Switch from cElementTree to ElementTree.
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "common/gen_l3_config.h"
50 #include "dev/gen_device_info.h"
51 #include "blorp/blorp.h"
52 #include "compiler/brw_compiler.h"
53 #include "util/bitset.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/sparse_array.h"
58 #include "util/u_atomic.h"
59 #include "util/u_vector.h"
60 #include "util/u_math.h"
61 #include "util/vma.h"
62 #include "util/xmlconfig.h"
63 #include "vk_alloc.h"
64 #include "vk_debug_report.h"
65 #include "vk_object.h"
66
67 /* Pre-declarations needed for WSI entrypoints */
68 struct wl_surface;
69 struct wl_display;
70 typedef struct xcb_connection_t xcb_connection_t;
71 typedef uint32_t xcb_visualid_t;
72 typedef uint32_t xcb_window_t;
73
74 struct anv_batch;
75 struct anv_buffer;
76 struct anv_buffer_view;
77 struct anv_image_view;
78 struct anv_instance;
79
80 struct gen_aux_map_context;
81 struct gen_perf_config;
82 struct gen_perf_counter_pass;
83 struct gen_perf_query_result;
84
85 #include <vulkan/vulkan.h>
86 #include <vulkan/vulkan_intel.h>
87 #include <vulkan/vk_icd.h>
88
89 #include "anv_android.h"
90 #include "anv_entrypoints.h"
91 #include "anv_extensions.h"
92 #include "isl/isl.h"
93
94 #include "dev/gen_debug.h"
95 #include "common/intel_log.h"
96 #include "wsi_common.h"
97
98 #define NSEC_PER_SEC 1000000000ull
99
100 /* anv Virtual Memory Layout
101 * =========================
102 *
103 * When the anv driver is determining the virtual graphics addresses of memory
104 * objects itself using the softpin mechanism, the following memory ranges
105 * will be used.
106 *
107 * Three special considerations to notice:
108 *
109 * (1) the dynamic state pool is located within the same 4 GiB as the low
110 * heap. This is to work around a VF cache issue described in a comment in
111 * anv_physical_device_init_heaps.
112 *
113 * (2) the binding table pool is located at lower addresses than the surface
114 * state pool, within a 4 GiB range. This allows surface state base addresses
115 * to cover both binding tables (16 bit offsets) and surface states (32 bit
116 * offsets).
117 *
118 * (3) the last 4 GiB of the address space is withheld from the high
119 * heap. Various hardware units will read past the end of an object for
120 * various reasons. This healthy margin prevents reads from wrapping around
121 * 48-bit addresses.
122 */
123 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
124 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
125 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
126 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
127 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
128 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
129 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
130 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
131 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
132 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
133 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
134 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
135 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
136
137 #define LOW_HEAP_SIZE \
138 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
139 #define DYNAMIC_STATE_POOL_SIZE \
140 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
141 #define BINDING_TABLE_POOL_SIZE \
142 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
143 #define SURFACE_STATE_POOL_SIZE \
144 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
145 #define INSTRUCTION_STATE_POOL_SIZE \
146 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
147 #define CLIENT_VISIBLE_HEAP_SIZE \
148 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
149
150 /* Allowing different clear colors requires us to perform a depth resolve at
151 * the end of certain render passes. This is because while slow clears store
152 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
153 * See the PRMs for examples describing when additional resolves would be
154 * necessary. To enable fast clears without requiring extra resolves, we set
155 * the clear value to a globally-defined one. We could allow different values
156 * if the user doesn't expect coherent data during or after a render passes
157 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
158 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
159 * 1.0f seems to be the only value used. The only application that doesn't set
160 * this value does so through the usage of an seemingly uninitialized clear
161 * value.
162 */
163 #define ANV_HZ_FC_VAL 1.0f
164
165 #define MAX_VBS 28
166 #define MAX_XFB_BUFFERS 4
167 #define MAX_XFB_STREAMS 4
168 #define MAX_SETS 8
169 #define MAX_RTS 8
170 #define MAX_VIEWPORTS 16
171 #define MAX_SCISSORS 16
172 #define MAX_PUSH_CONSTANTS_SIZE 128
173 #define MAX_DYNAMIC_BUFFERS 16
174 #define MAX_IMAGES 64
175 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
176 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
177 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
178 /* We need 16 for UBO block reads to work and 32 for push UBOs. However, we
179 * use 64 here to avoid cache issues. This could most likely bring it back to
180 * 32 if we had different virtual addresses for the different views on a given
181 * GEM object.
182 */
183 #define ANV_UBO_ALIGNMENT 64
184 #define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
185 #define MAX_VIEWS_FOR_PRIMITIVE_REPLICATION 16
186
187 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
188 *
189 * "The surface state model is used when a Binding Table Index (specified
190 * in the message descriptor) of less than 240 is specified. In this model,
191 * the Binding Table Index is used to index into the binding table, and the
192 * binding table entry contains a pointer to the SURFACE_STATE."
193 *
194 * Binding table values above 240 are used for various things in the hardware
195 * such as stateless, stateless with incoherent cache, SLM, and bindless.
196 */
197 #define MAX_BINDING_TABLE_SIZE 240
198
199 /* The kernel relocation API has a limitation of a 32-bit delta value
200 * applied to the address before it is written which, in spite of it being
201 * unsigned, is treated as signed . Because of the way that this maps to
202 * the Vulkan API, we cannot handle an offset into a buffer that does not
203 * fit into a signed 32 bits. The only mechanism we have for dealing with
204 * this at the moment is to limit all VkDeviceMemory objects to a maximum
205 * of 2GB each. The Vulkan spec allows us to do this:
206 *
207 * "Some platforms may have a limit on the maximum size of a single
208 * allocation. For example, certain systems may fail to create
209 * allocations with a size greater than or equal to 4GB. Such a limit is
210 * implementation-dependent, and if such a failure occurs then the error
211 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
212 *
213 * We don't use vk_error here because it's not an error so much as an
214 * indication to the application that the allocation is too large.
215 */
216 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
217
218 #define ANV_SVGS_VB_INDEX MAX_VBS
219 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
220
221 /* We reserve this MI ALU register for the purpose of handling predication.
222 * Other code which uses the MI ALU should leave it alone.
223 */
224 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
225
226 /* We reserve this MI ALU register to pass around an offset computed from
227 * VkPerformanceQuerySubmitInfoKHR::counterPassIndex VK_KHR_performance_query.
228 * Other code which uses the MI ALU should leave it alone.
229 */
230 #define ANV_PERF_QUERY_OFFSET_REG 0x2670 /* MI_ALU_REG14 */
231
232 /* For gen12 we set the streamout buffers using 4 separate commands
233 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
234 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
235 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
236 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
237 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
238 * 3DSTATE_SO_BUFFER_INDEX_0.
239 */
240 #define SO_BUFFER_INDEX_0_CMD 0x60
241 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
242
243 static inline uint32_t
244 align_down_npot_u32(uint32_t v, uint32_t a)
245 {
246 return v - (v % a);
247 }
248
249 static inline uint32_t
250 align_down_u32(uint32_t v, uint32_t a)
251 {
252 assert(a != 0 && a == (a & -a));
253 return v & ~(a - 1);
254 }
255
256 static inline uint32_t
257 align_u32(uint32_t v, uint32_t a)
258 {
259 assert(a != 0 && a == (a & -a));
260 return align_down_u32(v + a - 1, a);
261 }
262
263 static inline uint64_t
264 align_down_u64(uint64_t v, uint64_t a)
265 {
266 assert(a != 0 && a == (a & -a));
267 return v & ~(a - 1);
268 }
269
270 static inline uint64_t
271 align_u64(uint64_t v, uint64_t a)
272 {
273 return align_down_u64(v + a - 1, a);
274 }
275
276 static inline int32_t
277 align_i32(int32_t v, int32_t a)
278 {
279 assert(a != 0 && a == (a & -a));
280 return (v + a - 1) & ~(a - 1);
281 }
282
283 /** Alignment must be a power of 2. */
284 static inline bool
285 anv_is_aligned(uintmax_t n, uintmax_t a)
286 {
287 assert(a == (a & -a));
288 return (n & (a - 1)) == 0;
289 }
290
291 static inline uint32_t
292 anv_minify(uint32_t n, uint32_t levels)
293 {
294 if (unlikely(n == 0))
295 return 0;
296 else
297 return MAX2(n >> levels, 1);
298 }
299
300 static inline float
301 anv_clamp_f(float f, float min, float max)
302 {
303 assert(min < max);
304
305 if (f > max)
306 return max;
307 else if (f < min)
308 return min;
309 else
310 return f;
311 }
312
313 static inline bool
314 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
315 {
316 if (*inout_mask & clear_mask) {
317 *inout_mask &= ~clear_mask;
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324 static inline union isl_color_value
325 vk_to_isl_color(VkClearColorValue color)
326 {
327 return (union isl_color_value) {
328 .u32 = {
329 color.uint32[0],
330 color.uint32[1],
331 color.uint32[2],
332 color.uint32[3],
333 },
334 };
335 }
336
337 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
338 {
339 uintptr_t mask = (1ull << bits) - 1;
340 *flags = ptr & mask;
341 return (void *) (ptr & ~mask);
342 }
343
344 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
345 {
346 uintptr_t value = (uintptr_t) ptr;
347 uintptr_t mask = (1ull << bits) - 1;
348 return value | (mask & flags);
349 }
350
351 #define for_each_bit(b, dword) \
352 for (uint32_t __dword = (dword); \
353 (b) = __builtin_ffs(__dword) - 1, __dword; \
354 __dword &= ~(1 << (b)))
355
356 #define typed_memcpy(dest, src, count) ({ \
357 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
358 memcpy((dest), (src), (count) * sizeof(*(src))); \
359 })
360
361 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
362 * to be added here in order to utilize mapping in debug/error/perf macros.
363 */
364 #define REPORT_OBJECT_TYPE(o) \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
428 __builtin_choose_expr ( \
429 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
430 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
431 __builtin_choose_expr ( \
432 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
433 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
434 __builtin_choose_expr ( \
435 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
436 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
437 __builtin_choose_expr ( \
438 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
439 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
440 __builtin_choose_expr ( \
441 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
442 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
443 __builtin_choose_expr ( \
444 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
445 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
446 __builtin_choose_expr ( \
447 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
448 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
449 __builtin_choose_expr ( \
450 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
451 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
452 __builtin_choose_expr ( \
453 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
454 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
455 __builtin_choose_expr ( \
456 __builtin_types_compatible_p (__typeof (o), void*), \
457 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
458 /* The void expression results in a compile-time error \
459 when assigning the result to something. */ \
460 (void)0)))))))))))))))))))))))))))))))
461
462 /* Whenever we generate an error, pass it through this function. Useful for
463 * debugging, where we can break on it. Only call at error site, not when
464 * propagating errors. Might be useful to plug in a stack trace here.
465 */
466
467 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
468 VkDebugReportObjectTypeEXT type, VkResult error,
469 const char *file, int line, const char *format,
470 va_list args);
471
472 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
473 VkDebugReportObjectTypeEXT type, VkResult error,
474 const char *file, int line, const char *format, ...)
475 anv_printflike(7, 8);
476
477 #ifdef DEBUG
478 #define vk_error(error) __vk_errorf(NULL, NULL,\
479 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
480 error, __FILE__, __LINE__, NULL)
481 #define vk_errorfi(instance, obj, error, format, ...)\
482 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
483 __FILE__, __LINE__, format, ## __VA_ARGS__)
484 #define vk_errorf(device, obj, error, format, ...)\
485 vk_errorfi(anv_device_instance_or_null(device),\
486 obj, error, format, ## __VA_ARGS__)
487 #else
488 #define vk_error(error) error
489 #define vk_errorfi(instance, obj, error, format, ...) error
490 #define vk_errorf(device, obj, error, format, ...) error
491 #endif
492
493 /**
494 * Warn on ignored extension structs.
495 *
496 * The Vulkan spec requires us to ignore unsupported or unknown structs in
497 * a pNext chain. In debug mode, emitting warnings for ignored structs may
498 * help us discover structs that we should not have ignored.
499 *
500 *
501 * From the Vulkan 1.0.38 spec:
502 *
503 * Any component of the implementation (the loader, any enabled layers,
504 * and drivers) must skip over, without processing (other than reading the
505 * sType and pNext members) any chained structures with sType values not
506 * defined by extensions supported by that component.
507 */
508 #define anv_debug_ignored_stype(sType) \
509 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
510
511 void __anv_perf_warn(struct anv_device *device, const void *object,
512 VkDebugReportObjectTypeEXT type, const char *file,
513 int line, const char *format, ...)
514 anv_printflike(6, 7);
515 void anv_loge(const char *format, ...) anv_printflike(1, 2);
516 void anv_loge_v(const char *format, va_list va);
517
518 /**
519 * Print a FINISHME message, including its source location.
520 */
521 #define anv_finishme(format, ...) \
522 do { \
523 static bool reported = false; \
524 if (!reported) { \
525 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
526 ##__VA_ARGS__); \
527 reported = true; \
528 } \
529 } while (0)
530
531 /**
532 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
533 */
534 #define anv_perf_warn(instance, obj, format, ...) \
535 do { \
536 static bool reported = false; \
537 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
538 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
539 format, ##__VA_ARGS__); \
540 reported = true; \
541 } \
542 } while (0)
543
544 /* A non-fatal assert. Useful for debugging. */
545 #ifdef DEBUG
546 #define anv_assert(x) ({ \
547 if (unlikely(!(x))) \
548 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
549 })
550 #else
551 #define anv_assert(x)
552 #endif
553
554 /* A multi-pointer allocator
555 *
556 * When copying data structures from the user (such as a render pass), it's
557 * common to need to allocate data for a bunch of different things. Instead
558 * of doing several allocations and having to handle all of the error checking
559 * that entails, it can be easier to do a single allocation. This struct
560 * helps facilitate that. The intended usage looks like this:
561 *
562 * ANV_MULTIALLOC(ma)
563 * anv_multialloc_add(&ma, &main_ptr, 1);
564 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
565 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
566 *
567 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
568 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
569 */
570 struct anv_multialloc {
571 size_t size;
572 size_t align;
573
574 uint32_t ptr_count;
575 void **ptrs[8];
576 };
577
578 #define ANV_MULTIALLOC_INIT \
579 ((struct anv_multialloc) { 0, })
580
581 #define ANV_MULTIALLOC(_name) \
582 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
583
584 __attribute__((always_inline))
585 static inline void
586 _anv_multialloc_add(struct anv_multialloc *ma,
587 void **ptr, size_t size, size_t align)
588 {
589 size_t offset = align_u64(ma->size, align);
590 ma->size = offset + size;
591 ma->align = MAX2(ma->align, align);
592
593 /* Store the offset in the pointer. */
594 *ptr = (void *)(uintptr_t)offset;
595
596 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
597 ma->ptrs[ma->ptr_count++] = ptr;
598 }
599
600 #define anv_multialloc_add_size(_ma, _ptr, _size) \
601 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
602
603 #define anv_multialloc_add(_ma, _ptr, _count) \
604 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
605
606 __attribute__((always_inline))
607 static inline void *
608 anv_multialloc_alloc(struct anv_multialloc *ma,
609 const VkAllocationCallbacks *alloc,
610 VkSystemAllocationScope scope)
611 {
612 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
613 if (!ptr)
614 return NULL;
615
616 /* Fill out each of the pointers with their final value.
617 *
618 * for (uint32_t i = 0; i < ma->ptr_count; i++)
619 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
620 *
621 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
622 * constant, GCC is incapable of figuring this out and unrolling the loop
623 * so we have to give it a little help.
