anv: Soft-pin state pools
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include <drm_fourcc.h>
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/mesa-sha1.h"
39 #include "vk_util.h"
40 #include "common/gen_defines.h"
41
42 #include "genxml/gen7_pack.h"
43
44 static void
45 compiler_debug_log(void *data, const char *fmt, ...)
46 { }
47
48 static void
49 compiler_perf_log(void *data, const char *fmt, ...)
50 {
51 va_list args;
52 va_start(args, fmt);
53
54 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
55 intel_logd_v(fmt, args);
56
57 va_end(args);
58 }
59
60 static VkResult
61 anv_compute_heap_size(int fd, uint64_t gtt_size, uint64_t *heap_size)
62 {
63 /* Query the total ram from the system */
64 struct sysinfo info;
65 sysinfo(&info);
66
67 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
68
69 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
70 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
71 */
72 uint64_t available_ram;
73 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
74 available_ram = total_ram / 2;
75 else
76 available_ram = total_ram * 3 / 4;
77
78 /* We also want to leave some padding for things we allocate in the driver,
79 * so don't go over 3/4 of the GTT either.
80 */
81 uint64_t available_gtt = gtt_size * 3 / 4;
82
83 *heap_size = MIN2(available_ram, available_gtt);
84
85 return VK_SUCCESS;
86 }
87
88 static VkResult
89 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
90 {
91 uint64_t gtt_size;
92 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
93 &gtt_size) == -1) {
94 /* If, for whatever reason, we can't actually get the GTT size from the
95 * kernel (too old?) fall back to the aperture size.
96 */
97 anv_perf_warn(NULL, NULL,
98 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
99
100 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
101 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
102 "failed to get aperture size: %m");
103 }
104 }
105
106 device->supports_48bit_addresses = (device->info.gen >= 8) &&
107 gtt_size > (4ULL << 30 /* GiB */);
108
109 uint64_t heap_size = 0;
110 VkResult result = anv_compute_heap_size(fd, gtt_size, &heap_size);
111 if (result != VK_SUCCESS)
112 return result;
113
114 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
115 /* When running with an overridden PCI ID, we may get a GTT size from
116 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
117 * address support can still fail. Just clamp the address space size to
118 * 2 GiB if we don't have 48-bit support.
119 */
120 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
121 "not support for 48-bit addresses",
122 __FILE__, __LINE__);
123 heap_size = 2ull << 30;
124 }
125
126 if (heap_size <= 3ull * (1ull << 30)) {
127 /* In this case, everything fits nicely into the 32-bit address space,
128 * so there's no need for supporting 48bit addresses on client-allocated
129 * memory objects.
130 */
131 device->memory.heap_count = 1;
132 device->memory.heaps[0] = (struct anv_memory_heap) {
133 .size = heap_size,
134 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
135 .supports_48bit_addresses = false,
136 };
137 } else {
138 /* Not everything will fit nicely into a 32-bit address space. In this
139 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
140 * larger 48-bit heap. If we're in this case, then we have a total heap
141 * size larger than 3GiB which most likely means they have 8 GiB of
142 * video memory and so carving off 1 GiB for the 32-bit heap should be
143 * reasonable.
144 */
145 const uint64_t heap_size_32bit = 1ull << 30;
146 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
147
148 assert(device->supports_48bit_addresses);
149
150 device->memory.heap_count = 2;
151 device->memory.heaps[0] = (struct anv_memory_heap) {
152 .size = heap_size_48bit,
153 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
154 .supports_48bit_addresses = true,
155 };
156 device->memory.heaps[1] = (struct anv_memory_heap) {
157 .size = heap_size_32bit,
158 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
159 .supports_48bit_addresses = false,
160 };
161 }
162
163 uint32_t type_count = 0;
164 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
165 uint32_t valid_buffer_usage = ~0;
166
167 /* There appears to be a hardware issue in the VF cache where it only
168 * considers the bottom 32 bits of memory addresses. If you happen to
169 * have two vertex buffers which get placed exactly 4 GiB apart and use
170 * them in back-to-back draw calls, you can get collisions. In order to
171 * solve this problem, we require vertex and index buffers be bound to
172 * memory allocated out of the 32-bit heap.
173 */
174 if (device->memory.heaps[heap].supports_48bit_addresses) {
175 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
176 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
177 }
178
179 if (device->info.has_llc) {
180 /* Big core GPUs share LLC with the CPU and thus one memory type can be
181 * both cached and coherent at the same time.
182 */
183 device->memory.types[type_count++] = (struct anv_memory_type) {
184 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
185 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
186 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
187 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
188 .heapIndex = heap,
189 .valid_buffer_usage = valid_buffer_usage,
190 };
191 } else {
192 /* The spec requires that we expose a host-visible, coherent memory
193 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
194 * to give the application a choice between cached, but not coherent and
195 * coherent but uncached (WC though).
196 */
197 device->memory.types[type_count++] = (struct anv_memory_type) {
198 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
199 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
200 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
201 .heapIndex = heap,
202 .valid_buffer_usage = valid_buffer_usage,
203 };
204 device->memory.types[type_count++] = (struct anv_memory_type) {
205 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
206 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
207 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
208 .heapIndex = heap,
209 .valid_buffer_usage = valid_buffer_usage,
210 };
211 }
212 }
213 device->memory.type_count = type_count;
214
215 return VK_SUCCESS;
216 }
217
218 static VkResult
219 anv_physical_device_init_uuids(struct anv_physical_device *device)
220 {
221 const struct build_id_note *note =
222 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
223 if (!note) {
224 return vk_errorf(device->instance, device,
225 VK_ERROR_INITIALIZATION_FAILED,
226 "Failed to find build-id");
227 }
228
229 unsigned build_id_len = build_id_length(note);
230 if (build_id_len < 20) {
231 return vk_errorf(device->instance, device,
232 VK_ERROR_INITIALIZATION_FAILED,
233 "build-id too short. It needs to be a SHA");
234 }
235
236 struct mesa_sha1 sha1_ctx;
237 uint8_t sha1[20];
238 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
239
240 /* The pipeline cache UUID is used for determining when a pipeline cache is
241 * invalid. It needs both a driver build and the PCI ID of the device.
242 */
243 _mesa_sha1_init(&sha1_ctx);
244 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
245 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
246 sizeof(device->chipset_id));
247 _mesa_sha1_final(&sha1_ctx, sha1);
248 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
249
250 /* The driver UUID is used for determining sharability of images and memory
251 * between two Vulkan instances in separate processes. People who want to
252 * share memory need to also check the device UUID (below) so all this
253 * needs to be is the build-id.
254 */
255 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
256
257 /* The device UUID uniquely identifies the given device within the machine.
258 * Since we never have more than one device, this doesn't need to be a real
259 * UUID. However, on the off-chance that someone tries to use this to
260 * cache pre-tiled images or something of the like, we use the PCI ID and
261 * some bits of ISL info to ensure that this is safe.
262 */
263 _mesa_sha1_init(&sha1_ctx);
264 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
265 sizeof(device->chipset_id));
266 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
267 sizeof(device->isl_dev.has_bit6_swizzling));
268 _mesa_sha1_final(&sha1_ctx, sha1);
269 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
270
271 return VK_SUCCESS;
272 }
273
274 static VkResult
275 anv_physical_device_init(struct anv_physical_device *device,
276 struct anv_instance *instance,
277 const char *path)
278 {
279 VkResult result;
280 int fd;
281
282 brw_process_intel_debug_variable();
283
284 fd = open(path, O_RDWR | O_CLOEXEC);
285 if (fd < 0)
286 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
287
288 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
289 device->instance = instance;
290
291 assert(strlen(path) < ARRAY_SIZE(device->path));
292 strncpy(device->path, path, ARRAY_SIZE(device->path));
293
294 device->no_hw = getenv("INTEL_NO_HW") != NULL;
295
296 const int pci_id_override = gen_get_pci_device_id_override();
297 if (pci_id_override < 0) {
298 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
299 if (!device->chipset_id) {
300 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
301 goto fail;
302 }
303 } else {
304 device->chipset_id = pci_id_override;
305 device->no_hw = true;
306 }
307
308 device->name = gen_get_device_name(device->chipset_id);
309 if (!gen_get_device_info(device->chipset_id, &device->info)) {
310 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
311 goto fail;
312 }
313
314 if (device->info.is_haswell) {
315 intel_logw("Haswell Vulkan support is incomplete");
316 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
317 intel_logw("Ivy Bridge Vulkan support is incomplete");
318 } else if (device->info.gen == 7 && device->info.is_baytrail) {
319 intel_logw("Bay Trail Vulkan support is incomplete");
320 } else if (device->info.gen >= 8 && device->info.gen <= 10) {
321 /* Gen8-10 fully supported */
322 } else if (device->info.gen == 11) {
323 intel_logw("Vulkan is not yet fully supported on gen11.");
324 } else {
325 result = vk_errorf(device->instance, device,
326 VK_ERROR_INCOMPATIBLE_DRIVER,
327 "Vulkan not yet supported on %s", device->name);
328 goto fail;
329 }
330
331 device->cmd_parser_version = -1;
332 if (device->info.gen == 7) {
333 device->cmd_parser_version =
334 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
335 if (device->cmd_parser_version == -1) {
336 result = vk_errorf(device->instance, device,
337 VK_ERROR_INITIALIZATION_FAILED,
338 "failed to get command parser version");
339 goto fail;
340 }
341 }
342
343 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
344 result = vk_errorf(device->instance, device,
345 VK_ERROR_INITIALIZATION_FAILED,
346 "kernel missing gem wait");
347 goto fail;
348 }
349
350 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
351 result = vk_errorf(device->instance, device,
352 VK_ERROR_INITIALIZATION_FAILED,
353 "kernel missing execbuf2");
354 goto fail;
355 }
356
357 if (!device->info.has_llc &&
358 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
359 result = vk_errorf(device->instance, device,
360 VK_ERROR_INITIALIZATION_FAILED,
361 "kernel missing wc mmap");
362 goto fail;
363 }
364
365 result = anv_physical_device_init_heaps(device, fd);
366 if (result != VK_SUCCESS)
367 goto fail;
368
369 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
370 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
371 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
372 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
373 device->has_syncobj_wait = device->has_syncobj &&
374 anv_gem_supports_syncobj_wait(fd);
375 device->has_context_priority = anv_gem_has_context_priority(fd);
376
377 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
378 && device->supports_48bit_addresses;
379
380 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
381
382 /* Starting with Gen10, the timestamp frequency of the command streamer may
383 * vary from one part to another. We can query the value from the kernel.
