Merge remote-tracking branch 'public/master' into vulkan
[mesa.git] / src / intel / vulkan / anv_meta_blit.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "anv_meta.h"
25 #include "nir/nir_builder.h"
26
27 struct blit_region {
28 VkOffset3D src_offset;
29 VkExtent3D src_extent;
30 VkOffset3D dest_offset;
31 VkExtent3D dest_extent;
32 };
33
34 static nir_shader *
35 build_nir_vertex_shader(void)
36 {
37 const struct glsl_type *vec4 = glsl_vec4_type();
38 nir_builder b;
39
40 nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
41 b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_vs");
42
43 nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in,
44 vec4, "a_pos");
45 pos_in->data.location = VERT_ATTRIB_GENERIC0;
46 nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
47 vec4, "gl_Position");
48 pos_out->data.location = VARYING_SLOT_POS;
49 nir_copy_var(&b, pos_out, pos_in);
50
51 nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
52 vec4, "a_tex_pos");
53 tex_pos_in->data.location = VERT_ATTRIB_GENERIC1;
54 nir_variable *tex_pos_out = nir_variable_create(b.shader, nir_var_shader_out,
55 vec4, "v_tex_pos");
56 tex_pos_out->data.location = VARYING_SLOT_VAR0;
57 tex_pos_out->data.interpolation = INTERP_QUALIFIER_SMOOTH;
58 nir_copy_var(&b, tex_pos_out, tex_pos_in);
59
60 return b.shader;
61 }
62
63 static nir_shader *
64 build_nir_copy_fragment_shader(enum glsl_sampler_dim tex_dim)
65 {
66 const struct glsl_type *vec4 = glsl_vec4_type();
67 nir_builder b;
68
69 nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
70 b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_fs");
71
72 nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
73 vec4, "v_tex_pos");
74 tex_pos_in->data.location = VARYING_SLOT_VAR0;
75
76 /* Swizzle the array index which comes in as Z coordinate into the right
77 * position.
78 */
79 unsigned swz[] = { 0, (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 1), 2 };
80 nir_ssa_def *const tex_pos =
81 nir_swizzle(&b, nir_load_var(&b, tex_pos_in), swz,
82 (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 3), false);
83
84 const struct glsl_type *sampler_type =
85 glsl_sampler_type(tex_dim, false, tex_dim != GLSL_SAMPLER_DIM_3D,
86 glsl_get_base_type(vec4));
87 nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform,
88 sampler_type, "s_tex");
89 sampler->data.descriptor_set = 0;
90 sampler->data.binding = 0;
91
92 nir_tex_instr *tex = nir_tex_instr_create(b.shader, 1);
93 tex->sampler_dim = tex_dim;
94 tex->op = nir_texop_tex;
95 tex->src[0].src_type = nir_tex_src_coord;
96 tex->src[0].src = nir_src_for_ssa(tex_pos);
97 tex->dest_type = nir_type_float; /* TODO */
98 tex->is_array = glsl_sampler_type_is_array(sampler_type);
99 tex->coord_components = tex_pos->num_components;
100 tex->texture = nir_deref_var_create(tex, sampler);
101 tex->sampler = nir_deref_var_create(tex, sampler);
102
103 nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
104 nir_builder_instr_insert(&b, &tex->instr);
105
106 nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
107 vec4, "f_color");
108 color_out->data.location = FRAG_RESULT_DATA0;
109 nir_store_var(&b, color_out, &tex->dest.ssa, 4);
110
111 return b.shader;
112 }
113
114 static void
115 meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer,
116 struct anv_meta_saved_state *saved_state)
117 {
118 anv_meta_save(saved_state, cmd_buffer, 0);
119 }
120
121 static void
122 meta_emit_blit(struct anv_cmd_buffer *cmd_buffer,
123 struct anv_image *src_image,
124 struct anv_image_view *src_iview,
125 VkOffset3D src_offset,
126 VkExtent3D src_extent,
127 struct anv_image *dest_image,
128 struct anv_image_view *dest_iview,
129 VkOffset3D dest_offset,
130 VkExtent3D dest_extent,
131 VkFilter blit_filter)
132 {
133 struct anv_device *device = cmd_buffer->device;
134
135 struct blit_vb_data {
136 float pos[2];
137 float tex_coord[3];
138 } *vb_data;
139
140 assert(src_image->samples == dest_image->samples);
141
