b4d1a85ebe3e9c4b276af4afecda0456eb3b3a1e
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "common/gen_l3_config.h"
50 #include "dev/gen_device_info.h"
51 #include "blorp/blorp.h"
52 #include "compiler/brw_compiler.h"
53 #include "util/bitset.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/sparse_array.h"
58 #include "util/u_atomic.h"
59 #include "util/u_vector.h"
60 #include "util/u_math.h"
61 #include "util/vma.h"
62 #include "util/xmlconfig.h"
63 #include "vk_alloc.h"
64 #include "vk_debug_report.h"
65
66 /* Pre-declarations needed for WSI entrypoints */
67 struct wl_surface;
68 struct wl_display;
69 typedef struct xcb_connection_t xcb_connection_t;
70 typedef uint32_t xcb_visualid_t;
71 typedef uint32_t xcb_window_t;
72
73 struct anv_batch;
74 struct anv_buffer;
75 struct anv_buffer_view;
76 struct anv_image_view;
77 struct anv_instance;
78
79 struct gen_aux_map_context;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
132 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
133
134 #define LOW_HEAP_SIZE \
135 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
136 #define DYNAMIC_STATE_POOL_SIZE \
137 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
138 #define BINDING_TABLE_POOL_SIZE \
139 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
140 #define SURFACE_STATE_POOL_SIZE \
141 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
142 #define INSTRUCTION_STATE_POOL_SIZE \
143 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
144 #define CLIENT_VISIBLE_HEAP_SIZE \
145 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
146
147 /* Allowing different clear colors requires us to perform a depth resolve at
148 * the end of certain render passes. This is because while slow clears store
149 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
150 * See the PRMs for examples describing when additional resolves would be
151 * necessary. To enable fast clears without requiring extra resolves, we set
152 * the clear value to a globally-defined one. We could allow different values
153 * if the user doesn't expect coherent data during or after a render passes
154 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
155 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
156 * 1.0f seems to be the only value used. The only application that doesn't set
157 * this value does so through the usage of an seemingly uninitialized clear
158 * value.
159 */
160 #define ANV_HZ_FC_VAL 1.0f
161
162 #define MAX_VBS 28
163 #define MAX_XFB_BUFFERS 4
164 #define MAX_XFB_STREAMS 4
165 #define MAX_SETS 8
166 #define MAX_RTS 8
167 #define MAX_VIEWPORTS 16
168 #define MAX_SCISSORS 16
169 #define MAX_PUSH_CONSTANTS_SIZE 128
170 #define MAX_DYNAMIC_BUFFERS 16
171 #define MAX_IMAGES 64
172 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
173 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
174 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
175
176 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
177 *
178 * "The surface state model is used when a Binding Table Index (specified
179 * in the message descriptor) of less than 240 is specified. In this model,
180 * the Binding Table Index is used to index into the binding table, and the
181 * binding table entry contains a pointer to the SURFACE_STATE."
182 *
183 * Binding table values above 240 are used for various things in the hardware
184 * such as stateless, stateless with incoherent cache, SLM, and bindless.
185 */
186 #define MAX_BINDING_TABLE_SIZE 240
187
188 /* The kernel relocation API has a limitation of a 32-bit delta value
189 * applied to the address before it is written which, in spite of it being
190 * unsigned, is treated as signed . Because of the way that this maps to
191 * the Vulkan API, we cannot handle an offset into a buffer that does not
192 * fit into a signed 32 bits. The only mechanism we have for dealing with
193 * this at the moment is to limit all VkDeviceMemory objects to a maximum
194 * of 2GB each. The Vulkan spec allows us to do this:
195 *
196 * "Some platforms may have a limit on the maximum size of a single
197 * allocation. For example, certain systems may fail to create
198 * allocations with a size greater than or equal to 4GB. Such a limit is
199 * implementation-dependent, and if such a failure occurs then the error
200 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
201 *
202 * We don't use vk_error here because it's not an error so much as an
203 * indication to the application that the allocation is too large.
204 */
205 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
206
207 #define ANV_SVGS_VB_INDEX MAX_VBS
208 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
209
210 /* We reserve this MI ALU register for the purpose of handling predication.
211 * Other code which uses the MI ALU should leave it alone.
212 */
213 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
214
215 /* For gen12 we set the streamout buffers using 4 separate commands
216 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
217 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
218 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
219 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
220 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
221 * 3DSTATE_SO_BUFFER_INDEX_0.
222 */
223 #define SO_BUFFER_INDEX_0_CMD 0x60
224 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
225
226 static inline uint32_t
227 align_down_npot_u32(uint32_t v, uint32_t a)
228 {
229 return v - (v % a);
230 }
231
232 static inline uint32_t
233 align_u32(uint32_t v, uint32_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline uint64_t
240 align_down_u64(uint64_t v, uint64_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return v & ~(a - 1);
244 }
245
246 static inline uint64_t
247 align_u64(uint64_t v, uint64_t a)
248 {
249 return align_down_u64(v + a - 1, a);
250 }
251
252 static inline int32_t
253 align_i32(int32_t v, int32_t a)
254 {
255 assert(a != 0 && a == (a & -a));
256 return (v + a - 1) & ~(a - 1);
257 }
258
259 /** Alignment must be a power of 2. */
260 static inline bool
261 anv_is_aligned(uintmax_t n, uintmax_t a)
262 {
263 assert(a == (a & -a));
264 return (n & (a - 1)) == 0;
265 }
266
267 static inline uint32_t
268 anv_minify(uint32_t n, uint32_t levels)
269 {
270 if (unlikely(n == 0))
271 return 0;
272 else
273 return MAX2(n >> levels, 1);
274 }
275
276 static inline float
277 anv_clamp_f(float f, float min, float max)
278 {
279 assert(min < max);
280
281 if (f > max)
282 return max;
283 else if (f < min)
284 return min;
285 else
286 return f;
287 }
288
289 static inline bool
290 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
291 {
292 if (*inout_mask & clear_mask) {
293 *inout_mask &= ~clear_mask;
294 return true;
295 } else {
296 return false;
297 }
298 }
299
300 static inline union isl_color_value
301 vk_to_isl_color(VkClearColorValue color)
302 {
303 return (union isl_color_value) {
304 .u32 = {
305 color.uint32[0],
306 color.uint32[1],
307 color.uint32[2],
308 color.uint32[3],
309 },
310 };
311 }
312
313 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
314 {
315 uintptr_t mask = (1ull << bits) - 1;
316 *flags = ptr & mask;
317 return (void *) (ptr & ~mask);
318 }
319
320 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
321 {
322 uintptr_t value = (uintptr_t) ptr;
323 uintptr_t mask = (1ull << bits) - 1;
324 return value | (mask & flags);
325 }
326
327 #define for_each_bit(b, dword) \
328 for (uint32_t __dword = (dword); \
329 (b) = __builtin_ffs(__dword) - 1, __dword; \
330 __dword &= ~(1 << (b)))
331
332 #define typed_memcpy(dest, src, count) ({ \
333 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
334 memcpy((dest), (src), (count) * sizeof(*(src))); \
335 })
336
337 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
338 * to be added here in order to utilize mapping in debug/error/perf macros.
339 */
340 #define REPORT_OBJECT_TYPE(o) \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
428 __builtin_choose_expr ( \
429 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
430 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
431 __builtin_choose_expr ( \
432 __builtin_types_compatible_p (__typeof (o), void*), \
433 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
434 /* The void expression results in a compile-time error \
435 when assigning the result to something. */ \
436 (void)0)))))))))))))))))))))))))))))))
437
438 /* Whenever we generate an error, pass it through this function. Useful for
439 * debugging, where we can break on it. Only call at error site, not when
440 * propagating errors. Might be useful to plug in a stack trace here.
441 */
442
443 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
444 VkDebugReportObjectTypeEXT type, VkResult error,
445 const char *file, int line, const char *format,
446 va_list args);
447
448 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
449 VkDebugReportObjectTypeEXT type, VkResult error,
450 const char *file, int line, const char *format, ...)
451 anv_printflike(7, 8);
452
453 #ifdef DEBUG
454 #define vk_error(error) __vk_errorf(NULL, NULL,\
455 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
456 error, __FILE__, __LINE__, NULL)
457 #define vk_errorfi(instance, obj, error, format, ...)\
458 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
459 __FILE__, __LINE__, format, ## __VA_ARGS__)
460 #define vk_errorf(device, obj, error, format, ...)\
461 vk_errorfi(anv_device_instance_or_null(device),\
462 obj, error, format, ## __VA_ARGS__)
463 #else
464 #define vk_error(error) error
465 #define vk_errorfi(instance, obj, error, format, ...) error
466 #define vk_errorf(device, obj, error, format, ...) error
467 #endif
468
469 /**
470 * Warn on ignored extension structs.
471 *
472 * The Vulkan spec requires us to ignore unsupported or unknown structs in
473 * a pNext chain. In debug mode, emitting warnings for ignored structs may
474 * help us discover structs that we should not have ignored.
475 *
476 *
477 * From the Vulkan 1.0.38 spec:
478 *
479 * Any component of the implementation (the loader, any enabled layers,
480 * and drivers) must skip over, without processing (other than reading the
481 * sType and pNext members) any chained structures with sType values not
482 * defined by extensions supported by that component.
483 */
484 #define anv_debug_ignored_stype(sType) \
485 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
486
487 void __anv_perf_warn(struct anv_device *device, const void *object,
488 VkDebugReportObjectTypeEXT type, const char *file,
489 int line, const char *format, ...)
490 anv_printflike(6, 7);
491 void anv_loge(const char *format, ...) anv_printflike(1, 2);
492 void anv_loge_v(const char *format, va_list va);
493
494 /**
495 * Print a FINISHME message, including its source location.
496 */
497 #define anv_finishme(format, ...) \
498 do { \
499 static bool reported = false; \
500 if (!reported) { \
501 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
502 ##__VA_ARGS__); \
503 reported = true; \
504 } \
505 } while (0)
506
507 /**
508 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
509 */
510 #define anv_perf_warn(instance, obj, format, ...) \
511 do { \
512 static bool reported = false; \
513 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
514 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
515 format, ##__VA_ARGS__); \
516 reported = true; \
517 } \
518 } while (0)
519
520 /* A non-fatal assert. Useful for debugging. */
521 #ifdef DEBUG
522 #define anv_assert(x) ({ \
523 if (unlikely(!(x))) \
524 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
525 })
526 #else
527 #define anv_assert(x)
528 #endif
529
530 /* A multi-pointer allocator
531 *
532 * When copying data structures from the user (such as a render pass), it's
533 * common to need to allocate data for a bunch of different things. Instead
534 * of doing several allocations and having to handle all of the error checking
535 * that entails, it can be easier to do a single allocation. This struct
536 * helps facilitate that. The intended usage looks like this:
537 *
538 * ANV_MULTIALLOC(ma)
539 * anv_multialloc_add(&ma, &main_ptr, 1);
540 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
541 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
542 *
543 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
544 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
545 */
546 struct anv_multialloc {
547 size_t size;
548 size_t align;
549
550 uint32_t ptr_count;
551 void **ptrs[8];
552 };
553
554 #define ANV_MULTIALLOC_INIT \
555 ((struct anv_multialloc) { 0, })
556
557 #define ANV_MULTIALLOC(_name) \
558 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
559
560 __attribute__((always_inline))
561 static inline void
562 _anv_multialloc_add(struct anv_multialloc *ma,
563 void **ptr, size_t size, size_t align)
564 {
565 size_t offset = align_u64(ma->size, align);
566 ma->size = offset + size;
567 ma->align = MAX2(ma->align, align);
568
569 /* Store the offset in the pointer. */
570 *ptr = (void *)(uintptr_t)offset;
571
572 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
573 ma->ptrs[ma->ptr_count++] = ptr;
574 }
575
576 #define anv_multialloc_add_size(_ma, _ptr, _size) \
577 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
578
579 #define anv_multialloc_add(_ma, _ptr, _count) \
580 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
581
582 __attribute__((always_inline))
583 static inline void *
584 anv_multialloc_alloc(struct anv_multialloc *ma,
585 const VkAllocationCallbacks *alloc,
586 VkSystemAllocationScope scope)
587 {
588 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
589 if (!ptr)
590 return NULL;
591
592 /* Fill out each of the pointers with their final value.