384 */
385 if (device->info.gen >= 10) {
386 int timestamp_frequency =
387 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
388
389 if (timestamp_frequency < 0)
390 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
391 else
392 device->info.timestamp_frequency = timestamp_frequency;
393 }
394
395 /* GENs prior to 8 do not support EU/Subslice info */
396 if (device->info.gen >= 8) {
397 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
398 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
399
400 /* Without this information, we cannot get the right Braswell
401 * brandstrings, and we have to use conservative numbers for GPGPU on
402 * many platforms, but otherwise, things will just work.
403 */
404 if (device->subslice_total < 1 || device->eu_total < 1) {
405 intel_logw("Kernel 4.1 required to properly query GPU properties");
406 }
407 } else if (device->info.gen == 7) {
408 device->subslice_total = 1 << (device->info.gt - 1);
409 }
410
411 if (device->info.is_cherryview &&
412 device->subslice_total > 0 && device->eu_total > 0) {
413 /* Logical CS threads = EUs per subslice * num threads per EU */
414 uint32_t max_cs_threads =
415 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
416
417 /* Fuse configurations may give more threads than expected, never less. */
418 if (max_cs_threads > device->info.max_cs_threads)
419 device->info.max_cs_threads = max_cs_threads;
420 }
421
422 device->compiler = brw_compiler_create(NULL, &device->info);
423 if (device->compiler == NULL) {
424 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
425 goto fail;
426 }
427 device->compiler->shader_debug_log = compiler_debug_log;
428 device->compiler->shader_perf_log = compiler_perf_log;
429 device->compiler->supports_pull_constants = false;
430 device->compiler->constant_buffer_0_is_relative = true;
431
432 isl_device_init(&device->isl_dev, &device->info, swizzled);
433
434 result = anv_physical_device_init_uuids(device);
435 if (result != VK_SUCCESS)
436 goto fail;
437
438 result = anv_init_wsi(device);
439 if (result != VK_SUCCESS) {
440 ralloc_free(device->compiler);
441 goto fail;
442 }
443
444 anv_physical_device_get_supported_extensions(device,
445 &device->supported_extensions);
446
447 device->local_fd = fd;
448 return VK_SUCCESS;
449
450 fail:
451 close(fd);
452 return result;
453 }
454
455 static void
456 anv_physical_device_finish(struct anv_physical_device *device)
457 {
458 anv_finish_wsi(device);
459 ralloc_free(device->compiler);
460 close(device->local_fd);
461 }
462
463 static void *
464 default_alloc_func(void *pUserData, size_t size, size_t align,
465 VkSystemAllocationScope allocationScope)
466 {
467 return malloc(size);
468 }
469
470 static void *
471 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
472 size_t align, VkSystemAllocationScope allocationScope)
473 {
474 return realloc(pOriginal, size);
475 }
476
477 static void
478 default_free_func(void *pUserData, void *pMemory)
479 {
480 free(pMemory);
481 }
482
483 static const VkAllocationCallbacks default_alloc = {
484 .pUserData = NULL,
485 .pfnAllocation = default_alloc_func,
486 .pfnReallocation = default_realloc_func,
487 .pfnFree = default_free_func,
488 };
489
490 VkResult anv_EnumerateInstanceExtensionProperties(
491 const char* pLayerName,
492 uint32_t* pPropertyCount,
493 VkExtensionProperties* pProperties)
494 {
495 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
496
497 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
498 if (anv_instance_extensions_supported.extensions[i]) {
499 vk_outarray_append(&out, prop) {
500 *prop = anv_instance_extensions[i];
501 }
502 }
503 }
504
505 return vk_outarray_status(&out);
506 }
507
508 VkResult anv_CreateInstance(
509 const VkInstanceCreateInfo* pCreateInfo,
510 const VkAllocationCallbacks* pAllocator,
511 VkInstance* pInstance)
512 {
513 struct anv_instance *instance;
514 VkResult result;
515
516 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
517
518 struct anv_instance_extension_table enabled_extensions = {};
519 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
520 int idx;
521 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
522 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
523 anv_instance_extensions[idx].extensionName) == 0)
524 break;
525 }
526
527 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
528 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
529
530 if (!anv_instance_extensions_supported.extensions[idx])
531 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
532
533 enabled_extensions.extensions[idx] = true;
534 }
535
536 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
537 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
538 if (!instance)
539 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
540
541 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
542
543 if (pAllocator)
544 instance->alloc = *pAllocator;
545 else
546 instance->alloc = default_alloc;
547
548 if (pCreateInfo->pApplicationInfo &&
549 pCreateInfo->pApplicationInfo->apiVersion != 0) {
550 instance->apiVersion = pCreateInfo->pApplicationInfo->apiVersion;
551 } else {
552 anv_EnumerateInstanceVersion(&instance->apiVersion);
553 }
554
555 instance->enabled_extensions = enabled_extensions;
556
557 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
558 /* Vulkan requires that entrypoints for extensions which have not been
559 * enabled must not be advertised.
560 */
561 if (!anv_entrypoint_is_enabled(i, instance->apiVersion,
562 &instance->enabled_extensions, NULL)) {
563 instance->dispatch.entrypoints[i] = NULL;
564 } else if (anv_dispatch_table.entrypoints[i] != NULL) {
565 instance->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
566 } else {
567 instance->dispatch.entrypoints[i] =
568 anv_tramp_dispatch_table.entrypoints[i];
569 }
570 }
571
572 instance->physicalDeviceCount = -1;
573
574 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
575 if (result != VK_SUCCESS) {
576 vk_free2(&default_alloc, pAllocator, instance);
577 return vk_error(result);
578 }
579
580 _mesa_locale_init();
581
582 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
583
584 *pInstance = anv_instance_to_handle(instance);
585
586 return VK_SUCCESS;
587 }
588
589 void anv_DestroyInstance(
590 VkInstance _instance,
591 const VkAllocationCallbacks* pAllocator)
592 {
593 ANV_FROM_HANDLE(anv_instance, instance, _instance);
594
595 if (!instance)
596 return;
597
598 if (instance->physicalDeviceCount > 0) {
599 /* We support at most one physical device. */
600 assert(instance->physicalDeviceCount == 1);
601 anv_physical_device_finish(&instance->physicalDevice);
602 }
603
604 VG(VALGRIND_DESTROY_MEMPOOL(instance));
605
606 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
607
608 _mesa_locale_fini();
609
610 vk_free(&instance->alloc, instance);
611 }
612
613 static VkResult
614 anv_enumerate_devices(struct anv_instance *instance)
615 {
616 /* TODO: Check for more devices ? */
617 drmDevicePtr devices[8];
618 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
619 int max_devices;
620
621 instance->physicalDeviceCount = 0;
622
623 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
624 if (max_devices < 1)
625 return VK_ERROR_INCOMPATIBLE_DRIVER;
626
627 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
628 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
629 devices[i]->bustype == DRM_BUS_PCI &&
630 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
631
632 result = anv_physical_device_init(&instance->physicalDevice,
633 instance,
634 devices[i]->nodes[DRM_NODE_RENDER]);
635 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
636 break;
637 }
638 }
639 drmFreeDevices(devices, max_devices);
640
641 if (result == VK_SUCCESS)
642 instance->physicalDeviceCount = 1;
643
644 return result;
645 }
646
647 static VkResult
648 anv_instance_ensure_physical_device(struct anv_instance *instance)
649 {
650 if (instance->physicalDeviceCount < 0) {
651 VkResult result = anv_enumerate_devices(instance);
652 if (result != VK_SUCCESS &&
653 result != VK_ERROR_INCOMPATIBLE_DRIVER)
654 return result;
655 }
656
657 return VK_SUCCESS;
658 }
659
660 VkResult anv_EnumeratePhysicalDevices(
661 VkInstance _instance,
662 uint32_t* pPhysicalDeviceCount,
663 VkPhysicalDevice* pPhysicalDevices)
664 {
665 ANV_FROM_HANDLE(anv_instance, instance, _instance);
666 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
667
668 VkResult result = anv_instance_ensure_physical_device(instance);
669 if (result != VK_SUCCESS)
670 return result;
671
672 if (instance->physicalDeviceCount == 0)
673 return VK_SUCCESS;
674
675 assert(instance->physicalDeviceCount == 1);
676 vk_outarray_append(&out, i) {
677 *i = anv_physical_device_to_handle(&instance->physicalDevice);
678 }
679
680 return vk_outarray_status(&out);
681 }
682
683 VkResult anv_EnumeratePhysicalDeviceGroups(
684 VkInstance _instance,
685 uint32_t* pPhysicalDeviceGroupCount,
686 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
687 {
688 ANV_FROM_HANDLE(anv_instance, instance, _instance);
689 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
690 pPhysicalDeviceGroupCount);
691
692 VkResult result = anv_instance_ensure_physical_device(instance);
693 if (result != VK_SUCCESS)
694 return result;
695
696 if (instance->physicalDeviceCount == 0)
697 return VK_SUCCESS;
698
699 assert(instance->physicalDeviceCount == 1);
700
701 vk_outarray_append(&out, p) {
702 p->physicalDeviceCount = 1;
703 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
704 p->physicalDevices[0] =
705 anv_physical_device_to_handle(&instance->physicalDevice);
706 p->subsetAllocation = VK_FALSE;
707
708 vk_foreach_struct(ext, p->pNext)
709 anv_debug_ignored_stype(ext->sType);
710 }
711
712 return vk_outarray_status(&out);
713 }
714
715 void anv_GetPhysicalDeviceFeatures(
716 VkPhysicalDevice physicalDevice,
717 VkPhysicalDeviceFeatures* pFeatures)
718 {
719 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
720
721 *pFeatures = (VkPhysicalDeviceFeatures) {
722 .robustBufferAccess = true,
723 .fullDrawIndexUint32 = true,
724 .imageCubeArray = true,
725 .independentBlend = true,
726 .geometryShader = true,
727 .tessellationShader = true,
728 .sampleRateShading = true,
729 .dualSrcBlend = true,
730 .logicOp = true,
731 .multiDrawIndirect = true,
732 .drawIndirectFirstInstance = true,
733 .depthClamp = true,
734 .depthBiasClamp = true,
735 .fillModeNonSolid = true,
736 .depthBounds = false,
737 .wideLines = true,
738 .largePoints = true,
739 .alphaToOne = true,
740 .multiViewport = true,
741 .samplerAnisotropy = true,
742 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
743 pdevice->info.is_baytrail,