142 unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data);
143
144 struct anv_state vb_state =
145 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
146 memset(vb_state.map, 0, sizeof(struct anv_vue_header));
147 vb_data = vb_state.map + sizeof(struct anv_vue_header);
148
149 vb_data[0] = (struct blit_vb_data) {
150 .pos = {
151 dest_offset.x + dest_extent.width,
152 dest_offset.y + dest_extent.height,
153 },
154 .tex_coord = {
155 (float)(src_offset.x + src_extent.width)
156 / (float)src_iview->extent.width,
157 (float)(src_offset.y + src_extent.height)
158 / (float)src_iview->extent.height,
159 (float)src_offset.z / (float)src_iview->extent.depth,
160 },
161 };
162
163 vb_data[1] = (struct blit_vb_data) {
164 .pos = {
165 dest_offset.x,
166 dest_offset.y + dest_extent.height,
167 },
168 .tex_coord = {
169 (float)src_offset.x / (float)src_iview->extent.width,
170 (float)(src_offset.y + src_extent.height) /
171 (float)src_iview->extent.height,
172 (float)src_offset.z / (float)src_iview->extent.depth,
173 },
174 };
175
176 vb_data[2] = (struct blit_vb_data) {
177 .pos = {
178 dest_offset.x,
179 dest_offset.y,
180 },
181 .tex_coord = {
182 (float)src_offset.x / (float)src_iview->extent.width,
183 (float)src_offset.y / (float)src_iview->extent.height,
184 (float)src_offset.z / (float)src_iview->extent.depth,
185 },
186 };
187
188 if (!device->info.has_llc)
189 anv_state_clflush(vb_state);
190
191 struct anv_buffer vertex_buffer = {
192 .device = device,
193 .size = vb_size,
194 .bo = &device->dynamic_state_block_pool.bo,
195 .offset = vb_state.offset,
196 };
197
198 anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
199 (VkBuffer[]) {
200 anv_buffer_to_handle(&vertex_buffer),
201 anv_buffer_to_handle(&vertex_buffer)
202 },
203 (VkDeviceSize[]) {
204 0,
205 sizeof(struct anv_vue_header),
206 });
207
208 VkSampler sampler;
209 ANV_CALL(CreateSampler)(anv_device_to_handle(device),
210 &(VkSamplerCreateInfo) {
211 .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
212 .magFilter = blit_filter,
213 .minFilter = blit_filter,
214 }, &cmd_buffer->pool->alloc, &sampler);
215
216 VkDescriptorPool desc_pool;
217 anv_CreateDescriptorPool(anv_device_to_handle(device),
218 &(const VkDescriptorPoolCreateInfo) {
219 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
220 .pNext = NULL,
221 .flags = 0,
222 .maxSets = 1,
223 .poolSizeCount = 1,
224 .pPoolSizes = (VkDescriptorPoolSize[]) {
225 {
226 .type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
227 .descriptorCount = 1
228 },
229 }
230 }, &cmd_buffer->pool->alloc, &desc_pool);
231
232 VkDescriptorSet set;
233 anv_AllocateDescriptorSets(anv_device_to_handle(device),
234 &(VkDescriptorSetAllocateInfo) {
235 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
236 .descriptorPool = desc_pool,
237 .descriptorSetCount = 1,
238 .pSetLayouts = &device->meta_state.blit.ds_layout
239 }, &set);
240
241 anv_UpdateDescriptorSets(anv_device_to_handle(device),
242 1, /* writeCount */
243 (VkWriteDescriptorSet[]) {
244 {
245 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
246 .dstSet = set,
247 .dstBinding = 0,
248 .dstArrayElement = 0,
249 .descriptorCount = 1,
250 .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
251 .pImageInfo = (VkDescriptorImageInfo[]) {
252 {
253 .sampler = sampler,
254 .imageView = anv_image_view_to_handle(src_iview),
255 .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
256 },
257 }
258 }
259 }, 0, NULL);
260
261 VkFramebuffer fb;
262 anv_CreateFramebuffer(anv_device_to_handle(device),
263 &(VkFramebufferCreateInfo) {
264 .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
265 .attachmentCount = 1,
266 .pAttachments = (VkImageView[]) {
267 anv_image_view_to_handle(dest_iview),
268 },
269 .width = dest_iview->extent.width,
270 .height = dest_iview->extent.height,
271 .layers = 1
272 }, &cmd_buffer->pool->alloc, &fb);
273
274 ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
275 &(VkRenderPassBeginInfo) {
