyFlags,
967 .heapIndex = physical_device->memory.types[i].heapIndex,
968 };
969 }
970
971 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
972 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
973 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
974 .size = physical_device->memory.heaps[i].size,
975 .flags = physical_device->memory.heaps[i].flags,
976 };
977 }
978 }
979
980 void anv_GetPhysicalDeviceMemoryProperties2KHR(
981 VkPhysicalDevice physicalDevice,
982 VkPhysicalDeviceMemoryProperties2KHR* pMemoryProperties)
983 {
984 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
985 &pMemoryProperties->memoryProperties);
986
987 vk_foreach_struct(ext, pMemoryProperties->pNext) {
988 switch (ext->sType) {
989 default:
990 anv_debug_ignored_stype(ext->sType);
991 break;
992 }
993 }
994 }
995
996 PFN_vkVoidFunction anv_GetInstanceProcAddr(
997 VkInstance instance,
998 const char* pName)
999 {
1000 return anv_lookup_entrypoint(NULL, pName);
1001 }
1002
1003 /* With version 1+ of the loader interface the ICD should expose
1004 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1005 */
1006 PUBLIC
1007 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1008 VkInstance instance,
1009 const char* pName);
1010
1011 PUBLIC
1012 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1013 VkInstance instance,
1014 const char* pName)
1015 {
1016 return anv_GetInstanceProcAddr(instance, pName);
1017 }
1018
1019 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1020 VkDevice _device,
1021 const char* pName)
1022 {
1023 ANV_FROM_HANDLE(anv_device, device, _device);
1024 return anv_lookup_entrypoint(&device->info, pName);
1025 }
1026
1027 static void
1028 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1029 {
1030 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1031 queue->device = device;
1032 queue->pool = &device->surface_state_pool;
1033 }
1034
1035 static void
1036 anv_queue_finish(struct anv_queue *queue)
1037 {
1038 }
1039
1040 static struct anv_state
1041 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1042 {
1043 struct anv_state state;
1044
1045 state = anv_state_pool_alloc(pool, size, align);
1046 memcpy(state.map, p, size);
1047
1048 anv_state_flush(pool->block_pool.device, state);
1049
1050 return state;
1051 }
1052
1053 struct gen8_border_color {
1054 union {
1055 float float32[4];
1056 uint32_t uint32[4];
1057 };
1058 /* Pad out to 64 bytes */
1059 uint32_t _pad[12];
1060 };
1061
1062 static void
1063 anv_device_init_border_colors(struct anv_device *device)
1064 {
1065 static const struct gen8_border_color border_colors[] = {
1066 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1067 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1068 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1069 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1070 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1071 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1072 };
1073
1074 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1075 sizeof(border_colors), 64,
1076 border_colors);
1077 }
1078
1079 static void
1080 anv_device_init_trivial_batch(struct anv_device *device)
1081 {
1082 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1083
1084 if (device->instance->physicalDevice.has_exec_async)
1085 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1086
1087 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1088 0, 4096, 0);
1089
1090 struct anv_batch batch = {
1091 .start = map,
1092 .next = map,
1093 .end = map + 4096,
1094 };
1095
1096 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1097 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1098
1099 if (!device->info.has_llc)
1100 gen_clflush_range(map, batch.next - map);
1101
1102 anv_gem_munmap(map, device->trivial_batch_bo.size);
1103 }
1104
1105 VkResult anv_CreateDevice(
1106 VkPhysicalDevice physicalDevice,
1107 const VkDeviceCreateInfo* pCreateInfo,
1108 const VkAllocationCallbacks* pAllocator,
1109 VkDevice* pDevice)
1110 {
1111 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1112 VkResult result;
1113 struct anv_device *device;
1114
1115 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1116
1117 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1118 const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
1119 if (!anv_physical_device_extension_supported(physical_device, ext_name))
1120 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1121 }
1122
1123 /* Check enabled features */
1124 if (pCreateInfo->pEnabledFeatures) {
1125 VkPhysicalDeviceFeatures supported_features;
1126 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1127 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1128 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1129 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1130 for (uint32_t i = 0; i < num_features; i++) {
1131 if (enabled_feature[i] && !supported_feature[i])
1132 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1133 }
1134 }
1135
1136 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1137 sizeof(*device), 8,
1138 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1139 if (!device)
1140 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1141
1142 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1143 device->instance = physical_device->instance;
1144 device->chipset_id = physical_device->chipset_id;
1145 device->lost = false;
1146
1147 if (pAllocator)
1148 device->alloc = *pAllocator;
1149 else
1150 device->alloc = physical_device->instance->alloc;
1151
1152 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1153 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1154 if (device->fd == -1) {
1155 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1156 goto fail_device;
1157 }
1158
1159 device->context_id = anv_gem_create_context(device);
1160 if (device->context_id == -1) {
1161 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1162 goto fail_fd;
1163 }
1164
1165 device->info = physical_device->info;
1166 device->isl_dev = physical_device->isl_dev;
1167
1168 /* On Broadwell and later, we can use batch chaining to more efficiently
1169 * implement growing command buffers. Prior to Haswell, the kernel
1170 * command parser gets in the way and we have to fall back to growing
1171 * the batch.
