intel/isl: Add a unit suffixes to some struct fields and variables
[mesa.git] / src / intel / vulkan / anv_image.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 #include <sys/mman.h>
30 #include <drm_fourcc.h>
31
32 #include "anv_private.h"
33 #include "util/debug.h"
34 #include "vk_util.h"
35 #include "util/u_math.h"
36
37 #include "vk_format_info.h"
38
39 static isl_surf_usage_flags_t
40 choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,
41 VkImageUsageFlags vk_usage,
42 isl_surf_usage_flags_t isl_extra_usage,
43 VkImageAspectFlagBits aspect)
44 {
45 isl_surf_usage_flags_t isl_usage = isl_extra_usage;
46
47 if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
48 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
49
50 if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
51 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
52
53 if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
54 isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
55
56 if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
57 isl_usage |= ISL_SURF_USAGE_CUBE_BIT;
58
59 /* Even if we're only using it for transfer operations, clears to depth and
60 * stencil images happen as depth and stencil so they need the right ISL
61 * usage bits or else things will fall apart.
62 */
63 switch (aspect) {
64 case VK_IMAGE_ASPECT_DEPTH_BIT:
65 isl_usage |= ISL_SURF_USAGE_DEPTH_BIT;
66 break;
67 case VK_IMAGE_ASPECT_STENCIL_BIT:
68 isl_usage |= ISL_SURF_USAGE_STENCIL_BIT;
69 break;
70 case VK_IMAGE_ASPECT_COLOR_BIT:
71 case VK_IMAGE_ASPECT_PLANE_0_BIT:
72 case VK_IMAGE_ASPECT_PLANE_1_BIT:
73 case VK_IMAGE_ASPECT_PLANE_2_BIT:
74 break;
75 default:
76 unreachable("bad VkImageAspect");
77 }
78
79 if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) {
80 /* blorp implements transfers by sampling from the source image. */
81 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
82 }
83
84 if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT &&
85 aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
86 /* blorp implements transfers by rendering into the destination image.
87 * Only request this with color images, as we deal with depth/stencil
88 * formats differently. */
89 isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
90 }
91
92 return isl_usage;
93 }
94
95 static isl_tiling_flags_t
96 choose_isl_tiling_flags(const struct anv_image_create_info *anv_info,
97 const struct isl_drm_modifier_info *isl_mod_info,
98 bool legacy_scanout)
99 {
100 const VkImageCreateInfo *base_info = anv_info->vk_info;
101 isl_tiling_flags_t flags = 0;
102
103 switch (base_info->tiling) {
104 default:
105 unreachable("bad VkImageTiling");
106 case VK_IMAGE_TILING_OPTIMAL:
107 flags = ISL_TILING_ANY_MASK;
108 break;
109 case VK_IMAGE_TILING_LINEAR:
110 flags = ISL_TILING_LINEAR_BIT;
111 break;
112 }
113
114 if (anv_info->isl_tiling_flags)
115 flags &= anv_info->isl_tiling_flags;
116
117 if (legacy_scanout)
118 flags &= ISL_TILING_LINEAR_BIT | ISL_TILING_X_BIT;
119
120 if (isl_mod_info)
121 flags &= 1 << isl_mod_info->tiling;
122
123 assert(flags);
124
125 return flags;
126 }
127
128 static struct anv_surface *
129 get_surface(struct anv_image *image, VkImageAspectFlagBits aspect)
130 {
131 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
132 return &image->planes[plane].surface;
133 }
134
135 static void
136 add_surface(struct anv_image *image, struct anv_surface *surf, uint32_t plane)
137 {
138 assert(surf->isl.size_B > 0); /* isl surface must be initialized */
139
140 if (image->disjoint) {
141 surf->offset = align_u32(image->planes[plane].size,
142 surf->isl.alignment_B);
143 /* Plane offset is always 0 when it's disjoint. */
144 } else {
145 surf->offset = align_u32(image->size, surf->isl.alignment_B);
146 /* Determine plane's offset only once when the first surface is added. */
147 if (image->planes[plane].size == 0)
148 image->planes[plane].offset = image->size;
149 }
150
151 image->size = surf->offset + surf->isl.size_B;
152 image->planes[plane].size = (surf->offset + surf->isl.size_B) - image->planes[plane].offset;
153
154 image->alignment = MAX2(image->alignment, surf->isl.alignment_B);
155 image->planes[plane].alignment = MAX2(image->planes[plane].alignment,
156 surf->isl.alignment_B);
157 }
158
159
160 static bool
161 all_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
162 const struct VkImageCreateInfo *vk_info)
163 {
164 enum isl_format format =
165 anv_get_isl_format(devinfo, vk_info->format,
166 VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
167
168 if (!isl_format_supports_ccs_e(devinfo, format))
169 return false;
170
171 if (!(vk_info->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
172 return true;
173
174 const VkImageFormatListCreateInfoKHR *fmt_list =
175 vk_find_struct_const(vk_info->pNext, IMAGE_FORMAT_LIST_CREATE_INFO_KHR);
176
177 if (!fmt_list || fmt_list->viewFormatCount == 0)
178 return false;
179
180 for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
181 enum isl_format view_format =
182 anv_get_isl_format(devinfo, fmt_list->pViewFormats[i],
183 VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
184
185 if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format))
186 return false;
187 }
188
189 return true;
190 }
191
192 /**
193 * For color images that have an auxiliary surface, request allocation for an
194 * additional buffer that mainly stores fast-clear values. Use of this buffer
195 * allows us to access the image's subresources while being aware of their
196 * fast-clear values in non-trivial cases (e.g., outside of a render pass in
197 * which a fast clear has occurred).
198 *
199 * In order to avoid having multiple clear colors for a single plane of an
200 * image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on
201 * the first slice (level 0, layer 0). At the time of our testing (Jan 17,
202 * 2018), there were no known applications which would benefit from fast-
203 * clearing more than just the first slice.
204 *
205 * The fast clear portion of the image is laid out in the following order:
206 *
207 * * 1 or 4 dwords (depending on hardware generation) for the clear color
208 * * 1 dword for the anv_fast_clear_type of the clear color
209 * * On gen9+, 1 dword per level and layer of the image (3D levels count
210 * multiple layers) in level-major order for compression state.
211 *
212 * For the purpose of discoverability, the algorithm used to manage
213 * compression and fast-clears is described here:
214 *
215 * * On a transition from UNDEFINED or PREINITIALIZED to a defined layout,
216 * all of the values in the fast clear portion of the image are initialized
217 * to default values.
218 *
219 * * On fast-clear, the clear value is written into surface state and also
220 * into the buffer and the fast clear type is set appropriately. Both
221 * setting the fast-clear value in the buffer and setting the fast-clear
222 * type happen from the GPU using MI commands.
223 *
224 * * Whenever a render or blorp operation is performed with CCS_E, we call
225 * genX(cmd_buffer_mark_image_written) to set the compression state to
226 * true (which is represented by UINT32_MAX).
227 *
228 * * On pipeline barrier transitions, the worst-case transition is computed
229 * from the image layouts. The command streamer inspects the fast clear
230 * type and compression state dwords and constructs a predicate. The
231 * worst-case resolve is performed with the given predicate and the fast
232 * clear and compression state is set accordingly.
233 *
234 * See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for
235 * details on exactly what is allowed in what layouts.
236 *
237 * On gen7-9, we do not have a concept of indirect clear colors in hardware.
238 * In order to deal with this, we have to do some clear color management.
