anv: Take a device parameter in anv_state_flush
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <unistd.h>
29 #include <fcntl.h>
30
31 #include "anv_private.h"
32 #include "util/strtod.h"
33 #include "util/debug.h"
34 #include "util/build_id.h"
35 #include "util/vk_util.h"
36
37 #include "genxml/gen7_pack.h"
38
39 static void
40 compiler_debug_log(void *data, const char *fmt, ...)
41 { }
42
43 static void
44 compiler_perf_log(void *data, const char *fmt, ...)
45 {
46 va_list args;
47 va_start(args, fmt);
48
49 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
50 vfprintf(stderr, fmt, args);
51
52 va_end(args);
53 }
54
55 static bool
56 anv_device_get_cache_uuid(void *uuid)
57 {
58 const struct build_id_note *note = build_id_find_nhdr("libvulkan_intel.so");
59 if (!note)
60 return false;
61
62 unsigned len = build_id_length(note);
63 if (len < VK_UUID_SIZE)
64 return false;
65
66 build_id_read(note, uuid, VK_UUID_SIZE);
67 return true;
68 }
69
70 static VkResult
71 anv_physical_device_init(struct anv_physical_device *device,
72 struct anv_instance *instance,
73 const char *path)
74 {
75 VkResult result;
76 int fd;
77
78 fd = open(path, O_RDWR | O_CLOEXEC);
79 if (fd < 0)
80 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
81
82 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
83 device->instance = instance;
84
85 assert(strlen(path) < ARRAY_SIZE(device->path));
86 strncpy(device->path, path, ARRAY_SIZE(device->path));
87
88 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
89 if (!device->chipset_id) {
90 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
91 goto fail;
92 }
93
94 device->name = gen_get_device_name(device->chipset_id);
95 if (!gen_get_device_info(device->chipset_id, &device->info)) {
96 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
97 goto fail;
98 }
99
100 if (device->info.is_haswell) {
101 fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
102 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
103 fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
104 } else if (device->info.gen == 7 && device->info.is_baytrail) {
105 fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
106 } else if (device->info.gen >= 8) {
107 /* Broadwell, Cherryview, Skylake, Broxton, Kabylake is as fully
108 * supported as anything */
109 } else {
110 result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
111 "Vulkan not yet supported on %s", device->name);
112 goto fail;
113 }
114
115 device->cmd_parser_version = -1;
116 if (device->info.gen == 7) {
117 device->cmd_parser_version =
118 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
119 if (device->cmd_parser_version == -1) {
120 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
121 "failed to get command parser version");
122 goto fail;
123 }
124 }
125
126 if (anv_gem_get_aperture(fd, &device->aperture_size) == -1) {
127 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
128 "failed to get aperture size: %m");
129 goto fail;
130 }
131
132 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
133 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
134 "kernel missing gem wait");
135 goto fail;
136 }
137
138 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
139 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
140 "kernel missing execbuf2");
141 goto fail;
142 }
143
144 if (!device->info.has_llc &&
145 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
146 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
147 "kernel missing wc mmap");
148 goto fail;
149 }
150
151 if (!anv_device_get_cache_uuid(device->uuid)) {
152 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
153 "cannot generate UUID");
154 goto fail;
155 }
156 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
157
158 /* GENs prior to 8 do not support EU/Subslice info */
159 if (device->info.gen >= 8) {
160 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
161 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
162
163 /* Without this information, we cannot get the right Braswell
164 * brandstrings, and we have to use conservative numbers for GPGPU on
165 * many platforms, but otherwise, things will just work.
166 */
167 if (device->subslice_total < 1 || device->eu_total < 1) {
168 fprintf(stderr, "WARNING: Kernel 4.1 required to properly"
169 " query GPU properties.\n");
170 }
171 } else if (device->info.gen == 7) {
172 device->subslice_total = 1 << (device->info.gt - 1);
173 }
174
175 if (device->info.is_cherryview &&
176 device->subslice_total > 0 && device->eu_total > 0) {
177 /* Logical CS threads = EUs per subslice * 7 threads per EU */
178 uint32_t max_cs_threads = device->eu_total / device->subslice_total * 7;
179
180 /* Fuse configurations may give more threads than expected, never less. */
181 if (max_cs_threads > device->info.max_cs_threads)
182 device->info.max_cs_threads = max_cs_threads;
183 }
184
185 brw_process_intel_debug_variable();
186
187 device->compiler = brw_compiler_create(NULL, &device->info);
188 if (device->compiler == NULL) {
189 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
190 goto fail;
191 }
192 device->compiler->shader_debug_log = compiler_debug_log;
193 device->compiler->shader_perf_log = compiler_perf_log;
194
195 result = anv_init_wsi(device);
196 if (result != VK_SUCCESS) {
197 ralloc_free(device->compiler);
198 goto fail;
199 }
200
201 isl_device_init(&device->isl_dev, &device->info, swizzled);
202
203 device->local_fd = fd;
204 return VK_SUCCESS;
205
206 fail:
207 close(fd);
208 return result;
209 }
210
211 static void
212 anv_physical_device_finish(struct anv_physical_device *device)
213 {
214 anv_finish_wsi(device);
215 ralloc_free(device->compiler);
216 close(device->local_fd);
217 }
218
219 static const VkExtensionProperties global_extensions[] = {
220 {
221 .extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
222 .specVersion = 25,
223 },
224 #ifdef VK_USE_PLATFORM_XCB_KHR
225 {
226 .extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
227 .specVersion = 6,
228 },
229 #endif
230 #ifdef VK_USE_PLATFORM_XLIB_KHR
231 {
232 .extensionName = VK_KHR_XLIB_SURFACE_EXTENSION_NAME,
233 .specVersion = 6,
234 },
235 #endif
236 #ifdef VK_USE_PLATFORM_WAYLAND_KHR
237 {
238 .extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
239 .specVersion = 5,
240 },
241 #endif
242 {
243 .extensionName = VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME,
244 .specVersion = 1,
245 },
246 };
247
248 static const VkExtensionProperties device_extensions[] = {
249 {
250 .extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
251 .specVersion = 68,
252 },
253 {
254 .extensionName = VK_KHR_SAMPLER_MIRROR_CLAMP_TO_EDGE_EXTENSION_NAME,
255 .specVersion = 1,
256 },
257 {
258 .extensionName = VK_KHR_MAINTENANCE1_EXTENSION_NAME,
259 .specVersion = 1,
260 },
261 {
262 .extensionName = VK_KHR_SHADER_DRAW_PARAMETERS_EXTENSION_NAME,
263 .specVersion = 1,
264 }
265 };
266
267 static void *
268 default_alloc_func(void *pUserData, size_t size, size_t align,
269 VkSystemAllocationScope allocationScope)
270 {
271 return malloc(size);
272 }
273
274 static void *
275 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
276 size_t align, VkSystemAllocationScope allocationScope)
277 {
278 return realloc(pOriginal, size);
279 }
280
281 static void
282 default_free_func(void *pUserData, void *pMemory)
283 {
284 free(pMemory);
285 }
286
287 static const VkAllocationCallbacks default_alloc = {
288 .pUserData = NULL,
289 .pfnAllocation = default_alloc_func,
290 .pfnReallocation = default_realloc_func,
291 .pfnFree = default_free_func,
292 };
293
294 VkResult anv_CreateInstance(
295 const VkInstanceCreateInfo* pCreateInfo,
296 const VkAllocationCallbacks* pAllocator,
297 VkInstance* pInstance)
298 {
299 struct anv_instance *instance;
300
301 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
302
303 uint32_t client_version;
304 if (pCreateInfo->pApplicationInfo &&
305 pCreateInfo->pApplicationInfo->apiVersion != 0) {
306 client_version = pCreateInfo->pApplicationInfo->apiVersion;
307 } else {
308 client_version = VK_MAKE_VERSION(1, 0, 0);
309 }
310
311 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
312 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
313 return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
314 "Client requested version %d.%d.%d",
315 VK_VERSION_MAJOR(client_version),
316 VK_VERSION_MINOR(client_version),
317 VK_VERSION_PATCH(client_version));
318 }
319
320 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
321 bool found = false;
322 for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
323 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
324 global_extensions[j].extensionName) == 0) {
325 found = true;
326 break;
327 }
328 }
329 if (!found)
330 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
331 }
332
333 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
334 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
335 if (!instance)
336 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
337
338 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
339
340 if (pAllocator)
341 instance->alloc = *pAllocator;
342 else
343 instance->alloc = default_alloc;
344
345 instance->apiVersion = client_version;
346 instance->physicalDeviceCount = -1;
347
348 _mesa_locale_init();
349
350 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
351
352 *pInstance = anv_instance_to_handle(instance);
353
354 return VK_SUCCESS;
355 }
356
357 void anv_DestroyInstance(
358 VkInstance _instance,
359 const VkAllocationCallbacks* pAllocator)
360 {
361 ANV_FROM_HANDLE(anv_instance, instance, _instance);
362
363 if (instance->physicalDeviceCount > 0) {
364 /* We support at most one physical device. */
365 assert(instance->physicalDeviceCount == 1);
366 anv_physical_device_finish(&instance->physicalDevice);
367 }
368
369 VG(VALGRIND_DESTROY_MEMPOOL(instance));
370
371 _mesa_locale_fini();
372
373 vk_free(&instance->alloc, instance);
374 }
375
376 VkResult anv_EnumeratePhysicalDevices(
377 VkInstance _instance,
378 uint32_t* pPhysicalDeviceCount,
379 VkPhysicalDevice* pPhysicalDevices)
380 {
381 ANV_FROM_HANDLE(anv_instance, instance, _instance);
382 VkResult result;
383
384 if (instance->physicalDeviceCount < 0) {
385 char path[20];
386 for (unsigned i = 0; i < 8; i++) {
387 snprintf(path, sizeof(path), "/dev/dri/renderD%d", 128 + i);
388 result = anv_physical_device_init(&instance->physicalDevice,
389 instance, path);
390 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
391 break;
392 }
393
394 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
395 instance->physicalDeviceCount = 0;
396 } else if (result == VK_SUCCESS) {
397 instance->physicalDeviceCount = 1;
398 } else {
399 return result;
400 }
401 }
402
403 /* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
404 * otherwise it's an inout parameter.
