anv: Advertise the right line width range on gen9 and CHV
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_defines.h"
46 #include "compiler/glsl_types.h"
47
48 #include "genxml/gen7_pack.h"
49
50 /* This is probably far to big but it reflects the max size used for messages
51 * in OpenGLs KHR_debug.
52 */
53 #define MAX_DEBUG_MESSAGE_LENGTH 4096
54
55 static void
56 compiler_debug_log(void *data, const char *fmt, ...)
57 {
58 char str[MAX_DEBUG_MESSAGE_LENGTH];
59 struct anv_device *device = (struct anv_device *)data;
60
61 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
62 return;
63
64 va_list args;
65 va_start(args, fmt);
66 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
67 va_end(args);
68
69 vk_debug_report(&device->instance->debug_report_callbacks,
70 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
71 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
72 0, 0, 0, "anv", str);
73 }
74
75 static void
76 compiler_perf_log(void *data, const char *fmt, ...)
77 {
78 va_list args;
79 va_start(args, fmt);
80
81 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
82 intel_logd_v(fmt, args);
83
84 va_end(args);
85 }
86
87 static uint64_t
88 anv_compute_heap_size(int fd, uint64_t gtt_size)
89 {
90 /* Query the total ram from the system */
91 struct sysinfo info;
92 sysinfo(&info);
93
94 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
95
96 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
97 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
98 */
99 uint64_t available_ram;
100 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
101 available_ram = total_ram / 2;
102 else
103 available_ram = total_ram * 3 / 4;
104
105 /* We also want to leave some padding for things we allocate in the driver,
106 * so don't go over 3/4 of the GTT either.
107 */
108 uint64_t available_gtt = gtt_size * 3 / 4;
109
110 return MIN2(available_ram, available_gtt);
111 }
112
113 static VkResult
114 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
115 {
116 uint64_t gtt_size;
117 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
118 &gtt_size) == -1) {
119 /* If, for whatever reason, we can't actually get the GTT size from the
120 * kernel (too old?) fall back to the aperture size.
121 */
122 anv_perf_warn(NULL, NULL,
123 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
124
125 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
126 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
127 "failed to get aperture size: %m");
128 }
129 }
130
131 device->supports_48bit_addresses = (device->info.gen >= 8) &&
132 gtt_size > (4ULL << 30 /* GiB */);
133
134 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
135
136 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
137 /* When running with an overridden PCI ID, we may get a GTT size from
138 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
139 * address support can still fail. Just clamp the address space size to
140 * 2 GiB if we don't have 48-bit support.
141 */
142 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
143 "not support for 48-bit addresses",
144 __FILE__, __LINE__);
145 heap_size = 2ull << 30;
146 }
147
148 if (heap_size <= 3ull * (1ull << 30)) {
149 /* In this case, everything fits nicely into the 32-bit address space,
150 * so there's no need for supporting 48bit addresses on client-allocated
151 * memory objects.
152 */
153 device->memory.heap_count = 1;
154 device->memory.heaps[0] = (struct anv_memory_heap) {
155 .vma_start = LOW_HEAP_MIN_ADDRESS,
156 .vma_size = LOW_HEAP_SIZE,
157 .size = heap_size,
158 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
159 .supports_48bit_addresses = false,
160 };
161 } else {
162 /* Not everything will fit nicely into a 32-bit address space. In this
163 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
164 * larger 48-bit heap. If we're in this case, then we have a total heap
165 * size larger than 3GiB which most likely means they have 8 GiB of
166 * video memory and so carving off 1 GiB for the 32-bit heap should be
167 * reasonable.
168 */
169 const uint64_t heap_size_32bit = 1ull << 30;
170 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
171
172 assert(device->supports_48bit_addresses);
173
174 device->memory.heap_count = 2;
175 device->memory.heaps[0] = (struct anv_memory_heap) {
176 .vma_start = HIGH_HEAP_MIN_ADDRESS,
177 /* Leave the last 4GiB out of the high vma range, so that no state
178 * base address + size can overflow 48 bits. For more information see
179 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
180 */
181 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
182 .size = heap_size_48bit,
183 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
184 .supports_48bit_addresses = true,
185 };
186 device->memory.heaps[1] = (struct anv_memory_heap) {
187 .vma_start = LOW_HEAP_MIN_ADDRESS,
188 .vma_size = LOW_HEAP_SIZE,
189 .size = heap_size_32bit,
190 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
191 .supports_48bit_addresses = false,
192 };
193 }
194
195 uint32_t type_count = 0;
196 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
197 uint32_t valid_buffer_usage = ~0;
198
199 /* There appears to be a hardware issue in the VF cache where it only
200 * considers the bottom 32 bits of memory addresses. If you happen to
201 * have two vertex buffers which get placed exactly 4 GiB apart and use
202 * them in back-to-back draw calls, you can get collisions. In order to
203 * solve this problem, we require vertex and index buffers be bound to
204 * memory allocated out of the 32-bit heap.
205 */
206 if (device->memory.heaps[heap].supports_48bit_addresses) {
207 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
208 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
209 }
210
211 if (device->info.has_llc) {
212 /* Big core GPUs share LLC with the CPU and thus one memory type can be
213 * both cached and coherent at the same time.
214 */
215 device->memory.types[type_count++] = (struct anv_memory_type) {
216 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
217 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
218 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
219 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
220 .heapIndex = heap,
221 .valid_buffer_usage = valid_buffer_usage,
222 };
223 } else {
224 /* The spec requires that we expose a host-visible, coherent memory
225 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
226 * to give the application a choice between cached, but not coherent and
227 * coherent but uncached (WC though).
228 */
229 device->memory.types[type_count++] = (struct anv_memory_type) {
230 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
231 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
232 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
233 .heapIndex = heap,
234 .valid_buffer_usage = valid_buffer_usage,
235 };
236 device->memory.types[type_count++] = (struct anv_memory_type) {
237 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
238 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
239 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
240 .heapIndex = heap,
241 .valid_buffer_usage = valid_buffer_usage,
242 };
243 }
244 }
245 device->memory.type_count = type_count;
246
247 return VK_SUCCESS;
248 }
249
250 static VkResult
251 anv_physical_device_init_uuids(struct anv_physical_device *device)
252 {
253 const struct build_id_note *note =
254 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
255 if (!note) {
256 return vk_errorf(device->instance, device,
257 VK_ERROR_INITIALIZATION_FAILED,
258 "Failed to find build-id");
259 }
260
261 unsigned build_id_len = build_id_length(note);
262 if (build_id_len < 20) {
263 return vk_errorf(device->instance, device,
264 VK_ERROR_INITIALIZATION_FAILED,
265 "build-id too short. It needs to be a SHA");
266 }
267
268 memcpy(device->driver_build_sha1, build_id_data(note), 20);
269
270 struct mesa_sha1 sha1_ctx;
271 uint8_t sha1[20];
272 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
273
274 /* The pipeline cache UUID is used for determining when a pipeline cache is
275 * invalid. It needs both a driver build and the PCI ID of the device.
276 */
277 _mesa_sha1_init(&sha1_ctx);
278 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
279 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
280 sizeof(device->chipset_id));
281 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
282 sizeof(device->always_use_bindless));
283 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
284 sizeof(device->has_a64_buffer_access));
285 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
286 sizeof(device->has_bindless_images));
287 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
288 sizeof(device->has_bindless_samplers));
289 _mesa_sha1_final(&sha1_ctx, sha1);
290 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
291
292 /* The driver UUID is used for determining sharability of images and memory
293 * between two Vulkan instances in separate processes. People who want to
294 * share memory need to also check the device UUID (below) so all this
295 * needs to be is the build-id.
296 */
297 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
298
299 /* The device UUID uniquely identifies the given device within the machine.
300 * Since we never have more than one device, this doesn't need to be a real
301 * UUID. However, on the off-chance that someone tries to use this to
302 * cache pre-tiled images or something of the like, we use the PCI ID and
303 * some bits of ISL info to ensure that this is safe.
304 */
305 _mesa_sha1_init(&sha1_ctx);
306 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
307 sizeof(device->chipset_id));
308 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
309 sizeof(device->isl_dev.has_bit6_swizzling));
310 _mesa_sha1_final(&sha1_ctx, sha1);
311 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
312
313 return VK_SUCCESS;
314 }
315
316 static void
317 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
318 {
319 #ifdef ENABLE_SHADER_CACHE
320 char renderer[10];
321 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
322 device->chipset_id);
323 assert(len == sizeof(renderer) - 2);
324
325 char timestamp[41];
326 _mesa_sha1_format(timestamp, device->driver_build_sha1);
327
328 const uint64_t driver_flags =
329 brw_get_compiler_config_value(device->compiler);
330 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
331 #else
332 device->disk_cache = NULL;
333 #endif
334 }
335
336 static void
337 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
338 {
339 #ifdef ENABLE_SHADER_CACHE
340 if (device->disk_cache)
341 disk_cache_destroy(device->disk_cache);
342 #else
343 assert(device->disk_cache == NULL);
344 #endif
345 }
346
347 static uint64_t
348 get_available_system_memory()
349 {
350 char *meminfo = os_read_file("/proc/meminfo");
351 if (!meminfo)
352 return 0;
353
354 char *str = strstr(meminfo, "MemAvailable:");
355 if (!str) {
356 free(meminfo);
357 return 0;
358 }
359
360 uint64_t kb_mem_available;
361 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
362 free(meminfo);
363 return kb_mem_available << 10;
364 }
365
366 free(meminfo);
367 return 0;
368 }
369
370 static VkResult
371 anv_physical_device_init(struct anv_physical_device *device,
372 struct anv_instance *instance,
373 drmDevicePtr drm_device)
374 {
375 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
376 const char *path = drm_device->nodes[DRM_NODE_RENDER];
377 VkResult result;
378 int fd;
379 int master_fd = -1;
380
381 brw_process_intel_debug_variable();
382
383 fd = open(path, O_RDWR | O_CLOEXEC);
384 if (fd < 0)
385 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
386
387 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
388 device->instance = instance;
389
390 assert(strlen(path) < ARRAY_SIZE(device->path));
391 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
392
393 if (!gen_get_device_info_from_fd(fd, &device->info)) {
394 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
395 goto fail;
396 }
397 device->chipset_id = device->info.chipset_id;
398 device->no_hw = device->info.no_hw;
399
400 if (getenv("INTEL_NO_HW") != NULL)
401 device->no_hw = true;
402
403 device->pci_info.domain = drm_device->businfo.pci->domain;
404 device->pci_info.bus = drm_device->businfo.pci->bus;
405 device->pci_info.device = drm_device->businfo.pci->dev;
406 device->pci_info.function = drm_device->businfo.pci->func;
407
408 device->name = gen_get_device_name(device->chipset_id);
409
410 if (device->info.is_haswell) {
411 intel_logw("Haswell Vulkan support is incomplete");
412 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
413 intel_logw("Ivy Bridge Vulkan support is incomplete");
414 } else if (device->info.gen == 7 && device->info.is_baytrail) {
415 intel_logw("Bay Trail Vulkan support is incomplete");
416 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
417 /* Gen8-11 fully supported */
418 } else {
419 result = vk_errorf(device->instance, device,
420 VK_ERROR_INCOMPATIBLE_DRIVER,
421 "Vulkan not yet supported on %s", device->name);
422 goto fail;
423 }
424
425 device->cmd_parser_version = -1;
426 if (device->info.gen == 7) {
427 device->cmd_parser_version =
428 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
429 if (device->cmd_parser_version == -1) {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INITIALIZATION_FAILED,
432 "failed to get command parser version");
433 goto fail;
434 }
435 }
436
437 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
438 result = vk_errorf(device->instance, device,
439 VK_ERROR_INITIALIZATION_FAILED,
440 "kernel missing gem wait");
441 goto fail;
442 }
443
444 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
445 result = vk_errorf(device->instance, device,
446 VK_ERROR_INITIALIZATION_FAILED,
447 "kernel missing execbuf2");
448 goto fail;
449 }
450
451 if (!device->info.has_llc &&
452 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
453 result = vk_errorf(device->instance, device,
454 VK_ERROR_INITIALIZATION_FAILED,
455 "kernel missing wc mmap");
456 goto fail;
457 }
458
459 result = anv_physical_device_init_heaps(device, fd);
460 if (result != VK_SUCCESS)
461 goto fail;
462
463 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
464 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
465 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
466 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
467 device->has_syncobj_wait = device->has_syncobj &&
468 anv_gem_supports_syncobj_wait(fd);
469 device->has_context_priority = anv_gem_has_context_priority(fd);
470
471 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
472 && device->supports_48bit_addresses;
473
474 device->has_context_isolation =
475 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
476
477 device->always_use_bindless =
478 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
479
480 /* We first got the A64 messages on broadwell and we can only use them if
481 * we can pass addresses directly into the shader which requires softpin.
482 */
483 device->has_a64_buffer_access = device->info.gen >= 8 &&
484 device->use_softpin;
485
486 /* We first get bindless image access on Skylake and we can only really do
487 * it if we don't have any relocations so we need softpin.
488 */
489 device->has_bindless_images = device->info.gen >= 9 &&
490 device->use_softpin;
491
492 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
493 * because it's just a matter of setting the sampler address in the sample
494 * message header. However, we've not bothered to wire it up for vec4 so
495 * we leave it disabled on gen7.
496 */
497 device->has_bindless_samplers = device->info.gen >= 8;
498
499 device->has_mem_available = get_available_system_memory() != 0;
500
501 /* Starting with Gen10, the timestamp frequency of the command streamer may
502 * vary from one part to another. We can query the value from the kernel.
503 */
504 if (device->info.gen >= 10) {
505 int timestamp_frequency =
506 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
507
508 if (timestamp_frequency < 0)
509 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
510 else
511 device->info.timestamp_frequency = timestamp_frequency;
512 }
513
514 /* GENs prior to 8 do not support EU/Subslice info */
515 if (device->info.gen >= 8) {
516 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
517 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
518
519 /* Without this information, we cannot get the right Braswell
520 * brandstrings, and we have to use conservative numbers for GPGPU on
521 * many platforms, but otherwise, things will just work.