624 */
625 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
626 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
627 if ((_i) < ma->ptr_count) \
628 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
629 _ANV_MULTIALLOC_UPDATE_POINTER(0);
630 _ANV_MULTIALLOC_UPDATE_POINTER(1);
631 _ANV_MULTIALLOC_UPDATE_POINTER(2);
632 _ANV_MULTIALLOC_UPDATE_POINTER(3);
633 _ANV_MULTIALLOC_UPDATE_POINTER(4);
634 _ANV_MULTIALLOC_UPDATE_POINTER(5);
635 _ANV_MULTIALLOC_UPDATE_POINTER(6);
636 _ANV_MULTIALLOC_UPDATE_POINTER(7);
637 #undef _ANV_MULTIALLOC_UPDATE_POINTER
638
639 return ptr;
640 }
641
642 __attribute__((always_inline))
643 static inline void *
644 anv_multialloc_alloc2(struct anv_multialloc *ma,
645 const VkAllocationCallbacks *parent_alloc,
646 const VkAllocationCallbacks *alloc,
647 VkSystemAllocationScope scope)
648 {
649 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
650 }
651
652 struct anv_bo {
653 uint32_t gem_handle;
654
655 uint32_t refcount;
656
657 /* Index into the current validation list. This is used by the
658 * validation list building alrogithm to track which buffers are already
659 * in the validation list so that we can ensure uniqueness.
660 */
661 uint32_t index;
662
663 /* Index for use with util_sparse_array_free_list */
664 uint32_t free_index;
665
666 /* Last known offset. This value is provided by the kernel when we
667 * execbuf and is used as the presumed offset for the next bunch of
668 * relocations.
669 */
670 uint64_t offset;
671
672 /** Size of the buffer not including implicit aux */
673 uint64_t size;
674
675 /* Map for internally mapped BOs.
676 *
677 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
678 */
679 void *map;
680
681 /** Size of the implicit CCS range at the end of the buffer
682 *
683 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
684 * page of main surface data maps to a 256B chunk of CCS data and that
685 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
686 * addresses in the main surface to virtual memory addresses for CCS data.
687 *
688 * Because we can't change these maps around easily and because Vulkan
689 * allows two VkImages to be bound to overlapping memory regions (as long
690 * as the app is careful), it's not feasible to make this mapping part of
691 * the image. (On Gen11 and earlier, the mapping was provided via
692 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
693 * Instead, we attach the CCS data directly to the buffer object and setup
694 * the AUX table mapping at BO creation time.
695 *
696 * This field is for internal tracking use by the BO allocator only and
697 * should not be touched by other parts of the code. If something wants to
698 * know if a BO has implicit CCS data, it should instead look at the
699 * has_implicit_ccs boolean below.
700 *
701 * This data is not included in maps of this buffer.
702 */
703 uint32_t _ccs_size;
704
705 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
706 uint32_t flags;
707
708 /** True if this BO may be shared with other processes */
709 bool is_external:1;
710
711 /** True if this BO is a wrapper
712 *
713 * When set to true, none of the fields in this BO are meaningful except
714 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
715 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
716 * is set in the physical device.
717 */
718 bool is_wrapper:1;
719
720 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
721 bool has_fixed_address:1;
722
723 /** True if this BO wraps a host pointer */
724 bool from_host_ptr:1;
725
726 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
727 bool has_client_visible_address:1;
728
729 /** True if this BO has implicit CCS data attached to it */
730 bool has_implicit_ccs:1;
731 };
732
733 static inline struct anv_bo *
734 anv_bo_ref(struct anv_bo *bo)
735 {
736 p_atomic_inc(&bo->refcount);
737 return bo;
738 }
739
740 static inline struct anv_bo *
741 anv_bo_unwrap(struct anv_bo *bo)
742 {
743 while (bo->is_wrapper)
744 bo = bo->map;
745 return bo;
746 }
747
748 /* Represents a lock-free linked list of "free" things. This is used by
749 * both the block pool and the state pools. Unfortunately, in order to
750 * solve the ABA problem, we can't use a single uint32_t head.
751 */
752 union anv_free_list {
753 struct {
754 uint32_t offset;
755
756 /* A simple count that is incremented every time the head changes. */
757 uint32_t count;
758 };
759 /* Make sure it's aligned to 64 bits. This will make atomic operations
760 * faster on 32 bit platforms.
761 */
762 uint64_t u64 __attribute__ ((aligned (8)));
763 };
764
765 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
766
767 struct anv_block_state {
768 union {
769 struct {
770 uint32_t next;
771 uint32_t end;
772 };
773 /* Make sure it's aligned to 64 bits. This will make atomic operations
774 * faster on 32 bit platforms.
775 */
776 uint64_t u64 __attribute__ ((aligned (8)));
777 };
778 };
779
780 #define anv_block_pool_foreach_bo(bo, pool) \
781 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
782 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
783 _pp_bo++)
784
785 #define ANV_MAX_BLOCK_POOL_BOS 20
786
787 struct anv_block_pool {
788 struct anv_device *device;
789 bool use_softpin;
790
791 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
792 * around the actual BO so that we grow the pool after the wrapper BO has
793 * been put in a relocation list. This is only used in the non-softpin
794 * case.
795 */
796 struct anv_bo wrapper_bo;
797
798 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
799 struct anv_bo *bo;
800 uint32_t nbos;
801
802 uint64_t size;
803
804 /* The address where the start of the pool is pinned. The various bos that
805 * are created as the pool grows will have addresses in the range
806 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
807 */
808 uint64_t start_address;
809
810 /* The offset from the start of the bo to the "center" of the block
811 * pool. Pointers to allocated blocks are given by
812 * bo.map + center_bo_offset + offsets.
813 */
814 uint32_t center_bo_offset;
815
816 /* Current memory map of the block pool. This pointer may or may not
817 * point to the actual beginning of the block pool memory. If
818 * anv_block_pool_alloc_back has ever been called, then this pointer
819 * will point to the "center" position of the buffer and all offsets
820 * (negative or positive) given out by the block pool alloc functions
821 * will be valid relative to this pointer.
822 *
823 * In particular, map == bo.map + center_offset
824 *
825 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
826 * since it will handle the softpin case as well, where this points to NULL.
827 */
828 void *map;
829 int fd;
830
831 /**
832 * Array of mmaps and gem handles owned by the block pool, reclaimed when
833 * the block pool is destroyed.
834 */
835 struct u_vector mmap_cleanups;
836
837 struct anv_block_state state;
838
839 struct anv_block_state back_state;
840 };
841
842 /* Block pools are backed by a fixed-size 1GB memfd */
843 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
844
845 /* The center of the block pool is also the middle of the memfd. This may
846 * change in the future if we decide differently for some reason.
847 */
848 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
849
850 static inline uint32_t
851 anv_block_pool_size(struct anv_block_pool *pool)
852 {
853 return pool->state.end + pool->back_state.end;
854 }
855
856 struct anv_state {
857 int32_t offset;
858 uint32_t alloc_size;
859 void *map;
860 uint32_t idx;
861 };
862
863 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
864
865 struct anv_fixed_size_state_pool {
866 union anv_free_list free_list;
867 struct anv_block_state block;
868 };
869
870 #define ANV_MIN_STATE_SIZE_LOG2 6
871 #define ANV_MAX_STATE_SIZE_LOG2 21
872
873 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
874
875 struct anv_free_entry {
876 uint32_t next;
877 struct anv_state state;
878 };
879
880 struct anv_state_table {
881 struct anv_device *device;
882 int fd;
883 struct anv_free_entry *map;
884 uint32_t size;
885 struct anv_block_state state;
886 struct u_vector cleanups;
887 };
888
889 struct anv_state_pool {
890 struct anv_block_pool block_pool;
891
892 /* Offset into the relevant state base address where the state pool starts
893 * allocating memory.
894 */
895 int32_t start_offset;
896
897 struct anv_state_table table;
898
899 /* The size of blocks which will be allocated from the block pool */
900 uint32_t block_size;
901
902 /** Free list for "back" allocations */
903 union anv_free_list back_alloc_free_list;
904
905 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
906 };
907
908 struct anv_state_reserved_pool {
909 struct anv_state_pool *pool;
910 union anv_free_list reserved_blocks;
911 uint32_t count;
912 };
913
914 struct anv_state_stream {
915 struct anv_state_pool *state_pool;
916
917 /* The size of blocks to allocate from the state pool */
918 uint32_t block_size;
919
920 /* Current block we're allocating from */
921 struct anv_state block;
922
923 /* Offset into the current block at which to allocate the next state */
924 uint32_t next;
925
926 /* List of all blocks allocated from this pool */
927 struct util_dynarray all_blocks;
928 };
929
930 /* The block_pool functions exported for testing only. The block pool should
931 * only be used via a state pool (see below).
932 */
933 VkResult anv_block_pool_init(struct anv_block_pool *pool,
934 struct anv_device *device,
935 uint64_t start_address,
936 uint32_t initial_size);
937 void anv_block_pool_finish(struct anv_block_pool *pool);
938 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
939 uint32_t block_size, uint32_t *padding);
940 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
941 uint32_t block_size);
942 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
943 size);
944
945 VkResult anv_state_pool_init(struct anv_state_pool *pool,
946 struct anv_device *device,
947 uint64_t base_address,
948 int32_t start_offset,
949 uint32_t block_size);
950 void anv_state_pool_finish(struct anv_state_pool *pool);
951 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
952 uint32_t state_size, uint32_t alignment);
953 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
954 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
955 void anv_state_stream_init(struct anv_state_stream *stream,
956 struct anv_state_pool *state_pool,
957 uint32_t block_size);
958 void anv_state_stream_finish(struct anv_state_stream *stream);
959 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
960 uint32_t size, uint32_t alignment);
961
962 void anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
963 struct anv_state_pool *parent,
964 uint32_t count, uint32_t size,
965 uint32_t alignment);
966 void anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool);
967 struct anv_state anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool);
968 void anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
969 struct anv_state state);
970
971 VkResult anv_state_table_init(struct anv_state_table *table,
972 struct anv_device *device,
973 uint32_t initial_entries);
974 void anv_state_table_finish(struct anv_state_table *table);
975 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
976 uint32_t count);
977 void anv_free_list_push(union anv_free_list *list,
978 struct anv_state_table *table,
979 uint32_t idx, uint32_t count);
980 struct anv_state* anv_free_list_pop(union anv_free_list *list,
981 struct anv_state_table *table);
982
983
984 static inline struct anv_state *
985 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
986 {
987 return &table->map[idx].state;
988 }
989 /**
990 * Implements a pool of re-usable BOs. The interface is identical to that
991 * of block_pool except that each block is its own BO.
992 */
993 struct anv_bo_pool {
994 struct anv_device *device;
995
996 struct util_sparse_array_free_list free_list[16];
997 };
998
999 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
1000 void anv_bo_pool_finish(struct anv_bo_pool *pool);
1001 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1002 struct anv_bo **bo_out);
1003 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
1004
1005 struct anv_scratch_pool {
1006 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
1007 struct anv_bo *bos[16][MESA_SHADER_STAGES];
1008 };
1009
1010 void anv_scratch_pool_init(struct anv_device *device,
1011 struct anv_scratch_pool *pool);
1012 void anv_scratch_pool_finish(struct anv_device *device,
1013 struct anv_scratch_pool *pool);
1014 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
1015 struct anv_scratch_pool *pool,
1016 gl_shader_stage stage,
1017 unsigned per_thread_scratch);
1018
1019 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
1020 struct anv_bo_cache {
1021 struct util_sparse_array bo_map;
1022 pthread_mutex_t mutex;
1023 };
1024
1025 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
1026 void anv_bo_cache_finish(struct anv_bo_cache *cache);
1027
1028 struct anv_memory_type {
1029 /* Standard bits passed on to the client */
1030 VkMemoryPropertyFlags propertyFlags;
1031 uint32_t heapIndex;
1032 };
1033
1034 struct anv_memory_heap {
1035 /* Standard bits passed on to the client */
1036 VkDeviceSize size;
1037 VkMemoryHeapFlags flags;
1038
1039 /* Driver-internal book-keeping */
1040 VkDeviceSize used;
1041 };
1042
1043 struct anv_physical_device {
1044 struct vk_object_base base;
1045
1046 /* Link in anv_instance::physical_devices */
1047 struct list_head link;
1048
1049 struct anv_instance * instance;
1050 bool no_hw;
1051 char path[20];
1052 const char * name;
1053 struct {
1054 uint16_t domain;
1055 uint8_t bus;
1056 uint8_t device;
1057 uint8_t function;
1058 } pci_info;
1059 struct gen_device_info info;
1060 /** Amount of "GPU memory" we want to advertise
1061 *
1062 * Clearly, this value is bogus since Intel is a UMA architecture. On
1063 * gen7 platforms, we are limited by GTT size unless we want to implement
1064 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1065 * practically unlimited. However, we will never report more than 3/4 of
1066 * the total system ram to try and avoid running out of RAM.
1067 */
1068 bool supports_48bit_addresses;
1069 struct brw_compiler * compiler;
1070 struct isl_device isl_dev;
1071 struct gen_perf_config * perf;
1072 int cmd_parser_version;
1073 bool has_softpin;
1074 bool has_exec_async;
1075 bool has_exec_capture;
1076 bool has_exec_fence;
1077 bool has_syncobj;
1078 bool has_syncobj_wait;
1079 bool has_context_priority;
1080 bool has_context_isolation;
1081 bool has_mem_available;
1082 bool has_mmap_offset;
1083 uint64_t gtt_size;
1084
1085 bool use_softpin;
1086 bool always_use_bindless;
1087
1088 /** True if we can access buffers using A64 messages */
1089 bool has_a64_buffer_access;
1090 /** True if we can use bindless access for images */
1091 bool has_bindless_images;
1092 /** True if we can use bindless access for samplers */
1093 bool has_bindless_samplers;
1094
1095 /** True if we can read the GPU timestamp register
1096 *
1097 * When running in a virtual context, the timestamp register is unreadable
1098 * on Gen12+.
1099 */
1100 bool has_reg_timestamp;
1101
1102 /** True if this device has implicit AUX
1103 *
1104 * If true, CCS is handled as an implicit attachment to the BO rather than
1105 * as an explicitly bound surface.
1106 */
1107 bool has_implicit_ccs;
1108
1109 bool always_flush_cache;
1110
1111 struct anv_device_extension_table supported_extensions;
1112
1113 uint32_t eu_total;
1114 uint32_t subslice_total;
1115
1116 struct {
1117 uint32_t type_count;
1118 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1119 uint32_t heap_count;
1120 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1121 } memory;
1122
1123 uint8_t driver_build_sha1[20];
1124 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1125 uint8_t driver_uuid[VK_UUID_SIZE];
1126 uint8_t device_uuid[VK_UUID_SIZE];
1127
1128 struct disk_cache * disk_cache;
1129
1130 struct wsi_device wsi_device;
1131 int local_fd;
1132 int master_fd;
1133 };
1134
1135 struct anv_app_info {
1136 const char* app_name;
1137 uint32_t app_version;
1138 const char* engine_name;
1139 uint32_t engine_version;
1140 uint32_t api_version;
1141 };
1142
1143 struct anv_instance {
1144 struct vk_object_base base;
1145
1146 VkAllocationCallbacks alloc;
1147
1148 struct anv_app_info app_info;
1149
1150 struct anv_instance_extension_table enabled_extensions;
1151 struct anv_instance_dispatch_table dispatch;
1152 struct anv_physical_device_dispatch_table physical_device_dispatch;
1153 struct anv_device_dispatch_table device_dispatch;
1154
1155 bool physical_devices_enumerated;
1156 struct list_head physical_devices;
1157
1158 bool pipeline_cache_enabled;
1159
1160 struct vk_debug_report_instance debug_report_callbacks;
1161
1162 struct driOptionCache dri_options;
1163 struct driOptionCache available_dri_options;
1164 };
1165
1166 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1167 void anv_finish_wsi(struct anv_physical_device *physical_device);
1168
1169 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1170 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1171 const char *name);
1172
1173 struct anv_queue_submit {
1174 struct anv_cmd_buffer * cmd_buffer;
1175
1176 uint32_t fence_count;
1177 uint32_t fence_array_length;
1178 struct drm_i915_gem_exec_fence * fences;
1179
1180 uint32_t temporary_semaphore_count;
1181 uint32_t temporary_semaphore_array_length;
1182 struct anv_semaphore_impl * temporary_semaphores;
1183
1184 /* Semaphores to be signaled with a SYNC_FD. */
1185 struct anv_semaphore ** sync_fd_semaphores;
1186 uint32_t sync_fd_semaphore_count;
1187 uint32_t sync_fd_semaphore_array_length;
1188
1189 /* Allocated only with non shareable timelines. */
1190 struct anv_timeline ** wait_timelines;
1191 uint32_t wait_timeline_count;
1192 uint32_t wait_timeline_array_length;
1193 uint64_t * wait_timeline_values;
1194
1195 struct anv_timeline ** signal_timelines;
1196 uint32_t signal_timeline_count;
1197 uint32_t signal_timeline_array_length;
1198 uint64_t * signal_timeline_values;
1199
1200 int in_fence;
1201 bool need_out_fence;
1202 int out_fence;
1203
1204 uint32_t fence_bo_count;
1205 uint32_t fence_bo_array_length;
1206 /* An array of struct anv_bo pointers with lower bit used as a flag to
1207 * signal we will wait on that BO (see anv_(un)pack_ptr).