405 *
406 * The Vulkan spec (git aaed022) says:
407 *
408 * pPhysicalDeviceCount is a pointer to an unsigned integer variable
409 * that is initialized with the number of devices the application is
410 * prepared to receive handles to. pname:pPhysicalDevices is pointer to
411 * an array of at least this many VkPhysicalDevice handles [...].
412 *
413 * Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
414 * overwrites the contents of the variable pointed to by
415 * pPhysicalDeviceCount with the number of physical devices in in the
416 * instance; otherwise, vkEnumeratePhysicalDevices overwrites
417 * pPhysicalDeviceCount with the number of physical handles written to
418 * pPhysicalDevices.
419 */
420 if (!pPhysicalDevices) {
421 *pPhysicalDeviceCount = instance->physicalDeviceCount;
422 } else if (*pPhysicalDeviceCount >= 1) {
423 pPhysicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice);
424 *pPhysicalDeviceCount = 1;
425 } else if (*pPhysicalDeviceCount < instance->physicalDeviceCount) {
426 return VK_INCOMPLETE;
427 } else {
428 *pPhysicalDeviceCount = 0;
429 }
430
431 return VK_SUCCESS;
432 }
433
434 void anv_GetPhysicalDeviceFeatures(
435 VkPhysicalDevice physicalDevice,
436 VkPhysicalDeviceFeatures* pFeatures)
437 {
438 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
439
440 *pFeatures = (VkPhysicalDeviceFeatures) {
441 .robustBufferAccess = true,
442 .fullDrawIndexUint32 = true,
443 .imageCubeArray = true,
444 .independentBlend = true,
445 .geometryShader = true,
446 .tessellationShader = true,
447 .sampleRateShading = true,
448 .dualSrcBlend = true,
449 .logicOp = true,
450 .multiDrawIndirect = false,
451 .drawIndirectFirstInstance = true,
452 .depthClamp = true,
453 .depthBiasClamp = true,
454 .fillModeNonSolid = true,
455 .depthBounds = false,
456 .wideLines = true,
457 .largePoints = true,
458 .alphaToOne = true,
459 .multiViewport = true,
460 .samplerAnisotropy = true,
461 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
462 pdevice->info.is_baytrail,
463 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
464 .textureCompressionBC = true,
465 .occlusionQueryPrecise = true,
466 .pipelineStatisticsQuery = false,
467 .fragmentStoresAndAtomics = true,
468 .shaderTessellationAndGeometryPointSize = true,
469 .shaderImageGatherExtended = true,
470 .shaderStorageImageExtendedFormats = true,
471 .shaderStorageImageMultisample = false,
472 .shaderStorageImageReadWithoutFormat = false,
473 .shaderStorageImageWriteWithoutFormat = true,
474 .shaderUniformBufferArrayDynamicIndexing = true,
475 .shaderSampledImageArrayDynamicIndexing = true,
476 .shaderStorageBufferArrayDynamicIndexing = true,
477 .shaderStorageImageArrayDynamicIndexing = true,
478 .shaderClipDistance = true,
479 .shaderCullDistance = true,
480 .shaderFloat64 = pdevice->info.gen >= 8,
481 .shaderInt64 = false,
482 .shaderInt16 = false,
483 .shaderResourceMinLod = false,
484 .variableMultisampleRate = false,
485 .inheritedQueries = false,
486 };
487
488 /* We can't do image stores in vec4 shaders */
489 pFeatures->vertexPipelineStoresAndAtomics =
490 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
491 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
492 }
493
494 void anv_GetPhysicalDeviceFeatures2KHR(
495 VkPhysicalDevice physicalDevice,
496 VkPhysicalDeviceFeatures2KHR* pFeatures)
497 {
498 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
499
500 vk_foreach_struct(ext, pFeatures->pNext) {
501 switch (ext->sType) {
502 default:
503 anv_debug_ignored_stype(ext->sType);
504 break;
505 }
506 }
507 }
508
509 void anv_GetPhysicalDeviceProperties(
510 VkPhysicalDevice physicalDevice,
511 VkPhysicalDeviceProperties* pProperties)
512 {
513 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
514 const struct gen_device_info *devinfo = &pdevice->info;
515
516 const float time_stamp_base = devinfo->gen >= 9 ? 83.333 : 80.0;
517
518 /* See assertions made when programming the buffer surface state. */
519 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
520 (1ul << 30) : (1ul << 27);
521
522 VkSampleCountFlags sample_counts =
523 isl_device_get_sample_counts(&pdevice->isl_dev);
524
525 VkPhysicalDeviceLimits limits = {
526 .maxImageDimension1D = (1 << 14),
527 .maxImageDimension2D = (1 << 14),
528 .maxImageDimension3D = (1 << 11),
529 .maxImageDimensionCube = (1 << 14),
530 .maxImageArrayLayers = (1 << 11),
531 .maxTexelBufferElements = 128 * 1024 * 1024,
532 .maxUniformBufferRange = (1ul << 27),
533 .maxStorageBufferRange = max_raw_buffer_sz,
534 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
535 .maxMemoryAllocationCount = UINT32_MAX,
536 .maxSamplerAllocationCount = 64 * 1024,
537 .bufferImageGranularity = 64, /* A cache line */
538 .sparseAddressSpaceSize = 0,
539 .maxBoundDescriptorSets = MAX_SETS,
540 .maxPerStageDescriptorSamplers = 64,
541 .maxPerStageDescriptorUniformBuffers = 64,
542 .maxPerStageDescriptorStorageBuffers = 64,
543 .maxPerStageDescriptorSampledImages = 64,
544 .maxPerStageDescriptorStorageImages = 64,
545 .maxPerStageDescriptorInputAttachments = 64,
546 .maxPerStageResources = 128,
547 .maxDescriptorSetSamplers = 256,
548 .maxDescriptorSetUniformBuffers = 256,
549 .maxDescriptorSetUniformBuffersDynamic = 256,
550 .maxDescriptorSetStorageBuffers = 256,
551 .maxDescriptorSetStorageBuffersDynamic = 256,
552 .maxDescriptorSetSampledImages = 256,
553 .maxDescriptorSetStorageImages = 256,
554 .maxDescriptorSetInputAttachments = 256,
555 .maxVertexInputAttributes = MAX_VBS,
556 .maxVertexInputBindings = MAX_VBS,
557 .maxVertexInputAttributeOffset = 2047,
558 .maxVertexInputBindingStride = 2048,
559 .maxVertexOutputComponents = 128,
560 .maxTessellationGenerationLevel = 64,
561 .maxTessellationPatchSize = 32,
562 .maxTessellationControlPerVertexInputComponents = 128,
563 .maxTessellationControlPerVertexOutputComponents = 128,
564 .maxTessellationControlPerPatchOutputComponents = 128,
565 .maxTessellationControlTotalOutputComponents = 2048,
566 .maxTessellationEvaluationInputComponents = 128,
567 .maxTessellationEvaluationOutputComponents = 128,
568 .maxGeometryShaderInvocations = 32,
569 .maxGeometryInputComponents = 64,
570 .maxGeometryOutputComponents = 128,
571 .maxGeometryOutputVertices = 256,
572 .maxGeometryTotalOutputComponents = 1024,
573 .maxFragmentInputComponents = 128,
574 .maxFragmentOutputAttachments = 8,
575 .maxFragmentDualSrcAttachments = 1,
576 .maxFragmentCombinedOutputResources = 8,
577 .maxComputeSharedMemorySize = 32768,
578 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