744 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
745 .textureCompressionBC = true,
746 .occlusionQueryPrecise = true,
747 .pipelineStatisticsQuery = true,
748 .fragmentStoresAndAtomics = true,
749 .shaderTessellationAndGeometryPointSize = true,
750 .shaderImageGatherExtended = true,
751 .shaderStorageImageExtendedFormats = true,
752 .shaderStorageImageMultisample = false,
753 .shaderStorageImageReadWithoutFormat = false,
754 .shaderStorageImageWriteWithoutFormat = true,
755 .shaderUniformBufferArrayDynamicIndexing = true,
756 .shaderSampledImageArrayDynamicIndexing = true,
757 .shaderStorageBufferArrayDynamicIndexing = true,
758 .shaderStorageImageArrayDynamicIndexing = true,
759 .shaderClipDistance = true,
760 .shaderCullDistance = true,
761 .shaderFloat64 = pdevice->info.gen >= 8 &&
762 pdevice->info.has_64bit_types,
763 .shaderInt64 = pdevice->info.gen >= 8 &&
764 pdevice->info.has_64bit_types,
765 .shaderInt16 = pdevice->info.gen >= 8,
766 .shaderResourceMinLod = false,
767 .variableMultisampleRate = true,
768 .inheritedQueries = true,
769 };
770
771 /* We can't do image stores in vec4 shaders */
772 pFeatures->vertexPipelineStoresAndAtomics =
773 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
774 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
775 }
776
777 void anv_GetPhysicalDeviceFeatures2(
778 VkPhysicalDevice physicalDevice,
779 VkPhysicalDeviceFeatures2* pFeatures)
780 {
781 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
782
783 vk_foreach_struct(ext, pFeatures->pNext) {
784 switch (ext->sType) {
785 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
786 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
787 features->protectedMemory = VK_FALSE;
788 break;
789 }
790
791 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
792 VkPhysicalDeviceMultiviewFeatures *features =
793 (VkPhysicalDeviceMultiviewFeatures *)ext;
794 features->multiview = true;
795 features->multiviewGeometryShader = true;
796 features->multiviewTessellationShader = true;
797 break;
798 }
799
800 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES: {
801 VkPhysicalDeviceVariablePointerFeatures *features = (void *)ext;
802 features->variablePointersStorageBuffer = true;
803 features->variablePointers = true;
804 break;
805 }
806
807 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
808 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
809 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
810 features->samplerYcbcrConversion = true;
811 break;
812 }
813
814 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES: {
815 VkPhysicalDeviceShaderDrawParameterFeatures *features = (void *)ext;
816 features->shaderDrawParameters = true;
817 break;
818 }
819
820 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR: {
821 VkPhysicalDevice16BitStorageFeaturesKHR *features =
822 (VkPhysicalDevice16BitStorageFeaturesKHR *)ext;
823 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
824
825 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
826 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
827 features->storagePushConstant16 = pdevice->info.gen >= 8;
828 features->storageInputOutput16 = false;
829 break;
830 }
831
832 default:
833 anv_debug_ignored_stype(ext->sType);
834 break;
835 }
836 }
837 }
838
839 void anv_GetPhysicalDeviceProperties(
840 VkPhysicalDevice physicalDevice,
841 VkPhysicalDeviceProperties* pProperties)
842 {
843 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
844 const struct gen_device_info *devinfo = &pdevice->info;
845
846 /* See assertions made when programming the buffer surface state. */
847 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
848 (1ul << 30) : (1ul << 27);
849
850 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
851 128 : 16;
852
853 VkSampleCountFlags sample_counts =
854 isl_device_get_sample_counts(&pdevice->isl_dev);
855
856 VkPhysicalDeviceLimits limits = {
857 .maxImageDimension1D = (1 << 14),
858 .maxImageDimension2D = (1 << 14),
859 .maxImageDimension3D = (1 << 11),
860 .maxImageDimensionCube = (1 << 14),
861 .maxImageArrayLayers = (1 << 11),
862 .maxTexelBufferElements = 128 * 1024 * 1024,
863 .maxUniformBufferRange = (1ul << 27),
864 .maxStorageBufferRange = max_raw_buffer_sz,
865 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
866 .maxMemoryAllocationCount = UINT32_MAX,
867 .maxSamplerAllocationCount = 64 * 1024,
868 .bufferImageGranularity = 64, /* A cache line */
869 .sparseAddressSpaceSize = 0,
870 .maxBoundDescriptorSets = MAX_SETS,
871 .maxPerStageDescriptorSamplers = max_samplers,
872 .maxPerStageDescriptorUniformBuffers = 64,
873 .maxPerStageDescriptorStorageBuffers = 64,
874 .maxPerStageDescriptorSampledImages = max_samplers,
875 .maxPerStageDescriptorStorageImages = 64,
876 .maxPerStageDescriptorInputAttachments = 64,
877 .maxPerStageResources = 250,
878 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
879 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
880 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
881 .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */
882 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
883 .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */
884 .maxDescriptorSetStorageImages = 6 * 64, /* number of stages * maxPerStageDescriptorStorageImages */
885 .maxDescriptorSetInputAttachments = 256,
886 .maxVertexInputAttributes = MAX_VBS,
887 .maxVertexInputBindings = MAX_VBS,
888 .maxVertexInputAttributeOffset = 2047,
889 .maxVertexInputBindingStride = 2048,
890 .maxVertexOutputComponents = 128,
891 .maxTessellationGenerationLevel = 64,
892 .maxTessellationPatchSize = 32,
893 .maxTessellationControlPerVertexInputComponents = 128,
894 .maxTessellationControlPerVertexOutputComponents = 128,
895 .maxTessellationControlPerPatchOutputComponents = 128,
896 .maxTessellationControlTotalOutputComponents = 2048,
897 .maxTessellationEvaluationInputComponents = 128,
898 .maxTessellationEvaluationOutputComponents = 128,
899 .maxGeometryShaderInvocations = 32,
900 .maxGeometryInputComponents = 64,
901 .maxGeometryOutputComponents = 128,
902 .maxGeometryOutputVertices = 256,
903 .maxGeometryTotalOutputComponents = 1024,
904 .maxFragmentInputComponents = 128,
905 .maxFragmentOutputAttachments = 8,
906 .maxFragmentDualSrcAttachments = 1,
907 .maxFragmentCombinedOutputResources = 8,
908 .maxComputeSharedMemorySize = 32768,
909 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
910 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
911 .maxComputeWorkGroupSize = {
912 16 * devinfo->max_cs_threads,
913 16 * devinfo->max_cs_threads,
914 16 * devinfo->max_cs_threads,
915 },
916 .subPixelPrecisionBits = 4 /* FIXME */,
917 .subTexelPrecisionBits = 4 /* FIXME */,
918 .mipmapPrecisionBits = 4 /* FIXME */,
919 .maxDrawIndexedIndexValue = UINT32_MAX,
920 .maxDrawIndirectCount = UINT32_MAX,
921 .maxSamplerLodBias = 16,
922 .maxSamplerAnisotropy = 16,
923 .maxViewports = MAX_VIEWPORTS,
924 .maxViewportDimensions = { (1 << 14), (1 << 14) },
925 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
926 .viewportSubPixelBits = 13, /* We take a float? */
927 .minMemoryMapAlignment = 4096, /* A page */
928 .minTexelBufferOffsetAlignment = 1,
929 /* We need 16 for UBO block reads to work and 32 for push UBOs */
930 .minUniformBufferOffsetAlignment = 32,
931 .minStorageBufferOffsetAlignment = 4,
932 .minTexelOffset = -8,
933 .maxTexelOffset = 7,
934 .minTexelGatherOffset = -32,
935 .maxTexelGatherOffset = 31,
936 .minInterpolationOffset = -0.5,
937 .maxInterpolationOffset = 0.4375,
938 .subPixelInterpolationOffsetBits = 4,
939 .maxFramebufferWidth = (1 << 14),
940 .maxFramebufferHeight = (1 << 14),
941 .maxFramebufferLayers = (1 << 11),
942 .framebufferColorSampleCounts = sample_counts,
943 .framebufferDepthSampleCounts = sample_counts,
944 .framebufferStencilSampleCounts = sample_counts,
945 .framebufferNoAttachmentsSampleCounts = sample_counts,
946 .maxColorAttachments = MAX_RTS,
947 .sampledImageColorSampleCounts = sample_counts,
948 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
949 .sampledImageDepthSampleCounts = sample_counts,
950 .sampledImageStencilSampleCounts = sample_counts,
951 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
952 .maxSampleMaskWords = 1,
953 .timestampComputeAndGraphics = false,
954 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
955 .maxClipDistances = 8,
956 .maxCullDistances = 8,
957 .maxCombinedClipAndCullDistances = 8,
958 .discreteQueuePriorities = 1,
959 .pointSizeRange = { 0.125, 255.875 },
960 .lineWidthRange = { 0.0, 7.9921875 },
961 .pointSizeGranularity = (1.0 / 8.0),
962 .lineWidthGranularity = (1.0 / 128.0),
963 .strictLines = false, /* FINISHME */
964 .standardSampleLocations = true,
965 .optimalBufferCopyOffsetAlignment = 128,
966 .optimalBufferCopyRowPitchAlignment = 128,
967 .nonCoherentAtomSize = 64,
968 };
969
970 *pProperties = (VkPhysicalDeviceProperties) {
971 .apiVersion = anv_physical_device_api_version(pdevice),
972 .driverVersion = vk_get_driver_version(),
973 .vendorID = 0x8086,
974 .deviceID = pdevice->chipset_id,
975 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
976 .limits = limits,
977 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
978 };
979
980 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
981 "%s", pdevice->name);
982 memcpy(pProperties->pipelineCacheUUID,
983 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
984 }
985
986 void anv_GetPhysicalDeviceProperties2(
987 VkPhysicalDevice physicalDevice,
988 VkPhysicalDeviceProperties2* pProperties)
989 {
990 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
991
992 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
993
994 vk_foreach_struct(ext, pProperties->pNext) {
995 switch (ext->sType) {
996 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
997 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
998 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
999
1000 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1001 break;
1002 }
1003
1004 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1005 VkPhysicalDeviceIDProperties *id_props =
1006 (VkPhysicalDeviceIDProperties *)ext;
1007 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1008 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1009 /* The LUID is for Windows. */
1010 id_props->deviceLUIDValid = false;
1011 break;
1012 }
1013
1014 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1015 VkPhysicalDeviceMaintenance3Properties *props =
1016 (VkPhysicalDeviceMaintenance3Properties *)ext;
1017 /* This value doesn't matter for us today as our per-stage
1018 * descriptors are the real limit.