593 *
594 * for (uint32_t i = 0; i < ma->ptr_count; i++)
595 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
596 *
597 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
598 * constant, GCC is incapable of figuring this out and unrolling the loop
599 * so we have to give it a little help.
600 */
601 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
602 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
603 if ((_i) < ma->ptr_count) \
604 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
605 _ANV_MULTIALLOC_UPDATE_POINTER(0);
606 _ANV_MULTIALLOC_UPDATE_POINTER(1);
607 _ANV_MULTIALLOC_UPDATE_POINTER(2);
608 _ANV_MULTIALLOC_UPDATE_POINTER(3);
609 _ANV_MULTIALLOC_UPDATE_POINTER(4);
610 _ANV_MULTIALLOC_UPDATE_POINTER(5);
611 _ANV_MULTIALLOC_UPDATE_POINTER(6);
612 _ANV_MULTIALLOC_UPDATE_POINTER(7);
613 #undef _ANV_MULTIALLOC_UPDATE_POINTER
614
615 return ptr;
616 }
617
618 __attribute__((always_inline))
619 static inline void *
620 anv_multialloc_alloc2(struct anv_multialloc *ma,
621 const VkAllocationCallbacks *parent_alloc,
622 const VkAllocationCallbacks *alloc,
623 VkSystemAllocationScope scope)
624 {
625 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
626 }
627
628 struct anv_bo {
629 uint32_t gem_handle;
630
631 uint32_t refcount;
632
633 /* Index into the current validation list. This is used by the
634 * validation list building alrogithm to track which buffers are already
635 * in the validation list so that we can ensure uniqueness.
636 */
637 uint32_t index;
638
639 /* Index for use with util_sparse_array_free_list */
640 uint32_t free_index;
641
642 /* Last known offset. This value is provided by the kernel when we
643 * execbuf and is used as the presumed offset for the next bunch of
644 * relocations.
645 */
646 uint64_t offset;
647
648 /** Size of the buffer not including implicit aux */
649 uint64_t size;
650
651 /* Map for internally mapped BOs.
652 *
653 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
654 */
655 void *map;
656
657 /** Size of the implicit CCS range at the end of the buffer
658 *
659 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
660 * page of main surface data maps to a 256B chunk of CCS data and that
661 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
662 * addresses in the main surface to virtual memory addresses for CCS data.
663 *
664 * Because we can't change these maps around easily and because Vulkan
665 * allows two VkImages to be bound to overlapping memory regions (as long
666 * as the app is careful), it's not feasible to make this mapping part of
667 * the image. (On Gen11 and earlier, the mapping was provided via
668 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
669 * Instead, we attach the CCS data directly to the buffer object and setup
670 * the AUX table mapping at BO creation time.
671 *
672 * This field is for internal tracking use by the BO allocator only and
673 * should not be touched by other parts of the code. If something wants to
674 * know if a BO has implicit CCS data, it should instead look at the
675 * has_implicit_ccs boolean below.
676 *
677 * This data is not included in maps of this buffer.
678 */
679 uint32_t _ccs_size;
680
681 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
682 uint32_t flags;
683
684 /** True if this BO may be shared with other processes */
685 bool is_external:1;
686
687 /** True if this BO is a wrapper
688 *
689 * When set to true, none of the fields in this BO are meaningful except
690 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
691 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
692 * is set in the physical device.
693 */
694 bool is_wrapper:1;
695
696 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
697 bool has_fixed_address:1;
698
699 /** True if this BO wraps a host pointer */
700 bool from_host_ptr:1;
701
702 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
703 bool has_client_visible_address:1;
704
705 /** True if this BO has implicit CCS data attached to it */
706 bool has_implicit_ccs:1;
707 };
708
709 static inline struct anv_bo *
710 anv_bo_ref(struct anv_bo *bo)
711 {
712 p_atomic_inc(&bo->refcount);
713 return bo;
714 }
715
716 static inline struct anv_bo *
717 anv_bo_unwrap(struct anv_bo *bo)
718 {
719 while (bo->is_wrapper)
720 bo = bo->map;
721 return bo;
722 }
723
724 /* Represents a lock-free linked list of "free" things. This is used by
725 * both the block pool and the state pools. Unfortunately, in order to
726 * solve the ABA problem, we can't use a single uint32_t head.
727 */
728 union anv_free_list {
729 struct {
730 uint32_t offset;
731
732 /* A simple count that is incremented every time the head changes. */
733 uint32_t count;
734 };
735 /* Make sure it's aligned to 64 bits. This will make atomic operations
736 * faster on 32 bit platforms.
737 */
738 uint64_t u64 __attribute__ ((aligned (8)));
739 };
740
741 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
742
743 struct anv_block_state {
744 union {
745 struct {
746 uint32_t next;
747 uint32_t end;
748 };
749 /* Make sure it's aligned to 64 bits. This will make atomic operations
750 * faster on 32 bit platforms.
751 */
752 uint64_t u64 __attribute__ ((aligned (8)));
753 };
754 };
755
756 #define anv_block_pool_foreach_bo(bo, pool) \
757 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
758 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
759 _pp_bo++)
760
761 #define ANV_MAX_BLOCK_POOL_BOS 20
762
763 struct anv_block_pool {
764 struct anv_device *device;
765 bool use_softpin;
766
767 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
768 * around the actual BO so that we grow the pool after the wrapper BO has
769 * been put in a relocation list. This is only used in the non-softpin
770 * case.
771 */
772 struct anv_bo wrapper_bo;
773
774 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
775 struct anv_bo *bo;
776 uint32_t nbos;
777
778 uint64_t size;
779
780 /* The address where the start of the pool is pinned. The various bos that
781 * are created as the pool grows will have addresses in the range
782 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
783 */
784 uint64_t start_address;
785
786 /* The offset from the start of the bo to the "center" of the block
787 * pool. Pointers to allocated blocks are given by
788 * bo.map + center_bo_offset + offsets.
789 */
790 uint32_t center_bo_offset;
791
792 /* Current memory map of the block pool. This pointer may or may not
793 * point to the actual beginning of the block pool memory. If
794 * anv_block_pool_alloc_back has ever been called, then this pointer
795 * will point to the "center" position of the buffer and all offsets
796 * (negative or positive) given out by the block pool alloc functions
797 * will be valid relative to this pointer.
798 *
799 * In particular, map == bo.map + center_offset
800 *
801 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
802 * since it will handle the softpin case as well, where this points to NULL.
803 */
804 void *map;
805 int fd;
806
807 /**
808 * Array of mmaps and gem handles owned by the block pool, reclaimed when
809 * the block pool is destroyed.
810 */
811 struct u_vector mmap_cleanups;
812
813 struct anv_block_state state;
814
815 struct anv_block_state back_state;
816 };
817
818 /* Block pools are backed by a fixed-size 1GB memfd */
819 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
820
821 /* The center of the block pool is also the middle of the memfd. This may
822 * change in the future if we decide differently for some reason.
823 */
824 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
825
826 static inline uint32_t
827 anv_block_pool_size(struct anv_block_pool *pool)
828 {
829 return pool->state.end + pool->back_state.end;
830 }
831
832 struct anv_state {
833 int32_t offset;
834 uint32_t alloc_size;
835 void *map;
836 uint32_t idx;
837 };
838
839 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
840
841 struct anv_fixed_size_state_pool {
842 union anv_free_list free_list;
843 struct anv_block_state block;
844 };
845
846 #define ANV_MIN_STATE_SIZE_LOG2 6
847 #define ANV_MAX_STATE_SIZE_LOG2 21
848
849 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
850
851 struct anv_free_entry {
852 uint32_t next;
853 struct anv_state state;
854 };
855
856 struct anv_state_table {
857 struct anv_device *device;
858 int fd;
859 struct anv_free_entry *map;
860 uint32_t size;
861 struct anv_block_state state;
862 struct u_vector cleanups;
863 };
864
865 struct anv_state_pool {
866 struct anv_block_pool block_pool;
867
868 struct anv_state_table table;
869
870 /* The size of blocks which will be allocated from the block pool */
871 uint32_t block_size;
872
873 /** Free list for "back" allocations */
874 union anv_free_list back_alloc_free_list;
875
876 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
877 };
878
879 struct anv_state_stream_block;
880
881 struct anv_state_stream {
882 struct anv_state_pool *state_pool;
883
884 /* The size of blocks to allocate from the state pool */
885 uint32_t block_size;
886
887 /* Current block we're allocating from */
888 struct anv_state block;
889
890 /* Offset into the current block at which to allocate the next state */
891 uint32_t next;
892
893 /* List of all blocks allocated from this pool */
894 struct anv_state_stream_block *block_list;
895 };
896
897 /* The block_pool functions exported for testing only. The block pool should
898 * only be used via a state pool (see below).
899 */
900 VkResult anv_block_pool_init(struct anv_block_pool *pool,
901 struct anv_device *device,
902 uint64_t start_address,
903 uint32_t initial_size);
904 void anv_block_pool_finish(struct anv_block_pool *pool);
905 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
906 uint32_t block_size, uint32_t *padding);
907 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
908 uint32_t block_size);
909 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
910 size);
911
912 VkResult anv_state_pool_init(struct anv_state_pool *pool,
913 struct anv_device *device,
914 uint64_t start_address,
915 uint32_t block_size);
916 void anv_state_pool_finish(struct anv_state_pool *pool);
917 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
918 uint32_t state_size, uint32_t alignment);
919 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
920 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
921 void anv_state_stream_init(struct anv_state_stream *stream,
922 struct anv_state_pool *state_pool,
923 uint32_t block_size);
924 void anv_state_stream_finish(struct anv_state_stream *stream);
925 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
926 uint32_t size, uint32_t alignment);
927
928 VkResult anv_state_table_init(struct anv_state_table *table,
929 struct anv_device *device,
930 uint32_t initial_entries);
931 void anv_state_table_finish(struct anv_state_table *table);
932 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
933 uint32_t count);
934 void anv_free_list_push(union anv_free_list *list,
935 struct anv_state_table *table,
936 uint32_t idx, uint32_t count);
937 struct anv_state* anv_free_list_pop(union anv_free_list *list,
938 struct anv_state_table *table);
939
940
941 static inline struct anv_state *
942 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
943 {
944 return &table->map[idx].state;
945 }
946 /**
947 * Implements a pool of re-usable BOs. The interface is identical to that
948 * of block_pool except that each block is its own BO.
