anv: limit URB reconfigurations when using blorp
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/macros.h"
53 #include "util/hash_table.h"
54 #include "util/list.h"
55 #include "util/set.h"
56 #include "util/u_atomic.h"
57 #include "util/u_vector.h"
58 #include "util/u_math.h"
59 #include "util/vma.h"
60 #include "vk_alloc.h"
61 #include "vk_debug_report.h"
62
63 /* Pre-declarations needed for WSI entrypoints */
64 struct wl_surface;
65 struct wl_display;
66 typedef struct xcb_connection_t xcb_connection_t;
67 typedef uint32_t xcb_visualid_t;
68 typedef uint32_t xcb_window_t;
69
70 struct anv_buffer;
71 struct anv_buffer_view;
72 struct anv_image_view;
73 struct anv_instance;
74
75 struct gen_l3_config;
76
77 #include <vulkan/vulkan.h>
78 #include <vulkan/vulkan_intel.h>
79 #include <vulkan/vk_icd.h>
80
81 #include "anv_android.h"
82 #include "anv_entrypoints.h"
83 #include "anv_extensions.h"
84 #include "isl/isl.h"
85
86 #include "dev/gen_debug.h"
87 #include "common/intel_log.h"
88 #include "wsi_common.h"
89
90 /* anv Virtual Memory Layout
91 * =========================
92 *
93 * When the anv driver is determining the virtual graphics addresses of memory
94 * objects itself using the softpin mechanism, the following memory ranges
95 * will be used.
96 *
97 * Three special considerations to notice:
98 *
99 * (1) the dynamic state pool is located within the same 4 GiB as the low
100 * heap. This is to work around a VF cache issue described in a comment in
101 * anv_physical_device_init_heaps.
102 *
103 * (2) the binding table pool is located at lower addresses than the surface
104 * state pool, within a 4 GiB range. This allows surface state base addresses
105 * to cover both binding tables (16 bit offsets) and surface states (32 bit
106 * offsets).
107 *
108 * (3) the last 4 GiB of the address space is withheld from the high
109 * heap. Various hardware units will read past the end of an object for
110 * various reasons. This healthy margin prevents reads from wrapping around
111 * 48-bit addresses.
112 */
113 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
114 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
115 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
116 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
117 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
118 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
119 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
120 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
121 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
122 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
123 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
124
125 #define LOW_HEAP_SIZE \
126 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
127 #define DYNAMIC_STATE_POOL_SIZE \
128 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
129 #define BINDING_TABLE_POOL_SIZE \
130 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
131 #define SURFACE_STATE_POOL_SIZE \
132 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
133 #define INSTRUCTION_STATE_POOL_SIZE \
134 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
135
136 /* Allowing different clear colors requires us to perform a depth resolve at
137 * the end of certain render passes. This is because while slow clears store
138 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
139 * See the PRMs for examples describing when additional resolves would be
140 * necessary. To enable fast clears without requiring extra resolves, we set
141 * the clear value to a globally-defined one. We could allow different values
142 * if the user doesn't expect coherent data during or after a render passes
143 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
144 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
145 * 1.0f seems to be the only value used. The only application that doesn't set
146 * this value does so through the usage of an seemingly uninitialized clear
147 * value.
148 */
149 #define ANV_HZ_FC_VAL 1.0f
150
151 #define MAX_VBS 28
152 #define MAX_XFB_BUFFERS 4
153 #define MAX_XFB_STREAMS 4
154 #define MAX_SETS 8
155 #define MAX_RTS 8
156 #define MAX_VIEWPORTS 16
157 #define MAX_SCISSORS 16
158 #define MAX_PUSH_CONSTANTS_SIZE 128
159 #define MAX_DYNAMIC_BUFFERS 16
160 #define MAX_IMAGES 64
161 #define MAX_GEN8_IMAGES 8
162 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
163 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
164 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
165
166 /* The kernel relocation API has a limitation of a 32-bit delta value
167 * applied to the address before it is written which, in spite of it being
168 * unsigned, is treated as signed . Because of the way that this maps to
169 * the Vulkan API, we cannot handle an offset into a buffer that does not
170 * fit into a signed 32 bits. The only mechanism we have for dealing with
171 * this at the moment is to limit all VkDeviceMemory objects to a maximum
172 * of 2GB each. The Vulkan spec allows us to do this:
173 *
174 * "Some platforms may have a limit on the maximum size of a single
175 * allocation. For example, certain systems may fail to create
176 * allocations with a size greater than or equal to 4GB. Such a limit is
177 * implementation-dependent, and if such a failure occurs then the error
178 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
179 *
180 * We don't use vk_error here because it's not an error so much as an
181 * indication to the application that the allocation is too large.
182 */
183 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
184
185 #define ANV_SVGS_VB_INDEX MAX_VBS
186 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
187
188 /* We reserve this MI ALU register for the purpose of handling predication.
189 * Other code which uses the MI ALU should leave it alone.
190 */
191 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
192
193 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
194
195 static inline uint32_t
196 align_down_npot_u32(uint32_t v, uint32_t a)
197 {
198 return v - (v % a);
199 }
200
201 static inline uint32_t
202 align_u32(uint32_t v, uint32_t a)
203 {
204 assert(a != 0 && a == (a & -a));
205 return (v + a - 1) & ~(a - 1);
206 }
207
208 static inline uint64_t
209 align_u64(uint64_t v, uint64_t a)
210 {
211 assert(a != 0 && a == (a & -a));
212 return (v + a - 1) & ~(a - 1);
213 }
214
215 static inline int32_t
216 align_i32(int32_t v, int32_t a)
217 {
218 assert(a != 0 && a == (a & -a));
219 return (v + a - 1) & ~(a - 1);
220 }
221
222 /** Alignment must be a power of 2. */
223 static inline bool
224 anv_is_aligned(uintmax_t n, uintmax_t a)
225 {
226 assert(a == (a & -a));
227 return (n & (a - 1)) == 0;
228 }
229
230 static inline uint32_t
231 anv_minify(uint32_t n, uint32_t levels)
232 {
233 if (unlikely(n == 0))
234 return 0;
235 else
236 return MAX2(n >> levels, 1);
237 }
238
239 static inline float
240 anv_clamp_f(float f, float min, float max)
241 {
242 assert(min < max);
243
244 if (f > max)
245 return max;
246 else if (f < min)
247 return min;
248 else
249 return f;
250 }
251
252 static inline bool
253 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
254 {
255 if (*inout_mask & clear_mask) {
256 *inout_mask &= ~clear_mask;
257 return true;
258 } else {
259 return false;
260 }
261 }
262
263 static inline union isl_color_value
264 vk_to_isl_color(VkClearColorValue color)
265 {
266 return (union isl_color_value) {
267 .u32 = {
268 color.uint32[0],
269 color.uint32[1],
270 color.uint32[2],
271 color.uint32[3],
272 },
273 };
274 }
275
276 #define for_each_bit(b, dword) \
277 for (uint32_t __dword = (dword); \
278 (b) = __builtin_ffs(__dword) - 1, __dword; \
279 __dword &= ~(1 << (b)))
280
281 #define typed_memcpy(dest, src, count) ({ \
282 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
283 memcpy((dest), (src), (count) * sizeof(*(src))); \
284 })
285
286 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
287 * to be added here in order to utilize mapping in debug/error/perf macros.
288 */
289 #define REPORT_OBJECT_TYPE(o) \
290 __builtin_choose_expr ( \
291 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
292 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
293 __builtin_choose_expr ( \
294 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
295 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
296 __builtin_choose_expr ( \
297 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
298 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
299 __builtin_choose_expr ( \
300 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
301 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
302 __builtin_choose_expr ( \
303 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
304 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
305 __builtin_choose_expr ( \
306 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
307 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
308 __builtin_choose_expr ( \
309 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
310 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
311 __builtin_choose_expr ( \
312 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
313 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
314 __builtin_choose_expr ( \
315 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
316 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
317 __builtin_choose_expr ( \
318 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
319 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
320 __builtin_choose_expr ( \
321 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
322 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
323 __builtin_choose_expr ( \
324 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
325 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
326 __builtin_choose_expr ( \
327 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
328 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
329 __builtin_choose_expr ( \
330 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
331 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
332 __builtin_choose_expr ( \
333 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
334 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), void*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
383 /* The void expression results in a compile-time error \
384 when assigning the result to something. */ \
385 (void)0)))))))))))))))))))))))))))))))
386
387 /* Whenever we generate an error, pass it through this function. Useful for
388 * debugging, where we can break on it. Only call at error site, not when
389 * propagating errors. Might be useful to plug in a stack trace here.
390 */
391
392 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
393 VkDebugReportObjectTypeEXT type, VkResult error,
394 const char *file, int line, const char *format,
395 va_list args);
396
397 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
398 VkDebugReportObjectTypeEXT type, VkResult error,
399 const char *file, int line, const char *format, ...);
400
401 #ifdef DEBUG
402 #define vk_error(error) __vk_errorf(NULL, NULL,\
403 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
404 error, __FILE__, __LINE__, NULL)
405 #define vk_errorv(instance, obj, error, format, args)\
406 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
407 __FILE__, __LINE__, format, args)
408 #define vk_errorf(instance, obj, error, format, ...)\
409 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
410 __FILE__, __LINE__, format, ## __VA_ARGS__)
411 #else
412 #define vk_error(error) error
413 #define vk_errorf(instance, obj, error, format, ...) error
414 #endif
415
416 /**
417 * Warn on ignored extension structs.
418 *
419 * The Vulkan spec requires us to ignore unsupported or unknown structs in
420 * a pNext chain. In debug mode, emitting warnings for ignored structs may
421 * help us discover structs that we should not have ignored.
422 *
423 *
424 * From the Vulkan 1.0.38 spec:
425 *
426 * Any component of the implementation (the loader, any enabled layers,
427 * and drivers) must skip over, without processing (other than reading the
428 * sType and pNext members) any chained structures with sType values not
429 * defined by extensions supported by that component.
430 */
431 #define anv_debug_ignored_stype(sType) \
432 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
433
434 void __anv_perf_warn(struct anv_instance *instance, const void *object,
435 VkDebugReportObjectTypeEXT type, const char *file,
436 int line, const char *format, ...)
437 anv_printflike(6, 7);
438 void anv_loge(const char *format, ...) anv_printflike(1, 2);
439 void anv_loge_v(const char *format, va_list va);
440
441 /**
442 * Print a FINISHME message, including its source location.
443 */
444 #define anv_finishme(format, ...) \
445 do { \
446 static bool reported = false; \
447 if (!reported) { \
448 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
449 ##__VA_ARGS__); \
450 reported = true; \
451 } \
452 } while (0)
453
454 /**
455 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
456 */
457 #define anv_perf_warn(instance, obj, format, ...) \
458 do { \
459 static bool reported = false; \
460 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
461 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
462 format, ##__VA_ARGS__); \
463 reported = true; \
464 } \
465 } while (0)
466
467 /* A non-fatal assert. Useful for debugging. */
468 #ifdef DEBUG
469 #define anv_assert(x) ({ \
470 if (unlikely(!(x))) \
471 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
472 })
473 #else
474 #define anv_assert(x)
475 #endif
476
477 /* A multi-pointer allocator
478 *
479 * When copying data structures from the user (such as a render pass), it's
480 * common to need to allocate data for a bunch of different things. Instead
481 * of doing several allocations and having to handle all of the error checking
482 * that entails, it can be easier to do a single allocation. This struct
483 * helps facilitate that. The intended usage looks like this:
484 *
485 * ANV_MULTIALLOC(ma)
486 * anv_multialloc_add(&ma, &main_ptr, 1);
487 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
488 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
489 *
490 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
491 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
492 */
493 struct anv_multialloc {
494 size_t size;
495 size_t align;
496
497 uint32_t ptr_count;
498 void **ptrs[8];
499 };
500
501 #define ANV_MULTIALLOC_INIT \
502 ((struct anv_multialloc) { 0, })
503
504 #define ANV_MULTIALLOC(_name) \
505 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
506
507 __attribute__((always_inline))
508 static inline void
509 _anv_multialloc_add(struct anv_multialloc *ma,
510 void **ptr, size_t size, size_t align)
511 {
512 size_t offset = align_u64(ma->size, align);
513 ma->size = offset + size;
514 ma->align = MAX2(ma->align, align);
515
516 /* Store the offset in the pointer. */
517 *ptr = (void *)(uintptr_t)offset;
518
519 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
520 ma->ptrs[ma->ptr_count++] = ptr;
521 }
522
523 #define anv_multialloc_add_size(_ma, _ptr, _size) \
524 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
525
526 #define anv_multialloc_add(_ma, _ptr, _count) \
527 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
528
529 __attribute__((always_inline))
530 static inline void *
531 anv_multialloc_alloc(struct anv_multialloc *ma,
532 const VkAllocationCallbacks *alloc,
533 VkSystemAllocationScope scope)
534 {
535 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
536 if (!ptr)
537 return NULL;
538
539 /* Fill out each of the pointers with their final value.