1019 */
1020 props->maxPerSetDescriptors = 1024;
1021 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1022 break;
1023 }
1024
1025 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1026 VkPhysicalDeviceMultiviewProperties *properties =
1027 (VkPhysicalDeviceMultiviewProperties *)ext;
1028 properties->maxMultiviewViewCount = 16;
1029 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1030 break;
1031 }
1032
1033 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1034 VkPhysicalDevicePointClippingProperties *properties =
1035 (VkPhysicalDevicePointClippingProperties *) ext;
1036 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1037 anv_finishme("Implement pop-free point clipping");
1038 break;
1039 }
1040
1041 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1042 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1043
1044 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1045
1046 VkShaderStageFlags scalar_stages = 0;
1047 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1048 if (pdevice->compiler->scalar_stage[stage])
1049 scalar_stages |= mesa_to_vk_shader_stage(stage);
1050 }
1051 properties->supportedStages = scalar_stages;
1052
1053 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1054 VK_SUBGROUP_FEATURE_VOTE_BIT |
1055 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1056 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1057 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1058 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1059 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1060 VK_SUBGROUP_FEATURE_QUAD_BIT;
1061 properties->quadOperationsInAllStages = VK_TRUE;
1062 break;
1063 }
1064
1065 default:
1066 anv_debug_ignored_stype(ext->sType);
1067 break;
1068 }
1069 }
1070 }
1071
1072 /* We support exactly one queue family. */
1073 static const VkQueueFamilyProperties
1074 anv_queue_family_properties = {
1075 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1076 VK_QUEUE_COMPUTE_BIT |
1077 VK_QUEUE_TRANSFER_BIT,
1078 .queueCount = 1,
1079 .timestampValidBits = 36, /* XXX: Real value here */
1080 .minImageTransferGranularity = { 1, 1, 1 },
1081 };
1082
1083 void anv_GetPhysicalDeviceQueueFamilyProperties(
1084 VkPhysicalDevice physicalDevice,
1085 uint32_t* pCount,
1086 VkQueueFamilyProperties* pQueueFamilyProperties)
1087 {
1088 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1089
1090 vk_outarray_append(&out, p) {
1091 *p = anv_queue_family_properties;
1092 }
1093 }
1094
1095 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1096 VkPhysicalDevice physicalDevice,
1097 uint32_t* pQueueFamilyPropertyCount,
1098 VkQueueFamilyProperties2* pQueueFamilyProperties)
1099 {
1100
1101 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1102
1103 vk_outarray_append(&out, p) {
1104 p->queueFamilyProperties = anv_queue_family_properties;
1105
1106 vk_foreach_struct(s, p->pNext) {
1107 anv_debug_ignored_stype(s->sType);
1108 }
1109 }
1110 }
1111
1112 void anv_GetPhysicalDeviceMemoryProperties(
1113 VkPhysicalDevice physicalDevice,
1114 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1115 {
1116 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1117
1118 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1119 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1120 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1121 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1122 .heapIndex = physical_device->memory.types[i].heapIndex,
1123 };
1124 }
1125
1126 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1127 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1128 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1129 .size = physical_device->memory.heaps[i].size,
1130 .flags = physical_device->memory.heaps[i].flags,
1131 };
1132 }
1133 }
1134
1135 void anv_GetPhysicalDeviceMemoryProperties2(
1136 VkPhysicalDevice physicalDevice,
1137 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1138 {
1139 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1140 &pMemoryProperties->memoryProperties);
1141
1142 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1143 switch (ext->sType) {
1144 default:
1145 anv_debug_ignored_stype(ext->sType);
1146 break;
1147 }
1148 }
1149 }
1150
1151 void
1152 anv_GetDeviceGroupPeerMemoryFeatures(
1153 VkDevice device,
1154 uint32_t heapIndex,
1155 uint32_t localDeviceIndex,
1156 uint32_t remoteDeviceIndex,
1157 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1158 {
1159 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1160 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1161 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1162 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1163 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1164 }
1165
1166 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1167 VkInstance _instance,
1168 const char* pName)
1169 {
1170 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1171
1172 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1173 * when we have to return valid function pointers, NULL, or it's left
1174 * undefined. See the table for exact details.
1175 */
1176 if (pName == NULL)
1177 return NULL;
1178
1179 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1180 if (strcmp(pName, "vk" #entrypoint) == 0) \
1181 return (PFN_vkVoidFunction)anv_##entrypoint
1182
1183 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1184 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1185 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1186 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1187
1188 #undef LOOKUP_ANV_ENTRYPOINT
1189
1190 if (instance == NULL)
1191 return NULL;
1192
1193 int idx = anv_get_entrypoint_index(pName);
1194 if (idx < 0)
1195 return NULL;
1196
1197 return instance->dispatch.entrypoints[idx];
1198 }
1199
1200 /* With version 1+ of the loader interface the ICD should expose
1201 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1202 */
1203 PUBLIC
1204 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1205 VkInstance instance,
1206 const char* pName);
1207
1208 PUBLIC
1209 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1210 VkInstance instance,
1211 const char* pName)
1212 {
1213 return anv_GetInstanceProcAddr(instance, pName);
1214 }
1215
1216 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1217 VkDevice _device,
1218 const char* pName)
1219 {
1220 ANV_FROM_HANDLE(anv_device, device, _device);
1221
1222 if (!device || !pName)
1223 return NULL;
1224
1225 int idx = anv_get_entrypoint_index(pName);
1226 if (idx < 0)
1227 return NULL;
1228
1229 return device->dispatch.entrypoints[idx];
1230 }
1231
1232 VkResult
1233 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1234 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1235 const VkAllocationCallbacks* pAllocator,
1236 VkDebugReportCallbackEXT* pCallback)
1237 {
1238 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1239 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1240 pCreateInfo, pAllocator, &instance->alloc,
1241 pCallback);
1242 }
1243
1244 void
1245 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1246 VkDebugReportCallbackEXT _callback,
1247 const VkAllocationCallbacks* pAllocator)
1248 {
1249 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1250 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1251 _callback, pAllocator, &instance->alloc);
1252 }
1253
1254 void
1255 anv_DebugReportMessageEXT(VkInstance _instance,
1256 VkDebugReportFlagsEXT flags,
1257 VkDebugReportObjectTypeEXT objectType,
1258 uint64_t object,
1259 size_t location,
1260 int32_t messageCode,
1261 const char* pLayerPrefix,
1262 const char* pMessage)
1263 {
1264 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1265 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1266 object, location, messageCode, pLayerPrefix, pMessage);
1267 }
1268
1269 static void
1270 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1271 {
1272 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1273 queue->device = device;
1274 queue->flags = 0;
1275 }
1276
1277 static void
1278 anv_queue_finish(struct anv_queue *queue)
1279 {
1280 }
1281
1282 static struct anv_state
1283 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1284 {
1285 struct anv_state state;
1286
1287 state = anv_state_pool_alloc(pool, size, align);
1288 memcpy(state.map, p, size);
1289
1290 anv_state_flush(pool->block_pool.device, state);
1291
1292 return state;
1293 }
1294
1295 struct gen8_border_color {
1296 union {
1297 float float32[4];
1298 uint32_t uint32[4];
1299 };
1300 /* Pad out to 64 bytes */
1301 uint32_t _pad[12];
1302 };
1303
1304 static void
1305 anv_device_init_border_colors(struct anv_device *device)
1306 {
1307 static const struct gen8_border_color border_colors[] = {
1308 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1309 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1310 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1311 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1312 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1313 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1314 };
1315
1316 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1317 sizeof(border_colors), 64,
1318 border_colors);
1319 }
1320
1321 static void
1322 anv_device_init_trivial_batch(struct anv_device *device)
1323 {
1324 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1325
1326 if (device->instance->physicalDevice.has_exec_async)
1327 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1328
1329 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1330 0, 4096, 0);
1331
1332 struct anv_batch batch = {
1333 .start = map,
1334 .next = map,
1335 .end = map + 4096,
1336 };
1337
1338 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1339 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1340
1341 if (!device->info.has_llc)
1342 gen_clflush_range(map, batch.next - map);
1343
1344 anv_gem_munmap(map, device->trivial_batch_bo.size);
1345 }
1346
1347 VkResult anv_EnumerateDeviceExtensionProperties(
1348 VkPhysicalDevice physicalDevice,
1349 const char* pLayerName,
1350 uint32_t* pPropertyCount,
1351 VkExtensionProperties* pProperties)
1352 {
1353 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1354 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1355 (void)device;
1356
1357 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1358 if (device->supported_extensions.extensions[i]) {
1359 vk_outarray_append(&out, prop) {
1360 *prop = anv_device_extensions[i];
1361 }
1362 }
1363 }
1364
1365 return vk_outarray_status(&out);
1366 }
1367
1368 static void
1369 anv_device_init_dispatch(struct anv_device *device)
1370 {
1371 const struct anv_dispatch_table *genX_table;
1372 switch (device->info.gen) {
1373 case 11:
1374 genX_table = &gen11_dispatch_table;
1375 break;
1376 case 10:
1377 genX_table = &gen10_dispatch_table;
1378 break;
1379 case 9:
1380 genX_table = &gen9_dispatch_table;
1381 break;
1382 case 8:
1383 genX_table = &gen8_dispatch_table;
1384 break;
1385 case 7:
1386 if (device->info.is_haswell)
1387 genX_table = &gen75_dispatch_table;
1388 else
1389 genX_table = &gen7_dispatch_table;
1390 break;
1391 default:
1392 unreachable("unsupported gen\n");
1393 }
1394
1395 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1396 /* Vulkan requires that entrypoints for extensions which have not been
1397 * enabled must not be advertised.