239 *
240 * * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear
241 * value from the buffer into the surface state with MI commands.
242 *
243 * * For any blorp operations, we pass the address to the clear value into
244 * blorp and it knows to copy the clear color.
245 */
246 static void
247 add_aux_state_tracking_buffer(struct anv_image *image,
248 VkImageAspectFlagBits aspect,
249 uint32_t plane,
250 const struct anv_device *device)
251 {
252 assert(image && device);
253 assert(image->planes[plane].aux_surface.isl.size_B > 0 &&
254 image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
255
256 /* Compressed images must be tiled and therefore everything should be 4K
257 * aligned. The CCS has the same alignment requirements. This is good
258 * because we need at least dword-alignment for MI_LOAD/STORE operations.
259 */
260 assert(image->alignment % 4 == 0);
261 assert((image->planes[plane].offset + image->planes[plane].size) % 4 == 0);
262
263 /* This buffer should be at the very end of the plane. */
264 if (image->disjoint) {
265 assert(image->planes[plane].size ==
266 (image->planes[plane].offset + image->planes[plane].size));
267 } else {
268 assert(image->size ==
269 (image->planes[plane].offset + image->planes[plane].size));
270 }
271
272 const unsigned clear_color_state_size = device->info.gen >= 10 ?
273 device->isl_dev.ss.clear_color_state_size :
274 device->isl_dev.ss.clear_value_size;
275
276 /* Clear color and fast clear type */
277 unsigned state_size = clear_color_state_size + 4;
278
279 /* We only need to track compression on CCS_E surfaces. */
280 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
281 if (image->type == VK_IMAGE_TYPE_3D) {
282 for (uint32_t l = 0; l < image->levels; l++)
283 state_size += anv_minify(image->extent.depth, l) * 4;
284 } else {
285 state_size += image->levels * image->array_size * 4;
286 }
287 }
288
289 image->planes[plane].fast_clear_state_offset =
290 image->planes[plane].offset + image->planes[plane].size;
291
292 image->planes[plane].size += state_size;
293 image->size += state_size;
294 }
295
296 /**
297 * Initialize the anv_image::*_surface selected by \a aspect. Then update the
298 * image's memory requirements (that is, the image's size and alignment).
299 */
300 static VkResult
301 make_surface(const struct anv_device *dev,
302 struct anv_image *image,
303 const struct anv_image_create_info *anv_info,
304 isl_tiling_flags_t tiling_flags,
305 VkImageAspectFlagBits aspect)
306 {
307 const VkImageCreateInfo *vk_info = anv_info->vk_info;
308 bool ok;
309
310 static const enum isl_surf_dim vk_to_isl_surf_dim[] = {
311 [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D,
312 [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D,
313 [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D,
314 };
315
316 image->extent = anv_sanitize_image_extent(vk_info->imageType,
317 vk_info->extent);
318
319 const unsigned plane = anv_image_aspect_to_plane(image->aspects, aspect);
320 const struct anv_format_plane plane_format =
321 anv_get_format_plane(&dev->info, image->vk_format, aspect, image->tiling);
322 struct anv_surface *anv_surf = &image->planes[plane].surface;
323
324 const isl_surf_usage_flags_t usage =
325 choose_isl_surf_usage(vk_info->flags, image->usage,
326 anv_info->isl_extra_usage_flags, aspect);
327
328 /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
329 * fall back to linear on Broadwell and earlier because we aren't
330 * guaranteed that we can handle offsets correctly. On Sky Lake, the
331 * horizontal and vertical alignments are sufficiently high that we can
332 * just use RENDER_SURFACE_STATE::X/Y Offset.
333 */
334 bool needs_shadow = false;
335 if (dev->info.gen <= 8 &&
336 (vk_info->flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT) &&
337 vk_info->tiling == VK_IMAGE_TILING_OPTIMAL) {
338 assert(isl_format_is_compressed(plane_format.isl_format));
339 tiling_flags = ISL_TILING_LINEAR_BIT;
340 needs_shadow = true;
341 }
342
343 ok = isl_surf_init(&dev->isl_dev, &anv_surf->isl,
344 .dim = vk_to_isl_surf_dim[vk_info->imageType],
345 .format = plane_format.isl_format,
346 .width = image->extent.width / plane_format.denominator_scales[0],
347 .height = image->extent.height / plane_format.denominator_scales[1],
348 .depth = image->extent.depth,
349 .levels = vk_info->mipLevels,
350 .array_len = vk_info->arrayLayers,
351 .samples = vk_info->samples,
352 .min_alignment_B = 0,
353 .row_pitch_B = anv_info->stride,
354 .usage = usage,
355 .tiling_flags = tiling_flags);
356
357 if (!ok)
358 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
359
360 image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE;
361
362 add_surface(image, anv_surf, plane);
363
364 /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
365 * create an identical tiled shadow surface for use while texturing so we
366 * don't get garbage performance.
367 */
368 if (needs_shadow) {
369 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
370 assert(tiling_flags == ISL_TILING_LINEAR_BIT);
371
372 ok = isl_surf_init(&dev->isl_dev, &image->planes[plane].shadow_surface.isl,
373 .dim = vk_to_isl_surf_dim[vk_info->imageType],
374 .format = plane_format.isl_format,
375 .width = image->extent.width,
376 .height = image->extent.height,
377 .depth = image->extent.depth,
378 .levels = vk_info->mipLevels,
379 .array_len = vk_info->arrayLayers,
380 .samples = vk_info->samples,
381 .min_alignment_B = 0,
382 .row_pitch_B = anv_info->stride,
383 .usage = usage,
384 .tiling_flags = ISL_TILING_ANY_MASK);
385
386 /* isl_surf_init() will fail only if provided invalid input. Invalid input
387 * is illegal in Vulkan.
388 */
389 assert(ok);
390
391 add_surface(image, &image->planes[plane].shadow_surface, plane);
392 }
393
394 /* Add a HiZ surface to a depth buffer that will be used for rendering.
395 */
396 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
397 /* We don't advertise that depth buffers could be used as storage
398 * images.
399 */
400 assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT));
401
402 /* Allow the user to control HiZ enabling. Disable by default on gen7
403 * because resolves are not currently implemented pre-BDW.
404 */
405 if (!(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
406 /* It will never be used as an attachment, HiZ is pointless. */
407 } else if (dev->info.gen == 7) {
408 anv_perf_warn(dev->instance, image, "Implement gen7 HiZ");
409 } else if (vk_info->mipLevels > 1) {
410 anv_perf_warn(dev->instance, image, "Enable multi-LOD HiZ");
411 } else if (vk_info->arrayLayers > 1) {
412 anv_perf_warn(dev->instance, image,
413 "Implement multi-arrayLayer HiZ clears and resolves");
414 } else if (dev->info.gen == 8 && vk_info->samples > 1) {
415 anv_perf_warn(dev->instance, image, "Enable gen8 multisampled HiZ");
416 } else if (!unlikely(INTEL_DEBUG & DEBUG_NO_HIZ)) {
417 assert(image->planes[plane].aux_surface.isl.size_B == 0);
418 ok = isl_surf_get_hiz_surf(&dev->isl_dev,
419 &image->planes[plane].surface.isl,
420 &image->planes[plane].aux_surface.isl);
421 assert(ok);
422 add_surface(image, &image->planes[plane].aux_surface, plane);
423 image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ;
424 }
425 } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples == 1) {
426 /* TODO: Disallow compression with :
427 *
428 * 1) non multiplanar images (We appear to hit a sampler bug with
429 * CCS & R16G16 format. Putting the clear state a page/4096bytes
430 * further fixes the issue).