949 */
950 struct anv_bo_pool {
951 struct anv_device *device;
952
953 struct util_sparse_array_free_list free_list[16];
954 };
955
956 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
957 void anv_bo_pool_finish(struct anv_bo_pool *pool);
958 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
959 struct anv_bo **bo_out);
960 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
961
962 struct anv_scratch_pool {
963 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
964 struct anv_bo *bos[16][MESA_SHADER_STAGES];
965 };
966
967 void anv_scratch_pool_init(struct anv_device *device,
968 struct anv_scratch_pool *pool);
969 void anv_scratch_pool_finish(struct anv_device *device,
970 struct anv_scratch_pool *pool);
971 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
972 struct anv_scratch_pool *pool,
973 gl_shader_stage stage,
974 unsigned per_thread_scratch);
975
976 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
977 struct anv_bo_cache {
978 struct util_sparse_array bo_map;
979 pthread_mutex_t mutex;
980 };
981
982 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
983 void anv_bo_cache_finish(struct anv_bo_cache *cache);
984
985 struct anv_memory_type {
986 /* Standard bits passed on to the client */
987 VkMemoryPropertyFlags propertyFlags;
988 uint32_t heapIndex;
989 };
990
991 struct anv_memory_heap {
992 /* Standard bits passed on to the client */
993 VkDeviceSize size;
994 VkMemoryHeapFlags flags;
995
996 /* Driver-internal book-keeping */
997 VkDeviceSize used;
998 };
999
1000 struct anv_physical_device {
1001 VK_LOADER_DATA _loader_data;
1002
1003 /* Link in anv_instance::physical_devices */
1004 struct list_head link;
1005
1006 struct anv_instance * instance;
1007 bool no_hw;
1008 char path[20];
1009 const char * name;
1010 struct {
1011 uint16_t domain;
1012 uint8_t bus;
1013 uint8_t device;
1014 uint8_t function;
1015 } pci_info;
1016 struct gen_device_info info;
1017 /** Amount of "GPU memory" we want to advertise
1018 *
1019 * Clearly, this value is bogus since Intel is a UMA architecture. On
1020 * gen7 platforms, we are limited by GTT size unless we want to implement
1021 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1022 * practically unlimited. However, we will never report more than 3/4 of
1023 * the total system ram to try and avoid running out of RAM.
1024 */
1025 bool supports_48bit_addresses;
1026 struct brw_compiler * compiler;
1027 struct isl_device isl_dev;
1028 struct gen_perf_config * perf;
1029 int cmd_parser_version;
1030 bool has_softpin;
1031 bool has_exec_async;
1032 bool has_exec_capture;
1033 bool has_exec_fence;
1034 bool has_syncobj;
1035 bool has_syncobj_wait;
1036 bool has_context_priority;
1037 bool has_context_isolation;
1038 bool has_mem_available;
1039 uint64_t gtt_size;
1040
1041 bool use_softpin;
1042 bool always_use_bindless;
1043
1044 /** True if we can access buffers using A64 messages */
1045 bool has_a64_buffer_access;
1046 /** True if we can use bindless access for images */
1047 bool has_bindless_images;
1048 /** True if we can use bindless access for samplers */
1049 bool has_bindless_samplers;
1050
1051 /** True if this device has implicit AUX
1052 *
1053 * If true, CCS is handled as an implicit attachment to the BO rather than
1054 * as an explicitly bound surface.
1055 */
1056 bool has_implicit_ccs;
1057
1058 bool always_flush_cache;
1059
1060 struct anv_device_extension_table supported_extensions;
1061
1062 uint32_t eu_total;
1063 uint32_t subslice_total;
1064
1065 struct {
1066 uint32_t type_count;
1067 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1068 uint32_t heap_count;
1069 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1070 } memory;
1071
1072 uint8_t driver_build_sha1[20];
1073 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1074 uint8_t driver_uuid[VK_UUID_SIZE];
1075 uint8_t device_uuid[VK_UUID_SIZE];
1076
1077 struct disk_cache * disk_cache;
1078
1079 struct wsi_device wsi_device;
1080 int local_fd;
1081 int master_fd;
1082 };
1083
1084 struct anv_app_info {
1085 const char* app_name;
1086 uint32_t app_version;
1087 const char* engine_name;
1088 uint32_t engine_version;
1089 uint32_t api_version;
1090 };
1091
1092 struct anv_instance {
1093 VK_LOADER_DATA _loader_data;
1094
1095 VkAllocationCallbacks alloc;
1096
1097 struct anv_app_info app_info;
1098
1099 struct anv_instance_extension_table enabled_extensions;
1100 struct anv_instance_dispatch_table dispatch;
1101 struct anv_physical_device_dispatch_table physical_device_dispatch;
1102 struct anv_device_dispatch_table device_dispatch;
1103
1104 bool physical_devices_enumerated;
1105 struct list_head physical_devices;
1106
1107 bool pipeline_cache_enabled;
1108
1109 struct vk_debug_report_instance debug_report_callbacks;
1110
1111 struct driOptionCache dri_options;
1112 struct driOptionCache available_dri_options;
1113 };
1114
1115 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1116 void anv_finish_wsi(struct anv_physical_device *physical_device);
1117
1118 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1119 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1120 const char *name);
1121
1122 struct anv_queue_submit {
1123 struct anv_cmd_buffer * cmd_buffer;
1124
1125 uint32_t fence_count;
1126 uint32_t fence_array_length;
1127 struct drm_i915_gem_exec_fence * fences;
1128
1129 uint32_t temporary_semaphore_count;
1130 uint32_t temporary_semaphore_array_length;
1131 struct anv_semaphore_impl * temporary_semaphores;
1132
1133 /* Semaphores to be signaled with a SYNC_FD. */
1134 struct anv_semaphore ** sync_fd_semaphores;
1135 uint32_t sync_fd_semaphore_count;
1136 uint32_t sync_fd_semaphore_array_length;
1137
1138 /* Allocated only with non shareable timelines. */
1139 struct anv_timeline ** wait_timelines;
1140 uint32_t wait_timeline_count;
1141 uint32_t wait_timeline_array_length;
1142 uint64_t * wait_timeline_values;
1143
1144 struct anv_timeline ** signal_timelines;
1145 uint32_t signal_timeline_count;
1146 uint32_t signal_timeline_array_length;
1147 uint64_t * signal_timeline_values;
1148
1149 int in_fence;
1150 bool need_out_fence;
1151 int out_fence;
1152
1153 uint32_t fence_bo_count;
1154 uint32_t fence_bo_array_length;
1155 /* An array of struct anv_bo pointers with lower bit used as a flag to
1156 * signal we will wait on that BO (see anv_(un)pack_ptr).
1157 */
1158 uintptr_t * fence_bos;
1159
1160 const VkAllocationCallbacks * alloc;
1161 VkSystemAllocationScope alloc_scope;
1162
1163 struct anv_bo * simple_bo;
1164 uint32_t simple_bo_size;
1165
1166 struct list_head link;
1167 };
1168
1169 struct anv_queue {
1170 VK_LOADER_DATA _loader_data;
1171
1172 struct anv_device * device;
1173
1174 /*
1175 * A list of struct anv_queue_submit to be submitted to i915.
1176 */
1177 struct list_head queued_submits;
1178
1179 VkDeviceQueueCreateFlags flags;
1180 };
1181
1182 struct anv_pipeline_cache {
1183 struct anv_device * device;
1184 pthread_mutex_t mutex;
1185
1186 struct hash_table * nir_cache;
1187
1188 struct hash_table * cache;
1189 };
1190
1191 struct nir_xfb_info;
1192 struct anv_pipeline_bind_map;
1193
1194 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1195 struct anv_device *device,
1196 bool cache_enabled);
1197 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1198
1199 struct anv_shader_bin *
1200 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1201 const void *key, uint32_t key_size);
1202 struct anv_shader_bin *
1203 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1204 const void *key_data, uint32_t key_size,
1205 const void *kernel_data, uint32_t kernel_size,
1206 const void *constant_data,
1207 uint32_t constant_data_size,
1208 const struct brw_stage_prog_data *prog_data,
1209 uint32_t prog_data_size,
1210 const struct brw_compile_stats *stats,
1211 uint32_t num_stats,
1212 const struct nir_xfb_info *xfb_info,
1213 const struct anv_pipeline_bind_map *bind_map);
1214
1215 struct anv_shader_bin *
1216 anv_device_search_for_kernel(struct anv_device *device,
1217 struct anv_pipeline_cache *cache,
1218 const void *key_data, uint32_t key_size,
1219 bool *user_cache_bit);
1220
1221 struct anv_shader_bin *
1222 anv_device_upload_kernel(struct anv_device *device,
1223 struct anv_pipeline_cache *cache,
1224 const void *key_data, uint32_t key_size,
1225 const void *kernel_data, uint32_t kernel_size,
1226 const void *constant_data,
1227 uint32_t constant_data_size,
1228 const struct brw_stage_prog_data *prog_data,
1229 uint32_t prog_data_size,
1230 const struct brw_compile_stats *stats,
1231 uint32_t num_stats,
1232 const struct nir_xfb_info *xfb_info,
1233 const struct anv_pipeline_bind_map *bind_map);
1234
1235 struct nir_shader;
1236 struct nir_shader_compiler_options;
1237
1238 struct nir_shader *
1239 anv_device_search_for_nir(struct anv_device *device,
1240 struct anv_pipeline_cache *cache,
1241 const struct nir_shader_compiler_options *nir_options,
1242 unsigned char sha1_key[20],
1243 void *mem_ctx);
1244
1245 void
1246 anv_device_upload_nir(struct anv_device *device,
1247 struct anv_pipeline_cache *cache,
1248 const struct nir_shader *nir,
1249 unsigned char sha1_key[20]);
1250
1251 struct anv_device {
1252 VK_LOADER_DATA _loader_data;
1253
1254 VkAllocationCallbacks alloc;
1255
1256 struct anv_physical_device * physical;
1257 bool no_hw;
1258 struct gen_device_info info;
1259 struct isl_device isl_dev;
1260 int context_id;
1261 int fd;
1262 bool can_chain_batches;
1263 bool robust_buffer_access;
1264 struct anv_device_extension_table enabled_extensions;
1265 struct anv_device_dispatch_table dispatch;
1266
1267 pthread_mutex_t vma_mutex;
1268 struct util_vma_heap vma_lo;
1269 struct util_vma_heap vma_cva;
1270 struct util_vma_heap vma_hi;
1271
1272 /** List of all anv_device_memory objects */
1273 struct list_head memory_objects;
1274
1275 struct anv_bo_pool batch_bo_pool;
1276
1277 struct anv_bo_cache bo_cache;
1278
1279 struct anv_state_pool dynamic_state_pool;
1280 struct anv_state_pool instruction_state_pool;
1281 struct anv_state_pool binding_table_pool;
1282 struct anv_state_pool surface_state_pool;
1283
1284 struct anv_bo * workaround_bo;
1285 struct anv_bo * trivial_batch_bo;
1286 struct anv_bo * hiz_clear_bo;
1287
1288 struct anv_pipeline_cache default_pipeline_cache;
1289 struct blorp_context blorp;
1290
1291 struct anv_state border_colors;
1292
1293 struct anv_state slice_hash;
1294
1295 struct anv_queue queue;
1296
1297 struct anv_scratch_pool scratch_pool;
1298
1299 pthread_mutex_t mutex;
1300 pthread_cond_t queue_submit;
1301 int _lost;
1302
1303 struct gen_batch_decode_ctx decoder_ctx;
1304 /*
1305 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1306 * the cmd_buffer's list.