579 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
580 .maxComputeWorkGroupSize = {
581 16 * devinfo->max_cs_threads,
582 16 * devinfo->max_cs_threads,
583 16 * devinfo->max_cs_threads,
584 },
585 .subPixelPrecisionBits = 4 /* FIXME */,
586 .subTexelPrecisionBits = 4 /* FIXME */,
587 .mipmapPrecisionBits = 4 /* FIXME */,
588 .maxDrawIndexedIndexValue = UINT32_MAX,
589 .maxDrawIndirectCount = UINT32_MAX,
590 .maxSamplerLodBias = 16,
591 .maxSamplerAnisotropy = 16,
592 .maxViewports = MAX_VIEWPORTS,
593 .maxViewportDimensions = { (1 << 14), (1 << 14) },
594 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
595 .viewportSubPixelBits = 13, /* We take a float? */
596 .minMemoryMapAlignment = 4096, /* A page */
597 .minTexelBufferOffsetAlignment = 1,
598 .minUniformBufferOffsetAlignment = 16,
599 .minStorageBufferOffsetAlignment = 4,
600 .minTexelOffset = -8,
601 .maxTexelOffset = 7,
602 .minTexelGatherOffset = -32,
603 .maxTexelGatherOffset = 31,
604 .minInterpolationOffset = -0.5,
605 .maxInterpolationOffset = 0.4375,
606 .subPixelInterpolationOffsetBits = 4,
607 .maxFramebufferWidth = (1 << 14),
608 .maxFramebufferHeight = (1 << 14),
609 .maxFramebufferLayers = (1 << 11),
610 .framebufferColorSampleCounts = sample_counts,
611 .framebufferDepthSampleCounts = sample_counts,
612 .framebufferStencilSampleCounts = sample_counts,
613 .framebufferNoAttachmentsSampleCounts = sample_counts,
614 .maxColorAttachments = MAX_RTS,
615 .sampledImageColorSampleCounts = sample_counts,
616 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
617 .sampledImageDepthSampleCounts = sample_counts,
618 .sampledImageStencilSampleCounts = sample_counts,
619 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
620 .maxSampleMaskWords = 1,
621 .timestampComputeAndGraphics = false,
622 .timestampPeriod = time_stamp_base,
623 .maxClipDistances = 8,
624 .maxCullDistances = 8,
625 .maxCombinedClipAndCullDistances = 8,
626 .discreteQueuePriorities = 1,
627 .pointSizeRange = { 0.125, 255.875 },
628 .lineWidthRange = { 0.0, 7.9921875 },
629 .pointSizeGranularity = (1.0 / 8.0),
630 .lineWidthGranularity = (1.0 / 128.0),
631 .strictLines = false, /* FINISHME */
632 .standardSampleLocations = true,
633 .optimalBufferCopyOffsetAlignment = 128,
634 .optimalBufferCopyRowPitchAlignment = 128,
635 .nonCoherentAtomSize = 64,
636 };
637
638 *pProperties = (VkPhysicalDeviceProperties) {
639 .apiVersion = VK_MAKE_VERSION(1, 0, 39),
640 .driverVersion = 1,
641 .vendorID = 0x8086,
642 .deviceID = pdevice->chipset_id,
643 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
644 .limits = limits,
645 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
646 };
647
648 strcpy(pProperties->deviceName, pdevice->name);
649 memcpy(pProperties->pipelineCacheUUID, pdevice->uuid, VK_UUID_SIZE);
650 }
651
652 void anv_GetPhysicalDeviceProperties2KHR(
653 VkPhysicalDevice physicalDevice,
654 VkPhysicalDeviceProperties2KHR* pProperties)
655 {
656 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
657
658 vk_foreach_struct(ext, pProperties->pNext) {
659 switch (ext->sType) {
660 default:
661 anv_debug_ignored_stype(ext->sType);
662 break;
663 }
664 }
665 }
666
667 static void
668 anv_get_queue_family_properties(struct anv_physical_device *phys_dev,
669 VkQueueFamilyProperties *props)
670 {
671 *props = (VkQueueFamilyProperties) {
672 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
673 VK_QUEUE_COMPUTE_BIT |
674 VK_QUEUE_TRANSFER_BIT,
675 .queueCount = 1,
676 .timestampValidBits = 36, /* XXX: Real value here */
677 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
678 };
679 }
680
681 void anv_GetPhysicalDeviceQueueFamilyProperties(
682 VkPhysicalDevice physicalDevice,
683 uint32_t* pCount,
684 VkQueueFamilyProperties* pQueueFamilyProperties)
685 {
686 ANV_FROM_HANDLE(anv_physical_device, phys_dev, physicalDevice);
687
688 if (pQueueFamilyProperties == NULL) {
689 *pCount = 1;
690 return;
691 }
692
693 /* The spec implicitly allows the incoming count to be 0. From the Vulkan
694 * 1.0.38 spec, Section 4.1 Physical Devices:
695 *
696 * If the value referenced by pQueueFamilyPropertyCount is not 0 [then
697 * do stuff].
698 */
699 if (*pCount == 0)
700 return;
701
702 *pCount = 1;
703 anv_get_queue_family_properties(phys_dev, pQueueFamilyProperties);
704 }
705
706 void anv_GetPhysicalDeviceQueueFamilyProperties2KHR(
707 VkPhysicalDevice physicalDevice,
708 uint32_t* pQueueFamilyPropertyCount,
709 VkQueueFamilyProperties2KHR* pQueueFamilyProperties)
710 {
711
712 ANV_FROM_HANDLE(anv_physical_device, phys_dev, physicalDevice);
713
714 if (pQueueFamilyProperties == NULL) {
715 *pQueueFamilyPropertyCount = 1;
716 return;
717 }
718
719 /* The spec implicitly allows the incoming count to be 0. From the Vulkan
720 * 1.0.38 spec, Section 4.1 Physical Devices:
721 *
722 * If the value referenced by pQueueFamilyPropertyCount is not 0 [then
723 * do stuff].
724 */
725 if (*pQueueFamilyPropertyCount == 0)
726 return;
727
728 /* We support exactly one queue family. So need to traverse only the first
729 * array element's pNext chain.
730 */
731 *pQueueFamilyPropertyCount = 1;
732 anv_get_queue_family_properties(phys_dev,
733 &pQueueFamilyProperties->queueFamilyProperties);
734
735 vk_foreach_struct(ext, pQueueFamilyProperties->pNext) {
736 switch (ext->sType) {
737 default:
738 anv_debug_ignored_stype(ext->sType);
739 break;
740 }
741 }
742 }
743
744 void anv_GetPhysicalDeviceMemoryProperties(
745 VkPhysicalDevice physicalDevice,
746 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
747 {
748 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
749 VkDeviceSize heap_size;
750
751 /* Reserve some wiggle room for the driver by exposing only 75% of the
752 * aperture to the heap.
753 */
754 heap_size = 3 * physical_device->aperture_size / 4;
755
756 if (physical_device->info.has_llc) {
757 /* Big core GPUs share LLC with the CPU and thus one memory type can be
758 * both cached and coherent at the same time.
759 */
760 pMemoryProperties->memoryTypeCount = 1;
761 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
762 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
763 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
764 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
765 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
766 .heapIndex = 0,
767 };
768 } else {
769 /* The spec requires that we expose a host-visible, coherent memory
770 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
771 * to give the application a choice between cached, but not coherent and
772 * coherent but uncached (WC though).