1172 */
1173 device->can_chain_batches = device->info.gen >= 8;
1174
1175 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1176 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1177
1178 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
1179 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1180 goto fail_context_id;
1181 }
1182
1183 pthread_condattr_t condattr;
1184 if (pthread_condattr_init(&condattr) != 0) {
1185 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1186 goto fail_mutex;
1187 }
1188 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
1189 pthread_condattr_destroy(&condattr);
1190 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1191 goto fail_mutex;
1192 }
1193 if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
1194 pthread_condattr_destroy(&condattr);
1195 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1196 goto fail_mutex;
1197 }
1198 pthread_condattr_destroy(&condattr);
1199
1200 anv_bo_pool_init(&device->batch_bo_pool, device);
1201
1202 result = anv_bo_cache_init(&device->bo_cache);
1203 if (result != VK_SUCCESS)
1204 goto fail_batch_bo_pool;
1205
1206 result = anv_state_pool_init(&device->dynamic_state_pool, device, 16384);
1207 if (result != VK_SUCCESS)
1208 goto fail_bo_cache;
1209
1210 result = anv_state_pool_init(&device->instruction_state_pool, device, 16384);
1211 if (result != VK_SUCCESS)
1212 goto fail_dynamic_state_pool;
1213
1214 result = anv_state_pool_init(&device->surface_state_pool, device, 4096);
1215 if (result != VK_SUCCESS)
1216 goto fail_instruction_state_pool;
1217
1218 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
1219 if (result != VK_SUCCESS)
1220 goto fail_surface_state_pool;
1221
1222 anv_device_init_trivial_batch(device);
1223
1224 anv_scratch_pool_init(device, &device->scratch_pool);
1225
1226 anv_queue_init(device, &device->queue);
1227
1228 switch (device->info.gen) {
1229 case 7:
1230 if (!device->info.is_haswell)
1231 result = gen7_init_device_state(device);
1232 else
1233 result = gen75_init_device_state(device);
1234 break;
1235 case 8:
1236 result = gen8_init_device_state(device);
1237 break;
1238 case 9:
1239 result = gen9_init_device_state(device);
1240 break;
1241 case 10:
1242 result = gen10_init_device_state(device);
1243 break;
1244 default:
1245 /* Shouldn't get here as we don't create physical devices for any other
1246 * gens. */
1247 unreachable("unhandled gen");
1248 }
1249 if (result != VK_SUCCESS)
1250 goto fail_workaround_bo;
1251
1252 anv_device_init_blorp(device);
1253
1254 anv_device_init_border_colors(device);
1255
1256 *pDevice = anv_device_to_handle(device);
1257
1258 return VK_SUCCESS;
1259
1260 fail_workaround_bo:
1261 anv_queue_finish(&device->queue);
1262 anv_scratch_pool_finish(device, &device->scratch_pool);
1263 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1264 anv_gem_close(device, device->workaround_bo.gem_handle);
1265 fail_surface_state_pool:
1266 anv_state_pool_finish(&device->surface_state_pool);
1267 fail_instruction_state_pool:
1268 anv_state_pool_finish(&device->instruction_state_pool);
1269 fail_dynamic_state_pool:
1270 anv_state_pool_finish(&device->dynamic_state_pool);
1271 fail_bo_cache:
1272 anv_bo_cache_finish(&device->bo_cache);
1273 fail_batch_bo_pool:
1274 anv_bo_pool_finish(&device->batch_bo_pool);
1275 pthread_cond_destroy(&device->queue_submit);
1276 fail_mutex:
1277 pthread_mutex_destroy(&device->mutex);
1278 fail_context_id:
1279 anv_gem_destroy_context(device, device->context_id);
1280 fail_fd:
1281 close(device->fd);
1282 fail_device:
1283 vk_free(&device->alloc, device);
1284
1285 return result;
1286 }
1287
1288 void anv_DestroyDevice(
1289 VkDevice _device,
1290 const VkAllocationCallbacks* pAllocator)
1291 {
1292 ANV_FROM_HANDLE(anv_device, device, _device);
1293
1294 if (!device)
1295 return;
1296
1297 anv_device_finish_blorp(device);
1298
1299 anv_queue_finish(&device->queue);
1300
1301 #ifdef HAVE_VALGRIND
1302 /* We only need to free these to prevent valgrind errors. The backing
1303 * BO will go away in a couple of lines so we don't actually leak.