1307 */
1308 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1309
1310 int perf_fd; /* -1 if no opened */
1311 uint64_t perf_metric; /* 0 if unset */
1312
1313 struct gen_aux_map_context *aux_map_ctx;
1314 };
1315
1316 static inline struct anv_instance *
1317 anv_device_instance_or_null(const struct anv_device *device)
1318 {
1319 return device ? device->physical->instance : NULL;
1320 }
1321
1322 static inline struct anv_state_pool *
1323 anv_binding_table_pool(struct anv_device *device)
1324 {
1325 if (device->physical->use_softpin)
1326 return &device->binding_table_pool;
1327 else
1328 return &device->surface_state_pool;
1329 }
1330
1331 static inline struct anv_state
1332 anv_binding_table_pool_alloc(struct anv_device *device) {
1333 if (device->physical->use_softpin)
1334 return anv_state_pool_alloc(&device->binding_table_pool,
1335 device->binding_table_pool.block_size, 0);
1336 else
1337 return anv_state_pool_alloc_back(&device->surface_state_pool);
1338 }
1339
1340 static inline void
1341 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1342 anv_state_pool_free(anv_binding_table_pool(device), state);
1343 }
1344
1345 static inline uint32_t
1346 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1347 {
1348 if (bo->is_external)
1349 return device->isl_dev.mocs.external;
1350 else
1351 return device->isl_dev.mocs.internal;
1352 }
1353
1354 void anv_device_init_blorp(struct anv_device *device);
1355 void anv_device_finish_blorp(struct anv_device *device);
1356
1357 void _anv_device_set_all_queue_lost(struct anv_device *device);
1358 VkResult _anv_device_set_lost(struct anv_device *device,
1359 const char *file, int line,
1360 const char *msg, ...)
1361 anv_printflike(4, 5);
1362 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1363 const char *file, int line,
1364 const char *msg, ...)
1365 anv_printflike(4, 5);
1366 #define anv_device_set_lost(dev, ...) \
1367 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1368 #define anv_queue_set_lost(queue, ...) \
1369 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1370
1371 static inline bool
1372 anv_device_is_lost(struct anv_device *device)
1373 {
1374 return unlikely(p_atomic_read(&device->_lost));
1375 }
1376
1377 VkResult anv_device_query_status(struct anv_device *device);
1378
1379
1380 enum anv_bo_alloc_flags {
1381 /** Specifies that the BO must have a 32-bit address
1382 *
1383 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1384 */
1385 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1386
1387 /** Specifies that the BO may be shared externally */
1388 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1389
1390 /** Specifies that the BO should be mapped */
1391 ANV_BO_ALLOC_MAPPED = (1 << 2),
1392
1393 /** Specifies that the BO should be snooped so we get coherency */
1394 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1395
1396 /** Specifies that the BO should be captured in error states */
1397 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1398
1399 /** Specifies that the BO will have an address assigned by the caller
1400 *
1401 * Such BOs do not exist in any VMA heap.
1402 */
1403 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1404
1405 /** Enables implicit synchronization on the BO
1406 *
1407 * This is the opposite of EXEC_OBJECT_ASYNC.
1408 */
1409 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1410
1411 /** Enables implicit synchronization on the BO
1412 *
1413 * This is equivalent to EXEC_OBJECT_WRITE.
1414 */
1415 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1416
1417 /** Has an address which is visible to the client */
1418 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1419
1420 /** This buffer has implicit CCS data attached to it */
1421 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1422 };
1423
1424 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1425 enum anv_bo_alloc_flags alloc_flags,
1426 uint64_t explicit_address,
1427 struct anv_bo **bo);
1428 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1429 void *host_ptr, uint32_t size,
1430 enum anv_bo_alloc_flags alloc_flags,
1431 uint64_t client_address,
1432 struct anv_bo **bo_out);
1433 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1434 enum anv_bo_alloc_flags alloc_flags,
1435 uint64_t client_address,
1436 struct anv_bo **bo);
1437 VkResult anv_device_export_bo(struct anv_device *device,
1438 struct anv_bo *bo, int *fd_out);
1439 void anv_device_release_bo(struct anv_device *device,
1440 struct anv_bo *bo);
1441
1442 static inline struct anv_bo *
1443 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1444 {
1445 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1446 }
1447
1448 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1449 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1450 int64_t timeout);
1451
1452 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1453 void anv_queue_finish(struct anv_queue *queue);
1454
1455 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1456 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1457 struct anv_batch *batch);
1458
1459 uint64_t anv_gettime_ns(void);
1460 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1461
1462 void* anv_gem_mmap(struct anv_device *device,
1463 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1464 void anv_gem_munmap(void *p, uint64_t size);
1465 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1466 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1467 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1468 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1469 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1470 int anv_gem_execbuffer(struct anv_device *device,
1471 struct drm_i915_gem_execbuffer2 *execbuf);
1472 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1473 uint32_t stride, uint32_t tiling);
1474 int anv_gem_create_context(struct anv_device *device);
1475 bool anv_gem_has_context_priority(int fd);
1476 int anv_gem_destroy_context(struct anv_device *device, int context);
1477 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1478 uint64_t value);
1479 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1480 uint64_t *value);
1481 int anv_gem_get_param(int fd, uint32_t param);
1482 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1483 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1484 int anv_gem_get_aperture(int fd, uint64_t *size);
1485 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1486 uint32_t *active, uint32_t *pending);
1487 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1488 int anv_gem_reg_read(struct anv_device *device,
1489 uint32_t offset, uint64_t *result);
1490 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1491 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1492 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1493 uint32_t read_domains, uint32_t write_domain);
1494 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1495 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1496 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1497 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1498 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1499 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1500 uint32_t handle);
1501 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1502 uint32_t handle, int fd);
1503 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1504 bool anv_gem_supports_syncobj_wait(int fd);
1505 int anv_gem_syncobj_wait(struct anv_device *device,
1506 uint32_t *handles, uint32_t num_handles,
1507 int64_t abs_timeout_ns, bool wait_all);
1508
1509 uint64_t anv_vma_alloc(struct anv_device *device,
1510 uint64_t size, uint64_t align,
1511 enum anv_bo_alloc_flags alloc_flags,
1512 uint64_t client_address);
1513 void anv_vma_free(struct anv_device *device,
1514 uint64_t address, uint64_t size);
1515
1516 struct anv_reloc_list {
1517 uint32_t num_relocs;
1518 uint32_t array_length;
1519 struct drm_i915_gem_relocation_entry * relocs;
1520 struct anv_bo ** reloc_bos;
1521 uint32_t dep_words;
1522 BITSET_WORD * deps;
1523 };
1524
1525 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1526 const VkAllocationCallbacks *alloc);
1527 void anv_reloc_list_finish(struct anv_reloc_list *list,
1528 const VkAllocationCallbacks *alloc);
1529
1530 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1531 const VkAllocationCallbacks *alloc,
1532 uint32_t offset, struct anv_bo *target_bo,
1533 uint32_t delta, uint64_t *address_u64_out);
1534
1535 struct anv_batch_bo {
1536 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1537 struct list_head link;
1538
1539 struct anv_bo * bo;
1540
1541 /* Bytes actually consumed in this batch BO */
1542 uint32_t length;
1543
1544 struct anv_reloc_list relocs;
1545 };
1546
1547 struct anv_batch {
1548 const VkAllocationCallbacks * alloc;
1549
1550 void * start;
1551 void * end;
1552 void * next;
1553
1554 struct anv_reloc_list * relocs;
1555
1556 /* This callback is called (with the associated user data) in the event
1557 * that the batch runs out of space.
1558 */
1559 VkResult (*extend_cb)(struct anv_batch *, void *);
1560 void * user_data;
1561
1562 /**
1563 * Current error status of the command buffer. Used to track inconsistent
1564 * or incomplete command buffer states that are the consequence of run-time
1565 * errors such as out of memory scenarios. We want to track this in the
1566 * batch because the command buffer object is not visible to some parts
1567 * of the driver.
1568 */
1569 VkResult status;
1570 };
1571
1572 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1573 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1574 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1575 void *location, struct anv_bo *bo, uint32_t offset);
1576
1577 static inline VkResult
1578 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1579 {
1580 assert(error != VK_SUCCESS);
1581 if (batch->status == VK_SUCCESS)
1582 batch->status = error;
1583 return batch->status;
1584 }
1585
1586 static inline bool
1587 anv_batch_has_error(struct anv_batch *batch)
1588 {
1589 return batch->status != VK_SUCCESS;
1590 }
1591
1592 struct anv_address {
1593 struct anv_bo *bo;
1594 uint32_t offset;
1595 };
1596
1597 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1598
1599 static inline bool
1600 anv_address_is_null(struct anv_address addr)
1601 {
1602 return addr.bo == NULL && addr.offset == 0;
1603 }
1604
1605 static inline uint64_t
1606 anv_address_physical(struct anv_address addr)
1607 {
1608 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1609 return gen_canonical_address(addr.bo->offset + addr.offset);
1610 else
1611 return gen_canonical_address(addr.offset);
1612 }
1613
1614 static inline struct anv_address
1615 anv_address_add(struct anv_address addr, uint64_t offset)
1616 {
1617 addr.offset += offset;
1618 return addr;
1619 }
1620
1621 static inline void
1622 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1623 {
1624 unsigned reloc_size = 0;
1625 if (device->info.gen >= 8) {
1626 reloc_size = sizeof(uint64_t);
1627 *(uint64_t *)p = gen_canonical_address(v);
1628 } else {
1629 reloc_size = sizeof(uint32_t);
1630 *(uint32_t *)p = v;
1631 }
1632
1633 if (flush && !device->info.has_llc)
1634 gen_flush_range(p, reloc_size);
1635 }
1636
1637 static inline uint64_t
1638 _anv_combine_address(struct anv_batch *batch, void *location,
1639 const struct anv_address address, uint32_t delta)
1640 {
1641 if (address.bo == NULL) {
1642 return address.offset + delta;
1643 } else {
1644 assert(batch->start <= location && location < batch->end);
1645
1646 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1647 }
1648 }
1649
1650 #define __gen_address_type struct anv_address
1651 #define __gen_user_data struct anv_batch
1652 #define __gen_combine_address _anv_combine_address
1653
1654 /* Wrapper macros needed to work around preprocessor argument issues. In
1655 * particular, arguments don't get pre-evaluated if they are concatenated.
1656 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1657 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1658 * We can work around this easily enough with these helpers.