1208 */
1209 uintptr_t * fence_bos;
1210
1211 int perf_query_pass;
1212
1213 const VkAllocationCallbacks * alloc;
1214 VkSystemAllocationScope alloc_scope;
1215
1216 struct anv_bo * simple_bo;
1217 uint32_t simple_bo_size;
1218
1219 struct list_head link;
1220 };
1221
1222 struct anv_queue {
1223 struct vk_object_base base;
1224
1225 struct anv_device * device;
1226
1227 /*
1228 * A list of struct anv_queue_submit to be submitted to i915.
1229 */
1230 struct list_head queued_submits;
1231
1232 VkDeviceQueueCreateFlags flags;
1233 };
1234
1235 struct anv_pipeline_cache {
1236 struct vk_object_base base;
1237 struct anv_device * device;
1238 pthread_mutex_t mutex;
1239
1240 struct hash_table * nir_cache;
1241
1242 struct hash_table * cache;
1243 };
1244
1245 struct nir_xfb_info;
1246 struct anv_pipeline_bind_map;
1247
1248 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1249 struct anv_device *device,
1250 bool cache_enabled);
1251 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1252
1253 struct anv_shader_bin *
1254 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1255 const void *key, uint32_t key_size);
1256 struct anv_shader_bin *
1257 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1258 gl_shader_stage stage,
1259 const void *key_data, uint32_t key_size,
1260 const void *kernel_data, uint32_t kernel_size,
1261 const void *constant_data,
1262 uint32_t constant_data_size,
1263 const struct brw_stage_prog_data *prog_data,
1264 uint32_t prog_data_size,
1265 const struct brw_compile_stats *stats,
1266 uint32_t num_stats,
1267 const struct nir_xfb_info *xfb_info,
1268 const struct anv_pipeline_bind_map *bind_map);
1269
1270 struct anv_shader_bin *
1271 anv_device_search_for_kernel(struct anv_device *device,
1272 struct anv_pipeline_cache *cache,
1273 const void *key_data, uint32_t key_size,
1274 bool *user_cache_bit);
1275
1276 struct anv_shader_bin *
1277 anv_device_upload_kernel(struct anv_device *device,
1278 struct anv_pipeline_cache *cache,
1279 gl_shader_stage stage,
1280 const void *key_data, uint32_t key_size,
1281 const void *kernel_data, uint32_t kernel_size,
1282 const void *constant_data,
1283 uint32_t constant_data_size,
1284 const struct brw_stage_prog_data *prog_data,
1285 uint32_t prog_data_size,
1286 const struct brw_compile_stats *stats,
1287 uint32_t num_stats,
1288 const struct nir_xfb_info *xfb_info,
1289 const struct anv_pipeline_bind_map *bind_map);
1290
1291 struct nir_shader;
1292 struct nir_shader_compiler_options;
1293
1294 struct nir_shader *
1295 anv_device_search_for_nir(struct anv_device *device,
1296 struct anv_pipeline_cache *cache,
1297 const struct nir_shader_compiler_options *nir_options,
1298 unsigned char sha1_key[20],
1299 void *mem_ctx);
1300
1301 void
1302 anv_device_upload_nir(struct anv_device *device,
1303 struct anv_pipeline_cache *cache,
1304 const struct nir_shader *nir,
1305 unsigned char sha1_key[20]);
1306
1307 struct anv_address {
1308 struct anv_bo *bo;
1309 uint32_t offset;
1310 };
1311
1312 struct anv_device {
1313 struct vk_device vk;
1314
1315 struct anv_physical_device * physical;
1316 bool no_hw;
1317 struct gen_device_info info;
1318 struct isl_device isl_dev;
1319 int context_id;
1320 int fd;
1321 bool can_chain_batches;
1322 bool robust_buffer_access;
1323 struct anv_device_extension_table enabled_extensions;
1324 struct anv_device_dispatch_table dispatch;
1325
1326 pthread_mutex_t vma_mutex;
1327 struct util_vma_heap vma_lo;
1328 struct util_vma_heap vma_cva;
1329 struct util_vma_heap vma_hi;
1330
1331 /** List of all anv_device_memory objects */
1332 struct list_head memory_objects;
1333
1334 struct anv_bo_pool batch_bo_pool;
1335
1336 struct anv_bo_cache bo_cache;
1337
1338 struct anv_state_pool dynamic_state_pool;
1339 struct anv_state_pool instruction_state_pool;
1340 struct anv_state_pool binding_table_pool;
1341 struct anv_state_pool surface_state_pool;
1342
1343 struct anv_state_reserved_pool custom_border_colors;
1344
1345 /** BO used for various workarounds
1346 *
1347 * There are a number of workarounds on our hardware which require writing
1348 * data somewhere and it doesn't really matter where. For that, we use
1349 * this BO and just write to the first dword or so.
1350 *
1351 * We also need to be able to handle NULL buffers bound as pushed UBOs.
1352 * For that, we use the high bytes (>= 1024) of the workaround BO.
1353 */
1354 struct anv_bo * workaround_bo;
1355 struct anv_address workaround_address;
1356
1357 struct anv_bo * trivial_batch_bo;
1358 struct anv_bo * hiz_clear_bo;
1359 struct anv_state null_surface_state;
1360
1361 struct anv_pipeline_cache default_pipeline_cache;
1362 struct blorp_context blorp;
1363
1364 struct anv_state border_colors;
1365
1366 struct anv_state slice_hash;
1367
1368 struct anv_queue queue;
1369
1370 struct anv_scratch_pool scratch_pool;
1371
1372 pthread_mutex_t mutex;
1373 pthread_cond_t queue_submit;
1374 int _lost;
1375
1376 struct gen_batch_decode_ctx decoder_ctx;
1377 /*
1378 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1379 * the cmd_buffer's list.
1380 */
1381 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1382
1383 int perf_fd; /* -1 if no opened */
1384 uint64_t perf_metric; /* 0 if unset */
1385
1386 struct gen_aux_map_context *aux_map_ctx;
1387 };
1388
1389 static inline struct anv_instance *
1390 anv_device_instance_or_null(const struct anv_device *device)
1391 {
1392 return device ? device->physical->instance : NULL;
1393 }
1394
1395 static inline struct anv_state_pool *
1396 anv_binding_table_pool(struct anv_device *device)
1397 {
1398 if (device->physical->use_softpin)
1399 return &device->binding_table_pool;
1400 else
1401 return &device->surface_state_pool;
1402 }
1403
1404 static inline struct anv_state
1405 anv_binding_table_pool_alloc(struct anv_device *device) {
1406 if (device->physical->use_softpin)
1407 return anv_state_pool_alloc(&device->binding_table_pool,
1408 device->binding_table_pool.block_size, 0);
1409 else
1410 return anv_state_pool_alloc_back(&device->surface_state_pool);
1411 }
1412
1413 static inline void
1414 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1415 anv_state_pool_free(anv_binding_table_pool(device), state);
1416 }
1417
1418 static inline uint32_t
1419 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1420 {
1421 if (bo->is_external)
1422 return device->isl_dev.mocs.external;
1423 else
1424 return device->isl_dev.mocs.internal;
1425 }
1426
1427 void anv_device_init_blorp(struct anv_device *device);
1428 void anv_device_finish_blorp(struct anv_device *device);
1429
1430 void _anv_device_set_all_queue_lost(struct anv_device *device);
1431 VkResult _anv_device_set_lost(struct anv_device *device,
1432 const char *file, int line,
1433 const char *msg, ...)
1434 anv_printflike(4, 5);
1435 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1436 const char *file, int line,
1437 const char *msg, ...)
1438 anv_printflike(4, 5);
1439 #define anv_device_set_lost(dev, ...) \
1440 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1441 #define anv_queue_set_lost(queue, ...) \
1442 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1443
1444 static inline bool
1445 anv_device_is_lost(struct anv_device *device)
1446 {
1447 return unlikely(p_atomic_read(&device->_lost));
1448 }
1449
1450 VkResult anv_device_query_status(struct anv_device *device);
1451
1452
1453 enum anv_bo_alloc_flags {
1454 /** Specifies that the BO must have a 32-bit address
1455 *
1456 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1457 */
1458 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1459
1460 /** Specifies that the BO may be shared externally */
1461 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1462
1463 /** Specifies that the BO should be mapped */
1464 ANV_BO_ALLOC_MAPPED = (1 << 2),
1465
1466 /** Specifies that the BO should be snooped so we get coherency */
1467 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1468
1469 /** Specifies that the BO should be captured in error states */
1470 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1471
1472 /** Specifies that the BO will have an address assigned by the caller
1473 *
1474 * Such BOs do not exist in any VMA heap.
1475 */
1476 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1477
1478 /** Enables implicit synchronization on the BO
1479 *
1480 * This is the opposite of EXEC_OBJECT_ASYNC.
1481 */
1482 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1483
1484 /** Enables implicit synchronization on the BO
1485 *
1486 * This is equivalent to EXEC_OBJECT_WRITE.
1487 */
1488 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1489
1490 /** Has an address which is visible to the client */
1491 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1492
1493 /** This buffer has implicit CCS data attached to it */
1494 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1495 };
1496
1497 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1498 enum anv_bo_alloc_flags alloc_flags,
1499 uint64_t explicit_address,
1500 struct anv_bo **bo);
1501 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1502 void *host_ptr, uint32_t size,
1503 enum anv_bo_alloc_flags alloc_flags,
1504 uint64_t client_address,
1505 struct anv_bo **bo_out);
1506 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1507 enum anv_bo_alloc_flags alloc_flags,
1508 uint64_t client_address,
1509 struct anv_bo **bo);
1510 VkResult anv_device_export_bo(struct anv_device *device,
1511 struct anv_bo *bo, int *fd_out);
1512 void anv_device_release_bo(struct anv_device *device,
1513 struct anv_bo *bo);
1514
1515 static inline struct anv_bo *
1516 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1517 {
1518 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1519 }
1520
1521 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1522 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1523 int64_t timeout);
1524
1525 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1526 void anv_queue_finish(struct anv_queue *queue);
1527
1528 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1529 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1530 struct anv_batch *batch);
1531
1532 uint64_t anv_gettime_ns(void);
1533 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1534
1535 void* anv_gem_mmap(struct anv_device *device,
1536 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1537 void anv_gem_munmap(struct anv_device *device, void *p, uint64_t size);
1538 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1539 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1540 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1541 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1542 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1543 int anv_gem_execbuffer(struct anv_device *device,
1544 struct drm_i915_gem_execbuffer2 *execbuf);
1545 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1546 uint32_t stride, uint32_t tiling);
1547 int anv_gem_create_context(struct anv_device *device);
1548 bool anv_gem_has_context_priority(int fd);
1549 int anv_gem_destroy_context(struct anv_device *device, int context);
1550 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1551 uint64_t value);
1552 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1553 uint64_t *value);
1554 int anv_gem_get_param(int fd, uint32_t param);
1555 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1556 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1557 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1558 uint32_t *active, uint32_t *pending);
1559 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1560 int anv_gem_reg_read(int fd, uint32_t offset, uint64_t *result);
1561 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1562 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1563 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1564 uint32_t read_domains, uint32_t write_domain);
1565 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1566 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1567 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1568 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1569 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1570 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1571 uint32_t handle);
1572 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1573 uint32_t handle, int fd);
1574 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1575 bool anv_gem_supports_syncobj_wait(int fd);
1576 int anv_gem_syncobj_wait(struct anv_device *device,
1577 uint32_t *handles, uint32_t num_handles,
1578 int64_t abs_timeout_ns, bool wait_all);
1579
1580 uint64_t anv_vma_alloc(struct anv_device *device,
1581 uint64_t size, uint64_t align,
1582 enum anv_bo_alloc_flags alloc_flags,
1583 uint64_t client_address);
1584 void anv_vma_free(struct anv_device *device,
1585 uint64_t address, uint64_t size);
1586
1587 struct anv_reloc_list {
1588 uint32_t num_relocs;
1589 uint32_t array_length;
1590 struct drm_i915_gem_relocation_entry * relocs;
1591 struct anv_bo ** reloc_bos;
1592 uint32_t dep_words;
1593 BITSET_WORD * deps;
1594 };
1595
1596 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1597 const VkAllocationCallbacks *alloc);
1598 void anv_reloc_list_finish(struct anv_reloc_list *list,
1599 const VkAllocationCallbacks *alloc);
1600
1601 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1602 const VkAllocationCallbacks *alloc,
1603 uint32_t offset, struct anv_bo *target_bo,
1604 uint32_t delta, uint64_t *address_u64_out);
1605
1606 struct anv_batch_bo {
1607 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1608 struct list_head link;
1609
1610 struct anv_bo * bo;
1611
1612 /* Bytes actually consumed in this batch BO */
1613 uint32_t length;
1614
1615 struct anv_reloc_list relocs;
1616 };
1617
1618 struct anv_batch {
1619 const VkAllocationCallbacks * alloc;
1620
1621 struct anv_address start_addr;
1622
1623 void * start;
1624 void * end;
1625 void * next;
1626
1627 struct anv_reloc_list * relocs;
1628
1629 /* This callback is called (with the associated user data) in the event
1630 * that the batch runs out of space.
1631 */
1632 VkResult (*extend_cb)(struct anv_batch *, void *);
1633 void * user_data;
1634
1635 /**
1636 * Current error status of the command buffer. Used to track inconsistent
1637 * or incomplete command buffer states that are the consequence of run-time
1638 * errors such as out of memory scenarios. We want to track this in the
1639 * batch because the command buffer object is not visible to some parts
1640 * of the driver.
1641 */
1642 VkResult status;
1643 };
1644
1645 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1646 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1647 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1648 void *location, struct anv_bo *bo, uint32_t offset);
1649 struct anv_address anv_batch_address(struct anv_batch *batch, void *batch_location);
1650
1651 static inline VkResult
1652 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1653 {
1654 assert(error != VK_SUCCESS);
1655 if (batch->status == VK_SUCCESS)
1656 batch->status = error;
1657 return batch->status;
1658 }
1659
1660 static inline bool
1661 anv_batch_has_error(struct anv_batch *batch)
1662 {
1663 return batch->status != VK_SUCCESS;
1664 }
1665
1666 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1667
1668 static inline bool
1669 anv_address_is_null(struct anv_address addr)
1670 {
1671 return addr.bo == NULL && addr.offset == 0;
1672 }
1673
1674 static inline uint64_t
1675 anv_address_physical(struct anv_address addr)
1676 {
1677 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1678 return gen_canonical_address(addr.bo->offset + addr.offset);
1679 else
1680 return gen_canonical_address(addr.offset);
1681 }
1682
1683 static inline struct anv_address
1684 anv_address_add(struct anv_address addr, uint64_t offset)
1685 {
1686 addr.offset += offset;
1687 return addr;
1688 }
1689
1690 static inline void
1691 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1692 {
1693 unsigned reloc_size = 0;
1694 if (device->info.gen >= 8) {
1695 reloc_size = sizeof(uint64_t);
1696 *(uint64_t *)p = gen_canonical_address(v);
1697 } else {
1698 reloc_size = sizeof(uint32_t);
1699 *(uint32_t *)p = v;
1700 }
1701
1702 if (flush && !device->info.has_llc)
1703 gen_flush_range(p, reloc_size);
1704 }
1705
1706 static inline uint64_t
1707 _anv_combine_address(struct anv_batch *batch, void *location,
1708 const struct anv_address address, uint32_t delta)
1709 {
1710 if (address.bo == NULL) {
1711 return address.offset + delta;
1712 } else {
1713 assert(batch->start <= location && location < batch->end);
1714
1715 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1716 }
1717 }
1718
1719 #define __gen_address_type struct anv_address
1720 #define __gen_user_data struct anv_batch
1721 #define __gen_combine_address _anv_combine_address
1722
1723 /* Wrapper macros needed to work around preprocessor argument issues. In
1724 * particular, arguments don't get pre-evaluated if they are concatenated.
