anv: Add a cmd_buffer_execbuf helper
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31 #include "anv_timestamp.h"
32 #include "util/strtod.h"
33 #include "util/debug.h"
34
35 #include "genxml/gen7_pack.h"
36
37 struct anv_dispatch_table dtable;
38
39 static void
40 compiler_debug_log(void *data, const char *fmt, ...)
41 { }
42
43 static void
44 compiler_perf_log(void *data, const char *fmt, ...)
45 {
46 va_list args;
47 va_start(args, fmt);
48
49 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
50 vfprintf(stderr, fmt, args);
51
52 va_end(args);
53 }
54
55 static VkResult
56 anv_physical_device_init(struct anv_physical_device *device,
57 struct anv_instance *instance,
58 const char *path)
59 {
60 VkResult result;
61 int fd;
62
63 fd = open(path, O_RDWR | O_CLOEXEC);
64 if (fd < 0)
65 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
66
67 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
68 device->instance = instance;
69
70 assert(strlen(path) < ARRAY_SIZE(device->path));
71 strncpy(device->path, path, ARRAY_SIZE(device->path));
72
73 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
74 if (!device->chipset_id) {
75 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
76 goto fail;
77 }
78
79 device->name = gen_get_device_name(device->chipset_id);
80 if (!gen_get_device_info(device->chipset_id, &device->info)) {
81 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
82 goto fail;
83 }
84
85 if (device->info.is_haswell) {
86 fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
87 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
88 fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
89 } else if (device->info.gen == 7 && device->info.is_baytrail) {
90 fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
91 } else if (device->info.gen >= 8) {
92 /* Broadwell, Cherryview, Skylake, Broxton, Kabylake is as fully
93 * supported as anything */
94 } else {
95 result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
96 "Vulkan not yet supported on %s", device->name);
97 goto fail;
98 }
99
100 device->cmd_parser_version = -1;
101 if (device->info.gen == 7) {
102 device->cmd_parser_version =
103 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
104 if (device->cmd_parser_version == -1) {
105 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
106 "failed to get command parser version");
107 goto fail;
108 }
109 }
110
111 if (anv_gem_get_aperture(fd, &device->aperture_size) == -1) {
112 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
113 "failed to get aperture size: %m");
114 goto fail;
115 }
116
117 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
118 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
119 "kernel missing gem wait");
120 goto fail;
121 }
122
123 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
124 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
125 "kernel missing execbuf2");
126 goto fail;
127 }
128
129 if (!device->info.has_llc &&
130 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
131 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
132 "kernel missing wc mmap");
133 goto fail;
134 }
135
136 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
137
138 /* GENs prior to 8 do not support EU/Subslice info */
139 if (device->info.gen >= 8) {
140 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
141 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
142
143 /* Without this information, we cannot get the right Braswell
144 * brandstrings, and we have to use conservative numbers for GPGPU on
145 * many platforms, but otherwise, things will just work.
146 */
147 if (device->subslice_total < 1 || device->eu_total < 1) {
148 fprintf(stderr, "WARNING: Kernel 4.1 required to properly"
149 " query GPU properties.\n");
150 }
151 } else if (device->info.gen == 7) {
152 device->subslice_total = 1 << (device->info.gt - 1);
153 }
154
155 if (device->info.is_cherryview &&
156 device->subslice_total > 0 && device->eu_total > 0) {
157 /* Logical CS threads = EUs per subslice * 7 threads per EU */
158 uint32_t max_cs_threads = device->eu_total / device->subslice_total * 7;
159
160 /* Fuse configurations may give more threads than expected, never less. */
161 if (max_cs_threads > device->info.max_cs_threads)
162 device->info.max_cs_threads = max_cs_threads;
163 }
164
165 close(fd);
166
167 brw_process_intel_debug_variable();
168
169 device->compiler = brw_compiler_create(NULL, &device->info);
170 if (device->compiler == NULL) {
171 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
172 goto fail;
173 }
174 device->compiler->shader_debug_log = compiler_debug_log;
175 device->compiler->shader_perf_log = compiler_perf_log;
176
177 result = anv_init_wsi(device);
178 if (result != VK_SUCCESS)
179 goto fail;
180
181 /* XXX: Actually detect bit6 swizzling */
182 isl_device_init(&device->isl_dev, &device->info, swizzled);
183
184 return VK_SUCCESS;
185
186 fail:
187 close(fd);
188 return result;
189 }
190
191 static void
192 anv_physical_device_finish(struct anv_physical_device *device)
193 {
194 anv_finish_wsi(device);
195 ralloc_free(device->compiler);
196 }
197
198 static const VkExtensionProperties global_extensions[] = {
199 {
200 .extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
201 .specVersion = 25,
202 },
203 #ifdef VK_USE_PLATFORM_XCB_KHR
204 {
205 .extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
206 .specVersion = 5,
207 },
208 #endif
209 #ifdef VK_USE_PLATFORM_XLIB_KHR
210 {
211 .extensionName = VK_KHR_XLIB_SURFACE_EXTENSION_NAME,
212 .specVersion = 5,
213 },
214 #endif
215 #ifdef VK_USE_PLATFORM_WAYLAND_KHR
216 {
217 .extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
218 .specVersion = 4,
219 },
220 #endif
221 };
222
223 static const VkExtensionProperties device_extensions[] = {
224 {
225 .extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
226 .specVersion = 67,
227 },
228 };
229
230 static void *
231 default_alloc_func(void *pUserData, size_t size, size_t align,
232 VkSystemAllocationScope allocationScope)
233 {
234 return malloc(size);
235 }
236
237 static void *
238 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
239 size_t align, VkSystemAllocationScope allocationScope)
240 {
241 return realloc(pOriginal, size);
242 }
243
244 static void
245 default_free_func(void *pUserData, void *pMemory)
246 {
247 free(pMemory);
248 }
249
250 static const VkAllocationCallbacks default_alloc = {
251 .pUserData = NULL,
252 .pfnAllocation = default_alloc_func,
253 .pfnReallocation = default_realloc_func,
254 .pfnFree = default_free_func,
255 };
256
257 VkResult anv_CreateInstance(
258 const VkInstanceCreateInfo* pCreateInfo,
259 const VkAllocationCallbacks* pAllocator,
260 VkInstance* pInstance)
261 {
262 struct anv_instance *instance;
263
264 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
265
266 uint32_t client_version;
267 if (pCreateInfo->pApplicationInfo &&
268 pCreateInfo->pApplicationInfo->apiVersion != 0) {
269 client_version = pCreateInfo->pApplicationInfo->apiVersion;
270 } else {
271 client_version = VK_MAKE_VERSION(1, 0, 0);
272 }
273
274 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
275 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
276 return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
277 "Client requested version %d.%d.%d",
278 VK_VERSION_MAJOR(client_version),
279 VK_VERSION_MINOR(client_version),
280 VK_VERSION_PATCH(client_version));
281 }
282
283 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
284 bool found = false;
285 for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
286 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
287 global_extensions[j].extensionName) == 0) {
288 found = true;
289 break;
290 }
291 }
292 if (!found)
293 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
294 }
295
296 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
297 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
298 if (!instance)
299 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
300
301 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
302
303 if (pAllocator)
304 instance->alloc = *pAllocator;
305 else
306 instance->alloc = default_alloc;
307
308 instance->apiVersion = client_version;
309 instance->physicalDeviceCount = -1;
310
311 _mesa_locale_init();
312
313 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
314
315 *pInstance = anv_instance_to_handle(instance);
316
317 return VK_SUCCESS;
318 }
319
320 void anv_DestroyInstance(
321 VkInstance _instance,
322 const VkAllocationCallbacks* pAllocator)
323 {
324 ANV_FROM_HANDLE(anv_instance, instance, _instance);
325
326 if (instance->physicalDeviceCount > 0) {
327 /* We support at most one physical device. */
328 assert(instance->physicalDeviceCount == 1);
329 anv_physical_device_finish(&instance->physicalDevice);
330 }
331
332 VG(VALGRIND_DESTROY_MEMPOOL(instance));
333
334 _mesa_locale_fini();
335
336 vk_free(&instance->alloc, instance);
337 }
338
339 VkResult anv_EnumeratePhysicalDevices(
340 VkInstance _instance,
341 uint32_t* pPhysicalDeviceCount,
342 VkPhysicalDevice* pPhysicalDevices)
343 {
344 ANV_FROM_HANDLE(anv_instance, instance, _instance);
345 VkResult result;
346
347 if (instance->physicalDeviceCount < 0) {
348 char path[20];
349 for (unsigned i = 0; i < 8; i++) {
350 snprintf(path, sizeof(path), "/dev/dri/renderD%d", 128 + i);
351 result = anv_physical_device_init(&instance->physicalDevice,
352 instance, path);
353 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
354 break;
355 }
356
357 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
358 instance->physicalDeviceCount = 0;
359 } else if (result == VK_SUCCESS) {
360 instance->physicalDeviceCount = 1;
361 } else {
362 return result;
363 }
364 }
365
366 /* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
367 * otherwise it's an inout parameter.
