anv: fix memory leak on device destroy
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "util/xmlpool.h"
44 #include "git_sha1.h"
45 #include "vk_util.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57 DRI_CONF_END;
58
59 /* This is probably far to big but it reflects the max size used for messages
60 * in OpenGLs KHR_debug.
61 */
62 #define MAX_DEBUG_MESSAGE_LENGTH 4096
63
64 static void
65 compiler_debug_log(void *data, const char *fmt, ...)
66 {
67 char str[MAX_DEBUG_MESSAGE_LENGTH];
68 struct anv_device *device = (struct anv_device *)data;
69
70 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
71 return;
72
73 va_list args;
74 va_start(args, fmt);
75 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
76 va_end(args);
77
78 vk_debug_report(&device->instance->debug_report_callbacks,
79 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
80 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
81 0, 0, 0, "anv", str);
82 }
83
84 static void
85 compiler_perf_log(void *data, const char *fmt, ...)
86 {
87 va_list args;
88 va_start(args, fmt);
89
90 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
91 intel_logd_v(fmt, args);
92
93 va_end(args);
94 }
95
96 static uint64_t
97 anv_compute_heap_size(int fd, uint64_t gtt_size)
98 {
99 /* Query the total ram from the system */
100 struct sysinfo info;
101 sysinfo(&info);
102
103 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
104
105 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
106 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
107 */
108 uint64_t available_ram;
109 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
110 available_ram = total_ram / 2;
111 else
112 available_ram = total_ram * 3 / 4;
113
114 /* We also want to leave some padding for things we allocate in the driver,
115 * so don't go over 3/4 of the GTT either.
116 */
117 uint64_t available_gtt = gtt_size * 3 / 4;
118
119 return MIN2(available_ram, available_gtt);
120 }
121
122 static VkResult
123 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
124 {
125 uint64_t gtt_size;
126 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
127 &gtt_size) == -1) {
128 /* If, for whatever reason, we can't actually get the GTT size from the
129 * kernel (too old?) fall back to the aperture size.
130 */
131 anv_perf_warn(NULL, NULL,
132 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
133
134 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
135 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
136 "failed to get aperture size: %m");
137 }
138 }
139
140 device->supports_48bit_addresses = (device->info.gen >= 8) &&
141 gtt_size > (4ULL << 30 /* GiB */);
142
143 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
144
145 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
146 /* When running with an overridden PCI ID, we may get a GTT size from
147 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
148 * address support can still fail. Just clamp the address space size to
149 * 2 GiB if we don't have 48-bit support.
150 */
151 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
152 "not support for 48-bit addresses",
153 __FILE__, __LINE__);
154 heap_size = 2ull << 30;
155 }
156
157 if (heap_size <= 3ull * (1ull << 30)) {
158 /* In this case, everything fits nicely into the 32-bit address space,
159 * so there's no need for supporting 48bit addresses on client-allocated
160 * memory objects.
161 */
162 device->memory.heap_count = 1;
163 device->memory.heaps[0] = (struct anv_memory_heap) {
164 .vma_start = LOW_HEAP_MIN_ADDRESS,
165 .vma_size = LOW_HEAP_SIZE,
166 .size = heap_size,
167 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
168 .supports_48bit_addresses = false,
169 };
170 } else {
171 /* Not everything will fit nicely into a 32-bit address space. In this
172 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
173 * larger 48-bit heap. If we're in this case, then we have a total heap
174 * size larger than 3GiB which most likely means they have 8 GiB of
175 * video memory and so carving off 1 GiB for the 32-bit heap should be
176 * reasonable.
177 */
178 const uint64_t heap_size_32bit = 1ull << 30;
179 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
180
181 assert(device->supports_48bit_addresses);
182
183 device->memory.heap_count = 2;
184 device->memory.heaps[0] = (struct anv_memory_heap) {
185 .vma_start = HIGH_HEAP_MIN_ADDRESS,
186 /* Leave the last 4GiB out of the high vma range, so that no state
187 * base address + size can overflow 48 bits. For more information see
188 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
189 */
190 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
191 .size = heap_size_48bit,
192 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
193 .supports_48bit_addresses = true,
194 };
195 device->memory.heaps[1] = (struct anv_memory_heap) {
196 .vma_start = LOW_HEAP_MIN_ADDRESS,
197 .vma_size = LOW_HEAP_SIZE,
198 .size = heap_size_32bit,
199 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
200 .supports_48bit_addresses = false,
201 };
202 }
203
204 uint32_t type_count = 0;
205 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
206 uint32_t valid_buffer_usage = ~0;
207
208 /* There appears to be a hardware issue in the VF cache where it only
209 * considers the bottom 32 bits of memory addresses. If you happen to
210 * have two vertex buffers which get placed exactly 4 GiB apart and use
211 * them in back-to-back draw calls, you can get collisions. In order to
212 * solve this problem, we require vertex and index buffers be bound to
213 * memory allocated out of the 32-bit heap.
214 */
215 if (device->memory.heaps[heap].supports_48bit_addresses) {
216 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
217 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
218 }
219
220 if (device->info.has_llc) {
221 /* Big core GPUs share LLC with the CPU and thus one memory type can be
222 * both cached and coherent at the same time.
223 */
224 device->memory.types[type_count++] = (struct anv_memory_type) {
225 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
226 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
227 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
228 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
229 .heapIndex = heap,
230 .valid_buffer_usage = valid_buffer_usage,
231 };
232 } else {
233 /* The spec requires that we expose a host-visible, coherent memory
234 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
235 * to give the application a choice between cached, but not coherent and
236 * coherent but uncached (WC though).
237 */
238 device->memory.types[type_count++] = (struct anv_memory_type) {
239 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
240 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
241 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
242 .heapIndex = heap,
243 .valid_buffer_usage = valid_buffer_usage,
244 };
245 device->memory.types[type_count++] = (struct anv_memory_type) {
246 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
247 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
248 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
249 .heapIndex = heap,
250 .valid_buffer_usage = valid_buffer_usage,
251 };
252 }
253 }
254 device->memory.type_count = type_count;
255
256 return VK_SUCCESS;
257 }
258
259 static VkResult
260 anv_physical_device_init_uuids(struct anv_physical_device *device)
261 {
262 const struct build_id_note *note =
263 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
264 if (!note) {
265 return vk_errorf(device->instance, device,
266 VK_ERROR_INITIALIZATION_FAILED,
267 "Failed to find build-id");
268 }
269
270 unsigned build_id_len = build_id_length(note);
271 if (build_id_len < 20) {
272 return vk_errorf(device->instance, device,
273 VK_ERROR_INITIALIZATION_FAILED,
274 "build-id too short. It needs to be a SHA");
275 }
276
277 memcpy(device->driver_build_sha1, build_id_data(note), 20);
278
279 struct mesa_sha1 sha1_ctx;
280 uint8_t sha1[20];
281 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
282
283 /* The pipeline cache UUID is used for determining when a pipeline cache is
284 * invalid. It needs both a driver build and the PCI ID of the device.
285 */
286 _mesa_sha1_init(&sha1_ctx);
287 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
288 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
289 sizeof(device->chipset_id));
290 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
291 sizeof(device->always_use_bindless));
292 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
293 sizeof(device->has_a64_buffer_access));
294 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
295 sizeof(device->has_bindless_images));
296 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
297 sizeof(device->has_bindless_samplers));
298 _mesa_sha1_final(&sha1_ctx, sha1);
299 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
300
301 /* The driver UUID is used for determining sharability of images and memory
302 * between two Vulkan instances in separate processes. People who want to
303 * share memory need to also check the device UUID (below) so all this
304 * needs to be is the build-id.
305 */
306 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
307
308 /* The device UUID uniquely identifies the given device within the machine.
309 * Since we never have more than one device, this doesn't need to be a real
310 * UUID. However, on the off-chance that someone tries to use this to
311 * cache pre-tiled images or something of the like, we use the PCI ID and
312 * some bits of ISL info to ensure that this is safe.
313 */
314 _mesa_sha1_init(&sha1_ctx);
315 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
316 sizeof(device->chipset_id));
317 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
318 sizeof(device->isl_dev.has_bit6_swizzling));
319 _mesa_sha1_final(&sha1_ctx, sha1);
320 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
321
322 return VK_SUCCESS;
323 }
324
325 static void
326 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
327 {
328 #ifdef ENABLE_SHADER_CACHE
329 char renderer[10];
330 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
331 device->chipset_id);
332 assert(len == sizeof(renderer) - 2);
333
334 char timestamp[41];
335 _mesa_sha1_format(timestamp, device->driver_build_sha1);
336
337 const uint64_t driver_flags =
338 brw_get_compiler_config_value(device->compiler);
339 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
340 #else
341 device->disk_cache = NULL;
342 #endif
343 }
344
345 static void
346 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
347 {
348 #ifdef ENABLE_SHADER_CACHE
349 if (device->disk_cache)
350 disk_cache_destroy(device->disk_cache);
351 #else
352 assert(device->disk_cache == NULL);
353 #endif
354 }
355
356 static uint64_t
357 get_available_system_memory()
358 {
359 char *meminfo = os_read_file("/proc/meminfo");
360 if (!meminfo)
361 return 0;
362
363 char *str = strstr(meminfo, "MemAvailable:");
364 if (!str) {
365 free(meminfo);
366 return 0;
367 }
368
369 uint64_t kb_mem_available;
370 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
371 free(meminfo);
372 return kb_mem_available << 10;
373 }
374
375 free(meminfo);
376 return 0;
377 }
378
379 static VkResult
380 anv_physical_device_init(struct anv_physical_device *device,
381 struct anv_instance *instance,
382 drmDevicePtr drm_device)
383 {
384 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
385 const char *path = drm_device->nodes[DRM_NODE_RENDER];
386 VkResult result;
387 int fd;
388 int master_fd = -1;
389
390 brw_process_intel_debug_variable();
391
392 fd = open(path, O_RDWR | O_CLOEXEC);
393 if (fd < 0)
394 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
395
396 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
397 device->instance = instance;
398
399 assert(strlen(path) < ARRAY_SIZE(device->path));
400 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
401
402 if (!gen_get_device_info_from_fd(fd, &device->info)) {
403 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
404 goto fail;
405 }
406 device->chipset_id = device->info.chipset_id;
407 device->no_hw = device->info.no_hw;
408
409 if (getenv("INTEL_NO_HW") != NULL)
410 device->no_hw = true;
411
412 device->pci_info.domain = drm_device->businfo.pci->domain;
413 device->pci_info.bus = drm_device->businfo.pci->bus;
414 device->pci_info.device = drm_device->businfo.pci->dev;
415 device->pci_info.function = drm_device->businfo.pci->func;
416
417 device->name = gen_get_device_name(device->chipset_id);
418
419 if (device->info.is_haswell) {
420 intel_logw("Haswell Vulkan support is incomplete");
421 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
422 intel_logw("Ivy Bridge Vulkan support is incomplete");
423 } else if (device->info.gen == 7 && device->info.is_baytrail) {
424 intel_logw("Bay Trail Vulkan support is incomplete");
425 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
426 /* Gen8-11 fully supported */
427 } else if (device->info.gen == 12) {
428 intel_logw("Vulkan is not yet fully supported on gen12");
429 } else {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INCOMPATIBLE_DRIVER,
432 "Vulkan not yet supported on %s", device->name);
433 goto fail;
434 }
435
436 device->cmd_parser_version = -1;
437 if (device->info.gen == 7) {
438 device->cmd_parser_version =
439 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
440 if (device->cmd_parser_version == -1) {
441 result = vk_errorf(device->instance, device,
442 VK_ERROR_INITIALIZATION_FAILED,
443 "failed to get command parser version");
444 goto fail;
445 }
446 }
447
448 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
449 result = vk_errorf(device->instance, device,
450 VK_ERROR_INITIALIZATION_FAILED,
451 "kernel missing gem wait");
452 goto fail;
453 }
454
455 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
456 result = vk_errorf(device->instance, device,
457 VK_ERROR_INITIALIZATION_FAILED,
458 "kernel missing execbuf2");
459 goto fail;
460 }
461
462 if (!device->info.has_llc &&
463 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
464 result = vk_errorf(device->instance, device,
465 VK_ERROR_INITIALIZATION_FAILED,
466 "kernel missing wc mmap");
467 goto fail;
468 }
469
470 result = anv_physical_device_init_heaps(device, fd);
471 if (result != VK_SUCCESS)
472 goto fail;
473
474 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
475 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
476 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
477 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
478 device->has_syncobj_wait = device->has_syncobj &&
479 anv_gem_supports_syncobj_wait(fd);
480 device->has_context_priority = anv_gem_has_context_priority(fd);
481
482 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
483 && device->supports_48bit_addresses;
484
485 device->has_context_isolation =
486 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
487
488 device->always_use_bindless =
489 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
490
491 /* We first got the A64 messages on broadwell and we can only use them if
492 * we can pass addresses directly into the shader which requires softpin.
493 */
494 device->has_a64_buffer_access = device->info.gen >= 8 &&
495 device->use_softpin;
496
497 /* We first get bindless image access on Skylake and we can only really do
498 * it if we don't have any relocations so we need softpin.
499 */
500 device->has_bindless_images = device->info.gen >= 9 &&
501 device->use_softpin;
502
503 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
504 * because it's just a matter of setting the sampler address in the sample
505 * message header. However, we've not bothered to wire it up for vec4 so
506 * we leave it disabled on gen7.
507 */
508 device->has_bindless_samplers = device->info.gen >= 8;
509
510 device->has_mem_available = get_available_system_memory() != 0;
511
512 /* Starting with Gen10, the timestamp frequency of the command streamer may
513 * vary from one part to another. We can query the value from the kernel.
514 */
515 if (device->info.gen >= 10) {
516 int timestamp_frequency =
517 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
518
519 if (timestamp_frequency < 0)
520 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
521 else
522 device->info.timestamp_frequency = timestamp_frequency;
523 }
524
525 /* GENs prior to 8 do not support EU/Subslice info */
526 if (device->info.gen >= 8) {
527 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
528 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
529
530 /* Without this information, we cannot get the right Braswell
531 * brandstrings, and we have to use conservative numbers for GPGPU on
532 * many platforms, but otherwise, things will just work.