1725 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1726 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1727 * We can work around this easily enough with these helpers.
1728 */
1729 #define __anv_cmd_length(cmd) cmd ## _length
1730 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1731 #define __anv_cmd_header(cmd) cmd ## _header
1732 #define __anv_cmd_pack(cmd) cmd ## _pack
1733 #define __anv_reg_num(reg) reg ## _num
1734
1735 #define anv_pack_struct(dst, struc, ...) do { \
1736 struct struc __template = { \
1737 __VA_ARGS__ \
1738 }; \
1739 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1740 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1741 } while (0)
1742
1743 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1744 void *__dst = anv_batch_emit_dwords(batch, n); \
1745 if (__dst) { \
1746 struct cmd __template = { \
1747 __anv_cmd_header(cmd), \
1748 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1749 __VA_ARGS__ \
1750 }; \
1751 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1752 } \
1753 __dst; \
1754 })
1755
1756 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1757 do { \
1758 uint32_t *dw; \
1759 \
1760 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1761 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1762 if (!dw) \
1763 break; \
1764 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1765 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1766 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1767 } while (0)
1768
1769 #define anv_batch_emit(batch, cmd, name) \
1770 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1771 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1772 __builtin_expect(_dst != NULL, 1); \
1773 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1774 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1775 _dst = NULL; \
1776 }))
1777
1778 /* #define __gen_get_batch_dwords anv_batch_emit_dwords */
1779 /* #define __gen_get_batch_address anv_batch_address */
1780 /* #define __gen_address_value anv_address_physical */
1781 /* #define __gen_address_offset anv_address_add */
1782
1783 struct anv_device_memory {
1784 struct vk_object_base base;
1785
1786 struct list_head link;
1787
1788 struct anv_bo * bo;
1789 struct anv_memory_type * type;
1790 VkDeviceSize map_size;
1791 void * map;
1792
1793 /* If set, we are holding reference to AHardwareBuffer
1794 * which we must release when memory is freed.
1795 */
1796 struct AHardwareBuffer * ahw;
1797
1798 /* If set, this memory comes from a host pointer. */
1799 void * host_ptr;
1800 };
1801
1802 /**
1803 * Header for Vertex URB Entry (VUE)
1804 */
1805 struct anv_vue_header {
1806 uint32_t Reserved;
1807 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1808 uint32_t ViewportIndex;
1809 float PointWidth;
1810 };
1811
1812 /** Struct representing a sampled image descriptor
1813 *
1814 * This descriptor layout is used for sampled images, bare sampler, and
1815 * combined image/sampler descriptors.
1816 */
1817 struct anv_sampled_image_descriptor {
1818 /** Bindless image handle
1819 *
1820 * This is expected to already be shifted such that the 20-bit
1821 * SURFACE_STATE table index is in the top 20 bits.
1822 */
1823 uint32_t image;
1824
1825 /** Bindless sampler handle
1826 *
1827 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1828 * to the dynamic state base address.
1829 */
1830 uint32_t sampler;
1831 };
1832
1833 struct anv_texture_swizzle_descriptor {
1834 /** Texture swizzle
1835 *
1836 * See also nir_intrinsic_channel_select_intel
1837 */
1838 uint8_t swizzle[4];
1839
1840 /** Unused padding to ensure the struct is a multiple of 64 bits */
1841 uint32_t _pad;
1842 };
1843
1844 /** Struct representing a storage image descriptor */
1845 struct anv_storage_image_descriptor {
1846 /** Bindless image handles
1847 *
1848 * These are expected to already be shifted such that the 20-bit
1849 * SURFACE_STATE table index is in the top 20 bits.
1850 */
1851 uint32_t read_write;
1852 uint32_t write_only;
1853 };
1854
1855 /** Struct representing a address/range descriptor
1856 *
1857 * The fields of this struct correspond directly to the data layout of
1858 * nir_address_format_64bit_bounded_global addresses. The last field is the
1859 * offset in the NIR address so it must be zero so that when you load the
1860 * descriptor you get a pointer to the start of the range.
1861 */
1862 struct anv_address_range_descriptor {
1863 uint64_t address;
1864 uint32_t range;
1865 uint32_t zero;
1866 };
1867
1868 enum anv_descriptor_data {
1869 /** The descriptor contains a BTI reference to a surface state */
1870 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1871 /** The descriptor contains a BTI reference to a sampler state */
1872 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1873 /** The descriptor contains an actual buffer view */
1874 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1875 /** The descriptor contains auxiliary image layout data */
1876 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1877 /** The descriptor contains auxiliary image layout data */
1878 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1879 /** anv_address_range_descriptor with a buffer address and range */
1880 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1881 /** Bindless surface handle */
1882 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1883 /** Storage image handles */
1884 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1885 /** Storage image handles */
1886 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1887 };
1888
1889 struct anv_descriptor_set_binding_layout {
1890 #ifndef NDEBUG
1891 /* The type of the descriptors in this binding */
1892 VkDescriptorType type;
1893 #endif
1894
1895 /* Flags provided when this binding was created */
1896 VkDescriptorBindingFlagsEXT flags;
1897
1898 /* Bitfield representing the type of data this descriptor contains */
1899 enum anv_descriptor_data data;
1900
1901 /* Maximum number of YCbCr texture/sampler planes */
1902 uint8_t max_plane_count;
1903
1904 /* Number of array elements in this binding (or size in bytes for inline
1905 * uniform data)
1906 */
1907 uint16_t array_size;
1908
1909 /* Index into the flattend descriptor set */
1910 uint16_t descriptor_index;
1911
1912 /* Index into the dynamic state array for a dynamic buffer */
1913 int16_t dynamic_offset_index;
1914
1915 /* Index into the descriptor set buffer views */
1916 int16_t buffer_view_index;
1917
1918 /* Offset into the descriptor buffer where this descriptor lives */
1919 uint32_t descriptor_offset;
1920
1921 /* Immutable samplers (or NULL if no immutable samplers) */
1922 struct anv_sampler **immutable_samplers;
1923 };
1924
1925 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1926
1927 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1928 VkDescriptorType type);
1929
1930 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1931 const struct anv_descriptor_set_binding_layout *binding,
1932 bool sampler);
1933
1934 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1935 const struct anv_descriptor_set_binding_layout *binding,
1936 bool sampler);
1937
1938 struct anv_descriptor_set_layout {
1939 struct vk_object_base base;
1940
1941 /* Descriptor set layouts can be destroyed at almost any time */
1942 uint32_t ref_cnt;
1943
1944 /* Number of bindings in this descriptor set */
1945 uint16_t binding_count;
1946
1947 /* Total size of the descriptor set with room for all array entries */
1948 uint16_t size;
1949
1950 /* Shader stages affected by this descriptor set */
1951 uint16_t shader_stages;
1952
1953 /* Number of buffer views in this descriptor set */
1954 uint16_t buffer_view_count;
1955
1956 /* Number of dynamic offsets used by this descriptor set */
1957 uint16_t dynamic_offset_count;
1958
1959 /* For each shader stage, which offsets apply to that stage */
1960 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1961
1962 /* Size of the descriptor buffer for this descriptor set */
1963 uint32_t descriptor_buffer_size;
1964
1965 /* Bindings in this descriptor set */
1966 struct anv_descriptor_set_binding_layout binding[0];
1967 };
1968
1969 void anv_descriptor_set_layout_destroy(struct anv_device *device,
1970 struct anv_descriptor_set_layout *layout);
1971
1972 static inline void
1973 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1974 {
1975 assert(layout && layout->ref_cnt >= 1);
1976 p_atomic_inc(&layout->ref_cnt);
1977 }
1978
1979 static inline void
1980 anv_descriptor_set_layout_unref(struct anv_device *device,
1981 struct anv_descriptor_set_layout *layout)
1982 {
1983 assert(layout && layout->ref_cnt >= 1);
1984 if (p_atomic_dec_zero(&layout->ref_cnt))
1985 anv_descriptor_set_layout_destroy(device, layout);
1986 }
1987
1988 struct anv_descriptor {
1989 VkDescriptorType type;
1990
1991 union {
1992 struct {
1993 VkImageLayout layout;
1994 struct anv_image_view *image_view;
1995 struct anv_sampler *sampler;
1996 };
1997
1998 struct {
1999 struct anv_buffer *buffer;
2000 uint64_t offset;
2001 uint64_t range;
2002 };
2003
2004 struct anv_buffer_view *buffer_view;
2005 };
2006 };
2007
2008 struct anv_descriptor_set {
2009 struct vk_object_base base;
2010
2011 struct anv_descriptor_pool *pool;
2012 struct anv_descriptor_set_layout *layout;
2013 uint32_t size;
2014
2015 /* State relative to anv_descriptor_pool::bo */
2016 struct anv_state desc_mem;
2017 /* Surface state for the descriptor buffer */
2018 struct anv_state desc_surface_state;
2019
2020 uint32_t buffer_view_count;
2021 struct anv_buffer_view *buffer_views;
2022
2023 /* Link to descriptor pool's desc_sets list . */
2024 struct list_head pool_link;
2025
2026 struct anv_descriptor descriptors[0];
2027 };
2028
2029 struct anv_buffer_view {
2030 struct vk_object_base base;
2031
2032 enum isl_format format; /**< VkBufferViewCreateInfo::format */
2033 uint64_t range; /**< VkBufferViewCreateInfo::range */
2034
2035 struct anv_address address;
2036
2037 struct anv_state surface_state;
2038 struct anv_state storage_surface_state;
2039 struct anv_state writeonly_storage_surface_state;
2040
2041 struct brw_image_param storage_image_param;
2042 };
2043
2044 struct anv_push_descriptor_set {
2045 struct anv_descriptor_set set;
2046
2047 /* Put this field right behind anv_descriptor_set so it fills up the
2048 * descriptors[0] field. */
2049 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
2050
2051 /** True if the descriptor set buffer has been referenced by a draw or
2052 * dispatch command.
2053 */
2054 bool set_used_on_gpu;
2055
2056 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
2057 };
2058
2059 struct anv_descriptor_pool {
2060 struct vk_object_base base;
2061
2062 uint32_t size;
2063 uint32_t next;
2064 uint32_t free_list;
2065
2066 struct anv_bo *bo;
2067 struct util_vma_heap bo_heap;
2068
2069 struct anv_state_stream surface_state_stream;
2070 void *surface_state_free_list;
2071
2072 struct list_head desc_sets;
2073
2074 char data[0];
2075 };
2076
2077 enum anv_descriptor_template_entry_type {
2078 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
2079 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
2080 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
2081 };
2082
2083 struct anv_descriptor_template_entry {
2084 /* The type of descriptor in this entry */
2085 VkDescriptorType type;
2086
2087 /* Binding in the descriptor set */
2088 uint32_t binding;
2089
2090 /* Offset at which to write into the descriptor set binding */
2091 uint32_t array_element;
2092
2093 /* Number of elements to write into the descriptor set binding */
2094 uint32_t array_count;
2095
2096 /* Offset into the user provided data */
2097 size_t offset;
2098
2099 /* Stride between elements into the user provided data */
2100 size_t stride;
2101 };
2102
2103 struct anv_descriptor_update_template {
2104 struct vk_object_base base;
2105
2106 VkPipelineBindPoint bind_point;
2107
2108 /* The descriptor set this template corresponds to. This value is only
2109 * valid if the template was created with the templateType
2110 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2111 */
2112 uint8_t set;
2113
2114 /* Number of entries in this template */
2115 uint32_t entry_count;
2116
2117 /* Entries of the template */
2118 struct anv_descriptor_template_entry entries[0];
2119 };
2120
2121 size_t
2122 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2123
2124 void
2125 anv_descriptor_set_write_image_view(struct anv_device *device,
2126 struct anv_descriptor_set *set,
2127 const VkDescriptorImageInfo * const info,
2128 VkDescriptorType type,
2129 uint32_t binding,
2130 uint32_t element);
2131
2132 void
2133 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2134 struct anv_descriptor_set *set,
2135 VkDescriptorType type,
2136 struct anv_buffer_view *buffer_view,
2137 uint32_t binding,
2138 uint32_t element);
2139
2140 void
2141 anv_descriptor_set_write_buffer(struct anv_device *device,
2142 struct anv_descriptor_set *set,
2143 struct anv_state_stream *alloc_stream,
2144 VkDescriptorType type,
2145 struct anv_buffer *buffer,
2146 uint32_t binding,
2147 uint32_t element,
2148 VkDeviceSize offset,
2149 VkDeviceSize range);
2150 void
2151 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2152 struct anv_descriptor_set *set,
2153 uint32_t binding,
2154 const void *data,
2155 size_t offset,
2156 size_t size);
2157
2158 void
2159 anv_descriptor_set_write_template(struct anv_device *device,
2160 struct anv_descriptor_set *set,
2161 struct anv_state_stream *alloc_stream,
2162 const struct anv_descriptor_update_template *template,
2163 const void *data);
2164
2165 VkResult
2166 anv_descriptor_set_create(struct anv_device *device,
2167 struct anv_descriptor_pool *pool,
2168 struct anv_descriptor_set_layout *layout,
2169 struct anv_descriptor_set **out_set);
2170
2171 void
2172 anv_descriptor_set_destroy(struct anv_device *device,
2173 struct anv_descriptor_pool *pool,
2174 struct anv_descriptor_set *set);
2175
2176 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2177 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2178 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2179 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2180 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2181 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2182
2183 struct anv_pipeline_binding {
2184 /** Index in the descriptor set
2185 *
2186 * This is a flattened index; the descriptor set layout is already taken
2187 * into account.
2188 */
2189 uint32_t index;
2190
2191 /** The descriptor set this surface corresponds to.
2192 *
2193 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2194 * binding is not a normal descriptor set but something else.
2195 */
2196 uint8_t set;
2197
2198 union {
2199 /** Plane in the binding index for images */
2200 uint8_t plane;
2201
2202 /** Input attachment index (relative to the subpass) */
2203 uint8_t input_attachment_index;
2204
2205 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2206 uint8_t dynamic_offset_index;
2207 };
2208
2209 /** For a storage image, whether it is write-only */
2210 uint8_t write_only;
2211
2212 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2213 * assuming POD zero-initialization.
2214 */
2215 uint8_t pad;
2216 };
2217
2218 struct anv_push_range {
2219 /** Index in the descriptor set */
2220 uint32_t index;
2221
2222 /** Descriptor set index */
2223 uint8_t set;
2224
2225 /** Dynamic offset index (for dynamic UBOs) */
2226 uint8_t dynamic_offset_index;
2227
2228 /** Start offset in units of 32B */
2229 uint8_t start;
2230
2231 /** Range in units of 32B */
2232 uint8_t length;
2233 };
2234
2235 struct anv_pipeline_layout {
2236 struct vk_object_base base;
2237
2238 struct {
2239 struct anv_descriptor_set_layout *layout;
2240 uint32_t dynamic_offset_start;
2241 } set[MAX_SETS];
2242
2243 uint32_t num_sets;
2244
2245 unsigned char sha1[20];
2246 };
2247
2248 struct anv_buffer {
2249 struct vk_object_base base;
2250
2251 struct anv_device * device;
2252 VkDeviceSize size;
2253
2254 VkBufferUsageFlags usage;
2255
2256 /* Set when bound */
2257 struct anv_address address;
2258 };
2259
2260 static inline uint64_t
2261 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2262 {
2263 assert(offset <= buffer->size);
2264 if (range == VK_WHOLE_SIZE) {
2265 return buffer->size - offset;
2266 } else {
2267 assert(range + offset >= range);
2268 assert(range + offset <= buffer->size);
2269 return range;
2270 }
2271 }
2272
2273 enum anv_cmd_dirty_bits {
2274 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2275 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2276 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2277 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2278 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2279 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2280 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2281 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2282 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2283 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2284 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2285 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2286 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2287 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2288 };
2289 typedef uint32_t anv_cmd_dirty_mask_t;
2290
2291 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2292 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2293 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2294 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2295 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2296 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2297 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2298 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2299 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2300 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2301 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2302
2303 static inline enum anv_cmd_dirty_bits
2304 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2305 {
2306 switch (vk_state) {
2307 case VK_DYNAMIC_STATE_VIEWPORT:
2308 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2309 case VK_DYNAMIC_STATE_SCISSOR:
2310 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2311 case VK_DYNAMIC_STATE_LINE_WIDTH:
2312 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2313 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2314 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2315 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2316 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2317 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2318 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2319 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2320 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2321 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2322 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2323 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2324 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2325 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2326 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2327 default:
2328 assert(!"Unsupported dynamic state");
2329 return 0;
2330 }
2331 }
2332
2333
2334 enum anv_pipe_bits {
2335 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2336 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2337 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2338 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2339 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2340 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2341 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2342 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2343 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2344 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2345 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2346 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2347 ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
2348
2349 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2350 * a flush has happened but not a CS stall. The next time we do any sort
2351 * of invalidation we need to insert a CS stall at that time. Otherwise,
2352 * we would have to CS stall on every flush which could be bad.