522 */
523 if (device->subslice_total < 1 || device->eu_total < 1) {
524 intel_logw("Kernel 4.1 required to properly query GPU properties");
525 }
526 } else if (device->info.gen == 7) {
527 device->subslice_total = 1 << (device->info.gt - 1);
528 }
529
530 if (device->info.is_cherryview &&
531 device->subslice_total > 0 && device->eu_total > 0) {
532 /* Logical CS threads = EUs per subslice * num threads per EU */
533 uint32_t max_cs_threads =
534 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
535
536 /* Fuse configurations may give more threads than expected, never less. */
537 if (max_cs_threads > device->info.max_cs_threads)
538 device->info.max_cs_threads = max_cs_threads;
539 }
540
541 device->compiler = brw_compiler_create(NULL, &device->info);
542 if (device->compiler == NULL) {
543 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
544 goto fail;
545 }
546 device->compiler->shader_debug_log = compiler_debug_log;
547 device->compiler->shader_perf_log = compiler_perf_log;
548 device->compiler->supports_pull_constants = false;
549 device->compiler->constant_buffer_0_is_relative =
550 device->info.gen < 8 || !device->has_context_isolation;
551 device->compiler->supports_shader_constants = true;
552
553 /* Broadwell PRM says:
554 *
555 * "Before Gen8, there was a historical configuration control field to
556 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
557 * different places: TILECTL[1:0], ARB_MODE[5:4], and
558 * DISP_ARB_CTL[14:13].
559 *
560 * For Gen8 and subsequent generations, the swizzle fields are all
561 * reserved, and the CPU's memory controller performs all address
562 * swizzling modifications."
563 */
564 bool swizzled =
565 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
566
567 isl_device_init(&device->isl_dev, &device->info, swizzled);
568
569 result = anv_physical_device_init_uuids(device);
570 if (result != VK_SUCCESS)
571 goto fail;
572
573 anv_physical_device_init_disk_cache(device);
574
575 if (instance->enabled_extensions.KHR_display) {
576 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
577 if (master_fd >= 0) {
578 /* prod the device with a GETPARAM call which will fail if
579 * we don't have permission to even render on this device
580 */
581 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
582 close(master_fd);
583 master_fd = -1;
584 }
585 }
586 }
587 device->master_fd = master_fd;
588
589 result = anv_init_wsi(device);
590 if (result != VK_SUCCESS) {
591 ralloc_free(device->compiler);
592 anv_physical_device_free_disk_cache(device);
593 goto fail;
594 }
595
596 anv_physical_device_get_supported_extensions(device,
597 &device->supported_extensions);
598
599
600 device->local_fd = fd;
601
602 return VK_SUCCESS;
603
604 fail:
605 close(fd);
606 if (master_fd != -1)
607 close(master_fd);
608 return result;
609 }
610
611 static void
612 anv_physical_device_finish(struct anv_physical_device *device)
613 {
614 anv_finish_wsi(device);
615 anv_physical_device_free_disk_cache(device);
616 ralloc_free(device->compiler);
617 close(device->local_fd);
618 if (device->master_fd >= 0)
619 close(device->master_fd);
620 }
621
622 static void *
623 default_alloc_func(void *pUserData, size_t size, size_t align,
624 VkSystemAllocationScope allocationScope)
625 {
626 return malloc(size);
627 }
628
629 static void *
630 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
631 size_t align, VkSystemAllocationScope allocationScope)
632 {
633 return realloc(pOriginal, size);
634 }
635
636 static void
637 default_free_func(void *pUserData, void *pMemory)
638 {
639 free(pMemory);
640 }
641
642 static const VkAllocationCallbacks default_alloc = {
643 .pUserData = NULL,
644 .pfnAllocation = default_alloc_func,
645 .pfnReallocation = default_realloc_func,
646 .pfnFree = default_free_func,
647 };
648
649 VkResult anv_EnumerateInstanceExtensionProperties(
650 const char* pLayerName,
651 uint32_t* pPropertyCount,
652 VkExtensionProperties* pProperties)
653 {
654 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
655
656 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
657 if (anv_instance_extensions_supported.extensions[i]) {
658 vk_outarray_append(&out, prop) {
659 *prop = anv_instance_extensions[i];
660 }
661 }
662 }
663
664 return vk_outarray_status(&out);
665 }
666
667 VkResult anv_CreateInstance(
668 const VkInstanceCreateInfo* pCreateInfo,
669 const VkAllocationCallbacks* pAllocator,
670 VkInstance* pInstance)
671 {
672 struct anv_instance *instance;
673 VkResult result;
674
675 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
676
677 struct anv_instance_extension_table enabled_extensions = {};
678 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
679 int idx;
680 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
681 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
682 anv_instance_extensions[idx].extensionName) == 0)
683 break;
684 }
685
686 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
687 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
688
689 if (!anv_instance_extensions_supported.extensions[idx])
690 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
691
692 enabled_extensions.extensions[idx] = true;
693 }
694
695 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
696 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
697 if (!instance)
698 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
699
700 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
701
702 if (pAllocator)
703 instance->alloc = *pAllocator;
704 else
705 instance->alloc = default_alloc;
706
707 instance->app_info = (struct anv_app_info) { .api_version = 0 };
708 if (pCreateInfo->pApplicationInfo) {
709 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
710
711 instance->app_info.app_name =
712 vk_strdup(&instance->alloc, app->pApplicationName,
713 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
714 instance->app_info.app_version = app->applicationVersion;
715
716 instance->app_info.engine_name =
717 vk_strdup(&instance->alloc, app->pEngineName,
718 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
719 instance->app_info.engine_version = app->engineVersion;
720
721 instance->app_info.api_version = app->apiVersion;
722 }
723
724 if (instance->app_info.api_version == 0)
725 instance->app_info.api_version = VK_API_VERSION_1_0;
726
727 instance->enabled_extensions = enabled_extensions;
728
729 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
730 /* Vulkan requires that entrypoints for extensions which have not been
731 * enabled must not be advertised.
732 */
733 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
734 &instance->enabled_extensions)) {
735 instance->dispatch.entrypoints[i] = NULL;
736 } else {
737 instance->dispatch.entrypoints[i] =
738 anv_instance_dispatch_table.entrypoints[i];
739 }
740 }
741
742 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
743 /* Vulkan requires that entrypoints for extensions which have not been
744 * enabled must not be advertised.
745 */
746 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
747 &instance->enabled_extensions, NULL)) {
748 instance->device_dispatch.entrypoints[i] = NULL;
749 } else {
750 instance->device_dispatch.entrypoints[i] =
751 anv_device_dispatch_table.entrypoints[i];
752 }
753 }
754
755 instance->physicalDeviceCount = -1;
756
757 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
758 if (result != VK_SUCCESS) {
759 vk_free2(&default_alloc, pAllocator, instance);
760 return vk_error(result);
761 }
762
763 instance->pipeline_cache_enabled =
764 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
765
766 _mesa_locale_init();
767 glsl_type_singleton_init_or_ref();
768
769 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
770
771 *pInstance = anv_instance_to_handle(instance);
772
773 return VK_SUCCESS;
774 }
775
776 void anv_DestroyInstance(
777 VkInstance _instance,
778 const VkAllocationCallbacks* pAllocator)
779 {
780 ANV_FROM_HANDLE(anv_instance, instance, _instance);
781
782 if (!instance)
783 return;
784
785 if (instance->physicalDeviceCount > 0) {
786 /* We support at most one physical device. */
787 assert(instance->physicalDeviceCount == 1);
788 anv_physical_device_finish(&instance->physicalDevice);
789 }
790
791 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
792 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
793
794 VG(VALGRIND_DESTROY_MEMPOOL(instance));
795
796 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
797
798 glsl_type_singleton_decref();
799 _mesa_locale_fini();
800
801 vk_free(&instance->alloc, instance);
802 }
803
804 static VkResult
805 anv_enumerate_devices(struct anv_instance *instance)
806 {
807 /* TODO: Check for more devices ? */
808 drmDevicePtr devices[8];
809 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
810 int max_devices;
811
812 instance->physicalDeviceCount = 0;
813
814 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
815 if (max_devices < 1)
816 return VK_ERROR_INCOMPATIBLE_DRIVER;
817
818 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
819 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
820 devices[i]->bustype == DRM_BUS_PCI &&
821 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
822
823 result = anv_physical_device_init(&instance->physicalDevice,
824 instance, devices[i]);
825 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
826 break;
827 }
828 }
829 drmFreeDevices(devices, max_devices);
830
831 if (result == VK_SUCCESS)
832 instance->physicalDeviceCount = 1;
833
834 return result;
835 }
836
837 static VkResult
838 anv_instance_ensure_physical_device(struct anv_instance *instance)
839 {
840 if (instance->physicalDeviceCount < 0) {
841 VkResult result = anv_enumerate_devices(instance);
842 if (result != VK_SUCCESS &&
843 result != VK_ERROR_INCOMPATIBLE_DRIVER)
844 return result;
845 }
846
847 return VK_SUCCESS;
848 }
849
850 VkResult anv_EnumeratePhysicalDevices(
851 VkInstance _instance,
852 uint32_t* pPhysicalDeviceCount,
853 VkPhysicalDevice* pPhysicalDevices)
854 {
855 ANV_FROM_HANDLE(anv_instance, instance, _instance);
856 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
857
858 VkResult result = anv_instance_ensure_physical_device(instance);
859 if (result != VK_SUCCESS)
860 return result;
861
862 if (instance->physicalDeviceCount == 0)
863 return VK_SUCCESS;
864
865 assert(instance->physicalDeviceCount == 1);
866 vk_outarray_append(&out, i) {
867 *i = anv_physical_device_to_handle(&instance->physicalDevice);
868 }
869
870 return vk_outarray_status(&out);
871 }
872
873 VkResult anv_EnumeratePhysicalDeviceGroups(
874 VkInstance _instance,
875 uint32_t* pPhysicalDeviceGroupCount,
876 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
877 {
878 ANV_FROM_HANDLE(anv_instance, instance, _instance);
879 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
880 pPhysicalDeviceGroupCount);
881
882 VkResult result = anv_instance_ensure_physical_device(instance);
883 if (result != VK_SUCCESS)
884 return result;
885
886 if (instance->physicalDeviceCount == 0)
887 return VK_SUCCESS;
888
889 assert(instance->physicalDeviceCount == 1);
890
891 vk_outarray_append(&out, p) {
892 p->physicalDeviceCount = 1;
893 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
894 p->physicalDevices[0] =
895 anv_physical_device_to_handle(&instance->physicalDevice);
896 p->subsetAllocation = false;
897
898 vk_foreach_struct(ext, p->pNext)
899 anv_debug_ignored_stype(ext->sType);
900 }
901
902 return vk_outarray_status(&out);
903 }
904
905 void anv_GetPhysicalDeviceFeatures(
906 VkPhysicalDevice physicalDevice,
907 VkPhysicalDeviceFeatures* pFeatures)
908 {
909 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
910
911 *pFeatures = (VkPhysicalDeviceFeatures) {
912 .robustBufferAccess = true,
913 .fullDrawIndexUint32 = true,
914 .imageCubeArray = true,
915 .independentBlend = true,
916 .geometryShader = true,
917 .tessellationShader = true,
918 .sampleRateShading = true,
919 .dualSrcBlend = true,
920 .logicOp = true,
921 .multiDrawIndirect = true,
922 .drawIndirectFirstInstance = true,
923 .depthClamp = true,
924 .depthBiasClamp = true,
925 .fillModeNonSolid = true,
926 .depthBounds = false,
927 .wideLines = true,
928 .largePoints = true,
929 .alphaToOne = true,
930 .multiViewport = true,
931 .samplerAnisotropy = true,
932 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
933 pdevice->info.is_baytrail,
934 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
935 .textureCompressionBC = true,
936 .occlusionQueryPrecise = true,
937 .pipelineStatisticsQuery = true,
938 .fragmentStoresAndAtomics = true,
939 .shaderTessellationAndGeometryPointSize = true,
940 .shaderImageGatherExtended = true,
941 .shaderStorageImageExtendedFormats = true,
942 .shaderStorageImageMultisample = false,
943 .shaderStorageImageReadWithoutFormat = false,
944 .shaderStorageImageWriteWithoutFormat = true,
945 .shaderUniformBufferArrayDynamicIndexing = true,
946 .shaderSampledImageArrayDynamicIndexing = true,
947 .shaderStorageBufferArrayDynamicIndexing = true,
948 .shaderStorageImageArrayDynamicIndexing = true,
949 .shaderClipDistance = true,
950 .shaderCullDistance = true,
951 .shaderFloat64 = pdevice->info.gen >= 8 &&
952 pdevice->info.has_64bit_types,
953 .shaderInt64 = pdevice->info.gen >= 8 &&
954 pdevice->info.has_64bit_types,
955 .shaderInt16 = pdevice->info.gen >= 8,
956 .shaderResourceMinLod = pdevice->info.gen >= 9,
957 .variableMultisampleRate = true,
958 .inheritedQueries = true,
959 };
960
961 /* We can't do image stores in vec4 shaders */
962 pFeatures->vertexPipelineStoresAndAtomics =
963 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
964 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
965
966 struct anv_app_info *app_info = &pdevice->instance->app_info;
967
968 /* The new DOOM and Wolfenstein games require depthBounds without
969 * checking for it. They seem to run fine without it so just claim it's
970 * there and accept the consequences.