1398 */
1399 if (!anv_entrypoint_is_enabled(i, device->instance->apiVersion,
1400 &device->instance->enabled_extensions,
1401 &device->enabled_extensions)) {
1402 device->dispatch.entrypoints[i] = NULL;
1403 } else if (genX_table->entrypoints[i]) {
1404 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1405 } else {
1406 device->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
1407 }
1408 }
1409 }
1410
1411 static int
1412 vk_priority_to_gen(int priority)
1413 {
1414 switch (priority) {
1415 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1416 return GEN_CONTEXT_LOW_PRIORITY;
1417 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1418 return GEN_CONTEXT_MEDIUM_PRIORITY;
1419 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1420 return GEN_CONTEXT_HIGH_PRIORITY;
1421 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1422 return GEN_CONTEXT_REALTIME_PRIORITY;
1423 default:
1424 unreachable("Invalid priority");
1425 }
1426 }
1427
1428 static void
1429 anv_device_init_hiz_clear_batch(struct anv_device *device)
1430 {
1431 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
1432 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
1433 0, 4096, 0);
1434
1435 union isl_color_value hiz_clear = { .u32 = { 0, } };
1436 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
1437
1438 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
1439 anv_gem_munmap(map, device->hiz_clear_bo.size);
1440 }
1441
1442 VkResult anv_CreateDevice(
1443 VkPhysicalDevice physicalDevice,
1444 const VkDeviceCreateInfo* pCreateInfo,
1445 const VkAllocationCallbacks* pAllocator,
1446 VkDevice* pDevice)
1447 {
1448 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1449 VkResult result;
1450 struct anv_device *device;
1451
1452 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1453
1454 struct anv_device_extension_table enabled_extensions = { };
1455 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1456 int idx;
1457 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
1458 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1459 anv_device_extensions[idx].extensionName) == 0)
1460 break;
1461 }
1462
1463 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
1464 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1465
1466 if (!physical_device->supported_extensions.extensions[idx])
1467 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1468
1469 enabled_extensions.extensions[idx] = true;
1470 }
1471
1472 /* Check enabled features */
1473 if (pCreateInfo->pEnabledFeatures) {
1474 VkPhysicalDeviceFeatures supported_features;
1475 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1476 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1477 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1478 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1479 for (uint32_t i = 0; i < num_features; i++) {
1480 if (enabled_feature[i] && !supported_feature[i])
1481 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1482 }
1483 }
1484
1485 /* Check requested queues and fail if we are requested to create any
1486 * queues with flags we don't support.
1487 */
1488 assert(pCreateInfo->queueCreateInfoCount > 0);
1489 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
1490 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
1491 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
1492 }
1493
1494 /* Check if client specified queue priority. */
1495 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
1496 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
1497 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1498
1499 VkQueueGlobalPriorityEXT priority =
1500 queue_priority ? queue_priority->globalPriority :
1501 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
1502
1503 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1504 sizeof(*device), 8,
1505 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1506 if (!device)
1507 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1508
1509 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1510 device->instance = physical_device->instance;
1511 device->chipset_id = physical_device->chipset_id;
1512 device->no_hw = physical_device->no_hw;
1513 device->lost = false;
1514
1515 if (pAllocator)
1516 device->alloc = *pAllocator;
1517 else
1518 device->alloc = physical_device->instance->alloc;
1519
1520 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1521 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1522 if (device->fd == -1) {
1523 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1524 goto fail_device;
1525 }
1526
1527 device->context_id = anv_gem_create_context(device);
1528 if (device->context_id == -1) {
1529 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1530 goto fail_fd;
1531 }
1532
1533 if (physical_device->use_softpin) {
1534 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
1535 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1536 goto fail_fd;
1537 }
1538
1539 /* keep the page with address zero out of the allocator */
1540 util_vma_heap_init(&device->vma_lo, LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
1541 device->vma_lo_available =
1542 physical_device->memory.heaps[physical_device->memory.heap_count - 1].size;
1543
1544 /* Leave the last 4GiB out of the high vma range, so that no state base
1545 * address + size can overflow 48 bits. For more information see the
1546 * comment about Wa32bitGeneralStateOffset in anv_allocator.c
1547 */
1548 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
1549 HIGH_HEAP_SIZE);
1550 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
1551 physical_device->memory.heaps[0].size;
1552 }
1553
1554 /* As per spec, the driver implementation may deny requests to acquire
1555 * a priority above the default priority (MEDIUM) if the caller does not
1556 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
1557 * is returned.
1558 */
1559 if (physical_device->has_context_priority) {
1560 int err = anv_gem_set_context_param(device->fd, device->context_id,
1561 I915_CONTEXT_PARAM_PRIORITY,
1562 vk_priority_to_gen(priority));
1563 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
1564 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
1565 goto fail_fd;
1566 }
1567 }
1568
1569 device->info = physical_device->info;
1570 device->isl_dev = physical_device->isl_dev;
1571
1572 /* On Broadwell and later, we can use batch chaining to more efficiently
1573 * implement growing command buffers. Prior to Haswell, the kernel
1574 * command parser gets in the way and we have to fall back to growing
1575 * the batch.
1576 */
1577 device->can_chain_batches = device->info.gen >= 8;
1578
1579 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1580 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1581 device->enabled_extensions = enabled_extensions;
1582
1583 anv_device_init_dispatch(device);
1584
1585 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
1586 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1587 goto fail_context_id;
1588 }
1589
1590 pthread_condattr_t condattr;
1591 if (pthread_condattr_init(&condattr) != 0) {
1592 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1593 goto fail_mutex;
1594 }
1595 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
1596 pthread_condattr_destroy(&condattr);
1597 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1598 goto fail_mutex;
1599 }
1600 if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
1601 pthread_condattr_destroy(&condattr);
1602 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1603 goto fail_mutex;
1604 }
1605 pthread_condattr_destroy(&condattr);
1606
1607 uint64_t bo_flags =
1608 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
1609 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1610 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1611
1612 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
1613
1614 result = anv_bo_cache_init(&device->bo_cache);
1615 if (result != VK_SUCCESS)
1616 goto fail_batch_bo_pool;
1617
1618 if (physical_device->use_softpin)
1619 bo_flags |= EXEC_OBJECT_PINNED;
1620 else
1621 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1622
1623 result = anv_state_pool_init(&device->dynamic_state_pool, device,
1624 DYNAMIC_STATE_POOL_MIN_ADDRESS,
1625 16384,
1626 bo_flags);
1627 if (result != VK_SUCCESS)
1628 goto fail_bo_cache;
1629
1630 result = anv_state_pool_init(&device->instruction_state_pool, device,
1631 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
1632 16384,
1633 bo_flags);
1634 if (result != VK_SUCCESS)
1635 goto fail_dynamic_state_pool;
1636
1637 result = anv_state_pool_init(&device->surface_state_pool, device,
1638 SURFACE_STATE_POOL_MIN_ADDRESS,
1639 4096,
1640 bo_flags);
1641 if (result != VK_SUCCESS)
1642 goto fail_instruction_state_pool;
1643
1644 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
1645 if (result != VK_SUCCESS)
1646 goto fail_surface_state_pool;
1647
1648 anv_device_init_trivial_batch(device);
1649
1650 if (device->info.gen >= 10)
1651 anv_device_init_hiz_clear_batch(device);
1652
1653 anv_scratch_pool_init(device, &device->scratch_pool);
1654
1655 anv_queue_init(device, &device->queue);
1656
1657 switch (device->info.gen) {
1658 case 7:
1659 if (!device->info.is_haswell)
1660 result = gen7_init_device_state(device);
1661 else
1662 result = gen75_init_device_state(device);
1663 break;
1664 case 8:
1665 result = gen8_init_device_state(device);
1666 break;
1667 case 9:
1668 result = gen9_init_device_state(device);
1669 break;
1670 case 10:
1671 result = gen10_init_device_state(device);
1672 break;
1673 case 11:
1674 result = gen11_init_device_state(device);
1675 break;
1676 default:
1677 /* Shouldn't get here as we don't create physical devices for any other
1678 * gens. */
1679 unreachable("unhandled gen");
1680 }
1681 if (result != VK_SUCCESS)
1682 goto fail_workaround_bo;
1683
1684 anv_device_init_blorp(device);
1685
1686 anv_device_init_border_colors(device);
1687
1688 *pDevice = anv_device_to_handle(device);
1689
1690 return VK_SUCCESS;
1691
1692 fail_workaround_bo:
1693 anv_queue_finish(&device->queue);
1694 anv_scratch_pool_finish(device, &device->scratch_pool);
1695 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1696 anv_gem_close(device, device->workaround_bo.gem_handle);
1697 fail_surface_state_pool:
1698 anv_state_pool_finish(&device->surface_state_pool);
1699 fail_instruction_state_pool:
1700 anv_state_pool_finish(&device->instruction_state_pool);
1701 fail_dynamic_state_pool:
1702 anv_state_pool_finish(&device->dynamic_state_pool);
1703 fail_bo_cache:
1704 anv_bo_cache_finish(&device->bo_cache);
1705 fail_batch_bo_pool:
1706 anv_bo_pool_finish(&device->batch_bo_pool);
1707 pthread_cond_destroy(&device->queue_submit);
1708 fail_mutex:
1709 pthread_mutex_destroy(&device->mutex);
1710 fail_context_id:
1711 anv_gem_destroy_context(device, device->context_id);
1712 fail_fd:
1713 close(device->fd);
1714 fail_device:
1715 vk_free(&device->alloc, device);
1716
1717 return result;
1718 }
1719
1720 void anv_DestroyDevice(
1721 VkDevice _device,
1722 const VkAllocationCallbacks* pAllocator)
1723 {
1724 ANV_FROM_HANDLE(anv_device, device, _device);
1725
1726 if (!device)
1727 return;
1728
1729 anv_device_finish_blorp(device);
1730
1731 anv_queue_finish(&device->queue);
1732
1733 #ifdef HAVE_VALGRIND
1734 /* We only need to free these to prevent valgrind errors. The backing
1735 * BO will go away in a couple of lines so we don't actually leak.