533 */
534 if (device->subslice_total < 1 || device->eu_total < 1) {
535 intel_logw("Kernel 4.1 required to properly query GPU properties");
536 }
537 } else if (device->info.gen == 7) {
538 device->subslice_total = 1 << (device->info.gt - 1);
539 }
540
541 if (device->info.is_cherryview &&
542 device->subslice_total > 0 && device->eu_total > 0) {
543 /* Logical CS threads = EUs per subslice * num threads per EU */
544 uint32_t max_cs_threads =
545 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
546
547 /* Fuse configurations may give more threads than expected, never less. */
548 if (max_cs_threads > device->info.max_cs_threads)
549 device->info.max_cs_threads = max_cs_threads;
550 }
551
552 device->compiler = brw_compiler_create(NULL, &device->info);
553 if (device->compiler == NULL) {
554 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
555 goto fail;
556 }
557 device->compiler->shader_debug_log = compiler_debug_log;
558 device->compiler->shader_perf_log = compiler_perf_log;
559 device->compiler->supports_pull_constants = false;
560 device->compiler->constant_buffer_0_is_relative =
561 device->info.gen < 8 || !device->has_context_isolation;
562 device->compiler->supports_shader_constants = true;
563
564 /* Broadwell PRM says:
565 *
566 * "Before Gen8, there was a historical configuration control field to
567 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
568 * different places: TILECTL[1:0], ARB_MODE[5:4], and
569 * DISP_ARB_CTL[14:13].
570 *
571 * For Gen8 and subsequent generations, the swizzle fields are all
572 * reserved, and the CPU's memory controller performs all address
573 * swizzling modifications."
574 */
575 bool swizzled =
576 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
577
578 isl_device_init(&device->isl_dev, &device->info, swizzled);
579
580 result = anv_physical_device_init_uuids(device);
581 if (result != VK_SUCCESS)
582 goto fail;
583
584 anv_physical_device_init_disk_cache(device);
585
586 if (instance->enabled_extensions.KHR_display) {
587 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
588 if (master_fd >= 0) {
589 /* prod the device with a GETPARAM call which will fail if
590 * we don't have permission to even render on this device
591 */
592 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
593 close(master_fd);
594 master_fd = -1;
595 }
596 }
597 }
598 device->master_fd = master_fd;
599
600 result = anv_init_wsi(device);
601 if (result != VK_SUCCESS) {
602 ralloc_free(device->compiler);
603 anv_physical_device_free_disk_cache(device);
604 goto fail;
605 }
606
607 anv_physical_device_get_supported_extensions(device,
608 &device->supported_extensions);
609
610
611 device->local_fd = fd;
612
613 return VK_SUCCESS;
614
615 fail:
616 close(fd);
617 if (master_fd != -1)
618 close(master_fd);
619 return result;
620 }
621
622 static void
623 anv_physical_device_finish(struct anv_physical_device *device)
624 {
625 anv_finish_wsi(device);
626 anv_physical_device_free_disk_cache(device);
627 ralloc_free(device->compiler);
628 close(device->local_fd);
629 if (device->master_fd >= 0)
630 close(device->master_fd);
631 }
632
633 static void *
634 default_alloc_func(void *pUserData, size_t size, size_t align,
635 VkSystemAllocationScope allocationScope)
636 {
637 return malloc(size);
638 }
639
640 static void *
641 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
642 size_t align, VkSystemAllocationScope allocationScope)
643 {
644 return realloc(pOriginal, size);
645 }
646
647 static void
648 default_free_func(void *pUserData, void *pMemory)
649 {
650 free(pMemory);
651 }
652
653 static const VkAllocationCallbacks default_alloc = {
654 .pUserData = NULL,
655 .pfnAllocation = default_alloc_func,
656 .pfnReallocation = default_realloc_func,
657 .pfnFree = default_free_func,
658 };
659
660 VkResult anv_EnumerateInstanceExtensionProperties(
661 const char* pLayerName,
662 uint32_t* pPropertyCount,
663 VkExtensionProperties* pProperties)
664 {
665 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
666
667 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
668 if (anv_instance_extensions_supported.extensions[i]) {
669 vk_outarray_append(&out, prop) {
670 *prop = anv_instance_extensions[i];
671 }
672 }
673 }
674
675 return vk_outarray_status(&out);
676 }
677
678 VkResult anv_CreateInstance(
679 const VkInstanceCreateInfo* pCreateInfo,
680 const VkAllocationCallbacks* pAllocator,
681 VkInstance* pInstance)
682 {
683 struct anv_instance *instance;
684 VkResult result;
685
686 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
687
688 struct anv_instance_extension_table enabled_extensions = {};
689 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
690 int idx;
691 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
692 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
693 anv_instance_extensions[idx].extensionName) == 0)
694 break;
695 }
696
697 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
698 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
699
700 if (!anv_instance_extensions_supported.extensions[idx])
701 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
702
703 enabled_extensions.extensions[idx] = true;
704 }
705
706 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
707 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
708 if (!instance)
709 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
710
711 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
712
713 if (pAllocator)
714 instance->alloc = *pAllocator;
715 else
716 instance->alloc = default_alloc;
717
718 instance->app_info = (struct anv_app_info) { .api_version = 0 };
719 if (pCreateInfo->pApplicationInfo) {
720 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
721
722 instance->app_info.app_name =
723 vk_strdup(&instance->alloc, app->pApplicationName,
724 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
725 instance->app_info.app_version = app->applicationVersion;
726
727 instance->app_info.engine_name =
728 vk_strdup(&instance->alloc, app->pEngineName,
729 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
730 instance->app_info.engine_version = app->engineVersion;
731
732 instance->app_info.api_version = app->apiVersion;
733 }
734
735 if (instance->app_info.api_version == 0)
736 instance->app_info.api_version = VK_API_VERSION_1_0;
737
738 instance->enabled_extensions = enabled_extensions;
739
740 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
741 /* Vulkan requires that entrypoints for extensions which have not been
742 * enabled must not be advertised.
743 */
744 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
745 &instance->enabled_extensions)) {
746 instance->dispatch.entrypoints[i] = NULL;
747 } else {
748 instance->dispatch.entrypoints[i] =
749 anv_instance_dispatch_table.entrypoints[i];
750 }
751 }
752
753 struct anv_physical_device *pdevice = &instance->physicalDevice;
754 for (unsigned i = 0; i < ARRAY_SIZE(pdevice->dispatch.entrypoints); i++) {
755 /* Vulkan requires that entrypoints for extensions which have not been
756 * enabled must not be advertised.
757 */
758 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
759 &instance->enabled_extensions)) {
760 pdevice->dispatch.entrypoints[i] = NULL;
761 } else {
762 pdevice->dispatch.entrypoints[i] =
763 anv_physical_device_dispatch_table.entrypoints[i];
764 }
765 }
766
767 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
768 /* Vulkan requires that entrypoints for extensions which have not been
769 * enabled must not be advertised.
770 */
771 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
772 &instance->enabled_extensions, NULL)) {
773 instance->device_dispatch.entrypoints[i] = NULL;
774 } else {
775 instance->device_dispatch.entrypoints[i] =
776 anv_device_dispatch_table.entrypoints[i];
777 }
778 }
779
780 instance->physicalDeviceCount = -1;
781
782 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
783 if (result != VK_SUCCESS) {
784 vk_free2(&default_alloc, pAllocator, instance);
785 return vk_error(result);
786 }
787
788 instance->pipeline_cache_enabled =
789 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
790
791 _mesa_locale_init();
792 glsl_type_singleton_init_or_ref();
793
794 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
795
796 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
797 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
798 0, "anv", NULL,
799 instance->app_info.engine_name,
800 instance->app_info.engine_version);
801
802 *pInstance = anv_instance_to_handle(instance);
803
804 return VK_SUCCESS;
805 }
806
807 void anv_DestroyInstance(
808 VkInstance _instance,
809 const VkAllocationCallbacks* pAllocator)
810 {
811 ANV_FROM_HANDLE(anv_instance, instance, _instance);
812
813 if (!instance)
814 return;
815
816 if (instance->physicalDeviceCount > 0) {
817 /* We support at most one physical device. */
818 assert(instance->physicalDeviceCount == 1);
819 anv_physical_device_finish(&instance->physicalDevice);
820 }
821
822 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
823 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
824
825 VG(VALGRIND_DESTROY_MEMPOOL(instance));
826
827 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
828
829 glsl_type_singleton_decref();
830 _mesa_locale_fini();
831
832 driDestroyOptionCache(&instance->dri_options);
833 driDestroyOptionInfo(&instance->available_dri_options);
834
835 vk_free(&instance->alloc, instance);
836 }
837
838 static VkResult
839 anv_enumerate_devices(struct anv_instance *instance)
840 {
841 /* TODO: Check for more devices ? */
842 drmDevicePtr devices[8];
843 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
844 int max_devices;
845
846 instance->physicalDeviceCount = 0;
847
848 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
849 if (max_devices < 1)
850 return VK_ERROR_INCOMPATIBLE_DRIVER;
851
852 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
853 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
854 devices[i]->bustype == DRM_BUS_PCI &&
855 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
856
857 result = anv_physical_device_init(&instance->physicalDevice,
858 instance, devices[i]);
859 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
860 break;
861 }
862 }
863 drmFreeDevices(devices, max_devices);
864
865 if (result == VK_SUCCESS)
866 instance->physicalDeviceCount = 1;
867
868 return result;
869 }
870
871 static VkResult
872 anv_instance_ensure_physical_device(struct anv_instance *instance)
873 {
874 if (instance->physicalDeviceCount < 0) {
875 VkResult result = anv_enumerate_devices(instance);
876 if (result != VK_SUCCESS &&
877 result != VK_ERROR_INCOMPATIBLE_DRIVER)
878 return result;
879 }
880
881 return VK_SUCCESS;
882 }
883
884 VkResult anv_EnumeratePhysicalDevices(
885 VkInstance _instance,
886 uint32_t* pPhysicalDeviceCount,
887 VkPhysicalDevice* pPhysicalDevices)
888 {
889 ANV_FROM_HANDLE(anv_instance, instance, _instance);
890 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
891
892 VkResult result = anv_instance_ensure_physical_device(instance);
893 if (result != VK_SUCCESS)
894 return result;
895
896 if (instance->physicalDeviceCount == 0)
897 return VK_SUCCESS;
898
899 assert(instance->physicalDeviceCount == 1);
900 vk_outarray_append(&out, i) {
901 *i = anv_physical_device_to_handle(&instance->physicalDevice);
902 }
903
904 return vk_outarray_status(&out);
905 }
906
907 VkResult anv_EnumeratePhysicalDeviceGroups(
908 VkInstance _instance,
909 uint32_t* pPhysicalDeviceGroupCount,
910 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
911 {
912 ANV_FROM_HANDLE(anv_instance, instance, _instance);
913 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
914 pPhysicalDeviceGroupCount);
915
916 VkResult result = anv_instance_ensure_physical_device(instance);
917 if (result != VK_SUCCESS)
918 return result;
919
920 if (instance->physicalDeviceCount == 0)
921 return VK_SUCCESS;
922
923 assert(instance->physicalDeviceCount == 1);
924
925 vk_outarray_append(&out, p) {
926 p->physicalDeviceCount = 1;
927 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
928 p->physicalDevices[0] =
929 anv_physical_device_to_handle(&instance->physicalDevice);
930 p->subsetAllocation = false;
931
932 vk_foreach_struct(ext, p->pNext)
933 anv_debug_ignored_stype(ext->sType);
934 }
935
936 return vk_outarray_status(&out);
937 }
938
939 void anv_GetPhysicalDeviceFeatures(
940 VkPhysicalDevice physicalDevice,
941 VkPhysicalDeviceFeatures* pFeatures)
942 {
943 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
944
945 *pFeatures = (VkPhysicalDeviceFeatures) {
946 .robustBufferAccess = true,
947 .fullDrawIndexUint32 = true,
948 .imageCubeArray = true,
949 .independentBlend = true,
950 .geometryShader = true,
951 .tessellationShader = true,
952 .sampleRateShading = true,
953 .dualSrcBlend = true,
954 .logicOp = true,
955 .multiDrawIndirect = true,
956 .drawIndirectFirstInstance = true,
957 .depthClamp = true,
958 .depthBiasClamp = true,
959 .fillModeNonSolid = true,
960 .depthBounds = false,
961 .wideLines = true,
962 .largePoints = true,
963 .alphaToOne = true,
964 .multiViewport = true,
965 .samplerAnisotropy = true,
966 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
967 pdevice->info.is_baytrail,
968 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
969 .textureCompressionBC = true,
970 .occlusionQueryPrecise = true,
971 .pipelineStatisticsQuery = true,
972 .fragmentStoresAndAtomics = true,
973 .shaderTessellationAndGeometryPointSize = true,
974 .shaderImageGatherExtended = true,
975 .shaderStorageImageExtendedFormats = true,
976 .shaderStorageImageMultisample = false,
977 .shaderStorageImageReadWithoutFormat = false,
978 .shaderStorageImageWriteWithoutFormat = true,
979 .shaderUniformBufferArrayDynamicIndexing = true,
980 .shaderSampledImageArrayDynamicIndexing = true,
981 .shaderStorageBufferArrayDynamicIndexing = true,
982 .shaderStorageImageArrayDynamicIndexing = true,
983 .shaderClipDistance = true,
984 .shaderCullDistance = true,
985 .shaderFloat64 = pdevice->info.gen >= 8 &&
986 pdevice->info.has_64bit_types,
987 .shaderInt64 = pdevice->info.gen >= 8 &&
988 pdevice->info.has_64bit_types,
989 .shaderInt16 = pdevice->info.gen >= 8,
990 .shaderResourceMinLod = pdevice->info.gen >= 9,
991 .variableMultisampleRate = true,
992 .inheritedQueries = true,
993 };
994
995 /* We can't do image stores in vec4 shaders */
996 pFeatures->vertexPipelineStoresAndAtomics =
997 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
998 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
999
1000 struct anv_app_info *app_info = &pdevice->instance->app_info;
1001
1002 /* The new DOOM and Wolfenstein games require depthBounds without
1003 * checking for it. They seem to run fine without it so just claim it's
1004 * there and accept the consequences.