368 *
369 * The Vulkan spec (git aaed022) says:
370 *
371 * pPhysicalDeviceCount is a pointer to an unsigned integer variable
372 * that is initialized with the number of devices the application is
373 * prepared to receive handles to. pname:pPhysicalDevices is pointer to
374 * an array of at least this many VkPhysicalDevice handles [...].
375 *
376 * Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
377 * overwrites the contents of the variable pointed to by
378 * pPhysicalDeviceCount with the number of physical devices in in the
379 * instance; otherwise, vkEnumeratePhysicalDevices overwrites
380 * pPhysicalDeviceCount with the number of physical handles written to
381 * pPhysicalDevices.
382 */
383 if (!pPhysicalDevices) {
384 *pPhysicalDeviceCount = instance->physicalDeviceCount;
385 } else if (*pPhysicalDeviceCount >= 1) {
386 pPhysicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice);
387 *pPhysicalDeviceCount = 1;
388 } else if (*pPhysicalDeviceCount < instance->physicalDeviceCount) {
389 return VK_INCOMPLETE;
390 } else {
391 *pPhysicalDeviceCount = 0;
392 }
393
394 return VK_SUCCESS;
395 }
396
397 void anv_GetPhysicalDeviceFeatures(
398 VkPhysicalDevice physicalDevice,
399 VkPhysicalDeviceFeatures* pFeatures)
400 {
401 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
402
403 *pFeatures = (VkPhysicalDeviceFeatures) {
404 .robustBufferAccess = true,
405 .fullDrawIndexUint32 = true,
406 .imageCubeArray = false,
407 .independentBlend = true,
408 .geometryShader = true,
409 .tessellationShader = false,
410 .sampleRateShading = true,
411 .dualSrcBlend = true,
412 .logicOp = true,
413 .multiDrawIndirect = false,
414 .drawIndirectFirstInstance = false,
415 .depthClamp = true,
416 .depthBiasClamp = false,
417 .fillModeNonSolid = true,
418 .depthBounds = false,
419 .wideLines = true,
420 .largePoints = true,
421 .alphaToOne = true,
422 .multiViewport = true,
423 .samplerAnisotropy = true,
424 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
425 pdevice->info.is_baytrail,
426 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
427 .textureCompressionBC = true,
428 .occlusionQueryPrecise = true,
429 .pipelineStatisticsQuery = false,
430 .fragmentStoresAndAtomics = true,
431 .shaderTessellationAndGeometryPointSize = true,
432 .shaderImageGatherExtended = false,
433 .shaderStorageImageExtendedFormats = false,
434 .shaderStorageImageMultisample = false,
435 .shaderUniformBufferArrayDynamicIndexing = true,
436 .shaderSampledImageArrayDynamicIndexing = true,
437 .shaderStorageBufferArrayDynamicIndexing = true,
438 .shaderStorageImageArrayDynamicIndexing = true,
439 .shaderStorageImageReadWithoutFormat = false,
440 .shaderStorageImageWriteWithoutFormat = true,
441 .shaderClipDistance = false,
442 .shaderCullDistance = false,
443 .shaderFloat64 = false,
444 .shaderInt64 = false,
445 .shaderInt16 = false,
446 .alphaToOne = true,
447 .variableMultisampleRate = false,
448 .inheritedQueries = false,
449 };
450
451 /* We can't do image stores in vec4 shaders */
452 pFeatures->vertexPipelineStoresAndAtomics =
453 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
454 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
455 }
456
457 void
458 anv_device_get_cache_uuid(void *uuid)
459 {
460 memset(uuid, 0, VK_UUID_SIZE);
461 snprintf(uuid, VK_UUID_SIZE, "anv-%s", ANV_TIMESTAMP);
462 }
463
464 void anv_GetPhysicalDeviceProperties(
465 VkPhysicalDevice physicalDevice,
466 VkPhysicalDeviceProperties* pProperties)
467 {
468 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
469 const struct gen_device_info *devinfo = &pdevice->info;
470
471 const float time_stamp_base = devinfo->gen >= 9 ? 83.333 : 80.0;
472
473 /* See assertions made when programming the buffer surface state. */
474 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
475 (1ul << 30) : (1ul << 27);
476
477 VkSampleCountFlags sample_counts =
478 isl_device_get_sample_counts(&pdevice->isl_dev);
479
480 VkPhysicalDeviceLimits limits = {
481 .maxImageDimension1D = (1 << 14),
482 .maxImageDimension2D = (1 << 14),
483 .maxImageDimension3D = (1 << 11),
484 .maxImageDimensionCube = (1 << 14),
485 .maxImageArrayLayers = (1 << 11),
486 .maxTexelBufferElements = 128 * 1024 * 1024,
487 .maxUniformBufferRange = (1ul << 27),
488 .maxStorageBufferRange = max_raw_buffer_sz,
489 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
490 .maxMemoryAllocationCount = UINT32_MAX,
491 .maxSamplerAllocationCount = 64 * 1024,
492 .bufferImageGranularity = 64, /* A cache line */
493 .sparseAddressSpaceSize = 0,
494 .maxBoundDescriptorSets = MAX_SETS,
495 .maxPerStageDescriptorSamplers = 64,
496 .maxPerStageDescriptorUniformBuffers = 64,
497 .maxPerStageDescriptorStorageBuffers = 64,
498 .maxPerStageDescriptorSampledImages = 64,
499 .maxPerStageDescriptorStorageImages = 64,
500 .maxPerStageDescriptorInputAttachments = 64,
501 .maxPerStageResources = 128,
502 .maxDescriptorSetSamplers = 256,
503 .maxDescriptorSetUniformBuffers = 256,
504 .maxDescriptorSetUniformBuffersDynamic = 256,
505 .maxDescriptorSetStorageBuffers = 256,
506 .maxDescriptorSetStorageBuffersDynamic = 256,
507 .maxDescriptorSetSampledImages = 256,
508 .maxDescriptorSetStorageImages = 256,
509 .maxDescriptorSetInputAttachments = 256,
510 .maxVertexInputAttributes = 32,
511 .maxVertexInputBindings = 32,
512 .maxVertexInputAttributeOffset = 2047,
513 .maxVertexInputBindingStride = 2048,
514 .maxVertexOutputComponents = 128,
515 .maxTessellationGenerationLevel = 0,