1736 */
1737 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1738 #endif
1739
1740 anv_scratch_pool_finish(device, &device->scratch_pool);
1741
1742 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1743 anv_gem_close(device, device->workaround_bo.gem_handle);
1744
1745 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
1746 if (device->info.gen >= 10)
1747 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
1748
1749 anv_state_pool_finish(&device->surface_state_pool);
1750 anv_state_pool_finish(&device->instruction_state_pool);
1751 anv_state_pool_finish(&device->dynamic_state_pool);
1752
1753 anv_bo_cache_finish(&device->bo_cache);
1754
1755 anv_bo_pool_finish(&device->batch_bo_pool);
1756
1757 pthread_cond_destroy(&device->queue_submit);
1758 pthread_mutex_destroy(&device->mutex);
1759
1760 anv_gem_destroy_context(device, device->context_id);
1761
1762 close(device->fd);
1763
1764 vk_free(&device->alloc, device);
1765 }
1766
1767 VkResult anv_EnumerateInstanceLayerProperties(
1768 uint32_t* pPropertyCount,
1769 VkLayerProperties* pProperties)
1770 {
1771 if (pProperties == NULL) {
1772 *pPropertyCount = 0;
1773 return VK_SUCCESS;
1774 }
1775
1776 /* None supported at this time */
1777 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1778 }
1779
1780 VkResult anv_EnumerateDeviceLayerProperties(
1781 VkPhysicalDevice physicalDevice,
1782 uint32_t* pPropertyCount,
1783 VkLayerProperties* pProperties)
1784 {
1785 if (pProperties == NULL) {
1786 *pPropertyCount = 0;
1787 return VK_SUCCESS;
1788 }
1789
1790 /* None supported at this time */
1791 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1792 }
1793
1794 void anv_GetDeviceQueue(
1795 VkDevice _device,
1796 uint32_t queueNodeIndex,
1797 uint32_t queueIndex,
1798 VkQueue* pQueue)
1799 {
1800 ANV_FROM_HANDLE(anv_device, device, _device);
1801
1802 assert(queueIndex == 0);
1803
1804 *pQueue = anv_queue_to_handle(&device->queue);
1805 }
1806
1807 void anv_GetDeviceQueue2(
1808 VkDevice _device,
1809 const VkDeviceQueueInfo2* pQueueInfo,
1810 VkQueue* pQueue)
1811 {
1812 ANV_FROM_HANDLE(anv_device, device, _device);
1813
1814 assert(pQueueInfo->queueIndex == 0);
1815
1816 if (pQueueInfo->flags == device->queue.flags)
1817 *pQueue = anv_queue_to_handle(&device->queue);
1818 else
1819 *pQueue = NULL;
1820 }
1821
1822 VkResult
1823 anv_device_query_status(struct anv_device *device)
1824 {
1825 /* This isn't likely as most of the callers of this function already check
1826 * for it. However, it doesn't hurt to check and it potentially lets us
1827 * avoid an ioctl.
1828 */
1829 if (unlikely(device->lost))
1830 return VK_ERROR_DEVICE_LOST;
1831
1832 uint32_t active, pending;
1833 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
1834 if (ret == -1) {
1835 /* We don't know the real error. */
1836 device->lost = true;
1837 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1838 "get_reset_stats failed: %m");
1839 }
1840
1841 if (active) {
1842 device->lost = true;
1843 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1844 "GPU hung on one of our command buffers");
1845 } else if (pending) {
1846 device->lost = true;
1847 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1848 "GPU hung with commands in-flight");
1849 }
1850
1851 return VK_SUCCESS;
1852 }
1853
1854 VkResult
1855 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
1856 {
1857 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
1858 * Other usages of the BO (such as on different hardware) will not be
1859 * flagged as "busy" by this ioctl. Use with care.
1860 */
1861 int ret = anv_gem_busy(device, bo->gem_handle);
1862 if (ret == 1) {
1863 return VK_NOT_READY;
1864 } else if (ret == -1) {
1865 /* We don't know the real error. */
1866 device->lost = true;
1867 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1868 "gem wait failed: %m");
1869 }
1870
1871 /* Query for device status after the busy call. If the BO we're checking
1872 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
1873 * client because it clearly doesn't have valid data. Yes, this most
1874 * likely means an ioctl, but we just did an ioctl to query the busy status
1875 * so it's no great loss.
1876 */
1877 return anv_device_query_status(device);
1878 }
1879
1880 VkResult
1881 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1882 int64_t timeout)
1883 {
1884 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
1885 if (ret == -1 && errno == ETIME) {
1886 return VK_TIMEOUT;
1887 } else if (ret == -1) {
1888 /* We don't know the real error. */
1889 device->lost = true;
1890 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1891 "gem wait failed: %m");
1892 }
1893
1894 /* Query for device status after the wait. If the BO we're waiting on got
1895 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
1896 * because it clearly doesn't have valid data. Yes, this most likely means
1897 * an ioctl, but we just did an ioctl to wait so it's no great loss.
1898 */
1899 return anv_device_query_status(device);
1900 }
1901
1902 VkResult anv_DeviceWaitIdle(
1903 VkDevice _device)
1904 {
1905 ANV_FROM_HANDLE(anv_device, device, _device);
1906 if (unlikely(device->lost))
1907 return VK_ERROR_DEVICE_LOST;
1908
1909 struct anv_batch batch;
1910
1911 uint32_t cmds[8];
1912 batch.start = batch.next = cmds;
1913 batch.end = (void *) cmds + sizeof(cmds);
1914
1915 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1916 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1917
1918 return anv_device_submit_simple_batch(device, &batch);
1919 }
1920
1921 bool
1922 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
1923 {
1924 if (!(bo->flags & EXEC_OBJECT_PINNED))
1925 return true;
1926
1927 pthread_mutex_lock(&device->vma_mutex);
1928
1929 bo->offset = 0;
1930
1931 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
1932 device->vma_hi_available >= bo->size) {
1933 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
1934 if (addr) {
1935 bo->offset = gen_canonical_address(addr);
1936 assert(addr == gen_48b_address(bo->offset));
1937 device->vma_hi_available -= bo->size;
1938 }
1939 }
1940
1941 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
1942 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
1943 if (addr) {
1944 bo->offset = gen_canonical_address(addr);
1945 assert(addr == gen_48b_address(bo->offset));
1946 device->vma_lo_available -= bo->size;
1947 }
1948 }
1949
1950 pthread_mutex_unlock(&device->vma_mutex);
1951
1952 return bo->offset != 0;
1953 }
1954
1955 void
1956 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
1957 {
1958 if (!(bo->flags & EXEC_OBJECT_PINNED))
1959 return;
1960
1961 const uint64_t addr_48b = gen_48b_address(bo->offset);
1962
1963 pthread_mutex_lock(&device->vma_mutex);
1964
1965 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
1966 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
1967 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
1968 device->vma_lo_available += bo->size;
1969 } else {
1970 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS &&
1971 addr_48b <= HIGH_HEAP_MAX_ADDRESS);
1972 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
1973 device->vma_hi_available += bo->size;
1974 }
1975
1976 pthread_mutex_unlock(&device->vma_mutex);
1977
1978 bo->offset = 0;
1979 }
1980
1981 VkResult
1982 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1983 {
1984 uint32_t gem_handle = anv_gem_create(device, size);
1985 if (!gem_handle)
1986 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1987
1988 anv_bo_init(bo, gem_handle, size);
1989
1990 return VK_SUCCESS;
1991 }
1992
1993 VkResult anv_AllocateMemory(
1994 VkDevice _device,
1995 const VkMemoryAllocateInfo* pAllocateInfo,
1996 const VkAllocationCallbacks* pAllocator,
1997 VkDeviceMemory* pMem)
1998 {
1999 ANV_FROM_HANDLE(anv_device, device, _device);
2000 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2001 struct anv_device_memory *mem;
2002 VkResult result = VK_SUCCESS;
2003
2004 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2005
2006 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2007 assert(pAllocateInfo->allocationSize > 0);
2008
2009 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2010 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2011
2012 /* FINISHME: Fail if allocation request exceeds heap size. */
2013
2014 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2015 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2016 if (mem == NULL)
2017 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2018
2019 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2020 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2021 mem->map = NULL;
2022 mem->map_size = 0;
2023
2024 const VkImportMemoryFdInfoKHR *fd_info =
2025 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2026
2027 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2028 * ignored.
2029 */
2030 if (fd_info && fd_info->handleType) {
2031 /* At the moment, we support only the below handle types. */
2032 assert(fd_info->handleType ==
2033 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2034 fd_info->handleType ==
2035 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2036
2037 result = anv_bo_cache_import(device, &device->bo_cache,
2038 fd_info->fd, &mem->bo);
2039 if (result != VK_SUCCESS)
2040 goto fail;
2041
2042 VkDeviceSize aligned_alloc_size =
2043 align_u64(pAllocateInfo->allocationSize, 4096);
2044
2045 /* For security purposes, we reject importing the bo if it's smaller
2046 * than the requested allocation size. This prevents a malicious client
2047 * from passing a buffer to a trusted client, lying about the size, and
2048 * telling the trusted client to try and texture from an image that goes
2049 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2050 * in the trusted client. The trusted client can protect itself against
2051 * this sort of attack but only if it can trust the buffer size.
2052 */
2053 if (mem->bo->size < aligned_alloc_size) {
2054 result = vk_errorf(device->instance, device,
2055 VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
2056 "aligned allocationSize too large for "
2057 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR: "
2058 "%"PRIu64"B > %"PRIu64"B",
2059 aligned_alloc_size, mem->bo->size);
2060 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2061 goto fail;
2062 }
2063
2064 /* From the Vulkan spec:
2065 *
2066 * "Importing memory from a file descriptor transfers ownership of
2067 * the file descriptor from the application to the Vulkan
2068 * implementation. The application must not perform any operations on
2069 * the file descriptor after a successful import."
2070 *
2071 * If the import fails, we leave the file descriptor open.
2072 */
2073 close(fd_info->fd);
2074 } else {
2075 result = anv_bo_cache_alloc(device, &device->bo_cache,
2076 pAllocateInfo->allocationSize,
2077 &mem->bo);
2078 if (result != VK_SUCCESS)
2079 goto fail;
2080
2081 const VkMemoryDedicatedAllocateInfoKHR *dedicated_info =
2082 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO_KHR);
2083 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2084 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2085
2086 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2087 * the BO. In this case, we have a dedicated allocation.
2088 */
2089 if (image->needs_set_tiling) {
2090 const uint32_t i915_tiling =
2091 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2092 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2093 image->planes[0].surface.isl.row_pitch,
2094 i915_tiling);
2095 if (ret) {
2096 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2097 return vk_errorf(device->instance, NULL,
2098 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2099 "failed to set BO tiling: %m");
2100 }
2101 }
2102 }
2103 }
2104
2105 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2106 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2107 mem->bo->flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2108
2109 const struct wsi_memory_allocate_info *wsi_info =
2110 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2111 if (wsi_info && wsi_info->implicit_sync) {
2112 /* We need to set the WRITE flag on window system buffers so that GEM
2113 * will know we're writing to them and synchronize uses on other rings
2114 * (eg if the display server uses the blitter ring).
2115 */
2116 mem->bo->flags |= EXEC_OBJECT_WRITE;
2117 } else if (pdevice->has_exec_async) {
2118 mem->bo->flags |= EXEC_OBJECT_ASYNC;
2119 }
2120
2121 *pMem = anv_device_memory_to_handle(mem);
2122
2123 return VK_SUCCESS;
2124
2125 fail:
2126 vk_free2(&device->alloc, pAllocator, mem);
2127
2128 return result;
2129 }
2130
2131 VkResult anv_GetMemoryFdKHR(
2132 VkDevice device_h,
2133 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2134 int* pFd)
2135 {
2136 ANV_FROM_HANDLE(anv_device, dev, device_h);
2137 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2138
2139 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2140
2141 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2142 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2143
2144 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2145 }
2146
2147 VkResult anv_GetMemoryFdPropertiesKHR(
2148 VkDevice _device,
2149 VkExternalMemoryHandleTypeFlagBitsKHR handleType,
2150 int fd,
2151 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2152 {
2153 ANV_FROM_HANDLE(anv_device, device, _device);
2154 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2155
2156 switch (handleType) {
2157 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2158 /* dma-buf can be imported as any memory type */
2159 pMemoryFdProperties->memoryTypeBits =
2160 (1 << pdevice->memory.type_count) - 1;
2161 return VK_SUCCESS;
2162
2163 default:
2164 /* The valid usage section for this function says:
2165 *
2166 * "handleType must not be one of the handle types defined as
2167 * opaque."