1659 */
1660 #define __anv_cmd_length(cmd) cmd ## _length
1661 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1662 #define __anv_cmd_header(cmd) cmd ## _header
1663 #define __anv_cmd_pack(cmd) cmd ## _pack
1664 #define __anv_reg_num(reg) reg ## _num
1665
1666 #define anv_pack_struct(dst, struc, ...) do { \
1667 struct struc __template = { \
1668 __VA_ARGS__ \
1669 }; \
1670 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1671 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1672 } while (0)
1673
1674 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1675 void *__dst = anv_batch_emit_dwords(batch, n); \
1676 if (__dst) { \
1677 struct cmd __template = { \
1678 __anv_cmd_header(cmd), \
1679 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1680 __VA_ARGS__ \
1681 }; \
1682 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1683 } \
1684 __dst; \
1685 })
1686
1687 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1688 do { \
1689 uint32_t *dw; \
1690 \
1691 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1692 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1693 if (!dw) \
1694 break; \
1695 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1696 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1697 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1698 } while (0)
1699
1700 #define anv_batch_emit(batch, cmd, name) \
1701 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1702 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1703 __builtin_expect(_dst != NULL, 1); \
1704 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1705 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1706 _dst = NULL; \
1707 }))
1708
1709 struct anv_device_memory {
1710 struct list_head link;
1711
1712 struct anv_bo * bo;
1713 struct anv_memory_type * type;
1714 VkDeviceSize map_size;
1715 void * map;
1716
1717 /* If set, we are holding reference to AHardwareBuffer
1718 * which we must release when memory is freed.
1719 */
1720 struct AHardwareBuffer * ahw;
1721
1722 /* If set, this memory comes from a host pointer. */
1723 void * host_ptr;
1724 };
1725
1726 /**
1727 * Header for Vertex URB Entry (VUE)
1728 */
1729 struct anv_vue_header {
1730 uint32_t Reserved;
1731 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1732 uint32_t ViewportIndex;
1733 float PointWidth;
1734 };
1735
1736 /** Struct representing a sampled image descriptor
1737 *
1738 * This descriptor layout is used for sampled images, bare sampler, and
1739 * combined image/sampler descriptors.
1740 */
1741 struct anv_sampled_image_descriptor {
1742 /** Bindless image handle
1743 *
1744 * This is expected to already be shifted such that the 20-bit
1745 * SURFACE_STATE table index is in the top 20 bits.
1746 */
1747 uint32_t image;
1748
1749 /** Bindless sampler handle
1750 *
1751 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1752 * to the dynamic state base address.
1753 */
1754 uint32_t sampler;
1755 };
1756
1757 struct anv_texture_swizzle_descriptor {
1758 /** Texture swizzle
1759 *
1760 * See also nir_intrinsic_channel_select_intel
1761 */
1762 uint8_t swizzle[4];
1763
1764 /** Unused padding to ensure the struct is a multiple of 64 bits */
1765 uint32_t _pad;
1766 };
1767
1768 /** Struct representing a storage image descriptor */
1769 struct anv_storage_image_descriptor {
1770 /** Bindless image handles
1771 *
1772 * These are expected to already be shifted such that the 20-bit
1773 * SURFACE_STATE table index is in the top 20 bits.
1774 */
1775 uint32_t read_write;
1776 uint32_t write_only;
1777 };
1778
1779 /** Struct representing a address/range descriptor
1780 *
1781 * The fields of this struct correspond directly to the data layout of
1782 * nir_address_format_64bit_bounded_global addresses. The last field is the
1783 * offset in the NIR address so it must be zero so that when you load the
1784 * descriptor you get a pointer to the start of the range.
1785 */
1786 struct anv_address_range_descriptor {
1787 uint64_t address;
1788 uint32_t range;
1789 uint32_t zero;
1790 };
1791
1792 enum anv_descriptor_data {
1793 /** The descriptor contains a BTI reference to a surface state */
1794 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1795 /** The descriptor contains a BTI reference to a sampler state */
1796 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1797 /** The descriptor contains an actual buffer view */
1798 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1799 /** The descriptor contains auxiliary image layout data */
1800 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1801 /** The descriptor contains auxiliary image layout data */
1802 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1803 /** anv_address_range_descriptor with a buffer address and range */
1804 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1805 /** Bindless surface handle */
1806 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1807 /** Storage image handles */
1808 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1809 /** Storage image handles */
1810 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1811 };
1812
1813 struct anv_descriptor_set_binding_layout {
1814 #ifndef NDEBUG
1815 /* The type of the descriptors in this binding */
1816 VkDescriptorType type;
1817 #endif
1818
1819 /* Flags provided when this binding was created */
1820 VkDescriptorBindingFlagsEXT flags;
1821
1822 /* Bitfield representing the type of data this descriptor contains */
1823 enum anv_descriptor_data data;
1824
1825 /* Maximum number of YCbCr texture/sampler planes */
1826 uint8_t max_plane_count;
1827
1828 /* Number of array elements in this binding (or size in bytes for inline
1829 * uniform data)
1830 */
1831 uint16_t array_size;
1832
1833 /* Index into the flattend descriptor set */
1834 uint16_t descriptor_index;
1835
1836 /* Index into the dynamic state array for a dynamic buffer */
1837 int16_t dynamic_offset_index;
1838
1839 /* Index into the descriptor set buffer views */
1840 int16_t buffer_view_index;
1841
1842 /* Offset into the descriptor buffer where this descriptor lives */
1843 uint32_t descriptor_offset;
1844
1845 /* Immutable samplers (or NULL if no immutable samplers) */
1846 struct anv_sampler **immutable_samplers;
1847 };
1848
1849 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1850
1851 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1852 VkDescriptorType type);
1853
1854 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1855 const struct anv_descriptor_set_binding_layout *binding,
1856 bool sampler);
1857
1858 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1859 const struct anv_descriptor_set_binding_layout *binding,
1860 bool sampler);
1861
1862 struct anv_descriptor_set_layout {
1863 /* Descriptor set layouts can be destroyed at almost any time */
1864 uint32_t ref_cnt;
1865
1866 /* Number of bindings in this descriptor set */
1867 uint16_t binding_count;
1868
1869 /* Total size of the descriptor set with room for all array entries */
1870 uint16_t size;
1871
1872 /* Shader stages affected by this descriptor set */
1873 uint16_t shader_stages;
1874
1875 /* Number of buffer views in this descriptor set */
1876 uint16_t buffer_view_count;
1877
1878 /* Number of dynamic offsets used by this descriptor set */
1879 uint16_t dynamic_offset_count;
1880
1881 /* For each shader stage, which offsets apply to that stage */
1882 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1883
1884 /* Size of the descriptor buffer for this descriptor set */
1885 uint32_t descriptor_buffer_size;
1886
1887 /* Bindings in this descriptor set */
1888 struct anv_descriptor_set_binding_layout binding[0];
1889 };
1890
1891 static inline void
1892 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1893 {
1894 assert(layout && layout->ref_cnt >= 1);
1895 p_atomic_inc(&layout->ref_cnt);
1896 }
1897
1898 static inline void
1899 anv_descriptor_set_layout_unref(struct anv_device *device,
1900 struct anv_descriptor_set_layout *layout)
1901 {
1902 assert(layout && layout->ref_cnt >= 1);
1903 if (p_atomic_dec_zero(&layout->ref_cnt))
1904 vk_free(&device->alloc, layout);
1905 }
1906
1907 struct anv_descriptor {
1908 VkDescriptorType type;
1909
1910 union {
1911 struct {
1912 VkImageLayout layout;
1913 struct anv_image_view *image_view;
1914 struct anv_sampler *sampler;
1915 };
1916
1917 struct {
1918 struct anv_buffer *buffer;
1919 uint64_t offset;
1920 uint64_t range;
1921 };
1922
1923 struct anv_buffer_view *buffer_view;
1924 };
1925 };
1926
1927 struct anv_descriptor_set {
1928 struct anv_descriptor_pool *pool;
1929 struct anv_descriptor_set_layout *layout;
1930 uint32_t size;
1931
1932 /* State relative to anv_descriptor_pool::bo */
1933 struct anv_state desc_mem;
1934 /* Surface state for the descriptor buffer */
1935 struct anv_state desc_surface_state;
1936
1937 uint32_t buffer_view_count;
1938 struct anv_buffer_view *buffer_views;
1939
1940 /* Link to descriptor pool's desc_sets list . */
1941 struct list_head pool_link;
1942
1943 struct anv_descriptor descriptors[0];
1944 };
1945
1946 struct anv_buffer_view {
1947 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1948 uint64_t range; /**< VkBufferViewCreateInfo::range */
1949
1950 struct anv_address address;
1951
1952 struct anv_state surface_state;
1953 struct anv_state storage_surface_state;
1954 struct anv_state writeonly_storage_surface_state;
1955
1956 struct brw_image_param storage_image_param;
1957 };
1958
1959 struct anv_push_descriptor_set {
1960 struct anv_descriptor_set set;
1961
1962 /* Put this field right behind anv_descriptor_set so it fills up the
1963 * descriptors[0] field. */
1964 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1965
1966 /** True if the descriptor set buffer has been referenced by a draw or
1967 * dispatch command.
1968 */
1969 bool set_used_on_gpu;
1970
1971 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1972 };
1973
1974 struct anv_descriptor_pool {
1975 uint32_t size;
1976 uint32_t next;
1977 uint32_t free_list;
1978
1979 struct anv_bo *bo;
1980 struct util_vma_heap bo_heap;
1981
1982 struct anv_state_stream surface_state_stream;
1983 void *surface_state_free_list;
1984
1985 struct list_head desc_sets;
1986
1987 char data[0];
1988 };
1989
1990 enum anv_descriptor_template_entry_type {
1991 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1992 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1993 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1994 };
1995
1996 struct anv_descriptor_template_entry {
1997 /* The type of descriptor in this entry */
1998 VkDescriptorType type;
1999
2000 /* Binding in the descriptor set */
2001 uint32_t binding;
2002
2003 /* Offset at which to write into the descriptor set binding */
2004 uint32_t array_element;
2005
2006 /* Number of elements to write into the descriptor set binding */
2007 uint32_t array_count;
2008
2009 /* Offset into the user provided data */
2010 size_t offset;
2011
2012 /* Stride between elements into the user provided data */
2013 size_t stride;
2014 };
2015
2016 struct anv_descriptor_update_template {
2017 VkPipelineBindPoint bind_point;
2018
2019 /* The descriptor set this template corresponds to. This value is only
2020 * valid if the template was created with the templateType
2021 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2022 */
2023 uint8_t set;
2024
2025 /* Number of entries in this template */
2026 uint32_t entry_count;
2027
2028 /* Entries of the template */
2029 struct anv_descriptor_template_entry entries[0];
2030 };
2031
2032 size_t
2033 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2034
2035 void
2036 anv_descriptor_set_write_image_view(struct anv_device *device,
2037 struct anv_descriptor_set *set,
2038 const VkDescriptorImageInfo * const info,
2039 VkDescriptorType type,
2040 uint32_t binding,
2041 uint32_t element);
2042
2043 void
2044 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2045 struct anv_descriptor_set *set,
2046 VkDescriptorType type,
2047 struct anv_buffer_view *buffer_view,
2048 uint32_t binding,
2049 uint32_t element);
2050
2051 void
2052 anv_descriptor_set_write_buffer(struct anv_device *device,
2053 struct anv_descriptor_set *set,
2054 struct anv_state_stream *alloc_stream,
2055 VkDescriptorType type,
2056 struct anv_buffer *buffer,
2057 uint32_t binding,
2058 uint32_t element,
2059 VkDeviceSize offset,
2060 VkDeviceSize range);
2061 void
2062 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2063 struct anv_descriptor_set *set,
2064 uint32_t binding,
2065 const void *data,
2066 size_t offset,
2067 size_t size);
2068
2069 void
2070 anv_descriptor_set_write_template(struct anv_device *device,
2071 struct anv_descriptor_set *set,
2072 struct anv_state_stream *alloc_stream,
2073 const struct anv_descriptor_update_template *template,
2074 const void *data);
2075
2076 VkResult
2077 anv_descriptor_set_create(struct anv_device *device,
2078 struct anv_descriptor_pool *pool,
2079 struct anv_descriptor_set_layout *layout,
2080 struct anv_descriptor_set **out_set);
2081
2082 void
2083 anv_descriptor_set_destroy(struct anv_device *device,
2084 struct anv_descriptor_pool *pool,
2085 struct anv_descriptor_set *set);
2086
2087 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2088 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2089 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2090 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2091 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2092 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2093
2094 struct anv_pipeline_binding {
2095 /** Index in the descriptor set
2096 *
2097 * This is a flattened index; the descriptor set layout is already taken
2098 * into account.