1005 */
1006 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
1007 pFeatures->depthBounds = true;
1008 }
1009
1010 void anv_GetPhysicalDeviceFeatures2(
1011 VkPhysicalDevice physicalDevice,
1012 VkPhysicalDeviceFeatures2* pFeatures)
1013 {
1014 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1015 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1016
1017 vk_foreach_struct(ext, pFeatures->pNext) {
1018 switch (ext->sType) {
1019 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1020 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1021 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1022 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1023 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1024 features->storagePushConstant8 = pdevice->info.gen >= 8;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1029 VkPhysicalDevice16BitStorageFeatures *features =
1030 (VkPhysicalDevice16BitStorageFeatures *)ext;
1031 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1032 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1033 features->storagePushConstant16 = pdevice->info.gen >= 8;
1034 features->storageInputOutput16 = false;
1035 break;
1036 }
1037
1038 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1039 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1040 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1041 features->bufferDeviceAddressCaptureReplay = false;
1042 features->bufferDeviceAddressMultiDevice = false;
1043 break;
1044 }
1045
1046 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1047 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1048 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1049 features->computeDerivativeGroupQuads = true;
1050 features->computeDerivativeGroupLinear = true;
1051 break;
1052 }
1053
1054 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1055 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1056 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1057 features->conditionalRendering = pdevice->info.gen >= 8 ||
1058 pdevice->info.is_haswell;
1059 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1060 pdevice->info.is_haswell;
1061 break;
1062 }
1063
1064 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1065 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1066 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1067 features->depthClipEnable = true;
1068 break;
1069 }
1070
1071 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1072 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1073 features->shaderFloat16 = pdevice->info.gen >= 8;
1074 features->shaderInt8 = pdevice->info.gen >= 8;
1075 break;
1076 }
1077
1078 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1079 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1080 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1081 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1082 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1083 features->fragmentShaderShadingRateInterlock = false;
1084 break;
1085 }
1086
1087 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1088 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1089 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1090 features->hostQueryReset = true;
1091 break;
1092 }
1093
1094 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1095 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1096 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1097 features->shaderInputAttachmentArrayDynamicIndexing = false;
1098 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1099 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1100 features->shaderUniformBufferArrayNonUniformIndexing = false;
1101 features->shaderSampledImageArrayNonUniformIndexing = true;
1102 features->shaderStorageBufferArrayNonUniformIndexing = true;
1103 features->shaderStorageImageArrayNonUniformIndexing = true;
1104 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1105 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1106 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1107 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1108 features->descriptorBindingSampledImageUpdateAfterBind = true;
1109 features->descriptorBindingStorageImageUpdateAfterBind = true;
1110 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1111 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1112 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1113 features->descriptorBindingUpdateUnusedWhilePending = true;
1114 features->descriptorBindingPartiallyBound = true;
1115 features->descriptorBindingVariableDescriptorCount = false;
1116 features->runtimeDescriptorArray = true;
1117 break;
1118 }
1119
1120 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1121 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1122 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1123 features->indexTypeUint8 = true;
1124 break;
1125 }
1126
1127 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1128 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1129 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1130 features->inlineUniformBlock = true;
1131 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1132 break;
1133 }
1134
1135 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1136 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1137 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1138 features->rectangularLines = true;
1139 features->bresenhamLines = true;
1140 features->smoothLines = true;
1141 features->stippledRectangularLines = false;
1142 features->stippledBresenhamLines = true;
1143 features->stippledSmoothLines = false;
1144 break;
1145 }
1146
1147 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1148 VkPhysicalDeviceMultiviewFeatures *features =
1149 (VkPhysicalDeviceMultiviewFeatures *)ext;
1150 features->multiview = true;
1151 features->multiviewGeometryShader = true;
1152 features->multiviewTessellationShader = true;
1153 break;
1154 }
1155
1156 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1157 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1158 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1159 features->imagelessFramebuffer = true;
1160 break;
1161 }
1162
1163 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1164 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1165 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1166 features->pipelineExecutableInfo = true;
1167 break;
1168 }
1169
1170 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1171 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1172 features->protectedMemory = false;
1173 break;
1174 }
1175
1176 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1177 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1178 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1179 features->samplerYcbcrConversion = true;
1180 break;
1181 }
1182
1183 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1184 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1185 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1186 features->scalarBlockLayout = true;
1187 break;
1188 }
1189
1190 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1191 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1192 features->shaderBufferInt64Atomics =
1193 pdevice->info.gen >= 9 && pdevice->use_softpin;
1194 features->shaderSharedInt64Atomics = VK_FALSE;
1195 break;
1196 }
1197
1198 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1199 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1200 features->shaderDemoteToHelperInvocation = true;
1201 break;
1202 }
1203
1204 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1205 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1206 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1207 features->shaderSubgroupClock = true;
1208 features->shaderDeviceClock = false;
1209 break;
1210 }
1211
1212 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1213 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1214 features->shaderDrawParameters = true;
1215 break;
1216 }
1217
1218 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1219 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1220 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1221 features->shaderSubgroupExtendedTypes = true;
1222 break;
1223 }
1224
1225 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1226 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1227 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1228 features->subgroupSizeControl = true;
1229 features->computeFullSubgroups = true;
1230 break;
1231 }
1232
1233 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1234 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1235 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1236 features->texelBufferAlignment = true;
1237 break;
1238 }
1239
1240 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1241 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1242 features->variablePointersStorageBuffer = true;
1243 features->variablePointers = true;
1244 break;
1245 }
1246
1247 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1248 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1249 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1250 features->transformFeedback = true;
1251 features->geometryStreams = true;
1252 break;
1253 }
1254
1255 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1256 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1257 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1258 features->uniformBufferStandardLayout = true;
1259 break;
1260 }
1261
1262 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1263 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1264 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1265 features->vertexAttributeInstanceRateDivisor = true;
1266 features->vertexAttributeInstanceRateZeroDivisor = true;
1267 break;
1268 }
1269
1270 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1271 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1272 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1273 features->ycbcrImageArrays = true;
1274 break;
1275 }
1276
1277 default:
1278 anv_debug_ignored_stype(ext->sType);
1279 break;
1280 }
1281 }
1282 }
1283
1284 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1285
1286 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1287 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1288
1289 void anv_GetPhysicalDeviceProperties(
1290 VkPhysicalDevice physicalDevice,
1291 VkPhysicalDeviceProperties* pProperties)
1292 {
1293 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1294 const struct gen_device_info *devinfo = &pdevice->info;
1295
1296 /* See assertions made when programming the buffer surface state. */
1297 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1298 (1ul << 30) : (1ul << 27);
1299
1300 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1301 const uint32_t max_textures =
1302 pdevice->has_bindless_images ? UINT16_MAX : 128;
1303 const uint32_t max_samplers =
1304 pdevice->has_bindless_samplers ? UINT16_MAX :
1305 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1306 const uint32_t max_images =
1307 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1308
1309 /* If we can use bindless for everything, claim a high per-stage limit,
1310 * otherwise use the binding table size, minus the slots reserved for
1311 * render targets and one slot for the descriptor buffer. */
1312 const uint32_t max_per_stage =
1313 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1314 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1315
1316 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1317
1318 VkSampleCountFlags sample_counts =
1319 isl_device_get_sample_counts(&pdevice->isl_dev);
1320
1321
1322 VkPhysicalDeviceLimits limits = {
1323 .maxImageDimension1D = (1 << 14),
1324 .maxImageDimension2D = (1 << 14),
1325 .maxImageDimension3D = (1 << 11),
1326 .maxImageDimensionCube = (1 << 14),
1327 .maxImageArrayLayers = (1 << 11),
1328 .maxTexelBufferElements = 128 * 1024 * 1024,
1329 .maxUniformBufferRange = (1ul << 27),
1330 .maxStorageBufferRange = max_raw_buffer_sz,
1331 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1332 .maxMemoryAllocationCount = UINT32_MAX,
1333 .maxSamplerAllocationCount = 64 * 1024,
1334 .bufferImageGranularity = 64, /* A cache line */
1335 .sparseAddressSpaceSize = 0,
1336 .maxBoundDescriptorSets = MAX_SETS,
1337 .maxPerStageDescriptorSamplers = max_samplers,
1338 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1339 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1340 .maxPerStageDescriptorSampledImages = max_textures,
1341 .maxPerStageDescriptorStorageImages = max_images,
1342 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1343 .maxPerStageResources = max_per_stage,
1344 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1345 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1346 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1347 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1348 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1349 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1350 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1351 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1352 .maxVertexInputAttributes = MAX_VBS,
1353 .maxVertexInputBindings = MAX_VBS,
1354 .maxVertexInputAttributeOffset = 2047,
1355 .maxVertexInputBindingStride = 2048,
1356 .maxVertexOutputComponents = 128,
1357 .maxTessellationGenerationLevel = 64,
1358 .maxTessellationPatchSize = 32,
1359 .maxTessellationControlPerVertexInputComponents = 128,
1360 .maxTessellationControlPerVertexOutputComponents = 128,
1361 .maxTessellationControlPerPatchOutputComponents = 128,
1362 .maxTessellationControlTotalOutputComponents = 2048,
1363 .maxTessellationEvaluationInputComponents = 128,
1364 .maxTessellationEvaluationOutputComponents = 128,
1365 .maxGeometryShaderInvocations = 32,
1366 .maxGeometryInputComponents = 64,
1367 .maxGeometryOutputComponents = 128,
1368 .maxGeometryOutputVertices = 256,
1369 .maxGeometryTotalOutputComponents = 1024,
1370 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1371 .maxFragmentOutputAttachments = 8,
1372 .maxFragmentDualSrcAttachments = 1,
1373 .maxFragmentCombinedOutputResources = 8,
1374 .maxComputeSharedMemorySize = 64 * 1024,
1375 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1376 .maxComputeWorkGroupInvocations = max_workgroup_size,
1377 .maxComputeWorkGroupSize = {
1378 max_workgroup_size,
1379 max_workgroup_size,
1380 max_workgroup_size,
1381 },
1382 .subPixelPrecisionBits = 8,
1383 .subTexelPrecisionBits = 8,
1384 .mipmapPrecisionBits = 8,
1385 .maxDrawIndexedIndexValue = UINT32_MAX,
1386 .maxDrawIndirectCount = UINT32_MAX,
1387 .maxSamplerLodBias = 16,
1388 .maxSamplerAnisotropy = 16,
1389 .maxViewports = MAX_VIEWPORTS,
1390 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1391 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1392 .viewportSubPixelBits = 13, /* We take a float? */
1393 .minMemoryMapAlignment = 4096, /* A page */
1394 /* The dataport requires texel alignment so we need to assume a worst
1395 * case of R32G32B32A32 which is 16 bytes.
1396 */
1397 .minTexelBufferOffsetAlignment = 16,
1398 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1399 .minUniformBufferOffsetAlignment = 32,
1400 .minStorageBufferOffsetAlignment = 4,
1401 .minTexelOffset = -8,
1402 .maxTexelOffset = 7,
1403 .minTexelGatherOffset = -32,
1404 .maxTexelGatherOffset = 31,
1405 .minInterpolationOffset = -0.5,
1406 .maxInterpolationOffset = 0.4375,
1407 .subPixelInterpolationOffsetBits = 4,
1408 .maxFramebufferWidth = (1 << 14),
1409 .maxFramebufferHeight = (1 << 14),
1410 .maxFramebufferLayers = (1 << 11),
1411 .framebufferColorSampleCounts = sample_counts,
1412 .framebufferDepthSampleCounts = sample_counts,
1413 .framebufferStencilSampleCounts = sample_counts,
1414 .framebufferNoAttachmentsSampleCounts = sample_counts,
1415 .maxColorAttachments = MAX_RTS,
1416 .sampledImageColorSampleCounts = sample_counts,
1417 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1418 .sampledImageDepthSampleCounts = sample_counts,
1419 .sampledImageStencilSampleCounts = sample_counts,
1420 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1421 .maxSampleMaskWords = 1,
1422 .timestampComputeAndGraphics = true,
1423 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1424 .maxClipDistances = 8,
1425 .maxCullDistances = 8,
1426 .maxCombinedClipAndCullDistances = 8,
1427 .discreteQueuePriorities = 2,
1428 .pointSizeRange = { 0.125, 255.875 },
1429 .lineWidthRange = {
1430 0.0,
1431 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1432 2047.9921875 : 7.9921875,
1433 },
1434 .pointSizeGranularity = (1.0 / 8.0),
1435 .lineWidthGranularity = (1.0 / 128.0),
1436 .strictLines = false,
1437 .standardSampleLocations = true,
1438 .optimalBufferCopyOffsetAlignment = 128,
1439 .optimalBufferCopyRowPitchAlignment = 128,
1440 .nonCoherentAtomSize = 64,
1441 };
1442
1443 *pProperties = (VkPhysicalDeviceProperties) {
1444 .apiVersion = anv_physical_device_api_version(pdevice),
1445 .driverVersion = vk_get_driver_version(),
1446 .vendorID = 0x8086,
1447 .deviceID = pdevice->chipset_id,
1448 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1449 .limits = limits,
1450 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1451 };
1452
1453 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1454 "%s", pdevice->name);
1455 memcpy(pProperties->pipelineCacheUUID,
1456 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1457 }
1458
1459 void anv_GetPhysicalDeviceProperties2(
1460 VkPhysicalDevice physicalDevice,
1461 VkPhysicalDeviceProperties2* pProperties)
1462 {
1463 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1464
1465 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1466
1467 vk_foreach_struct(ext, pProperties->pNext) {
1468 switch (ext->sType) {
1469 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1470 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1471 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1472
1473 /* We support all of the depth resolve modes */
1474 props->supportedDepthResolveModes =
1475 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1476 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1477 VK_RESOLVE_MODE_MIN_BIT_KHR |
1478 VK_RESOLVE_MODE_MAX_BIT_KHR;
1479
1480 /* Average doesn't make sense for stencil so we don't support that */
1481 props->supportedStencilResolveModes =
1482 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1483 if (pdevice->info.gen >= 8) {
1484 /* The advanced stencil resolve modes currently require stencil
1485 * sampling be supported by the hardware.
1486 */
1487 props->supportedStencilResolveModes |=
1488 VK_RESOLVE_MODE_MIN_BIT_KHR |
1489 VK_RESOLVE_MODE_MAX_BIT_KHR;
1490 }
1491
1492 props->independentResolveNone = true;
1493 props->independentResolve = true;
1494 break;
1495 }
1496
1497 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1498 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1499 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1500
1501 /* It's a bit hard to exactly map our implementation to the limits
1502 * described here. The bindless surface handle in the extended
1503 * message descriptors is 20 bits and it's an index into the table of
1504 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1505 * address. Given that most things consume two surface states per
1506 * view (general/sampled for textures and write-only/read-write for
1507 * images), we claim 2^19 things.
1508 *
1509 * For SSBOs, we just use A64 messages so there is no real limit
1510 * there beyond the limit on the total size of a descriptor set.