2168 *
2169 * So opaque handle types fall into the default "unsupported" case.
2170 */
2171 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2172 }
2173 }
2174
2175 void anv_FreeMemory(
2176 VkDevice _device,
2177 VkDeviceMemory _mem,
2178 const VkAllocationCallbacks* pAllocator)
2179 {
2180 ANV_FROM_HANDLE(anv_device, device, _device);
2181 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2182
2183 if (mem == NULL)
2184 return;
2185
2186 if (mem->map)
2187 anv_UnmapMemory(_device, _mem);
2188
2189 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2190
2191 vk_free2(&device->alloc, pAllocator, mem);
2192 }
2193
2194 VkResult anv_MapMemory(
2195 VkDevice _device,
2196 VkDeviceMemory _memory,
2197 VkDeviceSize offset,
2198 VkDeviceSize size,
2199 VkMemoryMapFlags flags,
2200 void** ppData)
2201 {
2202 ANV_FROM_HANDLE(anv_device, device, _device);
2203 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2204
2205 if (mem == NULL) {
2206 *ppData = NULL;
2207 return VK_SUCCESS;
2208 }
2209
2210 if (size == VK_WHOLE_SIZE)
2211 size = mem->bo->size - offset;
2212
2213 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
2214 *
2215 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
2216 * assert(size != 0);
2217 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
2218 * equal to the size of the memory minus offset
2219 */
2220 assert(size > 0);
2221 assert(offset + size <= mem->bo->size);
2222
2223 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
2224 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
2225 * at a time is valid. We could just mmap up front and return an offset
2226 * pointer here, but that may exhaust virtual memory on 32 bit
2227 * userspace. */
2228
2229 uint32_t gem_flags = 0;
2230
2231 if (!device->info.has_llc &&
2232 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
2233 gem_flags |= I915_MMAP_WC;
2234
2235 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
2236 uint64_t map_offset = offset & ~4095ull;
2237 assert(offset >= map_offset);
2238 uint64_t map_size = (offset + size) - map_offset;
2239
2240 /* Let's map whole pages */
2241 map_size = align_u64(map_size, 4096);
2242
2243 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
2244 map_offset, map_size, gem_flags);
2245 if (map == MAP_FAILED)
2246 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2247
2248 mem->map = map;
2249 mem->map_size = map_size;
2250
2251 *ppData = mem->map + (offset - map_offset);
2252
2253 return VK_SUCCESS;
2254 }
2255
2256 void anv_UnmapMemory(
2257 VkDevice _device,
2258 VkDeviceMemory _memory)
2259 {
2260 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2261
2262 if (mem == NULL)
2263 return;
2264
2265 anv_gem_munmap(mem->map, mem->map_size);
2266
2267 mem->map = NULL;
2268 mem->map_size = 0;
2269 }
2270
2271 static void
2272 clflush_mapped_ranges(struct anv_device *device,
2273 uint32_t count,
2274 const VkMappedMemoryRange *ranges)
2275 {
2276 for (uint32_t i = 0; i < count; i++) {
2277 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
2278 if (ranges[i].offset >= mem->map_size)
2279 continue;
2280
2281 gen_clflush_range(mem->map + ranges[i].offset,
2282 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
2283 }
2284 }
2285
2286 VkResult anv_FlushMappedMemoryRanges(
2287 VkDevice _device,
2288 uint32_t memoryRangeCount,
2289 const VkMappedMemoryRange* pMemoryRanges)
2290 {
2291 ANV_FROM_HANDLE(anv_device, device, _device);
2292
2293 if (device->info.has_llc)
2294 return VK_SUCCESS;
2295
2296 /* Make sure the writes we're flushing have landed. */
2297 __builtin_ia32_mfence();
2298
2299 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2300
2301 return VK_SUCCESS;
2302 }
2303
2304 VkResult anv_InvalidateMappedMemoryRanges(
2305 VkDevice _device,
2306 uint32_t memoryRangeCount,
2307 const VkMappedMemoryRange* pMemoryRanges)
2308 {
2309 ANV_FROM_HANDLE(anv_device, device, _device);
2310
2311 if (device->info.has_llc)
2312 return VK_SUCCESS;
2313
2314 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2315
2316 /* Make sure no reads get moved up above the invalidate. */
2317 __builtin_ia32_mfence();
2318
2319 return VK_SUCCESS;
2320 }
2321
2322 void anv_GetBufferMemoryRequirements(
2323 VkDevice _device,
2324 VkBuffer _buffer,
2325 VkMemoryRequirements* pMemoryRequirements)
2326 {
2327 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2328 ANV_FROM_HANDLE(anv_device, device, _device);
2329 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2330
2331 /* The Vulkan spec (git aaed022) says:
2332 *
2333 * memoryTypeBits is a bitfield and contains one bit set for every
2334 * supported memory type for the resource. The bit `1<<i` is set if and
2335 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2336 * structure for the physical device is supported.
2337 */
2338 uint32_t memory_types = 0;
2339 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
2340 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
2341 if ((valid_usage & buffer->usage) == buffer->usage)
2342 memory_types |= (1u << i);
2343 }
2344
2345 /* Base alignment requirement of a cache line */
2346 uint32_t alignment = 16;
2347
2348 /* We need an alignment of 32 for pushing UBOs */
2349 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
2350 alignment = MAX2(alignment, 32);
2351
2352 pMemoryRequirements->size = buffer->size;
2353 pMemoryRequirements->alignment = alignment;
2354
2355 /* Storage and Uniform buffers should have their size aligned to
2356 * 32-bits to avoid boundary checks when last DWord is not complete.
2357 * This would ensure that not internal padding would be needed for
2358 * 16-bit types.
2359 */
2360 if (device->robust_buffer_access &&
2361 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
2362 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
2363 pMemoryRequirements->size = align_u64(buffer->size, 4);
2364
2365 pMemoryRequirements->memoryTypeBits = memory_types;
2366 }
2367
2368 void anv_GetBufferMemoryRequirements2(
2369 VkDevice _device,
2370 const VkBufferMemoryRequirementsInfo2* pInfo,
2371 VkMemoryRequirements2* pMemoryRequirements)
2372 {
2373 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
2374 &pMemoryRequirements->memoryRequirements);
2375
2376 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2377 switch (ext->sType) {
2378 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2379 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2380 requirements->prefersDedicatedAllocation = VK_FALSE;
2381 requirements->requiresDedicatedAllocation = VK_FALSE;
2382 break;
2383 }
2384
2385 default:
2386 anv_debug_ignored_stype(ext->sType);
2387 break;
2388 }
2389 }
2390 }
2391
2392 void anv_GetImageMemoryRequirements(
2393 VkDevice _device,
2394 VkImage _image,
2395 VkMemoryRequirements* pMemoryRequirements)
2396 {
2397 ANV_FROM_HANDLE(anv_image, image, _image);
2398 ANV_FROM_HANDLE(anv_device, device, _device);
2399 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2400
2401 /* The Vulkan spec (git aaed022) says:
2402 *
2403 * memoryTypeBits is a bitfield and contains one bit set for every
2404 * supported memory type for the resource. The bit `1<<i` is set if and
2405 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2406 * structure for the physical device is supported.
2407 *
2408 * All types are currently supported for images.
2409 */
2410 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
2411
2412 pMemoryRequirements->size = image->size;
2413 pMemoryRequirements->alignment = image->alignment;
2414 pMemoryRequirements->memoryTypeBits = memory_types;
2415 }
2416
2417 void anv_GetImageMemoryRequirements2(
2418 VkDevice _device,
2419 const VkImageMemoryRequirementsInfo2* pInfo,
2420 VkMemoryRequirements2* pMemoryRequirements)
2421 {
2422 ANV_FROM_HANDLE(anv_device, device, _device);
2423 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
2424
2425 anv_GetImageMemoryRequirements(_device, pInfo->image,
2426 &pMemoryRequirements->memoryRequirements);
2427
2428 vk_foreach_struct_const(ext, pInfo->pNext) {
2429 switch (ext->sType) {
2430 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
2431 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2432 const VkImagePlaneMemoryRequirementsInfoKHR *plane_reqs =
2433 (const VkImagePlaneMemoryRequirementsInfoKHR *) ext;
2434 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
2435 plane_reqs->planeAspect);
2436
2437 assert(image->planes[plane].offset == 0);
2438
2439 /* The Vulkan spec (git aaed022) says:
2440 *
2441 * memoryTypeBits is a bitfield and contains one bit set for every
2442 * supported memory type for the resource. The bit `1<<i` is set
2443 * if and only if the memory type `i` in the
2444 * VkPhysicalDeviceMemoryProperties structure for the physical
2445 * device is supported.
2446 *
2447 * All types are currently supported for images.
2448 */
2449 pMemoryRequirements->memoryRequirements.memoryTypeBits =
2450 (1ull << pdevice->memory.type_count) - 1;
2451
2452 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
2453 pMemoryRequirements->memoryRequirements.alignment =
2454 image->planes[plane].alignment;
2455 break;
2456 }
2457
2458 default:
2459 anv_debug_ignored_stype(ext->sType);
2460 break;
2461 }
2462 }
2463
2464 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2465 switch (ext->sType) {
2466 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2467 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2468 if (image->needs_set_tiling) {
2469 /* If we need to set the tiling for external consumers, we need a
2470 * dedicated allocation.
2471 *
2472 * See also anv_AllocateMemory.