431 *
432 * 2) alias images, because they might be aliases of images
433 * described in 1)
434 *
435 * 3) compression disabled by debug
436 */
437 const bool allow_compression =
438 image->n_planes == 1 &&
439 (vk_info->flags & VK_IMAGE_CREATE_ALIAS_BIT) == 0 &&
440 likely((INTEL_DEBUG & DEBUG_NO_RBC) == 0);
441
442 if (allow_compression) {
443 assert(image->planes[plane].aux_surface.isl.size_B == 0);
444 ok = isl_surf_get_ccs_surf(&dev->isl_dev,
445 &image->planes[plane].surface.isl,
446 &image->planes[plane].aux_surface.isl, 0);
447 if (ok) {
448
449 /* Disable CCS when it is not useful (i.e., when you can't render
450 * to the image with CCS enabled).
451 */
452 if (!isl_format_supports_rendering(&dev->info,
453 plane_format.isl_format)) {
454 /* While it may be technically possible to enable CCS for this
455 * image, we currently don't have things hooked up to get it
456 * working.
457 */
458 anv_perf_warn(dev->instance, image,
459 "This image format doesn't support rendering. "
460 "Not allocating an CCS buffer.");
461 image->planes[plane].aux_surface.isl.size_B = 0;
462 return VK_SUCCESS;
463 }
464
465 add_surface(image, &image->planes[plane].aux_surface, plane);
466 add_aux_state_tracking_buffer(image, aspect, plane, dev);
467
468 /* For images created without MUTABLE_FORMAT_BIT set, we know that
469 * they will always be used with the original format. In
470 * particular, they will always be used with a format that
471 * supports color compression. If it's never used as a storage
472 * image, then it will only be used through the sampler or the as
473 * a render target. This means that it's safe to just leave
474 * compression on at all times for these formats.
475 */
476 if (!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT) &&
477 all_formats_ccs_e_compatible(&dev->info, vk_info)) {
478 image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E;
479 }
480 }
481 }
482 } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples > 1) {
483 assert(!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT));
484 assert(image->planes[plane].aux_surface.isl.size_B == 0);
485 ok = isl_surf_get_mcs_surf(&dev->isl_dev,
486 &image->planes[plane].surface.isl,
487 &image->planes[plane].aux_surface.isl);
488 if (ok) {
489 add_surface(image, &image->planes[plane].aux_surface, plane);
490 add_aux_state_tracking_buffer(image, aspect, plane, dev);
491 image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS;
492 }
493 }
494
495 assert((image->planes[plane].offset + image->planes[plane].size) == image->size);
496
497 /* Upper bound of the last surface should be smaller than the plane's
498 * size.
499 */
500 assert((MAX2(image->planes[plane].surface.offset,
501 image->planes[plane].aux_surface.offset) +
502 (image->planes[plane].aux_surface.isl.size_B > 0 ?
503 image->planes[plane].aux_surface.isl.size_B :
504 image->planes[plane].surface.isl.size_B)) <=
505 (image->planes[plane].offset + image->planes[plane].size));
506
507 if (image->planes[plane].aux_surface.isl.size_B) {
508 /* assert(image->planes[plane].fast_clear_state_offset == */
509 /* (image->planes[plane].aux_surface.offset + image->planes[plane].aux_surface.isl.size_B)); */
510 assert(image->planes[plane].fast_clear_state_offset <
511 (image->planes[plane].offset + image->planes[plane].size));
512 }
513
514 return VK_SUCCESS;
515 }
516
517 static uint32_t
518 score_drm_format_mod(uint64_t modifier)
519 {
520 switch (modifier) {
521 case DRM_FORMAT_MOD_LINEAR: return 1;
522 case I915_FORMAT_MOD_X_TILED: return 2;
523 case I915_FORMAT_MOD_Y_TILED: return 3;
524 case I915_FORMAT_MOD_Y_TILED_CCS: return 4;
525 default: unreachable("bad DRM format modifier");
526 }
527 }
528
529 static const struct isl_drm_modifier_info *
530 choose_drm_format_mod(const struct anv_physical_device *device,
531 uint32_t modifier_count, const uint64_t *modifiers)
532 {
533 uint64_t best_mod = UINT64_MAX;
534 uint32_t best_score = 0;
535
536 for (uint32_t i = 0; i < modifier_count; ++i) {
537 uint32_t score = score_drm_format_mod(modifiers[i]);
538 if (score > best_score) {
539 best_mod = modifiers[i];
540 best_score = score;
541 }
542 }
543
544 if (best_score > 0)
545 return isl_drm_modifier_get_info(best_mod);
546 else
547 return NULL;
548 }
549
550 VkResult
551 anv_image_create(VkDevice _device,
552 const struct anv_image_create_info *create_info,
553 const VkAllocationCallbacks* alloc,
554 VkImage *pImage)
555 {
556 ANV_FROM_HANDLE(anv_device, device, _device);
557 const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
558 const struct isl_drm_modifier_info *isl_mod_info = NULL;
559 struct anv_image *image = NULL;
560 VkResult r;
561
562 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO);
563
564 const struct wsi_image_create_info *wsi_info =
565 vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA);
566 if (wsi_info && wsi_info->modifier_count > 0) {
567 isl_mod_info = choose_drm_format_mod(&device->instance->physicalDevice,
568 wsi_info->modifier_count,
569 wsi_info->modifiers);
570 assert(isl_mod_info);
571 }
572
573 anv_assert(pCreateInfo->mipLevels > 0);
574 anv_assert(pCreateInfo->arrayLayers > 0);
575 anv_assert(pCreateInfo->samples > 0);
576 anv_assert(pCreateInfo->extent.width > 0);
577 anv_assert(pCreateInfo->extent.height > 0);
578 anv_assert(pCreateInfo->extent.depth > 0);
579
580 image = vk_zalloc2(&device->alloc, alloc, sizeof(*image), 8,
581 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
582 if (!image)
583 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
584
585 image->type = pCreateInfo->imageType;
586 image->extent = pCreateInfo->extent;
587 image->vk_format = pCreateInfo->format;
588 image->format = anv_get_format(pCreateInfo->format);
589 image->aspects = vk_format_aspects(image->vk_format);
590 image->levels = pCreateInfo->mipLevels;
591 image->array_size = pCreateInfo->arrayLayers;
592 image->samples = pCreateInfo->samples;
593 image->usage = pCreateInfo->usage;
594 image->tiling = pCreateInfo->tiling;
595 image->disjoint = pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT;
596 image->needs_set_tiling = wsi_info && wsi_info->scanout;
597 image->drm_format_mod = isl_mod_info ? isl_mod_info->modifier :
598 DRM_FORMAT_MOD_INVALID;
599
600 const struct anv_format *format = anv_get_format(image->vk_format);
601 assert(format != NULL);
602
603 const isl_tiling_flags_t isl_tiling_flags =
604 choose_isl_tiling_flags(create_info, isl_mod_info,
605 image->needs_set_tiling);
606
607 image->n_planes = format->n_planes;
608
609 uint32_t b;
610 for_each_bit(b, image->aspects) {
611 r = make_surface(device, image, create_info, isl_tiling_flags,
612 (1 << b));
613 if (r != VK_SUCCESS)
614 goto fail;
615 }
616
617 *pImage = anv_image_to_handle(image);
618
619 return VK_SUCCESS;
620
621 fail:
622 if (image)
623 vk_free2(&device->alloc, alloc, image);