1511 */
1512 const unsigned max_bindless_views = 1 << 19;
1513
1514 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1515 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1516 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1517 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1518 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1519 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1520 props->robustBufferAccessUpdateAfterBind = true;
1521 props->quadDivergentImplicitLod = false;
1522 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1523 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1524 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1525 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1526 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1527 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1528 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1529 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1530 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1531 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1532 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1533 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1534 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1535 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1536 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1537 break;
1538 }
1539
1540 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1541 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1542 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1543
1544 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1545 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1546 "Intel open-source Mesa driver");
1547
1548 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1549 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1550
1551 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1552 .major = 1,
1553 .minor = 1,
1554 .subminor = 2,
1555 .patch = 0,
1556 };
1557 break;
1558 }
1559
1560 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1561 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1562 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1563 /* Userptr needs page aligned memory. */
1564 props->minImportedHostPointerAlignment = 4096;
1565 break;
1566 }
1567
1568 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1569 VkPhysicalDeviceIDProperties *id_props =
1570 (VkPhysicalDeviceIDProperties *)ext;
1571 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1572 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1573 /* The LUID is for Windows. */
1574 id_props->deviceLUIDValid = false;
1575 break;
1576 }
1577
1578 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1579 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1580 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1581 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1582 props->maxPerStageDescriptorInlineUniformBlocks =
1583 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1584 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1585 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1586 props->maxDescriptorSetInlineUniformBlocks =
1587 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1588 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1589 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1590 break;
1591 }
1592
1593 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1594 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1595 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1596 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1597 * Sampling Rules - Legacy Mode", it says the following:
1598 *
1599 * "Note that the device divides a pixel into a 16x16 array of
1600 * subpixels, referenced by their upper left corners."
1601 *
1602 * This is the only known reference in the PRMs to the subpixel
1603 * precision of line rasterization and a "16x16 array of subpixels"
1604 * implies 4 subpixel precision bits. Empirical testing has shown
1605 * that 4 subpixel precision bits applies to all line rasterization
1606 * types.
1607 */
1608 props->lineSubPixelPrecisionBits = 4;
1609 break;
1610 }
1611
1612 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1613 VkPhysicalDeviceMaintenance3Properties *props =
1614 (VkPhysicalDeviceMaintenance3Properties *)ext;
1615 /* This value doesn't matter for us today as our per-stage
1616 * descriptors are the real limit.
1617 */
1618 props->maxPerSetDescriptors = 1024;
1619 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1620 break;
1621 }
1622
1623 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1624 VkPhysicalDeviceMultiviewProperties *properties =
1625 (VkPhysicalDeviceMultiviewProperties *)ext;
1626 properties->maxMultiviewViewCount = 16;
1627 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1628 break;
1629 }
1630
1631 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1632 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1633 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1634 properties->pciDomain = pdevice->pci_info.domain;
1635 properties->pciBus = pdevice->pci_info.bus;
1636 properties->pciDevice = pdevice->pci_info.device;
1637 properties->pciFunction = pdevice->pci_info.function;
1638 break;
1639 }
1640
1641 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1642 VkPhysicalDevicePointClippingProperties *properties =
1643 (VkPhysicalDevicePointClippingProperties *) ext;
1644 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1645 break;
1646 }
1647
1648 #pragma GCC diagnostic push
1649 #pragma GCC diagnostic ignored "-Wswitch"
1650 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1651 VkPhysicalDevicePresentationPropertiesANDROID *props =
1652 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1653 props->sharedImage = VK_FALSE;
1654 break;
1655 }
1656 #pragma GCC diagnostic pop
1657
1658 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1659 VkPhysicalDeviceProtectedMemoryProperties *props =
1660 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1661 props->protectedNoFault = false;
1662 break;
1663 }
1664
1665 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1666 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1667 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1668
1669 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1670 break;
1671 }
1672
1673 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1674 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1675 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1676 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1677 properties->filterMinmaxSingleComponentFormats = true;
1678 break;
1679 }
1680
1681 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1682 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1683
1684 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1685
1686 VkShaderStageFlags scalar_stages = 0;
1687 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1688 if (pdevice->compiler->scalar_stage[stage])
1689 scalar_stages |= mesa_to_vk_shader_stage(stage);
1690 }
1691 properties->supportedStages = scalar_stages;
1692
1693 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1694 VK_SUBGROUP_FEATURE_VOTE_BIT |
1695 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1696 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1697 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1698 VK_SUBGROUP_FEATURE_QUAD_BIT;
1699 if (pdevice->info.gen >= 8) {
1700 /* TODO: There's no technical reason why these can't be made to
1701 * work on gen7 but they don't at the moment so it's best to leave
1702 * the feature disabled than enabled and broken.
1703 */
1704 properties->supportedOperations |=
1705 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1706 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1707 }
1708 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1709 break;
1710 }
1711
1712 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1713 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1714 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1715 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1716 props->minSubgroupSize = 8;
1717 props->maxSubgroupSize = 32;
1718 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1719 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1720 break;
1721 }
1722 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1723 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1724 properties->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1725 properties->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1726
1727 /* Broadwell does not support HF denorms and there are restrictions
1728 * other gens. According to Kabylake's PRM:
1729 *
1730 * "math - Extended Math Function
1731 * [...]
1732 * Restriction : Half-float denorms are always retained."
1733 */
1734 properties->shaderDenormFlushToZeroFloat16 = false;
1735 properties->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1736 properties->shaderRoundingModeRTEFloat16 = true;
1737 properties->shaderRoundingModeRTZFloat16 = true;
1738 properties->shaderSignedZeroInfNanPreserveFloat16 = true;
1739
1740 properties->shaderDenormFlushToZeroFloat32 = true;
1741 properties->shaderDenormPreserveFloat32 = true;
1742 properties->shaderRoundingModeRTEFloat32 = true;
1743 properties->shaderRoundingModeRTZFloat32 = true;
1744 properties->shaderSignedZeroInfNanPreserveFloat32 = true;
1745
1746 properties->shaderDenormFlushToZeroFloat64 = true;
1747 properties->shaderDenormPreserveFloat64 = true;
1748 properties->shaderRoundingModeRTEFloat64 = true;
1749 properties->shaderRoundingModeRTZFloat64 = true;
1750 properties->shaderSignedZeroInfNanPreserveFloat64 = true;
1751 break;
1752 }
1753
1754 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1755 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1756 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1757
1758 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1759 * Base Address:
1760 *
1761 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1762 * specifies the base address of the first element of the surface,
1763 * computed in software by adding the surface base address to the
1764 * byte offset of the element in the buffer. The base address must
1765 * be aligned to element size."
1766 *
1767 * The typed dataport messages require that things be texel aligned.
1768 * Otherwise, we may just load/store the wrong data or, in the worst
1769 * case, there may be hangs.
1770 */
1771 props->storageTexelBufferOffsetAlignmentBytes = 16;
1772 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1773
1774 /* The sampler, however, is much more forgiving and it can handle
1775 * arbitrary byte alignment for linear and buffer surfaces. It's
1776 * hard to find a good PRM citation for this but years of empirical
1777 * experience demonstrate that this is true.
1778 */
1779 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1780 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1781 break;
1782 }
1783
1784 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1785 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1786 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1787
1788 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1789 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1790 props->maxTransformFeedbackBufferSize = (1ull << 32);
1791 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1792 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1793 props->maxTransformFeedbackBufferDataStride = 2048;
1794 props->transformFeedbackQueries = true;
1795 props->transformFeedbackStreamsLinesTriangles = false;
1796 props->transformFeedbackRasterizationStreamSelect = false;
1797 props->transformFeedbackDraw = true;
1798 break;
1799 }
1800
1801 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1802 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1803 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1804 /* We have to restrict this a bit for multiview */
1805 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1806 break;
1807 }
1808
1809 default:
1810 anv_debug_ignored_stype(ext->sType);
1811 break;
1812 }
1813 }
1814 }
1815
1816 /* We support exactly one queue family. */
1817 static const VkQueueFamilyProperties
1818 anv_queue_family_properties = {
1819 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1820 VK_QUEUE_COMPUTE_BIT |
1821 VK_QUEUE_TRANSFER_BIT,
1822 .queueCount = 1,
1823 .timestampValidBits = 36, /* XXX: Real value here */
1824 .minImageTransferGranularity = { 1, 1, 1 },
1825 };
1826
1827 void anv_GetPhysicalDeviceQueueFamilyProperties(
1828 VkPhysicalDevice physicalDevice,
1829 uint32_t* pCount,
1830 VkQueueFamilyProperties* pQueueFamilyProperties)
1831 {
1832 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1833
1834 vk_outarray_append(&out, p) {
1835 *p = anv_queue_family_properties;
1836 }
1837 }
1838
1839 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1840 VkPhysicalDevice physicalDevice,
1841 uint32_t* pQueueFamilyPropertyCount,
1842 VkQueueFamilyProperties2* pQueueFamilyProperties)
1843 {
1844
1845 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1846
1847 vk_outarray_append(&out, p) {
1848 p->queueFamilyProperties = anv_queue_family_properties;
1849
1850 vk_foreach_struct(s, p->pNext) {
1851 anv_debug_ignored_stype(s->sType);
1852 }
1853 }
1854 }
1855
1856 void anv_GetPhysicalDeviceMemoryProperties(
1857 VkPhysicalDevice physicalDevice,
1858 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1859 {
1860 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1861
1862 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1863 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1864 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1865 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1866 .heapIndex = physical_device->memory.types[i].heapIndex,
1867 };
1868 }
1869
1870 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1871 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1872 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1873 .size = physical_device->memory.heaps[i].size,
1874 .flags = physical_device->memory.heaps[i].flags,
1875 };
1876 }
1877 }
1878
1879 static void
1880 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1881 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1882 {
1883 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1884 uint64_t sys_available = get_available_system_memory();
1885 assert(sys_available > 0);
1886
1887 VkDeviceSize total_heaps_size = 0;
1888 for (size_t i = 0; i < device->memory.heap_count; i++)
1889 total_heaps_size += device->memory.heaps[i].size;
1890
1891 for (size_t i = 0; i < device->memory.heap_count; i++) {
1892 VkDeviceSize heap_size = device->memory.heaps[i].size;
1893 VkDeviceSize heap_used = device->memory.heaps[i].used;
1894 VkDeviceSize heap_budget;
1895
1896 double heap_proportion = (double) heap_size / total_heaps_size;
1897 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1898
1899 /*
1900 * Let's not incite the app to starve the system: report at most 90% of
1901 * available system memory.
1902 */
1903 uint64_t heap_available = sys_available_prop * 9 / 10;
1904 heap_budget = MIN2(heap_size, heap_used + heap_available);
1905
1906 /*
1907 * Round down to the nearest MB
1908 */
1909 heap_budget &= ~((1ull << 20) - 1);
1910
1911 /*
1912 * The heapBudget value must be non-zero for array elements less than
1913 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1914 * value must be less than or equal to VkMemoryHeap::size for each heap.
1915 */
1916 assert(0 < heap_budget && heap_budget <= heap_size);
1917
1918 memoryBudget->heapUsage[i] = heap_used;
1919 memoryBudget->heapBudget[i] = heap_budget;
1920 }
1921
1922 /* The heapBudget and heapUsage values must be zero for array elements
1923 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1924 */
1925 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1926 memoryBudget->heapBudget[i] = 0;
1927 memoryBudget->heapUsage[i] = 0;
1928 }
1929 }
1930
1931 void anv_GetPhysicalDeviceMemoryProperties2(
1932 VkPhysicalDevice physicalDevice,
1933 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1934 {
1935 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1936 &pMemoryProperties->memoryProperties);
1937
1938 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1939 switch (ext->sType) {
1940 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1941 anv_get_memory_budget(physicalDevice, (void*)ext);
1942 break;
1943 default:
1944 anv_debug_ignored_stype(ext->sType);
1945 break;
1946 }
1947 }
1948 }
1949
1950 void
1951 anv_GetDeviceGroupPeerMemoryFeatures(
1952 VkDevice device,
1953 uint32_t heapIndex,
1954 uint32_t localDeviceIndex,
1955 uint32_t remoteDeviceIndex,
1956 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1957 {
1958 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1959 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1960 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1961 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1962 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1963 }
1964
1965 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1966 VkInstance _instance,
1967 const char* pName)
1968 {
1969 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1970
1971 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1972 * when we have to return valid function pointers, NULL, or it's left
1973 * undefined. See the table for exact details.
1974 */
1975 if (pName == NULL)
1976 return NULL;
1977
1978 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1979 if (strcmp(pName, "vk" #entrypoint) == 0) \
1980 return (PFN_vkVoidFunction)anv_##entrypoint
1981
1982 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1983 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1984 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1985 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1986
1987 #undef LOOKUP_ANV_ENTRYPOINT
1988
1989 if (instance == NULL)
1990 return NULL;
1991
1992 int idx = anv_get_instance_entrypoint_index(pName);
1993 if (idx >= 0)
1994 return instance->dispatch.entrypoints[idx];
1995
1996 idx = anv_get_physical_device_entrypoint_index(pName);
1997 if (idx >= 0)
1998 return instance->physicalDevice.dispatch.entrypoints[idx];
1999
2000 idx = anv_get_device_entrypoint_index(pName);
2001 if (idx >= 0)
2002 return instance->device_dispatch.entrypoints[idx];
2003
2004 return NULL;
2005 }
2006
2007 /* With version 1+ of the loader interface the ICD should expose
2008 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2009 */
2010 PUBLIC
2011 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2012 VkInstance instance,
2013 const char* pName);
2014
2015 PUBLIC
2016 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2017 VkInstance instance,
2018 const char* pName)
2019 {
2020 return anv_GetInstanceProcAddr(instance, pName);
2021 }
2022
2023 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2024 VkDevice _device,
2025 const char* pName)
2026 {
2027 ANV_FROM_HANDLE(anv_device, device, _device);
2028
2029 if (!device || !pName)
2030 return NULL;
2031
2032 int idx = anv_get_device_entrypoint_index(pName);
2033 if (idx < 0)
2034 return NULL;
2035
2036 return device->dispatch.entrypoints[idx];
2037 }
2038
2039 /* With version 4+ of the loader interface the ICD should expose
2040 * vk_icdGetPhysicalDeviceProcAddr()
2041 */
2042 PUBLIC
2043 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2044 VkInstance _instance,
2045 const char* pName);
2046
2047 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2048 VkInstance _instance,
2049 const char* pName)
2050 {
2051 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2052
2053 if (!pName || !instance)
2054 return NULL;
2055
2056 int idx = anv_get_physical_device_entrypoint_index(pName);
2057 if (idx < 0)
2058 return NULL;
2059
2060 return instance->physicalDevice.dispatch.entrypoints[idx];
2061 }
2062
2063
2064 VkResult
2065 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2066 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2067 const VkAllocationCallbacks* pAllocator,
2068 VkDebugReportCallbackEXT* pCallback)
2069 {
2070 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2071 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2072 pCreateInfo, pAllocator, &instance->alloc,
2073 pCallback);
2074 }
2075
2076 void
2077 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2078 VkDebugReportCallbackEXT _callback,
2079 const VkAllocationCallbacks* pAllocator)
2080 {
2081 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2082 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2083 _callback, pAllocator, &instance->alloc);
2084 }
2085
2086 void
2087 anv_DebugReportMessageEXT(VkInstance _instance,
2088 VkDebugReportFlagsEXT flags,
2089 VkDebugReportObjectTypeEXT objectType,
2090 uint64_t object,
2091 size_t location,
2092 int32_t messageCode,
2093 const char* pLayerPrefix,
2094 const char* pMessage)
2095 {
2096 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2097 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2098 object, location, messageCode, pLayerPrefix, pMessage);
2099 }
2100
2101 static void
2102 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
2103 {
2104 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2105 queue->device = device;
2106 queue->flags = 0;
2107 }
2108
2109 static void
2110 anv_queue_finish(struct anv_queue *queue)
2111 {
2112 }
2113
2114 static struct anv_state
2115 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2116 {
2117 struct anv_state state;
2118
2119 state = anv_state_pool_alloc(pool, size, align);
2120 memcpy(state.map, p, size);
2121
2122 return state;
2123 }
2124
2125 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2126 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2127 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2128 * color as a separate entry /after/ the float color. The layout of this entry
2129 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2130 *
2131 * Since we don't know the format/bpp, we can't make any of the border colors
2132 * containing '1' work for all formats, as it would be in the wrong place for
2133 * some of them. We opt to make 32-bit integers work as this seems like the
2134 * most common option. Fortunately, transparent black works regardless, as
2135 * all zeroes is the same in every bit-size.