2353 */
2354 ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
2355
2356 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2357 * target operations related to transfer commands with VkBuffer as
2358 * destination are ongoing. Some operations like copies on the command
2359 * streamer might need to be aware of this to trigger the appropriate stall
2360 * before they can proceed with the copy.
2361 */
2362 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 23),
2363
2364 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2365 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2366 * done by writing the AUX-TT register.
2367 */
2368 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 24),
2369
2370 /* This bit does not exist directly in PIPE_CONTROL. It means that a
2371 * PIPE_CONTROL with a post-sync operation will follow. This is used to
2372 * implement a workaround for Gen9.
2373 */
2374 ANV_PIPE_POST_SYNC_BIT = (1 << 25),
2375 };
2376
2377 #define ANV_PIPE_FLUSH_BITS ( \
2378 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2379 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2380 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2381 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2382
2383 #define ANV_PIPE_STALL_BITS ( \
2384 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2385 ANV_PIPE_DEPTH_STALL_BIT | \
2386 ANV_PIPE_CS_STALL_BIT)
2387
2388 #define ANV_PIPE_INVALIDATE_BITS ( \
2389 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2390 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2391 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2392 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2393 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2394 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2395 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2396
2397 static inline enum anv_pipe_bits
2398 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2399 {
2400 enum anv_pipe_bits pipe_bits = 0;
2401
2402 unsigned b;
2403 for_each_bit(b, flags) {
2404 switch ((VkAccessFlagBits)(1 << b)) {
2405 case VK_ACCESS_SHADER_WRITE_BIT:
2406 /* We're transitioning a buffer that was previously used as write
2407 * destination through the data port. To make its content available
2408 * to future operations, flush the data cache.
2409 */
2410 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2411 break;
2412 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2413 /* We're transitioning a buffer that was previously used as render
2414 * target. To make its content available to future operations, flush
2415 * the render target cache.
2416 */
2417 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2418 break;
2419 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2420 /* We're transitioning a buffer that was previously used as depth
2421 * buffer. To make its content available to future operations, flush
2422 * the depth cache.
2423 */
2424 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2425 break;
2426 case VK_ACCESS_TRANSFER_WRITE_BIT:
2427 /* We're transitioning a buffer that was previously used as a
2428 * transfer write destination. Generic write operations include color
2429 * & depth operations as well as buffer operations like :
2430 * - vkCmdClearColorImage()
2431 * - vkCmdClearDepthStencilImage()
2432 * - vkCmdBlitImage()
2433 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2434 *
2435 * Most of these operations are implemented using Blorp which writes
2436 * through the render target, so flush that cache to make it visible
2437 * to future operations. And for depth related operations we also
2438 * need to flush the depth cache.
2439 */
2440 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2441 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2442 break;
2443 case VK_ACCESS_MEMORY_WRITE_BIT:
2444 /* We're transitioning a buffer for generic write operations. Flush
2445 * all the caches.
2446 */
2447 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2448 break;
2449 default:
2450 break; /* Nothing to do */
2451 }
2452 }
2453
2454 return pipe_bits;
2455 }
2456
2457 static inline enum anv_pipe_bits
2458 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2459 {
2460 enum anv_pipe_bits pipe_bits = 0;
2461
2462 unsigned b;
2463 for_each_bit(b, flags) {
2464 switch ((VkAccessFlagBits)(1 << b)) {
2465 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2466 /* Indirect draw commands take a buffer as input that we're going to
2467 * read from the command streamer to load some of the HW registers
2468 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2469 * command streamer stall so that all the cache flushes have
2470 * completed before the command streamer loads from memory.
2471 */
2472 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2473 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2474 * through a vertex buffer, so invalidate that cache.
2475 */
2476 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2477 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2478 * UBO from the buffer, so we need to invalidate constant cache.
2479 */
2480 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2481 break;
2482 case VK_ACCESS_INDEX_READ_BIT:
2483 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2484 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2485 * commands, so we invalidate the VF cache to make sure there is no
2486 * stale data when we start rendering.
2487 */
2488 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2489 break;
2490 case VK_ACCESS_UNIFORM_READ_BIT:
2491 /* We transitioning a buffer to be used as uniform data. Because
2492 * uniform is accessed through the data port & sampler, we need to
2493 * invalidate the texture cache (sampler) & constant cache (data
2494 * port) to avoid stale data.
2495 */
2496 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2497 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2498 break;
2499 case VK_ACCESS_SHADER_READ_BIT:
2500 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2501 case VK_ACCESS_TRANSFER_READ_BIT:
2502 /* Transitioning a buffer to be read through the sampler, so
2503 * invalidate the texture cache, we don't want any stale data.
2504 */
2505 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2506 break;
2507 case VK_ACCESS_MEMORY_READ_BIT:
2508 /* Transitioning a buffer for generic read, invalidate all the
2509 * caches.
2510 */
2511 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2512 break;
2513 case VK_ACCESS_MEMORY_WRITE_BIT:
2514 /* Generic write, make sure all previously written things land in
2515 * memory.
2516 */
2517 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2518 break;
2519 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2520 /* Transitioning a buffer for conditional rendering. We'll load the
2521 * content of this buffer into HW registers using the command
2522 * streamer, so we need to stall the command streamer to make sure
2523 * any in-flight flush operations have completed.
2524 */
2525 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2526 break;
2527 default:
2528 break; /* Nothing to do */
2529 }
2530 }
2531
2532 return pipe_bits;
2533 }
2534
2535 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2536 VK_IMAGE_ASPECT_COLOR_BIT | \
2537 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2538 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2539 VK_IMAGE_ASPECT_PLANE_2_BIT)
2540 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2541 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2542 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2543 VK_IMAGE_ASPECT_PLANE_2_BIT)
2544
2545 struct anv_vertex_binding {
2546 struct anv_buffer * buffer;
2547 VkDeviceSize offset;
2548 };
2549
2550 struct anv_xfb_binding {
2551 struct anv_buffer * buffer;
2552 VkDeviceSize offset;
2553 VkDeviceSize size;
2554 };
2555
2556 struct anv_push_constants {
2557 /** Push constant data provided by the client through vkPushConstants */
2558 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2559
2560 /** Dynamic offsets for dynamic UBOs and SSBOs */
2561 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2562
2563 uint64_t push_reg_mask;
2564
2565 /** Pad out to a multiple of 32 bytes */
2566 uint32_t pad[2];
2567
2568 struct {
2569 /** Base workgroup ID
2570 *
2571 * Used for vkCmdDispatchBase.
2572 */
2573 uint32_t base_work_group_id[3];
2574
2575 /** Subgroup ID
2576 *
2577 * This is never set by software but is implicitly filled out when
2578 * uploading the push constants for compute shaders.
2579 */
2580 uint32_t subgroup_id;
2581 } cs;
2582 };
2583
2584 struct anv_dynamic_state {
2585 struct {
2586 uint32_t count;
2587 VkViewport viewports[MAX_VIEWPORTS];
2588 } viewport;
2589
2590 struct {
2591 uint32_t count;
2592 VkRect2D scissors[MAX_SCISSORS];
2593 } scissor;
2594
2595 float line_width;
2596
2597 struct {
2598 float bias;
2599 float clamp;
2600 float slope;
2601 } depth_bias;
2602
2603 float blend_constants[4];
2604
2605 struct {
2606 float min;
2607 float max;
2608 } depth_bounds;
2609
2610 struct {
2611 uint32_t front;
2612 uint32_t back;
2613 } stencil_compare_mask;
2614
2615 struct {
2616 uint32_t front;
2617 uint32_t back;
2618 } stencil_write_mask;
2619
2620 struct {
2621 uint32_t front;
2622 uint32_t back;
2623 } stencil_reference;
2624
2625 struct {
2626 uint32_t factor;
2627 uint16_t pattern;
2628 } line_stipple;
2629 };
2630
2631 extern const struct anv_dynamic_state default_dynamic_state;
2632
2633 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2634 const struct anv_dynamic_state *src,
2635 uint32_t copy_mask);
2636
2637 struct anv_surface_state {
2638 struct anv_state state;
2639 /** Address of the surface referred to by this state
2640 *
2641 * This address is relative to the start of the BO.
2642 */
2643 struct anv_address address;
2644 /* Address of the aux surface, if any
2645 *
2646 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2647 *
2648 * With the exception of gen8, the bottom 12 bits of this address' offset
2649 * include extra aux information.
2650 */
2651 struct anv_address aux_address;
2652 /* Address of the clear color, if any
2653 *
2654 * This address is relative to the start of the BO.
2655 */
2656 struct anv_address clear_address;
2657 };
2658
2659 /**
2660 * Attachment state when recording a renderpass instance.
2661 *
2662 * The clear value is valid only if there exists a pending clear.
2663 */
2664 struct anv_attachment_state {
2665 enum isl_aux_usage aux_usage;
2666 struct anv_surface_state color;
2667 struct anv_surface_state input;
2668
2669 VkImageLayout current_layout;
2670 VkImageLayout current_stencil_layout;
2671 VkImageAspectFlags pending_clear_aspects;
2672 VkImageAspectFlags pending_load_aspects;
2673 bool fast_clear;
2674 VkClearValue clear_value;
2675
2676 /* When multiview is active, attachments with a renderpass clear
2677 * operation have their respective layers cleared on the first
2678 * subpass that uses them, and only in that subpass. We keep track
2679 * of this using a bitfield to indicate which layers of an attachment
2680 * have not been cleared yet when multiview is active.
2681 */
2682 uint32_t pending_clear_views;
2683 struct anv_image_view * image_view;
2684 };
2685
2686 /** State tracking for vertex buffer flushes
2687 *
2688 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2689 * addresses. If you happen to have two vertex buffers which get placed
2690 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2691 * collisions. In order to solve this problem, we track vertex address ranges
2692 * which are live in the cache and invalidate the cache if one ever exceeds 32
2693 * bits.
2694 */
2695 struct anv_vb_cache_range {
2696 /* Virtual address at which the live vertex buffer cache range starts for
2697 * this vertex buffer index.
2698 */
2699 uint64_t start;
2700
2701 /* Virtual address of the byte after where vertex buffer cache range ends.
2702 * This is exclusive such that end - start is the size of the range.
2703 */
2704 uint64_t end;
2705 };
2706
2707 /** State tracking for particular pipeline bind point
2708 *
2709 * This struct is the base struct for anv_cmd_graphics_state and
2710 * anv_cmd_compute_state. These are used to track state which is bound to a
2711 * particular type of pipeline. Generic state that applies per-stage such as
2712 * binding table offsets and push constants is tracked generically with a
2713 * per-stage array in anv_cmd_state.
2714 */
2715 struct anv_cmd_pipeline_state {
2716 struct anv_descriptor_set *descriptors[MAX_SETS];
2717 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2718 };
2719
2720 /** State tracking for graphics pipeline
2721 *
2722 * This has anv_cmd_pipeline_state as a base struct to track things which get
2723 * bound to a graphics pipeline. Along with general pipeline bind point state
2724 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2725 * state which is graphics-specific.
2726 */
2727 struct anv_cmd_graphics_state {
2728 struct anv_cmd_pipeline_state base;
2729
2730 struct anv_graphics_pipeline *pipeline;
2731
2732 anv_cmd_dirty_mask_t dirty;
2733 uint32_t vb_dirty;
2734
2735 struct anv_vb_cache_range ib_bound_range;
2736 struct anv_vb_cache_range ib_dirty_range;
2737 struct anv_vb_cache_range vb_bound_ranges[33];
2738 struct anv_vb_cache_range vb_dirty_ranges[33];
2739
2740 struct anv_dynamic_state dynamic;
2741
2742 struct {
2743 struct anv_buffer *index_buffer;
2744 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2745 uint32_t index_offset;
2746 } gen7;
2747 };
2748
2749 /** State tracking for compute pipeline
2750 *
2751 * This has anv_cmd_pipeline_state as a base struct to track things which get
2752 * bound to a compute pipeline. Along with general pipeline bind point state
2753 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2754 * state which is compute-specific.
2755 */
2756 struct anv_cmd_compute_state {
2757 struct anv_cmd_pipeline_state base;
2758
2759 struct anv_compute_pipeline *pipeline;
2760
2761 bool pipeline_dirty;
2762
2763 struct anv_address num_workgroups;
2764 };
2765
2766 /** State required while building cmd buffer */
2767 struct anv_cmd_state {
2768 /* PIPELINE_SELECT.PipelineSelection */
2769 uint32_t current_pipeline;
2770 const struct gen_l3_config * current_l3_config;
2771 uint32_t last_aux_map_state;
2772
2773 struct anv_cmd_graphics_state gfx;
2774 struct anv_cmd_compute_state compute;
2775
2776 enum anv_pipe_bits pending_pipe_bits;
2777 VkShaderStageFlags descriptors_dirty;
2778 VkShaderStageFlags push_constants_dirty;
2779
2780 struct anv_framebuffer * framebuffer;
2781 struct anv_render_pass * pass;
2782 struct anv_subpass * subpass;
2783 VkRect2D render_area;
2784 uint32_t restart_index;
2785 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2786 bool xfb_enabled;
2787 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2788 VkShaderStageFlags push_constant_stages;
2789 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2790 struct anv_state binding_tables[MESA_SHADER_STAGES];
2791 struct anv_state samplers[MESA_SHADER_STAGES];
2792
2793 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2794 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2795 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2796
2797 /**
2798 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2799 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2800 * and before invoking the secondary in ExecuteCommands.
2801 */
2802 bool pma_fix_enabled;
2803
2804 /**
2805 * Whether or not we know for certain that HiZ is enabled for the current
2806 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2807 * enabled or not, this will be false.
2808 */
2809 bool hiz_enabled;
2810
2811 bool conditional_render_enabled;
2812
2813 /**
2814 * Last rendering scale argument provided to
2815 * genX(cmd_buffer_emit_hashing_mode)().
2816 */
2817 unsigned current_hash_scale;
2818
2819 /**
2820 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2821 * valid only when recording a render pass instance.
2822 */
2823 struct anv_attachment_state * attachments;
2824
2825 /**
2826 * Surface states for color render targets. These are stored in a single
2827 * flat array. For depth-stencil attachments, the surface state is simply
2828 * left blank.
2829 */
2830 struct anv_state attachment_states;
2831
2832 /**
2833 * A null surface state of the right size to match the framebuffer. This
2834 * is one of the states in attachment_states.
2835 */
2836 struct anv_state null_surface_state;
2837 };
2838
2839 struct anv_cmd_pool {
2840 struct vk_object_base base;
2841 VkAllocationCallbacks alloc;
2842 struct list_head cmd_buffers;
2843 };
2844
2845 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2846
2847 enum anv_cmd_buffer_exec_mode {
2848 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2849 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2850 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2851 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2852 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2853 ANV_CMD_BUFFER_EXEC_MODE_CALL_AND_RETURN,
2854 };
2855
2856 struct anv_cmd_buffer {
2857 struct vk_object_base base;
2858
2859 struct anv_device * device;
2860
2861 struct anv_cmd_pool * pool;
2862 struct list_head pool_link;
2863
2864 struct anv_batch batch;
2865
2866 /* Fields required for the actual chain of anv_batch_bo's.