276 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
277 .renderPass = device->meta_state.blit.render_pass,
278 .framebuffer = fb,
279 .renderArea = {
280 .offset = { dest_offset.x, dest_offset.y },
281 .extent = { dest_extent.width, dest_extent.height },
282 },
283 .clearValueCount = 0,
284 .pClearValues = NULL,
285 }, VK_SUBPASS_CONTENTS_INLINE);
286
287 VkPipeline pipeline;
288
289 switch (src_image->type) {
290 case VK_IMAGE_TYPE_1D:
291 pipeline = device->meta_state.blit.pipeline_1d_src;
292 break;
293 case VK_IMAGE_TYPE_2D:
294 pipeline = device->meta_state.blit.pipeline_2d_src;
295 break;
296 case VK_IMAGE_TYPE_3D:
297 pipeline = device->meta_state.blit.pipeline_3d_src;
298 break;
299 default:
300 unreachable(!"bad VkImageType");
301 }
302
303 if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) {
304 anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer),
305 VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
306 }
307
308 anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
309 VK_PIPELINE_BIND_POINT_GRAPHICS,
310 device->meta_state.blit.pipeline_layout, 0, 1,
311 &set, 0, NULL);
312
313 ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
314
315 ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
316
317 /* At the point where we emit the draw call, all data from the
318 * descriptor sets, etc. has been used. We are free to delete it.
319 */
320 anv_DestroyDescriptorPool(anv_device_to_handle(device),
321 desc_pool, &cmd_buffer->pool->alloc);
322 anv_DestroySampler(anv_device_to_handle(device), sampler,
323 &cmd_buffer->pool->alloc);
324 anv_DestroyFramebuffer(anv_device_to_handle(device), fb,
325 &cmd_buffer->pool->alloc);
326 }
327
328 static void
329 meta_finish_blit(struct anv_cmd_buffer *cmd_buffer,
330 const struct anv_meta_saved_state *saved_state)
331 {
332 anv_meta_restore(saved_state, cmd_buffer);
333 }
334
335 void anv_CmdBlitImage(
336 VkCommandBuffer commandBuffer,
337 VkImage srcImage,
338 VkImageLayout srcImageLayout,
339 VkImage destImage,
340 VkImageLayout destImageLayout,
341 uint32_t regionCount,
342 const VkImageBlit* pRegions,
343 VkFilter filter)
344
345 {
346 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
347 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
348 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
349 struct anv_meta_saved_state saved_state;
350
351 /* From the Vulkan 1.0 spec:
352 *
353 * vkCmdBlitImage must not be used for multisampled source or
354 * destination images. Use vkCmdResolveImage for this purpose.
355 */
356 assert(src_image->samples == 1);
357 assert(dest_image->samples == 1);
358
359 meta_prepare_blit(cmd_buffer, &saved_state);
360
361 for (unsigned r = 0; r < regionCount; r++) {
362 struct anv_image_view src_iview;
363 anv_image_view_init(&src_iview, cmd_buffer->device,
364 &(VkImageViewCreateInfo) {
365 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
366 .image = srcImage,
367 .viewType = anv_meta_get_view_type(src_image),
368 .format = src_image->vk_format,
369 .subresourceRange = {
370 .aspectMask = pRegions[r].srcSubresource.aspectMask,
371 .baseMipLevel = pRegions[r].srcSubresource.mipLevel,
372 .levelCount = 1,
373 .baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer,
374 .layerCount = 1
375 },
376 },
377 cmd_buffer, VK_IMAGE_USAGE_SAMPLED_BIT);
378
379 const VkOffset3D dest_offset = {
380 .x = pRegions[r].dstOffsets[0].x,
381 .y = pRegions[r].dstOffsets[0].y,
382 .z = 0,
383 };
384
385 if (pRegions[r].dstOffsets[1].x < pRegions[r].dstOffsets[0].x ||
386 pRegions[r].dstOffsets[1].y < pRegions[r].dstOffsets[0].y ||
387 pRegions[r].srcOffsets[1].x < pRegions[r].srcOffsets[0].x ||
388 pRegions[r].srcOffsets[1].y < pRegions[r].srcOffsets[0].y)
389 anv_finishme("FINISHME: Allow flipping in blits");
390
391 const VkExtent3D dest_extent = {
392 .width = pRegions[r].dstOffsets[1].x - pRegions[r].dstOffsets[0].x,
393 .height = pRegions[r].dstOffsets[1].y - pRegions[r].dstOffsets[0].y,
394 };
395
396 const VkExtent3D src_extent = {