773 */
774 pMemoryProperties->memoryTypeCount = 2;
775 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
776 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
777 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
778 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
779 .heapIndex = 0,
780 };
781 pMemoryProperties->memoryTypes[1] = (VkMemoryType) {
782 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
783 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
784 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
785 .heapIndex = 0,
786 };
787 }
788
789 pMemoryProperties->memoryHeapCount = 1;
790 pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) {
791 .size = heap_size,
792 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
793 };
794 }
795
796 void anv_GetPhysicalDeviceMemoryProperties2KHR(
797 VkPhysicalDevice physicalDevice,
798 VkPhysicalDeviceMemoryProperties2KHR* pMemoryProperties)
799 {
800 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
801 &pMemoryProperties->memoryProperties);
802
803 vk_foreach_struct(ext, pMemoryProperties->pNext) {
804 switch (ext->sType) {
805 default:
806 anv_debug_ignored_stype(ext->sType);
807 break;
808 }
809 }
810 }
811
812 PFN_vkVoidFunction anv_GetInstanceProcAddr(
813 VkInstance instance,
814 const char* pName)
815 {
816 return anv_lookup_entrypoint(NULL, pName);
817 }
818
819 /* With version 1+ of the loader interface the ICD should expose
820 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
821 */
822 PUBLIC
823 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
824 VkInstance instance,
825 const char* pName);
826
827 PUBLIC
828 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
829 VkInstance instance,
830 const char* pName)
831 {
832 return anv_GetInstanceProcAddr(instance, pName);
833 }
834
835 PFN_vkVoidFunction anv_GetDeviceProcAddr(
836 VkDevice _device,
837 const char* pName)
838 {
839 ANV_FROM_HANDLE(anv_device, device, _device);
840 return anv_lookup_entrypoint(&device->info, pName);
841 }
842
843 static void
844 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
845 {
846 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
847 queue->device = device;
848 queue->pool = &device->surface_state_pool;
849 }
850
851 static void
852 anv_queue_finish(struct anv_queue *queue)
853 {
854 }
855
856 static struct anv_state
857 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
858 {
859 struct anv_state state;
860
861 state = anv_state_pool_alloc(pool, size, align);
862 memcpy(state.map, p, size);
863
864 anv_state_flush(pool->block_pool->device, state);
865
866 return state;
867 }
868
869 struct gen8_border_color {
870 union {
871 float float32[4];
872 uint32_t uint32[4];
873 };
874 /* Pad out to 64 bytes */
875 uint32_t _pad[12];
876 };
877
878 static void
879 anv_device_init_border_colors(struct anv_device *device)
880 {
881 static const struct gen8_border_color border_colors[] = {
882 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
883 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
884 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
885 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
886 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
887 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
888 };
889
890 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
891 sizeof(border_colors), 64,
892 border_colors);
893 }
894
895 VkResult
896 anv_device_submit_simple_batch(struct anv_device *device,
897 struct anv_batch *batch)
898 {
899 struct drm_i915_gem_execbuffer2 execbuf;
900 struct drm_i915_gem_exec_object2 exec2_objects[1];
901 struct anv_bo bo, *exec_bos[1];
902 VkResult result = VK_SUCCESS;
903 uint32_t size;
904 int64_t timeout;
905 int ret;
906
907 /* Kernel driver requires 8 byte aligned batch length */
908 size = align_u32(batch->next - batch->start, 8);
909 result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
910 if (result != VK_SUCCESS)
911 return result;
912
913 memcpy(bo.map, batch->start, size);
914 if (!device->info.has_llc)
915 anv_flush_range(bo.map, size);
916
917 exec_bos[0] = &bo;
918 exec2_objects[0].handle = bo.gem_handle;
919 exec2_objects[0].relocation_count = 0;
920 exec2_objects[0].relocs_ptr = 0;
921 exec2_objects[0].alignment = 0;
922 exec2_objects[0].offset = bo.offset;
923 exec2_objects[0].flags = 0;
924 exec2_objects[0].rsvd1 = 0;
925 exec2_objects[0].rsvd2 = 0;
926
927 execbuf.buffers_ptr = (uintptr_t) exec2_objects;
928 execbuf.buffer_count = 1;
929 execbuf.batch_start_offset = 0;
930 execbuf.batch_len = size;
931 execbuf.cliprects_ptr = 0;
932 execbuf.num_cliprects = 0;
933 execbuf.DR1 = 0;
934 execbuf.DR4 = 0;
935
936 execbuf.flags =
937 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
938 execbuf.rsvd1 = device->context_id;
939 execbuf.rsvd2 = 0;
940
941 result = anv_device_execbuf(device, &execbuf, exec_bos);
942 if (result != VK_SUCCESS)
943 goto fail;
944
945 timeout = INT64_MAX;
946 ret = anv_gem_wait(device, bo.gem_handle, &timeout);
947 if (ret != 0) {
948 /* We don't know the real error. */
949 result = vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
950 goto fail;
951 }
952
953 fail:
954 anv_bo_pool_free(&device->batch_bo_pool, &bo);
955
956 return result;
957 }
958
959 VkResult anv_CreateDevice(
960 VkPhysicalDevice physicalDevice,
961 const VkDeviceCreateInfo* pCreateInfo,
962 const VkAllocationCallbacks* pAllocator,
963 VkDevice* pDevice)
964 {
965 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
966 VkResult result;
967 struct anv_device *device;
968
969 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
970
971 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
972 bool found = false;
973 for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
974 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
975 device_extensions[j].extensionName) == 0) {
976 found = true;
977 break;
978 }
979 }
980 if (!found)
981 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
982 }
983
984 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
985 sizeof(*device), 8,
986 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
987 if (!device)
988 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
989
990 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
991 device->instance = physical_device->instance;
992 device->chipset_id = physical_device->chipset_id;
993
994 if (pAllocator)
995 device->alloc = *pAllocator;
996 else
997 device->alloc = physical_device->instance->alloc;
998
999 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1000 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1001 if (device->fd == -1) {
1002 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1003 goto fail_device;
1004 }
1005
1006 device->context_id = anv_gem_create_context(device);
1007 if (device->context_id == -1) {
1008 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1009 goto fail_fd;
1010 }
1011
1012 device->info = physical_device->info;
1013 device->isl_dev = physical_device->isl_dev;
1014
1015 /* On Broadwell and later, we can use batch chaining to more efficiently
1016 * implement growing command buffers. Prior to Haswell, the kernel
1017 * command parser gets in the way and we have to fall back to growing
1018 * the batch.
1019 */
1020 device->can_chain_batches = device->info.gen >= 8;
1021
1022 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1023 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1024
1025 pthread_mutex_init(&device->mutex, NULL);
1026
1027 pthread_condattr_t condattr;
1028 pthread_condattr_init(&condattr);
1029 pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC);
1030 pthread_cond_init(&device->queue_submit, NULL);
1031 pthread_condattr_destroy(&condattr);
1032
1033 anv_bo_pool_init(&device->batch_bo_pool, device);
1034
1035 anv_block_pool_init(&device->dynamic_state_block_pool, device, 16384);
1036
1037 anv_state_pool_init(&device->dynamic_state_pool,
1038 &device->dynamic_state_block_pool);
1039
1040 anv_block_pool_init(&device->instruction_block_pool, device, 1024 * 1024);
1041 anv_state_pool_init(&device->instruction_state_pool,
1042 &device->instruction_block_pool);
1043
1044 anv_block_pool_init(&device->surface_state_block_pool, device, 4096);
1045
1046 anv_state_pool_init(&device->surface_state_pool,
1047 &device->surface_state_block_pool);
1048
1049 anv_bo_init_new(&device->workaround_bo, device, 1024);
1050
1051 anv_scratch_pool_init(device, &device->scratch_pool);
1052
1053 anv_queue_init(device, &device->queue);
1054
1055 switch (device->info.gen) {
1056 case 7:
1057 if (!device->info.is_haswell)
1058 result = gen7_init_device_state(device);
1059 else
1060 result = gen75_init_device_state(device);
1061 break;
1062 case 8:
1063 result = gen8_init_device_state(device);
1064 break;
1065 case 9:
1066 result = gen9_init_device_state(device);
1067 break;
1068 default:
1069 /* Shouldn't get here as we don't create physical devices for any other
1070 * gens. */
1071 unreachable("unhandled gen");
1072 }
1073 if (result != VK_SUCCESS)
1074 goto fail_fd;
1075
1076 anv_device_init_blorp(device);
1077
1078 anv_device_init_border_colors(device);
1079
1080 *pDevice = anv_device_to_handle(device);
1081
1082 return VK_SUCCESS;
1083
1084 fail_fd:
1085 close(device->fd);
1086 fail_device:
1087 vk_free(&device->alloc, device);
1088
1089 return result;
1090 }
1091
1092 void anv_DestroyDevice(
1093 VkDevice _device,
1094 const VkAllocationCallbacks* pAllocator)
1095 {
1096 ANV_FROM_HANDLE(anv_device, device, _device);
1097
1098 anv_device_finish_blorp(device);
1099
1100 anv_queue_finish(&device->queue);
1101
1102 #ifdef HAVE_VALGRIND
1103 /* We only need to free these to prevent valgrind errors. The backing
1104 * BO will go away in a couple of lines so we don't actually leak.