2136 */
2137 struct hsw_border_color {
2138 float float32[4];
2139 uint32_t _pad0[12];
2140 uint32_t uint32[4];
2141 uint32_t _pad1[108];
2142 };
2143
2144 struct gen8_border_color {
2145 union {
2146 float float32[4];
2147 uint32_t uint32[4];
2148 };
2149 /* Pad out to 64 bytes */
2150 uint32_t _pad[12];
2151 };
2152
2153 static void
2154 anv_device_init_border_colors(struct anv_device *device)
2155 {
2156 if (device->info.is_haswell) {
2157 static const struct hsw_border_color border_colors[] = {
2158 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2159 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2160 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2161 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2162 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2163 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2164 };
2165
2166 device->border_colors =
2167 anv_state_pool_emit_data(&device->dynamic_state_pool,
2168 sizeof(border_colors), 512, border_colors);
2169 } else {
2170 static const struct gen8_border_color border_colors[] = {
2171 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2172 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2173 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2174 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2175 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2176 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2177 };
2178
2179 device->border_colors =
2180 anv_state_pool_emit_data(&device->dynamic_state_pool,
2181 sizeof(border_colors), 64, border_colors);
2182 }
2183 }
2184
2185 static void
2186 anv_device_init_trivial_batch(struct anv_device *device)
2187 {
2188 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
2189
2190 if (device->instance->physicalDevice.has_exec_async)
2191 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
2192
2193 if (device->instance->physicalDevice.use_softpin)
2194 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
2195
2196 anv_vma_alloc(device, &device->trivial_batch_bo);
2197
2198 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
2199 0, 4096, 0);
2200
2201 struct anv_batch batch = {
2202 .start = map,
2203 .next = map,
2204 .end = map + 4096,
2205 };
2206
2207 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2208 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2209
2210 if (!device->info.has_llc)
2211 gen_clflush_range(map, batch.next - map);
2212
2213 anv_gem_munmap(map, device->trivial_batch_bo.size);
2214 }
2215
2216 VkResult anv_EnumerateDeviceExtensionProperties(
2217 VkPhysicalDevice physicalDevice,
2218 const char* pLayerName,
2219 uint32_t* pPropertyCount,
2220 VkExtensionProperties* pProperties)
2221 {
2222 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2223 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2224
2225 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2226 if (device->supported_extensions.extensions[i]) {
2227 vk_outarray_append(&out, prop) {
2228 *prop = anv_device_extensions[i];
2229 }
2230 }
2231 }
2232
2233 return vk_outarray_status(&out);
2234 }
2235
2236 static void
2237 anv_device_init_dispatch(struct anv_device *device)
2238 {
2239 const struct anv_device_dispatch_table *genX_table;
2240 switch (device->info.gen) {
2241 case 12:
2242 genX_table = &gen12_device_dispatch_table;
2243 break;
2244 case 11:
2245 genX_table = &gen11_device_dispatch_table;
2246 break;
2247 case 10:
2248 genX_table = &gen10_device_dispatch_table;
2249 break;
2250 case 9:
2251 genX_table = &gen9_device_dispatch_table;
2252 break;
2253 case 8:
2254 genX_table = &gen8_device_dispatch_table;
2255 break;
2256 case 7:
2257 if (device->info.is_haswell)
2258 genX_table = &gen75_device_dispatch_table;
2259 else
2260 genX_table = &gen7_device_dispatch_table;
2261 break;
2262 default:
2263 unreachable("unsupported gen\n");
2264 }
2265
2266 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2267 /* Vulkan requires that entrypoints for extensions which have not been
2268 * enabled must not be advertised.
2269 */
2270 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2271 &device->instance->enabled_extensions,
2272 &device->enabled_extensions)) {
2273 device->dispatch.entrypoints[i] = NULL;
2274 } else if (genX_table->entrypoints[i]) {
2275 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2276 } else {
2277 device->dispatch.entrypoints[i] =
2278 anv_device_dispatch_table.entrypoints[i];
2279 }
2280 }
2281 }
2282
2283 static int
2284 vk_priority_to_gen(int priority)
2285 {
2286 switch (priority) {
2287 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2288 return GEN_CONTEXT_LOW_PRIORITY;
2289 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2290 return GEN_CONTEXT_MEDIUM_PRIORITY;
2291 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2292 return GEN_CONTEXT_HIGH_PRIORITY;
2293 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2294 return GEN_CONTEXT_REALTIME_PRIORITY;
2295 default:
2296 unreachable("Invalid priority");
2297 }
2298 }
2299
2300 static void
2301 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2302 {
2303 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2304
2305 if (device->instance->physicalDevice.has_exec_async)
2306 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2307
2308 if (device->instance->physicalDevice.use_softpin)
2309 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2310
2311 anv_vma_alloc(device, &device->hiz_clear_bo);
2312
2313 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2314 0, 4096, 0);
2315
2316 union isl_color_value hiz_clear = { .u32 = { 0, } };
2317 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2318
2319 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2320 anv_gem_munmap(map, device->hiz_clear_bo.size);
2321 }
2322
2323 static bool
2324 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2325 struct anv_block_pool *pool,
2326 uint64_t address)
2327 {
2328 for (uint32_t i = 0; i < pool->nbos; i++) {
2329 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2330 uint32_t bo_size = pool->bos[i].size;
2331 if (address >= bo_address && address < (bo_address + bo_size)) {
2332 *ret = (struct gen_batch_decode_bo) {
2333 .addr = bo_address,
2334 .size = bo_size,
2335 .map = pool->bos[i].map,
2336 };
2337 return true;
2338 }
2339 }
2340 return false;
2341 }
2342
2343 /* Finding a buffer for batch decoding */
2344 static struct gen_batch_decode_bo
2345 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2346 {
2347 struct anv_device *device = v_batch;
2348 struct gen_batch_decode_bo ret_bo = {};
2349
2350 assert(ppgtt);
2351
2352 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2353 return ret_bo;
2354 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2355 return ret_bo;
2356 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2357 return ret_bo;
2358 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2359 return ret_bo;
2360
2361 if (!device->cmd_buffer_being_decoded)
2362 return (struct gen_batch_decode_bo) { };
2363
2364 struct anv_batch_bo **bo;
2365
2366 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2367 /* The decoder zeroes out the top 16 bits, so we need to as well */
2368 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2369
2370 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2371 return (struct gen_batch_decode_bo) {
2372 .addr = bo_address,
2373 .size = (*bo)->bo.size,
2374 .map = (*bo)->bo.map,
2375 };
2376 }
2377 }
2378
2379 return (struct gen_batch_decode_bo) { };
2380 }
2381
2382 VkResult anv_CreateDevice(
2383 VkPhysicalDevice physicalDevice,
2384 const VkDeviceCreateInfo* pCreateInfo,
2385 const VkAllocationCallbacks* pAllocator,
2386 VkDevice* pDevice)
2387 {
2388 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2389 VkResult result;
2390 struct anv_device *device;
2391
2392 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2393
2394 struct anv_device_extension_table enabled_extensions = { };
2395 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2396 int idx;
2397 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2398 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2399 anv_device_extensions[idx].extensionName) == 0)
2400 break;
2401 }
2402
2403 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2404 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2405
2406 if (!physical_device->supported_extensions.extensions[idx])
2407 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2408
2409 enabled_extensions.extensions[idx] = true;
2410 }
2411
2412 /* Check enabled features */
2413 if (pCreateInfo->pEnabledFeatures) {
2414 VkPhysicalDeviceFeatures supported_features;
2415 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2416 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2417 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2418 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2419 for (uint32_t i = 0; i < num_features; i++) {
2420 if (enabled_feature[i] && !supported_feature[i])
2421 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2422 }
2423 }
2424
2425 /* Check requested queues and fail if we are requested to create any
2426 * queues with flags we don't support.
2427 */
2428 assert(pCreateInfo->queueCreateInfoCount > 0);
2429 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2430 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2431 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2432 }
2433
2434 /* Check if client specified queue priority. */
2435 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2436 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2437 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2438
2439 VkQueueGlobalPriorityEXT priority =
2440 queue_priority ? queue_priority->globalPriority :
2441 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2442
2443 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2444 sizeof(*device), 8,
2445 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2446 if (!device)
2447 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2448
2449 if (INTEL_DEBUG & DEBUG_BATCH) {
2450 const unsigned decode_flags =
2451 GEN_BATCH_DECODE_FULL |
2452 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2453 GEN_BATCH_DECODE_OFFSETS |
2454 GEN_BATCH_DECODE_FLOATS;
2455
2456 gen_batch_decode_ctx_init(&device->decoder_ctx,
2457 &physical_device->info,
2458 stderr, decode_flags, NULL,
2459 decode_get_bo, NULL, device);
2460 }
2461
2462 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2463 device->instance = physical_device->instance;
2464 device->chipset_id = physical_device->chipset_id;
2465 device->no_hw = physical_device->no_hw;
2466 device->_lost = false;
2467
2468 if (pAllocator)
2469 device->alloc = *pAllocator;
2470 else
2471 device->alloc = physical_device->instance->alloc;
2472
2473 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2474 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2475 if (device->fd == -1) {
2476 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2477 goto fail_device;
2478 }
2479
2480 device->context_id = anv_gem_create_context(device);
2481 if (device->context_id == -1) {
2482 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2483 goto fail_fd;
2484 }
2485
2486 if (physical_device->use_softpin) {
2487 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2488 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2489 goto fail_fd;
2490 }
2491
2492 /* keep the page with address zero out of the allocator */
2493 struct anv_memory_heap *low_heap =
2494 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2495 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2496 device->vma_lo_available = low_heap->size;
2497
2498 struct anv_memory_heap *high_heap =
2499 &physical_device->memory.heaps[0];
2500 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2501 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2502 high_heap->size;
2503 }
2504
2505 list_inithead(&device->memory_objects);
2506
2507 /* As per spec, the driver implementation may deny requests to acquire
2508 * a priority above the default priority (MEDIUM) if the caller does not
2509 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2510 * is returned.
2511 */
2512 if (physical_device->has_context_priority) {
2513 int err = anv_gem_set_context_param(device->fd, device->context_id,
2514 I915_CONTEXT_PARAM_PRIORITY,
2515 vk_priority_to_gen(priority));
2516 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2517 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2518 goto fail_vmas;
2519 }
2520 }
2521
2522 device->info = physical_device->info;
2523 device->isl_dev = physical_device->isl_dev;
2524
2525 /* On Broadwell and later, we can use batch chaining to more efficiently
2526 * implement growing command buffers. Prior to Haswell, the kernel
2527 * command parser gets in the way and we have to fall back to growing
2528 * the batch.