516 .maxTessellationPatchSize = 0,
517 .maxTessellationControlPerVertexInputComponents = 0,
518 .maxTessellationControlPerVertexOutputComponents = 0,
519 .maxTessellationControlPerPatchOutputComponents = 0,
520 .maxTessellationControlTotalOutputComponents = 0,
521 .maxTessellationEvaluationInputComponents = 0,
522 .maxTessellationEvaluationOutputComponents = 0,
523 .maxGeometryShaderInvocations = 32,
524 .maxGeometryInputComponents = 64,
525 .maxGeometryOutputComponents = 128,
526 .maxGeometryOutputVertices = 256,
527 .maxGeometryTotalOutputComponents = 1024,
528 .maxFragmentInputComponents = 128,
529 .maxFragmentOutputAttachments = 8,
530 .maxFragmentDualSrcAttachments = 2,
531 .maxFragmentCombinedOutputResources = 8,
532 .maxComputeSharedMemorySize = 32768,
533 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
534 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
535 .maxComputeWorkGroupSize = {
536 16 * devinfo->max_cs_threads,
537 16 * devinfo->max_cs_threads,
538 16 * devinfo->max_cs_threads,
539 },
540 .subPixelPrecisionBits = 4 /* FIXME */,
541 .subTexelPrecisionBits = 4 /* FIXME */,
542 .mipmapPrecisionBits = 4 /* FIXME */,
543 .maxDrawIndexedIndexValue = UINT32_MAX,
544 .maxDrawIndirectCount = UINT32_MAX,
545 .maxSamplerLodBias = 16,
546 .maxSamplerAnisotropy = 16,
547 .maxViewports = MAX_VIEWPORTS,
548 .maxViewportDimensions = { (1 << 14), (1 << 14) },
549 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
550 .viewportSubPixelBits = 13, /* We take a float? */
551 .minMemoryMapAlignment = 4096, /* A page */
552 .minTexelBufferOffsetAlignment = 1,
553 .minUniformBufferOffsetAlignment = 1,
554 .minStorageBufferOffsetAlignment = 1,
555 .minTexelOffset = -8,
556 .maxTexelOffset = 7,
557 .minTexelGatherOffset = -8,
558 .maxTexelGatherOffset = 7,
559 .minInterpolationOffset = -0.5,
560 .maxInterpolationOffset = 0.4375,
561 .subPixelInterpolationOffsetBits = 4,
562 .maxFramebufferWidth = (1 << 14),
563 .maxFramebufferHeight = (1 << 14),
564 .maxFramebufferLayers = (1 << 10),
565 .framebufferColorSampleCounts = sample_counts,
566 .framebufferDepthSampleCounts = sample_counts,
567 .framebufferStencilSampleCounts = sample_counts,
568 .framebufferNoAttachmentsSampleCounts = sample_counts,
569 .maxColorAttachments = MAX_RTS,
570 .sampledImageColorSampleCounts = sample_counts,
571 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
572 .sampledImageDepthSampleCounts = sample_counts,
573 .sampledImageStencilSampleCounts = sample_counts,
574 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
575 .maxSampleMaskWords = 1,
576 .timestampComputeAndGraphics = false,
577 .timestampPeriod = time_stamp_base,
578 .maxClipDistances = 0 /* FIXME */,
579 .maxCullDistances = 0 /* FIXME */,
580 .maxCombinedClipAndCullDistances = 0 /* FIXME */,
581 .discreteQueuePriorities = 1,
582 .pointSizeRange = { 0.125, 255.875 },
583 .lineWidthRange = { 0.0, 7.9921875 },
584 .pointSizeGranularity = (1.0 / 8.0),
585 .lineWidthGranularity = (1.0 / 128.0),
586 .strictLines = false, /* FINISHME */
587 .standardSampleLocations = true,
588 .optimalBufferCopyOffsetAlignment = 128,
589 .optimalBufferCopyRowPitchAlignment = 128,
590 .nonCoherentAtomSize = 64,
591 };
592
593 *pProperties = (VkPhysicalDeviceProperties) {
594 .apiVersion = VK_MAKE_VERSION(1, 0, 5),
595 .driverVersion = 1,
596 .vendorID = 0x8086,
597 .deviceID = pdevice->chipset_id,
598 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
599 .limits = limits,
600 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
601 };
602
603 strcpy(pProperties->deviceName, pdevice->name);
604 anv_device_get_cache_uuid(pProperties->pipelineCacheUUID);
605 }
606
607 void anv_GetPhysicalDeviceQueueFamilyProperties(
608 VkPhysicalDevice physicalDevice,
609 uint32_t* pCount,
610 VkQueueFamilyProperties* pQueueFamilyProperties)
611 {
612 if (pQueueFamilyProperties == NULL) {
613 *pCount = 1;
614 return;
615 }
616
617 assert(*pCount >= 1);
618
619 *pQueueFamilyProperties = (VkQueueFamilyProperties) {
620 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
621 VK_QUEUE_COMPUTE_BIT |
622 VK_QUEUE_TRANSFER_BIT,
623 .queueCount = 1,
624 .timestampValidBits = 36, /* XXX: Real value here */
625 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
626 };
627 }
628
629 void anv_GetPhysicalDeviceMemoryProperties(
630 VkPhysicalDevice physicalDevice,
631 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
632 {
633 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
634 VkDeviceSize heap_size;
635
636 /* Reserve some wiggle room for the driver by exposing only 75% of the
637 * aperture to the heap.
638 */
639 heap_size = 3 * physical_device->aperture_size / 4;
640
641 if (physical_device->info.has_llc) {
642 /* Big core GPUs share LLC with the CPU and thus one memory type can be
643 * both cached and coherent at the same time.
644 */
645 pMemoryProperties->memoryTypeCount = 1;
646 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
647 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
648 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
649 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
650 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
651 .heapIndex = 0,
652 };
653 } else {
654 /* The spec requires that we expose a host-visible, coherent memory
655 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
656 * to give the application a choice between cached, but not coherent and
657 * coherent but uncached (WC though).