540 *
541 * for (uint32_t i = 0; i < ma->ptr_count; i++)
542 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
543 *
544 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
545 * constant, GCC is incapable of figuring this out and unrolling the loop
546 * so we have to give it a little help.
547 */
548 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
549 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
550 if ((_i) < ma->ptr_count) \
551 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
552 _ANV_MULTIALLOC_UPDATE_POINTER(0);
553 _ANV_MULTIALLOC_UPDATE_POINTER(1);
554 _ANV_MULTIALLOC_UPDATE_POINTER(2);
555 _ANV_MULTIALLOC_UPDATE_POINTER(3);
556 _ANV_MULTIALLOC_UPDATE_POINTER(4);
557 _ANV_MULTIALLOC_UPDATE_POINTER(5);
558 _ANV_MULTIALLOC_UPDATE_POINTER(6);
559 _ANV_MULTIALLOC_UPDATE_POINTER(7);
560 #undef _ANV_MULTIALLOC_UPDATE_POINTER
561
562 return ptr;
563 }
564
565 __attribute__((always_inline))
566 static inline void *
567 anv_multialloc_alloc2(struct anv_multialloc *ma,
568 const VkAllocationCallbacks *parent_alloc,
569 const VkAllocationCallbacks *alloc,
570 VkSystemAllocationScope scope)
571 {
572 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
573 }
574
575 /* Extra ANV-defined BO flags which won't be passed to the kernel */
576 #define ANV_BO_EXTERNAL (1ull << 31)
577 #define ANV_BO_FLAG_MASK (1ull << 31)
578
579 struct anv_bo {
580 uint32_t gem_handle;
581
582 /* Index into the current validation list. This is used by the
583 * validation list building alrogithm to track which buffers are already
584 * in the validation list so that we can ensure uniqueness.
585 */
586 uint32_t index;
587
588 /* Last known offset. This value is provided by the kernel when we
589 * execbuf and is used as the presumed offset for the next bunch of
590 * relocations.
591 */
592 uint64_t offset;
593
594 uint64_t size;
595 void *map;
596
597 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
598 uint32_t flags;
599 };
600
601 static inline void
602 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
603 {
604 bo->gem_handle = gem_handle;
605 bo->index = 0;
606 bo->offset = -1;
607 bo->size = size;
608 bo->map = NULL;
609 bo->flags = 0;
610 }
611
612 /* Represents a lock-free linked list of "free" things. This is used by
613 * both the block pool and the state pools. Unfortunately, in order to
614 * solve the ABA problem, we can't use a single uint32_t head.
615 */
616 union anv_free_list {
617 struct {
618 uint32_t offset;
619
620 /* A simple count that is incremented every time the head changes. */
621 uint32_t count;
622 };
623 uint64_t u64;
624 };
625
626 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
627
628 struct anv_block_state {
629 union {
630 struct {
631 uint32_t next;
632 uint32_t end;
633 };
634 uint64_t u64;
635 };
636 };
637
638 #define anv_block_pool_foreach_bo(bo, pool) \
639 for (bo = (pool)->bos; bo != &(pool)->bos[(pool)->nbos]; bo++)
640
641 #define ANV_MAX_BLOCK_POOL_BOS 20
642
643 struct anv_block_pool {
644 struct anv_device *device;
645
646 uint64_t bo_flags;
647
648 struct anv_bo bos[ANV_MAX_BLOCK_POOL_BOS];
649 struct anv_bo *bo;
650 uint32_t nbos;
651
652 uint64_t size;
653
654 /* The address where the start of the pool is pinned. The various bos that
655 * are created as the pool grows will have addresses in the range
656 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
657 */
658 uint64_t start_address;
659
660 /* The offset from the start of the bo to the "center" of the block
661 * pool. Pointers to allocated blocks are given by
662 * bo.map + center_bo_offset + offsets.
663 */
664 uint32_t center_bo_offset;
665
666 /* Current memory map of the block pool. This pointer may or may not
667 * point to the actual beginning of the block pool memory. If
668 * anv_block_pool_alloc_back has ever been called, then this pointer
669 * will point to the "center" position of the buffer and all offsets
670 * (negative or positive) given out by the block pool alloc functions
671 * will be valid relative to this pointer.
672 *
673 * In particular, map == bo.map + center_offset
674 *
675 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
676 * since it will handle the softpin case as well, where this points to NULL.
677 */
678 void *map;
679 int fd;
680
681 /**
682 * Array of mmaps and gem handles owned by the block pool, reclaimed when
683 * the block pool is destroyed.
684 */
685 struct u_vector mmap_cleanups;
686
687 struct anv_block_state state;
688
689 struct anv_block_state back_state;
690 };
691
692 /* Block pools are backed by a fixed-size 1GB memfd */
693 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
694
695 /* The center of the block pool is also the middle of the memfd. This may
696 * change in the future if we decide differently for some reason.
697 */
698 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
699
700 static inline uint32_t
701 anv_block_pool_size(struct anv_block_pool *pool)
702 {
703 return pool->state.end + pool->back_state.end;
704 }
705
706 struct anv_state {
707 int32_t offset;
708 uint32_t alloc_size;
709 void *map;
710 uint32_t idx;
711 };
712
713 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
714
715 struct anv_fixed_size_state_pool {
716 union anv_free_list free_list;
717 struct anv_block_state block;
718 };
719
720 #define ANV_MIN_STATE_SIZE_LOG2 6
721 #define ANV_MAX_STATE_SIZE_LOG2 20
722
723 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
724
725 struct anv_free_entry {
726 uint32_t next;
727 struct anv_state state;
728 };
729
730 struct anv_state_table {
731 struct anv_device *device;
732 int fd;
733 struct anv_free_entry *map;
734 uint32_t size;
735 struct anv_block_state state;
736 struct u_vector mmap_cleanups;
737 };
738
739 struct anv_state_pool {
740 struct anv_block_pool block_pool;
741
742 struct anv_state_table table;
743
744 /* The size of blocks which will be allocated from the block pool */
745 uint32_t block_size;
746
747 /** Free list for "back" allocations */
748 union anv_free_list back_alloc_free_list;
749
750 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
751 };
752
753 struct anv_state_stream_block;
754
755 struct anv_state_stream {
756 struct anv_state_pool *state_pool;
757
758 /* The size of blocks to allocate from the state pool */
759 uint32_t block_size;
760
761 /* Current block we're allocating from */
762 struct anv_state block;
763
764 /* Offset into the current block at which to allocate the next state */
765 uint32_t next;
766
767 /* List of all blocks allocated from this pool */
768 struct anv_state_stream_block *block_list;
769 };
770
771 /* The block_pool functions exported for testing only. The block pool should
772 * only be used via a state pool (see below).
773 */
774 VkResult anv_block_pool_init(struct anv_block_pool *pool,
775 struct anv_device *device,
776 uint64_t start_address,
777 uint32_t initial_size,
778 uint64_t bo_flags);
779 void anv_block_pool_finish(struct anv_block_pool *pool);
780 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
781 uint32_t block_size, uint32_t *padding);
782 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
783 uint32_t block_size);
784 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
785
786 VkResult anv_state_pool_init(struct anv_state_pool *pool,
787 struct anv_device *device,
788 uint64_t start_address,
789 uint32_t block_size,
790 uint64_t bo_flags);
791 void anv_state_pool_finish(struct anv_state_pool *pool);
792 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
793 uint32_t state_size, uint32_t alignment);
794 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
795 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
796 void anv_state_stream_init(struct anv_state_stream *stream,
797 struct anv_state_pool *state_pool,
798 uint32_t block_size);
799 void anv_state_stream_finish(struct anv_state_stream *stream);
800 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
801 uint32_t size, uint32_t alignment);
802
803 VkResult anv_state_table_init(struct anv_state_table *table,
804 struct anv_device *device,
805 uint32_t initial_entries);
806 void anv_state_table_finish(struct anv_state_table *table);
807 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
808 uint32_t count);
809 void anv_free_list_push(union anv_free_list *list,
810 struct anv_state_table *table,
811 uint32_t idx, uint32_t count);
812 struct anv_state* anv_free_list_pop(union anv_free_list *list,
813 struct anv_state_table *table);
814
815
816 static inline struct anv_state *
817 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
818 {
819 return &table->map[idx].state;
820 }
821 /**
822 * Implements a pool of re-usable BOs. The interface is identical to that
823 * of block_pool except that each block is its own BO.
824 */
825 struct anv_bo_pool {
826 struct anv_device *device;
827
828 uint64_t bo_flags;
829
830 void *free_list[16];
831 };
832
833 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
834 uint64_t bo_flags);
835 void anv_bo_pool_finish(struct anv_bo_pool *pool);
836 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
837 uint32_t size);
838 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
839
840 struct anv_scratch_bo {
841 bool exists;
842 struct anv_bo bo;
843 };
844
845 struct anv_scratch_pool {
846 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
847 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
848 };
849
850 void anv_scratch_pool_init(struct anv_device *device,
851 struct anv_scratch_pool *pool);
852 void anv_scratch_pool_finish(struct anv_device *device,
853 struct anv_scratch_pool *pool);
854 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
855 struct anv_scratch_pool *pool,
856 gl_shader_stage stage,
857 unsigned per_thread_scratch);
858
859 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
860 struct anv_bo_cache {
861 struct hash_table *bo_map;
862 pthread_mutex_t mutex;
863 };
864
865 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
866 void anv_bo_cache_finish(struct anv_bo_cache *cache);
867 VkResult anv_bo_cache_alloc(struct anv_device *device,
868 struct anv_bo_cache *cache,
869 uint64_t size, uint64_t bo_flags,
870 struct anv_bo **bo);
871 VkResult anv_bo_cache_import_host_ptr(struct anv_device *device,
872 struct anv_bo_cache *cache,
873 void *host_ptr, uint32_t size,
874 uint64_t bo_flags, struct anv_bo **bo_out);
875 VkResult anv_bo_cache_import(struct anv_device *device,
876 struct anv_bo_cache *cache,
877 int fd, uint64_t bo_flags,
878 struct anv_bo **bo);
879 VkResult anv_bo_cache_export(struct anv_device *device,
880 struct anv_bo_cache *cache,
881 struct anv_bo *bo_in, int *fd_out);
882 void anv_bo_cache_release(struct anv_device *device,
883 struct anv_bo_cache *cache,
884 struct anv_bo *bo);
885
886 struct anv_memory_type {
887 /* Standard bits passed on to the client */
888 VkMemoryPropertyFlags propertyFlags;
889 uint32_t heapIndex;
890
891 /* Driver-internal book-keeping */
892 VkBufferUsageFlags valid_buffer_usage;
893 };
894
895 struct anv_memory_heap {
896 /* Standard bits passed on to the client */
897 VkDeviceSize size;
898 VkMemoryHeapFlags flags;
899
900 /* Driver-internal book-keeping */
901 uint64_t vma_start;
902 uint64_t vma_size;
903 bool supports_48bit_addresses;
904 };
905
906 struct anv_physical_device {
907 VK_LOADER_DATA _loader_data;
908
909 struct anv_instance * instance;
910 uint32_t chipset_id;
911 bool no_hw;
912 char path[20];
913 const char * name;
914 struct {
915 uint16_t domain;
916 uint8_t bus;
917 uint8_t device;
918 uint8_t function;
919 } pci_info;
920 struct gen_device_info info;
921 /** Amount of "GPU memory" we want to advertise
922 *
923 * Clearly, this value is bogus since Intel is a UMA architecture. On
924 * gen7 platforms, we are limited by GTT size unless we want to implement
925 * fine-grained tracking and GTT splitting. On Broadwell and above we are
926 * practically unlimited. However, we will never report more than 3/4 of
927 * the total system ram to try and avoid running out of RAM.