2099 */
2100 uint32_t index;
2101
2102 /** The descriptor set this surface corresponds to.
2103 *
2104 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2105 * binding is not a normal descriptor set but something else.
2106 */
2107 uint8_t set;
2108
2109 union {
2110 /** Plane in the binding index for images */
2111 uint8_t plane;
2112
2113 /** Input attachment index (relative to the subpass) */
2114 uint8_t input_attachment_index;
2115
2116 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2117 uint8_t dynamic_offset_index;
2118 };
2119
2120 /** For a storage image, whether it is write-only */
2121 uint8_t write_only;
2122
2123 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2124 * assuming POD zero-initialization.
2125 */
2126 uint8_t pad;
2127 };
2128
2129 struct anv_push_range {
2130 /** Index in the descriptor set */
2131 uint32_t index;
2132
2133 /** Descriptor set index */
2134 uint8_t set;
2135
2136 /** Dynamic offset index (for dynamic UBOs) */
2137 uint8_t dynamic_offset_index;
2138
2139 /** Start offset in units of 32B */
2140 uint8_t start;
2141
2142 /** Range in units of 32B */
2143 uint8_t length;
2144 };
2145
2146 struct anv_pipeline_layout {
2147 struct {
2148 struct anv_descriptor_set_layout *layout;
2149 uint32_t dynamic_offset_start;
2150 } set[MAX_SETS];
2151
2152 uint32_t num_sets;
2153
2154 unsigned char sha1[20];
2155 };
2156
2157 struct anv_buffer {
2158 struct anv_device * device;
2159 VkDeviceSize size;
2160
2161 VkBufferUsageFlags usage;
2162
2163 /* Set when bound */
2164 struct anv_address address;
2165 };
2166
2167 static inline uint64_t
2168 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2169 {
2170 assert(offset <= buffer->size);
2171 if (range == VK_WHOLE_SIZE) {
2172 return buffer->size - offset;
2173 } else {
2174 assert(range + offset >= range);
2175 assert(range + offset <= buffer->size);
2176 return range;
2177 }
2178 }
2179
2180 enum anv_cmd_dirty_bits {
2181 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2182 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2183 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2184 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2185 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2186 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2187 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2188 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2189 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2190 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2191 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2192 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2193 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2194 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2195 };
2196 typedef uint32_t anv_cmd_dirty_mask_t;
2197
2198 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2199 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2200 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2201 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2202 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2203 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2204 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2205 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2206 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2207 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2208 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2209
2210 static inline enum anv_cmd_dirty_bits
2211 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2212 {
2213 switch (vk_state) {
2214 case VK_DYNAMIC_STATE_VIEWPORT:
2215 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2216 case VK_DYNAMIC_STATE_SCISSOR:
2217 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2218 case VK_DYNAMIC_STATE_LINE_WIDTH:
2219 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2220 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2221 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2222 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2223 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2224 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2225 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2226 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2227 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2228 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2229 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2230 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2231 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2232 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2233 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2234 default:
2235 assert(!"Unsupported dynamic state");
2236 return 0;
2237 }
2238 }
2239
2240
2241 enum anv_pipe_bits {
2242 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2243 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2244 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2245 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2246 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2247 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2248 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2249 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2250 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2251 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2252 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2253 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2254
2255 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2256 * a flush has happened but not a CS stall. The next time we do any sort
2257 * of invalidation we need to insert a CS stall at that time. Otherwise,
2258 * we would have to CS stall on every flush which could be bad.
2259 */
2260 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2261
2262 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2263 * target operations related to transfer commands with VkBuffer as
2264 * destination are ongoing. Some operations like copies on the command
2265 * streamer might need to be aware of this to trigger the appropriate stall
2266 * before they can proceed with the copy.
2267 */
2268 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2269
2270 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2271 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2272 * done by writing the AUX-TT register.
2273 */
2274 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 23),
2275
2276 /* This bit does not exist directly in PIPE_CONTROL. It means that a
2277 * PIPE_CONTROL with a post-sync operation will follow. This is used to
2278 * implement a workaround for Gen9.
2279 */
2280 ANV_PIPE_POST_SYNC_BIT = (1 << 24),
2281 };
2282
2283 #define ANV_PIPE_FLUSH_BITS ( \
2284 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2285 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2286 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2287 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2288
2289 #define ANV_PIPE_STALL_BITS ( \
2290 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2291 ANV_PIPE_DEPTH_STALL_BIT | \
2292 ANV_PIPE_CS_STALL_BIT)
2293
2294 #define ANV_PIPE_INVALIDATE_BITS ( \
2295 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2296 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2297 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2298 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2299 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2300 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2301 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2302
2303 static inline enum anv_pipe_bits
2304 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2305 {
2306 enum anv_pipe_bits pipe_bits = 0;
2307
2308 unsigned b;
2309 for_each_bit(b, flags) {
2310 switch ((VkAccessFlagBits)(1 << b)) {
2311 case VK_ACCESS_SHADER_WRITE_BIT:
2312 /* We're transitioning a buffer that was previously used as write
2313 * destination through the data port. To make its content available
2314 * to future operations, flush the data cache.
2315 */
2316 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2317 break;
2318 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2319 /* We're transitioning a buffer that was previously used as render
2320 * target. To make its content available to future operations, flush
2321 * the render target cache.
2322 */
2323 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2324 break;
2325 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2326 /* We're transitioning a buffer that was previously used as depth
2327 * buffer. To make its content available to future operations, flush
2328 * the depth cache.
2329 */
2330 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2331 break;
2332 case VK_ACCESS_TRANSFER_WRITE_BIT:
2333 /* We're transitioning a buffer that was previously used as a
2334 * transfer write destination. Generic write operations include color
2335 * & depth operations as well as buffer operations like :
2336 * - vkCmdClearColorImage()
2337 * - vkCmdClearDepthStencilImage()
2338 * - vkCmdBlitImage()
2339 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2340 *
2341 * Most of these operations are implemented using Blorp which writes
2342 * through the render target, so flush that cache to make it visible
2343 * to future operations. And for depth related operations we also
2344 * need to flush the depth cache.
2345 */
2346 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2347 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2348 break;
2349 case VK_ACCESS_MEMORY_WRITE_BIT:
2350 /* We're transitioning a buffer for generic write operations. Flush
2351 * all the caches.
2352 */
2353 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2354 break;
2355 default:
2356 break; /* Nothing to do */
2357 }
2358 }
2359
2360 return pipe_bits;
2361 }
2362
2363 static inline enum anv_pipe_bits
2364 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2365 {
2366 enum anv_pipe_bits pipe_bits = 0;
2367
2368 unsigned b;
2369 for_each_bit(b, flags) {
2370 switch ((VkAccessFlagBits)(1 << b)) {
2371 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2372 /* Indirect draw commands take a buffer as input that we're going to
2373 * read from the command streamer to load some of the HW registers
2374 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2375 * command streamer stall so that all the cache flushes have
2376 * completed before the command streamer loads from memory.
2377 */
2378 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2379 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2380 * through a vertex buffer, so invalidate that cache.
2381 */
2382 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2383 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2384 * UBO from the buffer, so we need to invalidate constant cache.
2385 */
2386 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2387 break;
2388 case VK_ACCESS_INDEX_READ_BIT:
2389 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2390 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2391 * commands, so we invalidate the VF cache to make sure there is no
2392 * stale data when we start rendering.
2393 */
2394 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2395 break;
2396 case VK_ACCESS_UNIFORM_READ_BIT:
2397 /* We transitioning a buffer to be used as uniform data. Because
2398 * uniform is accessed through the data port & sampler, we need to
2399 * invalidate the texture cache (sampler) & constant cache (data
2400 * port) to avoid stale data.
2401 */
2402 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2403 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2404 break;
2405 case VK_ACCESS_SHADER_READ_BIT:
2406 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2407 case VK_ACCESS_TRANSFER_READ_BIT:
2408 /* Transitioning a buffer to be read through the sampler, so
2409 * invalidate the texture cache, we don't want any stale data.
2410 */
2411 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2412 break;
2413 case VK_ACCESS_MEMORY_READ_BIT:
2414 /* Transitioning a buffer for generic read, invalidate all the
2415 * caches.
2416 */
2417 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2418 break;
2419 case VK_ACCESS_MEMORY_WRITE_BIT:
2420 /* Generic write, make sure all previously written things land in
2421 * memory.
2422 */
2423 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2424 break;
2425 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2426 /* Transitioning a buffer for conditional rendering. We'll load the
2427 * content of this buffer into HW registers using the command
2428 * streamer, so we need to stall the command streamer to make sure
2429 * any in-flight flush operations have completed.
2430 */
2431 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2432 break;
2433 default:
2434 break; /* Nothing to do */
2435 }
2436 }
2437
2438 return pipe_bits;
2439 }
2440
2441 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2442 VK_IMAGE_ASPECT_COLOR_BIT | \
2443 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2444 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2445 VK_IMAGE_ASPECT_PLANE_2_BIT)
2446 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2447 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2448 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2449 VK_IMAGE_ASPECT_PLANE_2_BIT)
2450
2451 struct anv_vertex_binding {
2452 struct anv_buffer * buffer;
2453 VkDeviceSize offset;
2454 };
2455
2456 struct anv_xfb_binding {
2457 struct anv_buffer * buffer;
2458 VkDeviceSize offset;
2459 VkDeviceSize size;
2460 };
2461
2462 struct anv_push_constants {
2463 /** Push constant data provided by the client through vkPushConstants */
2464 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2465
2466 /** Dynamic offsets for dynamic UBOs and SSBOs */
2467 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2468
2469 struct {
2470 /** Base workgroup ID
2471 *
2472 * Used for vkCmdDispatchBase.