971 */
972 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
973 pFeatures->depthBounds = true;
974 }
975
976 void anv_GetPhysicalDeviceFeatures2(
977 VkPhysicalDevice physicalDevice,
978 VkPhysicalDeviceFeatures2* pFeatures)
979 {
980 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
981 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
982
983 vk_foreach_struct(ext, pFeatures->pNext) {
984 switch (ext->sType) {
985 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
986 VkPhysicalDevice8BitStorageFeaturesKHR *features =
987 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
988 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
989 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
990 features->storagePushConstant8 = pdevice->info.gen >= 8;
991 break;
992 }
993
994 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
995 VkPhysicalDevice16BitStorageFeatures *features =
996 (VkPhysicalDevice16BitStorageFeatures *)ext;
997 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
998 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
999 features->storagePushConstant16 = pdevice->info.gen >= 8;
1000 features->storageInputOutput16 = false;
1001 break;
1002 }
1003
1004 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1005 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1006 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1007 features->bufferDeviceAddressCaptureReplay = false;
1008 features->bufferDeviceAddressMultiDevice = false;
1009 break;
1010 }
1011
1012 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1013 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1014 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1015 features->computeDerivativeGroupQuads = true;
1016 features->computeDerivativeGroupLinear = true;
1017 break;
1018 }
1019
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1021 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1022 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1023 features->conditionalRendering = pdevice->info.gen >= 8 ||
1024 pdevice->info.is_haswell;
1025 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1026 pdevice->info.is_haswell;
1027 break;
1028 }
1029
1030 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1031 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1032 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1033 features->depthClipEnable = true;
1034 break;
1035 }
1036
1037 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1038 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1039 features->shaderFloat16 = pdevice->info.gen >= 8;
1040 features->shaderInt8 = pdevice->info.gen >= 8;
1041 break;
1042 }
1043
1044 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1045 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1046 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1047 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1048 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1049 features->fragmentShaderShadingRateInterlock = false;
1050 break;
1051 }
1052
1053 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1054 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1055 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1056 features->hostQueryReset = true;
1057 break;
1058 }
1059
1060 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1061 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1062 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1063 features->shaderInputAttachmentArrayDynamicIndexing = false;
1064 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1065 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1066 features->shaderUniformBufferArrayNonUniformIndexing = false;
1067 features->shaderSampledImageArrayNonUniformIndexing = true;
1068 features->shaderStorageBufferArrayNonUniformIndexing = true;
1069 features->shaderStorageImageArrayNonUniformIndexing = true;
1070 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1071 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1072 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1073 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1074 features->descriptorBindingSampledImageUpdateAfterBind = true;
1075 features->descriptorBindingStorageImageUpdateAfterBind = true;
1076 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1077 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1078 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1079 features->descriptorBindingUpdateUnusedWhilePending = true;
1080 features->descriptorBindingPartiallyBound = true;
1081 features->descriptorBindingVariableDescriptorCount = false;
1082 features->runtimeDescriptorArray = true;
1083 break;
1084 }
1085
1086 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1087 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1088 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1089 features->indexTypeUint8 = true;
1090 break;
1091 }
1092
1093 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1094 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1095 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1096 features->inlineUniformBlock = true;
1097 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1098 break;
1099 }
1100
1101 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1102 VkPhysicalDeviceMultiviewFeatures *features =
1103 (VkPhysicalDeviceMultiviewFeatures *)ext;
1104 features->multiview = true;
1105 features->multiviewGeometryShader = true;
1106 features->multiviewTessellationShader = true;
1107 break;
1108 }
1109
1110 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1111 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1112 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1113 features->imagelessFramebuffer = true;
1114 break;
1115 }
1116
1117 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1118 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1119 features->protectedMemory = false;
1120 break;
1121 }
1122
1123 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1124 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1125 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1126 features->samplerYcbcrConversion = true;
1127 break;
1128 }
1129
1130 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1131 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1132 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1133 features->scalarBlockLayout = true;
1134 break;
1135 }
1136
1137 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1138 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1139 features->shaderBufferInt64Atomics =
1140 pdevice->info.gen >= 9 && pdevice->use_softpin;
1141 features->shaderSharedInt64Atomics = VK_FALSE;
1142 break;
1143 }
1144
1145 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1146 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1147 features->shaderDemoteToHelperInvocation = true;
1148 break;
1149 }
1150
1151 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1152 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1153 features->shaderDrawParameters = true;
1154 break;
1155 }
1156
1157 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1158 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1159 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1160 features->texelBufferAlignment = true;
1161 break;
1162 }
1163
1164 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1165 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1166 features->variablePointersStorageBuffer = true;
1167 features->variablePointers = true;
1168 break;
1169 }
1170
1171 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1172 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1173 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1174 features->transformFeedback = true;
1175 features->geometryStreams = true;
1176 break;
1177 }
1178
1179 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1180 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1181 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1182 features->uniformBufferStandardLayout = true;
1183 break;
1184 }
1185
1186 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1187 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1188 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1189 features->vertexAttributeInstanceRateDivisor = true;
1190 features->vertexAttributeInstanceRateZeroDivisor = true;
1191 break;
1192 }
1193
1194 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1195 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1196 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1197 features->ycbcrImageArrays = true;
1198 break;
1199 }
1200
1201 default:
1202 anv_debug_ignored_stype(ext->sType);
1203 break;
1204 }
1205 }
1206 }
1207
1208 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1209
1210 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1211 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1212
1213 void anv_GetPhysicalDeviceProperties(
1214 VkPhysicalDevice physicalDevice,
1215 VkPhysicalDeviceProperties* pProperties)
1216 {
1217 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1218 const struct gen_device_info *devinfo = &pdevice->info;
1219
1220 /* See assertions made when programming the buffer surface state. */
1221 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1222 (1ul << 30) : (1ul << 27);
1223
1224 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1225 const uint32_t max_textures =
1226 pdevice->has_bindless_images ? UINT16_MAX : 128;
1227 const uint32_t max_samplers =
1228 pdevice->has_bindless_samplers ? UINT16_MAX :
1229 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1230 const uint32_t max_images =
1231 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1232
1233 /* The moment we have anything bindless, claim a high per-stage limit */
1234 const uint32_t max_per_stage =
1235 pdevice->has_a64_buffer_access ? UINT32_MAX :
1236 MAX_BINDING_TABLE_SIZE - MAX_RTS;
1237
1238 VkSampleCountFlags sample_counts =
1239 isl_device_get_sample_counts(&pdevice->isl_dev);
1240
1241
1242 VkPhysicalDeviceLimits limits = {
1243 .maxImageDimension1D = (1 << 14),
1244 .maxImageDimension2D = (1 << 14),
1245 .maxImageDimension3D = (1 << 11),
1246 .maxImageDimensionCube = (1 << 14),
1247 .maxImageArrayLayers = (1 << 11),
1248 .maxTexelBufferElements = 128 * 1024 * 1024,
1249 .maxUniformBufferRange = (1ul << 27),
1250 .maxStorageBufferRange = max_raw_buffer_sz,
1251 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1252 .maxMemoryAllocationCount = UINT32_MAX,
1253 .maxSamplerAllocationCount = 64 * 1024,
1254 .bufferImageGranularity = 64, /* A cache line */
1255 .sparseAddressSpaceSize = 0,
1256 .maxBoundDescriptorSets = MAX_SETS,
1257 .maxPerStageDescriptorSamplers = max_samplers,
1258 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1259 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1260 .maxPerStageDescriptorSampledImages = max_textures,
1261 .maxPerStageDescriptorStorageImages = max_images,
1262 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1263 .maxPerStageResources = max_per_stage,
1264 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1265 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1266 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1267 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1268 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1269 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1270 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1271 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1272 .maxVertexInputAttributes = MAX_VBS,
1273 .maxVertexInputBindings = MAX_VBS,
1274 .maxVertexInputAttributeOffset = 2047,
1275 .maxVertexInputBindingStride = 2048,
1276 .maxVertexOutputComponents = 128,
1277 .maxTessellationGenerationLevel = 64,
1278 .maxTessellationPatchSize = 32,
1279 .maxTessellationControlPerVertexInputComponents = 128,
1280 .maxTessellationControlPerVertexOutputComponents = 128,
1281 .maxTessellationControlPerPatchOutputComponents = 128,
1282 .maxTessellationControlTotalOutputComponents = 2048,
1283 .maxTessellationEvaluationInputComponents = 128,
1284 .maxTessellationEvaluationOutputComponents = 128,
1285 .maxGeometryShaderInvocations = 32,
1286 .maxGeometryInputComponents = 64,
1287 .maxGeometryOutputComponents = 128,
1288 .maxGeometryOutputVertices = 256,
1289 .maxGeometryTotalOutputComponents = 1024,
1290 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1291 .maxFragmentOutputAttachments = 8,
1292 .maxFragmentDualSrcAttachments = 1,
1293 .maxFragmentCombinedOutputResources = 8,
1294 .maxComputeSharedMemorySize = 64 * 1024,
1295 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1296 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1297 .maxComputeWorkGroupSize = {
1298 16 * devinfo->max_cs_threads,
1299 16 * devinfo->max_cs_threads,
1300 16 * devinfo->max_cs_threads,
1301 },
1302 .subPixelPrecisionBits = 8,
1303 .subTexelPrecisionBits = 8,
1304 .mipmapPrecisionBits = 8,
1305 .maxDrawIndexedIndexValue = UINT32_MAX,
1306 .maxDrawIndirectCount = UINT32_MAX,
1307 .maxSamplerLodBias = 16,
1308 .maxSamplerAnisotropy = 16,
1309 .maxViewports = MAX_VIEWPORTS,
1310 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1311 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1312 .viewportSubPixelBits = 13, /* We take a float? */
1313 .minMemoryMapAlignment = 4096, /* A page */
1314 /* The dataport requires texel alignment so we need to assume a worst
1315 * case of R32G32B32A32 which is 16 bytes.
1316 */
1317 .minTexelBufferOffsetAlignment = 16,
1318 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1319 .minUniformBufferOffsetAlignment = 32,
1320 .minStorageBufferOffsetAlignment = 4,
1321 .minTexelOffset = -8,
1322 .maxTexelOffset = 7,
1323 .minTexelGatherOffset = -32,
1324 .maxTexelGatherOffset = 31,
1325 .minInterpolationOffset = -0.5,
1326 .maxInterpolationOffset = 0.4375,
1327 .subPixelInterpolationOffsetBits = 4,
1328 .maxFramebufferWidth = (1 << 14),
1329 .maxFramebufferHeight = (1 << 14),
1330 .maxFramebufferLayers = (1 << 11),
1331 .framebufferColorSampleCounts = sample_counts,
1332 .framebufferDepthSampleCounts = sample_counts,
1333 .framebufferStencilSampleCounts = sample_counts,
1334 .framebufferNoAttachmentsSampleCounts = sample_counts,
1335 .maxColorAttachments = MAX_RTS,
1336 .sampledImageColorSampleCounts = sample_counts,
1337 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1338 .sampledImageDepthSampleCounts = sample_counts,
1339 .sampledImageStencilSampleCounts = sample_counts,
1340 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1341 .maxSampleMaskWords = 1,
1342 .timestampComputeAndGraphics = true,
1343 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1344 .maxClipDistances = 8,
1345 .maxCullDistances = 8,
1346 .maxCombinedClipAndCullDistances = 8,
1347 .discreteQueuePriorities = 2,
1348 .pointSizeRange = { 0.125, 255.875 },
1349 .lineWidthRange = {
1350 0.0,
1351 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1352 2047.9921875 : 7.9921875,
1353 },
1354 .pointSizeGranularity = (1.0 / 8.0),
1355 .lineWidthGranularity = (1.0 / 128.0),
1356 .strictLines = false, /* FINISHME */
1357 .standardSampleLocations = true,
1358 .optimalBufferCopyOffsetAlignment = 128,
1359 .optimalBufferCopyRowPitchAlignment = 128,
1360 .nonCoherentAtomSize = 64,
1361 };
1362
1363 *pProperties = (VkPhysicalDeviceProperties) {
1364 .apiVersion = anv_physical_device_api_version(pdevice),
1365 .driverVersion = vk_get_driver_version(),
1366 .vendorID = 0x8086,
1367 .deviceID = pdevice->chipset_id,
1368 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1369 .limits = limits,
1370 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1371 };
1372
1373 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1374 "%s", pdevice->name);
1375 memcpy(pProperties->pipelineCacheUUID,
1376 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1377 }
1378
1379 void anv_GetPhysicalDeviceProperties2(
1380 VkPhysicalDevice physicalDevice,
1381 VkPhysicalDeviceProperties2* pProperties)
1382 {
1383 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1384
1385 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1386
1387 vk_foreach_struct(ext, pProperties->pNext) {
1388 switch (ext->sType) {
1389 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1390 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1391 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1392
1393 /* We support all of the depth resolve modes */
1394 props->supportedDepthResolveModes =
1395 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1396 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1397 VK_RESOLVE_MODE_MIN_BIT_KHR |
1398 VK_RESOLVE_MODE_MAX_BIT_KHR;
1399
1400 /* Average doesn't make sense for stencil so we don't support that */
1401 props->supportedStencilResolveModes =
1402 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1403 if (pdevice->info.gen >= 8) {
1404 /* The advanced stencil resolve modes currently require stencil
1405 * sampling be supported by the hardware.
1406 */
1407 props->supportedStencilResolveModes |=
1408 VK_RESOLVE_MODE_MIN_BIT_KHR |
1409 VK_RESOLVE_MODE_MAX_BIT_KHR;
1410 }
1411
1412 props->independentResolveNone = true;
1413 props->independentResolve = true;
1414 break;
1415 }
1416
1417 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1418 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1419 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1420
1421 /* It's a bit hard to exactly map our implementation to the limits
1422 * described here. The bindless surface handle in the extended
1423 * message descriptors is 20 bits and it's an index into the table of
1424 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1425 * address. Given that most things consume two surface states per
1426 * view (general/sampled for textures and write-only/read-write for
1427 * images), we claim 2^19 things.
1428 *
1429 * For SSBOs, we just use A64 messages so there is no real limit
1430 * there beyond the limit on the total size of a descriptor set.