2867 *
2868 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2869 */
2870 struct list_head batch_bos;
2871 enum anv_cmd_buffer_exec_mode exec_mode;
2872
2873 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2874 * referenced by this command buffer
2875 *
2876 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2877 */
2878 struct u_vector seen_bbos;
2879
2880 /* A vector of int32_t's for every block of binding tables.
2881 *
2882 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2883 */
2884 struct u_vector bt_block_states;
2885 struct anv_state bt_next;
2886
2887 struct anv_reloc_list surface_relocs;
2888 /** Last seen surface state block pool center bo offset */
2889 uint32_t last_ss_pool_center;
2890
2891 /* Serial for tracking buffer completion */
2892 uint32_t serial;
2893
2894 /* Stream objects for storing temporary data */
2895 struct anv_state_stream surface_state_stream;
2896 struct anv_state_stream dynamic_state_stream;
2897
2898 VkCommandBufferUsageFlags usage_flags;
2899 VkCommandBufferLevel level;
2900
2901 struct anv_query_pool *perf_query_pool;
2902
2903 struct anv_cmd_state state;
2904
2905 struct anv_address return_addr;
2906
2907 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2908 uint64_t intel_perf_marker;
2909 };
2910
2911 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2912 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2913 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2914 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2915 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2916 struct anv_cmd_buffer *secondary);
2917 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2918 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2919 struct anv_cmd_buffer *cmd_buffer,
2920 const VkSemaphore *in_semaphores,
2921 const uint64_t *in_wait_values,
2922 uint32_t num_in_semaphores,
2923 const VkSemaphore *out_semaphores,
2924 const uint64_t *out_signal_values,
2925 uint32_t num_out_semaphores,
2926 VkFence fence,
2927 int perf_query_pass);
2928
2929 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2930
2931 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2932 const void *data, uint32_t size, uint32_t alignment);
2933 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2934 uint32_t *a, uint32_t *b,
2935 uint32_t dwords, uint32_t alignment);
2936
2937 struct anv_address
2938 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2939 struct anv_state
2940 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2941 uint32_t entries, uint32_t *state_offset);
2942 struct anv_state
2943 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2944 struct anv_state
2945 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2946 uint32_t size, uint32_t alignment);
2947
2948 VkResult
2949 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2950
2951 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2952 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2953 bool depth_clamp_enable);
2954 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2955
2956 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2957 struct anv_render_pass *pass,
2958 struct anv_framebuffer *framebuffer,
2959 const VkClearValue *clear_values);
2960
2961 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2962
2963 struct anv_state
2964 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2965 gl_shader_stage stage);
2966 struct anv_state
2967 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2968
2969 const struct anv_image_view *
2970 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2971
2972 VkResult
2973 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2974 uint32_t num_entries,
2975 uint32_t *state_offset,
2976 struct anv_state *bt_state);
2977
2978 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2979
2980 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2981
2982 enum anv_fence_type {
2983 ANV_FENCE_TYPE_NONE = 0,
2984 ANV_FENCE_TYPE_BO,
2985 ANV_FENCE_TYPE_WSI_BO,
2986 ANV_FENCE_TYPE_SYNCOBJ,
2987 ANV_FENCE_TYPE_WSI,
2988 };
2989
2990 enum anv_bo_fence_state {
2991 /** Indicates that this is a new (or newly reset fence) */
2992 ANV_BO_FENCE_STATE_RESET,
2993
2994 /** Indicates that this fence has been submitted to the GPU but is still
2995 * (as far as we know) in use by the GPU.
2996 */
2997 ANV_BO_FENCE_STATE_SUBMITTED,
2998
2999 ANV_BO_FENCE_STATE_SIGNALED,
3000 };
3001
3002 struct anv_fence_impl {
3003 enum anv_fence_type type;
3004
3005 union {
3006 /** Fence implementation for BO fences
3007 *
3008 * These fences use a BO and a set of CPU-tracked state flags. The BO
3009 * is added to the object list of the last execbuf call in a QueueSubmit
3010 * and is marked EXEC_WRITE. The state flags track when the BO has been
3011 * submitted to the kernel. We need to do this because Vulkan lets you
3012 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
3013 * will say it's idle in this case.
3014 */
3015 struct {
3016 struct anv_bo *bo;
3017 enum anv_bo_fence_state state;
3018 } bo;
3019
3020 /** DRM syncobj handle for syncobj-based fences */
3021 uint32_t syncobj;
3022
3023 /** WSI fence */
3024 struct wsi_fence *fence_wsi;
3025 };
3026 };
3027
3028 struct anv_fence {
3029 struct vk_object_base base;
3030
3031 /* Permanent fence state. Every fence has some form of permanent state
3032 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
3033 * cross-process fences) or it could just be a dummy for use internally.
3034 */
3035 struct anv_fence_impl permanent;
3036
3037 /* Temporary fence state. A fence *may* have temporary state. That state
3038 * is added to the fence by an import operation and is reset back to
3039 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
3040 * state cannot be signaled because the fence must already be signaled
3041 * before the temporary state can be exported from the fence in the other
3042 * process and imported here.
3043 */
3044 struct anv_fence_impl temporary;
3045 };
3046
3047 void anv_fence_reset_temporary(struct anv_device *device,
3048 struct anv_fence *fence);
3049
3050 struct anv_event {
3051 struct vk_object_base base;
3052 uint64_t semaphore;
3053 struct anv_state state;
3054 };
3055
3056 enum anv_semaphore_type {
3057 ANV_SEMAPHORE_TYPE_NONE = 0,
3058 ANV_SEMAPHORE_TYPE_DUMMY,
3059 ANV_SEMAPHORE_TYPE_BO,
3060 ANV_SEMAPHORE_TYPE_WSI_BO,
3061 ANV_SEMAPHORE_TYPE_SYNC_FILE,
3062 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
3063 ANV_SEMAPHORE_TYPE_TIMELINE,
3064 };
3065
3066 struct anv_timeline_point {
3067 struct list_head link;
3068
3069 uint64_t serial;
3070
3071 /* Number of waiter on this point, when > 0 the point should not be garbage
3072 * collected.
3073 */
3074 int waiting;
3075
3076 /* BO used for synchronization. */
3077 struct anv_bo *bo;
3078 };
3079
3080 struct anv_timeline {
3081 pthread_mutex_t mutex;
3082 pthread_cond_t cond;
3083
3084 uint64_t highest_past;
3085 uint64_t highest_pending;
3086
3087 struct list_head points;
3088 struct list_head free_points;
3089 };
3090
3091 struct anv_semaphore_impl {
3092 enum anv_semaphore_type type;
3093
3094 union {
3095 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
3096 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
3097 * object list on any execbuf2 calls for which this semaphore is used as
3098 * a wait or signal fence. When used as a signal fence or when type ==
3099 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
3100 */
3101 struct anv_bo *bo;
3102
3103 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
3104 * If the semaphore is in the unsignaled state due to either just being
3105 * created or because it has been used for a wait, fd will be -1.
3106 */
3107 int fd;
3108
3109 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
3110 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
3111 * import so we don't need to bother with a userspace cache.
3112 */
3113 uint32_t syncobj;
3114
3115 /* Non shareable timeline semaphore
3116 *
3117 * Used when kernel don't have support for timeline semaphores.
3118 */
3119 struct anv_timeline timeline;
3120 };
3121 };
3122
3123 struct anv_semaphore {
3124 struct vk_object_base base;
3125
3126 uint32_t refcount;
3127
3128 /* Permanent semaphore state. Every semaphore has some form of permanent
3129 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3130 * (for cross-process semaphores0 or it could just be a dummy for use
3131 * internally.
3132 */
3133 struct anv_semaphore_impl permanent;
3134
3135 /* Temporary semaphore state. A semaphore *may* have temporary state.
3136 * That state is added to the semaphore by an import operation and is reset
3137 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3138 * semaphore with temporary state cannot be signaled because the semaphore
3139 * must already be signaled before the temporary state can be exported from
3140 * the semaphore in the other process and imported here.
3141 */
3142 struct anv_semaphore_impl temporary;
3143 };
3144
3145 void anv_semaphore_reset_temporary(struct anv_device *device,
3146 struct anv_semaphore *semaphore);
3147
3148 struct anv_shader_module {
3149 struct vk_object_base base;
3150
3151 unsigned char sha1[20];
3152 uint32_t size;
3153 char data[0];
3154 };
3155
3156 static inline gl_shader_stage
3157 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3158 {
3159 assert(__builtin_popcount(vk_stage) == 1);
3160 return ffs(vk_stage) - 1;
3161 }
3162
3163 static inline VkShaderStageFlagBits
3164 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3165 {
3166 return (1 << mesa_stage);
3167 }
3168
3169 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3170
3171 #define anv_foreach_stage(stage, stage_bits) \
3172 for (gl_shader_stage stage, \
3173 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3174 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3175 __tmp &= ~(1 << (stage)))
3176
3177 struct anv_pipeline_bind_map {
3178 unsigned char surface_sha1[20];
3179 unsigned char sampler_sha1[20];
3180 unsigned char push_sha1[20];
3181
3182 uint32_t surface_count;
3183 uint32_t sampler_count;
3184
3185 struct anv_pipeline_binding * surface_to_descriptor;
3186 struct anv_pipeline_binding * sampler_to_descriptor;
3187
3188 struct anv_push_range push_ranges[4];
3189 };
3190
3191 struct anv_shader_bin_key {
3192 uint32_t size;
3193 uint8_t data[0];
3194 };
3195
3196 struct anv_shader_bin {
3197 uint32_t ref_cnt;
3198
3199 gl_shader_stage stage;
3200
3201 const struct anv_shader_bin_key *key;
3202
3203 struct anv_state kernel;
3204 uint32_t kernel_size;
3205
3206 struct anv_state constant_data;
3207 uint32_t constant_data_size;
3208
3209 const struct brw_stage_prog_data *prog_data;
3210 uint32_t prog_data_size;
3211
3212 struct brw_compile_stats stats[3];
3213 uint32_t num_stats;
3214
3215 struct nir_xfb_info *xfb_info;
3216
3217 struct anv_pipeline_bind_map bind_map;
3218 };
3219
3220 struct anv_shader_bin *
3221 anv_shader_bin_create(struct anv_device *device,
3222 gl_shader_stage stage,
3223 const void *key, uint32_t key_size,
3224 const void *kernel, uint32_t kernel_size,
3225 const void *constant_data, uint32_t constant_data_size,
3226 const struct brw_stage_prog_data *prog_data,
3227 uint32_t prog_data_size,
3228 const struct brw_compile_stats *stats, uint32_t num_stats,
3229 const struct nir_xfb_info *xfb_info,
3230 const struct anv_pipeline_bind_map *bind_map);
3231
3232 void
3233 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3234
3235 static inline void
3236 anv_shader_bin_ref(struct anv_shader_bin *shader)
3237 {
3238 assert(shader && shader->ref_cnt >= 1);
3239 p_atomic_inc(&shader->ref_cnt);
3240 }
3241
3242 static inline void
3243 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3244 {
3245 assert(shader && shader->ref_cnt >= 1);
3246 if (p_atomic_dec_zero(&shader->ref_cnt))
3247 anv_shader_bin_destroy(device, shader);
3248 }
3249
3250 struct anv_pipeline_executable {
3251 gl_shader_stage stage;
3252
3253 struct brw_compile_stats stats;
3254
3255 char *nir;
3256 char *disasm;
3257 };
3258
3259 enum anv_pipeline_type {
3260 ANV_PIPELINE_GRAPHICS,
3261 ANV_PIPELINE_COMPUTE,
3262 };
3263
3264 struct anv_pipeline {
3265 struct vk_object_base base;
3266
3267 struct anv_device * device;
3268
3269 struct anv_batch batch;
3270 struct anv_reloc_list batch_relocs;
3271
3272 void * mem_ctx;
3273
3274 enum anv_pipeline_type type;
3275 VkPipelineCreateFlags flags;
3276
3277 struct util_dynarray executables;
3278
3279 const struct gen_l3_config * l3_config;
3280 };
3281
3282 struct anv_graphics_pipeline {
3283 struct anv_pipeline base;
3284
3285 uint32_t batch_data[512];
3286
3287 anv_cmd_dirty_mask_t dynamic_state_mask;
3288 struct anv_dynamic_state dynamic_state;
3289
3290 uint32_t topology;
3291
3292 struct anv_subpass * subpass;
3293
3294 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3295
3296 VkShaderStageFlags active_stages;
3297
3298 bool primitive_restart;
3299 bool writes_depth;
3300 bool depth_test_enable;
3301 bool writes_stencil;
3302 bool stencil_test_enable;
3303 bool depth_clamp_enable;
3304 bool depth_clip_enable;
3305 bool sample_shading_enable;
3306 bool kill_pixel;
3307 bool depth_bounds_test_enable;
3308
3309 /* When primitive replication is used, subpass->view_mask will describe what
3310 * views to replicate.
3311 */
3312 bool use_primitive_replication;
3313
3314 struct anv_state blend_state;
3315
3316 uint32_t vb_used;
3317 struct anv_pipeline_vertex_binding {
3318 uint32_t stride;
3319 bool instanced;
3320 uint32_t instance_divisor;
3321 } vb[MAX_VBS];
3322
3323 struct {
3324 uint32_t sf[7];
3325 uint32_t depth_stencil_state[3];
3326 } gen7;
3327
3328 struct {
3329 uint32_t sf[4];
3330 uint32_t raster[5];
3331 uint32_t wm_depth_stencil[3];
3332 } gen8;
3333
3334 struct {
3335 uint32_t wm_depth_stencil[4];
3336 } gen9;
3337 };
3338
3339 struct anv_compute_pipeline {
3340 struct anv_pipeline base;
3341
3342 struct anv_shader_bin * cs;
3343 uint32_t cs_right_mask;
3344 uint32_t batch_data[9];
3345 uint32_t interface_descriptor_data[8];
3346 };
3347
3348 #define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
3349 static inline struct anv_##pipe_type##_pipeline * \
3350 anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
3351 { \
3352 assert(pipeline->type == pipe_enum); \
3353 return (struct anv_##pipe_type##_pipeline *) pipeline; \
3354 }
3355
3356 ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
3357 ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
3358
3359 static inline bool
3360 anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
3361 gl_shader_stage stage)
3362 {
3363 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3364 }
3365
3366 #define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
3367 static inline const struct brw_##prefix##_prog_data * \
3368 get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
3369 { \
3370 if (anv_pipeline_has_stage(pipeline, stage)) { \
3371 return (const struct brw_##prefix##_prog_data *) \
3372 pipeline->shaders[stage]->prog_data; \
3373 } else { \
3374 return NULL; \
3375 } \
3376 }
3377
3378 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3379 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3380 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3381 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3382 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3383
3384 static inline const struct brw_cs_prog_data *
3385 get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
3386 {
3387 assert(pipeline->cs);
3388 return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
3389 }
3390
3391 static inline const struct brw_vue_prog_data *
3392 anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
3393 {
3394 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3395 return &get_gs_prog_data(pipeline)->base;
3396 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3397 return &get_tes_prog_data(pipeline)->base;
3398 else
3399 return &get_vs_prog_data(pipeline)->base;
3400 }
3401
3402 VkResult
3403 anv_pipeline_init(struct anv_graphics_pipeline *pipeline, struct anv_device *device,
3404 struct anv_pipeline_cache *cache,
3405 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3406 const VkAllocationCallbacks *alloc);
3407
3408 VkResult
3409 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
3410 struct anv_pipeline_cache *cache,
3411 const VkComputePipelineCreateInfo *info,
3412 const struct anv_shader_module *module,
3413 const char *entrypoint,
3414 const VkSpecializationInfo *spec_info);
3415
3416 struct anv_cs_parameters {
3417 uint32_t group_size;
3418 uint32_t simd_size;
3419 uint32_t threads;
3420 };
3421
3422 struct anv_cs_parameters
3423 anv_cs_parameters(const struct anv_compute_pipeline *pipeline);
3424
3425 struct anv_format_plane {
3426 enum isl_format isl_format:16;
3427 struct isl_swizzle swizzle;
3428
3429 /* Whether this plane contains chroma channels */
3430 bool has_chroma;
3431
3432 /* For downscaling of YUV planes */
3433 uint8_t denominator_scales[2];
3434
3435 /* How to map sampled ycbcr planes to a single 4 component element. */
3436 struct isl_swizzle ycbcr_swizzle;
3437
3438 /* What aspect is associated to this plane */
3439 VkImageAspectFlags aspect;
3440 };
3441
3442
3443 struct anv_format {
3444 struct anv_format_plane planes[3];
3445 VkFormat vk_format;
3446 uint8_t n_planes;
3447 bool can_ycbcr;
3448 };
3449
3450 /**
3451 * Return the aspect's _format_ plane, not its _memory_ plane (using the
3452 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
3453 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
3454 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
3455 */
3456 static inline uint32_t
3457 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3458 VkImageAspectFlags aspect_mask)
3459 {
3460 switch (aspect_mask) {
3461 case VK_IMAGE_ASPECT_COLOR_BIT:
3462 case VK_IMAGE_ASPECT_DEPTH_BIT:
3463 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3464 return 0;
3465 case VK_IMAGE_ASPECT_STENCIL_BIT:
3466 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3467 return 0;
3468 /* Fall-through */
3469 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3470 return 1;
3471 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3472 return 2;
3473 default:
3474 /* Purposefully assert with depth/stencil aspects. */
3475 unreachable("invalid image aspect");
3476 }
3477 }
3478
3479 static inline VkImageAspectFlags
3480 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3481 uint32_t plane)
3482 {
3483 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3484 if (util_bitcount(image_aspects) > 1)
3485 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3486 return VK_IMAGE_ASPECT_COLOR_BIT;
3487 }
3488 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3489 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3490 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3491 return VK_IMAGE_ASPECT_STENCIL_BIT;
3492 }
3493
3494 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3495 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3496
3497 const struct anv_format *
3498 anv_get_format(VkFormat format);
3499
3500 static inline uint32_t
3501 anv_get_format_planes(VkFormat vk_format)
3502 {
3503 const struct anv_format *format = anv_get_format(vk_format);
3504
3505 return format != NULL ? format->n_planes : 0;
3506 }
3507
3508 struct anv_format_plane
3509 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3510 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3511
3512 static inline enum isl_format
3513 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3514 VkImageAspectFlags aspect, VkImageTiling tiling)
3515 {
3516 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3517 }
3518
3519 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3520 VkImageCreateFlags create_flags,
3521 VkFormat vk_format,
3522 VkImageTiling vk_tiling,
3523 const VkImageFormatListCreateInfoKHR *fmt_list);
3524
3525 static inline struct isl_swizzle
3526 anv_swizzle_for_render(struct isl_swizzle swizzle)
3527 {
3528 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3529 * RGB as RGBA for texturing
3530 */
3531 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3532 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3533
3534 /* But it doesn't matter what we render to that channel */
3535 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3536
3537 return swizzle;
3538 }
3539
3540 void
3541 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3542
3543 /**
3544 * Subsurface of an anv_image.