2529 */
2530 device->can_chain_batches = device->info.gen >= 8;
2531
2532 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2533 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2534 device->enabled_extensions = enabled_extensions;
2535
2536 anv_device_init_dispatch(device);
2537
2538 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2539 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2540 goto fail_context_id;
2541 }
2542
2543 pthread_condattr_t condattr;
2544 if (pthread_condattr_init(&condattr) != 0) {
2545 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2546 goto fail_mutex;
2547 }
2548 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2549 pthread_condattr_destroy(&condattr);
2550 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2551 goto fail_mutex;
2552 }
2553 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2554 pthread_condattr_destroy(&condattr);
2555 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2556 goto fail_mutex;
2557 }
2558 pthread_condattr_destroy(&condattr);
2559
2560 uint64_t bo_flags =
2561 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2562 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2563 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2564 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2565
2566 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2567
2568 result = anv_bo_cache_init(&device->bo_cache);
2569 if (result != VK_SUCCESS)
2570 goto fail_batch_bo_pool;
2571
2572 if (!physical_device->use_softpin)
2573 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2574
2575 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2576 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2577 16384,
2578 bo_flags);
2579 if (result != VK_SUCCESS)
2580 goto fail_bo_cache;
2581
2582 result = anv_state_pool_init(&device->instruction_state_pool, device,
2583 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2584 16384,
2585 bo_flags);
2586 if (result != VK_SUCCESS)
2587 goto fail_dynamic_state_pool;
2588
2589 result = anv_state_pool_init(&device->surface_state_pool, device,
2590 SURFACE_STATE_POOL_MIN_ADDRESS,
2591 4096,
2592 bo_flags);
2593 if (result != VK_SUCCESS)
2594 goto fail_instruction_state_pool;
2595
2596 if (physical_device->use_softpin) {
2597 result = anv_state_pool_init(&device->binding_table_pool, device,
2598 BINDING_TABLE_POOL_MIN_ADDRESS,
2599 4096,
2600 bo_flags);
2601 if (result != VK_SUCCESS)
2602 goto fail_surface_state_pool;
2603 }
2604
2605 result = anv_bo_init_new(&device->workaround_bo, device, 4096);
2606 if (result != VK_SUCCESS)
2607 goto fail_binding_table_pool;
2608
2609 if (physical_device->use_softpin)
2610 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2611
2612 if (!anv_vma_alloc(device, &device->workaround_bo))
2613 goto fail_workaround_bo;
2614
2615 anv_device_init_trivial_batch(device);
2616
2617 if (device->info.gen >= 10)
2618 anv_device_init_hiz_clear_value_bo(device);
2619
2620 anv_scratch_pool_init(device, &device->scratch_pool);
2621
2622 anv_queue_init(device, &device->queue);
2623
2624 switch (device->info.gen) {
2625 case 7:
2626 if (!device->info.is_haswell)
2627 result = gen7_init_device_state(device);
2628 else
2629 result = gen75_init_device_state(device);
2630 break;
2631 case 8:
2632 result = gen8_init_device_state(device);
2633 break;
2634 case 9:
2635 result = gen9_init_device_state(device);
2636 break;
2637 case 10:
2638 result = gen10_init_device_state(device);
2639 break;
2640 case 11:
2641 result = gen11_init_device_state(device);
2642 break;
2643 case 12:
2644 result = gen12_init_device_state(device);
2645 break;
2646 default:
2647 /* Shouldn't get here as we don't create physical devices for any other
2648 * gens. */
2649 unreachable("unhandled gen");
2650 }
2651 if (result != VK_SUCCESS)
2652 goto fail_workaround_bo;
2653
2654 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2655
2656 anv_device_init_blorp(device);
2657
2658 anv_device_init_border_colors(device);
2659
2660 *pDevice = anv_device_to_handle(device);
2661
2662 return VK_SUCCESS;
2663
2664 fail_workaround_bo:
2665 anv_queue_finish(&device->queue);
2666 anv_scratch_pool_finish(device, &device->scratch_pool);
2667 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2668 anv_gem_close(device, device->workaround_bo.gem_handle);
2669 fail_binding_table_pool:
2670 if (physical_device->use_softpin)
2671 anv_state_pool_finish(&device->binding_table_pool);
2672 fail_surface_state_pool:
2673 anv_state_pool_finish(&device->surface_state_pool);
2674 fail_instruction_state_pool:
2675 anv_state_pool_finish(&device->instruction_state_pool);
2676 fail_dynamic_state_pool:
2677 anv_state_pool_finish(&device->dynamic_state_pool);
2678 fail_bo_cache:
2679 anv_bo_cache_finish(&device->bo_cache);
2680 fail_batch_bo_pool:
2681 anv_bo_pool_finish(&device->batch_bo_pool);
2682 pthread_cond_destroy(&device->queue_submit);
2683 fail_mutex:
2684 pthread_mutex_destroy(&device->mutex);
2685 fail_context_id:
2686 anv_gem_destroy_context(device, device->context_id);
2687 fail_vmas:
2688 if (physical_device->use_softpin) {
2689 util_vma_heap_finish(&device->vma_hi);
2690 util_vma_heap_finish(&device->vma_lo);
2691 }
2692 fail_fd:
2693 close(device->fd);
2694 fail_device:
2695 vk_free(&device->alloc, device);
2696
2697 return result;
2698 }
2699
2700 void anv_DestroyDevice(
2701 VkDevice _device,
2702 const VkAllocationCallbacks* pAllocator)
2703 {
2704 ANV_FROM_HANDLE(anv_device, device, _device);
2705 struct anv_physical_device *physical_device;
2706
2707 if (!device)
2708 return;
2709
2710 physical_device = &device->instance->physicalDevice;
2711
2712 anv_device_finish_blorp(device);
2713
2714 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2715
2716 anv_queue_finish(&device->queue);
2717
2718 #ifdef HAVE_VALGRIND
2719 /* We only need to free these to prevent valgrind errors. The backing
2720 * BO will go away in a couple of lines so we don't actually leak.
2721 */
2722 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2723 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2724 #endif
2725
2726 anv_scratch_pool_finish(device, &device->scratch_pool);
2727
2728 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2729 anv_vma_free(device, &device->workaround_bo);
2730 anv_gem_close(device, device->workaround_bo.gem_handle);
2731
2732 anv_vma_free(device, &device->trivial_batch_bo);
2733 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2734 if (device->info.gen >= 10)
2735 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2736
2737 if (physical_device->use_softpin)
2738 anv_state_pool_finish(&device->binding_table_pool);
2739 anv_state_pool_finish(&device->surface_state_pool);
2740 anv_state_pool_finish(&device->instruction_state_pool);
2741 anv_state_pool_finish(&device->dynamic_state_pool);
2742
2743 anv_bo_cache_finish(&device->bo_cache);
2744
2745 anv_bo_pool_finish(&device->batch_bo_pool);
2746
2747 if (physical_device->use_softpin) {
2748 util_vma_heap_finish(&device->vma_hi);
2749 util_vma_heap_finish(&device->vma_lo);
2750 }
2751
2752 pthread_cond_destroy(&device->queue_submit);
2753 pthread_mutex_destroy(&device->mutex);
2754
2755 anv_gem_destroy_context(device, device->context_id);
2756
2757 if (INTEL_DEBUG & DEBUG_BATCH)
2758 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2759
2760 close(device->fd);
2761
2762 vk_free(&device->alloc, device);
2763 }
2764
2765 VkResult anv_EnumerateInstanceLayerProperties(
2766 uint32_t* pPropertyCount,
2767 VkLayerProperties* pProperties)
2768 {
2769 if (pProperties == NULL) {
2770 *pPropertyCount = 0;
2771 return VK_SUCCESS;
2772 }
2773
2774 /* None supported at this time */
2775 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2776 }
2777
2778 VkResult anv_EnumerateDeviceLayerProperties(
2779 VkPhysicalDevice physicalDevice,
2780 uint32_t* pPropertyCount,
2781 VkLayerProperties* pProperties)
2782 {
2783 if (pProperties == NULL) {
2784 *pPropertyCount = 0;
2785 return VK_SUCCESS;
2786 }
2787
2788 /* None supported at this time */
2789 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2790 }
2791
2792 void anv_GetDeviceQueue(
2793 VkDevice _device,
2794 uint32_t queueNodeIndex,
2795 uint32_t queueIndex,
2796 VkQueue* pQueue)
2797 {
2798 ANV_FROM_HANDLE(anv_device, device, _device);
2799
2800 assert(queueIndex == 0);
2801
2802 *pQueue = anv_queue_to_handle(&device->queue);
2803 }
2804
2805 void anv_GetDeviceQueue2(
2806 VkDevice _device,
2807 const VkDeviceQueueInfo2* pQueueInfo,
2808 VkQueue* pQueue)
2809 {
2810 ANV_FROM_HANDLE(anv_device, device, _device);
2811
2812 assert(pQueueInfo->queueIndex == 0);
2813
2814 if (pQueueInfo->flags == device->queue.flags)
2815 *pQueue = anv_queue_to_handle(&device->queue);
2816 else
2817 *pQueue = NULL;
2818 }
2819
2820 VkResult
2821 _anv_device_set_lost(struct anv_device *device,
2822 const char *file, int line,
2823 const char *msg, ...)
2824 {
2825 VkResult err;
2826 va_list ap;
2827
2828 device->_lost = true;
2829
2830 va_start(ap, msg);
2831 err = __vk_errorv(device->instance, device,
2832 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2833 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2834 va_end(ap);
2835
2836 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2837 abort();
2838
2839 return err;
2840 }
2841
2842 VkResult
2843 anv_device_query_status(struct anv_device *device)
2844 {
2845 /* This isn't likely as most of the callers of this function already check
2846 * for it. However, it doesn't hurt to check and it potentially lets us
2847 * avoid an ioctl.
2848 */
2849 if (anv_device_is_lost(device))
2850 return VK_ERROR_DEVICE_LOST;
2851
2852 uint32_t active, pending;
2853 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2854 if (ret == -1) {
2855 /* We don't know the real error. */
2856 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2857 }
2858
2859 if (active) {
2860 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2861 } else if (pending) {
2862 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2863 }
2864
2865 return VK_SUCCESS;
2866 }
2867
2868 VkResult
2869 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2870 {
2871 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2872 * Other usages of the BO (such as on different hardware) will not be
2873 * flagged as "busy" by this ioctl. Use with care.
2874 */
2875 int ret = anv_gem_busy(device, bo->gem_handle);
2876 if (ret == 1) {
2877 return VK_NOT_READY;
2878 } else if (ret == -1) {
2879 /* We don't know the real error. */
2880 return anv_device_set_lost(device, "gem wait failed: %m");
2881 }
2882
2883 /* Query for device status after the busy call. If the BO we're checking
2884 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2885 * client because it clearly doesn't have valid data. Yes, this most
2886 * likely means an ioctl, but we just did an ioctl to query the busy status
2887 * so it's no great loss.
2888 */
2889 return anv_device_query_status(device);
2890 }
2891
2892 VkResult
2893 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2894 int64_t timeout)
2895 {
2896 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2897 if (ret == -1 && errno == ETIME) {
2898 return VK_TIMEOUT;
2899 } else if (ret == -1) {
2900 /* We don't know the real error. */
2901 return anv_device_set_lost(device, "gem wait failed: %m");
2902 }
2903
2904 /* Query for device status after the wait. If the BO we're waiting on got
2905 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2906 * because it clearly doesn't have valid data. Yes, this most likely means
2907 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2908 */
2909 return anv_device_query_status(device);
2910 }
2911
2912 VkResult anv_DeviceWaitIdle(
2913 VkDevice _device)
2914 {
2915 ANV_FROM_HANDLE(anv_device, device, _device);
2916 if (anv_device_is_lost(device))
2917 return VK_ERROR_DEVICE_LOST;
2918
2919 struct anv_batch batch;
2920
2921 uint32_t cmds[8];
2922 batch.start = batch.next = cmds;
2923 batch.end = (void *) cmds + sizeof(cmds);
2924
2925 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2926 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2927
2928 return anv_device_submit_simple_batch(device, &batch);
2929 }
2930
2931 bool
2932 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2933 {
2934 if (!(bo->flags & EXEC_OBJECT_PINNED))
2935 return true;
2936
2937 pthread_mutex_lock(&device->vma_mutex);
2938
2939 bo->offset = 0;
2940
2941 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2942 device->vma_hi_available >= bo->size) {
2943 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2944 if (addr) {
2945 bo->offset = gen_canonical_address(addr);
2946 assert(addr == gen_48b_address(bo->offset));
2947 device->vma_hi_available -= bo->size;
2948 }
2949 }
2950
2951 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2952 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2953 if (addr) {
2954 bo->offset = gen_canonical_address(addr);
2955 assert(addr == gen_48b_address(bo->offset));
2956 device->vma_lo_available -= bo->size;
2957 }
2958 }
2959
2960 pthread_mutex_unlock(&device->vma_mutex);
2961
2962 return bo->offset != 0;
2963 }
2964
2965 void
2966 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2967 {
2968 if (!(bo->flags & EXEC_OBJECT_PINNED))
2969 return;
2970
2971 const uint64_t addr_48b = gen_48b_address(bo->offset);
2972
2973 pthread_mutex_lock(&device->vma_mutex);
2974
2975 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2976 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2977 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2978 device->vma_lo_available += bo->size;
2979 } else {
2980 ASSERTED const struct anv_physical_device *physical_device =
2981 &device->instance->physicalDevice;
2982 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2983 addr_48b < (physical_device->memory.heaps[0].vma_start +
2984 physical_device->memory.heaps[0].vma_size));
2985 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2986 device->vma_hi_available += bo->size;
2987 }
2988
2989 pthread_mutex_unlock(&device->vma_mutex);
2990
2991 bo->offset = 0;
2992 }
2993
2994 VkResult
2995 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2996 {
2997 uint32_t gem_handle = anv_gem_create(device, size);
2998 if (!gem_handle)
2999 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3000
3001 anv_bo_init(bo, gem_handle, size);
3002
3003 return VK_SUCCESS;
3004 }
3005
3006 VkResult anv_AllocateMemory(
3007 VkDevice _device,
3008 const VkMemoryAllocateInfo* pAllocateInfo,
3009 const VkAllocationCallbacks* pAllocator,
3010 VkDeviceMemory* pMem)
3011 {
3012 ANV_FROM_HANDLE(anv_device, device, _device);
3013 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3014 struct anv_device_memory *mem;
3015 VkResult result = VK_SUCCESS;
3016
3017 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3018
3019 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3020 assert(pAllocateInfo->allocationSize > 0);
3021
3022 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
3023 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
3024
3025 /* FINISHME: Fail if allocation request exceeds heap size. */
3026
3027 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3028 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3029 if (mem == NULL)
3030 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3031
3032 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3033 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3034 mem->map = NULL;
3035 mem->map_size = 0;
3036 mem->ahw = NULL;
3037 mem->host_ptr = NULL;
3038
3039 uint64_t bo_flags = 0;
3040
3041 assert(mem->type->heapIndex < pdevice->memory.heap_count);
3042 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
3043 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
3044
3045 const struct wsi_memory_allocate_info *wsi_info =
3046 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
3047 if (wsi_info && wsi_info->implicit_sync) {
3048 /* We need to set the WRITE flag on window system buffers so that GEM
3049 * will know we're writing to them and synchronize uses on other rings
3050 * (eg if the display server uses the blitter ring).
3051 */
3052 bo_flags |= EXEC_OBJECT_WRITE;
3053 } else if (pdevice->has_exec_async) {
3054 bo_flags |= EXEC_OBJECT_ASYNC;
3055 }
3056
3057 if (pdevice->use_softpin)
3058 bo_flags |= EXEC_OBJECT_PINNED;
3059
3060 const VkExportMemoryAllocateInfo *export_info =
3061 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
3062
3063 /* Check if we need to support Android HW buffer export. If so,
3064 * create AHardwareBuffer and import memory from it.
3065 */
3066 bool android_export = false;
3067 if (export_info && export_info->handleTypes &
3068 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3069 android_export = true;
3070
3071 /* Android memory import. */
3072 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
3073 vk_find_struct_const(pAllocateInfo->pNext,
3074 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
3075
3076 if (ahw_import_info) {
3077 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3078 if (result != VK_SUCCESS)
3079 goto fail;
3080
3081 goto success;
3082 } else if (android_export) {
3083 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3084 if (result != VK_SUCCESS)
3085 goto fail;
3086
3087 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
3088 .buffer = mem->ahw,
3089 };
3090 result = anv_import_ahw_memory(_device, mem, &import_info);
3091 if (result != VK_SUCCESS)
3092 goto fail;
3093
3094 goto success;
3095 }
3096
3097 const VkImportMemoryFdInfoKHR *fd_info =
3098 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
3099
3100 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3101 * ignored.
3102 */
3103 if (fd_info && fd_info->handleType) {
3104 /* At the moment, we support only the below handle types. */
3105 assert(fd_info->handleType ==
3106 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3107 fd_info->handleType ==
3108 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3109
3110 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
3111 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
3112 if (result != VK_SUCCESS)
3113 goto fail;
3114
3115 VkDeviceSize aligned_alloc_size =
3116 align_u64(pAllocateInfo->allocationSize, 4096);
3117
3118 /* For security purposes, we reject importing the bo if it's smaller
3119 * than the requested allocation size. This prevents a malicious client
3120 * from passing a buffer to a trusted client, lying about the size, and
3121 * telling the trusted client to try and texture from an image that goes
3122 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3123 * in the trusted client. The trusted client can protect itself against
3124 * this sort of attack but only if it can trust the buffer size.