2473 */
2474 uint32_t base_work_group_id[3];
2475
2476 /** Subgroup ID
2477 *
2478 * This is never set by software but is implicitly filled out when
2479 * uploading the push constants for compute shaders.
2480 */
2481 uint32_t subgroup_id;
2482
2483 /** Pad out to a multiple of 32 bytes */
2484 uint32_t pad[4];
2485 } cs;
2486 };
2487
2488 struct anv_dynamic_state {
2489 struct {
2490 uint32_t count;
2491 VkViewport viewports[MAX_VIEWPORTS];
2492 } viewport;
2493
2494 struct {
2495 uint32_t count;
2496 VkRect2D scissors[MAX_SCISSORS];
2497 } scissor;
2498
2499 float line_width;
2500
2501 struct {
2502 float bias;
2503 float clamp;
2504 float slope;
2505 } depth_bias;
2506
2507 float blend_constants[4];
2508
2509 struct {
2510 float min;
2511 float max;
2512 } depth_bounds;
2513
2514 struct {
2515 uint32_t front;
2516 uint32_t back;
2517 } stencil_compare_mask;
2518
2519 struct {
2520 uint32_t front;
2521 uint32_t back;
2522 } stencil_write_mask;
2523
2524 struct {
2525 uint32_t front;
2526 uint32_t back;
2527 } stencil_reference;
2528
2529 struct {
2530 uint32_t factor;
2531 uint16_t pattern;
2532 } line_stipple;
2533 };
2534
2535 extern const struct anv_dynamic_state default_dynamic_state;
2536
2537 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2538 const struct anv_dynamic_state *src,
2539 uint32_t copy_mask);
2540
2541 struct anv_surface_state {
2542 struct anv_state state;
2543 /** Address of the surface referred to by this state
2544 *
2545 * This address is relative to the start of the BO.
2546 */
2547 struct anv_address address;
2548 /* Address of the aux surface, if any
2549 *
2550 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2551 *
2552 * With the exception of gen8, the bottom 12 bits of this address' offset
2553 * include extra aux information.
2554 */
2555 struct anv_address aux_address;
2556 /* Address of the clear color, if any
2557 *
2558 * This address is relative to the start of the BO.
2559 */
2560 struct anv_address clear_address;
2561 };
2562
2563 /**
2564 * Attachment state when recording a renderpass instance.
2565 *
2566 * The clear value is valid only if there exists a pending clear.
2567 */
2568 struct anv_attachment_state {
2569 enum isl_aux_usage aux_usage;
2570 enum isl_aux_usage input_aux_usage;
2571 struct anv_surface_state color;
2572 struct anv_surface_state input;
2573
2574 VkImageLayout current_layout;
2575 VkImageLayout current_stencil_layout;
2576 VkImageAspectFlags pending_clear_aspects;
2577 VkImageAspectFlags pending_load_aspects;
2578 bool fast_clear;
2579 VkClearValue clear_value;
2580 bool clear_color_is_zero_one;
2581 bool clear_color_is_zero;
2582
2583 /* When multiview is active, attachments with a renderpass clear
2584 * operation have their respective layers cleared on the first
2585 * subpass that uses them, and only in that subpass. We keep track
2586 * of this using a bitfield to indicate which layers of an attachment
2587 * have not been cleared yet when multiview is active.
2588 */
2589 uint32_t pending_clear_views;
2590 struct anv_image_view * image_view;
2591 };
2592
2593 /** State tracking for vertex buffer flushes
2594 *
2595 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2596 * addresses. If you happen to have two vertex buffers which get placed
2597 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2598 * collisions. In order to solve this problem, we track vertex address ranges
2599 * which are live in the cache and invalidate the cache if one ever exceeds 32
2600 * bits.
2601 */
2602 struct anv_vb_cache_range {
2603 /* Virtual address at which the live vertex buffer cache range starts for
2604 * this vertex buffer index.
2605 */
2606 uint64_t start;
2607
2608 /* Virtual address of the byte after where vertex buffer cache range ends.
2609 * This is exclusive such that end - start is the size of the range.
2610 */
2611 uint64_t end;
2612 };
2613
2614 /** State tracking for particular pipeline bind point
2615 *
2616 * This struct is the base struct for anv_cmd_graphics_state and
2617 * anv_cmd_compute_state. These are used to track state which is bound to a
2618 * particular type of pipeline. Generic state that applies per-stage such as
2619 * binding table offsets and push constants is tracked generically with a
2620 * per-stage array in anv_cmd_state.
2621 */
2622 struct anv_cmd_pipeline_state {
2623 struct anv_pipeline *pipeline;
2624
2625 struct anv_descriptor_set *descriptors[MAX_SETS];
2626 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2627 };
2628
2629 /** State tracking for graphics pipeline
2630 *
2631 * This has anv_cmd_pipeline_state as a base struct to track things which get
2632 * bound to a graphics pipeline. Along with general pipeline bind point state
2633 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2634 * state which is graphics-specific.
2635 */
2636 struct anv_cmd_graphics_state {
2637 struct anv_cmd_pipeline_state base;
2638
2639 anv_cmd_dirty_mask_t dirty;
2640 uint32_t vb_dirty;
2641
2642 struct anv_vb_cache_range ib_bound_range;
2643 struct anv_vb_cache_range ib_dirty_range;
2644 struct anv_vb_cache_range vb_bound_ranges[33];
2645 struct anv_vb_cache_range vb_dirty_ranges[33];
2646
2647 struct anv_dynamic_state dynamic;
2648
2649 struct {
2650 struct anv_buffer *index_buffer;
2651 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2652 uint32_t index_offset;
2653 } gen7;
2654 };
2655
2656 /** State tracking for compute pipeline
2657 *
2658 * This has anv_cmd_pipeline_state as a base struct to track things which get
2659 * bound to a compute pipeline. Along with general pipeline bind point state
2660 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2661 * state which is compute-specific.
2662 */
2663 struct anv_cmd_compute_state {
2664 struct anv_cmd_pipeline_state base;
2665
2666 bool pipeline_dirty;
2667
2668 struct anv_address num_workgroups;
2669 };
2670
2671 /** State required while building cmd buffer */
2672 struct anv_cmd_state {
2673 /* PIPELINE_SELECT.PipelineSelection */
2674 uint32_t current_pipeline;
2675 const struct gen_l3_config * current_l3_config;
2676 uint32_t last_aux_map_state;
2677
2678 struct anv_cmd_graphics_state gfx;
2679 struct anv_cmd_compute_state compute;
2680
2681 enum anv_pipe_bits pending_pipe_bits;
2682 VkShaderStageFlags descriptors_dirty;
2683 VkShaderStageFlags push_constants_dirty;
2684
2685 struct anv_framebuffer * framebuffer;
2686 struct anv_render_pass * pass;
2687 struct anv_subpass * subpass;
2688 VkRect2D render_area;
2689 uint32_t restart_index;
2690 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2691 bool xfb_enabled;
2692 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2693 VkShaderStageFlags push_constant_stages;
2694 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2695 struct anv_state binding_tables[MESA_SHADER_STAGES];
2696 struct anv_state samplers[MESA_SHADER_STAGES];
2697
2698 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2699 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2700 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2701
2702 /**
2703 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2704 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2705 * and before invoking the secondary in ExecuteCommands.
2706 */
2707 bool pma_fix_enabled;
2708
2709 /**
2710 * Whether or not we know for certain that HiZ is enabled for the current
2711 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2712 * enabled or not, this will be false.
2713 */
2714 bool hiz_enabled;
2715
2716 bool conditional_render_enabled;
2717
2718 /**
2719 * Last rendering scale argument provided to
2720 * genX(cmd_buffer_emit_hashing_mode)().
2721 */
2722 unsigned current_hash_scale;
2723
2724 /**
2725 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2726 * valid only when recording a render pass instance.
2727 */
2728 struct anv_attachment_state * attachments;
2729
2730 /**
2731 * Surface states for color render targets. These are stored in a single
2732 * flat array. For depth-stencil attachments, the surface state is simply
2733 * left blank.
2734 */
2735 struct anv_state render_pass_states;
2736
2737 /**
2738 * A null surface state of the right size to match the framebuffer. This
2739 * is one of the states in render_pass_states.
2740 */
2741 struct anv_state null_surface_state;
2742 };
2743
2744 struct anv_cmd_pool {
2745 VkAllocationCallbacks alloc;
2746 struct list_head cmd_buffers;
2747 };
2748
2749 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2750
2751 enum anv_cmd_buffer_exec_mode {
2752 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2753 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2754 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2755 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2756 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2757 };
2758
2759 struct anv_cmd_buffer {
2760 VK_LOADER_DATA _loader_data;
2761
2762 struct anv_device * device;
2763
2764 struct anv_cmd_pool * pool;
2765 struct list_head pool_link;
2766
2767 struct anv_batch batch;
2768
2769 /* Fields required for the actual chain of anv_batch_bo's.
2770 *
2771 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2772 */
2773 struct list_head batch_bos;
2774 enum anv_cmd_buffer_exec_mode exec_mode;
2775
2776 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2777 * referenced by this command buffer
2778 *
2779 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2780 */
2781 struct u_vector seen_bbos;
2782
2783 /* A vector of int32_t's for every block of binding tables.
2784 *
2785 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2786 */
2787 struct u_vector bt_block_states;
2788 struct anv_state bt_next;
2789
2790 struct anv_reloc_list surface_relocs;
2791 /** Last seen surface state block pool center bo offset */
2792 uint32_t last_ss_pool_center;
2793
2794 /* Serial for tracking buffer completion */
2795 uint32_t serial;
2796
2797 /* Stream objects for storing temporary data */
2798 struct anv_state_stream surface_state_stream;
2799 struct anv_state_stream dynamic_state_stream;
2800
2801 VkCommandBufferUsageFlags usage_flags;
2802 VkCommandBufferLevel level;
2803
2804 struct anv_cmd_state state;
2805
2806 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2807 uint64_t intel_perf_marker;
2808 };
2809
2810 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2811 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2812 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2813 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2814 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2815 struct anv_cmd_buffer *secondary);
2816 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2817 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2818 struct anv_cmd_buffer *cmd_buffer,
2819 const VkSemaphore *in_semaphores,
2820 const uint64_t *in_wait_values,
2821 uint32_t num_in_semaphores,
2822 const VkSemaphore *out_semaphores,
2823 const uint64_t *out_signal_values,
2824 uint32_t num_out_semaphores,
2825 VkFence fence);
2826
2827 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2828
2829 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2830 const void *data, uint32_t size, uint32_t alignment);
2831 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2832 uint32_t *a, uint32_t *b,
2833 uint32_t dwords, uint32_t alignment);
2834
2835 struct anv_address
2836 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2837 struct anv_state
2838 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2839 uint32_t entries, uint32_t *state_offset);
2840 struct anv_state
2841 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2842 struct anv_state
2843 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2844 uint32_t size, uint32_t alignment);
2845
2846 VkResult
2847 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2848
2849 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2850 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2851 bool depth_clamp_enable);
2852 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2853
2854 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2855 struct anv_render_pass *pass,
2856 struct anv_framebuffer *framebuffer,
2857 const VkClearValue *clear_values);
2858
2859 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2860
2861 struct anv_state
2862 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2863 gl_shader_stage stage);
2864 struct anv_state
2865 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2866
2867 const struct anv_image_view *
2868 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2869
2870 VkResult
2871 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2872 uint32_t num_entries,
2873 uint32_t *state_offset,
2874 struct anv_state *bt_state);
2875
2876 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2877
2878 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2879
2880 enum anv_fence_type {
2881 ANV_FENCE_TYPE_NONE = 0,
2882 ANV_FENCE_TYPE_BO,
2883 ANV_FENCE_TYPE_WSI_BO,
2884 ANV_FENCE_TYPE_SYNCOBJ,
2885 ANV_FENCE_TYPE_WSI,
2886 };
2887
2888 enum anv_bo_fence_state {
2889 /** Indicates that this is a new (or newly reset fence) */
2890 ANV_BO_FENCE_STATE_RESET,
2891
2892 /** Indicates that this fence has been submitted to the GPU but is still
2893 * (as far as we know) in use by the GPU.