658 */
659 pMemoryProperties->memoryTypeCount = 2;
660 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
661 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
662 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
663 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
664 .heapIndex = 0,
665 };
666 pMemoryProperties->memoryTypes[1] = (VkMemoryType) {
667 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
668 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
669 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
670 .heapIndex = 0,
671 };
672 }
673
674 pMemoryProperties->memoryHeapCount = 1;
675 pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) {
676 .size = heap_size,
677 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
678 };
679 }
680
681 PFN_vkVoidFunction anv_GetInstanceProcAddr(
682 VkInstance instance,
683 const char* pName)
684 {
685 return anv_lookup_entrypoint(NULL, pName);
686 }
687
688 /* With version 1+ of the loader interface the ICD should expose
689 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
690 */
691 PUBLIC
692 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
693 VkInstance instance,
694 const char* pName);
695
696 PUBLIC
697 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
698 VkInstance instance,
699 const char* pName)
700 {
701 return anv_GetInstanceProcAddr(instance, pName);
702 }
703
704 PFN_vkVoidFunction anv_GetDeviceProcAddr(
705 VkDevice _device,
706 const char* pName)
707 {
708 ANV_FROM_HANDLE(anv_device, device, _device);
709 return anv_lookup_entrypoint(&device->info, pName);
710 }
711
712 static VkResult
713 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
714 {
715 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
716 queue->device = device;
717 queue->pool = &device->surface_state_pool;
718
719 return VK_SUCCESS;
720 }
721
722 static void
723 anv_queue_finish(struct anv_queue *queue)
724 {
725 }
726
727 static struct anv_state
728 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
729 {
730 struct anv_state state;
731
732 state = anv_state_pool_alloc(pool, size, align);
733 memcpy(state.map, p, size);
734
735 if (!pool->block_pool->device->info.has_llc)
736 anv_state_clflush(state);
737
738 return state;
739 }
740
741 struct gen8_border_color {
742 union {
743 float float32[4];
744 uint32_t uint32[4];
745 };
746 /* Pad out to 64 bytes */
747 uint32_t _pad[12];
748 };
749
750 static void
751 anv_device_init_border_colors(struct anv_device *device)
752 {
753 static const struct gen8_border_color border_colors[] = {
754 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
755 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
756 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
757 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
758 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
759 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
760 };
761
762 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
763 sizeof(border_colors), 64,
764 border_colors);
765 }
766
767 VkResult
768 anv_device_submit_simple_batch(struct anv_device *device,
769 struct anv_batch *batch)
770 {
771 struct drm_i915_gem_execbuffer2 execbuf;
772 struct drm_i915_gem_exec_object2 exec2_objects[1];
773 struct anv_bo bo, *exec_bos[1];
774 VkResult result = VK_SUCCESS;
775 uint32_t size;
776 int64_t timeout;
777 int ret;
778
779 /* Kernel driver requires 8 byte aligned batch length */
780 size = align_u32(batch->next - batch->start, 8);
781 result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
782 if (result != VK_SUCCESS)
783 return result;
784
785 memcpy(bo.map, batch->start, size);
786 if (!device->info.has_llc)
787 anv_clflush_range(bo.map, size);
788
789 exec_bos[0] = &bo;
790 exec2_objects[0].handle = bo.gem_handle;
791 exec2_objects[0].relocation_count = 0;
792 exec2_objects[0].relocs_ptr = 0;
793 exec2_objects[0].alignment = 0;
794 exec2_objects[0].offset = bo.offset;
795 exec2_objects[0].flags = 0;
796 exec2_objects[0].rsvd1 = 0;
797 exec2_objects[0].rsvd2 = 0;
798
799 execbuf.buffers_ptr = (uintptr_t) exec2_objects;
800 execbuf.buffer_count = 1;
801 execbuf.batch_start_offset = 0;
802 execbuf.batch_len = size;
803 execbuf.cliprects_ptr = 0;
804 execbuf.num_cliprects = 0;
805 execbuf.DR1 = 0;
806 execbuf.DR4 = 0;
807
808 execbuf.flags =
809 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
810 execbuf.rsvd1 = device->context_id;
811 execbuf.rsvd2 = 0;
812
813 result = anv_device_execbuf(device, &execbuf, exec_bos);
814 if (result != VK_SUCCESS)
815 goto fail;
816
817 timeout = INT64_MAX;
818 ret = anv_gem_wait(device, bo.gem_handle, &timeout);
819 if (ret != 0) {
820 /* We don't know the real error. */
821 result = vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
822 goto fail;
823 }
824
825 fail:
826 anv_bo_pool_free(&device->batch_bo_pool, &bo);
827
828 return result;
829 }
830
831 VkResult anv_CreateDevice(
832 VkPhysicalDevice physicalDevice,
833 const VkDeviceCreateInfo* pCreateInfo,
834 const VkAllocationCallbacks* pAllocator,
835 VkDevice* pDevice)
836 {
837 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
838 VkResult result;
839 struct anv_device *device;
840
841 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
842
843 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
844 bool found = false;
845 for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
846 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
847 device_extensions[j].extensionName) == 0) {
848 found = true;
849 break;
850 }
851 }
852 if (!found)
853 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
854 }
855
856 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
857 sizeof(*device), 8,
858 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
859 if (!device)
860 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
861
862 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
863 device->instance = physical_device->instance;
864 device->chipset_id = physical_device->chipset_id;
865
866 if (pAllocator)
867 device->alloc = *pAllocator;
868 else
869 device->alloc = physical_device->instance->alloc;
870
871 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
872 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
873 if (device->fd == -1) {
874 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
875 goto fail_device;
876 }
877
878 device->context_id = anv_gem_create_context(device);
879 if (device->context_id == -1) {
880 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
881 goto fail_fd;
882 }
883
884 device->info = physical_device->info;
885 device->isl_dev = physical_device->isl_dev;
886
887 /* On Broadwell and later, we can use batch chaining to more efficiently
888 * implement growing command buffers. Prior to Haswell, the kernel
889 * command parser gets in the way and we have to fall back to growing
890 * the batch.
891 */
892 device->can_chain_batches = device->info.gen >= 8;
893
894 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
895 pCreateInfo->pEnabledFeatures->robustBufferAccess;
896
897 pthread_mutex_init(&device->mutex, NULL);
898
899 anv_bo_pool_init(&device->batch_bo_pool, device);
900
901 anv_block_pool_init(&device->dynamic_state_block_pool, device, 16384);
902
903 anv_state_pool_init(&device->dynamic_state_pool,
904 &device->dynamic_state_block_pool);
905
906 anv_block_pool_init(&device->instruction_block_pool, device, 128 * 1024);
907 anv_state_pool_init(&device->instruction_state_pool,
908 &device->instruction_block_pool);
909
910 anv_block_pool_init(&device->surface_state_block_pool, device, 4096);
911
912 anv_state_pool_init(&device->surface_state_pool,
913 &device->surface_state_block_pool);
914
915 anv_bo_init_new(&device->workaround_bo, device, 1024);
916
917 anv_scratch_pool_init(device, &device->scratch_pool);
918
919 anv_queue_init(device, &device->queue);
920
921 switch (device->info.gen) {
922 case 7:
923 if (!device->info.is_haswell)
924 result = gen7_init_device_state(device);
925 else
926 result = gen75_init_device_state(device);
927 break;
928 case 8:
929 result = gen8_init_device_state(device);
930 break;
931 case 9:
932 result = gen9_init_device_state(device);
933 break;
934 default:
935 /* Shouldn't get here as we don't create physical devices for any other
936 * gens. */
937 unreachable("unhandled gen");
938 }
939 if (result != VK_SUCCESS)
940 goto fail_fd;
941
942 anv_device_init_blorp(device);
943
944 anv_device_init_border_colors(device);
945
946 *pDevice = anv_device_to_handle(device);
947
948 return VK_SUCCESS;
949
950 fail_fd:
951 close(device->fd);
952 fail_device:
953 vk_free(&device->alloc, device);
954
955 return result;
956 }
957
958 void anv_DestroyDevice(
959 VkDevice _device,
960 const VkAllocationCallbacks* pAllocator)
961 {
962 ANV_FROM_HANDLE(anv_device, device, _device);
963
964 anv_queue_finish(&device->queue);
965
966 anv_device_finish_blorp(device);
967
968 #ifdef HAVE_VALGRIND
969 /* We only need to free these to prevent valgrind errors. The backing
970 * BO will go away in a couple of lines so we don't actually leak.