624
625 return r;
626 }
627
628 VkResult
629 anv_CreateImage(VkDevice device,
630 const VkImageCreateInfo *pCreateInfo,
631 const VkAllocationCallbacks *pAllocator,
632 VkImage *pImage)
633 {
634 #ifdef ANDROID
635 const VkNativeBufferANDROID *gralloc_info =
636 vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
637
638 if (gralloc_info)
639 return anv_image_from_gralloc(device, pCreateInfo, gralloc_info,
640 pAllocator, pImage);
641 #endif
642
643 return anv_image_create(device,
644 &(struct anv_image_create_info) {
645 .vk_info = pCreateInfo,
646 },
647 pAllocator,
648 pImage);
649 }
650
651 void
652 anv_DestroyImage(VkDevice _device, VkImage _image,
653 const VkAllocationCallbacks *pAllocator)
654 {
655 ANV_FROM_HANDLE(anv_device, device, _device);
656 ANV_FROM_HANDLE(anv_image, image, _image);
657
658 if (!image)
659 return;
660
661 for (uint32_t p = 0; p < image->n_planes; ++p) {
662 if (image->planes[p].bo_is_owned) {
663 assert(image->planes[p].address.bo != NULL);
664 anv_bo_cache_release(device, &device->bo_cache,
665 image->planes[p].address.bo);
666 }
667 }
668
669 vk_free2(&device->alloc, pAllocator, image);
670 }
671
672 static void anv_image_bind_memory_plane(struct anv_device *device,
673 struct anv_image *image,
674 uint32_t plane,
675 struct anv_device_memory *memory,
676 uint32_t memory_offset)
677 {
678 assert(!image->planes[plane].bo_is_owned);
679
680 if (!memory) {
681 image->planes[plane].address = ANV_NULL_ADDRESS;
682 return;
683 }
684
685 image->planes[plane].address = (struct anv_address) {
686 .bo = memory->bo,
687 .offset = memory_offset,
688 };
689 }
690
691 VkResult anv_BindImageMemory(
692 VkDevice _device,
693 VkImage _image,
694 VkDeviceMemory _memory,
695 VkDeviceSize memoryOffset)
696 {
697 ANV_FROM_HANDLE(anv_device, device, _device);
698 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
699 ANV_FROM_HANDLE(anv_image, image, _image);
700
701 uint32_t aspect_bit;
702 anv_foreach_image_aspect_bit(aspect_bit, image, image->aspects) {
703 uint32_t plane =
704 anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
705 anv_image_bind_memory_plane(device, image, plane, mem, memoryOffset);
706 }
707
708 return VK_SUCCESS;
709 }
710
711 VkResult anv_BindImageMemory2(
712 VkDevice _device,
713 uint32_t bindInfoCount,
714 const VkBindImageMemoryInfo* pBindInfos)
715 {
716 ANV_FROM_HANDLE(anv_device, device, _device);
717
718 for (uint32_t i = 0; i < bindInfoCount; i++) {
719 const VkBindImageMemoryInfo *bind_info = &pBindInfos[i];
720 ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory);
721 ANV_FROM_HANDLE(anv_image, image, bind_info->image);
722 VkImageAspectFlags aspects = image->aspects;
723
724 vk_foreach_struct_const(s, bind_info->pNext) {
725 switch (s->sType) {
726 case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO: {
727 const VkBindImagePlaneMemoryInfo *plane_info =
728 (const VkBindImagePlaneMemoryInfo *) s;
729
730 aspects = plane_info->planeAspect;
731 break;
732 }
733 default:
734 anv_debug_ignored_stype(s->sType);
735 break;
736 }
737 }
738
739 uint32_t aspect_bit;
740 anv_foreach_image_aspect_bit(aspect_bit, image, aspects) {
741 uint32_t plane =
742 anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
743 anv_image_bind_memory_plane(device, image, plane,
744 mem, bind_info->memoryOffset);
745 }
746 }
747
748 return VK_SUCCESS;
749 }
750
751 void anv_GetImageSubresourceLayout(
752 VkDevice device,
753 VkImage _image,
754 const VkImageSubresource* subresource,
755 VkSubresourceLayout* layout)
756 {
757 ANV_FROM_HANDLE(anv_image, image, _image);
758
759 const struct anv_surface *surface;
760 if (subresource->aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT_KHR &&
761 image->drm_format_mod != DRM_FORMAT_MOD_INVALID &&
762 isl_drm_modifier_has_aux(image->drm_format_mod))
763 surface = &image->planes[0].aux_surface;
764 else
765 surface = get_surface(image, subresource->aspectMask);
766
767 assert(__builtin_popcount(subresource->aspectMask) == 1);
768
769 layout->offset = surface->offset;
770 layout->rowPitch = surface->isl.row_pitch_B;
771 layout->depthPitch = isl_surf_get_array_pitch(&surface->isl);
772 layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl);
773
774 if (subresource->mipLevel > 0 || subresource->arrayLayer > 0) {
775 assert(surface->isl.tiling == ISL_TILING_LINEAR);
776
777 uint32_t offset_B;
778 isl_surf_get_image_offset_B_tile_sa(&surface->isl,
779 subresource->mipLevel,
780 subresource->arrayLayer,
781 0 /* logical_z_offset_px */,
782 &offset_B, NULL, NULL);
783 layout->offset += offset_B;
784 layout->size = layout->rowPitch * anv_minify(image->extent.height,
785 subresource->mipLevel);
786 } else {
787 layout->size = surface->isl.size_B;
788 }
789 }
790
791 /**
792 * This function determines the optimal buffer to use for a given
793 * VkImageLayout and other pieces of information needed to make that
794 * determination. This does not determine the optimal buffer to use
795 * during a resolve operation.
796 *
797 * @param devinfo The device information of the Intel GPU.
798 * @param image The image that may contain a collection of buffers.
799 * @param aspect The aspect of the image to be accessed.
800 * @param layout The current layout of the image aspect(s).
801 *
802 * @return The primary buffer that should be used for the given layout.
803 */
804 enum isl_aux_usage
805 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
806 const struct anv_image * const image,
807 const VkImageAspectFlagBits aspect,
808 const VkImageLayout layout)
809 {
810 /* Validate the inputs. */
811
812 /* The devinfo is needed as the optimal buffer varies across generations. */
813 assert(devinfo != NULL);
814
815 /* The layout of a NULL image is not properly defined. */
816 assert(image != NULL);
817
818 /* The aspect must be exactly one of the image aspects. */
819 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
820
821 /* Determine the optimal buffer. */
822
823 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
824
825 /* If there is no auxiliary surface allocated, we must use the one and only
826 * main buffer.
827 */
828 if (image->planes[plane].aux_surface.isl.size_B == 0)
829 return ISL_AUX_USAGE_NONE;
830
831 /* All images that use an auxiliary surface are required to be tiled. */
832 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
833
834 /* Stencil has no aux */
835 assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
836
837 switch (layout) {
838
839 /* Invalid Layouts */
840 case VK_IMAGE_LAYOUT_RANGE_SIZE:
841 case VK_IMAGE_LAYOUT_MAX_ENUM:
842 unreachable("Invalid image layout.");
843
844 /* Undefined layouts
845 *
846 * The pre-initialized layout is equivalent to the undefined layout for
847 * optimally-tiled images. We can only do color compression (CCS or HiZ)
848 * on tiled images.