1431 */
1432 const unsigned max_bindless_views = 1 << 19;
1433
1434 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1435 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1436 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1437 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1438 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1439 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1440 props->robustBufferAccessUpdateAfterBind = true;
1441 props->quadDivergentImplicitLod = false;
1442 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1443 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1444 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1445 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1446 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1447 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1448 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1449 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1450 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1451 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1452 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1453 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1454 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1455 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1456 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1457 break;
1458 }
1459
1460 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1461 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1462 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1463
1464 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1465 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1466 "Intel open-source Mesa driver");
1467
1468 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1469 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1470
1471 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1472 .major = 1,
1473 .minor = 1,
1474 .subminor = 2,
1475 .patch = 0,
1476 };
1477 break;
1478 }
1479
1480 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1481 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1482 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1483 /* Userptr needs page aligned memory. */
1484 props->minImportedHostPointerAlignment = 4096;
1485 break;
1486 }
1487
1488 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1489 VkPhysicalDeviceIDProperties *id_props =
1490 (VkPhysicalDeviceIDProperties *)ext;
1491 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1492 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1493 /* The LUID is for Windows. */
1494 id_props->deviceLUIDValid = false;
1495 break;
1496 }
1497
1498 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1499 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1500 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1501 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1502 props->maxPerStageDescriptorInlineUniformBlocks =
1503 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1504 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1505 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1506 props->maxDescriptorSetInlineUniformBlocks =
1507 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1508 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1509 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1510 break;
1511 }
1512
1513 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1514 VkPhysicalDeviceMaintenance3Properties *props =
1515 (VkPhysicalDeviceMaintenance3Properties *)ext;
1516 /* This value doesn't matter for us today as our per-stage
1517 * descriptors are the real limit.
1518 */
1519 props->maxPerSetDescriptors = 1024;
1520 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1521 break;
1522 }
1523
1524 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1525 VkPhysicalDeviceMultiviewProperties *properties =
1526 (VkPhysicalDeviceMultiviewProperties *)ext;
1527 properties->maxMultiviewViewCount = 16;
1528 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1529 break;
1530 }
1531
1532 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1533 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1534 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1535 properties->pciDomain = pdevice->pci_info.domain;
1536 properties->pciBus = pdevice->pci_info.bus;
1537 properties->pciDevice = pdevice->pci_info.device;
1538 properties->pciFunction = pdevice->pci_info.function;
1539 break;
1540 }
1541
1542 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1543 VkPhysicalDevicePointClippingProperties *properties =
1544 (VkPhysicalDevicePointClippingProperties *) ext;
1545 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1546 break;
1547 }
1548
1549 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1550 VkPhysicalDeviceProtectedMemoryProperties *props =
1551 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1552 props->protectedNoFault = false;
1553 break;
1554 }
1555
1556 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1557 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1558 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1559
1560 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1561 break;
1562 }
1563
1564 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1565 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1566 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1567 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1568 properties->filterMinmaxSingleComponentFormats = true;
1569 break;
1570 }
1571
1572 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1573 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1574
1575 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1576
1577 VkShaderStageFlags scalar_stages = 0;
1578 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1579 if (pdevice->compiler->scalar_stage[stage])
1580 scalar_stages |= mesa_to_vk_shader_stage(stage);
1581 }
1582 properties->supportedStages = scalar_stages;
1583
1584 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1585 VK_SUBGROUP_FEATURE_VOTE_BIT |
1586 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1587 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1588 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1589 VK_SUBGROUP_FEATURE_QUAD_BIT;
1590 if (pdevice->info.gen >= 8) {
1591 /* TODO: There's no technical reason why these can't be made to
1592 * work on gen7 but they don't at the moment so it's best to leave
1593 * the feature disabled than enabled and broken.
1594 */
1595 properties->supportedOperations |=
1596 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1597 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1598 }
1599 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1600 break;
1601 }
1602
1603 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1604 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1605 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1606 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1607 props->minSubgroupSize = 8;
1608 props->maxSubgroupSize = 32;
1609 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1610 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1611 break;
1612 }
1613
1614 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1615 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1616 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1617
1618 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1619 * Base Address:
1620 *
1621 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1622 * specifies the base address of the first element of the surface,
1623 * computed in software by adding the surface base address to the
1624 * byte offset of the element in the buffer. The base address must
1625 * be aligned to element size."
1626 *
1627 * The typed dataport messages require that things be texel aligned.
1628 * Otherwise, we may just load/store the wrong data or, in the worst
1629 * case, there may be hangs.
1630 */
1631 props->storageTexelBufferOffsetAlignmentBytes = 16;
1632 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1633
1634 /* The sampler, however, is much more forgiving and it can handle
1635 * arbitrary byte alignment for linear and buffer surfaces. It's
1636 * hard to find a good PRM citation for this but years of empirical
1637 * experience demonstrate that this is true.
1638 */
1639 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1640 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1641 break;
1642 }
1643
1644 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1645 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1646 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1647
1648 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1649 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1650 props->maxTransformFeedbackBufferSize = (1ull << 32);
1651 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1652 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1653 props->maxTransformFeedbackBufferDataStride = 2048;
1654 props->transformFeedbackQueries = true;
1655 props->transformFeedbackStreamsLinesTriangles = false;
1656 props->transformFeedbackRasterizationStreamSelect = false;
1657 props->transformFeedbackDraw = true;
1658 break;
1659 }
1660
1661 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1662 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1663 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1664 /* We have to restrict this a bit for multiview */
1665 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1666 break;
1667 }
1668
1669 default:
1670 anv_debug_ignored_stype(ext->sType);
1671 break;
1672 }
1673 }
1674 }
1675
1676 /* We support exactly one queue family. */
1677 static const VkQueueFamilyProperties
1678 anv_queue_family_properties = {
1679 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1680 VK_QUEUE_COMPUTE_BIT |
1681 VK_QUEUE_TRANSFER_BIT,
1682 .queueCount = 1,
1683 .timestampValidBits = 36, /* XXX: Real value here */
1684 .minImageTransferGranularity = { 1, 1, 1 },
1685 };
1686
1687 void anv_GetPhysicalDeviceQueueFamilyProperties(
1688 VkPhysicalDevice physicalDevice,
1689 uint32_t* pCount,
1690 VkQueueFamilyProperties* pQueueFamilyProperties)
1691 {
1692 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1693
1694 vk_outarray_append(&out, p) {
1695 *p = anv_queue_family_properties;
1696 }
1697 }
1698
1699 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1700 VkPhysicalDevice physicalDevice,
1701 uint32_t* pQueueFamilyPropertyCount,
1702 VkQueueFamilyProperties2* pQueueFamilyProperties)
1703 {
1704
1705 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1706
1707 vk_outarray_append(&out, p) {
1708 p->queueFamilyProperties = anv_queue_family_properties;
1709
1710 vk_foreach_struct(s, p->pNext) {
1711 anv_debug_ignored_stype(s->sType);
1712 }
1713 }
1714 }
1715
1716 void anv_GetPhysicalDeviceMemoryProperties(
1717 VkPhysicalDevice physicalDevice,
1718 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1719 {
1720 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1721
1722 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1723 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1724 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1725 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1726 .heapIndex = physical_device->memory.types[i].heapIndex,
1727 };
1728 }
1729
1730 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1731 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1732 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1733 .size = physical_device->memory.heaps[i].size,
1734 .flags = physical_device->memory.heaps[i].flags,
1735 };
1736 }
1737 }
1738
1739 static void
1740 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1741 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1742 {
1743 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1744 uint64_t sys_available = get_available_system_memory();
1745 assert(sys_available > 0);
1746
1747 VkDeviceSize total_heaps_size = 0;
1748 for (size_t i = 0; i < device->memory.heap_count; i++)
1749 total_heaps_size += device->memory.heaps[i].size;
1750
1751 for (size_t i = 0; i < device->memory.heap_count; i++) {
1752 VkDeviceSize heap_size = device->memory.heaps[i].size;
1753 VkDeviceSize heap_used = device->memory.heaps[i].used;
1754 VkDeviceSize heap_budget;
1755
1756 double heap_proportion = (double) heap_size / total_heaps_size;
1757 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1758
1759 /*
1760 * Let's not incite the app to starve the system: report at most 90% of
1761 * available system memory.
1762 */
1763 uint64_t heap_available = sys_available_prop * 9 / 10;
1764 heap_budget = MIN2(heap_size, heap_used + heap_available);
1765
1766 /*
1767 * Round down to the nearest MB
1768 */
1769 heap_budget &= ~((1ull << 20) - 1);
1770
1771 /*
1772 * The heapBudget value must be non-zero for array elements less than
1773 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1774 * value must be less than or equal to VkMemoryHeap::size for each heap.
1775 */
1776 assert(0 < heap_budget && heap_budget <= heap_size);
1777
1778 memoryBudget->heapUsage[i] = heap_used;
1779 memoryBudget->heapBudget[i] = heap_budget;
1780 }
1781
1782 /* The heapBudget and heapUsage values must be zero for array elements
1783 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1784 */
1785 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1786 memoryBudget->heapBudget[i] = 0;
1787 memoryBudget->heapUsage[i] = 0;
1788 }
1789 }
1790
1791 void anv_GetPhysicalDeviceMemoryProperties2(
1792 VkPhysicalDevice physicalDevice,
1793 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1794 {
1795 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1796 &pMemoryProperties->memoryProperties);
1797
1798 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1799 switch (ext->sType) {
1800 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1801 anv_get_memory_budget(physicalDevice, (void*)ext);
1802 break;
1803 default:
1804 anv_debug_ignored_stype(ext->sType);
1805 break;
1806 }
1807 }
1808 }
1809
1810 void
1811 anv_GetDeviceGroupPeerMemoryFeatures(
1812 VkDevice device,
1813 uint32_t heapIndex,
1814 uint32_t localDeviceIndex,
1815 uint32_t remoteDeviceIndex,
1816 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1817 {
1818 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1819 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1820 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1821 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1822 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1823 }
1824
1825 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1826 VkInstance _instance,
1827 const char* pName)
1828 {
1829 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1830
1831 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1832 * when we have to return valid function pointers, NULL, or it's left
1833 * undefined. See the table for exact details.
1834 */
1835 if (pName == NULL)
1836 return NULL;
1837
1838 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1839 if (strcmp(pName, "vk" #entrypoint) == 0) \
1840 return (PFN_vkVoidFunction)anv_##entrypoint
1841
1842 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1843 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1844 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1845 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1846
1847 #undef LOOKUP_ANV_ENTRYPOINT
1848
1849 if (instance == NULL)
1850 return NULL;
1851
1852 int idx = anv_get_instance_entrypoint_index(pName);
1853 if (idx >= 0)
1854 return instance->dispatch.entrypoints[idx];
1855
1856 idx = anv_get_device_entrypoint_index(pName);
1857 if (idx >= 0)
1858 return instance->device_dispatch.entrypoints[idx];
1859
1860 return NULL;
1861 }
1862
1863 /* With version 1+ of the loader interface the ICD should expose
1864 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1865 */
1866 PUBLIC
1867 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1868 VkInstance instance,
1869 const char* pName);
1870
1871 PUBLIC
1872 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1873 VkInstance instance,
1874 const char* pName)
1875 {
1876 return anv_GetInstanceProcAddr(instance, pName);
1877 }
1878
1879 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1880 VkDevice _device,
1881 const char* pName)
1882 {
1883 ANV_FROM_HANDLE(anv_device, device, _device);
1884
1885 if (!device || !pName)
1886 return NULL;
1887
1888 int idx = anv_get_device_entrypoint_index(pName);
1889 if (idx < 0)
1890 return NULL;
1891
1892 return device->dispatch.entrypoints[idx];
1893 }
1894
1895 VkResult
1896 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1897 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1898 const VkAllocationCallbacks* pAllocator,
1899 VkDebugReportCallbackEXT* pCallback)
1900 {
1901 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1902 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1903 pCreateInfo, pAllocator, &instance->alloc,
1904 pCallback);
1905 }
1906
1907 void
1908 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1909 VkDebugReportCallbackEXT _callback,
1910 const VkAllocationCallbacks* pAllocator)
1911 {
1912 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1913 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1914 _callback, pAllocator, &instance->alloc);
1915 }
1916
1917 void
1918 anv_DebugReportMessageEXT(VkInstance _instance,
1919 VkDebugReportFlagsEXT flags,
1920 VkDebugReportObjectTypeEXT objectType,
1921 uint64_t object,
1922 size_t location,
1923 int32_t messageCode,
1924 const char* pLayerPrefix,
1925 const char* pMessage)
1926 {
1927 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1928 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1929 object, location, messageCode, pLayerPrefix, pMessage);
1930 }
1931
1932 static void
1933 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1934 {
1935 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1936 queue->device = device;
1937 queue->flags = 0;
1938 }
1939
1940 static void
1941 anv_queue_finish(struct anv_queue *queue)
1942 {
1943 }
1944
1945 static struct anv_state
1946 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1947 {
1948 struct anv_state state;
1949
1950 state = anv_state_pool_alloc(pool, size, align);
1951 memcpy(state.map, p, size);
1952
1953 return state;
1954 }
1955
1956 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
1957 * straightforward 32-bit float color in the first 64 bytes. Instead of using
1958 * a nice float/integer union like Gen8+, Haswell specifies the integer border
1959 * color as a separate entry /after/ the float color. The layout of this entry
1960 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
1961 *
1962 * Since we don't know the format/bpp, we can't make any of the border colors
1963 * containing '1' work for all formats, as it would be in the wrong place for
1964 * some of them. We opt to make 32-bit integers work as this seems like the
1965 * most common option. Fortunately, transparent black works regardless, as
1966 * all zeroes is the same in every bit-size.