1304 */
1305 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1306 #endif
1307
1308 anv_scratch_pool_finish(device, &device->scratch_pool);
1309
1310 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1311 anv_gem_close(device, device->workaround_bo.gem_handle);
1312
1313 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
1314
1315 anv_state_pool_finish(&device->surface_state_pool);
1316 anv_state_pool_finish(&device->instruction_state_pool);
1317 anv_state_pool_finish(&device->dynamic_state_pool);
1318
1319 anv_bo_cache_finish(&device->bo_cache);
1320
1321 anv_bo_pool_finish(&device->batch_bo_pool);
1322
1323 pthread_cond_destroy(&device->queue_submit);
1324 pthread_mutex_destroy(&device->mutex);
1325
1326 anv_gem_destroy_context(device, device->context_id);
1327
1328 close(device->fd);
1329
1330 vk_free(&device->alloc, device);
1331 }
1332
1333 VkResult anv_EnumerateInstanceLayerProperties(
1334 uint32_t* pPropertyCount,
1335 VkLayerProperties* pProperties)
1336 {
1337 if (pProperties == NULL) {
1338 *pPropertyCount = 0;
1339 return VK_SUCCESS;
1340 }
1341
1342 /* None supported at this time */
1343 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1344 }
1345
1346 VkResult anv_EnumerateDeviceLayerProperties(
1347 VkPhysicalDevice physicalDevice,
1348 uint32_t* pPropertyCount,
1349 VkLayerProperties* pProperties)
1350 {
1351 if (pProperties == NULL) {
1352 *pPropertyCount = 0;
1353 return VK_SUCCESS;
1354 }
1355
1356 /* None supported at this time */
1357 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1358 }
1359
1360 void anv_GetDeviceQueue(
1361 VkDevice _device,
1362 uint32_t queueNodeIndex,
1363 uint32_t queueIndex,
1364 VkQueue* pQueue)
1365 {
1366 ANV_FROM_HANDLE(anv_device, device, _device);
1367
1368 assert(queueIndex == 0);
1369
1370 *pQueue = anv_queue_to_handle(&device->queue);
1371 }
1372
1373 VkResult
1374 anv_device_query_status(struct anv_device *device)
1375 {
1376 /* This isn't likely as most of the callers of this function already check
1377 * for it. However, it doesn't hurt to check and it potentially lets us
1378 * avoid an ioctl.
1379 */
1380 if (unlikely(device->lost))
1381 return VK_ERROR_DEVICE_LOST;
1382
1383 uint32_t active, pending;
1384 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
1385 if (ret == -1) {
1386 /* We don't know the real error. */
1387 device->lost = true;
1388 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1389 "get_reset_stats failed: %m");
1390 }
1391
1392 if (active) {
1393 device->lost = true;
1394 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1395 "GPU hung on one of our command buffers");
1396 } else if (pending) {
1397 device->lost = true;
1398 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1399 "GPU hung with commands in-flight");
1400 }
1401
1402 return VK_SUCCESS;
1403 }
1404
1405 VkResult
1406 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
1407 {
1408 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
1409 * Other usages of the BO (such as on different hardware) will not be
1410 * flagged as "busy" by this ioctl. Use with care.
1411 */
1412 int ret = anv_gem_busy(device, bo->gem_handle);
1413 if (ret == 1) {
1414 return VK_NOT_READY;
1415 } else if (ret == -1) {
1416 /* We don't know the real error. */
1417 device->lost = true;
1418 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1419 "gem wait failed: %m");
1420 }
1421
1422 /* Query for device status after the busy call. If the BO we're checking
1423 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
1424 * client because it clearly doesn't have valid data. Yes, this most
1425 * likely means an ioctl, but we just did an ioctl to query the busy status
1426 * so it's no great loss.
1427 */
1428 return anv_device_query_status(device);
1429 }
1430
1431 VkResult
1432 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1433 int64_t timeout)
1434 {
1435 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
1436 if (ret == -1 && errno == ETIME) {
1437 return VK_TIMEOUT;
1438 } else if (ret == -1) {
1439 /* We don't know the real error. */
1440 device->lost = true;
1441 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1442 "gem wait failed: %m");
1443 }
1444
1445 /* Query for device status after the wait. If the BO we're waiting on got
1446 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
1447 * because it clearly doesn't have valid data. Yes, this most likely means
1448 * an ioctl, but we just did an ioctl to wait so it's no great loss.