1105 */
1106 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1107 #endif
1108
1109 anv_scratch_pool_finish(device, &device->scratch_pool);
1110
1111 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1112 anv_gem_close(device, device->workaround_bo.gem_handle);
1113
1114 anv_state_pool_finish(&device->surface_state_pool);
1115 anv_block_pool_finish(&device->surface_state_block_pool);
1116 anv_state_pool_finish(&device->instruction_state_pool);
1117 anv_block_pool_finish(&device->instruction_block_pool);
1118 anv_state_pool_finish(&device->dynamic_state_pool);
1119 anv_block_pool_finish(&device->dynamic_state_block_pool);
1120
1121 anv_bo_pool_finish(&device->batch_bo_pool);
1122
1123 pthread_cond_destroy(&device->queue_submit);
1124 pthread_mutex_destroy(&device->mutex);
1125
1126 anv_gem_destroy_context(device, device->context_id);
1127
1128 close(device->fd);
1129
1130 vk_free(&device->alloc, device);
1131 }
1132
1133 VkResult anv_EnumerateInstanceExtensionProperties(
1134 const char* pLayerName,
1135 uint32_t* pPropertyCount,
1136 VkExtensionProperties* pProperties)
1137 {
1138 if (pProperties == NULL) {
1139 *pPropertyCount = ARRAY_SIZE(global_extensions);
1140 return VK_SUCCESS;
1141 }
1142
1143 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(global_extensions));
1144 typed_memcpy(pProperties, global_extensions, *pPropertyCount);
1145
1146 if (*pPropertyCount < ARRAY_SIZE(global_extensions))
1147 return VK_INCOMPLETE;
1148
1149 return VK_SUCCESS;
1150 }
1151
1152 VkResult anv_EnumerateDeviceExtensionProperties(
1153 VkPhysicalDevice physicalDevice,
1154 const char* pLayerName,
1155 uint32_t* pPropertyCount,
1156 VkExtensionProperties* pProperties)
1157 {
1158 if (pProperties == NULL) {
1159 *pPropertyCount = ARRAY_SIZE(device_extensions);
1160 return VK_SUCCESS;
1161 }
1162
1163 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(device_extensions));
1164 typed_memcpy(pProperties, device_extensions, *pPropertyCount);
1165
1166 if (*pPropertyCount < ARRAY_SIZE(device_extensions))
1167 return VK_INCOMPLETE;
1168
1169 return VK_SUCCESS;
1170 }
1171
1172 VkResult anv_EnumerateInstanceLayerProperties(
1173 uint32_t* pPropertyCount,
1174 VkLayerProperties* pProperties)
1175 {
1176 if (pProperties == NULL) {
1177 *pPropertyCount = 0;
1178 return VK_SUCCESS;
1179 }
1180
1181 /* None supported at this time */
1182 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1183 }
1184
1185 VkResult anv_EnumerateDeviceLayerProperties(
1186 VkPhysicalDevice physicalDevice,
1187 uint32_t* pPropertyCount,
1188 VkLayerProperties* pProperties)
1189 {
1190 if (pProperties == NULL) {
1191 *pPropertyCount = 0;
1192 return VK_SUCCESS;
1193 }
1194
1195 /* None supported at this time */
1196 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1197 }
1198
1199 void anv_GetDeviceQueue(
1200 VkDevice _device,
1201 uint32_t queueNodeIndex,
1202 uint32_t queueIndex,
1203 VkQueue* pQueue)
1204 {
1205 ANV_FROM_HANDLE(anv_device, device, _device);
1206
1207 assert(queueIndex == 0);
1208
1209 *pQueue = anv_queue_to_handle(&device->queue);
1210 }
1211
1212 VkResult
1213 anv_device_execbuf(struct anv_device *device,
1214 struct drm_i915_gem_execbuffer2 *execbuf,
1215 struct anv_bo **execbuf_bos)
1216 {
1217 int ret = anv_gem_execbuffer(device, execbuf);
1218 if (ret != 0) {
1219 /* We don't know the real error. */
1220 return vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
1221 }
1222
1223 struct drm_i915_gem_exec_object2 *objects =
1224 (void *)(uintptr_t)execbuf->buffers_ptr;
1225 for (uint32_t k = 0; k < execbuf->buffer_count; k++)
1226 execbuf_bos[k]->offset = objects[k].offset;
1227
1228 return VK_SUCCESS;
1229 }
1230
1231 VkResult anv_QueueSubmit(
1232 VkQueue _queue,
1233 uint32_t submitCount,
1234 const VkSubmitInfo* pSubmits,
1235 VkFence _fence)
1236 {
1237 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1238 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1239 struct anv_device *device = queue->device;
1240 VkResult result = VK_SUCCESS;
1241
1242 /* We lock around QueueSubmit for three main reasons:
1243 *
1244 * 1) When a block pool is resized, we create a new gem handle with a
1245 * different size and, in the case of surface states, possibly a
1246 * different center offset but we re-use the same anv_bo struct when
1247 * we do so. If this happens in the middle of setting up an execbuf,
1248 * we could end up with our list of BOs out of sync with our list of
1249 * gem handles.
1250 *
1251 * 2) The algorithm we use for building the list of unique buffers isn't
1252 * thread-safe. While the client is supposed to syncronize around
1253 * QueueSubmit, this would be extremely difficult to debug if it ever
1254 * came up in the wild due to a broken app. It's better to play it
1255 * safe and just lock around QueueSubmit.
1256 *
1257 * 3) The anv_cmd_buffer_execbuf function may perform relocations in
1258 * userspace. Due to the fact that the surface state buffer is shared
1259 * between batches, we can't afford to have that happen from multiple
1260 * threads at the same time. Even though the user is supposed to
1261 * ensure this doesn't happen, we play it safe as in (2) above.
1262 *
1263 * Since the only other things that ever take the device lock such as block
1264 * pool resize only rarely happen, this will almost never be contended so
1265 * taking a lock isn't really an expensive operation in this case.
1266 */
1267 pthread_mutex_lock(&device->mutex);
1268
1269 for (uint32_t i = 0; i < submitCount; i++) {
1270 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
1271 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
1272 pSubmits[i].pCommandBuffers[j]);
1273 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1274
1275 result = anv_cmd_buffer_execbuf(device, cmd_buffer);
1276 if (result != VK_SUCCESS)
1277 goto out;
1278 }
1279 }
1280
1281 if (fence) {
1282 struct anv_bo *fence_bo = &fence->bo;
1283 result = anv_device_execbuf(device, &fence->execbuf, &fence_bo);
1284 if (result != VK_SUCCESS)
1285 goto out;
1286
1287 /* Update the fence and wake up any waiters */
1288 assert(fence->state == ANV_FENCE_STATE_RESET);
1289 fence->state = ANV_FENCE_STATE_SUBMITTED;
1290 pthread_cond_broadcast(&device->queue_submit);
1291 }
1292
1293 out:
1294 pthread_mutex_unlock(&device->mutex);
1295
1296 return result;
1297 }
1298
1299 VkResult anv_QueueWaitIdle(
1300 VkQueue _queue)
1301 {
1302 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1303
1304 return anv_DeviceWaitIdle(anv_device_to_handle(queue->device));
1305 }
1306
1307 VkResult anv_DeviceWaitIdle(
1308 VkDevice _device)
1309 {
1310 ANV_FROM_HANDLE(anv_device, device, _device);
1311 struct anv_batch batch;
1312
1313 uint32_t cmds[8];
1314 batch.start = batch.next = cmds;
1315 batch.end = (void *) cmds + sizeof(cmds);
1316
1317 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1318 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1319
1320 return anv_device_submit_simple_batch(device, &batch);
1321 }
1322
1323 VkResult
1324 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1325 {
1326 uint32_t gem_handle = anv_gem_create(device, size);
1327 if (!gem_handle)
1328 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1329
1330 anv_bo_init(bo, gem_handle, size);
1331
1332 return VK_SUCCESS;
1333 }
1334
1335 VkResult anv_AllocateMemory(
1336 VkDevice _device,
1337 const VkMemoryAllocateInfo* pAllocateInfo,
1338 const VkAllocationCallbacks* pAllocator,
1339 VkDeviceMemory* pMem)
1340 {
1341 ANV_FROM_HANDLE(anv_device, device, _device);
1342 struct anv_device_memory *mem;
1343 VkResult result;
1344
1345 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1346
1347 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
1348 assert(pAllocateInfo->allocationSize > 0);
1349
1350 /* We support exactly one memory heap. */
1351 assert(pAllocateInfo->memoryTypeIndex == 0 ||
1352 (!device->info.has_llc && pAllocateInfo->memoryTypeIndex < 2));
1353
1354 /* FINISHME: Fail if allocation request exceeds heap size. */
1355