1967 */
1968 struct hsw_border_color {
1969 float float32[4];
1970 uint32_t _pad0[12];
1971 uint32_t uint32[4];
1972 uint32_t _pad1[108];
1973 };
1974
1975 struct gen8_border_color {
1976 union {
1977 float float32[4];
1978 uint32_t uint32[4];
1979 };
1980 /* Pad out to 64 bytes */
1981 uint32_t _pad[12];
1982 };
1983
1984 static void
1985 anv_device_init_border_colors(struct anv_device *device)
1986 {
1987 if (device->info.is_haswell) {
1988 static const struct hsw_border_color border_colors[] = {
1989 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1990 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1991 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1992 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1993 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1994 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1995 };
1996
1997 device->border_colors =
1998 anv_state_pool_emit_data(&device->dynamic_state_pool,
1999 sizeof(border_colors), 512, border_colors);
2000 } else {
2001 static const struct gen8_border_color border_colors[] = {
2002 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2003 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2004 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2005 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2006 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2007 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2008 };
2009
2010 device->border_colors =
2011 anv_state_pool_emit_data(&device->dynamic_state_pool,
2012 sizeof(border_colors), 64, border_colors);
2013 }
2014 }
2015
2016 static void
2017 anv_device_init_trivial_batch(struct anv_device *device)
2018 {
2019 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
2020
2021 if (device->instance->physicalDevice.has_exec_async)
2022 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
2023
2024 if (device->instance->physicalDevice.use_softpin)
2025 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
2026
2027 anv_vma_alloc(device, &device->trivial_batch_bo);
2028
2029 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
2030 0, 4096, 0);
2031
2032 struct anv_batch batch = {
2033 .start = map,
2034 .next = map,
2035 .end = map + 4096,
2036 };
2037
2038 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2039 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2040
2041 if (!device->info.has_llc)
2042 gen_clflush_range(map, batch.next - map);
2043
2044 anv_gem_munmap(map, device->trivial_batch_bo.size);
2045 }
2046
2047 VkResult anv_EnumerateDeviceExtensionProperties(
2048 VkPhysicalDevice physicalDevice,
2049 const char* pLayerName,
2050 uint32_t* pPropertyCount,
2051 VkExtensionProperties* pProperties)
2052 {
2053 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2054 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2055
2056 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2057 if (device->supported_extensions.extensions[i]) {
2058 vk_outarray_append(&out, prop) {
2059 *prop = anv_device_extensions[i];
2060 }
2061 }
2062 }
2063
2064 return vk_outarray_status(&out);
2065 }
2066
2067 static void
2068 anv_device_init_dispatch(struct anv_device *device)
2069 {
2070 const struct anv_device_dispatch_table *genX_table;
2071 switch (device->info.gen) {
2072 case 11:
2073 genX_table = &gen11_device_dispatch_table;
2074 break;
2075 case 10:
2076 genX_table = &gen10_device_dispatch_table;
2077 break;
2078 case 9:
2079 genX_table = &gen9_device_dispatch_table;
2080 break;
2081 case 8:
2082 genX_table = &gen8_device_dispatch_table;
2083 break;
2084 case 7:
2085 if (device->info.is_haswell)
2086 genX_table = &gen75_device_dispatch_table;
2087 else
2088 genX_table = &gen7_device_dispatch_table;
2089 break;
2090 default:
2091 unreachable("unsupported gen\n");
2092 }
2093
2094 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2095 /* Vulkan requires that entrypoints for extensions which have not been
2096 * enabled must not be advertised.
2097 */
2098 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2099 &device->instance->enabled_extensions,
2100 &device->enabled_extensions)) {
2101 device->dispatch.entrypoints[i] = NULL;
2102 } else if (genX_table->entrypoints[i]) {
2103 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2104 } else {
2105 device->dispatch.entrypoints[i] =
2106 anv_device_dispatch_table.entrypoints[i];
2107 }
2108 }
2109 }
2110
2111 static int
2112 vk_priority_to_gen(int priority)
2113 {
2114 switch (priority) {
2115 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2116 return GEN_CONTEXT_LOW_PRIORITY;
2117 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2118 return GEN_CONTEXT_MEDIUM_PRIORITY;
2119 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2120 return GEN_CONTEXT_HIGH_PRIORITY;
2121 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2122 return GEN_CONTEXT_REALTIME_PRIORITY;
2123 default:
2124 unreachable("Invalid priority");
2125 }
2126 }
2127
2128 static void
2129 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2130 {
2131 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2132
2133 if (device->instance->physicalDevice.has_exec_async)
2134 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2135
2136 if (device->instance->physicalDevice.use_softpin)
2137 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2138
2139 anv_vma_alloc(device, &device->hiz_clear_bo);
2140
2141 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2142 0, 4096, 0);
2143
2144 union isl_color_value hiz_clear = { .u32 = { 0, } };
2145 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2146
2147 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2148 anv_gem_munmap(map, device->hiz_clear_bo.size);
2149 }
2150
2151 static bool
2152 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2153 struct anv_block_pool *pool,
2154 uint64_t address)
2155 {
2156 for (uint32_t i = 0; i < pool->nbos; i++) {
2157 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2158 uint32_t bo_size = pool->bos[i].size;
2159 if (address >= bo_address && address < (bo_address + bo_size)) {
2160 *ret = (struct gen_batch_decode_bo) {
2161 .addr = bo_address,
2162 .size = bo_size,
2163 .map = pool->bos[i].map,
2164 };
2165 return true;
2166 }
2167 }
2168 return false;
2169 }
2170
2171 /* Finding a buffer for batch decoding */
2172 static struct gen_batch_decode_bo
2173 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2174 {
2175 struct anv_device *device = v_batch;
2176 struct gen_batch_decode_bo ret_bo = {};
2177
2178 assert(ppgtt);
2179
2180 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2181 return ret_bo;
2182 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2183 return ret_bo;
2184 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2185 return ret_bo;
2186 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2187 return ret_bo;
2188
2189 if (!device->cmd_buffer_being_decoded)
2190 return (struct gen_batch_decode_bo) { };
2191
2192 struct anv_batch_bo **bo;
2193
2194 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2195 /* The decoder zeroes out the top 16 bits, so we need to as well */
2196 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2197
2198 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2199 return (struct gen_batch_decode_bo) {
2200 .addr = bo_address,
2201 .size = (*bo)->bo.size,
2202 .map = (*bo)->bo.map,
2203 };
2204 }
2205 }
2206
2207 return (struct gen_batch_decode_bo) { };
2208 }
2209
2210 VkResult anv_CreateDevice(
2211 VkPhysicalDevice physicalDevice,
2212 const VkDeviceCreateInfo* pCreateInfo,
2213 const VkAllocationCallbacks* pAllocator,
2214 VkDevice* pDevice)
2215 {
2216 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2217 VkResult result;
2218 struct anv_device *device;
2219
2220 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2221
2222 struct anv_device_extension_table enabled_extensions = { };
2223 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2224 int idx;
2225 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2226 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2227 anv_device_extensions[idx].extensionName) == 0)
2228 break;
2229 }
2230
2231 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2232 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2233
2234 if (!physical_device->supported_extensions.extensions[idx])
2235 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2236
2237 enabled_extensions.extensions[idx] = true;
2238 }
2239
2240 /* Check enabled features */
2241 if (pCreateInfo->pEnabledFeatures) {
2242 VkPhysicalDeviceFeatures supported_features;
2243 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2244 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2245 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2246 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2247 for (uint32_t i = 0; i < num_features; i++) {
2248 if (enabled_feature[i] && !supported_feature[i])
2249 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2250 }
2251 }
2252
2253 /* Check requested queues and fail if we are requested to create any
2254 * queues with flags we don't support.
2255 */
2256 assert(pCreateInfo->queueCreateInfoCount > 0);
2257 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2258 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2259 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2260 }
2261
2262 /* Check if client specified queue priority. */
2263 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2264 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2265 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2266
2267 VkQueueGlobalPriorityEXT priority =
2268 queue_priority ? queue_priority->globalPriority :
2269 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2270
2271 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2272 sizeof(*device), 8,
2273 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2274 if (!device)
2275 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2276
2277 if (INTEL_DEBUG & DEBUG_BATCH) {
2278 const unsigned decode_flags =
2279 GEN_BATCH_DECODE_FULL |
2280 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2281 GEN_BATCH_DECODE_OFFSETS |
2282 GEN_BATCH_DECODE_FLOATS;
2283
2284 gen_batch_decode_ctx_init(&device->decoder_ctx,
2285 &physical_device->info,
2286 stderr, decode_flags, NULL,
2287 decode_get_bo, NULL, device);
2288 }
2289
2290 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2291 device->instance = physical_device->instance;
2292 device->chipset_id = physical_device->chipset_id;
2293 device->no_hw = physical_device->no_hw;
2294 device->_lost = false;
2295
2296 if (pAllocator)
2297 device->alloc = *pAllocator;
2298 else
2299 device->alloc = physical_device->instance->alloc;
2300
2301 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2302 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2303 if (device->fd == -1) {
2304 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2305 goto fail_device;
2306 }
2307
2308 device->context_id = anv_gem_create_context(device);
2309 if (device->context_id == -1) {
2310 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2311 goto fail_fd;
2312 }
2313
2314 if (physical_device->use_softpin) {
2315 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2316 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2317 goto fail_fd;
2318 }
2319
2320 /* keep the page with address zero out of the allocator */
2321 struct anv_memory_heap *low_heap =
2322 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2323 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2324 device->vma_lo_available = low_heap->size;
2325
2326 struct anv_memory_heap *high_heap =
2327 &physical_device->memory.heaps[0];
2328 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2329 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2330 high_heap->size;
2331 }
2332
2333 list_inithead(&device->memory_objects);
2334
2335 /* As per spec, the driver implementation may deny requests to acquire
2336 * a priority above the default priority (MEDIUM) if the caller does not
2337 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2338 * is returned.
2339 */
2340 if (physical_device->has_context_priority) {
2341 int err = anv_gem_set_context_param(device->fd, device->context_id,
2342 I915_CONTEXT_PARAM_PRIORITY,
2343 vk_priority_to_gen(priority));
2344 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2345 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2346 goto fail_fd;
2347 }
2348 }
2349
2350 device->info = physical_device->info;
2351 device->isl_dev = physical_device->isl_dev;
2352
2353 /* On Broadwell and later, we can use batch chaining to more efficiently
2354 * implement growing command buffers. Prior to Haswell, the kernel
2355 * command parser gets in the way and we have to fall back to growing
2356 * the batch.
2357 */
2358 device->can_chain_batches = device->info.gen >= 8;
2359
2360 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2361 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2362 device->enabled_extensions = enabled_extensions;
2363
2364 anv_device_init_dispatch(device);
2365
2366 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2367 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2368 goto fail_context_id;
2369 }
2370
2371 pthread_condattr_t condattr;
2372 if (pthread_condattr_init(&condattr) != 0) {
2373 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2374 goto fail_mutex;
2375 }
2376 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2377 pthread_condattr_destroy(&condattr);
2378 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2379 goto fail_mutex;
2380 }
2381 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2382 pthread_condattr_destroy(&condattr);
2383 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2384 goto fail_mutex;
2385 }
2386 pthread_condattr_destroy(&condattr);
2387
2388 uint64_t bo_flags =
2389 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2390 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2391 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2392 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2393
2394 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2395
2396 result = anv_bo_cache_init(&device->bo_cache);
2397 if (result != VK_SUCCESS)
2398 goto fail_batch_bo_pool;
2399
2400 if (!physical_device->use_softpin)
2401 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2402
2403 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2404 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2405 16384,
2406 bo_flags);
2407 if (result != VK_SUCCESS)
2408 goto fail_bo_cache;
2409
2410 result = anv_state_pool_init(&device->instruction_state_pool, device,
2411 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2412 16384,
2413 bo_flags);
2414 if (result != VK_SUCCESS)
2415 goto fail_dynamic_state_pool;
2416
2417 result = anv_state_pool_init(&device->surface_state_pool, device,
2418 SURFACE_STATE_POOL_MIN_ADDRESS,
2419 4096,
2420 bo_flags);
2421 if (result != VK_SUCCESS)
2422 goto fail_instruction_state_pool;
2423
2424 if (physical_device->use_softpin) {
2425 result = anv_state_pool_init(&device->binding_table_pool, device,
2426 BINDING_TABLE_POOL_MIN_ADDRESS,
2427 4096,
2428 bo_flags);
2429 if (result != VK_SUCCESS)
2430 goto fail_surface_state_pool;
2431 }
2432
2433 result = anv_bo_init_new(&device->workaround_bo, device, 4096);
2434 if (result != VK_SUCCESS)
2435 goto fail_binding_table_pool;
2436
2437 if (physical_device->use_softpin)
2438 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2439
2440 if (!anv_vma_alloc(device, &device->workaround_bo))
2441 goto fail_workaround_bo;
2442
2443 anv_device_init_trivial_batch(device);
2444
2445 if (device->info.gen >= 10)
2446 anv_device_init_hiz_clear_value_bo(device);
2447
2448 anv_scratch_pool_init(device, &device->scratch_pool);
2449
2450 anv_queue_init(device, &device->queue);
2451
2452 switch (device->info.gen) {
2453 case 7:
2454 if (!device->info.is_haswell)
2455 result = gen7_init_device_state(device);
2456 else
2457 result = gen75_init_device_state(device);
2458 break;
2459 case 8:
2460 result = gen8_init_device_state(device);
2461 break;
2462 case 9:
2463 result = gen9_init_device_state(device);
2464 break;
2465 case 10:
2466 result = gen10_init_device_state(device);
2467 break;
2468 case 11:
2469 result = gen11_init_device_state(device);
2470 break;
2471 default:
2472 /* Shouldn't get here as we don't create physical devices for any other
2473 * gens. */
2474 unreachable("unhandled gen");
2475 }
2476 if (result != VK_SUCCESS)
2477 goto fail_workaround_bo;
2478
2479 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2480
2481 anv_device_init_blorp(device);
2482
2483 anv_device_init_border_colors(device);
2484
2485 *pDevice = anv_device_to_handle(device);
2486
2487 return VK_SUCCESS;
2488
2489 fail_workaround_bo:
2490 anv_queue_finish(&device->queue);
2491 anv_scratch_pool_finish(device, &device->scratch_pool);
2492 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2493 anv_gem_close(device, device->workaround_bo.gem_handle);
2494 fail_binding_table_pool:
2495 if (physical_device->use_softpin)
2496 anv_state_pool_finish(&device->binding_table_pool);
2497 fail_surface_state_pool:
2498 anv_state_pool_finish(&device->surface_state_pool);
2499 fail_instruction_state_pool:
2500 anv_state_pool_finish(&device->instruction_state_pool);
2501 fail_dynamic_state_pool:
2502 anv_state_pool_finish(&device->dynamic_state_pool);
2503 fail_bo_cache:
2504 anv_bo_cache_finish(&device->bo_cache);
2505 fail_batch_bo_pool:
2506 anv_bo_pool_finish(&device->batch_bo_pool);
2507 pthread_cond_destroy(&device->queue_submit);
2508 fail_mutex:
2509 pthread_mutex_destroy(&device->mutex);
2510 fail_context_id:
2511 anv_gem_destroy_context(device, device->context_id);
2512 fail_fd:
2513 close(device->fd);
2514 fail_device:
2515 vk_free(&device->alloc, device);
2516
2517 return result;
2518 }
2519
2520 void anv_DestroyDevice(
2521 VkDevice _device,
2522 const VkAllocationCallbacks* pAllocator)
2523 {
2524 ANV_FROM_HANDLE(anv_device, device, _device);
2525 struct anv_physical_device *physical_device;
2526
2527 if (!device)
2528 return;
2529
2530 physical_device = &device->instance->physicalDevice;
2531
2532 anv_device_finish_blorp(device);
2533
2534 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2535
2536 anv_queue_finish(&device->queue);
2537
2538 #ifdef HAVE_VALGRIND
2539 /* We only need to free these to prevent valgrind errors. The backing
2540 * BO will go away in a couple of lines so we don't actually leak.