928 */
929 bool supports_48bit_addresses;
930 struct brw_compiler * compiler;
931 struct isl_device isl_dev;
932 int cmd_parser_version;
933 bool has_exec_async;
934 bool has_exec_capture;
935 bool has_exec_fence;
936 bool has_syncobj;
937 bool has_syncobj_wait;
938 bool has_context_priority;
939 bool use_softpin;
940 bool has_context_isolation;
941
942 struct anv_device_extension_table supported_extensions;
943
944 uint32_t eu_total;
945 uint32_t subslice_total;
946
947 struct {
948 uint32_t type_count;
949 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
950 uint32_t heap_count;
951 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
952 } memory;
953
954 uint8_t driver_build_sha1[20];
955 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
956 uint8_t driver_uuid[VK_UUID_SIZE];
957 uint8_t device_uuid[VK_UUID_SIZE];
958
959 struct disk_cache * disk_cache;
960
961 struct wsi_device wsi_device;
962 int local_fd;
963 int master_fd;
964 };
965
966 struct anv_app_info {
967 const char* app_name;
968 uint32_t app_version;
969 const char* engine_name;
970 uint32_t engine_version;
971 uint32_t api_version;
972 };
973
974 struct anv_instance {
975 VK_LOADER_DATA _loader_data;
976
977 VkAllocationCallbacks alloc;
978
979 struct anv_app_info app_info;
980
981 struct anv_instance_extension_table enabled_extensions;
982 struct anv_instance_dispatch_table dispatch;
983 struct anv_device_dispatch_table device_dispatch;
984
985 int physicalDeviceCount;
986 struct anv_physical_device physicalDevice;
987
988 bool pipeline_cache_enabled;
989
990 struct vk_debug_report_instance debug_report_callbacks;
991 };
992
993 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
994 void anv_finish_wsi(struct anv_physical_device *physical_device);
995
996 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
997 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
998 const char *name);
999
1000 struct anv_queue {
1001 VK_LOADER_DATA _loader_data;
1002
1003 struct anv_device * device;
1004
1005 VkDeviceQueueCreateFlags flags;
1006 };
1007
1008 struct anv_pipeline_cache {
1009 struct anv_device * device;
1010 pthread_mutex_t mutex;
1011
1012 struct hash_table * nir_cache;
1013
1014 struct hash_table * cache;
1015 };
1016
1017 struct nir_xfb_info;
1018 struct anv_pipeline_bind_map;
1019
1020 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1021 struct anv_device *device,
1022 bool cache_enabled);
1023 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1024
1025 struct anv_shader_bin *
1026 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1027 const void *key, uint32_t key_size);
1028 struct anv_shader_bin *
1029 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1030 const void *key_data, uint32_t key_size,
1031 const void *kernel_data, uint32_t kernel_size,
1032 const void *constant_data,
1033 uint32_t constant_data_size,
1034 const struct brw_stage_prog_data *prog_data,
1035 uint32_t prog_data_size,
1036 const struct nir_xfb_info *xfb_info,
1037 const struct anv_pipeline_bind_map *bind_map);
1038
1039 struct anv_shader_bin *
1040 anv_device_search_for_kernel(struct anv_device *device,
1041 struct anv_pipeline_cache *cache,
1042 const void *key_data, uint32_t key_size,
1043 bool *user_cache_bit);
1044
1045 struct anv_shader_bin *
1046 anv_device_upload_kernel(struct anv_device *device,
1047 struct anv_pipeline_cache *cache,
1048 const void *key_data, uint32_t key_size,
1049 const void *kernel_data, uint32_t kernel_size,
1050 const void *constant_data,
1051 uint32_t constant_data_size,
1052 const struct brw_stage_prog_data *prog_data,
1053 uint32_t prog_data_size,
1054 const struct nir_xfb_info *xfb_info,
1055 const struct anv_pipeline_bind_map *bind_map);
1056
1057 struct nir_shader;
1058 struct nir_shader_compiler_options;
1059
1060 struct nir_shader *
1061 anv_device_search_for_nir(struct anv_device *device,
1062 struct anv_pipeline_cache *cache,
1063 const struct nir_shader_compiler_options *nir_options,
1064 unsigned char sha1_key[20],
1065 void *mem_ctx);
1066
1067 void
1068 anv_device_upload_nir(struct anv_device *device,
1069 struct anv_pipeline_cache *cache,
1070 const struct nir_shader *nir,
1071 unsigned char sha1_key[20]);
1072
1073 struct anv_device {
1074 VK_LOADER_DATA _loader_data;
1075
1076 VkAllocationCallbacks alloc;
1077
1078 struct anv_instance * instance;
1079 uint32_t chipset_id;
1080 bool no_hw;
1081 struct gen_device_info info;
1082 struct isl_device isl_dev;
1083 int context_id;
1084 int fd;
1085 bool can_chain_batches;
1086 bool robust_buffer_access;
1087 struct anv_device_extension_table enabled_extensions;
1088 struct anv_device_dispatch_table dispatch;
1089
1090 pthread_mutex_t vma_mutex;
1091 struct util_vma_heap vma_lo;
1092 struct util_vma_heap vma_hi;
1093 uint64_t vma_lo_available;
1094 uint64_t vma_hi_available;
1095
1096 struct anv_bo_pool batch_bo_pool;
1097
1098 struct anv_bo_cache bo_cache;
1099
1100 struct anv_state_pool dynamic_state_pool;
1101 struct anv_state_pool instruction_state_pool;
1102 struct anv_state_pool binding_table_pool;
1103 struct anv_state_pool surface_state_pool;
1104
1105 struct anv_bo workaround_bo;
1106 struct anv_bo trivial_batch_bo;
1107 struct anv_bo hiz_clear_bo;
1108
1109 /* Set of pointers to anv_buffer objects for all pinned buffers. Pinned
1110 * buffers are always resident because they could be used at any time via
1111 * VK_EXT_buffer_device_address.
1112 */
1113 struct set * pinned_buffers;
1114
1115 struct anv_pipeline_cache default_pipeline_cache;
1116 struct blorp_context blorp;
1117
1118 struct anv_state border_colors;
1119
1120 struct anv_queue queue;
1121
1122 struct anv_scratch_pool scratch_pool;
1123
1124 uint32_t default_mocs;
1125 uint32_t external_mocs;
1126
1127 pthread_mutex_t mutex;
1128 pthread_cond_t queue_submit;
1129 bool _lost;
1130
1131 struct gen_batch_decode_ctx decoder_ctx;
1132 /*
1133 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1134 * the cmd_buffer's list.
1135 */
1136 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1137 };
1138
1139 static inline struct anv_state_pool *
1140 anv_binding_table_pool(struct anv_device *device)
1141 {
1142 if (device->instance->physicalDevice.use_softpin)
1143 return &device->binding_table_pool;
1144 else
1145 return &device->surface_state_pool;
1146 }
1147
1148 static inline struct anv_state
1149 anv_binding_table_pool_alloc(struct anv_device *device) {
1150 if (device->instance->physicalDevice.use_softpin)
1151 return anv_state_pool_alloc(&device->binding_table_pool,
1152 device->binding_table_pool.block_size, 0);
1153 else
1154 return anv_state_pool_alloc_back(&device->surface_state_pool);
1155 }
1156
1157 static inline void
1158 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1159 anv_state_pool_free(anv_binding_table_pool(device), state);
1160 }
1161
1162 static inline uint32_t
1163 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1164 {
1165 if (bo->flags & ANV_BO_EXTERNAL)
1166 return device->external_mocs;
1167 else
1168 return device->default_mocs;
1169 }
1170
1171 void anv_device_init_blorp(struct anv_device *device);
1172 void anv_device_finish_blorp(struct anv_device *device);
1173
1174 VkResult _anv_device_set_lost(struct anv_device *device,
1175 const char *file, int line,
1176 const char *msg, ...);
1177 #define anv_device_set_lost(dev, ...) \
1178 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1179
1180 static inline bool
1181 anv_device_is_lost(struct anv_device *device)
1182 {
1183 return unlikely(device->_lost);
1184 }
1185
1186 VkResult anv_device_execbuf(struct anv_device *device,
1187 struct drm_i915_gem_execbuffer2 *execbuf,
1188 struct anv_bo **execbuf_bos);
1189 VkResult anv_device_query_status(struct anv_device *device);
1190 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1191 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1192 int64_t timeout);
1193
1194 void* anv_gem_mmap(struct anv_device *device,
1195 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1196 void anv_gem_munmap(void *p, uint64_t size);
1197 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1198 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1199 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1200 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1201 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1202 int anv_gem_execbuffer(struct anv_device *device,
1203 struct drm_i915_gem_execbuffer2 *execbuf);
1204 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1205 uint32_t stride, uint32_t tiling);
1206 int anv_gem_create_context(struct anv_device *device);
1207 bool anv_gem_has_context_priority(int fd);
1208 int anv_gem_destroy_context(struct anv_device *device, int context);
1209 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1210 uint64_t value);
1211 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1212 uint64_t *value);
1213 int anv_gem_get_param(int fd, uint32_t param);
1214 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1215 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1216 int anv_gem_get_aperture(int fd, uint64_t *size);
1217 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1218 uint32_t *active, uint32_t *pending);
1219 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1220 int anv_gem_reg_read(struct anv_device *device,
1221 uint32_t offset, uint64_t *result);
1222 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1223 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1224 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1225 uint32_t read_domains, uint32_t write_domain);
1226 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1227 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1228 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1229 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1230 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1231 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1232 uint32_t handle);
1233 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1234 uint32_t handle, int fd);
1235 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1236 bool anv_gem_supports_syncobj_wait(int fd);
1237 int anv_gem_syncobj_wait(struct anv_device *device,
1238 uint32_t *handles, uint32_t num_handles,
1239 int64_t abs_timeout_ns, bool wait_all);
1240
1241 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1242 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1243
1244 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1245
1246 struct anv_reloc_list {
1247 uint32_t num_relocs;
1248 uint32_t array_length;
1249 struct drm_i915_gem_relocation_entry * relocs;
1250 struct anv_bo ** reloc_bos;
1251 struct set * deps;
1252 };
1253
1254 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1255 const VkAllocationCallbacks *alloc);
1256 void anv_reloc_list_finish(struct anv_reloc_list *list,
1257 const VkAllocationCallbacks *alloc);
1258
1259 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1260 const VkAllocationCallbacks *alloc,
1261 uint32_t offset, struct anv_bo *target_bo,
1262 uint32_t delta);
1263
1264 struct anv_batch_bo {
1265 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1266 struct list_head link;
1267
1268 struct anv_bo bo;
1269
1270 /* Bytes actually consumed in this batch BO */
1271 uint32_t length;
1272
1273 struct anv_reloc_list relocs;
1274 };
1275
1276 struct anv_batch {
1277 const VkAllocationCallbacks * alloc;
1278
1279 void * start;
1280 void * end;
1281 void * next;
1282
1283 struct anv_reloc_list * relocs;
1284
1285 /* This callback is called (with the associated user data) in the event
1286 * that the batch runs out of space.
1287 */
1288 VkResult (*extend_cb)(struct anv_batch *, void *);
1289 void * user_data;
1290
1291 /**
1292 * Current error status of the command buffer. Used to track inconsistent
1293 * or incomplete command buffer states that are the consequence of run-time
1294 * errors such as out of memory scenarios. We want to track this in the
1295 * batch because the command buffer object is not visible to some parts
1296 * of the driver.
1297 */
1298 VkResult status;
1299 };
1300
1301 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1302 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1303 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1304 void *location, struct anv_bo *bo, uint32_t offset);
1305 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1306 struct anv_batch *batch);
1307
1308 static inline VkResult
1309 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1310 {
1311 assert(error != VK_SUCCESS);
1312 if (batch->status == VK_SUCCESS)
1313 batch->status = error;
1314 return batch->status;
1315 }
1316
1317 static inline bool
1318 anv_batch_has_error(struct anv_batch *batch)
1319 {
1320 return batch->status != VK_SUCCESS;
1321 }
1322
1323 struct anv_address {
1324 struct anv_bo *bo;
1325 uint32_t offset;
1326 };
1327
1328 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1329
1330 static inline bool
1331 anv_address_is_null(struct anv_address addr)
1332 {
1333 return addr.bo == NULL && addr.offset == 0;
1334 }
1335
1336 static inline uint64_t
1337 anv_address_physical(struct anv_address addr)
1338 {
1339 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1340 return gen_canonical_address(addr.bo->offset + addr.offset);
1341 else
1342 return gen_canonical_address(addr.offset);
1343 }
1344
1345 static inline struct anv_address
1346 anv_address_add(struct anv_address addr, uint64_t offset)
1347 {
1348 addr.offset += offset;
1349 return addr;
1350 }
1351
1352 static inline void
1353 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1354 {
1355 unsigned reloc_size = 0;
1356 if (device->info.gen >= 8) {
1357 reloc_size = sizeof(uint64_t);
1358 *(uint64_t *)p = gen_canonical_address(v);
1359 } else {
1360 reloc_size = sizeof(uint32_t);
1361 *(uint32_t *)p = v;
1362 }
1363
1364 if (flush && !device->info.has_llc)
1365 gen_flush_range(p, reloc_size);
1366 }
1367
1368 static inline uint64_t
1369 _anv_combine_address(struct anv_batch *batch, void *location,
1370 const struct anv_address address, uint32_t delta)
1371 {
1372 if (address.bo == NULL) {
1373 return address.offset + delta;
1374 } else {
1375 assert(batch->start <= location && location < batch->end);
1376
1377 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1378 }
1379 }
1380
1381 #define __gen_address_type struct anv_address
1382 #define __gen_user_data struct anv_batch
1383 #define __gen_combine_address _anv_combine_address
1384
1385 /* Wrapper macros needed to work around preprocessor argument issues. In
1386 * particular, arguments don't get pre-evaluated if they are concatenated.
1387 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1388 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1389 * We can work around this easily enough with these helpers.