849 */
850 case VK_IMAGE_LAYOUT_UNDEFINED:
851 case VK_IMAGE_LAYOUT_PREINITIALIZED:
852 return ISL_AUX_USAGE_NONE;
853
854
855 /* Transfer Layouts
856 */
857 case VK_IMAGE_LAYOUT_GENERAL:
858 case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
859 case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
860 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
861 /* This buffer could be a depth buffer used in a transfer operation.
862 * BLORP currently doesn't use HiZ for transfer operations so we must
863 * use the main buffer for this layout. TODO: Enable HiZ in BLORP.
864 */
865 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_HIZ);
866 return ISL_AUX_USAGE_NONE;
867 } else {
868 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
869 return image->planes[plane].aux_usage;
870 }
871
872
873 /* Sampling Layouts */
874 case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
875 case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL:
876 assert((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
877 /* Fall-through */
878 case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
879 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
880 if (anv_can_sample_with_hiz(devinfo, image))
881 return ISL_AUX_USAGE_HIZ;
882 else
883 return ISL_AUX_USAGE_NONE;
884 } else {
885 return image->planes[plane].aux_usage;
886 }
887
888
889 case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
890 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
891
892 /* When handing the image off to the presentation engine, we need to
893 * ensure that things are properly resolved. For images with no
894 * modifier, we assume that they follow the old rules and always need
895 * a full resolve because the PE doesn't understand any form of
896 * compression. For images with modifiers, we use the aux usage from
897 * the modifier.
898 */
899 const struct isl_drm_modifier_info *mod_info =
900 isl_drm_modifier_get_info(image->drm_format_mod);
901 return mod_info ? mod_info->aux_usage : ISL_AUX_USAGE_NONE;
902 }
903
904
905 /* Rendering Layouts */
906 case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
907 assert(aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
908 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) {
909 assert(image->samples == 1);
910 return ISL_AUX_USAGE_CCS_D;
911 } else {
912 assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_D);
913 return image->planes[plane].aux_usage;
914 }
915
916 case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
917 case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL:
918 assert(aspect == VK_IMAGE_ASPECT_DEPTH_BIT);
919 return ISL_AUX_USAGE_HIZ;
920
921 case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
922 unreachable("VK_KHR_shared_presentable_image is unsupported");
923 }
924
925 /* If the layout isn't recognized in the exhaustive switch above, the
926 * VkImageLayout value is not defined in vulkan.h.
927 */
928 unreachable("layout is not a VkImageLayout enumeration member.");
929 }
930
931 /**
932 * This function returns the level of unresolved fast-clear support of the
933 * given image in the given VkImageLayout.
934 *
935 * @param devinfo The device information of the Intel GPU.
936 * @param image The image that may contain a collection of buffers.
937 * @param aspect The aspect of the image to be accessed.
938 * @param layout The current layout of the image aspect(s).
939 */
940 enum anv_fast_clear_type
941 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
942 const struct anv_image * const image,
943 const VkImageAspectFlagBits aspect,
944 const VkImageLayout layout)
945 {
946 /* The aspect must be exactly one of the image aspects. */
947 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
948
949 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
950
951 /* If there is no auxiliary surface allocated, there are no fast-clears */
952 if (image->planes[plane].aux_surface.isl.size_B == 0)
953 return ANV_FAST_CLEAR_NONE;
954
955 /* All images that use an auxiliary surface are required to be tiled. */
956 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
957
958 /* Stencil has no aux */
959 assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
960
961 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
962 /* For depth images (with HiZ), the layout supports fast-clears if and
963 * only if it supports HiZ. However, we only support fast-clears to the
964 * default depth value.
965 */
966 enum isl_aux_usage aux_usage =
967 anv_layout_to_aux_usage(devinfo, image, aspect, layout);
968 return aux_usage == ISL_AUX_USAGE_HIZ ?
969 ANV_FAST_CLEAR_DEFAULT_VALUE : ANV_FAST_CLEAR_NONE;
970 }
971
972 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
973
974 /* We don't support MSAA fast-clears on Ivybridge or Bay Trail because they
975 * lack the MI ALU which we need to determine the predicates.
976 */
977 if (devinfo->gen == 7 && !devinfo->is_haswell && image->samples > 1)
978 return ANV_FAST_CLEAR_NONE;
979
980 switch (layout) {
981 case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
982 return ANV_FAST_CLEAR_ANY;
983
984 case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
985 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
986 #ifndef NDEBUG
987 /* We do not yet support any modifiers which support clear color so we
988 * just always return NONE. One day, this will change.
989 */
990 const struct isl_drm_modifier_info *mod_info =
991 isl_drm_modifier_get_info(image->drm_format_mod);
992 assert(!mod_info || !mod_info->supports_clear_color);
993 #endif
994 return ANV_FAST_CLEAR_NONE;
995 }
996
997 default:
998 /* If the image has MCS or CCS_E enabled all the time then we can use
999 * fast-clear as long as the clear color is the default value of zero
1000 * since this is the default value we program into every surface state
1001 * used for texturing.
1002 */
1003 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_MCS ||
1004 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E)
1005 return ANV_FAST_CLEAR_DEFAULT_VALUE;
1006 else
1007 return ANV_FAST_CLEAR_NONE;
1008 }
1009 }
1010
1011
1012 static struct anv_state
1013 alloc_surface_state(struct anv_device *device)
1014 {
1015 return anv_state_pool_alloc(&device->surface_state_pool, 64, 64);
1016 }
1017
1018 static enum isl_channel_select
1019 remap_swizzle(VkComponentSwizzle swizzle, VkComponentSwizzle component,
1020 struct isl_swizzle format_swizzle)
1021 {
1022 if (swizzle == VK_COMPONENT_SWIZZLE_IDENTITY)
1023 swizzle = component;
1024
1025 switch (swizzle) {
1026 case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO;
1027 case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE;
1028 case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r;
1029 case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g;
1030 case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b;
1031 case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a;
1032 default:
1033 unreachable("Invalid swizzle");
1034 }
1035 }
1036
1037 void
1038 anv_image_fill_surface_state(struct anv_device *device,
1039 const struct anv_image *image,
1040 VkImageAspectFlagBits aspect,
1041 const struct isl_view *view_in,
1042 isl_surf_usage_flags_t view_usage,
1043 enum isl_aux_usage aux_usage,
1044 const union isl_color_value *clear_color,
1045 enum anv_image_view_state_flags flags,
1046 struct anv_surface_state *state_inout,
1047 struct brw_image_param *image_param_out)
1048 {
1049 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1050
1051 const struct anv_surface *surface = &image->planes[plane].surface,
1052 *aux_surface = &image->planes[plane].aux_surface;
1053
1054 struct isl_view view = *view_in;
1055 view.usage |= view_usage;
1056
1057 /* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a
1058 * compressed surface with a shadow surface, we use the shadow instead of
1059 * the primary surface. The shadow surface will be tiled, unlike the main
1060 * surface, so it should get significantly better performance.
1061 */
1062 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1063 isl_format_is_compressed(view.format) &&
1064 (flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) {
1065 assert(isl_format_is_compressed(surface->isl.format));
1066 assert(surface->isl.tiling == ISL_TILING_LINEAR);
1067 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1068 surface = &image->planes[plane].shadow_surface;
1069 }
1070
1071 if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
1072 view.swizzle = anv_swizzle_for_render(view.swizzle);
1073
1074 /* If this is a HiZ buffer we can sample from with a programmable clear
1075 * value (SKL+), define the clear value to the optimal constant.