971 */
972 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
973 #endif
974
975 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
976 anv_gem_close(device, device->workaround_bo.gem_handle);
977
978 anv_bo_pool_finish(&device->batch_bo_pool);
979 anv_state_pool_finish(&device->dynamic_state_pool);
980 anv_block_pool_finish(&device->dynamic_state_block_pool);
981 anv_state_pool_finish(&device->instruction_state_pool);
982 anv_block_pool_finish(&device->instruction_block_pool);
983 anv_state_pool_finish(&device->surface_state_pool);
984 anv_block_pool_finish(&device->surface_state_block_pool);
985 anv_scratch_pool_finish(device, &device->scratch_pool);
986
987 close(device->fd);
988
989 pthread_mutex_destroy(&device->mutex);
990
991 vk_free(&device->alloc, device);
992 }
993
994 VkResult anv_EnumerateInstanceExtensionProperties(
995 const char* pLayerName,
996 uint32_t* pPropertyCount,
997 VkExtensionProperties* pProperties)
998 {
999 if (pProperties == NULL) {
1000 *pPropertyCount = ARRAY_SIZE(global_extensions);
1001 return VK_SUCCESS;
1002 }
1003
1004 assert(*pPropertyCount >= ARRAY_SIZE(global_extensions));
1005
1006 *pPropertyCount = ARRAY_SIZE(global_extensions);
1007 memcpy(pProperties, global_extensions, sizeof(global_extensions));
1008
1009 return VK_SUCCESS;
1010 }
1011
1012 VkResult anv_EnumerateDeviceExtensionProperties(
1013 VkPhysicalDevice physicalDevice,
1014 const char* pLayerName,
1015 uint32_t* pPropertyCount,
1016 VkExtensionProperties* pProperties)
1017 {
1018 if (pProperties == NULL) {
1019 *pPropertyCount = ARRAY_SIZE(device_extensions);
1020 return VK_SUCCESS;
1021 }
1022
1023 assert(*pPropertyCount >= ARRAY_SIZE(device_extensions));
1024
1025 *pPropertyCount = ARRAY_SIZE(device_extensions);
1026 memcpy(pProperties, device_extensions, sizeof(device_extensions));
1027
1028 return VK_SUCCESS;
1029 }
1030
1031 VkResult anv_EnumerateInstanceLayerProperties(
1032 uint32_t* pPropertyCount,
1033 VkLayerProperties* pProperties)
1034 {
1035 if (pProperties == NULL) {
1036 *pPropertyCount = 0;
1037 return VK_SUCCESS;
1038 }
1039
1040 /* None supported at this time */
1041 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1042 }
1043
1044 VkResult anv_EnumerateDeviceLayerProperties(
1045 VkPhysicalDevice physicalDevice,
1046 uint32_t* pPropertyCount,
1047 VkLayerProperties* pProperties)
1048 {
1049 if (pProperties == NULL) {
1050 *pPropertyCount = 0;
1051 return VK_SUCCESS;
1052 }
1053
1054 /* None supported at this time */
1055 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1056 }
1057
1058 void anv_GetDeviceQueue(
1059 VkDevice _device,
1060 uint32_t queueNodeIndex,
1061 uint32_t queueIndex,
1062 VkQueue* pQueue)
1063 {
1064 ANV_FROM_HANDLE(anv_device, device, _device);
1065
1066 assert(queueIndex == 0);
1067
1068 *pQueue = anv_queue_to_handle(&device->queue);
1069 }
1070
1071 VkResult
1072 anv_device_execbuf(struct anv_device *device,
1073 struct drm_i915_gem_execbuffer2 *execbuf,
1074 struct anv_bo **execbuf_bos)
1075 {
1076 int ret = anv_gem_execbuffer(device, execbuf);
1077 if (ret != 0) {
1078 /* We don't know the real error. */
1079 return vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
1080 }
1081
1082 struct drm_i915_gem_exec_object2 *objects = (void *)execbuf->buffers_ptr;
1083 for (uint32_t k = 0; k < execbuf->buffer_count; k++)
1084 execbuf_bos[k]->offset = objects[k].offset;
1085
1086 return VK_SUCCESS;
1087 }
1088
1089 VkResult anv_QueueSubmit(
1090 VkQueue _queue,
1091 uint32_t submitCount,
1092 const VkSubmitInfo* pSubmits,
1093 VkFence _fence)
1094 {
1095 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1096 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1097 struct anv_device *device = queue->device;
1098 VkResult result = VK_SUCCESS;
1099
1100 for (uint32_t i = 0; i < submitCount; i++) {
1101 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
1102 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
1103 pSubmits[i].pCommandBuffers[j]);
1104 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1105
1106 result = anv_cmd_buffer_execbuf(device, cmd_buffer);
1107 if (result != VK_SUCCESS)
1108 return result;
1109 }
1110 }
1111
1112 if (fence) {
1113 struct anv_bo *fence_bo = &fence->bo;
1114 result = anv_device_execbuf(device, &fence->execbuf, &fence_bo);
1115 if (result != VK_SUCCESS)
1116 return result;
1117 }
1118
1119 return VK_SUCCESS;
1120 }
1121
1122 VkResult anv_QueueWaitIdle(
1123 VkQueue _queue)
1124 {
1125 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1126
1127 return anv_DeviceWaitIdle(anv_device_to_handle(queue->device));
1128 }
1129
1130 VkResult anv_DeviceWaitIdle(
1131 VkDevice _device)
1132 {
1133 ANV_FROM_HANDLE(anv_device, device, _device);
1134 struct anv_batch batch;
1135
1136 uint32_t cmds[8];
1137 batch.start = batch.next = cmds;
1138 batch.end = (void *) cmds + sizeof(cmds);
1139
1140 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1141 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1142
1143 return anv_device_submit_simple_batch(device, &batch);
1144 }
1145
1146 VkResult
1147 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1148 {
1149 bo->gem_handle = anv_gem_create(device, size);
1150 if (!bo->gem_handle)
1151 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1152
1153 bo->map = NULL;
1154 bo->index = 0;
1155 bo->offset = 0;
1156 bo->size = size;
1157 bo->is_winsys_bo = false;
1158
1159 return VK_SUCCESS;
1160 }
1161
1162 VkResult anv_AllocateMemory(
1163 VkDevice _device,
1164 const VkMemoryAllocateInfo* pAllocateInfo,
1165 const VkAllocationCallbacks* pAllocator,
1166 VkDeviceMemory* pMem)
1167 {
1168 ANV_FROM_HANDLE(anv_device, device, _device);
1169 struct anv_device_memory *mem;
1170 VkResult result;
1171
1172 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1173
1174 if (pAllocateInfo->allocationSize == 0) {
1175 /* Apparently, this is allowed */