1356 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1357 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1358 if (mem == NULL)
1359 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1360
1361 /* The kernel is going to give us whole pages anyway */
1362 uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
1363
1364 result = anv_bo_init_new(&mem->bo, device, alloc_size);
1365 if (result != VK_SUCCESS)
1366 goto fail;
1367
1368 mem->type_index = pAllocateInfo->memoryTypeIndex;
1369
1370 mem->map = NULL;
1371 mem->map_size = 0;
1372
1373 *pMem = anv_device_memory_to_handle(mem);
1374
1375 return VK_SUCCESS;
1376
1377 fail:
1378 vk_free2(&device->alloc, pAllocator, mem);
1379
1380 return result;
1381 }
1382
1383 void anv_FreeMemory(
1384 VkDevice _device,
1385 VkDeviceMemory _mem,
1386 const VkAllocationCallbacks* pAllocator)
1387 {
1388 ANV_FROM_HANDLE(anv_device, device, _device);
1389 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1390
1391 if (mem == NULL)
1392 return;
1393
1394 if (mem->map)
1395 anv_UnmapMemory(_device, _mem);
1396
1397 if (mem->bo.map)
1398 anv_gem_munmap(mem->bo.map, mem->bo.size);
1399
1400 if (mem->bo.gem_handle != 0)
1401 anv_gem_close(device, mem->bo.gem_handle);
1402
1403 vk_free2(&device->alloc, pAllocator, mem);
1404 }
1405
1406 VkResult anv_MapMemory(
1407 VkDevice _device,
1408 VkDeviceMemory _memory,
1409 VkDeviceSize offset,
1410 VkDeviceSize size,
1411 VkMemoryMapFlags flags,
1412 void** ppData)
1413 {
1414 ANV_FROM_HANDLE(anv_device, device, _device);
1415 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1416
1417 if (mem == NULL) {
1418 *ppData = NULL;
1419 return VK_SUCCESS;
1420 }
1421
1422 if (size == VK_WHOLE_SIZE)
1423 size = mem->bo.size - offset;
1424
1425 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
1426 *
1427 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
1428 * assert(size != 0);
1429 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
1430 * equal to the size of the memory minus offset
1431 */
1432 assert(size > 0);
1433 assert(offset + size <= mem->bo.size);
1434
1435 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1436 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1437 * at a time is valid. We could just mmap up front and return an offset
1438 * pointer here, but that may exhaust virtual memory on 32 bit
1439 * userspace. */
1440
1441 uint32_t gem_flags = 0;
1442 if (!device->info.has_llc && mem->type_index == 0)
1443 gem_flags |= I915_MMAP_WC;
1444
1445 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
1446 uint64_t map_offset = offset & ~4095ull;
1447 assert(offset >= map_offset);
1448 uint64_t map_size = (offset + size) - map_offset;
1449
1450 /* Let's map whole pages */
1451 map_size = align_u64(map_size, 4096);
1452
1453 void *map = anv_gem_mmap(device, mem->bo.gem_handle,
1454 map_offset, map_size, gem_flags);
1455 if (map == MAP_FAILED)
1456 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1457
1458 mem->map = map;
1459 mem->map_size = map_size;
1460
1461 *ppData = mem->map + (offset - map_offset);
1462
1463 return VK_SUCCESS;
1464 }
1465
1466 void anv_UnmapMemory(
1467 VkDevice _device,
1468 VkDeviceMemory _memory)
1469 {
1470 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1471
1472 if (mem == NULL)
1473 return;
1474
1475 anv_gem_munmap(mem->map, mem->map_size);
1476
1477 mem->map = NULL;
1478 mem->map_size = 0;
1479 }
1480
1481 static void
1482 clflush_mapped_ranges(struct anv_device *device,
1483 uint32_t count,
1484 const VkMappedMemoryRange *ranges)
1485 {
1486 for (uint32_t i = 0; i < count; i++) {
1487 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1488 if (ranges[i].offset >= mem->map_size)
1489 continue;
1490
1491 anv_clflush_range(mem->map + ranges[i].offset,
1492 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
1493 }
1494 }
1495
1496 VkResult anv_FlushMappedMemoryRanges(
1497 VkDevice _device,
1498 uint32_t memoryRangeCount,
1499 const VkMappedMemoryRange* pMemoryRanges)
1500 {
1501 ANV_FROM_HANDLE(anv_device, device, _device);
1502
1503 if (device->info.has_llc)
1504 return VK_SUCCESS;
1505
1506 /* Make sure the writes we're flushing have landed. */
1507 __builtin_ia32_mfence();
1508
1509 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1510
1511 return VK_SUCCESS;
1512 }
1513
1514 VkResult anv_InvalidateMappedMemoryRanges(
1515 VkDevice _device,
1516 uint32_t memoryRangeCount,
1517 const VkMappedMemoryRange* pMemoryRanges)
1518 {
1519 ANV_FROM_HANDLE(anv_device, device, _device);
1520
1521 if (device->info.has_llc)
1522 return VK_SUCCESS;
1523
1524 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1525
1526 /* Make sure no reads get moved up above the invalidate. */
1527 __builtin_ia32_mfence();
1528
1529 return VK_SUCCESS;
1530 }
1531
1532 void anv_GetBufferMemoryRequirements(
1533 VkDevice _device,
1534 VkBuffer _buffer,
1535 VkMemoryRequirements* pMemoryRequirements)
1536 {
1537 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1538 ANV_FROM_HANDLE(anv_device, device, _device);
1539
1540 /* The Vulkan spec (git aaed022) says:
1541 *
1542 * memoryTypeBits is a bitfield and contains one bit set for every
1543 * supported memory type for the resource. The bit `1<<i` is set if and
1544 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1545 * structure for the physical device is supported.
1546 *
1547 * We support exactly one memory type on LLC, two on non-LLC.
1548 */
1549 pMemoryRequirements->memoryTypeBits = device->info.has_llc ? 1 : 3;
1550
1551 pMemoryRequirements->size = buffer->size;
1552 pMemoryRequirements->alignment = 16;
1553 }
1554
1555 void anv_GetImageMemoryRequirements(
1556 VkDevice _device,
1557 VkImage _image,
1558 VkMemoryRequirements* pMemoryRequirements)
1559 {
1560 ANV_FROM_HANDLE(anv_image, image, _image);
1561 ANV_FROM_HANDLE(anv_device, device, _device);
1562
1563 /* The Vulkan spec (git aaed022) says:
1564 *
1565 * memoryTypeBits is a bitfield and contains one bit set for every
1566 * supported memory type for the resource. The bit `1<<i` is set if and
1567 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1568 * structure for the physical device is supported.
1569 *
1570 * We support exactly one memory type on LLC, two on non-LLC.
1571 */
1572 pMemoryRequirements->memoryTypeBits = device->info.has_llc ? 1 : 3;
1573
1574 pMemoryRequirements->size = image->size;
1575 pMemoryRequirements->alignment = image->alignment;
1576 }
1577
1578 void anv_GetImageSparseMemoryRequirements(
1579 VkDevice device,
1580 VkImage image,
1581 uint32_t* pSparseMemoryRequirementCount,
1582 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
1583 {
1584 stub();
1585 }
1586
1587 void anv_GetDeviceMemoryCommitment(
1588 VkDevice device,
1589 VkDeviceMemory memory,
1590 VkDeviceSize* pCommittedMemoryInBytes)
1591 {
1592 *pCommittedMemoryInBytes = 0;
1593 }
1594
1595 VkResult anv_BindBufferMemory(
1596 VkDevice device,
1597 VkBuffer _buffer,
1598 VkDeviceMemory _memory,
1599 VkDeviceSize memoryOffset)
1600 {
1601 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1602 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1603
1604 if (mem) {
1605 buffer->bo = &mem->bo;
1606 buffer->offset = memoryOffset;
1607 } else {
1608 buffer->bo = NULL;
1609 buffer->offset = 0;
1610 }
1611
1612 return VK_SUCCESS;
1613 }
1614
1615 VkResult anv_QueueBindSparse(
1616 VkQueue queue,
1617 uint32_t bindInfoCount,
1618 const VkBindSparseInfo* pBindInfo,
1619 VkFence fence)
1620 {
1621 stub_return(VK_ERROR_INCOMPATIBLE_DRIVER);
1622 }
1623
1624 VkResult anv_CreateFence(
1625 VkDevice _device,
1626 const VkFenceCreateInfo* pCreateInfo,
1627 const VkAllocationCallbacks* pAllocator,
1628 VkFence* pFence)
1629 {
1630 ANV_FROM_HANDLE(anv_device, device, _device);
1631 struct anv_bo fence_bo;
1632 struct anv_fence *fence;
1633 struct anv_batch batch;
1634 VkResult result;
1635
1636 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
1637
1638 result = anv_bo_pool_alloc(&device->batch_bo_pool, &fence_bo, 4096);
1639 if (result != VK_SUCCESS)
1640 return result;
1641
1642 /* Fences are small. Just store the CPU data structure in the BO. */
1643 fence = fence_bo.map;