1076 */
1077 union isl_color_value default_clear_color = { .u32 = { 0, } };
1078 if (device->info.gen >= 9 && aux_usage == ISL_AUX_USAGE_HIZ)
1079 default_clear_color.f32[0] = ANV_HZ_FC_VAL;
1080 if (!clear_color)
1081 clear_color = &default_clear_color;
1082
1083 const struct anv_address address =
1084 anv_address_add(image->planes[plane].address, surface->offset);
1085
1086 if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
1087 !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY) &&
1088 !isl_has_matching_typed_storage_image_format(&device->info,
1089 view.format)) {
1090 /* In this case, we are a writeable storage buffer which needs to be
1091 * lowered to linear. All tiling and offset calculations will be done in
1092 * the shader.
1093 */
1094 assert(aux_usage == ISL_AUX_USAGE_NONE);
1095 isl_buffer_fill_state(&device->isl_dev, state_inout->state.map,
1096 .address = anv_address_physical(address),
1097 .size_B = surface->isl.size_B,
1098 .format = ISL_FORMAT_RAW,
1099 .stride_B = 1,
1100 .mocs = device->default_mocs);
1101 state_inout->address = address,
1102 state_inout->aux_address = ANV_NULL_ADDRESS;
1103 state_inout->clear_address = ANV_NULL_ADDRESS;
1104 } else {
1105 if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
1106 !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY)) {
1107 /* Typed surface reads support a very limited subset of the shader
1108 * image formats. Translate it into the closest format the hardware
1109 * supports.
1110 */
1111 assert(aux_usage == ISL_AUX_USAGE_NONE);
1112 view.format = isl_lower_storage_image_format(&device->info,
1113 view.format);
1114 }
1115
1116 const struct isl_surf *isl_surf = &surface->isl;
1117
1118 struct isl_surf tmp_surf;
1119 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
1120 if (isl_format_is_compressed(surface->isl.format) &&
1121 !isl_format_is_compressed(view.format)) {
1122 /* We're creating an uncompressed view of a compressed surface. This
1123 * is allowed but only for a single level/layer.
1124 */
1125 assert(surface->isl.samples == 1);
1126 assert(view.levels == 1);
1127 assert(view.array_len == 1);
1128
1129 isl_surf_get_image_surf(&device->isl_dev, isl_surf,
1130 view.base_level,
1131 surface->isl.dim == ISL_SURF_DIM_3D ?
1132 0 : view.base_array_layer,
1133 surface->isl.dim == ISL_SURF_DIM_3D ?
1134 view.base_array_layer : 0,
1135 &tmp_surf,
1136 &offset_B, &tile_x_sa, &tile_y_sa);
1137
1138 /* The newly created image represents the one subimage we're
1139 * referencing with this view so it only has one array slice and
1140 * miplevel.
1141 */
1142 view.base_array_layer = 0;
1143 view.base_level = 0;
1144
1145 /* We're making an uncompressed view here. The image dimensions need
1146 * to be scaled down by the block size.
1147 */
1148 const struct isl_format_layout *fmtl =
1149 isl_format_get_layout(surface->isl.format);
1150 tmp_surf.format = view.format;
1151 tmp_surf.logical_level0_px.width =
1152 DIV_ROUND_UP(tmp_surf.logical_level0_px.width, fmtl->bw);
1153 tmp_surf.logical_level0_px.height =
1154 DIV_ROUND_UP(tmp_surf.logical_level0_px.height, fmtl->bh);
1155 tmp_surf.phys_level0_sa.width /= fmtl->bw;
1156 tmp_surf.phys_level0_sa.height /= fmtl->bh;
1157 tile_x_sa /= fmtl->bw;
1158 tile_y_sa /= fmtl->bh;
1159
1160 isl_surf = &tmp_surf;
1161
1162 if (device->info.gen <= 8) {
1163 assert(surface->isl.tiling == ISL_TILING_LINEAR);
1164 assert(tile_x_sa == 0);
1165 assert(tile_y_sa == 0);
1166 }
1167 }
1168
1169 state_inout->address = anv_address_add(address, offset_B);
1170
1171 struct anv_address aux_address = ANV_NULL_ADDRESS;
1172 if (aux_usage != ISL_AUX_USAGE_NONE) {
1173 aux_address = anv_address_add(image->planes[plane].address,
1174 aux_surface->offset);
1175 }
1176 state_inout->aux_address = aux_address;
1177
1178 struct anv_address clear_address = ANV_NULL_ADDRESS;
1179 if (device->info.gen >= 10 && aux_usage != ISL_AUX_USAGE_NONE) {
1180 if (aux_usage == ISL_AUX_USAGE_HIZ) {
1181 clear_address = (struct anv_address) {
1182 .bo = &device->hiz_clear_bo,
1183 .offset = 0,
1184 };
1185 } else {
1186 clear_address = anv_image_get_clear_color_addr(device, image, aspect);
1187 }
1188 }
1189 state_inout->clear_address = clear_address;
1190
1191 isl_surf_fill_state(&device->isl_dev, state_inout->state.map,
1192 .surf = isl_surf,
1193 .view = &view,
1194 .address = anv_address_physical(state_inout->address),
1195 .clear_color = *clear_color,
1196 .aux_surf = &aux_surface->isl,
1197 .aux_usage = aux_usage,
1198 .aux_address = anv_address_physical(aux_address),
1199 .clear_address = anv_address_physical(clear_address),
1200 .use_clear_address = !anv_address_is_null(clear_address),
1201 .mocs = device->default_mocs,
1202 .x_offset_sa = tile_x_sa,
1203 .y_offset_sa = tile_y_sa);
1204
1205 /* With the exception of gen8, the bottom 12 bits of the MCS base address
1206 * are used to store other information. This should be ok, however,
1207 * because the surface buffer addresses are always 4K page aligned.