1390 */
1391 #define __anv_cmd_length(cmd) cmd ## _length
1392 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1393 #define __anv_cmd_header(cmd) cmd ## _header
1394 #define __anv_cmd_pack(cmd) cmd ## _pack
1395 #define __anv_reg_num(reg) reg ## _num
1396
1397 #define anv_pack_struct(dst, struc, ...) do { \
1398 struct struc __template = { \
1399 __VA_ARGS__ \
1400 }; \
1401 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1402 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1403 } while (0)
1404
1405 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1406 void *__dst = anv_batch_emit_dwords(batch, n); \
1407 if (__dst) { \
1408 struct cmd __template = { \
1409 __anv_cmd_header(cmd), \
1410 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1411 __VA_ARGS__ \
1412 }; \
1413 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1414 } \
1415 __dst; \
1416 })
1417
1418 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1419 do { \
1420 uint32_t *dw; \
1421 \
1422 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1423 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1424 if (!dw) \
1425 break; \
1426 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1427 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1428 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1429 } while (0)
1430
1431 #define anv_batch_emit(batch, cmd, name) \
1432 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1433 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1434 __builtin_expect(_dst != NULL, 1); \
1435 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1436 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1437 _dst = NULL; \
1438 }))
1439
1440 /* MEMORY_OBJECT_CONTROL_STATE:
1441 * .GraphicsDataTypeGFDT = 0,
1442 * .LLCCacheabilityControlLLCCC = 0,
1443 * .L3CacheabilityControlL3CC = 1,
1444 */
1445 #define GEN7_MOCS 1
1446
1447 /* MEMORY_OBJECT_CONTROL_STATE:
1448 * .LLCeLLCCacheabilityControlLLCCC = 0,
1449 * .L3CacheabilityControlL3CC = 1,
1450 */
1451 #define GEN75_MOCS 1
1452
1453 /* MEMORY_OBJECT_CONTROL_STATE:
1454 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1455 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1456 * .AgeforQUADLRU = 0
1457 */
1458 #define GEN8_MOCS 0x78
1459
1460 /* MEMORY_OBJECT_CONTROL_STATE:
1461 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1462 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1463 * .AgeforQUADLRU = 0
1464 */
1465 #define GEN8_EXTERNAL_MOCS 0x18
1466
1467 /* Skylake: MOCS is now an index into an array of 62 different caching
1468 * configurations programmed by the kernel.
1469 */
1470
1471 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1472 #define GEN9_MOCS (2 << 1)
1473
1474 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1475 #define GEN9_EXTERNAL_MOCS (1 << 1)
1476
1477 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1478 #define GEN10_MOCS GEN9_MOCS
1479 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1480
1481 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1482 #define GEN11_MOCS GEN9_MOCS
1483 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1484
1485 struct anv_device_memory {
1486 struct anv_bo * bo;
1487 struct anv_memory_type * type;
1488 VkDeviceSize map_size;
1489 void * map;
1490
1491 /* If set, we are holding reference to AHardwareBuffer
1492 * which we must release when memory is freed.
1493 */
1494 struct AHardwareBuffer * ahw;
1495
1496 /* If set, this memory comes from a host pointer. */
1497 void * host_ptr;
1498 };
1499
1500 /**
1501 * Header for Vertex URB Entry (VUE)
1502 */
1503 struct anv_vue_header {
1504 uint32_t Reserved;
1505 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1506 uint32_t ViewportIndex;
1507 float PointWidth;
1508 };
1509
1510 enum anv_descriptor_data {
1511 /** The descriptor contains a BTI reference to a surface state */
1512 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1513 /** The descriptor contains a BTI reference to a sampler state */
1514 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1515 /** The descriptor contains an actual buffer view */
1516 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1517 /** The descriptor contains auxiliary image layout data */
1518 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1519 /** The descriptor contains auxiliary image layout data */
1520 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1521 };
1522
1523 struct anv_descriptor_set_binding_layout {
1524 #ifndef NDEBUG
1525 /* The type of the descriptors in this binding */
1526 VkDescriptorType type;
1527 #endif
1528
1529 /* Bitfield representing the type of data this descriptor contains */
1530 enum anv_descriptor_data data;
1531
1532 /* Number of array elements in this binding (or size in bytes for inline
1533 * uniform data)
1534 */
1535 uint16_t array_size;
1536
1537 /* Index into the flattend descriptor set */
1538 uint16_t descriptor_index;
1539
1540 /* Index into the dynamic state array for a dynamic buffer */
1541 int16_t dynamic_offset_index;
1542
1543 /* Index into the descriptor set buffer views */
1544 int16_t buffer_view_index;
1545
1546 /* Offset into the descriptor buffer where this descriptor lives */
1547 uint32_t descriptor_offset;
1548
1549 /* Immutable samplers (or NULL if no immutable samplers) */
1550 struct anv_sampler **immutable_samplers;
1551 };
1552
1553 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1554
1555 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1556 VkDescriptorType type);
1557
1558 struct anv_descriptor_set_layout {
1559 /* Descriptor set layouts can be destroyed at almost any time */
1560 uint32_t ref_cnt;
1561
1562 /* Number of bindings in this descriptor set */
1563 uint16_t binding_count;
1564
1565 /* Total size of the descriptor set with room for all array entries */
1566 uint16_t size;
1567
1568 /* Shader stages affected by this descriptor set */
1569 uint16_t shader_stages;
1570
1571 /* Number of buffer views in this descriptor set */
1572 uint16_t buffer_view_count;
1573
1574 /* Number of dynamic offsets used by this descriptor set */
1575 uint16_t dynamic_offset_count;
1576
1577 /* Size of the descriptor buffer for this descriptor set */
1578 uint32_t descriptor_buffer_size;
1579
1580 /* Bindings in this descriptor set */
1581 struct anv_descriptor_set_binding_layout binding[0];
1582 };
1583
1584 static inline void
1585 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1586 {
1587 assert(layout && layout->ref_cnt >= 1);
1588 p_atomic_inc(&layout->ref_cnt);
1589 }
1590
1591 static inline void
1592 anv_descriptor_set_layout_unref(struct anv_device *device,
1593 struct anv_descriptor_set_layout *layout)
1594 {
1595 assert(layout && layout->ref_cnt >= 1);
1596 if (p_atomic_dec_zero(&layout->ref_cnt))
1597 vk_free(&device->alloc, layout);
1598 }
1599
1600 struct anv_descriptor {
1601 VkDescriptorType type;
1602
1603 union {
1604 struct {
1605 VkImageLayout layout;
1606 struct anv_image_view *image_view;
1607 struct anv_sampler *sampler;
1608 };
1609
1610 struct {
1611 struct anv_buffer *buffer;
1612 uint64_t offset;
1613 uint64_t range;
1614 };
1615
1616 struct anv_buffer_view *buffer_view;
1617 };
1618 };
1619
1620 struct anv_descriptor_set {
1621 struct anv_descriptor_pool *pool;
1622 struct anv_descriptor_set_layout *layout;
1623 uint32_t size;
1624
1625 /* State relative to anv_descriptor_pool::bo */
1626 struct anv_state desc_mem;
1627 /* Surface state for the descriptor buffer */
1628 struct anv_state desc_surface_state;
1629
1630 uint32_t buffer_view_count;
1631 struct anv_buffer_view *buffer_views;
1632
1633 /* Link to descriptor pool's desc_sets list . */
1634 struct list_head pool_link;
1635
1636 struct anv_descriptor descriptors[0];
1637 };
1638
1639 struct anv_buffer_view {
1640 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1641 uint64_t range; /**< VkBufferViewCreateInfo::range */
1642
1643 struct anv_address address;
1644
1645 struct anv_state surface_state;
1646 struct anv_state storage_surface_state;
1647 struct anv_state writeonly_storage_surface_state;
1648
1649 struct brw_image_param storage_image_param;
1650 };
1651
1652 struct anv_push_descriptor_set {
1653 struct anv_descriptor_set set;
1654
1655 /* Put this field right behind anv_descriptor_set so it fills up the
1656 * descriptors[0] field. */
1657 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1658
1659 /** True if the descriptor set buffer has been referenced by a draw or
1660 * dispatch command.
1661 */
1662 bool set_used_on_gpu;
1663
1664 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1665 };
1666
1667 struct anv_descriptor_pool {
1668 uint32_t size;
1669 uint32_t next;
1670 uint32_t free_list;
1671
1672 struct anv_bo bo;
1673 struct util_vma_heap bo_heap;
1674
1675 struct anv_state_stream surface_state_stream;
1676 void *surface_state_free_list;
1677
1678 struct list_head desc_sets;
1679
1680 char data[0];
1681 };
1682
1683 enum anv_descriptor_template_entry_type {
1684 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1685 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1686 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1687 };
1688
1689 struct anv_descriptor_template_entry {
1690 /* The type of descriptor in this entry */
1691 VkDescriptorType type;
1692
1693 /* Binding in the descriptor set */
1694 uint32_t binding;
1695
1696 /* Offset at which to write into the descriptor set binding */
1697 uint32_t array_element;
1698
1699 /* Number of elements to write into the descriptor set binding */
1700 uint32_t array_count;
1701
1702 /* Offset into the user provided data */
1703 size_t offset;
1704
1705 /* Stride between elements into the user provided data */
1706 size_t stride;
1707 };
1708
1709 struct anv_descriptor_update_template {
1710 VkPipelineBindPoint bind_point;
1711
1712 /* The descriptor set this template corresponds to. This value is only
1713 * valid if the template was created with the templateType
1714 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1715 */
1716 uint8_t set;
1717
1718 /* Number of entries in this template */
1719 uint32_t entry_count;
1720
1721 /* Entries of the template */
1722 struct anv_descriptor_template_entry entries[0];
1723 };
1724
1725 size_t
1726 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1727
1728 void
1729 anv_descriptor_set_write_image_view(struct anv_device *device,
1730 struct anv_descriptor_set *set,
1731 const VkDescriptorImageInfo * const info,
1732 VkDescriptorType type,
1733 uint32_t binding,
1734 uint32_t element);
1735
1736 void
1737 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1738 struct anv_descriptor_set *set,
1739 VkDescriptorType type,
1740 struct anv_buffer_view *buffer_view,
1741 uint32_t binding,
1742 uint32_t element);
1743
1744 void
1745 anv_descriptor_set_write_buffer(struct anv_device *device,
1746 struct anv_descriptor_set *set,
1747 struct anv_state_stream *alloc_stream,
1748 VkDescriptorType type,
1749 struct anv_buffer *buffer,
1750 uint32_t binding,
1751 uint32_t element,
1752 VkDeviceSize offset,
1753 VkDeviceSize range);
1754 void
1755 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1756 struct anv_descriptor_set *set,
1757 uint32_t binding,
1758 const void *data,
1759 size_t offset,
1760 size_t size);
1761
1762 void
1763 anv_descriptor_set_write_template(struct anv_device *device,
1764 struct anv_descriptor_set *set,
1765 struct anv_state_stream *alloc_stream,
1766 const struct anv_descriptor_update_template *template,
1767 const void *data);
1768
1769 VkResult
1770 anv_descriptor_set_create(struct anv_device *device,
1771 struct anv_descriptor_pool *pool,
1772 struct anv_descriptor_set_layout *layout,
1773 struct anv_descriptor_set **out_set);
1774
1775 void
1776 anv_descriptor_set_destroy(struct anv_device *device,
1777 struct anv_descriptor_pool *pool,
1778 struct anv_descriptor_set *set);
1779
1780 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
1781 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
1782 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
1783 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1784
1785 struct anv_pipeline_binding {
1786 /* The descriptor set this surface corresponds to. The special value of
1787 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1788 * to a color attachment and not a regular descriptor.
1789 */
1790 uint8_t set;
1791
1792 /* Binding in the descriptor set */
1793 uint32_t binding;
1794
1795 /* Index in the binding */
1796 uint32_t index;
1797
1798 /* Plane in the binding index */
1799 uint8_t plane;
1800
1801 /* Input attachment index (relative to the subpass) */
1802 uint8_t input_attachment_index;
1803
1804 /* For a storage image, whether it is write-only */
1805 bool write_only;
1806 };
1807
1808 struct anv_pipeline_layout {
1809 struct {
1810 struct anv_descriptor_set_layout *layout;
1811 uint32_t dynamic_offset_start;
1812 } set[MAX_SETS];
1813
1814 uint32_t num_sets;
1815
1816 unsigned char sha1[20];
1817 };
1818
1819 struct anv_buffer {
1820 struct anv_device * device;
1821 VkDeviceSize size;
1822
1823 VkBufferUsageFlags usage;
1824
1825 /* Set when bound */
1826 struct anv_address address;
1827 };
1828
1829 static inline uint64_t
1830 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1831 {
1832 assert(offset <= buffer->size);
1833 if (range == VK_WHOLE_SIZE) {
1834 return buffer->size - offset;
1835 } else {
1836 assert(range + offset >= range);
1837 assert(range + offset <= buffer->size);
1838 return range;
1839 }
1840 }
1841
1842 enum anv_cmd_dirty_bits {
1843 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1844 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1845 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1846 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1847 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1848 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1849 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1850 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1851 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1852 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1853 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1854 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1855 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1856 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
1857 };
1858 typedef uint32_t anv_cmd_dirty_mask_t;
1859
1860 enum anv_pipe_bits {
1861 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1862 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1863 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1864 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1865 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1866 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1867 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1868 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1869 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1870 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1871 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1872
1873 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1874 * a flush has happened but not a CS stall. The next time we do any sort
1875 * of invalidation we need to insert a CS stall at that time. Otherwise,
1876 * we would have to CS stall on every flush which could be bad.