1644 fence->bo = fence_bo;
1645
1646 /* Place the batch after the CPU data but on its own cache line. */
1647 const uint32_t batch_offset = align_u32(sizeof(*fence), CACHELINE_SIZE);
1648 batch.next = batch.start = fence->bo.map + batch_offset;
1649 batch.end = fence->bo.map + fence->bo.size;
1650 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1651 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1652
1653 if (!device->info.has_llc) {
1654 assert(((uintptr_t) batch.start & CACHELINE_MASK) == 0);
1655 assert(batch.next - batch.start <= CACHELINE_SIZE);
1656 __builtin_ia32_mfence();
1657 __builtin_ia32_clflush(batch.start);
1658 }
1659
1660 fence->exec2_objects[0].handle = fence->bo.gem_handle;
1661 fence->exec2_objects[0].relocation_count = 0;
1662 fence->exec2_objects[0].relocs_ptr = 0;
1663 fence->exec2_objects[0].alignment = 0;
1664 fence->exec2_objects[0].offset = fence->bo.offset;
1665 fence->exec2_objects[0].flags = 0;
1666 fence->exec2_objects[0].rsvd1 = 0;
1667 fence->exec2_objects[0].rsvd2 = 0;
1668
1669 fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
1670 fence->execbuf.buffer_count = 1;
1671 fence->execbuf.batch_start_offset = batch.start - fence->bo.map;
1672 fence->execbuf.batch_len = batch.next - batch.start;
1673 fence->execbuf.cliprects_ptr = 0;
1674 fence->execbuf.num_cliprects = 0;
1675 fence->execbuf.DR1 = 0;
1676 fence->execbuf.DR4 = 0;
1677
1678 fence->execbuf.flags =
1679 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
1680 fence->execbuf.rsvd1 = device->context_id;
1681 fence->execbuf.rsvd2 = 0;
1682
1683 if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
1684 fence->state = ANV_FENCE_STATE_SIGNALED;
1685 } else {
1686 fence->state = ANV_FENCE_STATE_RESET;
1687 }
1688
1689 *pFence = anv_fence_to_handle(fence);
1690
1691 return VK_SUCCESS;
1692 }
1693
1694 void anv_DestroyFence(
1695 VkDevice _device,
1696 VkFence _fence,
1697 const VkAllocationCallbacks* pAllocator)
1698 {
1699 ANV_FROM_HANDLE(anv_device, device, _device);
1700 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1701
1702 if (!fence)
1703 return;
1704
1705 assert(fence->bo.map == fence);
1706 anv_bo_pool_free(&device->batch_bo_pool, &fence->bo);
1707 }
1708
1709 VkResult anv_ResetFences(
1710 VkDevice _device,
1711 uint32_t fenceCount,
1712 const VkFence* pFences)
1713 {
1714 for (uint32_t i = 0; i < fenceCount; i++) {
1715 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1716 fence->state = ANV_FENCE_STATE_RESET;
1717 }
1718
1719 return VK_SUCCESS;
1720 }
1721
1722 VkResult anv_GetFenceStatus(
1723 VkDevice _device,
1724 VkFence _fence)
1725 {
1726 ANV_FROM_HANDLE(anv_device, device, _device);
1727 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1728 int64_t t = 0;
1729 int ret;
1730
1731 switch (fence->state) {
1732 case ANV_FENCE_STATE_RESET:
1733 /* If it hasn't even been sent off to the GPU yet, it's not ready */
1734 return VK_NOT_READY;
1735
1736 case ANV_FENCE_STATE_SIGNALED:
1737 /* It's been signaled, return success */
1738 return VK_SUCCESS;
1739
1740 case ANV_FENCE_STATE_SUBMITTED:
1741 /* It's been submitted to the GPU but we don't know if it's done yet. */
1742 ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1743 if (ret == 0) {
1744 fence->state = ANV_FENCE_STATE_SIGNALED;
1745 return VK_SUCCESS;
1746 } else {
1747 return VK_NOT_READY;
1748 }
1749 default:
1750 unreachable("Invalid fence status");
1751 }
1752 }
1753
1754 #define NSEC_PER_SEC 1000000000
1755 #define INT_TYPE_MAX(type) ((1ull << (sizeof(type) * 8 - 1)) - 1)
1756
1757 VkResult anv_WaitForFences(
1758 VkDevice _device,
1759 uint32_t fenceCount,
1760 const VkFence* pFences,
1761 VkBool32 waitAll,
1762 uint64_t _timeout)
1763 {
1764 ANV_FROM_HANDLE(anv_device, device, _device);
1765 int ret;
1766
1767 /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
1768 * to block indefinitely timeouts <= 0. Unfortunately, this was broken
1769 * for a couple of kernel releases. Since there's no way to know
1770 * whether or not the kernel we're using is one of the broken ones, the
1771 * best we can do is to clamp the timeout to INT64_MAX. This limits the
1772 * maximum timeout from 584 years to 292 years - likely not a big deal.
1773 */
1774 int64_t timeout = MIN2(_timeout, INT64_MAX);
1775
1776 uint32_t pending_fences = fenceCount;
1777 while (pending_fences) {
1778 pending_fences = 0;
1779 bool signaled_fences = false;
1780 for (uint32_t i = 0; i < fenceCount; i++) {
1781 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1782 switch (fence->state) {
1783 case ANV_FENCE_STATE_RESET:
1784 /* This fence hasn't been submitted yet, we'll catch it the next
1785 * time around. Yes, this may mean we dead-loop but, short of
1786 * lots of locking and a condition variable, there's not much that
1787 * we can do about that.
1788 */
1789 pending_fences++;
1790 continue;
1791
1792 case ANV_FENCE_STATE_SIGNALED:
1793 /* This fence is not pending. If waitAll isn't set, we can return
1794 * early. Otherwise, we have to keep going.
1795 */
1796 if (!waitAll)
1797 return VK_SUCCESS;
1798 continue;
1799
1800 case ANV_FENCE_STATE_SUBMITTED:
1801 /* These are the fences we really care about. Go ahead and wait
1802 * on it until we hit a timeout.
1803 */
1804 ret = anv_gem_wait(device, fence->bo.gem_handle, &timeout);
1805 if (ret == -1 && errno == ETIME) {
1806 return VK_TIMEOUT;
1807 } else if (ret == -1) {
1808 /* We don't know the real error. */
1809 return vk_errorf(VK_ERROR_DEVICE_LOST, "gem wait failed: %m");
1810 } else {
1811 fence->state = ANV_FENCE_STATE_SIGNALED;
1812 signaled_fences = true;
1813 if (!waitAll)
1814 return VK_SUCCESS;
1815 continue;
1816 }
1817 }
1818 }
1819
1820 if (pending_fences && !signaled_fences) {
1821 /* If we've hit this then someone decided to vkWaitForFences before
1822 * they've actually submitted any of them to a queue. This is a
1823 * fairly pessimal case, so it's ok to lock here and use a standard
1824 * pthreads condition variable.
1825 */
1826 pthread_mutex_lock(&device->mutex);
1827
1828 /* It's possible that some of the fences have changed state since the
1829 * last time we checked. Now that we have the lock, check for
1830 * pending fences again and don't wait if it's changed.
1831 */
1832 uint32_t now_pending_fences = 0;
1833 for (uint32_t i = 0; i < fenceCount; i++) {
1834 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1835 if (fence->state == ANV_FENCE_STATE_RESET)
1836 now_pending_fences++;
1837 }
1838 assert(now_pending_fences <= pending_fences);
1839
1840 if (now_pending_fences == pending_fences) {
1841 struct timespec before;
1842 clock_gettime(CLOCK_MONOTONIC, &before);
1843
1844 uint32_t abs_nsec = before.tv_nsec + timeout % NSEC_PER_SEC;
1845 uint64_t abs_sec = before.tv_sec + (abs_nsec / NSEC_PER_SEC) +
1846 (timeout / NSEC_PER_SEC);
1847 abs_nsec %= NSEC_PER_SEC;
1848
1849 /* Avoid roll-over in tv_sec on 32-bit systems if the user
1850 * provided timeout is UINT64_MAX
1851 */
1852 struct timespec abstime;
1853 abstime.tv_nsec = abs_nsec;
1854 abstime.tv_sec = MIN2(abs_sec, INT_TYPE_MAX(abstime.tv_sec));
1855
1856 ret = pthread_cond_timedwait(&device->queue_submit,
1857 &device->mutex, &abstime);
1858 assert(ret != EINVAL);
1859
1860 struct timespec after;
1861 clock_gettime(CLOCK_MONOTONIC, &after);
1862 uint64_t time_elapsed =
1863 ((uint64_t)after.tv_sec * NSEC_PER_SEC + after.tv_nsec) -
1864 ((uint64_t)before.tv_sec * NSEC_PER_SEC + before.tv_nsec);
1865
1866 if (time_elapsed >= timeout) {
1867 pthread_mutex_unlock(&device->mutex);
1868 return VK_TIMEOUT;
1869 }
1870
1871 timeout -= time_elapsed;
1872 }
1873
1874 pthread_mutex_unlock(&device->mutex);
1875 }
1876 }
1877
1878 return VK_SUCCESS;
1879 }
1880
1881 // Queue semaphore functions
1882
1883 VkResult anv_CreateSemaphore(
1884 VkDevice device,
1885 const VkSemaphoreCreateInfo* pCreateInfo,
1886 const VkAllocationCallbacks* pAllocator,
1887 VkSemaphore* pSemaphore)
1888 {
1889 /* The DRM execbuffer ioctl always execute in-oder, even between different
1890 * rings. As such, there's nothing to do for the user space semaphore.