397 .width = pRegions[r].srcOffsets[1].x - pRegions[r].srcOffsets[0].x,
398 .height = pRegions[r].srcOffsets[1].y - pRegions[r].srcOffsets[0].y,
399 };
400
401 const uint32_t dest_array_slice =
402 anv_meta_get_iview_layer(dest_image, &pRegions[r].dstSubresource,
403 &pRegions[r].dstOffsets[0]);
404
405 if (pRegions[r].srcSubresource.layerCount > 1)
406 anv_finishme("FINISHME: copy multiple array layers");
407
408 if (pRegions[r].srcOffsets[0].z + 1 != pRegions[r].srcOffsets[1].z ||
409 pRegions[r].dstOffsets[0].z + 1 != pRegions[r].dstOffsets[1].z)
410 anv_finishme("FINISHME: copy multiple depth layers");
411
412 struct anv_image_view dest_iview;
413 anv_image_view_init(&dest_iview, cmd_buffer->device,
414 &(VkImageViewCreateInfo) {
415 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
416 .image = destImage,
417 .viewType = anv_meta_get_view_type(dest_image),
418 .format = dest_image->vk_format,
419 .subresourceRange = {
420 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
421 .baseMipLevel = pRegions[r].dstSubresource.mipLevel,
422 .levelCount = 1,
423 .baseArrayLayer = dest_array_slice,
424 .layerCount = 1
425 },
426 },
427 cmd_buffer, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
428
429 meta_emit_blit(cmd_buffer,
430 src_image, &src_iview,
431 pRegions[r].srcOffsets[0], src_extent,
432 dest_image, &dest_iview,
433 dest_offset, dest_extent,
434 filter);
435 }
436
437 meta_finish_blit(cmd_buffer, &saved_state);
438 }
439
440 void
441 anv_device_finish_meta_blit_state(struct anv_device *device)
442 {
443 anv_DestroyRenderPass(anv_device_to_handle(device),
444 device->meta_state.blit.render_pass,
445 &device->meta_state.alloc);
446 anv_DestroyPipeline(anv_device_to_handle(device),
447 device->meta_state.blit.pipeline_1d_src,
448 &device->meta_state.alloc);
449 anv_DestroyPipeline(anv_device_to_handle(device),
450 device->meta_state.blit.pipeline_2d_src,
451 &device->meta_state.alloc);
452 anv_DestroyPipeline(anv_device_to_handle(device),
453 device->meta_state.blit.pipeline_3d_src,
454 &device->meta_state.alloc);
455 anv_DestroyPipelineLayout(anv_device_to_handle(device),
456 device->meta_state.blit.pipeline_layout,
457 &device->meta_state.alloc);
458 anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
459 device->meta_state.blit.ds_layout,
460 &device->meta_state.alloc);
461 }
462
463 VkResult
464 anv_device_init_meta_blit_state(struct anv_device *device)
465 {
466 VkResult result;
467
468 result = anv_CreateRenderPass(anv_device_to_handle(device),
469 &(VkRenderPassCreateInfo) {
470 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
471 .attachmentCount = 1,
472 .pAttachments = &(VkAttachmentDescription) {
473 .format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */
474 .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
475 .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
476 .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
477 .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
478 },
479 .subpassCount = 1,
480 .pSubpasses = &(VkSubpassDescription) {
481 .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
482 .inputAttachmentCount = 0,
483 .colorAttachmentCount = 1,
484 .pColorAttachments = &(VkAttachmentReference) {
485 .attachment = 0,
486 .layout = VK_IMAGE_LAYOUT_GENERAL,
487 },
488 .pResolveAttachments = NULL,
489 .pDepthStencilAttachment = &(VkAttachmentReference) {
490 .attachment = VK_ATTACHMENT_UNUSED,
491 .layout = VK_IMAGE_LAYOUT_GENERAL,
492 },
493 .preserveAttachmentCount = 1,
494 .pPreserveAttachments = (uint32_t[]) { 0 },
495 },
496 .dependencyCount = 0,
497 }, &device->meta_state.alloc, &device->meta_state.blit.render_pass);
498 if (result != VK_SUCCESS)
499 goto fail;
500
501 /* We don't use a vertex shader for blitting, but instead build and pass
502 * the VUEs directly to the rasterization backend. However, we do need
503 * to provide GLSL source for the vertex shader so that the compiler
504 * does not dead-code our inputs.