1176 *pMem = VK_NULL_HANDLE;
1177 return VK_SUCCESS;
1178 }
1179
1180 /* We support exactly one memory heap. */
1181 assert(pAllocateInfo->memoryTypeIndex == 0 ||
1182 (!device->info.has_llc && pAllocateInfo->memoryTypeIndex < 2));
1183
1184 /* FINISHME: Fail if allocation request exceeds heap size. */
1185
1186 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1187 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1188 if (mem == NULL)
1189 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1190
1191 /* The kernel is going to give us whole pages anyway */
1192 uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
1193
1194 result = anv_bo_init_new(&mem->bo, device, alloc_size);
1195 if (result != VK_SUCCESS)
1196 goto fail;
1197
1198 mem->type_index = pAllocateInfo->memoryTypeIndex;
1199
1200 *pMem = anv_device_memory_to_handle(mem);
1201
1202 return VK_SUCCESS;
1203
1204 fail:
1205 vk_free2(&device->alloc, pAllocator, mem);
1206
1207 return result;
1208 }
1209
1210 void anv_FreeMemory(
1211 VkDevice _device,
1212 VkDeviceMemory _mem,
1213 const VkAllocationCallbacks* pAllocator)
1214 {
1215 ANV_FROM_HANDLE(anv_device, device, _device);
1216 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1217
1218 if (mem == NULL)
1219 return;
1220
1221 if (mem->bo.map)
1222 anv_gem_munmap(mem->bo.map, mem->bo.size);
1223
1224 if (mem->bo.gem_handle != 0)
1225 anv_gem_close(device, mem->bo.gem_handle);
1226
1227 vk_free2(&device->alloc, pAllocator, mem);
1228 }
1229
1230 VkResult anv_MapMemory(
1231 VkDevice _device,
1232 VkDeviceMemory _memory,
1233 VkDeviceSize offset,
1234 VkDeviceSize size,
1235 VkMemoryMapFlags flags,
1236 void** ppData)
1237 {
1238 ANV_FROM_HANDLE(anv_device, device, _device);
1239 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1240
1241 if (mem == NULL) {
1242 *ppData = NULL;
1243 return VK_SUCCESS;
1244 }
1245
1246 if (size == VK_WHOLE_SIZE)
1247 size = mem->bo.size - offset;
1248
1249 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1250 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1251 * at a time is valid. We could just mmap up front and return an offset
1252 * pointer here, but that may exhaust virtual memory on 32 bit
1253 * userspace. */
1254
1255 uint32_t gem_flags = 0;
1256 if (!device->info.has_llc && mem->type_index == 0)
1257 gem_flags |= I915_MMAP_WC;
1258
1259 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
1260 uint64_t map_offset = offset & ~4095ull;
1261 assert(offset >= map_offset);
1262 uint64_t map_size = (offset + size) - map_offset;
1263
1264 /* Let's map whole pages */
1265 map_size = align_u64(map_size, 4096);
1266
1267 mem->map = anv_gem_mmap(device, mem->bo.gem_handle,
1268 map_offset, map_size, gem_flags);
1269 mem->map_size = map_size;
1270
1271 *ppData = mem->map + (offset - map_offset);
1272
1273 return VK_SUCCESS;
1274 }
1275
1276 void anv_UnmapMemory(
1277 VkDevice _device,
1278 VkDeviceMemory _memory)
1279 {
1280 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1281
1282 if (mem == NULL)
1283 return;
1284
1285 anv_gem_munmap(mem->map, mem->map_size);
1286 }
1287
1288 static void
1289 clflush_mapped_ranges(struct anv_device *device,
1290 uint32_t count,
1291 const VkMappedMemoryRange *ranges)
1292 {
1293 for (uint32_t i = 0; i < count; i++) {
1294 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1295 void *p = mem->map + (ranges[i].offset & ~CACHELINE_MASK);
1296 void *end;
1297
1298 if (ranges[i].offset + ranges[i].size > mem->map_size)
1299 end = mem->map + mem->map_size;
1300 else
1301 end = mem->map + ranges[i].offset + ranges[i].size;
1302
1303 while (p < end) {
1304 __builtin_ia32_clflush(p);
1305 p += CACHELINE_SIZE;
1306 }
1307 }
1308 }
1309
1310 VkResult anv_FlushMappedMemoryRanges(
1311 VkDevice _device,
1312 uint32_t memoryRangeCount,
1313 const VkMappedMemoryRange* pMemoryRanges)
1314 {
1315 ANV_FROM_HANDLE(anv_device, device, _device);
1316
1317 if (device->info.has_llc)
1318 return VK_SUCCESS;
1319
1320 /* Make sure the writes we're flushing have landed. */
1321 __builtin_ia32_mfence();
1322
1323 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1324
1325 return VK_SUCCESS;
1326 }
1327
1328 VkResult anv_InvalidateMappedMemoryRanges(
1329 VkDevice _device,
1330 uint32_t memoryRangeCount,
1331 const VkMappedMemoryRange* pMemoryRanges)
1332 {
1333 ANV_FROM_HANDLE(anv_device, device, _device);
1334
1335 if (device->info.has_llc)
1336 return VK_SUCCESS;
1337
1338 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1339
1340 /* Make sure no reads get moved up above the invalidate. */
1341 __builtin_ia32_mfence();
1342
1343 return VK_SUCCESS;
1344 }
1345
1346 void anv_GetBufferMemoryRequirements(
1347 VkDevice device,
1348 VkBuffer _buffer,
1349 VkMemoryRequirements* pMemoryRequirements)
1350 {
1351 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1352
1353 /* The Vulkan spec (git aaed022) says:
1354 *
1355 * memoryTypeBits is a bitfield and contains one bit set for every
1356 * supported memory type for the resource. The bit `1<<i` is set if and
1357 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1358 * structure for the physical device is supported.
1359 *
1360 * We support exactly one memory type.
1361 */
1362 pMemoryRequirements->memoryTypeBits = 1;
1363
1364 pMemoryRequirements->size = buffer->size;
1365 pMemoryRequirements->alignment = 16;
1366 }
1367
1368 void anv_GetImageMemoryRequirements(
1369 VkDevice device,
1370 VkImage _image,
1371 VkMemoryRequirements* pMemoryRequirements)
1372 {
1373 ANV_FROM_HANDLE(anv_image, image, _image);
1374
1375 /* The Vulkan spec (git aaed022) says:
1376 *
1377 * memoryTypeBits is a bitfield and contains one bit set for every
1378 * supported memory type for the resource. The bit `1<<i` is set if and
1379 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1380 * structure for the physical device is supported.