1877 */
1878 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1879
1880 /* This bit does not exist directly in PIPE_CONTROL. It means that render
1881 * target operations related to transfer commands with VkBuffer as
1882 * destination are ongoing. Some operations like copies on the command
1883 * streamer might need to be aware of this to trigger the appropriate stall
1884 * before they can proceed with the copy.
1885 */
1886 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
1887 };
1888
1889 #define ANV_PIPE_FLUSH_BITS ( \
1890 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1891 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1892 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1893
1894 #define ANV_PIPE_STALL_BITS ( \
1895 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1896 ANV_PIPE_DEPTH_STALL_BIT | \
1897 ANV_PIPE_CS_STALL_BIT)
1898
1899 #define ANV_PIPE_INVALIDATE_BITS ( \
1900 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1901 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1902 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1903 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1904 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1905 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1906
1907 static inline enum anv_pipe_bits
1908 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1909 {
1910 enum anv_pipe_bits pipe_bits = 0;
1911
1912 unsigned b;
1913 for_each_bit(b, flags) {
1914 switch ((VkAccessFlagBits)(1 << b)) {
1915 case VK_ACCESS_SHADER_WRITE_BIT:
1916 /* We're transitioning a buffer that was previously used as write
1917 * destination through the data port. To make its content available
1918 * to future operations, flush the data cache.
1919 */
1920 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1921 break;
1922 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1923 /* We're transitioning a buffer that was previously used as render
1924 * target. To make its content available to future operations, flush
1925 * the render target cache.
1926 */
1927 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1928 break;
1929 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1930 /* We're transitioning a buffer that was previously used as depth
1931 * buffer. To make its content available to future operations, flush
1932 * the depth cache.
1933 */
1934 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1935 break;
1936 case VK_ACCESS_TRANSFER_WRITE_BIT:
1937 /* We're transitioning a buffer that was previously used as a
1938 * transfer write destination. Generic write operations include color
1939 * & depth operations as well as buffer operations like :
1940 * - vkCmdClearColorImage()
1941 * - vkCmdClearDepthStencilImage()
1942 * - vkCmdBlitImage()
1943 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
1944 *
1945 * Most of these operations are implemented using Blorp which writes
1946 * through the render target, so flush that cache to make it visible
1947 * to future operations. And for depth related operations we also
1948 * need to flush the depth cache.
1949 */
1950 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1951 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1952 break;
1953 case VK_ACCESS_MEMORY_WRITE_BIT:
1954 /* We're transitioning a buffer for generic write operations. Flush
1955 * all the caches.
1956 */
1957 pipe_bits |= ANV_PIPE_FLUSH_BITS;
1958 break;
1959 default:
1960 break; /* Nothing to do */
1961 }
1962 }
1963
1964 return pipe_bits;
1965 }
1966
1967 static inline enum anv_pipe_bits
1968 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1969 {
1970 enum anv_pipe_bits pipe_bits = 0;
1971
1972 unsigned b;
1973 for_each_bit(b, flags) {
1974 switch ((VkAccessFlagBits)(1 << b)) {
1975 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1976 /* Indirect draw commands take a buffer as input that we're going to
1977 * read from the command streamer to load some of the HW registers
1978 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
1979 * command streamer stall so that all the cache flushes have
1980 * completed before the command streamer loads from memory.
1981 */
1982 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1983 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
1984 * through a vertex buffer, so invalidate that cache.
1985 */
1986 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1987 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
1988 * UBO from the buffer, so we need to invalidate constant cache.
1989 */
1990 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1991 break;
1992 case VK_ACCESS_INDEX_READ_BIT:
1993 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
1994 /* We transitioning a buffer to be used for as input for vkCmdDraw*
1995 * commands, so we invalidate the VF cache to make sure there is no
1996 * stale data when we start rendering.
1997 */
1998 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1999 break;
2000 case VK_ACCESS_UNIFORM_READ_BIT:
2001 /* We transitioning a buffer to be used as uniform data. Because
2002 * uniform is accessed through the data port & sampler, we need to
2003 * invalidate the texture cache (sampler) & constant cache (data
2004 * port) to avoid stale data.
2005 */
2006 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2007 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2008 break;
2009 case VK_ACCESS_SHADER_READ_BIT:
2010 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2011 case VK_ACCESS_TRANSFER_READ_BIT:
2012 /* Transitioning a buffer to be read through the sampler, so
2013 * invalidate the texture cache, we don't want any stale data.
2014 */
2015 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2016 break;
2017 case VK_ACCESS_MEMORY_READ_BIT:
2018 /* Transitioning a buffer for generic read, invalidate all the
2019 * caches.
2020 */
2021 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2022 break;
2023 case VK_ACCESS_MEMORY_WRITE_BIT:
2024 /* Generic write, make sure all previously written things land in
2025 * memory.
2026 */
2027 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2028 break;
2029 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2030 /* Transitioning a buffer for conditional rendering. We'll load the
2031 * content of this buffer into HW registers using the command
2032 * streamer, so we need to stall the command streamer to make sure
2033 * any in-flight flush operations have completed.
2034 */
2035 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2036 break;
2037 default:
2038 break; /* Nothing to do */
2039 }
2040 }
2041
2042 return pipe_bits;
2043 }
2044
2045 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2046 VK_IMAGE_ASPECT_COLOR_BIT | \
2047 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2048 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2049 VK_IMAGE_ASPECT_PLANE_2_BIT)
2050 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2051 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2052 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2053 VK_IMAGE_ASPECT_PLANE_2_BIT)
2054
2055 struct anv_vertex_binding {
2056 struct anv_buffer * buffer;
2057 VkDeviceSize offset;
2058 };
2059
2060 struct anv_xfb_binding {
2061 struct anv_buffer * buffer;
2062 VkDeviceSize offset;
2063 VkDeviceSize size;
2064 };
2065
2066 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2067 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2068
2069 struct anv_push_constants {
2070 /* Current allocated size of this push constants data structure.
2071 * Because a decent chunk of it may not be used (images on SKL, for
2072 * instance), we won't actually allocate the entire structure up-front.
2073 */
2074 uint32_t size;
2075
2076 /* Push constant data provided by the client through vkPushConstants */
2077 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2078
2079 /* Used for vkCmdDispatchBase */
2080 uint32_t base_work_group_id[3];
2081
2082 /* Image data for image_load_store on pre-SKL */
2083 struct brw_image_param images[MAX_GEN8_IMAGES];
2084 };
2085
2086 struct anv_dynamic_state {
2087 struct {
2088 uint32_t count;
2089 VkViewport viewports[MAX_VIEWPORTS];
2090 } viewport;
2091
2092 struct {
2093 uint32_t count;
2094 VkRect2D scissors[MAX_SCISSORS];
2095 } scissor;
2096
2097 float line_width;
2098
2099 struct {
2100 float bias;
2101 float clamp;
2102 float slope;
2103 } depth_bias;
2104
2105 float blend_constants[4];
2106
2107 struct {
2108 float min;
2109 float max;
2110 } depth_bounds;
2111
2112 struct {
2113 uint32_t front;
2114 uint32_t back;
2115 } stencil_compare_mask;
2116
2117 struct {
2118 uint32_t front;
2119 uint32_t back;
2120 } stencil_write_mask;
2121
2122 struct {
2123 uint32_t front;
2124 uint32_t back;
2125 } stencil_reference;
2126 };
2127
2128 extern const struct anv_dynamic_state default_dynamic_state;
2129
2130 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2131 const struct anv_dynamic_state *src,
2132 uint32_t copy_mask);
2133
2134 struct anv_surface_state {
2135 struct anv_state state;
2136 /** Address of the surface referred to by this state
2137 *
2138 * This address is relative to the start of the BO.
2139 */
2140 struct anv_address address;
2141 /* Address of the aux surface, if any
2142 *
2143 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2144 *
2145 * With the exception of gen8, the bottom 12 bits of this address' offset
2146 * include extra aux information.
2147 */
2148 struct anv_address aux_address;
2149 /* Address of the clear color, if any
2150 *
2151 * This address is relative to the start of the BO.
2152 */
2153 struct anv_address clear_address;
2154 };
2155
2156 /**
2157 * Attachment state when recording a renderpass instance.
2158 *
2159 * The clear value is valid only if there exists a pending clear.
2160 */
2161 struct anv_attachment_state {
2162 enum isl_aux_usage aux_usage;
2163 enum isl_aux_usage input_aux_usage;
2164 struct anv_surface_state color;
2165 struct anv_surface_state input;
2166
2167 VkImageLayout current_layout;
2168 VkImageAspectFlags pending_clear_aspects;
2169 VkImageAspectFlags pending_load_aspects;
2170 bool fast_clear;
2171 VkClearValue clear_value;
2172 bool clear_color_is_zero_one;
2173 bool clear_color_is_zero;
2174
2175 /* When multiview is active, attachments with a renderpass clear
2176 * operation have their respective layers cleared on the first
2177 * subpass that uses them, and only in that subpass. We keep track
2178 * of this using a bitfield to indicate which layers of an attachment
2179 * have not been cleared yet when multiview is active.
2180 */
2181 uint32_t pending_clear_views;
2182 };
2183
2184 /** State tracking for particular pipeline bind point
2185 *
2186 * This struct is the base struct for anv_cmd_graphics_state and
2187 * anv_cmd_compute_state. These are used to track state which is bound to a
2188 * particular type of pipeline. Generic state that applies per-stage such as
2189 * binding table offsets and push constants is tracked generically with a
2190 * per-stage array in anv_cmd_state.
2191 */
2192 struct anv_cmd_pipeline_state {
2193 struct anv_pipeline *pipeline;
2194 struct anv_pipeline_layout *layout;
2195
2196 struct anv_descriptor_set *descriptors[MAX_SETS];
2197 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2198
2199 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2200 };
2201
2202 /** State tracking for graphics pipeline
2203 *
2204 * This has anv_cmd_pipeline_state as a base struct to track things which get
2205 * bound to a graphics pipeline. Along with general pipeline bind point state
2206 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2207 * state which is graphics-specific.
2208 */
2209 struct anv_cmd_graphics_state {
2210 struct anv_cmd_pipeline_state base;
2211
2212 anv_cmd_dirty_mask_t dirty;
2213 uint32_t vb_dirty;
2214
2215 struct anv_dynamic_state dynamic;
2216
2217 struct {
2218 struct anv_buffer *index_buffer;
2219 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2220 uint32_t index_offset;
2221 } gen7;
2222 };
2223
2224 /** State tracking for compute pipeline
2225 *
2226 * This has anv_cmd_pipeline_state as a base struct to track things which get
2227 * bound to a compute pipeline. Along with general pipeline bind point state
2228 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2229 * state which is compute-specific.
2230 */
2231 struct anv_cmd_compute_state {
2232 struct anv_cmd_pipeline_state base;
2233
2234 bool pipeline_dirty;
2235
2236 struct anv_address num_workgroups;
2237 };
2238
2239 /** State required while building cmd buffer */
2240 struct anv_cmd_state {
2241 /* PIPELINE_SELECT.PipelineSelection */
2242 uint32_t current_pipeline;
2243 const struct gen_l3_config * current_l3_config;
2244
2245 struct anv_cmd_graphics_state gfx;
2246 struct anv_cmd_compute_state compute;
2247
2248 enum anv_pipe_bits pending_pipe_bits;
2249 VkShaderStageFlags descriptors_dirty;
2250 VkShaderStageFlags push_constants_dirty;
2251
2252 struct anv_framebuffer * framebuffer;
2253 struct anv_render_pass * pass;
2254 struct anv_subpass * subpass;
2255 VkRect2D render_area;
2256 uint32_t restart_index;
2257 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2258 bool xfb_enabled;
2259 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2260 VkShaderStageFlags push_constant_stages;
2261 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
2262 struct anv_state binding_tables[MESA_SHADER_STAGES];
2263 struct anv_state samplers[MESA_SHADER_STAGES];
2264
2265 /**
2266 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2267 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2268 * and before invoking the secondary in ExecuteCommands.
2269 */
2270 bool pma_fix_enabled;
2271
2272 /**
2273 * Whether or not we know for certain that HiZ is enabled for the current
2274 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2275 * enabled or not, this will be false.
2276 */
2277 bool hiz_enabled;
2278
2279 bool conditional_render_enabled;
2280
2281 /**
2282 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2283 * valid only when recording a render pass instance.
2284 */
2285 struct anv_attachment_state * attachments;
2286
2287 /**
2288 * Surface states for color render targets. These are stored in a single
2289 * flat array. For depth-stencil attachments, the surface state is simply
2290 * left blank.
2291 */
2292 struct anv_state render_pass_states;
2293
2294 /**
2295 * A null surface state of the right size to match the framebuffer. This
2296 * is one of the states in render_pass_states.