1449 */
1450 return anv_device_query_status(device);
1451 }
1452
1453 VkResult anv_DeviceWaitIdle(
1454 VkDevice _device)
1455 {
1456 ANV_FROM_HANDLE(anv_device, device, _device);
1457 if (unlikely(device->lost))
1458 return VK_ERROR_DEVICE_LOST;
1459
1460 struct anv_batch batch;
1461
1462 uint32_t cmds[8];
1463 batch.start = batch.next = cmds;
1464 batch.end = (void *) cmds + sizeof(cmds);
1465
1466 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1467 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1468
1469 return anv_device_submit_simple_batch(device, &batch);
1470 }
1471
1472 VkResult
1473 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1474 {
1475 uint32_t gem_handle = anv_gem_create(device, size);
1476 if (!gem_handle)
1477 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1478
1479 anv_bo_init(bo, gem_handle, size);
1480
1481 return VK_SUCCESS;
1482 }
1483
1484 VkResult anv_AllocateMemory(
1485 VkDevice _device,
1486 const VkMemoryAllocateInfo* pAllocateInfo,
1487 const VkAllocationCallbacks* pAllocator,
1488 VkDeviceMemory* pMem)
1489 {
1490 ANV_FROM_HANDLE(anv_device, device, _device);
1491 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1492 struct anv_device_memory *mem;
1493 VkResult result = VK_SUCCESS;
1494
1495 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1496
1497 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
1498 assert(pAllocateInfo->allocationSize > 0);
1499
1500 /* The kernel relocation API has a limitation of a 32-bit delta value
1501 * applied to the address before it is written which, in spite of it being
1502 * unsigned, is treated as signed . Because of the way that this maps to
1503 * the Vulkan API, we cannot handle an offset into a buffer that does not
1504 * fit into a signed 32 bits. The only mechanism we have for dealing with
1505 * this at the moment is to limit all VkDeviceMemory objects to a maximum
1506 * of 2GB each. The Vulkan spec allows us to do this:
1507 *
1508 * "Some platforms may have a limit on the maximum size of a single
1509 * allocation. For example, certain systems may fail to create
1510 * allocations with a size greater than or equal to 4GB. Such a limit is
1511 * implementation-dependent, and if such a failure occurs then the error
1512 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
1513 *
1514 * We don't use vk_error here because it's not an error so much as an
1515 * indication to the application that the allocation is too large.
1516 */
1517 if (pAllocateInfo->allocationSize > (1ull << 31))
1518 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1519
1520 /* FINISHME: Fail if allocation request exceeds heap size. */
1521
1522 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1523 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1524 if (mem == NULL)
1525 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1526
1527 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
1528 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
1529 mem->map = NULL;
1530 mem->map_size = 0;
1531
1532 const VkImportMemoryFdInfoKHR *fd_info =
1533 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
1534
1535 /* The Vulkan spec permits handleType to be 0, in which case the struct is
1536 * ignored.
1537 */
1538 if (fd_info && fd_info->handleType) {
1539 /* At the moment, we only support the OPAQUE_FD memory type which is
1540 * just a GEM buffer.
1541 */
1542 assert(fd_info->handleType ==
1543 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR);
1544
1545 result = anv_bo_cache_import(device, &device->bo_cache,
1546 fd_info->fd, pAllocateInfo->allocationSize,
1547 &mem->bo);
1548 if (result != VK_SUCCESS)
1549 goto fail;
1550 } else {
1551 result = anv_bo_cache_alloc(device, &device->bo_cache,
1552 pAllocateInfo->allocationSize,
1553 &mem->bo);
1554 if (result != VK_SUCCESS)
1555 goto fail;
1556 }
1557
1558 assert(mem->type->heapIndex < pdevice->memory.heap_count);
1559 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
1560 mem->bo->flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1561
1562 if (pdevice->has_exec_async)
1563 mem->bo->flags |= EXEC_OBJECT_ASYNC;
1564
1565 *pMem = anv_device_memory_to_handle(mem);
1566
1567 return VK_SUCCESS;
1568
1569 fail:
1570 vk_free2(&device->alloc, pAllocator, mem);
1571
1572 return result;
1573 }
1574
1575 VkResult anv_GetMemoryFdKHR(
1576 VkDevice device_h,
1577 const VkMemoryGetFdInfoKHR* pGetFdInfo,
1578 int* pFd)
1579 {
1580 ANV_FROM_HANDLE(anv_device, dev, device_h);
1581 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
1582
1583 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
1584
1585 /* We support only one handle type. */
1586 assert(pGetFdInfo->handleType ==
1587 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR);
1588
1589 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
1590 }
1591
1592 VkResult anv_GetMemoryFdPropertiesKHR(
1593 VkDevice device_h,
1594 VkExternalMemoryHandleTypeFlagBitsKHR handleType,
1595 int fd,
1596 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
1597 {
1598 /* The valid usage section for this function says:
1599 *
1600 * "handleType must not be one of the handle types defined as opaque."
1601 *
1602 * Since we only handle opaque handles for now, there are no FD properties.