3545 */
3546 struct anv_surface {
3547 /** Valid only if isl_surf::size_B > 0. */
3548 struct isl_surf isl;
3549
3550 /**
3551 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3552 */
3553 uint32_t offset;
3554 };
3555
3556 struct anv_image {
3557 struct vk_object_base base;
3558
3559 VkImageType type; /**< VkImageCreateInfo::imageType */
3560 /* The original VkFormat provided by the client. This may not match any
3561 * of the actual surface formats.
3562 */
3563 VkFormat vk_format;
3564 const struct anv_format *format;
3565
3566 VkImageAspectFlags aspects;
3567 VkExtent3D extent;
3568 uint32_t levels;
3569 uint32_t array_size;
3570 uint32_t samples; /**< VkImageCreateInfo::samples */
3571 uint32_t n_planes;
3572 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3573 VkImageUsageFlags stencil_usage;
3574 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3575 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3576
3577 /** True if this is needs to be bound to an appropriately tiled BO.
3578 *
3579 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3580 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3581 * we require a dedicated allocation so that we can know to allocate a
3582 * tiled buffer.
3583 */
3584 bool needs_set_tiling;
3585
3586 /**
3587 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3588 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3589 */
3590 uint64_t drm_format_mod;
3591
3592 VkDeviceSize size;
3593 uint32_t alignment;
3594
3595 /* Whether the image is made of several underlying buffer objects rather a
3596 * single one with different offsets.
3597 */
3598 bool disjoint;
3599
3600 /* Image was created with external format. */
3601 bool external_format;
3602
3603 /**
3604 * Image subsurfaces
3605 *
3606 * For each foo, anv_image::planes[x].surface is valid if and only if
3607 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3608 * to figure the number associated with a given aspect.
3609 *
3610 * The hardware requires that the depth buffer and stencil buffer be
3611 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3612 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3613 * allocate the depth and stencil buffers as separate surfaces in the same
3614 * bo.
3615 *
3616 * Memory layout :
3617 *
3618 * -----------------------
3619 * | surface0 | /|\
3620 * ----------------------- |
3621 * | shadow surface0 | |
3622 * ----------------------- | Plane 0
3623 * | aux surface0 | |
3624 * ----------------------- |
3625 * | fast clear colors0 | \|/
3626 * -----------------------
3627 * | surface1 | /|\
3628 * ----------------------- |
3629 * | shadow surface1 | |
3630 * ----------------------- | Plane 1
3631 * | aux surface1 | |
3632 * ----------------------- |
3633 * | fast clear colors1 | \|/
3634 * -----------------------
3635 * | ... |
3636 * | |
3637 * -----------------------
3638 */
3639 struct {
3640 /**
3641 * Offset of the entire plane (whenever the image is disjoint this is
3642 * set to 0).
3643 */
3644 uint32_t offset;
3645
3646 VkDeviceSize size;
3647 uint32_t alignment;
3648
3649 struct anv_surface surface;
3650
3651 /**
3652 * A surface which shadows the main surface and may have different
3653 * tiling. This is used for sampling using a tiling that isn't supported
3654 * for other operations.
3655 */
3656 struct anv_surface shadow_surface;
3657
3658 /**
3659 * The base aux usage for this image. For color images, this can be
3660 * either CCS_E or CCS_D depending on whether or not we can reliably
3661 * leave CCS on all the time.
3662 */
3663 enum isl_aux_usage aux_usage;
3664
3665 struct anv_surface aux_surface;
3666
3667 /**
3668 * Offset of the fast clear state (used to compute the
3669 * fast_clear_state_offset of the following planes).
3670 */
3671 uint32_t fast_clear_state_offset;
3672
3673 /**
3674 * BO associated with this plane, set when bound.
3675 */
3676 struct anv_address address;
3677
3678 /**
3679 * When destroying the image, also free the bo.
3680 * */
3681 bool bo_is_owned;
3682 } planes[3];
3683 };
3684
3685 /* The ordering of this enum is important */
3686 enum anv_fast_clear_type {
3687 /** Image does not have/support any fast-clear blocks */
3688 ANV_FAST_CLEAR_NONE = 0,
3689 /** Image has/supports fast-clear but only to the default value */
3690 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3691 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3692 ANV_FAST_CLEAR_ANY = 2,
3693 };
3694
3695 /* Returns the number of auxiliary buffer levels attached to an image. */
3696 static inline uint8_t
3697 anv_image_aux_levels(const struct anv_image * const image,
3698 VkImageAspectFlagBits aspect)
3699 {
3700 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3701 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3702 return 0;
3703
3704 /* The Gen12 CCS aux surface is represented with only one level. */
3705 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3706 image->planes[plane].surface.isl.levels :
3707 image->planes[plane].aux_surface.isl.levels;
3708 }
3709
3710 /* Returns the number of auxiliary buffer layers attached to an image. */
3711 static inline uint32_t
3712 anv_image_aux_layers(const struct anv_image * const image,
3713 VkImageAspectFlagBits aspect,
3714 const uint8_t miplevel)
3715 {
3716 assert(image);
3717
3718 /* The miplevel must exist in the main buffer. */
3719 assert(miplevel < image->levels);
3720
3721 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3722 /* There are no layers with auxiliary data because the miplevel has no
3723 * auxiliary data.
3724 */
3725 return 0;
3726 } else {
3727 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3728
3729 /* The Gen12 CCS aux surface is represented with only one layer. */
3730 const struct isl_extent4d *aux_logical_level0_px =
3731 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3732 &image->planes[plane].surface.isl.logical_level0_px :
3733 &image->planes[plane].aux_surface.isl.logical_level0_px;
3734
3735 return MAX2(aux_logical_level0_px->array_len,
3736 aux_logical_level0_px->depth >> miplevel);
3737 }
3738 }
3739
3740 static inline struct anv_address
3741 anv_image_get_clear_color_addr(UNUSED const struct anv_device *device,
3742 const struct anv_image *image,
3743 VkImageAspectFlagBits aspect)
3744 {
3745 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3746
3747 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3748 return anv_address_add(image->planes[plane].address,
3749 image->planes[plane].fast_clear_state_offset);
3750 }
3751
3752 static inline struct anv_address
3753 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3754 const struct anv_image *image,
3755 VkImageAspectFlagBits aspect)
3756 {
3757 struct anv_address addr =
3758 anv_image_get_clear_color_addr(device, image, aspect);
3759
3760 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3761 device->isl_dev.ss.clear_color_state_size :
3762 device->isl_dev.ss.clear_value_size;
3763 return anv_address_add(addr, clear_color_state_size);
3764 }
3765
3766 static inline struct anv_address
3767 anv_image_get_compression_state_addr(const struct anv_device *device,
3768 const struct anv_image *image,
3769 VkImageAspectFlagBits aspect,
3770 uint32_t level, uint32_t array_layer)
3771 {
3772 assert(level < anv_image_aux_levels(image, aspect));
3773 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3774 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3775 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3776
3777 struct anv_address addr =
3778 anv_image_get_fast_clear_type_addr(device, image, aspect);
3779 addr.offset += 4; /* Go past the fast clear type */
3780
3781 if (image->type == VK_IMAGE_TYPE_3D) {
3782 for (uint32_t l = 0; l < level; l++)
3783 addr.offset += anv_minify(image->extent.depth, l) * 4;
3784 } else {
3785 addr.offset += level * image->array_size * 4;
3786 }
3787 addr.offset += array_layer * 4;
3788
3789 assert(addr.offset <
3790 image->planes[plane].address.offset + image->planes[plane].size);
3791 return addr;
3792 }
3793
3794 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3795 static inline bool
3796 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3797 const struct anv_image *image)
3798 {
3799 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3800 return false;
3801
3802 /* For Gen8-11, there are some restrictions around sampling from HiZ.
3803 * The Skylake PRM docs for RENDER_SURFACE_STATE::AuxiliarySurfaceMode
3804 * say:
3805 *
3806 * "If this field is set to AUX_HIZ, Number of Multisamples must
3807 * be MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D."
3808 */
3809 if (image->type == VK_IMAGE_TYPE_3D)
3810 return false;
3811
3812 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3813 * struct. There's documentation which suggests that this feature actually
3814 * reduces performance on BDW, but it has only been observed to help so
3815 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3816 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3817 */
3818 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3819 return false;
3820
3821 return image->samples == 1;
3822 }
3823
3824 static inline bool
3825 anv_image_plane_uses_aux_map(const struct anv_device *device,
3826 const struct anv_image *image,
3827 uint32_t plane)
3828 {
3829 return device->info.has_aux_map &&
3830 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3831 }
3832
3833 void
3834 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3835 const struct anv_image *image,
3836 VkImageAspectFlagBits aspect,
3837 enum isl_aux_usage aux_usage,
3838 uint32_t level,
3839 uint32_t base_layer,
3840 uint32_t layer_count);
3841
3842 void
3843 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3844 const struct anv_image *image,
3845 VkImageAspectFlagBits aspect,
3846 enum isl_aux_usage aux_usage,
3847 enum isl_format format, struct isl_swizzle swizzle,
3848 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3849 VkRect2D area, union isl_color_value clear_color);
3850 void
3851 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3852 const struct anv_image *image,
3853 VkImageAspectFlags aspects,
3854 enum isl_aux_usage depth_aux_usage,
3855 uint32_t level,
3856 uint32_t base_layer, uint32_t layer_count,
3857 VkRect2D area,
3858 float depth_value, uint8_t stencil_value);
3859 void
3860 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3861 const struct anv_image *src_image,
3862 enum isl_aux_usage src_aux_usage,
3863 uint32_t src_level, uint32_t src_base_layer,
3864 const struct anv_image *dst_image,
3865 enum isl_aux_usage dst_aux_usage,
3866 uint32_t dst_level, uint32_t dst_base_layer,
3867 VkImageAspectFlagBits aspect,
3868 uint32_t src_x, uint32_t src_y,
3869 uint32_t dst_x, uint32_t dst_y,
3870 uint32_t width, uint32_t height,
3871 uint32_t layer_count,
3872 enum blorp_filter filter);
3873 void
3874 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3875 const struct anv_image *image,
3876 VkImageAspectFlagBits aspect, uint32_t level,
3877 uint32_t base_layer, uint32_t layer_count,
3878 enum isl_aux_op hiz_op);
3879 void
3880 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3881 const struct anv_image *image,
3882 VkImageAspectFlags aspects,
3883 uint32_t level,
3884 uint32_t base_layer, uint32_t layer_count,
3885 VkRect2D area, uint8_t stencil_value);
3886 void
3887 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3888 const struct anv_image *image,
3889 enum isl_format format, struct isl_swizzle swizzle,
3890 VkImageAspectFlagBits aspect,
3891 uint32_t base_layer, uint32_t layer_count,
3892 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3893 bool predicate);
3894 void
3895 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3896 const struct anv_image *image,
3897 enum isl_format format, struct isl_swizzle swizzle,
3898 VkImageAspectFlagBits aspect, uint32_t level,
3899 uint32_t base_layer, uint32_t layer_count,
3900 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3901 bool predicate);
3902
3903 void
3904 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3905 const struct anv_image *image,
3906 VkImageAspectFlagBits aspect,
3907 uint32_t base_level, uint32_t level_count,
3908 uint32_t base_layer, uint32_t layer_count);
3909
3910 enum isl_aux_state
3911 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3912 const struct anv_image *image,
3913 const VkImageAspectFlagBits aspect,
3914 const VkImageLayout layout);
3915
3916 enum isl_aux_usage
3917 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3918 const struct anv_image *image,
3919 const VkImageAspectFlagBits aspect,
3920 const VkImageUsageFlagBits usage,
3921 const VkImageLayout layout);
3922
3923 enum anv_fast_clear_type
3924 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3925 const struct anv_image * const image,
3926 const VkImageAspectFlagBits aspect,
3927 const VkImageLayout layout);
3928
3929 /* This is defined as a macro so that it works for both
3930 * VkImageSubresourceRange and VkImageSubresourceLayers
3931 */
3932 #define anv_get_layerCount(_image, _range) \
3933 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3934 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3935
3936 static inline uint32_t
3937 anv_get_levelCount(const struct anv_image *image,
3938 const VkImageSubresourceRange *range)
3939 {
3940 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3941 image->levels - range->baseMipLevel : range->levelCount;
3942 }
3943
3944 static inline VkImageAspectFlags
3945 anv_image_expand_aspects(const struct anv_image *image,
3946 VkImageAspectFlags aspects)
3947 {
3948 /* If the underlying image has color plane aspects and
3949 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3950 * the underlying image. */
3951 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3952 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3953 return image->aspects;
3954
3955 return aspects;
3956 }
3957
3958 static inline bool
3959 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3960 VkImageAspectFlags aspects2)
3961 {
3962 if (aspects1 == aspects2)
3963 return true;
3964
3965 /* Only 1 color aspects are compatibles. */
3966 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3967 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3968 util_bitcount(aspects1) == util_bitcount(aspects2))
3969 return true;
3970
3971 return false;
3972 }
3973
3974 struct anv_image_view {
3975 struct vk_object_base base;
3976
3977 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3978
3979 VkImageAspectFlags aspect_mask;
3980 VkFormat vk_format;
3981 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3982
3983 unsigned n_planes;
3984 struct {
3985 uint32_t image_plane;
3986
3987 struct isl_view isl;
3988
3989 /**
3990 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3991 * image layout of SHADER_READ_ONLY_OPTIMAL or
3992 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3993 */
3994 struct anv_surface_state optimal_sampler_surface_state;
3995
3996 /**
3997 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3998 * image layout of GENERAL.