2541 */
2542 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2543 #endif
2544
2545 anv_scratch_pool_finish(device, &device->scratch_pool);
2546
2547 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2548 anv_vma_free(device, &device->workaround_bo);
2549 anv_gem_close(device, device->workaround_bo.gem_handle);
2550
2551 anv_vma_free(device, &device->trivial_batch_bo);
2552 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2553 if (device->info.gen >= 10)
2554 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2555
2556 if (physical_device->use_softpin)
2557 anv_state_pool_finish(&device->binding_table_pool);
2558 anv_state_pool_finish(&device->surface_state_pool);
2559 anv_state_pool_finish(&device->instruction_state_pool);
2560 anv_state_pool_finish(&device->dynamic_state_pool);
2561
2562 anv_bo_cache_finish(&device->bo_cache);
2563
2564 anv_bo_pool_finish(&device->batch_bo_pool);
2565
2566 pthread_cond_destroy(&device->queue_submit);
2567 pthread_mutex_destroy(&device->mutex);
2568
2569 anv_gem_destroy_context(device, device->context_id);
2570
2571 if (INTEL_DEBUG & DEBUG_BATCH)
2572 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2573
2574 close(device->fd);
2575
2576 vk_free(&device->alloc, device);
2577 }
2578
2579 VkResult anv_EnumerateInstanceLayerProperties(
2580 uint32_t* pPropertyCount,
2581 VkLayerProperties* pProperties)
2582 {
2583 if (pProperties == NULL) {
2584 *pPropertyCount = 0;
2585 return VK_SUCCESS;
2586 }
2587
2588 /* None supported at this time */
2589 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2590 }
2591
2592 VkResult anv_EnumerateDeviceLayerProperties(
2593 VkPhysicalDevice physicalDevice,
2594 uint32_t* pPropertyCount,
2595 VkLayerProperties* pProperties)
2596 {
2597 if (pProperties == NULL) {
2598 *pPropertyCount = 0;
2599 return VK_SUCCESS;
2600 }
2601
2602 /* None supported at this time */
2603 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2604 }
2605
2606 void anv_GetDeviceQueue(
2607 VkDevice _device,
2608 uint32_t queueNodeIndex,
2609 uint32_t queueIndex,
2610 VkQueue* pQueue)
2611 {
2612 ANV_FROM_HANDLE(anv_device, device, _device);
2613
2614 assert(queueIndex == 0);
2615
2616 *pQueue = anv_queue_to_handle(&device->queue);
2617 }
2618
2619 void anv_GetDeviceQueue2(
2620 VkDevice _device,
2621 const VkDeviceQueueInfo2* pQueueInfo,
2622 VkQueue* pQueue)
2623 {
2624 ANV_FROM_HANDLE(anv_device, device, _device);
2625
2626 assert(pQueueInfo->queueIndex == 0);
2627
2628 if (pQueueInfo->flags == device->queue.flags)
2629 *pQueue = anv_queue_to_handle(&device->queue);
2630 else
2631 *pQueue = NULL;
2632 }
2633
2634 VkResult
2635 _anv_device_set_lost(struct anv_device *device,
2636 const char *file, int line,
2637 const char *msg, ...)
2638 {
2639 VkResult err;
2640 va_list ap;
2641
2642 device->_lost = true;
2643
2644 va_start(ap, msg);
2645 err = __vk_errorv(device->instance, device,
2646 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2647 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2648 va_end(ap);
2649
2650 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2651 abort();
2652
2653 return err;
2654 }
2655
2656 VkResult
2657 anv_device_query_status(struct anv_device *device)
2658 {
2659 /* This isn't likely as most of the callers of this function already check
2660 * for it. However, it doesn't hurt to check and it potentially lets us
2661 * avoid an ioctl.
2662 */
2663 if (anv_device_is_lost(device))
2664 return VK_ERROR_DEVICE_LOST;
2665
2666 uint32_t active, pending;
2667 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2668 if (ret == -1) {
2669 /* We don't know the real error. */
2670 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2671 }
2672
2673 if (active) {
2674 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2675 } else if (pending) {
2676 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2677 }
2678
2679 return VK_SUCCESS;
2680 }
2681
2682 VkResult
2683 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2684 {
2685 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2686 * Other usages of the BO (such as on different hardware) will not be
2687 * flagged as "busy" by this ioctl. Use with care.
2688 */
2689 int ret = anv_gem_busy(device, bo->gem_handle);
2690 if (ret == 1) {
2691 return VK_NOT_READY;
2692 } else if (ret == -1) {
2693 /* We don't know the real error. */
2694 return anv_device_set_lost(device, "gem wait failed: %m");
2695 }
2696
2697 /* Query for device status after the busy call. If the BO we're checking
2698 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2699 * client because it clearly doesn't have valid data. Yes, this most
2700 * likely means an ioctl, but we just did an ioctl to query the busy status
2701 * so it's no great loss.
2702 */
2703 return anv_device_query_status(device);
2704 }
2705
2706 VkResult
2707 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2708 int64_t timeout)
2709 {
2710 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2711 if (ret == -1 && errno == ETIME) {
2712 return VK_TIMEOUT;
2713 } else if (ret == -1) {
2714 /* We don't know the real error. */
2715 return anv_device_set_lost(device, "gem wait failed: %m");
2716 }
2717
2718 /* Query for device status after the wait. If the BO we're waiting on got
2719 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2720 * because it clearly doesn't have valid data. Yes, this most likely means
2721 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2722 */
2723 return anv_device_query_status(device);
2724 }
2725
2726 VkResult anv_DeviceWaitIdle(
2727 VkDevice _device)
2728 {
2729 ANV_FROM_HANDLE(anv_device, device, _device);
2730 if (anv_device_is_lost(device))
2731 return VK_ERROR_DEVICE_LOST;
2732
2733 struct anv_batch batch;
2734
2735 uint32_t cmds[8];
2736 batch.start = batch.next = cmds;
2737 batch.end = (void *) cmds + sizeof(cmds);
2738
2739 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2740 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2741
2742 return anv_device_submit_simple_batch(device, &batch);
2743 }
2744
2745 bool
2746 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2747 {
2748 if (!(bo->flags & EXEC_OBJECT_PINNED))
2749 return true;
2750
2751 pthread_mutex_lock(&device->vma_mutex);
2752
2753 bo->offset = 0;
2754
2755 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2756 device->vma_hi_available >= bo->size) {
2757 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2758 if (addr) {
2759 bo->offset = gen_canonical_address(addr);
2760 assert(addr == gen_48b_address(bo->offset));
2761 device->vma_hi_available -= bo->size;
2762 }
2763 }
2764
2765 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2766 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2767 if (addr) {
2768 bo->offset = gen_canonical_address(addr);
2769 assert(addr == gen_48b_address(bo->offset));
2770 device->vma_lo_available -= bo->size;
2771 }
2772 }
2773
2774 pthread_mutex_unlock(&device->vma_mutex);
2775
2776 return bo->offset != 0;
2777 }
2778
2779 void
2780 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2781 {
2782 if (!(bo->flags & EXEC_OBJECT_PINNED))
2783 return;
2784
2785 const uint64_t addr_48b = gen_48b_address(bo->offset);
2786
2787 pthread_mutex_lock(&device->vma_mutex);
2788
2789 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2790 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2791 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2792 device->vma_lo_available += bo->size;
2793 } else {
2794 ASSERTED const struct anv_physical_device *physical_device =
2795 &device->instance->physicalDevice;
2796 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2797 addr_48b < (physical_device->memory.heaps[0].vma_start +
2798 physical_device->memory.heaps[0].vma_size));
2799 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2800 device->vma_hi_available += bo->size;
2801 }
2802
2803 pthread_mutex_unlock(&device->vma_mutex);
2804
2805 bo->offset = 0;
2806 }
2807
2808 VkResult
2809 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2810 {
2811 uint32_t gem_handle = anv_gem_create(device, size);
2812 if (!gem_handle)
2813 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2814
2815 anv_bo_init(bo, gem_handle, size);
2816
2817 return VK_SUCCESS;
2818 }
2819
2820 VkResult anv_AllocateMemory(
2821 VkDevice _device,
2822 const VkMemoryAllocateInfo* pAllocateInfo,
2823 const VkAllocationCallbacks* pAllocator,
2824 VkDeviceMemory* pMem)
2825 {
2826 ANV_FROM_HANDLE(anv_device, device, _device);
2827 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2828 struct anv_device_memory *mem;
2829 VkResult result = VK_SUCCESS;
2830
2831 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2832
2833 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2834 assert(pAllocateInfo->allocationSize > 0);
2835
2836 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2837 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2838
2839 /* FINISHME: Fail if allocation request exceeds heap size. */
2840
2841 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2842 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2843 if (mem == NULL)
2844 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2845
2846 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2847 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2848 mem->map = NULL;
2849 mem->map_size = 0;
2850 mem->ahw = NULL;
2851 mem->host_ptr = NULL;
2852
2853 uint64_t bo_flags = 0;
2854
2855 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2856 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2857 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2858
2859 const struct wsi_memory_allocate_info *wsi_info =
2860 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2861 if (wsi_info && wsi_info->implicit_sync) {
2862 /* We need to set the WRITE flag on window system buffers so that GEM
2863 * will know we're writing to them and synchronize uses on other rings
2864 * (eg if the display server uses the blitter ring).
2865 */
2866 bo_flags |= EXEC_OBJECT_WRITE;
2867 } else if (pdevice->has_exec_async) {
2868 bo_flags |= EXEC_OBJECT_ASYNC;
2869 }
2870
2871 if (pdevice->use_softpin)
2872 bo_flags |= EXEC_OBJECT_PINNED;
2873
2874 const VkExportMemoryAllocateInfo *export_info =
2875 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2876
2877 /* Check if we need to support Android HW buffer export. If so,
2878 * create AHardwareBuffer and import memory from it.
2879 */
2880 bool android_export = false;
2881 if (export_info && export_info->handleTypes &
2882 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2883 android_export = true;
2884
2885 /* Android memory import. */
2886 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2887 vk_find_struct_const(pAllocateInfo->pNext,
2888 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2889
2890 if (ahw_import_info) {
2891 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2892 if (result != VK_SUCCESS)
2893 goto fail;
2894
2895 goto success;
2896 } else if (android_export) {
2897 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2898 if (result != VK_SUCCESS)
2899 goto fail;
2900
2901 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2902 .buffer = mem->ahw,
2903 };
2904 result = anv_import_ahw_memory(_device, mem, &import_info);
2905 if (result != VK_SUCCESS)
2906 goto fail;
2907
2908 goto success;
2909 }
2910
2911 const VkImportMemoryFdInfoKHR *fd_info =
2912 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2913
2914 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2915 * ignored.
2916 */
2917 if (fd_info && fd_info->handleType) {
2918 /* At the moment, we support only the below handle types. */
2919 assert(fd_info->handleType ==
2920 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2921 fd_info->handleType ==
2922 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2923
2924 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2925 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2926 if (result != VK_SUCCESS)
2927 goto fail;
2928
2929 VkDeviceSize aligned_alloc_size =
2930 align_u64(pAllocateInfo->allocationSize, 4096);
2931
2932 /* For security purposes, we reject importing the bo if it's smaller
2933 * than the requested allocation size. This prevents a malicious client
2934 * from passing a buffer to a trusted client, lying about the size, and
2935 * telling the trusted client to try and texture from an image that goes
2936 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2937 * in the trusted client. The trusted client can protect itself against
2938 * this sort of attack but only if it can trust the buffer size.
2939 */
2940 if (mem->bo->size < aligned_alloc_size) {
2941 result = vk_errorf(device->instance, device,
2942 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2943 "aligned allocationSize too large for "
2944 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2945 "%"PRIu64"B > %"PRIu64"B",
2946 aligned_alloc_size, mem->bo->size);
2947 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2948 goto fail;
2949 }
2950
2951 /* From the Vulkan spec:
2952 *
2953 * "Importing memory from a file descriptor transfers ownership of
2954 * the file descriptor from the application to the Vulkan
2955 * implementation. The application must not perform any operations on
2956 * the file descriptor after a successful import."
2957 *
2958 * If the import fails, we leave the file descriptor open.