1603 */
1604 return VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR;
1605 }
1606
1607 void anv_FreeMemory(
1608 VkDevice _device,
1609 VkDeviceMemory _mem,
1610 const VkAllocationCallbacks* pAllocator)
1611 {
1612 ANV_FROM_HANDLE(anv_device, device, _device);
1613 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1614
1615 if (mem == NULL)
1616 return;
1617
1618 if (mem->map)
1619 anv_UnmapMemory(_device, _mem);
1620
1621 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1622
1623 vk_free2(&device->alloc, pAllocator, mem);
1624 }
1625
1626 VkResult anv_MapMemory(
1627 VkDevice _device,
1628 VkDeviceMemory _memory,
1629 VkDeviceSize offset,
1630 VkDeviceSize size,
1631 VkMemoryMapFlags flags,
1632 void** ppData)
1633 {
1634 ANV_FROM_HANDLE(anv_device, device, _device);
1635 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1636
1637 if (mem == NULL) {
1638 *ppData = NULL;
1639 return VK_SUCCESS;
1640 }
1641
1642 if (size == VK_WHOLE_SIZE)
1643 size = mem->bo->size - offset;
1644
1645 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
1646 *
1647 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
1648 * assert(size != 0);
1649 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
1650 * equal to the size of the memory minus offset
1651 */
1652 assert(size > 0);
1653 assert(offset + size <= mem->bo->size);
1654
1655 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1656 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1657 * at a time is valid. We could just mmap up front and return an offset
1658 * pointer here, but that may exhaust virtual memory on 32 bit
1659 * userspace. */
1660
1661 uint32_t gem_flags = 0;
1662
1663 if (!device->info.has_llc &&
1664 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
1665 gem_flags |= I915_MMAP_WC;
1666
1667 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
1668 uint64_t map_offset = offset & ~4095ull;
1669 assert(offset >= map_offset);
1670 uint64_t map_size = (offset + size) - map_offset;
1671
1672 /* Let's map whole pages */
1673 map_size = align_u64(map_size, 4096);
1674
1675 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
1676 map_offset, map_size, gem_flags);
1677 if (map == MAP_FAILED)
1678 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1679
1680 mem->map = map;
1681 mem->map_size = map_size;
1682
1683 *ppData = mem->map + (offset - map_offset);
1684
1685 return VK_SUCCESS;
1686 }
1687
1688 void anv_UnmapMemory(
1689 VkDevice _device,
1690 VkDeviceMemory _memory)
1691 {
1692 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1693
1694 if (mem == NULL)
1695 return;
1696
1697 anv_gem_munmap(mem->map, mem->map_size);
1698
1699 mem->map = NULL;
1700 mem->map_size = 0;
1701 }
1702
1703 static void
1704 clflush_mapped_ranges(struct anv_device *device,
1705 uint32_t count,
1706 const VkMappedMemoryRange *ranges)
1707 {
1708 for (uint32_t i = 0; i < count; i++) {
1709 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1710 if (ranges[i].offset >= mem->map_size)
1711 continue;
1712
1713 gen_clflush_range(mem->map + ranges[i].offset,
1714 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
1715 }
1716 }
1717
1718 VkResult anv_FlushMappedMemoryRanges(
1719 VkDevice _device,
1720 uint32_t memoryRangeCount,
1721 const VkMappedMemoryRange* pMemoryRanges)
1722 {
1723 ANV_FROM_HANDLE(anv_device, device, _device);
1724
1725 if (device->info.has_llc)
1726 return VK_SUCCESS;
1727
1728 /* Make sure the writes we're flushing have landed. */
1729 __builtin_ia32_mfence();
1730
1731 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1732
1733 return VK_SUCCESS;
1734 }
1735
1736 VkResult anv_InvalidateMappedMemoryRanges(
1737 VkDevice _device,
1738 uint32_t memoryRangeCount,
1739 const VkMappedMemoryRange* pMemoryRanges)
1740 {
1741 ANV_FROM_HANDLE(anv_device, device, _device);
1742
1743 if (device->info.has_llc)
1744 return VK_SUCCESS;
1745
1746 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1747
1748 /* Make sure no reads get moved up above the invalidate. */
1749 __builtin_ia32_mfence();
1750
1751 return VK_SUCCESS;
1752 }
1753
1754 void anv_GetBufferMemoryRequirements(
1755 VkDevice _device,
1756 VkBuffer _buffer,
1757 VkMemoryRequirements* pMemoryRequirements)
1758 {
1759 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1760 ANV_FROM_HANDLE(anv_device, device, _device);
1761 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1762
1763 /* The Vulkan spec (git aaed022) says:
1764 *
1765 * memoryTypeBits is a bitfield and contains one bit set for every
1766 * supported memory type for the resource. The bit `1<<i` is set if and
1767 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1768 * structure for the physical device is supported.