3125 */
3126 if (mem->bo->size < aligned_alloc_size) {
3127 result = vk_errorf(device->instance, device,
3128 VK_ERROR_INVALID_EXTERNAL_HANDLE,
3129 "aligned allocationSize too large for "
3130 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3131 "%"PRIu64"B > %"PRIu64"B",
3132 aligned_alloc_size, mem->bo->size);
3133 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3134 goto fail;
3135 }
3136
3137 /* From the Vulkan spec:
3138 *
3139 * "Importing memory from a file descriptor transfers ownership of
3140 * the file descriptor from the application to the Vulkan
3141 * implementation. The application must not perform any operations on
3142 * the file descriptor after a successful import."
3143 *
3144 * If the import fails, we leave the file descriptor open.
3145 */
3146 close(fd_info->fd);
3147 goto success;
3148 }
3149
3150 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
3151 vk_find_struct_const(pAllocateInfo->pNext,
3152 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
3153 if (host_ptr_info && host_ptr_info->handleType) {
3154 if (host_ptr_info->handleType ==
3155 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3156 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3157 goto fail;
3158 }
3159
3160 assert(host_ptr_info->handleType ==
3161 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3162
3163 result = anv_bo_cache_import_host_ptr(
3164 device, &device->bo_cache, host_ptr_info->pHostPointer,
3165 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
3166
3167 if (result != VK_SUCCESS)
3168 goto fail;
3169
3170 mem->host_ptr = host_ptr_info->pHostPointer;
3171 goto success;
3172 }
3173
3174 /* Regular allocate (not importing memory). */
3175
3176 if (export_info && export_info->handleTypes)
3177 bo_flags |= ANV_BO_EXTERNAL;
3178
3179 result = anv_bo_cache_alloc(device, &device->bo_cache,
3180 pAllocateInfo->allocationSize, bo_flags,
3181 &mem->bo);
3182 if (result != VK_SUCCESS)
3183 goto fail;
3184
3185 const VkMemoryDedicatedAllocateInfo *dedicated_info =
3186 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3187 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3188 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3189
3190 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3191 * the BO. In this case, we have a dedicated allocation.
3192 */
3193 if (image->needs_set_tiling) {
3194 const uint32_t i915_tiling =
3195 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3196 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3197 image->planes[0].surface.isl.row_pitch_B,
3198 i915_tiling);
3199 if (ret) {
3200 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3201 return vk_errorf(device->instance, NULL,
3202 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3203 "failed to set BO tiling: %m");
3204 }
3205 }
3206 }
3207
3208 success:
3209 pthread_mutex_lock(&device->mutex);
3210 list_addtail(&mem->link, &device->memory_objects);
3211 pthread_mutex_unlock(&device->mutex);
3212
3213 *pMem = anv_device_memory_to_handle(mem);
3214
3215 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3216 mem->bo->size);
3217
3218 return VK_SUCCESS;
3219
3220 fail:
3221 vk_free2(&device->alloc, pAllocator, mem);
3222
3223 return result;
3224 }
3225
3226 VkResult anv_GetMemoryFdKHR(
3227 VkDevice device_h,
3228 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3229 int* pFd)
3230 {
3231 ANV_FROM_HANDLE(anv_device, dev, device_h);
3232 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3233
3234 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3235
3236 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3237 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3238
3239 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
3240 }
3241
3242 VkResult anv_GetMemoryFdPropertiesKHR(
3243 VkDevice _device,
3244 VkExternalMemoryHandleTypeFlagBits handleType,
3245 int fd,
3246 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3247 {
3248 ANV_FROM_HANDLE(anv_device, device, _device);
3249 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3250
3251 switch (handleType) {
3252 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3253 /* dma-buf can be imported as any memory type */
3254 pMemoryFdProperties->memoryTypeBits =
3255 (1 << pdevice->memory.type_count) - 1;
3256 return VK_SUCCESS;
3257
3258 default:
3259 /* The valid usage section for this function says:
3260 *
3261 * "handleType must not be one of the handle types defined as
3262 * opaque."
3263 *
3264 * So opaque handle types fall into the default "unsupported" case.
3265 */
3266 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3267 }
3268 }
3269
3270 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3271 VkDevice _device,
3272 VkExternalMemoryHandleTypeFlagBits handleType,
3273 const void* pHostPointer,
3274 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3275 {
3276 ANV_FROM_HANDLE(anv_device, device, _device);
3277
3278 assert(pMemoryHostPointerProperties->sType ==
3279 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3280
3281 switch (handleType) {
3282 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3283 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3284
3285 /* Host memory can be imported as any memory type. */
3286 pMemoryHostPointerProperties->memoryTypeBits =
3287 (1ull << pdevice->memory.type_count) - 1;
3288
3289 return VK_SUCCESS;
3290 }
3291 default:
3292 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3293 }
3294 }
3295
3296 void anv_FreeMemory(
3297 VkDevice _device,
3298 VkDeviceMemory _mem,
3299 const VkAllocationCallbacks* pAllocator)
3300 {
3301 ANV_FROM_HANDLE(anv_device, device, _device);
3302 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3303 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3304
3305 if (mem == NULL)
3306 return;
3307
3308 pthread_mutex_lock(&device->mutex);
3309 list_del(&mem->link);
3310 pthread_mutex_unlock(&device->mutex);
3311
3312 if (mem->map)
3313 anv_UnmapMemory(_device, _mem);
3314
3315 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3316 -mem->bo->size);
3317
3318 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3319
3320 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3321 if (mem->ahw)
3322 AHardwareBuffer_release(mem->ahw);
3323 #endif
3324
3325 vk_free2(&device->alloc, pAllocator, mem);
3326 }
3327
3328 VkResult anv_MapMemory(
3329 VkDevice _device,
3330 VkDeviceMemory _memory,
3331 VkDeviceSize offset,
3332 VkDeviceSize size,
3333 VkMemoryMapFlags flags,
3334 void** ppData)
3335 {
3336 ANV_FROM_HANDLE(anv_device, device, _device);
3337 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3338
3339 if (mem == NULL) {
3340 *ppData = NULL;
3341 return VK_SUCCESS;
3342 }
3343
3344 if (mem->host_ptr) {
3345 *ppData = mem->host_ptr + offset;
3346 return VK_SUCCESS;
3347 }
3348
3349 if (size == VK_WHOLE_SIZE)
3350 size = mem->bo->size - offset;
3351
3352 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3353 *
3354 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3355 * assert(size != 0);
3356 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3357 * equal to the size of the memory minus offset
3358 */
3359 assert(size > 0);
3360 assert(offset + size <= mem->bo->size);
3361
3362 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3363 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3364 * at a time is valid. We could just mmap up front and return an offset
3365 * pointer here, but that may exhaust virtual memory on 32 bit
3366 * userspace. */
3367
3368 uint32_t gem_flags = 0;
3369
3370 if (!device->info.has_llc &&
3371 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3372 gem_flags |= I915_MMAP_WC;
3373
3374 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3375 uint64_t map_offset = offset & ~4095ull;
3376 assert(offset >= map_offset);
3377 uint64_t map_size = (offset + size) - map_offset;
3378
3379 /* Let's map whole pages */
3380 map_size = align_u64(map_size, 4096);
3381
3382 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3383 map_offset, map_size, gem_flags);
3384 if (map == MAP_FAILED)
3385 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3386
3387 mem->map = map;
3388 mem->map_size = map_size;
3389
3390 *ppData = mem->map + (offset - map_offset);
3391
3392 return VK_SUCCESS;
3393 }
3394
3395 void anv_UnmapMemory(
3396 VkDevice _device,
3397 VkDeviceMemory _memory)
3398 {
3399 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3400
3401 if (mem == NULL || mem->host_ptr)
3402 return;
3403
3404 anv_gem_munmap(mem->map, mem->map_size);
3405
3406 mem->map = NULL;
3407 mem->map_size = 0;
3408 }
3409
3410 static void
3411 clflush_mapped_ranges(struct anv_device *device,
3412 uint32_t count,
3413 const VkMappedMemoryRange *ranges)
3414 {
3415 for (uint32_t i = 0; i < count; i++) {
3416 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3417 if (ranges[i].offset >= mem->map_size)
3418 continue;
3419
3420 gen_clflush_range(mem->map + ranges[i].offset,
3421 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3422 }
3423 }
3424
3425 VkResult anv_FlushMappedMemoryRanges(
3426 VkDevice _device,
3427 uint32_t memoryRangeCount,
3428 const VkMappedMemoryRange* pMemoryRanges)
3429 {
3430 ANV_FROM_HANDLE(anv_device, device, _device);
3431
3432 if (device->info.has_llc)
3433 return VK_SUCCESS;
3434
3435 /* Make sure the writes we're flushing have landed. */
3436 __builtin_ia32_mfence();
3437
3438 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3439
3440 return VK_SUCCESS;
3441 }
3442
3443 VkResult anv_InvalidateMappedMemoryRanges(
3444 VkDevice _device,
3445 uint32_t memoryRangeCount,
3446 const VkMappedMemoryRange* pMemoryRanges)
3447 {
3448 ANV_FROM_HANDLE(anv_device, device, _device);
3449
3450 if (device->info.has_llc)
3451 return VK_SUCCESS;
3452
3453 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3454
3455 /* Make sure no reads get moved up above the invalidate. */
3456 __builtin_ia32_mfence();
3457
3458 return VK_SUCCESS;
3459 }
3460
3461 void anv_GetBufferMemoryRequirements(
3462 VkDevice _device,
3463 VkBuffer _buffer,
3464 VkMemoryRequirements* pMemoryRequirements)
3465 {
3466 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3467 ANV_FROM_HANDLE(anv_device, device, _device);
3468 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3469
3470 /* The Vulkan spec (git aaed022) says:
3471 *
3472 * memoryTypeBits is a bitfield and contains one bit set for every
3473 * supported memory type for the resource. The bit `1<<i` is set if and
3474 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3475 * structure for the physical device is supported.
3476 */
3477 uint32_t memory_types = 0;
3478 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3479 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3480 if ((valid_usage & buffer->usage) == buffer->usage)
3481 memory_types |= (1u << i);
3482 }
3483
3484 /* Base alignment requirement of a cache line */
3485 uint32_t alignment = 16;
3486
3487 /* We need an alignment of 32 for pushing UBOs */
3488 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3489 alignment = MAX2(alignment, 32);
3490
3491 pMemoryRequirements->size = buffer->size;
3492 pMemoryRequirements->alignment = alignment;
3493
3494 /* Storage and Uniform buffers should have their size aligned to
3495 * 32-bits to avoid boundary checks when last DWord is not complete.
3496 * This would ensure that not internal padding would be needed for
3497 * 16-bit types.
3498 */
3499 if (device->robust_buffer_access &&
3500 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3501 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3502 pMemoryRequirements->size = align_u64(buffer->size, 4);
3503
3504 pMemoryRequirements->memoryTypeBits = memory_types;
3505 }
3506
3507 void anv_GetBufferMemoryRequirements2(
3508 VkDevice _device,
3509 const VkBufferMemoryRequirementsInfo2* pInfo,
3510 VkMemoryRequirements2* pMemoryRequirements)
3511 {
3512 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3513 &pMemoryRequirements->memoryRequirements);
3514
3515 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3516 switch (ext->sType) {
3517 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3518 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3519 requirements->prefersDedicatedAllocation = false;
3520 requirements->requiresDedicatedAllocation = false;
3521 break;
3522 }
3523
3524 default:
3525 anv_debug_ignored_stype(ext->sType);
3526 break;
3527 }
3528 }
3529 }
3530
3531 void anv_GetImageMemoryRequirements(
3532 VkDevice _device,
3533 VkImage _image,
3534 VkMemoryRequirements* pMemoryRequirements)
3535 {
3536 ANV_FROM_HANDLE(anv_image, image, _image);
3537 ANV_FROM_HANDLE(anv_device, device, _device);
3538 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3539
3540 /* The Vulkan spec (git aaed022) says:
3541 *
3542 * memoryTypeBits is a bitfield and contains one bit set for every
3543 * supported memory type for the resource. The bit `1<<i` is set if and
3544 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3545 * structure for the physical device is supported.
3546 *
3547 * All types are currently supported for images.
3548 */
3549 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3550
3551 /* We must have image allocated or imported at this point. According to the
3552 * specification, external images must have been bound to memory before
3553 * calling GetImageMemoryRequirements.
3554 */
3555 assert(image->size > 0);
3556
3557 pMemoryRequirements->size = image->size;
3558 pMemoryRequirements->alignment = image->alignment;
3559 pMemoryRequirements->memoryTypeBits = memory_types;
3560 }
3561
3562 void anv_GetImageMemoryRequirements2(
3563 VkDevice _device,
3564 const VkImageMemoryRequirementsInfo2* pInfo,
3565 VkMemoryRequirements2* pMemoryRequirements)
3566 {
3567 ANV_FROM_HANDLE(anv_device, device, _device);
3568 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3569
3570 anv_GetImageMemoryRequirements(_device, pInfo->image,
3571 &pMemoryRequirements->memoryRequirements);
3572
3573 vk_foreach_struct_const(ext, pInfo->pNext) {
3574 switch (ext->sType) {
3575 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3576 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3577 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3578 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3579 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3580 plane_reqs->planeAspect);
3581
3582 assert(image->planes[plane].offset == 0);
3583
3584 /* The Vulkan spec (git aaed022) says:
3585 *
3586 * memoryTypeBits is a bitfield and contains one bit set for every
3587 * supported memory type for the resource. The bit `1<<i` is set
3588 * if and only if the memory type `i` in the
3589 * VkPhysicalDeviceMemoryProperties structure for the physical
3590 * device is supported.
3591 *
3592 * All types are currently supported for images.
3593 */
3594 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3595 (1ull << pdevice->memory.type_count) - 1;
3596
3597 /* We must have image allocated or imported at this point. According to the
3598 * specification, external images must have been bound to memory before
3599 * calling GetImageMemoryRequirements.
3600 */
3601 assert(image->planes[plane].size > 0);
3602
3603 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3604 pMemoryRequirements->memoryRequirements.alignment =
3605 image->planes[plane].alignment;
3606 break;
3607 }
3608
3609 default:
3610 anv_debug_ignored_stype(ext->sType);
3611 break;
3612 }
3613 }
3614
3615 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3616 switch (ext->sType) {
3617 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3618 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3619 if (image->needs_set_tiling || image->external_format) {
3620 /* If we need to set the tiling for external consumers, we need a
3621 * dedicated allocation.
3622 *
3623 * See also anv_AllocateMemory.