2297 */
2298 struct anv_state null_surface_state;
2299 };
2300
2301 struct anv_cmd_pool {
2302 VkAllocationCallbacks alloc;
2303 struct list_head cmd_buffers;
2304 };
2305
2306 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2307
2308 enum anv_cmd_buffer_exec_mode {
2309 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2310 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2311 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2312 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2313 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2314 };
2315
2316 struct anv_cmd_buffer {
2317 VK_LOADER_DATA _loader_data;
2318
2319 struct anv_device * device;
2320
2321 struct anv_cmd_pool * pool;
2322 struct list_head pool_link;
2323
2324 struct anv_batch batch;
2325
2326 /* Fields required for the actual chain of anv_batch_bo's.
2327 *
2328 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2329 */
2330 struct list_head batch_bos;
2331 enum anv_cmd_buffer_exec_mode exec_mode;
2332
2333 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2334 * referenced by this command buffer
2335 *
2336 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2337 */
2338 struct u_vector seen_bbos;
2339
2340 /* A vector of int32_t's for every block of binding tables.
2341 *
2342 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2343 */
2344 struct u_vector bt_block_states;
2345 uint32_t bt_next;
2346
2347 struct anv_reloc_list surface_relocs;
2348 /** Last seen surface state block pool center bo offset */
2349 uint32_t last_ss_pool_center;
2350
2351 /* Serial for tracking buffer completion */
2352 uint32_t serial;
2353
2354 /* Stream objects for storing temporary data */
2355 struct anv_state_stream surface_state_stream;
2356 struct anv_state_stream dynamic_state_stream;
2357
2358 VkCommandBufferUsageFlags usage_flags;
2359 VkCommandBufferLevel level;
2360
2361 struct anv_cmd_state state;
2362 };
2363
2364 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2365 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2366 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2367 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2368 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2369 struct anv_cmd_buffer *secondary);
2370 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2371 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2372 struct anv_cmd_buffer *cmd_buffer,
2373 const VkSemaphore *in_semaphores,
2374 uint32_t num_in_semaphores,
2375 const VkSemaphore *out_semaphores,
2376 uint32_t num_out_semaphores,
2377 VkFence fence);
2378
2379 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2380
2381 VkResult
2382 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
2383 gl_shader_stage stage, uint32_t size);
2384 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
2385 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
2386 (offsetof(struct anv_push_constants, field) + \
2387 sizeof(cmd_buffer->state.push_constants[0]->field)))
2388
2389 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2390 const void *data, uint32_t size, uint32_t alignment);
2391 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2392 uint32_t *a, uint32_t *b,
2393 uint32_t dwords, uint32_t alignment);
2394
2395 struct anv_address
2396 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2397 struct anv_state
2398 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2399 uint32_t entries, uint32_t *state_offset);
2400 struct anv_state
2401 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2402 struct anv_state
2403 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2404 uint32_t size, uint32_t alignment);
2405
2406 VkResult
2407 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2408
2409 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2410 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2411 bool depth_clamp_enable);
2412 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2413
2414 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2415 struct anv_render_pass *pass,
2416 struct anv_framebuffer *framebuffer,
2417 const VkClearValue *clear_values);
2418
2419 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2420
2421 struct anv_state
2422 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2423 gl_shader_stage stage);
2424 struct anv_state
2425 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2426
2427 const struct anv_image_view *
2428 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2429
2430 VkResult
2431 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2432 uint32_t num_entries,
2433 uint32_t *state_offset,
2434 struct anv_state *bt_state);
2435
2436 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2437
2438 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2439
2440 enum anv_fence_type {
2441 ANV_FENCE_TYPE_NONE = 0,
2442 ANV_FENCE_TYPE_BO,
2443 ANV_FENCE_TYPE_SYNCOBJ,
2444 ANV_FENCE_TYPE_WSI,
2445 };
2446
2447 enum anv_bo_fence_state {
2448 /** Indicates that this is a new (or newly reset fence) */
2449 ANV_BO_FENCE_STATE_RESET,
2450
2451 /** Indicates that this fence has been submitted to the GPU but is still
2452 * (as far as we know) in use by the GPU.
2453 */
2454 ANV_BO_FENCE_STATE_SUBMITTED,
2455
2456 ANV_BO_FENCE_STATE_SIGNALED,
2457 };
2458
2459 struct anv_fence_impl {
2460 enum anv_fence_type type;
2461
2462 union {
2463 /** Fence implementation for BO fences
2464 *
2465 * These fences use a BO and a set of CPU-tracked state flags. The BO
2466 * is added to the object list of the last execbuf call in a QueueSubmit
2467 * and is marked EXEC_WRITE. The state flags track when the BO has been
2468 * submitted to the kernel. We need to do this because Vulkan lets you
2469 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2470 * will say it's idle in this case.
2471 */
2472 struct {
2473 struct anv_bo bo;
2474 enum anv_bo_fence_state state;
2475 } bo;
2476
2477 /** DRM syncobj handle for syncobj-based fences */
2478 uint32_t syncobj;
2479
2480 /** WSI fence */
2481 struct wsi_fence *fence_wsi;
2482 };
2483 };
2484
2485 struct anv_fence {
2486 /* Permanent fence state. Every fence has some form of permanent state
2487 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2488 * cross-process fences) or it could just be a dummy for use internally.
2489 */
2490 struct anv_fence_impl permanent;
2491
2492 /* Temporary fence state. A fence *may* have temporary state. That state
2493 * is added to the fence by an import operation and is reset back to
2494 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2495 * state cannot be signaled because the fence must already be signaled
2496 * before the temporary state can be exported from the fence in the other
2497 * process and imported here.
2498 */
2499 struct anv_fence_impl temporary;
2500 };
2501
2502 struct anv_event {
2503 uint64_t semaphore;
2504 struct anv_state state;
2505 };
2506
2507 enum anv_semaphore_type {
2508 ANV_SEMAPHORE_TYPE_NONE = 0,
2509 ANV_SEMAPHORE_TYPE_DUMMY,
2510 ANV_SEMAPHORE_TYPE_BO,
2511 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2512 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2513 };
2514
2515 struct anv_semaphore_impl {
2516 enum anv_semaphore_type type;
2517
2518 union {
2519 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2520 * This BO will be added to the object list on any execbuf2 calls for
2521 * which this semaphore is used as a wait or signal fence. When used as
2522 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2523 */
2524 struct anv_bo *bo;
2525
2526 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2527 * If the semaphore is in the unsignaled state due to either just being
2528 * created or because it has been used for a wait, fd will be -1.
2529 */
2530 int fd;
2531
2532 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2533 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2534 * import so we don't need to bother with a userspace cache.
2535 */
2536 uint32_t syncobj;
2537 };
2538 };
2539
2540 struct anv_semaphore {
2541 /* Permanent semaphore state. Every semaphore has some form of permanent
2542 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2543 * (for cross-process semaphores0 or it could just be a dummy for use
2544 * internally.
2545 */
2546 struct anv_semaphore_impl permanent;
2547
2548 /* Temporary semaphore state. A semaphore *may* have temporary state.
2549 * That state is added to the semaphore by an import operation and is reset
2550 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2551 * semaphore with temporary state cannot be signaled because the semaphore
2552 * must already be signaled before the temporary state can be exported from
2553 * the semaphore in the other process and imported here.
2554 */
2555 struct anv_semaphore_impl temporary;
2556 };
2557
2558 void anv_semaphore_reset_temporary(struct anv_device *device,
2559 struct anv_semaphore *semaphore);
2560
2561 struct anv_shader_module {
2562 unsigned char sha1[20];
2563 uint32_t size;
2564 char data[0];
2565 };
2566
2567 static inline gl_shader_stage
2568 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2569 {
2570 assert(__builtin_popcount(vk_stage) == 1);
2571 return ffs(vk_stage) - 1;
2572 }
2573
2574 static inline VkShaderStageFlagBits
2575 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2576 {
2577 return (1 << mesa_stage);
2578 }
2579
2580 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2581
2582 #define anv_foreach_stage(stage, stage_bits) \
2583 for (gl_shader_stage stage, \
2584 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2585 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2586 __tmp &= ~(1 << (stage)))
2587
2588 struct anv_pipeline_bind_map {
2589 uint32_t surface_count;
2590 uint32_t sampler_count;
2591 uint32_t image_param_count;
2592
2593 struct anv_pipeline_binding * surface_to_descriptor;
2594 struct anv_pipeline_binding * sampler_to_descriptor;
2595 };
2596
2597 struct anv_shader_bin_key {
2598 uint32_t size;
2599 uint8_t data[0];
2600 };
2601
2602 struct anv_shader_bin {
2603 uint32_t ref_cnt;
2604
2605 const struct anv_shader_bin_key *key;
2606
2607 struct anv_state kernel;
2608 uint32_t kernel_size;
2609
2610 struct anv_state constant_data;
2611 uint32_t constant_data_size;
2612
2613 const struct brw_stage_prog_data *prog_data;
2614 uint32_t prog_data_size;
2615
2616 struct nir_xfb_info *xfb_info;
2617
2618 struct anv_pipeline_bind_map bind_map;
2619 };
2620
2621 struct anv_shader_bin *
2622 anv_shader_bin_create(struct anv_device *device,
2623 const void *key, uint32_t key_size,
2624 const void *kernel, uint32_t kernel_size,
2625 const void *constant_data, uint32_t constant_data_size,
2626 const struct brw_stage_prog_data *prog_data,
2627 uint32_t prog_data_size, const void *prog_data_param,
2628 const struct nir_xfb_info *xfb_info,
2629 const struct anv_pipeline_bind_map *bind_map);
2630
2631 void
2632 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2633
2634 static inline void
2635 anv_shader_bin_ref(struct anv_shader_bin *shader)
2636 {
2637 assert(shader && shader->ref_cnt >= 1);
2638 p_atomic_inc(&shader->ref_cnt);
2639 }
2640
2641 static inline void
2642 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2643 {
2644 assert(shader && shader->ref_cnt >= 1);
2645 if (p_atomic_dec_zero(&shader->ref_cnt))
2646 anv_shader_bin_destroy(device, shader);
2647 }
2648
2649 struct anv_pipeline {
2650 struct anv_device * device;
2651 struct anv_batch batch;
2652 uint32_t batch_data[512];
2653 struct anv_reloc_list batch_relocs;
2654 uint32_t dynamic_state_mask;
2655 struct anv_dynamic_state dynamic_state;
2656
2657 struct anv_subpass * subpass;
2658
2659 bool needs_data_cache;
2660
2661 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2662
2663 struct {
2664 const struct gen_l3_config * l3_config;
2665 uint32_t total_size;
2666 unsigned entry_size[4];
2667 } urb;
2668
2669 VkShaderStageFlags active_stages;
2670 struct anv_state blend_state;
2671
2672 uint32_t vb_used;
2673 struct anv_pipeline_vertex_binding {
2674 uint32_t stride;
2675 bool instanced;
2676 uint32_t instance_divisor;
2677 } vb[MAX_VBS];
2678
2679 uint8_t xfb_used;
2680
2681 bool primitive_restart;
2682 uint32_t topology;
2683
2684 uint32_t cs_right_mask;
2685
2686 bool writes_depth;
2687 bool depth_test_enable;
2688 bool writes_stencil;
2689 bool stencil_test_enable;
2690 bool depth_clamp_enable;
2691 bool depth_clip_enable;
2692 bool sample_shading_enable;
2693 bool kill_pixel;
2694
2695 struct {
2696 uint32_t sf[7];
2697 uint32_t depth_stencil_state[3];
2698 } gen7;
2699
2700 struct {
2701 uint32_t sf[4];
2702 uint32_t raster[5];
2703 uint32_t wm_depth_stencil[3];
2704 } gen8;
2705
2706 struct {
2707 uint32_t wm_depth_stencil[4];
2708 } gen9;
2709
2710 uint32_t interface_descriptor_data[8];
2711 };
2712
2713 static inline bool
2714 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2715 gl_shader_stage stage)
2716 {
2717 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2718 }
2719
2720 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2721 static inline const struct brw_##prefix##_prog_data * \
2722 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2723 { \
2724 if (anv_pipeline_has_stage(pipeline, stage)) { \
2725 return (const struct brw_##prefix##_prog_data *) \
2726 pipeline->shaders[stage]->prog_data; \
2727 } else { \
2728 return NULL; \
2729 } \
2730 }
2731
2732 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2733 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2734 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2735 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2736 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2737 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2738
2739 static inline const struct brw_vue_prog_data *
2740 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2741 {
2742 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2743 return &get_gs_prog_data(pipeline)->base;
2744 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2745 return &get_tes_prog_data(pipeline)->base;
2746 else
2747 return &get_vs_prog_data(pipeline)->base;
2748 }
2749
2750 VkResult
2751 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2752 struct anv_pipeline_cache *cache,
2753 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2754 const VkAllocationCallbacks *alloc);
2755
2756 VkResult
2757 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2758 struct anv_pipeline_cache *cache,
2759 const VkComputePipelineCreateInfo *info,
2760 const struct anv_shader_module *module,
2761 const char *entrypoint,
2762 const VkSpecializationInfo *spec_info);
2763
2764 struct anv_format_plane {
2765 enum isl_format isl_format:16;
2766 struct isl_swizzle swizzle;
2767
2768 /* Whether this plane contains chroma channels */
2769 bool has_chroma;
2770
2771 /* For downscaling of YUV planes */
2772 uint8_t denominator_scales[2];
2773
2774 /* How to map sampled ycbcr planes to a single 4 component element. */
2775 struct isl_swizzle ycbcr_swizzle;
2776
2777 /* What aspect is associated to this plane */
2778 VkImageAspectFlags aspect;
2779 };
2780
2781
2782 struct anv_format {
2783 struct anv_format_plane planes[3];
2784 VkFormat vk_format;
2785 uint8_t n_planes;
2786 bool can_ycbcr;
2787 };
2788
2789 static inline uint32_t
2790 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
2791 VkImageAspectFlags aspect_mask)
2792 {
2793 switch (aspect_mask) {
2794 case VK_IMAGE_ASPECT_COLOR_BIT:
2795 case VK_IMAGE_ASPECT_DEPTH_BIT:
2796 case VK_IMAGE_ASPECT_PLANE_0_BIT:
2797 return 0;
2798 case VK_IMAGE_ASPECT_STENCIL_BIT:
2799 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
2800 return 0;
2801 /* Fall-through */
2802 case VK_IMAGE_ASPECT_PLANE_1_BIT:
2803 return 1;
2804 case VK_IMAGE_ASPECT_PLANE_2_BIT:
2805 return 2;
2806 default:
2807 /* Purposefully assert with depth/stencil aspects. */
2808 unreachable("invalid image aspect");
2809 }
2810 }
2811
2812 static inline VkImageAspectFlags
2813 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
2814 uint32_t plane)
2815 {
2816 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2817 if (util_bitcount(image_aspects) > 1)
2818 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
2819 return VK_IMAGE_ASPECT_COLOR_BIT;
2820 }
2821 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
2822 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
2823 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
2824 return VK_IMAGE_ASPECT_STENCIL_BIT;
2825 }
2826
2827 #define anv_foreach_image_aspect_bit(b, image, aspects) \
2828 for_each_bit(b, anv_image_expand_aspects(image, aspects))
2829
2830 const struct anv_format *
2831 anv_get_format(VkFormat format);
2832
2833 static inline uint32_t
2834 anv_get_format_planes(VkFormat vk_format)
2835 {
2836 const struct anv_format *format = anv_get_format(vk_format);
2837
2838 return format != NULL ? format->n_planes : 0;
2839 }
2840
2841 struct anv_format_plane
2842 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
2843 VkImageAspectFlagBits aspect, VkImageTiling tiling);
2844
2845 static inline enum isl_format
2846 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
2847 VkImageAspectFlags aspect, VkImageTiling tiling)
2848 {
2849 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
2850 }
2851
2852 static inline struct isl_swizzle
2853 anv_swizzle_for_render(struct isl_swizzle swizzle)
2854 {
2855 /* Sometimes the swizzle will have alpha map to one. We do this to fake
2856 * RGB as RGBA for texturing
2857 */
2858 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
2859 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
2860
2861 /* But it doesn't matter what we render to that channel */
2862 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
2863
2864 return swizzle;
2865 }
2866
2867 void
2868 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
2869
2870 /**
2871 * Subsurface of an anv_image.