1769 */
1770 uint32_t memory_types = 0;
1771 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
1772 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
1773 if ((valid_usage & buffer->usage) == buffer->usage)
1774 memory_types |= (1u << i);
1775 }
1776
1777 pMemoryRequirements->size = buffer->size;
1778 pMemoryRequirements->alignment = 16;
1779 pMemoryRequirements->memoryTypeBits = memory_types;
1780 }
1781
1782 void anv_GetBufferMemoryRequirements2KHR(
1783 VkDevice _device,
1784 const VkBufferMemoryRequirementsInfo2KHR* pInfo,
1785 VkMemoryRequirements2KHR* pMemoryRequirements)
1786 {
1787 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
1788 &pMemoryRequirements->memoryRequirements);
1789
1790 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
1791 switch (ext->sType) {
1792 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR: {
1793 VkMemoryDedicatedRequirementsKHR *requirements = (void *)ext;
1794 requirements->prefersDedicatedAllocation = VK_FALSE;
1795 requirements->requiresDedicatedAllocation = VK_FALSE;
1796 break;
1797 }
1798
1799 default:
1800 anv_debug_ignored_stype(ext->sType);
1801 break;
1802 }
1803 }
1804 }
1805
1806 void anv_GetImageMemoryRequirements(
1807 VkDevice _device,
1808 VkImage _image,
1809 VkMemoryRequirements* pMemoryRequirements)
1810 {
1811 ANV_FROM_HANDLE(anv_image, image, _image);
1812 ANV_FROM_HANDLE(anv_device, device, _device);
1813 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1814
1815 /* The Vulkan spec (git aaed022) says:
1816 *
1817 * memoryTypeBits is a bitfield and contains one bit set for every
1818 * supported memory type for the resource. The bit `1<<i` is set if and
1819 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1820 * structure for the physical device is supported.
1821 *
1822 * All types are currently supported for images.
1823 */
1824 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
1825
1826 pMemoryRequirements->size = image->size;
1827 pMemoryRequirements->alignment = image->alignment;
1828 pMemoryRequirements->memoryTypeBits = memory_types;
1829 }
1830
1831 void anv_GetImageMemoryRequirements2KHR(
1832 VkDevice _device,
1833 const VkImageMemoryRequirementsInfo2KHR* pInfo,
1834 VkMemoryRequirements2KHR* pMemoryRequirements)
1835 {
1836 anv_GetImageMemoryRequirements(_device, pInfo->image,
1837 &pMemoryRequirements->memoryRequirements);
1838
1839 vk_foreach_struct_const(ext, pInfo->pNext) {
1840 switch (ext->sType) {
1841 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO_KHR: {
1842 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
1843 ANV_FROM_HANDLE(anv_device, device, _device);
1844 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1845 const VkImagePlaneMemoryRequirementsInfoKHR *plane_reqs =
1846 (const VkImagePlaneMemoryRequirementsInfoKHR *) ext;
1847 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
1848 plane_reqs->planeAspect);
1849
1850 assert(image->planes[plane].offset == 0);
1851
1852 /* The Vulkan spec (git aaed022) says:
1853 *
1854 * memoryTypeBits is a bitfield and contains one bit set for every
1855 * supported memory type for the resource. The bit `1<<i` is set
1856 * if and only if the memory type `i` in the
1857 * VkPhysicalDeviceMemoryProperties structure for the physical
1858 * device is supported.
1859 *
1860 * All types are currently supported for images.
1861 */
1862 pMemoryRequirements->memoryRequirements.memoryTypeBits =
1863 (1ull << pdevice->memory.type_count) - 1;
1864
1865 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
1866 pMemoryRequirements->memoryRequirements.alignment =
1867 image->planes[plane].alignment;
1868 break;
1869 }
1870
1871 default:
1872 anv_debug_ignored_stype(ext->sType);
1873 break;
1874 }
1875 }
1876
1877 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
1878 switch (ext->sType) {
1879 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR: {
1880 VkMemoryDedicatedRequirementsKHR *requirements = (void *)ext;
1881 requirements->prefersDedicatedAllocation = VK_FALSE;
1882 requirements->requiresDedicatedAllocation = VK_FALSE;
1883 break;
1884 }
1885
1886 default:
1887 anv_debug_ignored_stype(ext->sType);
1888 break;
1889 }
1890 }
1891 }
1892
1893 void anv_GetImageSparseMemoryRequirements(
1894 VkDevice device,
1895 VkImage image,
1896 uint32_t* pSparseMemoryRequirementCount,
1897 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
1898 {
1899 *pSparseMemoryRequirementCount = 0;
1900 }
1901
1902 void anv_GetImageSparseMemoryRequirements2KHR(
1903 VkDevice device,
1904 const VkImageSparseMemoryRequirementsInfo2KHR* pInfo,
1905 uint32_t* pSparseMemoryRequirementCount,
1906 VkSparseImageMemoryRequirements2KHR* pSparseMemoryRequirements)
1907 {
1908 *pSparseMemoryRequirementCount = 0;
1909 }
1910