2959 */
2960 close(fd_info->fd);
2961 goto success;
2962 }
2963
2964 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2965 vk_find_struct_const(pAllocateInfo->pNext,
2966 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2967 if (host_ptr_info && host_ptr_info->handleType) {
2968 if (host_ptr_info->handleType ==
2969 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2970 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2971 goto fail;
2972 }
2973
2974 assert(host_ptr_info->handleType ==
2975 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2976
2977 result = anv_bo_cache_import_host_ptr(
2978 device, &device->bo_cache, host_ptr_info->pHostPointer,
2979 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2980
2981 if (result != VK_SUCCESS)
2982 goto fail;
2983
2984 mem->host_ptr = host_ptr_info->pHostPointer;
2985 goto success;
2986 }
2987
2988 /* Regular allocate (not importing memory). */
2989
2990 if (export_info && export_info->handleTypes)
2991 bo_flags |= ANV_BO_EXTERNAL;
2992
2993 result = anv_bo_cache_alloc(device, &device->bo_cache,
2994 pAllocateInfo->allocationSize, bo_flags,
2995 &mem->bo);
2996 if (result != VK_SUCCESS)
2997 goto fail;
2998
2999 const VkMemoryDedicatedAllocateInfo *dedicated_info =
3000 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3001 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3002 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3003
3004 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3005 * the BO. In this case, we have a dedicated allocation.
3006 */
3007 if (image->needs_set_tiling) {
3008 const uint32_t i915_tiling =
3009 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3010 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3011 image->planes[0].surface.isl.row_pitch_B,
3012 i915_tiling);
3013 if (ret) {
3014 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3015 return vk_errorf(device->instance, NULL,
3016 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3017 "failed to set BO tiling: %m");
3018 }
3019 }
3020 }
3021
3022 success:
3023 pthread_mutex_lock(&device->mutex);
3024 list_addtail(&mem->link, &device->memory_objects);
3025 pthread_mutex_unlock(&device->mutex);
3026
3027 *pMem = anv_device_memory_to_handle(mem);
3028
3029 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3030 mem->bo->size);
3031
3032 return VK_SUCCESS;
3033
3034 fail:
3035 vk_free2(&device->alloc, pAllocator, mem);
3036
3037 return result;
3038 }
3039
3040 VkResult anv_GetMemoryFdKHR(
3041 VkDevice device_h,
3042 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3043 int* pFd)
3044 {
3045 ANV_FROM_HANDLE(anv_device, dev, device_h);
3046 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3047
3048 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3049
3050 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3051 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3052
3053 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
3054 }
3055
3056 VkResult anv_GetMemoryFdPropertiesKHR(
3057 VkDevice _device,
3058 VkExternalMemoryHandleTypeFlagBits handleType,
3059 int fd,
3060 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3061 {
3062 ANV_FROM_HANDLE(anv_device, device, _device);
3063 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3064
3065 switch (handleType) {
3066 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3067 /* dma-buf can be imported as any memory type */
3068 pMemoryFdProperties->memoryTypeBits =
3069 (1 << pdevice->memory.type_count) - 1;
3070 return VK_SUCCESS;
3071
3072 default:
3073 /* The valid usage section for this function says:
3074 *
3075 * "handleType must not be one of the handle types defined as
3076 * opaque."
3077 *
3078 * So opaque handle types fall into the default "unsupported" case.
3079 */
3080 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3081 }
3082 }
3083
3084 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3085 VkDevice _device,
3086 VkExternalMemoryHandleTypeFlagBits handleType,
3087 const void* pHostPointer,
3088 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3089 {
3090 ANV_FROM_HANDLE(anv_device, device, _device);
3091
3092 assert(pMemoryHostPointerProperties->sType ==
3093 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3094
3095 switch (handleType) {
3096 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3097 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3098
3099 /* Host memory can be imported as any memory type. */
3100 pMemoryHostPointerProperties->memoryTypeBits =
3101 (1ull << pdevice->memory.type_count) - 1;
3102
3103 return VK_SUCCESS;
3104 }
3105 default:
3106 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3107 }
3108 }
3109
3110 void anv_FreeMemory(
3111 VkDevice _device,
3112 VkDeviceMemory _mem,
3113 const VkAllocationCallbacks* pAllocator)
3114 {
3115 ANV_FROM_HANDLE(anv_device, device, _device);
3116 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3117 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3118
3119 if (mem == NULL)
3120 return;
3121
3122 pthread_mutex_lock(&device->mutex);
3123 list_del(&mem->link);
3124 pthread_mutex_unlock(&device->mutex);
3125
3126 if (mem->map)
3127 anv_UnmapMemory(_device, _mem);
3128
3129 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3130 -mem->bo->size);
3131
3132 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3133
3134 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3135 if (mem->ahw)
3136 AHardwareBuffer_release(mem->ahw);
3137 #endif
3138
3139 vk_free2(&device->alloc, pAllocator, mem);
3140 }
3141
3142 VkResult anv_MapMemory(
3143 VkDevice _device,
3144 VkDeviceMemory _memory,
3145 VkDeviceSize offset,
3146 VkDeviceSize size,
3147 VkMemoryMapFlags flags,
3148 void** ppData)
3149 {
3150 ANV_FROM_HANDLE(anv_device, device, _device);
3151 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3152
3153 if (mem == NULL) {
3154 *ppData = NULL;
3155 return VK_SUCCESS;
3156 }
3157
3158 if (mem->host_ptr) {
3159 *ppData = mem->host_ptr + offset;
3160 return VK_SUCCESS;
3161 }
3162
3163 if (size == VK_WHOLE_SIZE)
3164 size = mem->bo->size - offset;
3165
3166 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3167 *
3168 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3169 * assert(size != 0);
3170 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3171 * equal to the size of the memory minus offset
3172 */
3173 assert(size > 0);
3174 assert(offset + size <= mem->bo->size);
3175
3176 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3177 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3178 * at a time is valid. We could just mmap up front and return an offset
3179 * pointer here, but that may exhaust virtual memory on 32 bit
3180 * userspace. */
3181
3182 uint32_t gem_flags = 0;
3183
3184 if (!device->info.has_llc &&
3185 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3186 gem_flags |= I915_MMAP_WC;
3187
3188 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3189 uint64_t map_offset = offset & ~4095ull;
3190 assert(offset >= map_offset);
3191 uint64_t map_size = (offset + size) - map_offset;
3192
3193 /* Let's map whole pages */
3194 map_size = align_u64(map_size, 4096);
3195
3196 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3197 map_offset, map_size, gem_flags);
3198 if (map == MAP_FAILED)
3199 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3200
3201 mem->map = map;
3202 mem->map_size = map_size;
3203
3204 *ppData = mem->map + (offset - map_offset);
3205
3206 return VK_SUCCESS;
3207 }
3208
3209 void anv_UnmapMemory(
3210 VkDevice _device,
3211 VkDeviceMemory _memory)
3212 {
3213 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3214
3215 if (mem == NULL || mem->host_ptr)
3216 return;
3217
3218 anv_gem_munmap(mem->map, mem->map_size);
3219
3220 mem->map = NULL;
3221 mem->map_size = 0;
3222 }
3223
3224 static void
3225 clflush_mapped_ranges(struct anv_device *device,
3226 uint32_t count,
3227 const VkMappedMemoryRange *ranges)
3228 {
3229 for (uint32_t i = 0; i < count; i++) {
3230 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3231 if (ranges[i].offset >= mem->map_size)
3232 continue;
3233
3234 gen_clflush_range(mem->map + ranges[i].offset,
3235 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3236 }
3237 }
3238
3239 VkResult anv_FlushMappedMemoryRanges(
3240 VkDevice _device,
3241 uint32_t memoryRangeCount,
3242 const VkMappedMemoryRange* pMemoryRanges)
3243 {
3244 ANV_FROM_HANDLE(anv_device, device, _device);
3245
3246 if (device->info.has_llc)
3247 return VK_SUCCESS;
3248
3249 /* Make sure the writes we're flushing have landed. */
3250 __builtin_ia32_mfence();
3251
3252 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3253
3254 return VK_SUCCESS;
3255 }
3256
3257 VkResult anv_InvalidateMappedMemoryRanges(
3258 VkDevice _device,
3259 uint32_t memoryRangeCount,
3260 const VkMappedMemoryRange* pMemoryRanges)
3261 {
3262 ANV_FROM_HANDLE(anv_device, device, _device);
3263
3264 if (device->info.has_llc)
3265 return VK_SUCCESS;
3266
3267 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3268
3269 /* Make sure no reads get moved up above the invalidate. */
3270 __builtin_ia32_mfence();
3271
3272 return VK_SUCCESS;
3273 }
3274
3275 void anv_GetBufferMemoryRequirements(
3276 VkDevice _device,
3277 VkBuffer _buffer,
3278 VkMemoryRequirements* pMemoryRequirements)
3279 {
3280 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3281 ANV_FROM_HANDLE(anv_device, device, _device);
3282 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3283
3284 /* The Vulkan spec (git aaed022) says:
3285 *
3286 * memoryTypeBits is a bitfield and contains one bit set for every
3287 * supported memory type for the resource. The bit `1<<i` is set if and
3288 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3289 * structure for the physical device is supported.
3290 */
3291 uint32_t memory_types = 0;
3292 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3293 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3294 if ((valid_usage & buffer->usage) == buffer->usage)
3295 memory_types |= (1u << i);
3296 }
3297
3298 /* Base alignment requirement of a cache line */
3299 uint32_t alignment = 16;
3300
3301 /* We need an alignment of 32 for pushing UBOs */
3302 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3303 alignment = MAX2(alignment, 32);
3304
3305 pMemoryRequirements->size = buffer->size;
3306 pMemoryRequirements->alignment = alignment;
3307
3308 /* Storage and Uniform buffers should have their size aligned to
3309 * 32-bits to avoid boundary checks when last DWord is not complete.
3310 * This would ensure that not internal padding would be needed for
3311 * 16-bit types.
3312 */
3313 if (device->robust_buffer_access &&
3314 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3315 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3316 pMemoryRequirements->size = align_u64(buffer->size, 4);
3317
3318 pMemoryRequirements->memoryTypeBits = memory_types;
3319 }
3320
3321 void anv_GetBufferMemoryRequirements2(
3322 VkDevice _device,
3323 const VkBufferMemoryRequirementsInfo2* pInfo,
3324 VkMemoryRequirements2* pMemoryRequirements)
3325 {
3326 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3327 &pMemoryRequirements->memoryRequirements);
3328
3329 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3330 switch (ext->sType) {
3331 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3332 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3333 requirements->prefersDedicatedAllocation = false;
3334 requirements->requiresDedicatedAllocation = false;
3335 break;
3336 }
3337
3338 default:
3339 anv_debug_ignored_stype(ext->sType);
3340 break;
3341 }
3342 }
3343 }
3344
3345 void anv_GetImageMemoryRequirements(
3346 VkDevice _device,
3347 VkImage _image,
3348 VkMemoryRequirements* pMemoryRequirements)
3349 {
3350 ANV_FROM_HANDLE(anv_image, image, _image);
3351 ANV_FROM_HANDLE(anv_device, device, _device);
3352 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3353
3354 /* The Vulkan spec (git aaed022) says:
3355 *
3356 * memoryTypeBits is a bitfield and contains one bit set for every
3357 * supported memory type for the resource. The bit `1<<i` is set if and
3358 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3359 * structure for the physical device is supported.
3360 *
3361 * All types are currently supported for images.
3362 */
3363 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3364
3365 /* We must have image allocated or imported at this point. According to the
3366 * specification, external images must have been bound to memory before
3367 * calling GetImageMemoryRequirements.
3368 */
3369 assert(image->size > 0);
3370
3371 pMemoryRequirements->size = image->size;
3372 pMemoryRequirements->alignment = image->alignment;
3373 pMemoryRequirements->memoryTypeBits = memory_types;
3374 }
3375
3376 void anv_GetImageMemoryRequirements2(
3377 VkDevice _device,
3378 const VkImageMemoryRequirementsInfo2* pInfo,
3379 VkMemoryRequirements2* pMemoryRequirements)
3380 {
3381 ANV_FROM_HANDLE(anv_device, device, _device);
3382 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3383
3384 anv_GetImageMemoryRequirements(_device, pInfo->image,
3385 &pMemoryRequirements->memoryRequirements);
3386
3387 vk_foreach_struct_const(ext, pInfo->pNext) {
3388 switch (ext->sType) {
3389 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3390 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3391 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3392 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3393 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3394 plane_reqs->planeAspect);
3395
3396 assert(image->planes[plane].offset == 0);
3397
3398 /* The Vulkan spec (git aaed022) says:
3399 *
3400 * memoryTypeBits is a bitfield and contains one bit set for every
3401 * supported memory type for the resource. The bit `1<<i` is set
3402 * if and only if the memory type `i` in the
3403 * VkPhysicalDeviceMemoryProperties structure for the physical
3404 * device is supported.
3405 *
3406 * All types are currently supported for images.
3407 */
3408 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3409 (1ull << pdevice->memory.type_count) - 1;
3410
3411 /* We must have image allocated or imported at this point. According to the
3412 * specification, external images must have been bound to memory before
3413 * calling GetImageMemoryRequirements.
3414 */
3415 assert(image->planes[plane].size > 0);
3416
3417 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3418 pMemoryRequirements->memoryRequirements.alignment =
3419 image->planes[plane].alignment;
3420 break;
3421 }
3422
3423 default:
3424 anv_debug_ignored_stype(ext->sType);
3425 break;
3426 }
3427 }
3428
3429 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3430 switch (ext->sType) {
3431 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3432 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3433 if (image->needs_set_tiling || image->external_format) {
3434 /* If we need to set the tiling for external consumers, we need a
3435 * dedicated allocation.
3436 *
3437 * See also anv_AllocateMemory.