2872 */
2873 struct anv_surface {
2874 /** Valid only if isl_surf::size_B > 0. */
2875 struct isl_surf isl;
2876
2877 /**
2878 * Offset from VkImage's base address, as bound by vkBindImageMemory().
2879 */
2880 uint32_t offset;
2881 };
2882
2883 struct anv_image {
2884 VkImageType type; /**< VkImageCreateInfo::imageType */
2885 /* The original VkFormat provided by the client. This may not match any
2886 * of the actual surface formats.
2887 */
2888 VkFormat vk_format;
2889 const struct anv_format *format;
2890
2891 VkImageAspectFlags aspects;
2892 VkExtent3D extent;
2893 uint32_t levels;
2894 uint32_t array_size;
2895 uint32_t samples; /**< VkImageCreateInfo::samples */
2896 uint32_t n_planes;
2897 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
2898 VkImageCreateFlags create_flags; /* Flags used when creating image. */
2899 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
2900
2901 /** True if this is needs to be bound to an appropriately tiled BO.
2902 *
2903 * When not using modifiers, consumers such as X11, Wayland, and KMS need
2904 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
2905 * we require a dedicated allocation so that we can know to allocate a
2906 * tiled buffer.
2907 */
2908 bool needs_set_tiling;
2909
2910 /**
2911 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
2912 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
2913 */
2914 uint64_t drm_format_mod;
2915
2916 VkDeviceSize size;
2917 uint32_t alignment;
2918
2919 /* Whether the image is made of several underlying buffer objects rather a
2920 * single one with different offsets.
2921 */
2922 bool disjoint;
2923
2924 /* All the formats that can be used when creating views of this image
2925 * are CCS_E compatible.
2926 */
2927 bool ccs_e_compatible;
2928
2929 /* Image was created with external format. */
2930 bool external_format;
2931
2932 /**
2933 * Image subsurfaces
2934 *
2935 * For each foo, anv_image::planes[x].surface is valid if and only if
2936 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
2937 * to figure the number associated with a given aspect.
2938 *
2939 * The hardware requires that the depth buffer and stencil buffer be
2940 * separate surfaces. From Vulkan's perspective, though, depth and stencil
2941 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
2942 * allocate the depth and stencil buffers as separate surfaces in the same
2943 * bo.
2944 *
2945 * Memory layout :
2946 *
2947 * -----------------------
2948 * | surface0 | /|\
2949 * ----------------------- |
2950 * | shadow surface0 | |
2951 * ----------------------- | Plane 0
2952 * | aux surface0 | |
2953 * ----------------------- |
2954 * | fast clear colors0 | \|/
2955 * -----------------------
2956 * | surface1 | /|\
2957 * ----------------------- |
2958 * | shadow surface1 | |
2959 * ----------------------- | Plane 1
2960 * | aux surface1 | |
2961 * ----------------------- |
2962 * | fast clear colors1 | \|/
2963 * -----------------------
2964 * | ... |
2965 * | |
2966 * -----------------------
2967 */
2968 struct {
2969 /**
2970 * Offset of the entire plane (whenever the image is disjoint this is
2971 * set to 0).
2972 */
2973 uint32_t offset;
2974
2975 VkDeviceSize size;
2976 uint32_t alignment;
2977
2978 struct anv_surface surface;
2979
2980 /**
2981 * A surface which shadows the main surface and may have different
2982 * tiling. This is used for sampling using a tiling that isn't supported
2983 * for other operations.
2984 */
2985 struct anv_surface shadow_surface;
2986
2987 /**
2988 * For color images, this is the aux usage for this image when not used
2989 * as a color attachment.
2990 *
2991 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
2992 * image has a HiZ buffer.
2993 */
2994 enum isl_aux_usage aux_usage;
2995
2996 struct anv_surface aux_surface;
2997
2998 /**
2999 * Offset of the fast clear state (used to compute the
3000 * fast_clear_state_offset of the following planes).
3001 */
3002 uint32_t fast_clear_state_offset;
3003
3004 /**
3005 * BO associated with this plane, set when bound.
3006 */
3007 struct anv_address address;
3008
3009 /**
3010 * When destroying the image, also free the bo.
3011 * */
3012 bool bo_is_owned;
3013 } planes[3];
3014 };
3015
3016 /* The ordering of this enum is important */
3017 enum anv_fast_clear_type {
3018 /** Image does not have/support any fast-clear blocks */
3019 ANV_FAST_CLEAR_NONE = 0,
3020 /** Image has/supports fast-clear but only to the default value */
3021 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3022 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3023 ANV_FAST_CLEAR_ANY = 2,
3024 };
3025
3026 /* Returns the number of auxiliary buffer levels attached to an image. */
3027 static inline uint8_t
3028 anv_image_aux_levels(const struct anv_image * const image,
3029 VkImageAspectFlagBits aspect)
3030 {
3031 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3032 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3033 image->planes[plane].aux_surface.isl.levels : 0;
3034 }
3035
3036 /* Returns the number of auxiliary buffer layers attached to an image. */
3037 static inline uint32_t
3038 anv_image_aux_layers(const struct anv_image * const image,
3039 VkImageAspectFlagBits aspect,
3040 const uint8_t miplevel)
3041 {
3042 assert(image);
3043
3044 /* The miplevel must exist in the main buffer. */
3045 assert(miplevel < image->levels);
3046
3047 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3048 /* There are no layers with auxiliary data because the miplevel has no
3049 * auxiliary data.
3050 */
3051 return 0;
3052 } else {
3053 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3054 return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
3055 image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
3056 }
3057 }
3058
3059 static inline struct anv_address
3060 anv_image_get_clear_color_addr(const struct anv_device *device,
3061 const struct anv_image *image,
3062 VkImageAspectFlagBits aspect)
3063 {
3064 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3065
3066 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3067 return anv_address_add(image->planes[plane].address,
3068 image->planes[plane].fast_clear_state_offset);
3069 }
3070
3071 static inline struct anv_address
3072 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3073 const struct anv_image *image,
3074 VkImageAspectFlagBits aspect)
3075 {
3076 struct anv_address addr =
3077 anv_image_get_clear_color_addr(device, image, aspect);
3078
3079 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3080 device->isl_dev.ss.clear_color_state_size :
3081 device->isl_dev.ss.clear_value_size;
3082 return anv_address_add(addr, clear_color_state_size);
3083 }
3084
3085 static inline struct anv_address
3086 anv_image_get_compression_state_addr(const struct anv_device *device,
3087 const struct anv_image *image,
3088 VkImageAspectFlagBits aspect,
3089 uint32_t level, uint32_t array_layer)
3090 {
3091 assert(level < anv_image_aux_levels(image, aspect));
3092 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3093 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3094 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3095
3096 struct anv_address addr =
3097 anv_image_get_fast_clear_type_addr(device, image, aspect);
3098 addr.offset += 4; /* Go past the fast clear type */
3099
3100 if (image->type == VK_IMAGE_TYPE_3D) {
3101 for (uint32_t l = 0; l < level; l++)
3102 addr.offset += anv_minify(image->extent.depth, l) * 4;
3103 } else {
3104 addr.offset += level * image->array_size * 4;
3105 }
3106 addr.offset += array_layer * 4;
3107
3108 return addr;
3109 }
3110
3111 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3112 static inline bool
3113 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3114 const struct anv_image *image)
3115 {
3116 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3117 return false;
3118
3119 if (devinfo->gen < 8)
3120 return false;
3121
3122 return image->samples == 1;
3123 }
3124
3125 void
3126 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3127 const struct anv_image *image,
3128 VkImageAspectFlagBits aspect,
3129 enum isl_aux_usage aux_usage,
3130 uint32_t level,
3131 uint32_t base_layer,
3132 uint32_t layer_count);
3133
3134 void
3135 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3136 const struct anv_image *image,
3137 VkImageAspectFlagBits aspect,
3138 enum isl_aux_usage aux_usage,
3139 enum isl_format format, struct isl_swizzle swizzle,
3140 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3141 VkRect2D area, union isl_color_value clear_color);
3142 void
3143 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3144 const struct anv_image *image,
3145 VkImageAspectFlags aspects,
3146 enum isl_aux_usage depth_aux_usage,
3147 uint32_t level,
3148 uint32_t base_layer, uint32_t layer_count,
3149 VkRect2D area,
3150 float depth_value, uint8_t stencil_value);
3151 void
3152 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3153 const struct anv_image *src_image,
3154 enum isl_aux_usage src_aux_usage,
3155 uint32_t src_level, uint32_t src_base_layer,
3156 const struct anv_image *dst_image,
3157 enum isl_aux_usage dst_aux_usage,
3158 uint32_t dst_level, uint32_t dst_base_layer,
3159 VkImageAspectFlagBits aspect,
3160 uint32_t src_x, uint32_t src_y,
3161 uint32_t dst_x, uint32_t dst_y,
3162 uint32_t width, uint32_t height,
3163 uint32_t layer_count,
3164 enum blorp_filter filter);
3165 void
3166 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3167 const struct anv_image *image,
3168 VkImageAspectFlagBits aspect, uint32_t level,
3169 uint32_t base_layer, uint32_t layer_count,
3170 enum isl_aux_op hiz_op);
3171 void
3172 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3173 const struct anv_image *image,
3174 VkImageAspectFlags aspects,
3175 uint32_t level,
3176 uint32_t base_layer, uint32_t layer_count,
3177 VkRect2D area, uint8_t stencil_value);
3178 void
3179 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3180 const struct anv_image *image,
3181 enum isl_format format,
3182 VkImageAspectFlagBits aspect,
3183 uint32_t base_layer, uint32_t layer_count,
3184 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3185 bool predicate);
3186 void
3187 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3188 const struct anv_image *image,
3189 enum isl_format format,
3190 VkImageAspectFlagBits aspect, uint32_t level,
3191 uint32_t base_layer, uint32_t layer_count,
3192 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3193 bool predicate);
3194
3195 void
3196 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3197 const struct anv_image *image,
3198 uint32_t base_level, uint32_t level_count,
3199 uint32_t base_layer, uint32_t layer_count);
3200
3201 enum isl_aux_usage
3202 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3203 const struct anv_image *image,
3204 const VkImageAspectFlagBits aspect,
3205 const VkImageLayout layout);
3206
3207 enum anv_fast_clear_type
3208 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3209 const struct anv_image * const image,
3210 const VkImageAspectFlagBits aspect,
3211 const VkImageLayout layout);
3212
3213 /* This is defined as a macro so that it works for both
3214 * VkImageSubresourceRange and VkImageSubresourceLayers
3215 */
3216 #define anv_get_layerCount(_image, _range) \
3217 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3218 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3219
3220 static inline uint32_t
3221 anv_get_levelCount(const struct anv_image *image,
3222 const VkImageSubresourceRange *range)
3223 {
3224 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3225 image->levels - range->baseMipLevel : range->levelCount;
3226 }
3227
3228 static inline VkImageAspectFlags
3229 anv_image_expand_aspects(const struct anv_image *image,
3230 VkImageAspectFlags aspects)
3231 {
3232 /* If the underlying image has color plane aspects and
3233 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3234 * the underlying image. */
3235 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3236 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3237 return image->aspects;
3238
3239 return aspects;
3240 }
3241
3242 static inline bool
3243 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3244 VkImageAspectFlags aspects2)
3245 {
3246 if (aspects1 == aspects2)
3247 return true;
3248
3249 /* Only 1 color aspects are compatibles. */
3250 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3251 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3252 util_bitcount(aspects1) == util_bitcount(aspects2))
3253 return true;
3254
3255 return false;
3256 }
3257
3258 struct anv_image_view {
3259 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3260
3261 VkImageAspectFlags aspect_mask;
3262 VkFormat vk_format;
3263 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3264
3265 unsigned n_planes;
3266 struct {
3267 uint32_t image_plane;
3268
3269 struct isl_view isl;
3270
3271 /**
3272 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3273 * image layout of SHADER_READ_ONLY_OPTIMAL or
3274 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3275 */
3276 struct anv_surface_state optimal_sampler_surface_state;
3277
3278 /**
3279 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3280 * image layout of GENERAL.