1891 */
1892
1893 *pSemaphore = (VkSemaphore)1;
1894
1895 return VK_SUCCESS;
1896 }
1897
1898 void anv_DestroySemaphore(
1899 VkDevice device,
1900 VkSemaphore semaphore,
1901 const VkAllocationCallbacks* pAllocator)
1902 {
1903 }
1904
1905 // Event functions
1906
1907 VkResult anv_CreateEvent(
1908 VkDevice _device,
1909 const VkEventCreateInfo* pCreateInfo,
1910 const VkAllocationCallbacks* pAllocator,
1911 VkEvent* pEvent)
1912 {
1913 ANV_FROM_HANDLE(anv_device, device, _device);
1914 struct anv_state state;
1915 struct anv_event *event;
1916
1917 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
1918
1919 state = anv_state_pool_alloc(&device->dynamic_state_pool,
1920 sizeof(*event), 8);
1921 event = state.map;
1922 event->state = state;
1923 event->semaphore = VK_EVENT_RESET;
1924
1925 if (!device->info.has_llc) {
1926 /* Make sure the writes we're flushing have landed. */
1927 __builtin_ia32_mfence();
1928 __builtin_ia32_clflush(event);
1929 }
1930
1931 *pEvent = anv_event_to_handle(event);
1932
1933 return VK_SUCCESS;
1934 }
1935
1936 void anv_DestroyEvent(
1937 VkDevice _device,
1938 VkEvent _event,
1939 const VkAllocationCallbacks* pAllocator)
1940 {
1941 ANV_FROM_HANDLE(anv_device, device, _device);
1942 ANV_FROM_HANDLE(anv_event, event, _event);
1943
1944 if (!event)
1945 return;
1946
1947 anv_state_pool_free(&device->dynamic_state_pool, event->state);
1948 }
1949
1950 VkResult anv_GetEventStatus(
1951 VkDevice _device,
1952 VkEvent _event)
1953 {
1954 ANV_FROM_HANDLE(anv_device, device, _device);
1955 ANV_FROM_HANDLE(anv_event, event, _event);
1956
1957 if (!device->info.has_llc) {
1958 /* Invalidate read cache before reading event written by GPU. */
1959 __builtin_ia32_clflush(event);
1960 __builtin_ia32_mfence();
1961
1962 }
1963
1964 return event->semaphore;
1965 }
1966
1967 VkResult anv_SetEvent(
1968 VkDevice _device,
1969 VkEvent _event)
1970 {
1971 ANV_FROM_HANDLE(anv_device, device, _device);
1972 ANV_FROM_HANDLE(anv_event, event, _event);
1973
1974 event->semaphore = VK_EVENT_SET;
1975
1976 if (!device->info.has_llc) {
1977 /* Make sure the writes we're flushing have landed. */
1978 __builtin_ia32_mfence();
1979 __builtin_ia32_clflush(event);
1980 }
1981
1982 return VK_SUCCESS;
1983 }
1984
1985 VkResult anv_ResetEvent(
1986 VkDevice _device,
1987 VkEvent _event)
1988 {
1989 ANV_FROM_HANDLE(anv_device, device, _device);
1990 ANV_FROM_HANDLE(anv_event, event, _event);
1991
1992 event->semaphore = VK_EVENT_RESET;
1993
1994 if (!device->info.has_llc) {
1995 /* Make sure the writes we're flushing have landed. */
1996 __builtin_ia32_mfence();
1997 __builtin_ia32_clflush(event);
1998 }
1999
2000 return VK_SUCCESS;
2001 }
2002
2003 // Buffer functions
2004
2005 VkResult anv_CreateBuffer(
2006 VkDevice _device,
2007 const VkBufferCreateInfo* pCreateInfo,
2008 const VkAllocationCallbacks* pAllocator,
2009 VkBuffer* pBuffer)
2010 {
2011 ANV_FROM_HANDLE(anv_device, device, _device);
2012 struct anv_buffer *buffer;
2013
2014 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
2015
2016 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
2017 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2018 if (buffer == NULL)
2019 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2020
2021 buffer->size = pCreateInfo->size;
2022 buffer->usage = pCreateInfo->usage;
2023 buffer->bo = NULL;
2024 buffer->offset = 0;
2025
2026 *pBuffer = anv_buffer_to_handle(buffer);
2027
2028 return VK_SUCCESS;
2029 }
2030
2031 void anv_DestroyBuffer(
2032 VkDevice _device,
2033 VkBuffer _buffer,
2034 const VkAllocationCallbacks* pAllocator)
2035 {
2036 ANV_FROM_HANDLE(anv_device, device, _device);
2037 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2038
2039 if (!buffer)
2040 return;
2041
2042 vk_free2(&device->alloc, pAllocator, buffer);
2043 }
2044
2045 void
2046 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
2047 enum isl_format format,
2048 uint32_t offset, uint32_t range, uint32_t stride)
2049 {
2050 isl_buffer_fill_state(&device->isl_dev, state.map,
2051 .address = offset,
2052 .mocs = device->default_mocs,
2053 .size = range,
2054 .format = format,
2055 .stride = stride);
2056
2057 anv_state_flush(device, state);
2058 }
2059
2060 void anv_DestroySampler(
2061 VkDevice _device,
2062 VkSampler _sampler,
2063 const VkAllocationCallbacks* pAllocator)
2064 {
2065 ANV_FROM_HANDLE(anv_device, device, _device);
2066 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
2067
2068 if (!sampler)
2069 return;
2070
2071 vk_free2(&device->alloc, pAllocator, sampler);
2072 }
2073
2074 VkResult anv_CreateFramebuffer(
2075 VkDevice _device,
2076 const VkFramebufferCreateInfo* pCreateInfo,
2077 const VkAllocationCallbacks* pAllocator,
2078 VkFramebuffer* pFramebuffer)
2079 {
2080 ANV_FROM_HANDLE(anv_device, device, _device);
2081 struct anv_framebuffer *framebuffer;
2082
2083 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2084
2085 size_t size = sizeof(*framebuffer) +
2086 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
2087 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
2088 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2089 if (framebuffer == NULL)
2090 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2091
2092 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2093 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2094 VkImageView _iview = pCreateInfo->pAttachments[i];
2095 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2096 }
2097
2098 framebuffer->width = pCreateInfo->width;
2099 framebuffer->height = pCreateInfo->height;
2100 framebuffer->layers = pCreateInfo->layers;
2101
2102 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2103
2104 return VK_SUCCESS;
2105 }
2106
2107 void anv_DestroyFramebuffer(
2108 VkDevice _device,
2109 VkFramebuffer _fb,
2110 const VkAllocationCallbacks* pAllocator)
2111 {
2112 ANV_FROM_HANDLE(anv_device, device, _device);
2113 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2114
2115 if (!fb)
2116 return;
2117
2118 vk_free2(&device->alloc, pAllocator, fb);
2119 }
2120
2121 /* vk_icd.h does not declare this function, so we declare it here to
2122 * suppress Wmissing-prototypes.
2123 */
2124 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2125 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
2126
2127 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2128 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
2129 {
2130 /* For the full details on loader interface versioning, see
2131 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
2132 * What follows is a condensed summary, to help you navigate the large and
2133 * confusing official doc.
2134 *
2135 * - Loader interface v0 is incompatible with later versions. We don't
2136 * support it.
2137 *
2138 * - In loader interface v1:
2139 * - The first ICD entrypoint called by the loader is
2140 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
2141 * entrypoint.
2142 * - The ICD must statically expose no other Vulkan symbol unless it is
2143 * linked with -Bsymbolic.
2144 * - Each dispatchable Vulkan handle created by the ICD must be
2145 * a pointer to a struct whose first member is VK_LOADER_DATA. The
2146 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
2147 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
2148 * vkDestroySurfaceKHR(). The ICD must be capable of working with
2149 * such loader-managed surfaces.
2150 *
2151 * - Loader interface v2 differs from v1 in:
2152 * - The first ICD entrypoint called by the loader is
2153 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
2154 * statically expose this entrypoint.
2155 *
2156 * - Loader interface v3 differs from v2 in:
2157 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
2158 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
2159 * because the loader no longer does so.
2160 */
2161 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
2162 return VK_SUCCESS;
2163 }