3438 */
3439 requirements->prefersDedicatedAllocation = true;
3440 requirements->requiresDedicatedAllocation = true;
3441 } else {
3442 requirements->prefersDedicatedAllocation = false;
3443 requirements->requiresDedicatedAllocation = false;
3444 }
3445 break;
3446 }
3447
3448 default:
3449 anv_debug_ignored_stype(ext->sType);
3450 break;
3451 }
3452 }
3453 }
3454
3455 void anv_GetImageSparseMemoryRequirements(
3456 VkDevice device,
3457 VkImage image,
3458 uint32_t* pSparseMemoryRequirementCount,
3459 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3460 {
3461 *pSparseMemoryRequirementCount = 0;
3462 }
3463
3464 void anv_GetImageSparseMemoryRequirements2(
3465 VkDevice device,
3466 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3467 uint32_t* pSparseMemoryRequirementCount,
3468 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3469 {
3470 *pSparseMemoryRequirementCount = 0;
3471 }
3472
3473 void anv_GetDeviceMemoryCommitment(
3474 VkDevice device,
3475 VkDeviceMemory memory,
3476 VkDeviceSize* pCommittedMemoryInBytes)
3477 {
3478 *pCommittedMemoryInBytes = 0;
3479 }
3480
3481 static void
3482 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3483 {
3484 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3485 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3486
3487 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3488
3489 if (mem) {
3490 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3491 buffer->address = (struct anv_address) {
3492 .bo = mem->bo,
3493 .offset = pBindInfo->memoryOffset,
3494 };
3495 } else {
3496 buffer->address = ANV_NULL_ADDRESS;
3497 }
3498 }
3499
3500 VkResult anv_BindBufferMemory(
3501 VkDevice device,
3502 VkBuffer buffer,
3503 VkDeviceMemory memory,
3504 VkDeviceSize memoryOffset)
3505 {
3506 anv_bind_buffer_memory(
3507 &(VkBindBufferMemoryInfo) {
3508 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3509 .buffer = buffer,
3510 .memory = memory,
3511 .memoryOffset = memoryOffset,
3512 });
3513
3514 return VK_SUCCESS;
3515 }
3516
3517 VkResult anv_BindBufferMemory2(
3518 VkDevice device,
3519 uint32_t bindInfoCount,
3520 const VkBindBufferMemoryInfo* pBindInfos)
3521 {
3522 for (uint32_t i = 0; i < bindInfoCount; i++)
3523 anv_bind_buffer_memory(&pBindInfos[i]);
3524
3525 return VK_SUCCESS;
3526 }
3527
3528 VkResult anv_QueueBindSparse(
3529 VkQueue _queue,
3530 uint32_t bindInfoCount,
3531 const VkBindSparseInfo* pBindInfo,
3532 VkFence fence)
3533 {
3534 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3535 if (anv_device_is_lost(queue->device))
3536 return VK_ERROR_DEVICE_LOST;
3537
3538 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3539 }
3540
3541 // Event functions
3542
3543 VkResult anv_CreateEvent(
3544 VkDevice _device,
3545 const VkEventCreateInfo* pCreateInfo,
3546 const VkAllocationCallbacks* pAllocator,
3547 VkEvent* pEvent)
3548 {
3549 ANV_FROM_HANDLE(anv_device, device, _device);
3550 struct anv_state state;
3551 struct anv_event *event;
3552
3553 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3554
3555 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3556 sizeof(*event), 8);
3557 event = state.map;
3558 event->state = state;
3559 event->semaphore = VK_EVENT_RESET;
3560
3561 if (!device->info.has_llc) {
3562 /* Make sure the writes we're flushing have landed. */
3563 __builtin_ia32_mfence();
3564 __builtin_ia32_clflush(event);
3565 }
3566
3567 *pEvent = anv_event_to_handle(event);
3568
3569 return VK_SUCCESS;
3570 }
3571
3572 void anv_DestroyEvent(
3573 VkDevice _device,
3574 VkEvent _event,
3575 const VkAllocationCallbacks* pAllocator)
3576 {
3577 ANV_FROM_HANDLE(anv_device, device, _device);
3578 ANV_FROM_HANDLE(anv_event, event, _event);
3579
3580 if (!event)
3581 return;
3582
3583 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3584 }
3585
3586 VkResult anv_GetEventStatus(
3587 VkDevice _device,
3588 VkEvent _event)
3589 {
3590 ANV_FROM_HANDLE(anv_device, device, _device);
3591 ANV_FROM_HANDLE(anv_event, event, _event);
3592
3593 if (anv_device_is_lost(device))
3594 return VK_ERROR_DEVICE_LOST;
3595
3596 if (!device->info.has_llc) {
3597 /* Invalidate read cache before reading event written by GPU. */
3598 __builtin_ia32_clflush(event);
3599 __builtin_ia32_mfence();
3600
3601 }
3602
3603 return event->semaphore;
3604 }
3605
3606 VkResult anv_SetEvent(
3607 VkDevice _device,
3608 VkEvent _event)
3609 {
3610 ANV_FROM_HANDLE(anv_device, device, _device);
3611 ANV_FROM_HANDLE(anv_event, event, _event);
3612
3613 event->semaphore = VK_EVENT_SET;
3614
3615 if (!device->info.has_llc) {
3616 /* Make sure the writes we're flushing have landed. */
3617 __builtin_ia32_mfence();
3618 __builtin_ia32_clflush(event);
3619 }
3620
3621 return VK_SUCCESS;
3622 }
3623
3624 VkResult anv_ResetEvent(
3625 VkDevice _device,
3626 VkEvent _event)
3627 {
3628 ANV_FROM_HANDLE(anv_device, device, _device);
3629 ANV_FROM_HANDLE(anv_event, event, _event);
3630
3631 event->semaphore = VK_EVENT_RESET;
3632
3633 if (!device->info.has_llc) {
3634 /* Make sure the writes we're flushing have landed. */
3635 __builtin_ia32_mfence();
3636 __builtin_ia32_clflush(event);
3637 }
3638
3639 return VK_SUCCESS;
3640 }
3641
3642 // Buffer functions
3643
3644 VkResult anv_CreateBuffer(
3645 VkDevice _device,
3646 const VkBufferCreateInfo* pCreateInfo,
3647 const VkAllocationCallbacks* pAllocator,
3648 VkBuffer* pBuffer)
3649 {
3650 ANV_FROM_HANDLE(anv_device, device, _device);
3651 struct anv_buffer *buffer;
3652
3653 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3654
3655 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3656 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3657 if (buffer == NULL)
3658 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3659
3660 buffer->size = pCreateInfo->size;
3661 buffer->usage = pCreateInfo->usage;
3662 buffer->address = ANV_NULL_ADDRESS;
3663
3664 *pBuffer = anv_buffer_to_handle(buffer);
3665
3666 return VK_SUCCESS;
3667 }
3668
3669 void anv_DestroyBuffer(
3670 VkDevice _device,
3671 VkBuffer _buffer,
3672 const VkAllocationCallbacks* pAllocator)
3673 {
3674 ANV_FROM_HANDLE(anv_device, device, _device);
3675 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3676
3677 if (!buffer)
3678 return;
3679
3680 vk_free2(&device->alloc, pAllocator, buffer);
3681 }
3682
3683 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3684 VkDevice device,
3685 const VkBufferDeviceAddressInfoEXT* pInfo)
3686 {
3687 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3688
3689 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3690
3691 return anv_address_physical(buffer->address);
3692 }
3693
3694 void
3695 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3696 enum isl_format format,
3697 struct anv_address address,
3698 uint32_t range, uint32_t stride)
3699 {
3700 isl_buffer_fill_state(&device->isl_dev, state.map,
3701 .address = anv_address_physical(address),
3702 .mocs = device->default_mocs,
3703 .size_B = range,
3704 .format = format,
3705 .swizzle = ISL_SWIZZLE_IDENTITY,
3706 .stride_B = stride);
3707 }
3708
3709 void anv_DestroySampler(
3710 VkDevice _device,
3711 VkSampler _sampler,
3712 const VkAllocationCallbacks* pAllocator)
3713 {
3714 ANV_FROM_HANDLE(anv_device, device, _device);
3715 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3716
3717 if (!sampler)
3718 return;
3719
3720 if (sampler->bindless_state.map) {
3721 anv_state_pool_free(&device->dynamic_state_pool,
3722 sampler->bindless_state);
3723 }
3724
3725 vk_free2(&device->alloc, pAllocator, sampler);
3726 }
3727
3728 VkResult anv_CreateFramebuffer(
3729 VkDevice _device,
3730 const VkFramebufferCreateInfo* pCreateInfo,
3731 const VkAllocationCallbacks* pAllocator,
3732 VkFramebuffer* pFramebuffer)
3733 {
3734 ANV_FROM_HANDLE(anv_device, device, _device);
3735 struct anv_framebuffer *framebuffer;
3736
3737 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3738
3739 size_t size = sizeof(*framebuffer);
3740
3741 /* VK_KHR_imageless_framebuffer extension says:
3742 *
3743 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3744 * parameter pAttachments is ignored.
3745 */
3746 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3747 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3748 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3749 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3750 if (framebuffer == NULL)
3751 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3752
3753 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3754 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
3755 framebuffer->attachments[i] = iview;
3756 }
3757 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3758 } else {
3759 assert(device->enabled_extensions.KHR_imageless_framebuffer);
3760 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3761 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3762 if (framebuffer == NULL)
3763 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3764
3765 framebuffer->attachment_count = 0;
3766 }
3767
3768 framebuffer->width = pCreateInfo->width;
3769 framebuffer->height = pCreateInfo->height;
3770 framebuffer->layers = pCreateInfo->layers;
3771
3772 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3773
3774 return VK_SUCCESS;
3775 }
3776
3777 void anv_DestroyFramebuffer(
3778 VkDevice _device,
3779 VkFramebuffer _fb,
3780 const VkAllocationCallbacks* pAllocator)
3781 {
3782 ANV_FROM_HANDLE(anv_device, device, _device);
3783 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3784
3785 if (!fb)
3786 return;
3787
3788 vk_free2(&device->alloc, pAllocator, fb);
3789 }
3790
3791 static const VkTimeDomainEXT anv_time_domains[] = {
3792 VK_TIME_DOMAIN_DEVICE_EXT,
3793 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3794 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3795 };
3796
3797 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3798 VkPhysicalDevice physicalDevice,
3799 uint32_t *pTimeDomainCount,
3800 VkTimeDomainEXT *pTimeDomains)
3801 {
3802 int d;
3803 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3804
3805 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3806 vk_outarray_append(&out, i) {
3807 *i = anv_time_domains[d];
3808 }
3809 }
3810
3811 return vk_outarray_status(&out);
3812 }
3813
3814 static uint64_t
3815 anv_clock_gettime(clockid_t clock_id)
3816 {
3817 struct timespec current;
3818 int ret;
3819
3820 ret = clock_gettime(clock_id, &current);
3821 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3822 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3823 if (ret < 0)
3824 return 0;
3825
3826 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3827 }
3828
3829 #define TIMESTAMP 0x2358
3830
3831 VkResult anv_GetCalibratedTimestampsEXT(
3832 VkDevice _device,
3833 uint32_t timestampCount,
3834 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3835 uint64_t *pTimestamps,
3836 uint64_t *pMaxDeviation)
3837 {
3838 ANV_FROM_HANDLE(anv_device, device, _device);
3839 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3840 int ret;
3841 int d;
3842 uint64_t begin, end;
3843 uint64_t max_clock_period = 0;
3844
3845 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3846
3847 for (d = 0; d < timestampCount; d++) {
3848 switch (pTimestampInfos[d].timeDomain) {
3849 case VK_TIME_DOMAIN_DEVICE_EXT:
3850 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3851 &pTimestamps[d]);
3852
3853 if (ret != 0) {
3854 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3855 "register: %m");
3856 }
3857 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3858 max_clock_period = MAX2(max_clock_period, device_period);
3859 break;
3860 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3861 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3862 max_clock_period = MAX2(max_clock_period, 1);
3863 break;
3864
3865 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3866 pTimestamps[d] = begin;
3867 break;
3868 default:
3869 pTimestamps[d] = 0;
3870 break;
3871 }
3872 }
3873
3874 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3875
3876 /*
3877 * The maximum deviation is the sum of the interval over which we
3878 * perform the sampling and the maximum period of any sampled
3879 * clock. That's because the maximum skew between any two sampled
3880 * clock edges is when the sampled clock with the largest period is
3881 * sampled at the end of that period but right at the beginning of the
3882 * sampling interval and some other clock is sampled right at the
3883 * begining of its sampling period and right at the end of the
3884 * sampling interval. Let's assume the GPU has the longest clock
3885 * period and that the application is sampling GPU and monotonic:
3886 *
3887 * s e
3888 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3889 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3890 *
3891 * g
3892 * 0 1 2 3
3893 * GPU -----_____-----_____-----_____-----_____
3894 *
3895 * m
3896 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3897 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3898 *
3899 * Interval <----------------->
3900 * Deviation <-------------------------->
3901 *
3902 * s = read(raw) 2
3903 * g = read(GPU) 1
3904 * m = read(monotonic) 2
3905 * e = read(raw) b
3906 *
3907 * We round the sample interval up by one tick to cover sampling error
3908 * in the interval clock
3909 */
3910
3911 uint64_t sample_interval = end - begin + 1;
3912
3913 *pMaxDeviation = sample_interval + max_clock_period;
3914
3915 return VK_SUCCESS;
3916 }
3917
3918 /* vk_icd.h does not declare this function, so we declare it here to
3919 * suppress Wmissing-prototypes.
3920 */
3921 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3922 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3923
3924 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3925 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3926 {
3927 /* For the full details on loader interface versioning, see
3928 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3929 * What follows is a condensed summary, to help you navigate the large and
3930 * confusing official doc.
3931 *
3932 * - Loader interface v0 is incompatible with later versions. We don't
3933 * support it.
3934 *
3935 * - In loader interface v1:
3936 * - The first ICD entrypoint called by the loader is
3937 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3938 * entrypoint.
3939 * - The ICD must statically expose no other Vulkan symbol unless it is
3940 * linked with -Bsymbolic.
3941 * - Each dispatchable Vulkan handle created by the ICD must be
3942 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3943 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3944 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3945 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3946 * such loader-managed surfaces.
3947 *
3948 * - Loader interface v2 differs from v1 in:
3949 * - The first ICD entrypoint called by the loader is
3950 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3951 * statically expose this entrypoint.
3952 *
3953 * - Loader interface v3 differs from v2 in:
3954 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3955 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3956 * because the loader no longer does so.
3957 */
3958 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3959 return VK_SUCCESS;
3960 }