1911 void anv_GetDeviceMemoryCommitment(
1912 VkDevice device,
1913 VkDeviceMemory memory,
1914 VkDeviceSize* pCommittedMemoryInBytes)
1915 {
1916 *pCommittedMemoryInBytes = 0;
1917 }
1918
1919 static void
1920 anv_bind_buffer_memory(const VkBindBufferMemoryInfoKHR *pBindInfo)
1921 {
1922 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
1923 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
1924
1925 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR);
1926
1927 if (mem) {
1928 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
1929 buffer->bo = mem->bo;
1930 buffer->offset = pBindInfo->memoryOffset;
1931 } else {
1932 buffer->bo = NULL;
1933 buffer->offset = 0;
1934 }
1935 }
1936
1937 VkResult anv_BindBufferMemory(
1938 VkDevice device,
1939 VkBuffer buffer,
1940 VkDeviceMemory memory,
1941 VkDeviceSize memoryOffset)
1942 {
1943 anv_bind_buffer_memory(
1944 &(VkBindBufferMemoryInfoKHR) {
1945 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR,
1946 .buffer = buffer,
1947 .memory = memory,
1948 .memoryOffset = memoryOffset,
1949 });
1950
1951 return VK_SUCCESS;
1952 }
1953
1954 VkResult anv_BindBufferMemory2KHR(
1955 VkDevice device,
1956 uint32_t bindInfoCount,
1957 const VkBindBufferMemoryInfoKHR* pBindInfos)
1958 {
1959 for (uint32_t i = 0; i < bindInfoCount; i++)
1960 anv_bind_buffer_memory(&pBindInfos[i]);
1961
1962 return VK_SUCCESS;
1963 }
1964
1965 VkResult anv_QueueBindSparse(
1966 VkQueue _queue,
1967 uint32_t bindInfoCount,
1968 const VkBindSparseInfo* pBindInfo,
1969 VkFence fence)
1970 {
1971 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1972 if (unlikely(queue->device->lost))
1973 return VK_ERROR_DEVICE_LOST;
1974
1975 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1976 }
1977
1978 // Event functions
1979
1980 VkResult anv_CreateEvent(
1981 VkDevice _device,
1982 const VkEventCreateInfo* pCreateInfo,
1983 const VkAllocationCallbacks* pAllocator,
1984 VkEvent* pEvent)
1985 {
1986 ANV_FROM_HANDLE(anv_device, device, _device);
1987 struct anv_state state;
1988 struct anv_event *event;
1989
1990 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
1991
1992 state = anv_state_pool_alloc(&device->dynamic_state_pool,
1993 sizeof(*event), 8);
1994 event = state.map;
1995 event->state = state;
1996 event->semaphore = VK_EVENT_RESET;
1997
1998 if (!device->info.has_llc) {
1999 /* Make sure the writes we're flushing have landed. */
2000 __builtin_ia32_mfence();
2001 __builtin_ia32_clflush(event);
2002 }
2003
2004 *pEvent = anv_event_to_handle(event);
2005
2006 return VK_SUCCESS;
2007 }
2008
2009 void anv_DestroyEvent(
2010 VkDevice _device,
2011 VkEvent _event,
2012 const VkAllocationCallbacks* pAllocator)
2013 {
2014 ANV_FROM_HANDLE(anv_device, device, _device);
2015 ANV_FROM_HANDLE(anv_event, event, _event);
2016
2017 if (!event)
2018 return;
2019
2020 anv_state_pool_free(&device->dynamic_state_pool, event->state);
2021 }
2022
2023 VkResult anv_GetEventStatus(
2024 VkDevice _device,
2025 VkEvent _event)
2026 {
2027 ANV_FROM_HANDLE(anv_device, device, _device);
2028 ANV_FROM_HANDLE(anv_event, event, _event);
2029
2030 if (unlikely(device->lost))
2031 return VK_ERROR_DEVICE_LOST;
2032
2033 if (!device->info.has_llc) {
2034 /* Invalidate read cache before reading event written by GPU. */
2035 __builtin_ia32_clflush(event);
2036 __builtin_ia32_mfence();
2037
2038 }
2039
2040 return event->semaphore;
2041 }
2042
2043 VkResult anv_SetEvent(
2044 VkDevice _device,
2045 VkEvent _event)
2046 {
2047 ANV_FROM_HANDLE(anv_device, device, _device);
2048 ANV_FROM_HANDLE(anv_event, event, _event);
2049
2050 event->semaphore = VK_EVENT_SET;
2051
2052 if (!device->info.has_llc) {
2053 /* Make sure the writes we're flushing have landed. */
2054 __builtin_ia32_mfence();
2055 __builtin_ia32_clflush(event);
2056 }
2057
2058 return VK_SUCCESS;
2059 }
2060
2061 VkResult anv_ResetEvent(
2062 VkDevice _device,
2063 VkEvent _event)
2064 {
2065 ANV_FROM_HANDLE(anv_device, device, _device);
2066 ANV_FROM_HANDLE(anv_event, event, _event);
2067
2068 event->semaphore = VK_EVENT_RESET;
2069
2070 if (!device->info.has_llc) {
2071 /* Make sure the writes we're flushing have landed. */
2072 __builtin_ia32_mfence();
2073 __builtin_ia32_clflush(event);
2074 }
2075
2076 return VK_SUCCESS;
2077 }
2078
2079 // Buffer functions
2080
2081 VkResult anv_CreateBuffer(
2082 VkDevice _device,
2083 const VkBufferCreateInfo* pCreateInfo,
2084 const VkAllocationCallbacks* pAllocator,
2085 VkBuffer* pBuffer)
2086 {
2087 ANV_FROM_HANDLE(anv_device, device, _device);
2088 struct anv_buffer *buffer;
2089
2090 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
2091
2092 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
2093 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2094 if (buffer == NULL)