1381 *
1382 * We support exactly one memory type.
1383 */
1384 pMemoryRequirements->memoryTypeBits = 1;
1385
1386 pMemoryRequirements->size = image->size;
1387 pMemoryRequirements->alignment = image->alignment;
1388 }
1389
1390 void anv_GetImageSparseMemoryRequirements(
1391 VkDevice device,
1392 VkImage image,
1393 uint32_t* pSparseMemoryRequirementCount,
1394 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
1395 {
1396 stub();
1397 }
1398
1399 void anv_GetDeviceMemoryCommitment(
1400 VkDevice device,
1401 VkDeviceMemory memory,
1402 VkDeviceSize* pCommittedMemoryInBytes)
1403 {
1404 *pCommittedMemoryInBytes = 0;
1405 }
1406
1407 VkResult anv_BindBufferMemory(
1408 VkDevice device,
1409 VkBuffer _buffer,
1410 VkDeviceMemory _memory,
1411 VkDeviceSize memoryOffset)
1412 {
1413 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1414 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1415
1416 if (mem) {
1417 buffer->bo = &mem->bo;
1418 buffer->offset = memoryOffset;
1419 } else {
1420 buffer->bo = NULL;
1421 buffer->offset = 0;
1422 }
1423
1424 return VK_SUCCESS;
1425 }
1426
1427 VkResult anv_QueueBindSparse(
1428 VkQueue queue,
1429 uint32_t bindInfoCount,
1430 const VkBindSparseInfo* pBindInfo,
1431 VkFence fence)
1432 {
1433 stub_return(VK_ERROR_INCOMPATIBLE_DRIVER);
1434 }
1435
1436 VkResult anv_CreateFence(
1437 VkDevice _device,
1438 const VkFenceCreateInfo* pCreateInfo,
1439 const VkAllocationCallbacks* pAllocator,
1440 VkFence* pFence)
1441 {
1442 ANV_FROM_HANDLE(anv_device, device, _device);
1443 struct anv_bo fence_bo;
1444 struct anv_fence *fence;
1445 struct anv_batch batch;
1446 VkResult result;
1447
1448 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
1449
1450 result = anv_bo_pool_alloc(&device->batch_bo_pool, &fence_bo, 4096);
1451 if (result != VK_SUCCESS)
1452 return result;
1453
1454 /* Fences are small. Just store the CPU data structure in the BO. */
1455 fence = fence_bo.map;
1456 fence->bo = fence_bo;
1457
1458 /* Place the batch after the CPU data but on its own cache line. */
1459 const uint32_t batch_offset = align_u32(sizeof(*fence), CACHELINE_SIZE);
1460 batch.next = batch.start = fence->bo.map + batch_offset;
1461 batch.end = fence->bo.map + fence->bo.size;
1462 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1463 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1464
1465 if (!device->info.has_llc) {
1466 assert(((uintptr_t) batch.start & CACHELINE_MASK) == 0);
1467 assert(batch.next - batch.start <= CACHELINE_SIZE);
1468 __builtin_ia32_mfence();
1469 __builtin_ia32_clflush(batch.start);
1470 }
1471
1472 fence->exec2_objects[0].handle = fence->bo.gem_handle;
1473 fence->exec2_objects[0].relocation_count = 0;
1474 fence->exec2_objects[0].relocs_ptr = 0;
1475 fence->exec2_objects[0].alignment = 0;
1476 fence->exec2_objects[0].offset = fence->bo.offset;
1477 fence->exec2_objects[0].flags = 0;
1478 fence->exec2_objects[0].rsvd1 = 0;
1479 fence->exec2_objects[0].rsvd2 = 0;
1480
1481 fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
1482 fence->execbuf.buffer_count = 1;
1483 fence->execbuf.batch_start_offset = batch.start - fence->bo.map;
1484 fence->execbuf.batch_len = batch.next - batch.start;
1485 fence->execbuf.cliprects_ptr = 0;
1486 fence->execbuf.num_cliprects = 0;
1487 fence->execbuf.DR1 = 0;
1488 fence->execbuf.DR4 = 0;
1489
1490 fence->execbuf.flags =
1491 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
1492 fence->execbuf.rsvd1 = device->context_id;
1493 fence->execbuf.rsvd2 = 0;
1494
1495 fence->ready = false;
1496
1497 *pFence = anv_fence_to_handle(fence);
1498
1499 return VK_SUCCESS;
1500 }
1501
1502 void anv_DestroyFence(
1503 VkDevice _device,
1504 VkFence _fence,
1505 const VkAllocationCallbacks* pAllocator)
1506 {
1507 ANV_FROM_HANDLE(anv_device, device, _device);
1508 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1509
1510 assert(fence->bo.map == fence);
1511 anv_bo_pool_free(&device->batch_bo_pool, &fence->bo);
1512 }
1513
1514 VkResult anv_ResetFences(
1515 VkDevice _device,
1516 uint32_t fenceCount,
1517 const VkFence* pFences)
1518 {
1519 for (uint32_t i = 0; i < fenceCount; i++) {
1520 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1521 fence->ready = false;
1522 }
1523
1524 return VK_SUCCESS;
1525 }
1526
1527 VkResult anv_GetFenceStatus(
1528 VkDevice _device,
1529 VkFence _fence)
1530 {
1531 ANV_FROM_HANDLE(anv_device, device, _device);
1532 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1533 int64_t t = 0;
1534 int ret;
1535
1536 if (fence->ready)
1537 return VK_SUCCESS;
1538
1539 ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1540 if (ret == 0) {
1541 fence->ready = true;
1542 return VK_SUCCESS;
1543 }
1544
1545 return VK_NOT_READY;
1546 }
1547
1548 VkResult anv_WaitForFences(
1549 VkDevice _device,
1550 uint32_t fenceCount,
1551 const VkFence* pFences,
1552 VkBool32 waitAll,
1553 uint64_t timeout)
1554 {
1555 ANV_FROM_HANDLE(anv_device, device, _device);
1556
1557 /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
1558 * to block indefinitely timeouts <= 0. Unfortunately, this was broken
1559 * for a couple of kernel releases. Since there's no way to know
1560 * whether or not the kernel we're using is one of the broken ones, the
1561 * best we can do is to clamp the timeout to INT64_MAX. This limits the
1562 * maximum timeout from 584 years to 292 years - likely not a big deal.
1563 */
1564 if (timeout > INT64_MAX)
1565 timeout = INT64_MAX;
1566
1567 int64_t t = timeout;
1568
1569 /* FIXME: handle !waitAll */
1570
1571 for (uint32_t i = 0; i < fenceCount; i++) {
1572 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1573 int ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1574 if (ret == -1 && errno == ETIME) {
1575 return VK_TIMEOUT;
1576 } else if (ret == -1) {
1577 /* We don't know the real error. */
1578 return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
1579 "gem wait failed: %m");
1580 }
1581 }
1582
1583 return VK_SUCCESS;
1584 }
1585
1586 // Queue semaphore functions
1587
1588 VkResult anv_CreateSemaphore(
1589 VkDevice device,
1590 const VkSemaphoreCreateInfo* pCreateInfo,
1591 const VkAllocationCallbacks* pAllocator,
1592 VkSemaphore* pSemaphore)
1593 {
1594 /* The DRM execbuffer ioctl always execute in-oder, even between different
1595 * rings. As such, there's nothing to do for the user space semaphore.