3624 */
3625 requirements->prefersDedicatedAllocation = true;
3626 requirements->requiresDedicatedAllocation = true;
3627 } else {
3628 requirements->prefersDedicatedAllocation = false;
3629 requirements->requiresDedicatedAllocation = false;
3630 }
3631 break;
3632 }
3633
3634 default:
3635 anv_debug_ignored_stype(ext->sType);
3636 break;
3637 }
3638 }
3639 }
3640
3641 void anv_GetImageSparseMemoryRequirements(
3642 VkDevice device,
3643 VkImage image,
3644 uint32_t* pSparseMemoryRequirementCount,
3645 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3646 {
3647 *pSparseMemoryRequirementCount = 0;
3648 }
3649
3650 void anv_GetImageSparseMemoryRequirements2(
3651 VkDevice device,
3652 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3653 uint32_t* pSparseMemoryRequirementCount,
3654 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3655 {
3656 *pSparseMemoryRequirementCount = 0;
3657 }
3658
3659 void anv_GetDeviceMemoryCommitment(
3660 VkDevice device,
3661 VkDeviceMemory memory,
3662 VkDeviceSize* pCommittedMemoryInBytes)
3663 {
3664 *pCommittedMemoryInBytes = 0;
3665 }
3666
3667 static void
3668 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3669 {
3670 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3671 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3672
3673 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3674
3675 if (mem) {
3676 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3677 buffer->address = (struct anv_address) {
3678 .bo = mem->bo,
3679 .offset = pBindInfo->memoryOffset,
3680 };
3681 } else {
3682 buffer->address = ANV_NULL_ADDRESS;
3683 }
3684 }
3685
3686 VkResult anv_BindBufferMemory(
3687 VkDevice device,
3688 VkBuffer buffer,
3689 VkDeviceMemory memory,
3690 VkDeviceSize memoryOffset)
3691 {
3692 anv_bind_buffer_memory(
3693 &(VkBindBufferMemoryInfo) {
3694 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3695 .buffer = buffer,
3696 .memory = memory,
3697 .memoryOffset = memoryOffset,
3698 });
3699
3700 return VK_SUCCESS;
3701 }
3702
3703 VkResult anv_BindBufferMemory2(
3704 VkDevice device,
3705 uint32_t bindInfoCount,
3706 const VkBindBufferMemoryInfo* pBindInfos)
3707 {
3708 for (uint32_t i = 0; i < bindInfoCount; i++)
3709 anv_bind_buffer_memory(&pBindInfos[i]);
3710
3711 return VK_SUCCESS;
3712 }
3713
3714 VkResult anv_QueueBindSparse(
3715 VkQueue _queue,
3716 uint32_t bindInfoCount,
3717 const VkBindSparseInfo* pBindInfo,
3718 VkFence fence)
3719 {
3720 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3721 if (anv_device_is_lost(queue->device))
3722 return VK_ERROR_DEVICE_LOST;
3723
3724 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3725 }
3726
3727 // Event functions
3728
3729 VkResult anv_CreateEvent(
3730 VkDevice _device,
3731 const VkEventCreateInfo* pCreateInfo,
3732 const VkAllocationCallbacks* pAllocator,
3733 VkEvent* pEvent)
3734 {
3735 ANV_FROM_HANDLE(anv_device, device, _device);
3736 struct anv_state state;
3737 struct anv_event *event;
3738
3739 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3740
3741 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3742 sizeof(*event), 8);
3743 event = state.map;
3744 event->state = state;
3745 event->semaphore = VK_EVENT_RESET;
3746
3747 if (!device->info.has_llc) {
3748 /* Make sure the writes we're flushing have landed. */
3749 __builtin_ia32_mfence();
3750 __builtin_ia32_clflush(event);
3751 }
3752
3753 *pEvent = anv_event_to_handle(event);
3754
3755 return VK_SUCCESS;
3756 }
3757
3758 void anv_DestroyEvent(
3759 VkDevice _device,
3760 VkEvent _event,
3761 const VkAllocationCallbacks* pAllocator)
3762 {
3763 ANV_FROM_HANDLE(anv_device, device, _device);
3764 ANV_FROM_HANDLE(anv_event, event, _event);
3765
3766 if (!event)
3767 return;
3768
3769 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3770 }
3771
3772 VkResult anv_GetEventStatus(
3773 VkDevice _device,
3774 VkEvent _event)
3775 {
3776 ANV_FROM_HANDLE(anv_device, device, _device);
3777 ANV_FROM_HANDLE(anv_event, event, _event);
3778
3779 if (anv_device_is_lost(device))
3780 return VK_ERROR_DEVICE_LOST;
3781
3782 if (!device->info.has_llc) {
3783 /* Invalidate read cache before reading event written by GPU. */
3784 __builtin_ia32_clflush(event);
3785 __builtin_ia32_mfence();
3786
3787 }
3788
3789 return event->semaphore;
3790 }
3791
3792 VkResult anv_SetEvent(
3793 VkDevice _device,
3794 VkEvent _event)
3795 {
3796 ANV_FROM_HANDLE(anv_device, device, _device);
3797 ANV_FROM_HANDLE(anv_event, event, _event);
3798
3799 event->semaphore = VK_EVENT_SET;
3800
3801 if (!device->info.has_llc) {
3802 /* Make sure the writes we're flushing have landed. */
3803 __builtin_ia32_mfence();
3804 __builtin_ia32_clflush(event);
3805 }
3806
3807 return VK_SUCCESS;
3808 }
3809
3810 VkResult anv_ResetEvent(
3811 VkDevice _device,
3812 VkEvent _event)
3813 {
3814 ANV_FROM_HANDLE(anv_device, device, _device);
3815 ANV_FROM_HANDLE(anv_event, event, _event);
3816
3817 event->semaphore = VK_EVENT_RESET;
3818
3819 if (!device->info.has_llc) {
3820 /* Make sure the writes we're flushing have landed. */
3821 __builtin_ia32_mfence();
3822 __builtin_ia32_clflush(event);
3823 }
3824
3825 return VK_SUCCESS;
3826 }
3827
3828 // Buffer functions
3829
3830 VkResult anv_CreateBuffer(
3831 VkDevice _device,
3832 const VkBufferCreateInfo* pCreateInfo,
3833 const VkAllocationCallbacks* pAllocator,
3834 VkBuffer* pBuffer)
3835 {
3836 ANV_FROM_HANDLE(anv_device, device, _device);
3837 struct anv_buffer *buffer;
3838
3839 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3840
3841 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3842 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3843 if (buffer == NULL)
3844 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3845
3846 buffer->size = pCreateInfo->size;
3847 buffer->usage = pCreateInfo->usage;
3848 buffer->address = ANV_NULL_ADDRESS;
3849
3850 *pBuffer = anv_buffer_to_handle(buffer);
3851
3852 return VK_SUCCESS;
3853 }
3854
3855 void anv_DestroyBuffer(
3856 VkDevice _device,
3857 VkBuffer _buffer,
3858 const VkAllocationCallbacks* pAllocator)
3859 {
3860 ANV_FROM_HANDLE(anv_device, device, _device);
3861 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3862
3863 if (!buffer)
3864 return;
3865
3866 vk_free2(&device->alloc, pAllocator, buffer);
3867 }
3868
3869 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3870 VkDevice device,
3871 const VkBufferDeviceAddressInfoEXT* pInfo)
3872 {
3873 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3874
3875 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3876
3877 return anv_address_physical(buffer->address);
3878 }
3879
3880 void
3881 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3882 enum isl_format format,
3883 struct anv_address address,
3884 uint32_t range, uint32_t stride)
3885 {
3886 isl_buffer_fill_state(&device->isl_dev, state.map,
3887 .address = anv_address_physical(address),
3888 .mocs = device->default_mocs,
3889 .size_B = range,
3890 .format = format,
3891 .swizzle = ISL_SWIZZLE_IDENTITY,
3892 .stride_B = stride);
3893 }
3894
3895 void anv_DestroySampler(
3896 VkDevice _device,
3897 VkSampler _sampler,
3898 const VkAllocationCallbacks* pAllocator)
3899 {
3900 ANV_FROM_HANDLE(anv_device, device, _device);
3901 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3902
3903 if (!sampler)
3904 return;
3905
3906 if (sampler->bindless_state.map) {
3907 anv_state_pool_free(&device->dynamic_state_pool,
3908 sampler->bindless_state);
3909 }
3910
3911 vk_free2(&device->alloc, pAllocator, sampler);
3912 }
3913
3914 VkResult anv_CreateFramebuffer(
3915 VkDevice _device,
3916 const VkFramebufferCreateInfo* pCreateInfo,
3917 const VkAllocationCallbacks* pAllocator,
3918 VkFramebuffer* pFramebuffer)
3919 {
3920 ANV_FROM_HANDLE(anv_device, device, _device);
3921 struct anv_framebuffer *framebuffer;
3922
3923 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3924
3925 size_t size = sizeof(*framebuffer);
3926
3927 /* VK_KHR_imageless_framebuffer extension says:
3928 *
3929 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3930 * parameter pAttachments is ignored.
3931 */
3932 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3933 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3934 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3935 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3936 if (framebuffer == NULL)
3937 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3938
3939 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3940 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
3941 framebuffer->attachments[i] = iview;
3942 }
3943 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3944 } else {
3945 assert(device->enabled_extensions.KHR_imageless_framebuffer);
3946 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3947 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3948 if (framebuffer == NULL)
3949 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3950
3951 framebuffer->attachment_count = 0;
3952 }
3953
3954 framebuffer->width = pCreateInfo->width;
3955 framebuffer->height = pCreateInfo->height;
3956 framebuffer->layers = pCreateInfo->layers;
3957
3958 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3959
3960 return VK_SUCCESS;
3961 }
3962
3963 void anv_DestroyFramebuffer(
3964 VkDevice _device,
3965 VkFramebuffer _fb,
3966 const VkAllocationCallbacks* pAllocator)
3967 {
3968 ANV_FROM_HANDLE(anv_device, device, _device);
3969 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3970
3971 if (!fb)
3972 return;
3973
3974 vk_free2(&device->alloc, pAllocator, fb);
3975 }
3976
3977 static const VkTimeDomainEXT anv_time_domains[] = {
3978 VK_TIME_DOMAIN_DEVICE_EXT,
3979 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3980 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3981 };
3982
3983 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3984 VkPhysicalDevice physicalDevice,
3985 uint32_t *pTimeDomainCount,
3986 VkTimeDomainEXT *pTimeDomains)
3987 {
3988 int d;
3989 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3990
3991 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3992 vk_outarray_append(&out, i) {
3993 *i = anv_time_domains[d];
3994 }
3995 }
3996
3997 return vk_outarray_status(&out);
3998 }
3999
4000 static uint64_t
4001 anv_clock_gettime(clockid_t clock_id)
4002 {
4003 struct timespec current;
4004 int ret;
4005
4006 ret = clock_gettime(clock_id, &current);
4007 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4008 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4009 if (ret < 0)
4010 return 0;
4011
4012 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4013 }
4014
4015 #define TIMESTAMP 0x2358
4016
4017 VkResult anv_GetCalibratedTimestampsEXT(
4018 VkDevice _device,
4019 uint32_t timestampCount,
4020 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4021 uint64_t *pTimestamps,
4022 uint64_t *pMaxDeviation)
4023 {
4024 ANV_FROM_HANDLE(anv_device, device, _device);
4025 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4026 int ret;
4027 int d;
4028 uint64_t begin, end;
4029 uint64_t max_clock_period = 0;
4030
4031 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4032
4033 for (d = 0; d < timestampCount; d++) {
4034 switch (pTimestampInfos[d].timeDomain) {
4035 case VK_TIME_DOMAIN_DEVICE_EXT:
4036 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4037 &pTimestamps[d]);
4038
4039 if (ret != 0) {
4040 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4041 "register: %m");
4042 }
4043 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4044 max_clock_period = MAX2(max_clock_period, device_period);
4045 break;
4046 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4047 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4048 max_clock_period = MAX2(max_clock_period, 1);
4049 break;
4050
4051 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4052 pTimestamps[d] = begin;
4053 break;
4054 default:
4055 pTimestamps[d] = 0;
4056 break;
4057 }
4058 }
4059
4060 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4061
4062 /*
4063 * The maximum deviation is the sum of the interval over which we
4064 * perform the sampling and the maximum period of any sampled
4065 * clock. That's because the maximum skew between any two sampled
4066 * clock edges is when the sampled clock with the largest period is
4067 * sampled at the end of that period but right at the beginning of the
4068 * sampling interval and some other clock is sampled right at the
4069 * begining of its sampling period and right at the end of the
4070 * sampling interval. Let's assume the GPU has the longest clock
4071 * period and that the application is sampling GPU and monotonic:
4072 *
4073 * s e
4074 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4075 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4076 *
4077 * g
4078 * 0 1 2 3
4079 * GPU -----_____-----_____-----_____-----_____
4080 *
4081 * m
4082 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4083 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4084 *
4085 * Interval <----------------->
4086 * Deviation <-------------------------->
4087 *
4088 * s = read(raw) 2
4089 * g = read(GPU) 1
4090 * m = read(monotonic) 2
4091 * e = read(raw) b
4092 *
4093 * We round the sample interval up by one tick to cover sampling error
4094 * in the interval clock
4095 */
4096
4097 uint64_t sample_interval = end - begin + 1;
4098
4099 *pMaxDeviation = sample_interval + max_clock_period;
4100
4101 return VK_SUCCESS;
4102 }
4103
4104 /* vk_icd.h does not declare this function, so we declare it here to
4105 * suppress Wmissing-prototypes.
4106 */
4107 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4108 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4109
4110 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4111 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4112 {
4113 /* For the full details on loader interface versioning, see
4114 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4115 * What follows is a condensed summary, to help you navigate the large and
4116 * confusing official doc.
4117 *
4118 * - Loader interface v0 is incompatible with later versions. We don't
4119 * support it.
4120 *
4121 * - In loader interface v1:
4122 * - The first ICD entrypoint called by the loader is
4123 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4124 * entrypoint.
4125 * - The ICD must statically expose no other Vulkan symbol unless it is
4126 * linked with -Bsymbolic.
4127 * - Each dispatchable Vulkan handle created by the ICD must be
4128 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4129 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4130 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4131 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4132 * such loader-managed surfaces.
4133 *
4134 * - Loader interface v2 differs from v1 in:
4135 * - The first ICD entrypoint called by the loader is
4136 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4137 * statically expose this entrypoint.
4138 *
4139 * - Loader interface v3 differs from v2 in:
4140 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4141 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4142 * because the loader no longer does so.
4143 *
4144 * - Loader interface v4 differs from v3 in:
4145 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4146 */
4147 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4148 return VK_SUCCESS;
4149 }