505 */
506 struct anv_shader_module vs = {
507 .nir = build_nir_vertex_shader(),
508 };
509
510 struct anv_shader_module fs_1d = {
511 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_1D),
512 };
513
514 struct anv_shader_module fs_2d = {
515 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_2D),
516 };
517
518 struct anv_shader_module fs_3d = {
519 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_3D),
520 };
521
522 VkPipelineVertexInputStateCreateInfo vi_create_info = {
523 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
524 .vertexBindingDescriptionCount = 2,
525 .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
526 {
527 .binding = 0,
528 .stride = 0,
529 .inputRate = VK_VERTEX_INPUT_RATE_INSTANCE
530 },
531 {
532 .binding = 1,
533 .stride = 5 * sizeof(float),
534 .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
535 },
536 },
537 .vertexAttributeDescriptionCount = 3,
538 .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
539 {
540 /* VUE Header */
541 .location = 0,
542 .binding = 0,
543 .format = VK_FORMAT_R32G32B32A32_UINT,
544 .offset = 0
545 },
546 {
547 /* Position */
548 .location = 1,
549 .binding = 1,
550 .format = VK_FORMAT_R32G32_SFLOAT,
551 .offset = 0
552 },
553 {
554 /* Texture Coordinate */
555 .location = 2,
556 .binding = 1,
557 .format = VK_FORMAT_R32G32B32_SFLOAT,
558 .offset = 8
559 }
560 }
561 };
562
563 VkDescriptorSetLayoutCreateInfo ds_layout_info = {
564 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
565 .bindingCount = 1,
566 .pBindings = (VkDescriptorSetLayoutBinding[]) {
567 {
568 .binding = 0,
569 .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
570 .descriptorCount = 1,
571 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
572 .pImmutableSamplers = NULL
573 },
574 }
575 };
576 result = anv_CreateDescriptorSetLayout(anv_device_to_handle(device),
577 &ds_layout_info,
578 &device->meta_state.alloc,
579 &device->meta_state.blit.ds_layout);
580 if (result != VK_SUCCESS)
581 goto fail_render_pass;
582
583 result = anv_CreatePipelineLayout(anv_device_to_handle(device),
584 &(VkPipelineLayoutCreateInfo) {
585 .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
586 .setLayoutCount = 1,
587 .pSetLayouts = &device->meta_state.blit.ds_layout,
588 },
589 &device->meta_state.alloc, &device->meta_state.blit.pipeline_layout);
590 if (result != VK_SUCCESS)
591 goto fail_descriptor_set_layout;
592
593 VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
594 {
595 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
596 .stage = VK_SHADER_STAGE_VERTEX_BIT,
597 .module = anv_shader_module_to_handle(&vs),
598 .pName = "main",
599 .pSpecializationInfo = NULL
600 }, {
601 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
602 .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
603 .module = VK_NULL_HANDLE, /* TEMPLATE VALUE! FILL ME IN! */
604 .pName = "main",
605 .pSpecializationInfo = NULL
606 },
607 };
608
609 const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
610 .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
611 .stageCount = ARRAY_SIZE(pipeline_shader_stages),
612 .pStages = pipeline_shader_stages,
613 .pVertexInputState = &vi_create_info,
614 .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
615 .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
616 .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
617 .primitiveRestartEnable = false,
618 },
619 .pViewportState = &(VkPipelineViewportStateCreateInfo) {
620 .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
621 .viewportCount = 1,
622 .scissorCount = 1,
623 },
624 .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
625 .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
626 .rasterizerDiscardEnable = false,