1208 */
1209 uint32_t *aux_addr_dw = state_inout->state.map +
1210 device->isl_dev.ss.aux_addr_offset;
1211 assert((aux_address.offset & 0xfff) == 0);
1212 state_inout->aux_address.offset |= *aux_addr_dw & 0xfff;
1213
1214 if (device->info.gen >= 10 && clear_address.bo) {
1215 uint32_t *clear_addr_dw = state_inout->state.map +
1216 device->isl_dev.ss.clear_color_state_offset;
1217 assert((clear_address.offset & 0x3f) == 0);
1218 state_inout->clear_address.offset |= *clear_addr_dw & 0x3f;
1219 }
1220 }
1221
1222 anv_state_flush(device, state_inout->state);
1223
1224 if (image_param_out) {
1225 assert(view_usage == ISL_SURF_USAGE_STORAGE_BIT);
1226 isl_surf_fill_image_param(&device->isl_dev, image_param_out,
1227 &surface->isl, &view);
1228 }
1229 }
1230
1231 static VkImageAspectFlags
1232 remap_aspect_flags(VkImageAspectFlags view_aspects)
1233 {
1234 if (view_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1235 if (util_bitcount(view_aspects) == 1)
1236 return VK_IMAGE_ASPECT_COLOR_BIT;
1237
1238 VkImageAspectFlags color_aspects = 0;
1239 for (uint32_t i = 0; i < util_bitcount(view_aspects); i++)
1240 color_aspects |= VK_IMAGE_ASPECT_PLANE_0_BIT << i;
1241 return color_aspects;
1242 }
1243 /* No special remapping needed for depth & stencil aspects. */
1244 return view_aspects;
1245 }
1246
1247 VkResult
1248 anv_CreateImageView(VkDevice _device,
1249 const VkImageViewCreateInfo *pCreateInfo,
1250 const VkAllocationCallbacks *pAllocator,
1251 VkImageView *pView)
1252 {
1253 ANV_FROM_HANDLE(anv_device, device, _device);
1254 ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
1255 struct anv_image_view *iview;
1256
1257 iview = vk_zalloc2(&device->alloc, pAllocator, sizeof(*iview), 8,
1258 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1259 if (iview == NULL)
1260 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1261
1262 const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
1263
1264 assert(range->layerCount > 0);
1265 assert(range->baseMipLevel < image->levels);
1266
1267 const VkImageViewUsageCreateInfo *usage_info =
1268 vk_find_struct_const(pCreateInfo, IMAGE_VIEW_USAGE_CREATE_INFO);
1269 VkImageUsageFlags view_usage = usage_info ? usage_info->usage : image->usage;
1270 /* View usage should be a subset of image usage */
1271 assert((view_usage & ~image->usage) == 0);
1272 assert(view_usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
1273 VK_IMAGE_USAGE_STORAGE_BIT |
1274 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
1275 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT |
1276 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT));
1277
1278 switch (image->type) {
1279 default:
1280 unreachable("bad VkImageType");
1281 case VK_IMAGE_TYPE_1D:
1282 case VK_IMAGE_TYPE_2D:
1283 assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= image->array_size);
1284 break;
1285 case VK_IMAGE_TYPE_3D:
1286 assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1
1287 <= anv_minify(image->extent.depth, range->baseMipLevel));
1288 break;
1289 }
1290
1291 /* First expand aspects to the image's ones (for example
1292 * VK_IMAGE_ASPECT_COLOR_BIT will be converted to
1293 * VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT |
1294 * VK_IMAGE_ASPECT_PLANE_2_BIT for an image of format
1295 * VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR.
1296 */
1297 VkImageAspectFlags expanded_aspects =
1298 anv_image_expand_aspects(image, range->aspectMask);
1299
1300 iview->image = image;
1301
1302 /* Remap the expanded aspects for the image view. For example if only
1303 * VK_IMAGE_ASPECT_PLANE_1_BIT was given in range->aspectMask, we will
1304 * convert it to VK_IMAGE_ASPECT_COLOR_BIT since from the point of view of
1305 * the image view, it only has a single plane.
1306 */
1307 iview->aspect_mask = remap_aspect_flags(expanded_aspects);
1308 iview->n_planes = anv_image_aspect_get_planes(iview->aspect_mask);
1309 iview->vk_format = pCreateInfo->format;
1310
1311 iview->extent = (VkExtent3D) {
1312 .width = anv_minify(image->extent.width , range->baseMipLevel),
1313 .height = anv_minify(image->extent.height, range->baseMipLevel),
1314 .depth = anv_minify(image->extent.depth , range->baseMipLevel),
1315 };
1316
1317 /* Now go through the underlying image selected planes (computed in
1318 * expanded_aspects) and map them to planes in the image view.
1319 */
1320 uint32_t iaspect_bit, vplane = 0;
1321 anv_foreach_image_aspect_bit(iaspect_bit, image, expanded_aspects) {
1322 uint32_t iplane =
1323 anv_image_aspect_to_plane(expanded_aspects, 1UL << iaspect_bit);
1324 VkImageAspectFlags vplane_aspect =
1325 anv_plane_to_aspect(iview->aspect_mask, vplane);
1326 struct anv_format_plane format =
1327 anv_get_format_plane(&device->info, pCreateInfo->format,
1328 vplane_aspect, image->tiling);
1329
1330 iview->planes[vplane].image_plane = iplane;
1331
1332 iview->planes[vplane].isl = (struct isl_view) {
1333 .format = format.isl_format,
1334 .base_level = range->baseMipLevel,
1335 .levels = anv_get_levelCount(image, range),
1336 .base_array_layer = range->baseArrayLayer,
1337 .array_len = anv_get_layerCount(image, range),
1338 .swizzle = {
1339 .r = remap_swizzle(pCreateInfo->components.r,
1340 VK_COMPONENT_SWIZZLE_R, format.swizzle),
1341 .g = remap_swizzle(pCreateInfo->components.g,
1342 VK_COMPONENT_SWIZZLE_G, format.swizzle),
1343 .b = remap_swizzle(pCreateInfo->components.b,
1344 VK_COMPONENT_SWIZZLE_B, format.swizzle),
1345 .a = remap_swizzle(pCreateInfo->components.a,
1346 VK_COMPONENT_SWIZZLE_A, format.swizzle),
1347 },
1348 };
1349
1350 if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
1351 iview->planes[vplane].isl.base_array_layer = 0;
1352 iview->planes[vplane].isl.array_len = iview->extent.depth;
1353 }
1354
1355 if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
1356 pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
1357 iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT;
1358 } else {
1359 iview->planes[vplane].isl.usage = 0;
1360 }
1361
1362 if (view_usage & VK_IMAGE_USAGE_SAMPLED_BIT ||
1363 (view_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT &&
1364 !(iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT))) {
1365 iview->planes[vplane].optimal_sampler_surface_state.state = alloc_surface_state(device);
1366 iview->planes[vplane].general_sampler_surface_state.state = alloc_surface_state(device);
1367
1368 enum isl_aux_usage general_aux_usage =
1369 anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
1370 VK_IMAGE_LAYOUT_GENERAL);
1371 enum isl_aux_usage optimal_aux_usage =
1372 anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
1373 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
1374
1375 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1376 &iview->planes[vplane].isl,
1377 ISL_SURF_USAGE_TEXTURE_BIT,
1378 optimal_aux_usage, NULL,
1379 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
1380 &iview->planes[vplane].optimal_sampler_surface_state,
1381 NULL);
1382
1383 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1384 &iview->planes[vplane].isl,
1385 ISL_SURF_USAGE_TEXTURE_BIT,
1386 general_aux_usage, NULL,
1387 0,
1388 &iview->planes[vplane].general_sampler_surface_state,
1389 NULL);
1390 }
1391
1392 /* NOTE: This one needs to go last since it may stomp isl_view.format */
1393 if (view_usage & VK_IMAGE_USAGE_STORAGE_BIT) {
1394 iview->planes[vplane].storage_surface_state.state = alloc_surface_state(device);
1395 iview->planes[vplane].writeonly_storage_surface_state.state = alloc_surface_state(device);
1396
1397 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1398 &iview->planes[vplane].isl,