2473 */
2474 requirements->prefersDedicatedAllocation = VK_TRUE;
2475 requirements->requiresDedicatedAllocation = VK_TRUE;
2476 } else {
2477 requirements->prefersDedicatedAllocation = VK_FALSE;
2478 requirements->requiresDedicatedAllocation = VK_FALSE;
2479 }
2480 break;
2481 }
2482
2483 default:
2484 anv_debug_ignored_stype(ext->sType);
2485 break;
2486 }
2487 }
2488 }
2489
2490 void anv_GetImageSparseMemoryRequirements(
2491 VkDevice device,
2492 VkImage image,
2493 uint32_t* pSparseMemoryRequirementCount,
2494 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
2495 {
2496 *pSparseMemoryRequirementCount = 0;
2497 }
2498
2499 void anv_GetImageSparseMemoryRequirements2(
2500 VkDevice device,
2501 const VkImageSparseMemoryRequirementsInfo2* pInfo,
2502 uint32_t* pSparseMemoryRequirementCount,
2503 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
2504 {
2505 *pSparseMemoryRequirementCount = 0;
2506 }
2507
2508 void anv_GetDeviceMemoryCommitment(
2509 VkDevice device,
2510 VkDeviceMemory memory,
2511 VkDeviceSize* pCommittedMemoryInBytes)
2512 {
2513 *pCommittedMemoryInBytes = 0;
2514 }
2515
2516 static void
2517 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
2518 {
2519 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
2520 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
2521
2522 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
2523
2524 if (mem) {
2525 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
2526 buffer->address = (struct anv_address) {
2527 .bo = mem->bo,
2528 .offset = pBindInfo->memoryOffset,
2529 };
2530 } else {
2531 buffer->address = ANV_NULL_ADDRESS;
2532 }
2533 }
2534
2535 VkResult anv_BindBufferMemory(
2536 VkDevice device,
2537 VkBuffer buffer,
2538 VkDeviceMemory memory,
2539 VkDeviceSize memoryOffset)
2540 {
2541 anv_bind_buffer_memory(
2542 &(VkBindBufferMemoryInfo) {
2543 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
2544 .buffer = buffer,
2545 .memory = memory,
2546 .memoryOffset = memoryOffset,
2547 });
2548
2549 return VK_SUCCESS;
2550 }
2551
2552 VkResult anv_BindBufferMemory2(
2553 VkDevice device,
2554 uint32_t bindInfoCount,
2555 const VkBindBufferMemoryInfo* pBindInfos)
2556 {
2557 for (uint32_t i = 0; i < bindInfoCount; i++)
2558 anv_bind_buffer_memory(&pBindInfos[i]);
2559
2560 return VK_SUCCESS;
2561 }
2562
2563 VkResult anv_QueueBindSparse(
2564 VkQueue _queue,
2565 uint32_t bindInfoCount,
2566 const VkBindSparseInfo* pBindInfo,
2567 VkFence fence)
2568 {
2569 ANV_FROM_HANDLE(anv_queue, queue, _queue);
2570 if (unlikely(queue->device->lost))
2571 return VK_ERROR_DEVICE_LOST;
2572
2573 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2574 }
2575
2576 // Event functions
2577
2578 VkResult anv_CreateEvent(
2579 VkDevice _device,
2580 const VkEventCreateInfo* pCreateInfo,
2581 const VkAllocationCallbacks* pAllocator,
2582 VkEvent* pEvent)
2583 {
2584 ANV_FROM_HANDLE(anv_device, device, _device);
2585 struct anv_state state;
2586 struct anv_event *event;
2587
2588 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
2589
2590 state = anv_state_pool_alloc(&device->dynamic_state_pool,
2591 sizeof(*event), 8);
2592 event = state.map;
2593 event->state = state;
2594 event->semaphore = VK_EVENT_RESET;
2595
2596 if (!device->info.has_llc) {
2597 /* Make sure the writes we're flushing have landed. */
2598 __builtin_ia32_mfence();
2599 __builtin_ia32_clflush(event);
2600 }
2601
2602 *pEvent = anv_event_to_handle(event);
2603
2604 return VK_SUCCESS;
2605 }
2606
2607 void anv_DestroyEvent(
2608 VkDevice _device,
2609 VkEvent _event,
2610 const VkAllocationCallbacks* pAllocator)
2611 {
2612 ANV_FROM_HANDLE(anv_device, device, _device);
2613 ANV_FROM_HANDLE(anv_event, event, _event);
2614
2615 if (!event)
2616 return;
2617
2618 anv_state_pool_free(&device->dynamic_state_pool, event->state);
2619 }
2620
2621 VkResult anv_GetEventStatus(
2622 VkDevice _device,
2623 VkEvent _event)
2624 {
2625 ANV_FROM_HANDLE(anv_device, device, _device);
2626 ANV_FROM_HANDLE(anv_event, event, _event);
2627
2628 if (unlikely(device->lost))
2629 return VK_ERROR_DEVICE_LOST;
2630
2631 if (!device->info.has_llc) {
2632 /* Invalidate read cache before reading event written by GPU. */
2633 __builtin_ia32_clflush(event);
2634 __builtin_ia32_mfence();
2635
2636 }
2637
2638 return event->semaphore;
2639 }
2640
2641 VkResult anv_SetEvent(
2642 VkDevice _device,
2643 VkEvent _event)
2644 {
2645 ANV_FROM_HANDLE(anv_device, device, _device);
2646 ANV_FROM_HANDLE(anv_event, event, _event);
2647
2648 event->semaphore = VK_EVENT_SET;
2649
2650 if (!device->info.has_llc) {
2651 /* Make sure the writes we're flushing have landed. */
2652 __builtin_ia32_mfence();
2653 __builtin_ia32_clflush(event);
2654 }
2655
2656 return VK_SUCCESS;
2657 }
2658
2659 VkResult anv_ResetEvent(
2660 VkDevice _device,
2661 VkEvent _event)
2662 {
2663 ANV_FROM_HANDLE(anv_device, device, _device);
2664 ANV_FROM_HANDLE(anv_event, event, _event);
2665
2666 event->semaphore = VK_EVENT_RESET;
2667
2668 if (!device->info.has_llc) {
2669 /* Make sure the writes we're flushing have landed. */
2670 __builtin_ia32_mfence();
2671 __builtin_ia32_clflush(event);
2672 }
2673
2674 return VK_SUCCESS;
2675 }
2676
2677 // Buffer functions
2678
2679 VkResult anv_CreateBuffer(
2680 VkDevice _device,
2681 const VkBufferCreateInfo* pCreateInfo,
2682 const VkAllocationCallbacks* pAllocator,
2683 VkBuffer* pBuffer)
2684 {
2685 ANV_FROM_HANDLE(anv_device, device, _device);
2686 struct anv_buffer *buffer;
2687
2688 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
2689
2690 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
2691 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2692 if (buffer == NULL)
2693 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2694
2695 buffer->size = pCreateInfo->size;
2696 buffer->usage = pCreateInfo->usage;
2697 buffer->address = ANV_NULL_ADDRESS;
2698
2699 *pBuffer = anv_buffer_to_handle(buffer);
2700
2701 return VK_SUCCESS;
2702 }
2703
2704 void anv_DestroyBuffer(
2705 VkDevice _device,
2706 VkBuffer _buffer,
2707 const VkAllocationCallbacks* pAllocator)
2708 {
2709 ANV_FROM_HANDLE(anv_device, device, _device);
2710 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2711
2712 if (!buffer)
2713 return;
2714
2715 vk_free2(&device->alloc, pAllocator, buffer);
2716 }
2717
2718 void
2719 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
2720 enum isl_format format,
2721 struct anv_address address,
2722 uint32_t range, uint32_t stride)
2723 {
2724 isl_buffer_fill_state(&device->isl_dev, state.map,
2725 .address = anv_address_physical(address),
2726 .mocs = device->default_mocs,
2727 .size = range,
2728 .format = format,
2729 .stride = stride);
2730
2731 anv_state_flush(device, state);
2732 }
2733
2734 void anv_DestroySampler(
2735 VkDevice _device,
2736 VkSampler _sampler,
2737 const VkAllocationCallbacks* pAllocator)
2738 {
2739 ANV_FROM_HANDLE(anv_device, device, _device);
2740 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
2741
2742 if (!sampler)
2743 return;
2744
2745 vk_free2(&device->alloc, pAllocator, sampler);
2746 }
2747
2748 VkResult anv_CreateFramebuffer(
2749 VkDevice _device,
2750 const VkFramebufferCreateInfo* pCreateInfo,
2751 const VkAllocationCallbacks* pAllocator,
2752 VkFramebuffer* pFramebuffer)
2753 {
2754 ANV_FROM_HANDLE(anv_device, device, _device);
2755 struct anv_framebuffer *framebuffer;
2756
2757 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2758
2759 size_t size = sizeof(*framebuffer) +
2760 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
2761 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
2762 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2763 if (framebuffer == NULL)
2764 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2765
2766 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2767 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2768 VkImageView _iview = pCreateInfo->pAttachments[i];
2769 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2770 }
2771
2772 framebuffer->width = pCreateInfo->width;
2773 framebuffer->height = pCreateInfo->height;
2774 framebuffer->layers = pCreateInfo->layers;
2775
2776 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2777
2778 return VK_SUCCESS;
2779 }
2780
2781 void anv_DestroyFramebuffer(
2782 VkDevice _device,
2783 VkFramebuffer _fb,
2784 const VkAllocationCallbacks* pAllocator)
2785 {
2786 ANV_FROM_HANDLE(anv_device, device, _device);
2787 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2788
2789 if (!fb)
2790 return;
2791
2792 vk_free2(&device->alloc, pAllocator, fb);
2793 }
2794
2795 /* vk_icd.h does not declare this function, so we declare it here to
2796 * suppress Wmissing-prototypes.
2797 */
2798 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2799 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
2800
2801 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2802 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
2803 {
2804 /* For the full details on loader interface versioning, see
2805 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
2806 * What follows is a condensed summary, to help you navigate the large and
2807 * confusing official doc.
2808 *
2809 * - Loader interface v0 is incompatible with later versions. We don't
2810 * support it.
2811 *
2812 * - In loader interface v1:
2813 * - The first ICD entrypoint called by the loader is
2814 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
2815 * entrypoint.
2816 * - The ICD must statically expose no other Vulkan symbol unless it is
2817 * linked with -Bsymbolic.
2818 * - Each dispatchable Vulkan handle created by the ICD must be
2819 * a pointer to a struct whose first member is VK_LOADER_DATA. The
2820 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
2821 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
2822 * vkDestroySurfaceKHR(). The ICD must be capable of working with
2823 * such loader-managed surfaces.
2824 *
2825 * - Loader interface v2 differs from v1 in:
2826 * - The first ICD entrypoint called by the loader is
2827 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
2828 * statically expose this entrypoint.
2829 *
2830 * - Loader interface v3 differs from v2 in:
2831 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
2832 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
2833 * because the loader no longer does so.
2834 */
2835 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
2836 return VK_SUCCESS;
2837 }