3999 */
4000 struct anv_surface_state general_sampler_surface_state;
4001
4002 /**
4003 * RENDER_SURFACE_STATE when using image as a storage image. Separate
4004 * states for write-only and readable, using the real format for
4005 * write-only and the lowered format for readable.
4006 */
4007 struct anv_surface_state storage_surface_state;
4008 struct anv_surface_state writeonly_storage_surface_state;
4009
4010 struct brw_image_param storage_image_param;
4011 } planes[3];
4012 };
4013
4014 enum anv_image_view_state_flags {
4015 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
4016 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
4017 };
4018
4019 void anv_image_fill_surface_state(struct anv_device *device,
4020 const struct anv_image *image,
4021 VkImageAspectFlagBits aspect,
4022 const struct isl_view *view,
4023 isl_surf_usage_flags_t view_usage,
4024 enum isl_aux_usage aux_usage,
4025 const union isl_color_value *clear_color,
4026 enum anv_image_view_state_flags flags,
4027 struct anv_surface_state *state_inout,
4028 struct brw_image_param *image_param_out);
4029
4030 struct anv_image_create_info {
4031 const VkImageCreateInfo *vk_info;
4032
4033 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
4034 isl_tiling_flags_t isl_tiling_flags;
4035
4036 /** These flags will be added to any derived from VkImageCreateInfo. */
4037 isl_surf_usage_flags_t isl_extra_usage_flags;
4038
4039 uint32_t stride;
4040 bool external_format;
4041 };
4042
4043 VkResult anv_image_create(VkDevice _device,
4044 const struct anv_image_create_info *info,
4045 const VkAllocationCallbacks* alloc,
4046 VkImage *pImage);
4047
4048 enum isl_format
4049 anv_isl_format_for_descriptor_type(VkDescriptorType type);
4050
4051 static inline VkExtent3D
4052 anv_sanitize_image_extent(const VkImageType imageType,
4053 const VkExtent3D imageExtent)
4054 {
4055 switch (imageType) {
4056 case VK_IMAGE_TYPE_1D:
4057 return (VkExtent3D) { imageExtent.width, 1, 1 };
4058 case VK_IMAGE_TYPE_2D:
4059 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
4060 case VK_IMAGE_TYPE_3D:
4061 return imageExtent;
4062 default:
4063 unreachable("invalid image type");
4064 }
4065 }
4066
4067 static inline VkOffset3D
4068 anv_sanitize_image_offset(const VkImageType imageType,
4069 const VkOffset3D imageOffset)
4070 {
4071 switch (imageType) {
4072 case VK_IMAGE_TYPE_1D:
4073 return (VkOffset3D) { imageOffset.x, 0, 0 };
4074 case VK_IMAGE_TYPE_2D:
4075 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
4076 case VK_IMAGE_TYPE_3D:
4077 return imageOffset;
4078 default:
4079 unreachable("invalid image type");
4080 }
4081 }
4082
4083 VkFormatFeatureFlags
4084 anv_get_image_format_features(const struct gen_device_info *devinfo,
4085 VkFormat vk_format,
4086 const struct anv_format *anv_format,
4087 VkImageTiling vk_tiling);
4088
4089 void anv_fill_buffer_surface_state(struct anv_device *device,
4090 struct anv_state state,
4091 enum isl_format format,
4092 struct anv_address address,
4093 uint32_t range, uint32_t stride);
4094
4095 static inline void
4096 anv_clear_color_from_att_state(union isl_color_value *clear_color,
4097 const struct anv_attachment_state *att_state,
4098 const struct anv_image_view *iview)
4099 {
4100 const struct isl_format_layout *view_fmtl =
4101 isl_format_get_layout(iview->planes[0].isl.format);
4102
4103 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
4104 if (view_fmtl->channels.c.bits) \
4105 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
4106
4107 COPY_CLEAR_COLOR_CHANNEL(r, 0);
4108 COPY_CLEAR_COLOR_CHANNEL(g, 1);
4109 COPY_CLEAR_COLOR_CHANNEL(b, 2);
4110 COPY_CLEAR_COLOR_CHANNEL(a, 3);
4111
4112 #undef COPY_CLEAR_COLOR_CHANNEL
4113 }
4114
4115
4116 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
4117 * straightforward 32-bit float color in the first 64 bytes. Instead of using
4118 * a nice float/integer union like Gen8+, Haswell specifies the integer border
4119 * color as a separate entry /after/ the float color. The layout of this entry
4120 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
4121 *
4122 * Since we don't know the format/bpp, we can't make any of the border colors
4123 * containing '1' work for all formats, as it would be in the wrong place for
4124 * some of them. We opt to make 32-bit integers work as this seems like the
4125 * most common option. Fortunately, transparent black works regardless, as
4126 * all zeroes is the same in every bit-size.
4127 */
4128 struct hsw_border_color {
4129 float float32[4];
4130 uint32_t _pad0[12];
4131 uint32_t uint32[4];
4132 uint32_t _pad1[108];
4133 };
4134
4135 struct gen8_border_color {
4136 union {
4137 float float32[4];
4138 uint32_t uint32[4];
4139 };
4140 /* Pad out to 64 bytes */
4141 uint32_t _pad[12];
4142 };
4143
4144 struct anv_ycbcr_conversion {
4145 struct vk_object_base base;
4146
4147 const struct anv_format * format;
4148 VkSamplerYcbcrModelConversion ycbcr_model;
4149 VkSamplerYcbcrRange ycbcr_range;
4150 VkComponentSwizzle mapping[4];
4151 VkChromaLocation chroma_offsets[2];
4152 VkFilter chroma_filter;
4153 bool chroma_reconstruction;
4154 };
4155
4156 struct anv_sampler {
4157 struct vk_object_base base;
4158
4159 uint32_t state[3][4];
4160 uint32_t n_planes;
4161 struct anv_ycbcr_conversion *conversion;
4162
4163 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
4164 * and with a 32-byte stride for use as bindless samplers.
4165 */
4166 struct anv_state bindless_state;
4167
4168 struct anv_state custom_border_color;
4169 };
4170
4171 struct anv_framebuffer {
4172 struct vk_object_base base;
4173
4174 uint32_t width;
4175 uint32_t height;
4176 uint32_t layers;
4177
4178 uint32_t attachment_count;
4179 struct anv_image_view * attachments[0];
4180 };
4181
4182 struct anv_subpass_attachment {
4183 VkImageUsageFlagBits usage;
4184 uint32_t attachment;
4185 VkImageLayout layout;
4186
4187 /* Used only with attachment containing stencil data. */
4188 VkImageLayout stencil_layout;
4189 };
4190
4191 struct anv_subpass {
4192 uint32_t attachment_count;
4193
4194 /**
4195 * A pointer to all attachment references used in this subpass.
4196 * Only valid if ::attachment_count > 0.
4197 */
4198 struct anv_subpass_attachment * attachments;
4199 uint32_t input_count;
4200 struct anv_subpass_attachment * input_attachments;
4201 uint32_t color_count;
4202 struct anv_subpass_attachment * color_attachments;
4203 struct anv_subpass_attachment * resolve_attachments;
4204
4205 struct anv_subpass_attachment * depth_stencil_attachment;
4206 struct anv_subpass_attachment * ds_resolve_attachment;
4207 VkResolveModeFlagBitsKHR depth_resolve_mode;
4208 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4209
4210 uint32_t view_mask;
4211
4212 /** Subpass has a depth/stencil self-dependency */
4213 bool has_ds_self_dep;
4214
4215 /** Subpass has at least one color resolve attachment */
4216 bool has_color_resolve;
4217 };
4218
4219 static inline unsigned
4220 anv_subpass_view_count(const struct anv_subpass *subpass)
4221 {
4222 return MAX2(1, util_bitcount(subpass->view_mask));
4223 }
4224
4225 struct anv_render_pass_attachment {
4226 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4227 * its members individually.
4228 */
4229 VkFormat format;
4230 uint32_t samples;
4231 VkImageUsageFlags usage;
4232 VkAttachmentLoadOp load_op;
4233 VkAttachmentStoreOp store_op;
4234 VkAttachmentLoadOp stencil_load_op;
4235 VkImageLayout initial_layout;
4236 VkImageLayout final_layout;
4237 VkImageLayout first_subpass_layout;
4238
4239 VkImageLayout stencil_initial_layout;
4240 VkImageLayout stencil_final_layout;
4241
4242 /* The subpass id in which the attachment will be used last. */
4243 uint32_t last_subpass_idx;
4244 };
4245
4246 struct anv_render_pass {
4247 struct vk_object_base base;
4248
4249 uint32_t attachment_count;
4250 uint32_t subpass_count;
4251 /* An array of subpass_count+1 flushes, one per subpass boundary */
4252 enum anv_pipe_bits * subpass_flushes;
4253 struct anv_render_pass_attachment * attachments;
4254 struct anv_subpass subpasses[0];
4255 };
4256
4257 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4258
4259 #define OA_SNAPSHOT_SIZE (256)
4260 #define ANV_KHR_PERF_QUERY_SIZE (ALIGN(sizeof(uint64_t), 64) + 2 * OA_SNAPSHOT_SIZE)
4261
4262 struct anv_query_pool {
4263 struct vk_object_base base;
4264
4265 VkQueryType type;
4266 VkQueryPipelineStatisticFlags pipeline_statistics;
4267 /** Stride between slots, in bytes */
4268 uint32_t stride;
4269 /** Number of slots in this query pool */
4270 uint32_t slots;
4271 struct anv_bo * bo;
4272
4273 /* Perf queries : */
4274 struct anv_bo reset_bo;
4275 uint32_t n_counters;
4276 struct gen_perf_counter_pass *counter_pass;
4277 uint32_t n_passes;
4278 struct gen_perf_query_info **pass_query;
4279 };
4280
4281 static inline uint32_t khr_perf_query_preamble_offset(struct anv_query_pool *pool,
4282 uint32_t pass)
4283 {
4284 return pass * ANV_KHR_PERF_QUERY_SIZE + 8;
4285 }
4286
4287 int anv_get_instance_entrypoint_index(const char *name);
4288 int anv_get_device_entrypoint_index(const char *name);
4289 int anv_get_physical_device_entrypoint_index(const char *name);
4290
4291 const char *anv_get_instance_entry_name(int index);
4292 const char *anv_get_physical_device_entry_name(int index);
4293 const char *anv_get_device_entry_name(int index);
4294
4295 bool
4296 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4297 const struct anv_instance_extension_table *instance);
4298 bool
4299 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4300 const struct anv_instance_extension_table *instance);
4301 bool
4302 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4303 const struct anv_instance_extension_table *instance,
4304 const struct anv_device_extension_table *device);
4305
4306 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4307 const char *name);
4308
4309 void anv_dump_image_to_ppm(struct anv_device *device,
4310 struct anv_image *image, unsigned miplevel,
4311 unsigned array_layer, VkImageAspectFlagBits aspect,
4312 const char *filename);
4313
4314 enum anv_dump_action {
4315 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4316 };
4317
4318 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4319 void anv_dump_finish(void);
4320
4321 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4322
4323 static inline uint32_t
4324 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4325 {
4326 /* This function must be called from within a subpass. */
4327 assert(cmd_state->pass && cmd_state->subpass);
4328
4329 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4330
4331 /* The id of this subpass shouldn't exceed the number of subpasses in this
4332 * render pass minus 1.
4333 */
4334 assert(subpass_id < cmd_state->pass->subpass_count);
4335 return subpass_id;
4336 }
4337
4338 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4339 void anv_device_perf_init(struct anv_device *device);
4340 void anv_perf_write_pass_results(struct gen_perf_config *perf,
4341 struct anv_query_pool *pool, uint32_t pass,
4342 const struct gen_perf_query_result *accumulated_results,
4343 union VkPerformanceCounterResultKHR *results);
4344
4345 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4346 VK_FROM_HANDLE(__anv_type, __name, __handle)
4347
4348 VK_DEFINE_HANDLE_CASTS(anv_cmd_buffer, base, VkCommandBuffer,
4349 VK_OBJECT_TYPE_COMMAND_BUFFER)
4350 VK_DEFINE_HANDLE_CASTS(anv_device, vk.base, VkDevice, VK_OBJECT_TYPE_DEVICE)
4351 VK_DEFINE_HANDLE_CASTS(anv_instance, base, VkInstance, VK_OBJECT_TYPE_INSTANCE)
4352 VK_DEFINE_HANDLE_CASTS(anv_physical_device, base, VkPhysicalDevice,
4353 VK_OBJECT_TYPE_PHYSICAL_DEVICE)
4354 VK_DEFINE_HANDLE_CASTS(anv_queue, base, VkQueue, VK_OBJECT_TYPE_QUEUE)
4355
4356 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, base, VkCommandPool,
4357 VK_OBJECT_TYPE_COMMAND_POOL)
4358 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, base, VkBuffer,
4359 VK_OBJECT_TYPE_BUFFER)
4360 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, base, VkBufferView,
4361 VK_OBJECT_TYPE_BUFFER_VIEW)
4362 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, base, VkDescriptorPool,
4363 VK_OBJECT_TYPE_DESCRIPTOR_POOL)
4364 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, base, VkDescriptorSet,
4365 VK_OBJECT_TYPE_DESCRIPTOR_SET)
4366 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, base,
4367 VkDescriptorSetLayout,
4368 VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT)
4369 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, base,
4370 VkDescriptorUpdateTemplate,
4371 VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE)
4372 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, base, VkDeviceMemory,
4373 VK_OBJECT_TYPE_DEVICE_MEMORY)
4374 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, base, VkFence, VK_OBJECT_TYPE_FENCE)
4375 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_event, base, VkEvent, VK_OBJECT_TYPE_EVENT)
4376 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, base, VkFramebuffer,
4377 VK_OBJECT_TYPE_FRAMEBUFFER)
4378 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image, base, VkImage, VK_OBJECT_TYPE_IMAGE)
4379 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, base, VkImageView,
4380 VK_OBJECT_TYPE_IMAGE_VIEW);
4381 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, base, VkPipelineCache,
4382 VK_OBJECT_TYPE_PIPELINE_CACHE)
4383 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, base, VkPipeline,
4384 VK_OBJECT_TYPE_PIPELINE)
4385 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, base, VkPipelineLayout,
4386 VK_OBJECT_TYPE_PIPELINE_LAYOUT)
4387 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, base, VkQueryPool,
4388 VK_OBJECT_TYPE_QUERY_POOL)
4389 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, base, VkRenderPass,
4390 VK_OBJECT_TYPE_RENDER_PASS)
4391 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, base, VkSampler,
4392 VK_OBJECT_TYPE_SAMPLER)
4393 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, base, VkSemaphore,
4394 VK_OBJECT_TYPE_SEMAPHORE)
4395 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, base, VkShaderModule,
4396 VK_OBJECT_TYPE_SHADER_MODULE)
4397 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, base,
4398 VkSamplerYcbcrConversion,
4399 VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION)
4400
4401 /* Gen-specific function declarations */
4402 #ifdef genX
4403 # include "anv_genX.h"
4404 #else
4405 # define genX(x) gen7_##x
4406 # include "anv_genX.h"
4407 # undef genX
4408 # define genX(x) gen75_##x
4409 # include "anv_genX.h"
4410 # undef genX
4411 # define genX(x) gen8_##x
4412 # include "anv_genX.h"
4413 # undef genX
4414 # define genX(x) gen9_##x
4415 # include "anv_genX.h"
4416 # undef genX
4417 # define genX(x) gen10_##x
4418 # include "anv_genX.h"
4419 # undef genX
4420 # define genX(x) gen11_##x
4421 # include "anv_genX.h"
4422 # undef genX
4423 # define genX(x) gen12_##x
4424 # include "anv_genX.h"
4425 # undef genX
4426 #endif
4427
4428 #endif /* ANV_PRIVATE_H */