3281 */
3282 struct anv_surface_state general_sampler_surface_state;
3283
3284 /**
3285 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3286 * states for write-only and readable, using the real format for
3287 * write-only and the lowered format for readable.
3288 */
3289 struct anv_surface_state storage_surface_state;
3290 struct anv_surface_state writeonly_storage_surface_state;
3291
3292 struct brw_image_param storage_image_param;
3293 } planes[3];
3294 };
3295
3296 enum anv_image_view_state_flags {
3297 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3298 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3299 };
3300
3301 void anv_image_fill_surface_state(struct anv_device *device,
3302 const struct anv_image *image,
3303 VkImageAspectFlagBits aspect,
3304 const struct isl_view *view,
3305 isl_surf_usage_flags_t view_usage,
3306 enum isl_aux_usage aux_usage,
3307 const union isl_color_value *clear_color,
3308 enum anv_image_view_state_flags flags,
3309 struct anv_surface_state *state_inout,
3310 struct brw_image_param *image_param_out);
3311
3312 struct anv_image_create_info {
3313 const VkImageCreateInfo *vk_info;
3314
3315 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3316 isl_tiling_flags_t isl_tiling_flags;
3317
3318 /** These flags will be added to any derived from VkImageCreateInfo. */
3319 isl_surf_usage_flags_t isl_extra_usage_flags;
3320
3321 uint32_t stride;
3322 bool external_format;
3323 };
3324
3325 VkResult anv_image_create(VkDevice _device,
3326 const struct anv_image_create_info *info,
3327 const VkAllocationCallbacks* alloc,
3328 VkImage *pImage);
3329
3330 const struct anv_surface *
3331 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3332 VkImageAspectFlags aspect_mask);
3333
3334 enum isl_format
3335 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3336
3337 static inline struct VkExtent3D
3338 anv_sanitize_image_extent(const VkImageType imageType,
3339 const struct VkExtent3D imageExtent)
3340 {
3341 switch (imageType) {
3342 case VK_IMAGE_TYPE_1D:
3343 return (VkExtent3D) { imageExtent.width, 1, 1 };
3344 case VK_IMAGE_TYPE_2D:
3345 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3346 case VK_IMAGE_TYPE_3D:
3347 return imageExtent;
3348 default:
3349 unreachable("invalid image type");
3350 }
3351 }
3352
3353 static inline struct VkOffset3D
3354 anv_sanitize_image_offset(const VkImageType imageType,
3355 const struct VkOffset3D imageOffset)
3356 {
3357 switch (imageType) {
3358 case VK_IMAGE_TYPE_1D:
3359 return (VkOffset3D) { imageOffset.x, 0, 0 };
3360 case VK_IMAGE_TYPE_2D:
3361 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3362 case VK_IMAGE_TYPE_3D:
3363 return imageOffset;
3364 default:
3365 unreachable("invalid image type");
3366 }
3367 }
3368
3369 VkFormatFeatureFlags
3370 anv_get_image_format_features(const struct gen_device_info *devinfo,
3371 VkFormat vk_format,
3372 const struct anv_format *anv_format,
3373 VkImageTiling vk_tiling);
3374
3375 void anv_fill_buffer_surface_state(struct anv_device *device,
3376 struct anv_state state,
3377 enum isl_format format,
3378 struct anv_address address,
3379 uint32_t range, uint32_t stride);
3380
3381 static inline void
3382 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3383 const struct anv_attachment_state *att_state,
3384 const struct anv_image_view *iview)
3385 {
3386 const struct isl_format_layout *view_fmtl =
3387 isl_format_get_layout(iview->planes[0].isl.format);
3388
3389 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3390 if (view_fmtl->channels.c.bits) \
3391 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3392
3393 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3394 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3395 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3396 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3397
3398 #undef COPY_CLEAR_COLOR_CHANNEL
3399 }
3400
3401
3402 struct anv_ycbcr_conversion {
3403 const struct anv_format * format;
3404 VkSamplerYcbcrModelConversion ycbcr_model;
3405 VkSamplerYcbcrRange ycbcr_range;
3406 VkComponentSwizzle mapping[4];
3407 VkChromaLocation chroma_offsets[2];
3408 VkFilter chroma_filter;
3409 bool chroma_reconstruction;
3410 };
3411
3412 struct anv_sampler {
3413 uint32_t state[3][4];
3414 uint32_t n_planes;
3415 struct anv_ycbcr_conversion *conversion;
3416 };
3417
3418 struct anv_framebuffer {
3419 uint32_t width;
3420 uint32_t height;
3421 uint32_t layers;
3422
3423 uint32_t attachment_count;
3424 struct anv_image_view * attachments[0];
3425 };
3426
3427 struct anv_subpass_attachment {
3428 VkImageUsageFlagBits usage;
3429 uint32_t attachment;
3430 VkImageLayout layout;
3431 };
3432
3433 struct anv_subpass {
3434 uint32_t attachment_count;
3435
3436 /**
3437 * A pointer to all attachment references used in this subpass.
3438 * Only valid if ::attachment_count > 0.
3439 */
3440 struct anv_subpass_attachment * attachments;
3441 uint32_t input_count;
3442 struct anv_subpass_attachment * input_attachments;
3443 uint32_t color_count;
3444 struct anv_subpass_attachment * color_attachments;
3445 struct anv_subpass_attachment * resolve_attachments;
3446
3447 struct anv_subpass_attachment * depth_stencil_attachment;
3448 struct anv_subpass_attachment * ds_resolve_attachment;
3449 VkResolveModeFlagBitsKHR depth_resolve_mode;
3450 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3451
3452 uint32_t view_mask;
3453
3454 /** Subpass has a depth/stencil self-dependency */
3455 bool has_ds_self_dep;
3456
3457 /** Subpass has at least one color resolve attachment */
3458 bool has_color_resolve;
3459 };
3460
3461 static inline unsigned
3462 anv_subpass_view_count(const struct anv_subpass *subpass)
3463 {
3464 return MAX2(1, util_bitcount(subpass->view_mask));
3465 }
3466
3467 struct anv_render_pass_attachment {
3468 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3469 * its members individually.
3470 */
3471 VkFormat format;
3472 uint32_t samples;
3473 VkImageUsageFlags usage;
3474 VkAttachmentLoadOp load_op;
3475 VkAttachmentStoreOp store_op;
3476 VkAttachmentLoadOp stencil_load_op;
3477 VkImageLayout initial_layout;
3478 VkImageLayout final_layout;
3479 VkImageLayout first_subpass_layout;
3480
3481 /* The subpass id in which the attachment will be used last. */
3482 uint32_t last_subpass_idx;
3483 };
3484
3485 struct anv_render_pass {
3486 uint32_t attachment_count;
3487 uint32_t subpass_count;
3488 /* An array of subpass_count+1 flushes, one per subpass boundary */
3489 enum anv_pipe_bits * subpass_flushes;
3490 struct anv_render_pass_attachment * attachments;
3491 struct anv_subpass subpasses[0];
3492 };
3493
3494 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3495
3496 struct anv_query_pool {
3497 VkQueryType type;
3498 VkQueryPipelineStatisticFlags pipeline_statistics;
3499 /** Stride between slots, in bytes */
3500 uint32_t stride;
3501 /** Number of slots in this query pool */
3502 uint32_t slots;
3503 struct anv_bo bo;
3504 };
3505
3506 int anv_get_instance_entrypoint_index(const char *name);
3507 int anv_get_device_entrypoint_index(const char *name);
3508
3509 bool
3510 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3511 const struct anv_instance_extension_table *instance);
3512
3513 bool
3514 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3515 const struct anv_instance_extension_table *instance,
3516 const struct anv_device_extension_table *device);
3517
3518 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3519 const char *name);
3520
3521 void anv_dump_image_to_ppm(struct anv_device *device,
3522 struct anv_image *image, unsigned miplevel,
3523 unsigned array_layer, VkImageAspectFlagBits aspect,
3524 const char *filename);
3525
3526 enum anv_dump_action {
3527 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3528 };
3529
3530 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3531 void anv_dump_finish(void);
3532
3533 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
3534 struct anv_framebuffer *fb);
3535
3536 static inline uint32_t
3537 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3538 {
3539 /* This function must be called from within a subpass. */
3540 assert(cmd_state->pass && cmd_state->subpass);
3541
3542 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3543
3544 /* The id of this subpass shouldn't exceed the number of subpasses in this
3545 * render pass minus 1.
3546 */
3547 assert(subpass_id < cmd_state->pass->subpass_count);
3548 return subpass_id;
3549 }
3550
3551 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3552 \
3553 static inline struct __anv_type * \
3554 __anv_type ## _from_handle(__VkType _handle) \
3555 { \
3556 return (struct __anv_type *) _handle; \
3557 } \
3558 \
3559 static inline __VkType \
3560 __anv_type ## _to_handle(struct __anv_type *_obj) \
3561 { \
3562 return (__VkType) _obj; \
3563 }
3564
3565 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3566 \
3567 static inline struct __anv_type * \
3568 __anv_type ## _from_handle(__VkType _handle) \
3569 { \
3570 return (struct __anv_type *)(uintptr_t) _handle; \
3571 } \
3572 \
3573 static inline __VkType \
3574 __anv_type ## _to_handle(struct __anv_type *_obj) \
3575 { \
3576 return (__VkType)(uintptr_t) _obj; \
3577 }
3578
3579 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3580 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3581
3582 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3583 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3584 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3585 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3586 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3587
3588 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3589 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3590 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3591 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3592 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3593 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3594 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3595 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3596 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3597 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3598 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3599 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3600 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3601 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3602 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3603 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3604 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3605 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3606 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3607 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3608 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3609 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3610 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3611
3612 /* Gen-specific function declarations */
3613 #ifdef genX
3614 # include "anv_genX.h"
3615 #else
3616 # define genX(x) gen7_##x
3617 # include "anv_genX.h"
3618 # undef genX
3619 # define genX(x) gen75_##x
3620 # include "anv_genX.h"
3621 # undef genX
3622 # define genX(x) gen8_##x
3623 # include "anv_genX.h"
3624 # undef genX
3625 # define genX(x) gen9_##x
3626 # include "anv_genX.h"
3627 # undef genX
3628 # define genX(x) gen10_##x
3629 # include "anv_genX.h"
3630 # undef genX
3631 # define genX(x) gen11_##x
3632 # include "anv_genX.h"
3633 # undef genX
3634 #endif
3635
3636 #endif /* ANV_PRIVATE_H */