627 .polygonMode = VK_POLYGON_MODE_FILL,
628 .cullMode = VK_CULL_MODE_NONE,
629 .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
630 },
631 .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
632 .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
633 .rasterizationSamples = 1,
634 .sampleShadingEnable = false,
635 .pSampleMask = (VkSampleMask[]) { UINT32_MAX },
636 },
637 .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
638 .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
639 .attachmentCount = 1,
640 .pAttachments = (VkPipelineColorBlendAttachmentState []) {
641 { .colorWriteMask =
642 VK_COLOR_COMPONENT_A_BIT |
643 VK_COLOR_COMPONENT_R_BIT |
644 VK_COLOR_COMPONENT_G_BIT |
645 VK_COLOR_COMPONENT_B_BIT },
646 }
647 },
648 .pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
649 .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
650 .dynamicStateCount = 9,
651 .pDynamicStates = (VkDynamicState[]) {
652 VK_DYNAMIC_STATE_VIEWPORT,
653 VK_DYNAMIC_STATE_SCISSOR,
654 VK_DYNAMIC_STATE_LINE_WIDTH,
655 VK_DYNAMIC_STATE_DEPTH_BIAS,
656 VK_DYNAMIC_STATE_BLEND_CONSTANTS,
657 VK_DYNAMIC_STATE_DEPTH_BOUNDS,
658 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
659 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
660 VK_DYNAMIC_STATE_STENCIL_REFERENCE,
661 },
662 },
663 .flags = 0,
664 .layout = device->meta_state.blit.pipeline_layout,
665 .renderPass = device->meta_state.blit.render_pass,
666 .subpass = 0,
667 };
668
669 const struct anv_graphics_pipeline_create_info anv_pipeline_info = {
670 .color_attachment_count = -1,
671 .use_repclear = false,
672 .disable_vs = true,
673 .use_rectlist = true
674 };
675
676 pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_1d);
677 result = anv_graphics_pipeline_create(anv_device_to_handle(device),
678 VK_NULL_HANDLE,
679 &vk_pipeline_info, &anv_pipeline_info,
680 &device->meta_state.alloc, &device->meta_state.blit.pipeline_1d_src);
681 if (result != VK_SUCCESS)
682 goto fail_pipeline_layout;
683
684 pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_2d);
685 result = anv_graphics_pipeline_create(anv_device_to_handle(device),
686 VK_NULL_HANDLE,
687 &vk_pipeline_info, &anv_pipeline_info,
688 &device->meta_state.alloc, &device->meta_state.blit.pipeline_2d_src);
689 if (result != VK_SUCCESS)
690 goto fail_pipeline_1d;
691
692 pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_3d);
693 result = anv_graphics_pipeline_create(anv_device_to_handle(device),
694 VK_NULL_HANDLE,
695 &vk_pipeline_info, &anv_pipeline_info,
696 &device->meta_state.alloc, &device->meta_state.blit.pipeline_3d_src);
697 if (result != VK_SUCCESS)
698 goto fail_pipeline_2d;
699
700 ralloc_free(vs.nir);
701 ralloc_free(fs_1d.nir);
702 ralloc_free(fs_2d.nir);
703 ralloc_free(fs_3d.nir);
704
705 return VK_SUCCESS;
706
707 fail_pipeline_2d:
708 anv_DestroyPipeline(anv_device_to_handle(device),
709 device->meta_state.blit.pipeline_2d_src,
710 &device->meta_state.alloc);
711
712 fail_pipeline_1d:
713 anv_DestroyPipeline(anv_device_to_handle(device),
714 device->meta_state.blit.pipeline_1d_src,
715 &device->meta_state.alloc);
716
717 fail_pipeline_layout:
718 anv_DestroyPipelineLayout(anv_device_to_handle(device),
719 device->meta_state.blit.pipeline_layout,
720 &device->meta_state.alloc);
721 fail_descriptor_set_layout:
722 anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
723 device->meta_state.blit.ds_layout,
724 &device->meta_state.alloc);
725 fail_render_pass:
726 anv_DestroyRenderPass(anv_device_to_handle(device),
727 device->meta_state.blit.render_pass,
728 &device->meta_state.alloc);
729
730 ralloc_free(vs.nir);
731 ralloc_free(fs_1d.nir);
732 ralloc_free(fs_2d.nir);
733 ralloc_free(fs_3d.nir);
734 fail:
735 return result;
736 }