1596 */
1597
1598 *pSemaphore = (VkSemaphore)1;
1599
1600 return VK_SUCCESS;
1601 }
1602
1603 void anv_DestroySemaphore(
1604 VkDevice device,
1605 VkSemaphore semaphore,
1606 const VkAllocationCallbacks* pAllocator)
1607 {
1608 }
1609
1610 // Event functions
1611
1612 VkResult anv_CreateEvent(
1613 VkDevice _device,
1614 const VkEventCreateInfo* pCreateInfo,
1615 const VkAllocationCallbacks* pAllocator,
1616 VkEvent* pEvent)
1617 {
1618 ANV_FROM_HANDLE(anv_device, device, _device);
1619 struct anv_state state;
1620 struct anv_event *event;
1621
1622 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
1623
1624 state = anv_state_pool_alloc(&device->dynamic_state_pool,
1625 sizeof(*event), 8);
1626 event = state.map;
1627 event->state = state;
1628 event->semaphore = VK_EVENT_RESET;
1629
1630 if (!device->info.has_llc) {
1631 /* Make sure the writes we're flushing have landed. */
1632 __builtin_ia32_mfence();
1633 __builtin_ia32_clflush(event);
1634 }
1635
1636 *pEvent = anv_event_to_handle(event);
1637
1638 return VK_SUCCESS;
1639 }
1640
1641 void anv_DestroyEvent(
1642 VkDevice _device,
1643 VkEvent _event,
1644 const VkAllocationCallbacks* pAllocator)
1645 {
1646 ANV_FROM_HANDLE(anv_device, device, _device);
1647 ANV_FROM_HANDLE(anv_event, event, _event);
1648
1649 anv_state_pool_free(&device->dynamic_state_pool, event->state);
1650 }
1651
1652 VkResult anv_GetEventStatus(
1653 VkDevice _device,
1654 VkEvent _event)
1655 {
1656 ANV_FROM_HANDLE(anv_device, device, _device);
1657 ANV_FROM_HANDLE(anv_event, event, _event);
1658
1659 if (!device->info.has_llc) {
1660 /* Invalidate read cache before reading event written by GPU. */
1661 __builtin_ia32_clflush(event);
1662 __builtin_ia32_mfence();
1663
1664 }
1665
1666 return event->semaphore;
1667 }
1668
1669 VkResult anv_SetEvent(
1670 VkDevice _device,
1671 VkEvent _event)
1672 {
1673 ANV_FROM_HANDLE(anv_device, device, _device);
1674 ANV_FROM_HANDLE(anv_event, event, _event);
1675
1676 event->semaphore = VK_EVENT_SET;
1677
1678 if (!device->info.has_llc) {
1679 /* Make sure the writes we're flushing have landed. */
1680 __builtin_ia32_mfence();
1681 __builtin_ia32_clflush(event);
1682 }
1683
1684 return VK_SUCCESS;
1685 }
1686
1687 VkResult anv_ResetEvent(
1688 VkDevice _device,
1689 VkEvent _event)
1690 {
1691 ANV_FROM_HANDLE(anv_device, device, _device);
1692 ANV_FROM_HANDLE(anv_event, event, _event);
1693
1694 event->semaphore = VK_EVENT_RESET;
1695
1696 if (!device->info.has_llc) {
1697 /* Make sure the writes we're flushing have landed. */
1698 __builtin_ia32_mfence();
1699 __builtin_ia32_clflush(event);
1700 }
1701
1702 return VK_SUCCESS;
1703 }
1704
1705 // Buffer functions
1706
1707 VkResult anv_CreateBuffer(
1708 VkDevice _device,
1709 const VkBufferCreateInfo* pCreateInfo,
1710 const VkAllocationCallbacks* pAllocator,
1711 VkBuffer* pBuffer)
1712 {
1713 ANV_FROM_HANDLE(anv_device, device, _device);
1714 struct anv_buffer *buffer;
1715
1716 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
1717
1718 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
1719 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1720 if (buffer == NULL)
1721 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1722
1723 buffer->size = pCreateInfo->size;
1724 buffer->usage = pCreateInfo->usage;
1725 buffer->bo = NULL;
1726 buffer->offset = 0;
1727
1728 *pBuffer = anv_buffer_to_handle(buffer);
1729
1730 return VK_SUCCESS;
1731 }
1732
1733 void anv_DestroyBuffer(
1734 VkDevice _device,
1735 VkBuffer _buffer,
1736 const VkAllocationCallbacks* pAllocator)
1737 {
1738 ANV_FROM_HANDLE(anv_device, device, _device);
1739 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1740
1741 vk_free2(&device->alloc, pAllocator, buffer);
1742 }
1743
1744 void
1745 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
1746 enum isl_format format,
1747 uint32_t offset, uint32_t range, uint32_t stride)
1748 {
1749 isl_buffer_fill_state(&device->isl_dev, state.map,
1750 .address = offset,
1751 .mocs = device->default_mocs,
1752 .size = range,
1753 .format = format,
1754 .stride = stride);
1755
1756 if (!device->info.has_llc)
1757 anv_state_clflush(state);
1758 }
1759
1760 void anv_DestroySampler(
1761 VkDevice _device,
1762 VkSampler _sampler,
1763 const VkAllocationCallbacks* pAllocator)
1764 {
1765 ANV_FROM_HANDLE(anv_device, device, _device);
1766 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
1767
1768 vk_free2(&device->alloc, pAllocator, sampler);
1769 }
1770
1771 VkResult anv_CreateFramebuffer(
1772 VkDevice _device,
1773 const VkFramebufferCreateInfo* pCreateInfo,
1774 const VkAllocationCallbacks* pAllocator,
1775 VkFramebuffer* pFramebuffer)
1776 {
1777 ANV_FROM_HANDLE(anv_device, device, _device);
1778 struct anv_framebuffer *framebuffer;
1779
1780 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
1781
1782 size_t size = sizeof(*framebuffer) +
1783 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
1784 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
1785 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1786 if (framebuffer == NULL)
1787 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1788
1789 framebuffer->attachment_count = pCreateInfo->attachmentCount;
1790 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
1791 VkImageView _iview = pCreateInfo->pAttachments[i];
1792 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
1793 }
1794
1795 framebuffer->width = pCreateInfo->width;
1796 framebuffer->height = pCreateInfo->height;
1797 framebuffer->layers = pCreateInfo->layers;
1798
1799 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
1800
1801 return VK_SUCCESS;
1802 }
1803
1804 void anv_DestroyFramebuffer(
1805 VkDevice _device,
1806 VkFramebuffer _fb,
1807 const VkAllocationCallbacks* pAllocator)
1808 {
1809 ANV_FROM_HANDLE(anv_device, device, _device);
1810 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
1811
1812 vk_free2(&device->alloc, pAllocator, fb);
1813 }