1399 ISL_SURF_USAGE_STORAGE_BIT,
1400 ISL_AUX_USAGE_NONE, NULL,
1401 0,
1402 &iview->planes[vplane].storage_surface_state,
1403 &iview->planes[vplane].storage_image_param);
1404
1405 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1406 &iview->planes[vplane].isl,
1407 ISL_SURF_USAGE_STORAGE_BIT,
1408 ISL_AUX_USAGE_NONE, NULL,
1409 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY,
1410 &iview->planes[vplane].writeonly_storage_surface_state,
1411 NULL);
1412 }
1413
1414 vplane++;
1415 }
1416
1417 *pView = anv_image_view_to_handle(iview);
1418
1419 return VK_SUCCESS;
1420 }
1421
1422 void
1423 anv_DestroyImageView(VkDevice _device, VkImageView _iview,
1424 const VkAllocationCallbacks *pAllocator)
1425 {
1426 ANV_FROM_HANDLE(anv_device, device, _device);
1427 ANV_FROM_HANDLE(anv_image_view, iview, _iview);
1428
1429 if (!iview)
1430 return;
1431
1432 for (uint32_t plane = 0; plane < iview->n_planes; plane++) {
1433 if (iview->planes[plane].optimal_sampler_surface_state.state.alloc_size > 0) {
1434 anv_state_pool_free(&device->surface_state_pool,
1435 iview->planes[plane].optimal_sampler_surface_state.state);
1436 }
1437
1438 if (iview->planes[plane].general_sampler_surface_state.state.alloc_size > 0) {
1439 anv_state_pool_free(&device->surface_state_pool,
1440 iview->planes[plane].general_sampler_surface_state.state);
1441 }
1442
1443 if (iview->planes[plane].storage_surface_state.state.alloc_size > 0) {
1444 anv_state_pool_free(&device->surface_state_pool,
1445 iview->planes[plane].storage_surface_state.state);
1446 }
1447
1448 if (iview->planes[plane].writeonly_storage_surface_state.state.alloc_size > 0) {
1449 anv_state_pool_free(&device->surface_state_pool,
1450 iview->planes[plane].writeonly_storage_surface_state.state);
1451 }
1452 }
1453
1454 vk_free2(&device->alloc, pAllocator, iview);
1455 }
1456
1457
1458 VkResult
1459 anv_CreateBufferView(VkDevice _device,
1460 const VkBufferViewCreateInfo *pCreateInfo,
1461 const VkAllocationCallbacks *pAllocator,
1462 VkBufferView *pView)
1463 {
1464 ANV_FROM_HANDLE(anv_device, device, _device);
1465 ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer);
1466 struct anv_buffer_view *view;
1467
1468 view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
1469 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1470 if (!view)
1471 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1472
1473 /* TODO: Handle the format swizzle? */
1474
1475 view->format = anv_get_isl_format(&device->info, pCreateInfo->format,
1476 VK_IMAGE_ASPECT_COLOR_BIT,
1477 VK_IMAGE_TILING_LINEAR);
1478 const uint32_t format_bs = isl_format_get_layout(view->format)->bpb / 8;
1479 view->range = anv_buffer_get_range(buffer, pCreateInfo->offset,
1480 pCreateInfo->range);
1481 view->range = align_down_npot_u32(view->range, format_bs);
1482
1483 view->address = anv_address_add(buffer->address, pCreateInfo->offset);
1484
1485 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) {
1486 view->surface_state = alloc_surface_state(device);
1487
1488 anv_fill_buffer_surface_state(device, view->surface_state,
1489 view->format,
1490 view->address, view->range, format_bs);
1491 } else {
1492 view->surface_state = (struct anv_state){ 0 };
1493 }
1494
1495 if (buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) {
1496 view->storage_surface_state = alloc_surface_state(device);
1497 view->writeonly_storage_surface_state = alloc_surface_state(device);
1498
1499 enum isl_format storage_format =
1500 isl_has_matching_typed_storage_image_format(&device->info,
1501 view->format) ?
1502 isl_lower_storage_image_format(&device->info, view->format) :
1503 ISL_FORMAT_RAW;
1504
1505 anv_fill_buffer_surface_state(device, view->storage_surface_state,
1506 storage_format,
1507 view->address, view->range,
1508 (storage_format == ISL_FORMAT_RAW ? 1 :
1509 isl_format_get_layout(storage_format)->bpb / 8));
1510
1511 /* Write-only accesses should use the original format. */
1512 anv_fill_buffer_surface_state(device, view->writeonly_storage_surface_state,
1513 view->format,
1514 view->address, view->range,
1515 isl_format_get_layout(view->format)->bpb / 8);
1516
1517 isl_buffer_fill_image_param(&device->isl_dev,
1518 &view->storage_image_param,
1519 view->format, view->range);
1520 } else {
1521 view->storage_surface_state = (struct anv_state){ 0 };
1522 view->writeonly_storage_surface_state = (struct anv_state){ 0 };
1523 }
1524
1525 *pView = anv_buffer_view_to_handle(view);
1526
1527 return VK_SUCCESS;
1528 }
1529
1530 void
1531 anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
1532 const VkAllocationCallbacks *pAllocator)
1533 {
1534 ANV_FROM_HANDLE(anv_device, device, _device);
1535 ANV_FROM_HANDLE(anv_buffer_view, view, bufferView);
1536
1537 if (!view)
1538 return;
1539
1540 if (view->surface_state.alloc_size > 0)
1541 anv_state_pool_free(&device->surface_state_pool,
1542 view->surface_state);
1543
1544 if (view->storage_surface_state.alloc_size > 0)
1545 anv_state_pool_free(&device->surface_state_pool,
1546 view->storage_surface_state);
1547
1548 if (view->writeonly_storage_surface_state.alloc_size > 0)
1549 anv_state_pool_free(&device->surface_state_pool,
1550 view->writeonly_storage_surface_state);
1551
1552 vk_free2(&device->alloc, pAllocator, view);
1553 }
1554
1555 const struct anv_surface *
1556 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
1557 VkImageAspectFlags aspect_mask)
1558 {
1559 VkImageAspectFlags sanitized_mask;
1560
1561 switch (aspect_mask) {
1562 case VK_IMAGE_ASPECT_COLOR_BIT:
1563 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1564 sanitized_mask = VK_IMAGE_ASPECT_COLOR_BIT;
1565 break;
1566 case VK_IMAGE_ASPECT_DEPTH_BIT:
1567 assert(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT);
1568 sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
1569 break;
1570 case VK_IMAGE_ASPECT_STENCIL_BIT:
1571 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
1572 sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
1573 break;
1574 case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
1575 /* FINISHME: The Vulkan spec (git a511ba2) requires support for
1576 * combined depth stencil formats. Specifically, it states:
1577 *
1578 * At least one of ename:VK_FORMAT_D24_UNORM_S8_UINT or
1579 * ename:VK_FORMAT_D32_SFLOAT_S8_UINT must be supported.
1580 *
1581 * Image views with both depth and stencil aspects are only valid for
1582 * render target attachments, in which case
1583 * cmd_buffer_emit_depth_stencil() will pick out both the depth and
1584 * stencil surfaces from the underlying surface.
1585 */
1586 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1587 sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
1588 } else {
1589 assert(image->aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
1590 sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
1591 }
1592 break;
1593 case VK_IMAGE_ASPECT_PLANE_0_BIT:
1594 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1595 sanitized_mask = VK_IMAGE_ASPECT_PLANE_0_BIT;
1596 break;
1597 case VK_IMAGE_ASPECT_PLANE_1_BIT:
1598 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1599 sanitized_mask = VK_IMAGE_ASPECT_PLANE_1_BIT;
1600 break;
1601 case VK_IMAGE_ASPECT_PLANE_2_BIT:
1602 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1603 sanitized_mask = VK_IMAGE_ASPECT_PLANE_2_BIT;
1604 break;
1605 default:
1606 unreachable("image does not have aspect");
1607 return NULL;
1608 }
1609
1610 uint32_t plane = anv_image_aspect_to_plane(image->aspects, sanitized_mask);
1611 return &image->planes[plane].surface;
1612 }