2095 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2096
2097 buffer->size = pCreateInfo->size;
2098 buffer->usage = pCreateInfo->usage;
2099 buffer->bo = NULL;
2100 buffer->offset = 0;
2101
2102 *pBuffer = anv_buffer_to_handle(buffer);
2103
2104 return VK_SUCCESS;
2105 }
2106
2107 void anv_DestroyBuffer(
2108 VkDevice _device,
2109 VkBuffer _buffer,
2110 const VkAllocationCallbacks* pAllocator)
2111 {
2112 ANV_FROM_HANDLE(anv_device, device, _device);
2113 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2114
2115 if (!buffer)
2116 return;
2117
2118 vk_free2(&device->alloc, pAllocator, buffer);
2119 }
2120
2121 void
2122 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
2123 enum isl_format format,
2124 uint32_t offset, uint32_t range, uint32_t stride)
2125 {
2126 isl_buffer_fill_state(&device->isl_dev, state.map,
2127 .address = offset,
2128 .mocs = device->default_mocs,
2129 .size = range,
2130 .format = format,
2131 .stride = stride);
2132
2133 anv_state_flush(device, state);
2134 }
2135
2136 void anv_DestroySampler(
2137 VkDevice _device,
2138 VkSampler _sampler,
2139 const VkAllocationCallbacks* pAllocator)
2140 {
2141 ANV_FROM_HANDLE(anv_device, device, _device);
2142 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
2143
2144 if (!sampler)
2145 return;
2146
2147 vk_free2(&device->alloc, pAllocator, sampler);
2148 }
2149
2150 VkResult anv_CreateFramebuffer(
2151 VkDevice _device,
2152 const VkFramebufferCreateInfo* pCreateInfo,
2153 const VkAllocationCallbacks* pAllocator,
2154 VkFramebuffer* pFramebuffer)
2155 {
2156 ANV_FROM_HANDLE(anv_device, device, _device);
2157 struct anv_framebuffer *framebuffer;
2158
2159 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2160
2161 size_t size = sizeof(*framebuffer) +
2162 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
2163 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
2164 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2165 if (framebuffer == NULL)
2166 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2167
2168 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2169 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2170 VkImageView _iview = pCreateInfo->pAttachments[i];
2171 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2172 }
2173
2174 framebuffer->width = pCreateInfo->width;
2175 framebuffer->height = pCreateInfo->height;
2176 framebuffer->layers = pCreateInfo->layers;
2177
2178 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2179
2180 return VK_SUCCESS;
2181 }
2182
2183 void anv_DestroyFramebuffer(
2184 VkDevice _device,
2185 VkFramebuffer _fb,
2186 const VkAllocationCallbacks* pAllocator)
2187 {
2188 ANV_FROM_HANDLE(anv_device, device, _device);
2189 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2190
2191 if (!fb)
2192 return;
2193
2194 vk_free2(&device->alloc, pAllocator, fb);
2195 }
2196
2197 /* vk_icd.h does not declare this function, so we declare it here to
2198 * suppress Wmissing-prototypes.
2199 */
2200 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2201 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
2202
2203 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2204 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
2205 {
2206 /* For the full details on loader interface versioning, see
2207 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
2208 * What follows is a condensed summary, to help you navigate the large and
2209 * confusing official doc.
2210 *
2211 * - Loader interface v0 is incompatible with later versions. We don't
2212 * support it.
2213 *
2214 * - In loader interface v1:
2215 * - The first ICD entrypoint called by the loader is
2216 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
2217 * entrypoint.
2218 * - The ICD must statically expose no other Vulkan symbol unless it is
2219 * linked with -Bsymbolic.
2220 * - Each dispatchable Vulkan handle created by the ICD must be
2221 * a pointer to a struct whose first member is VK_LOADER_DATA. The
2222 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
2223 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
2224 * vkDestroySurfaceKHR(). The ICD must be capable of working with
2225 * such loader-managed surfaces.
2226 *
2227 * - Loader interface v2 differs from v1 in:
2228 * - The first ICD entrypoint called by the loader is
2229 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
2230 * statically expose this entrypoint.
2231 *
2232 * - Loader interface v3 differs from v2 in:
2233 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
2234 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
2235 * because the loader no longer does so.
2236 */
2237 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
2238 return VK_SUCCESS;
2239 }