2894 */
2895 ANV_BO_FENCE_STATE_SUBMITTED,
2896
2897 ANV_BO_FENCE_STATE_SIGNALED,
2898 };
2899
2900 struct anv_fence_impl {
2901 enum anv_fence_type type;
2902
2903 union {
2904 /** Fence implementation for BO fences
2905 *
2906 * These fences use a BO and a set of CPU-tracked state flags. The BO
2907 * is added to the object list of the last execbuf call in a QueueSubmit
2908 * and is marked EXEC_WRITE. The state flags track when the BO has been
2909 * submitted to the kernel. We need to do this because Vulkan lets you
2910 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2911 * will say it's idle in this case.
2912 */
2913 struct {
2914 struct anv_bo *bo;
2915 enum anv_bo_fence_state state;
2916 } bo;
2917
2918 /** DRM syncobj handle for syncobj-based fences */
2919 uint32_t syncobj;
2920
2921 /** WSI fence */
2922 struct wsi_fence *fence_wsi;
2923 };
2924 };
2925
2926 struct anv_fence {
2927 /* Permanent fence state. Every fence has some form of permanent state
2928 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2929 * cross-process fences) or it could just be a dummy for use internally.
2930 */
2931 struct anv_fence_impl permanent;
2932
2933 /* Temporary fence state. A fence *may* have temporary state. That state
2934 * is added to the fence by an import operation and is reset back to
2935 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2936 * state cannot be signaled because the fence must already be signaled
2937 * before the temporary state can be exported from the fence in the other
2938 * process and imported here.
2939 */
2940 struct anv_fence_impl temporary;
2941 };
2942
2943 void anv_fence_reset_temporary(struct anv_device *device,
2944 struct anv_fence *fence);
2945
2946 struct anv_event {
2947 uint64_t semaphore;
2948 struct anv_state state;
2949 };
2950
2951 enum anv_semaphore_type {
2952 ANV_SEMAPHORE_TYPE_NONE = 0,
2953 ANV_SEMAPHORE_TYPE_DUMMY,
2954 ANV_SEMAPHORE_TYPE_BO,
2955 ANV_SEMAPHORE_TYPE_WSI_BO,
2956 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2957 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2958 ANV_SEMAPHORE_TYPE_TIMELINE,
2959 };
2960
2961 struct anv_timeline_point {
2962 struct list_head link;
2963
2964 uint64_t serial;
2965
2966 /* Number of waiter on this point, when > 0 the point should not be garbage
2967 * collected.
2968 */
2969 int waiting;
2970
2971 /* BO used for synchronization. */
2972 struct anv_bo *bo;
2973 };
2974
2975 struct anv_timeline {
2976 pthread_mutex_t mutex;
2977 pthread_cond_t cond;
2978
2979 uint64_t highest_past;
2980 uint64_t highest_pending;
2981
2982 struct list_head points;
2983 struct list_head free_points;
2984 };
2985
2986 struct anv_semaphore_impl {
2987 enum anv_semaphore_type type;
2988
2989 union {
2990 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
2991 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
2992 * object list on any execbuf2 calls for which this semaphore is used as
2993 * a wait or signal fence. When used as a signal fence or when type ==
2994 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
2995 */
2996 struct anv_bo *bo;
2997
2998 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2999 * If the semaphore is in the unsignaled state due to either just being
3000 * created or because it has been used for a wait, fd will be -1.
3001 */
3002 int fd;
3003
3004 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
3005 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
3006 * import so we don't need to bother with a userspace cache.
3007 */
3008 uint32_t syncobj;
3009
3010 /* Non shareable timeline semaphore
3011 *
3012 * Used when kernel don't have support for timeline semaphores.
3013 */
3014 struct anv_timeline timeline;
3015 };
3016 };
3017
3018 struct anv_semaphore {
3019 uint32_t refcount;
3020
3021 /* Permanent semaphore state. Every semaphore has some form of permanent
3022 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3023 * (for cross-process semaphores0 or it could just be a dummy for use
3024 * internally.
3025 */
3026 struct anv_semaphore_impl permanent;
3027
3028 /* Temporary semaphore state. A semaphore *may* have temporary state.
3029 * That state is added to the semaphore by an import operation and is reset
3030 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3031 * semaphore with temporary state cannot be signaled because the semaphore
3032 * must already be signaled before the temporary state can be exported from
3033 * the semaphore in the other process and imported here.
3034 */
3035 struct anv_semaphore_impl temporary;
3036 };
3037
3038 void anv_semaphore_reset_temporary(struct anv_device *device,
3039 struct anv_semaphore *semaphore);
3040
3041 struct anv_shader_module {
3042 unsigned char sha1[20];
3043 uint32_t size;
3044 char data[0];
3045 };
3046
3047 static inline gl_shader_stage
3048 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3049 {
3050 assert(__builtin_popcount(vk_stage) == 1);
3051 return ffs(vk_stage) - 1;
3052 }
3053
3054 static inline VkShaderStageFlagBits
3055 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3056 {
3057 return (1 << mesa_stage);
3058 }
3059
3060 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3061
3062 #define anv_foreach_stage(stage, stage_bits) \
3063 for (gl_shader_stage stage, \
3064 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3065 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3066 __tmp &= ~(1 << (stage)))
3067
3068 struct anv_pipeline_bind_map {
3069 unsigned char surface_sha1[20];
3070 unsigned char sampler_sha1[20];
3071 unsigned char push_sha1[20];
3072
3073 uint32_t surface_count;
3074 uint32_t sampler_count;
3075
3076 struct anv_pipeline_binding * surface_to_descriptor;
3077 struct anv_pipeline_binding * sampler_to_descriptor;
3078
3079 struct anv_push_range push_ranges[4];
3080 };
3081
3082 struct anv_shader_bin_key {
3083 uint32_t size;
3084 uint8_t data[0];
3085 };
3086
3087 struct anv_shader_bin {
3088 uint32_t ref_cnt;
3089
3090 const struct anv_shader_bin_key *key;
3091
3092 struct anv_state kernel;
3093 uint32_t kernel_size;
3094
3095 struct anv_state constant_data;
3096 uint32_t constant_data_size;
3097
3098 const struct brw_stage_prog_data *prog_data;
3099 uint32_t prog_data_size;
3100
3101 struct brw_compile_stats stats[3];
3102 uint32_t num_stats;
3103
3104 struct nir_xfb_info *xfb_info;
3105
3106 struct anv_pipeline_bind_map bind_map;
3107 };
3108
3109 struct anv_shader_bin *
3110 anv_shader_bin_create(struct anv_device *device,
3111 const void *key, uint32_t key_size,
3112 const void *kernel, uint32_t kernel_size,
3113 const void *constant_data, uint32_t constant_data_size,
3114 const struct brw_stage_prog_data *prog_data,
3115 uint32_t prog_data_size, const void *prog_data_param,
3116 const struct brw_compile_stats *stats, uint32_t num_stats,
3117 const struct nir_xfb_info *xfb_info,
3118 const struct anv_pipeline_bind_map *bind_map);
3119
3120 void
3121 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3122
3123 static inline void
3124 anv_shader_bin_ref(struct anv_shader_bin *shader)
3125 {
3126 assert(shader && shader->ref_cnt >= 1);
3127 p_atomic_inc(&shader->ref_cnt);
3128 }
3129
3130 static inline void
3131 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3132 {
3133 assert(shader && shader->ref_cnt >= 1);
3134 if (p_atomic_dec_zero(&shader->ref_cnt))
3135 anv_shader_bin_destroy(device, shader);
3136 }
3137
3138 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
3139 #define MAX_PIPELINE_EXECUTABLES 7
3140
3141 struct anv_pipeline_executable {
3142 gl_shader_stage stage;
3143
3144 struct brw_compile_stats stats;
3145
3146 char *nir;
3147 char *disasm;
3148 };
3149
3150 struct anv_pipeline {
3151 struct anv_device * device;
3152 struct anv_batch batch;
3153 uint32_t batch_data[512];
3154 struct anv_reloc_list batch_relocs;
3155 anv_cmd_dirty_mask_t dynamic_state_mask;
3156 struct anv_dynamic_state dynamic_state;
3157
3158 void * mem_ctx;
3159
3160 VkPipelineCreateFlags flags;
3161 struct anv_subpass * subpass;
3162
3163 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3164
3165 uint32_t num_executables;
3166 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
3167
3168 struct {
3169 const struct gen_l3_config * l3_config;
3170 uint32_t total_size;
3171 } urb;
3172
3173 VkShaderStageFlags active_stages;
3174 struct anv_state blend_state;
3175
3176 uint32_t vb_used;
3177 struct anv_pipeline_vertex_binding {
3178 uint32_t stride;
3179 bool instanced;
3180 uint32_t instance_divisor;
3181 } vb[MAX_VBS];
3182
3183 uint8_t xfb_used;
3184
3185 bool primitive_restart;
3186 uint32_t topology;
3187
3188 uint32_t cs_right_mask;
3189
3190 bool writes_depth;
3191 bool depth_test_enable;
3192 bool writes_stencil;
3193 bool stencil_test_enable;
3194 bool depth_clamp_enable;
3195 bool depth_clip_enable;
3196 bool sample_shading_enable;
3197 bool kill_pixel;
3198 bool depth_bounds_test_enable;
3199
3200 struct {
3201 uint32_t sf[7];
3202 uint32_t depth_stencil_state[3];
3203 } gen7;
3204
3205 struct {
3206 uint32_t sf[4];
3207 uint32_t raster[5];
3208 uint32_t wm_depth_stencil[3];
3209 } gen8;
3210
3211 struct {
3212 uint32_t wm_depth_stencil[4];
3213 } gen9;
3214
3215 uint32_t interface_descriptor_data[8];
3216 };
3217
3218 static inline bool
3219 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3220 gl_shader_stage stage)
3221 {
3222 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3223 }
3224
3225 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3226 static inline const struct brw_##prefix##_prog_data * \
3227 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3228 { \
3229 if (anv_pipeline_has_stage(pipeline, stage)) { \
3230 return (const struct brw_##prefix##_prog_data *) \
3231 pipeline->shaders[stage]->prog_data; \
3232 } else { \
3233 return NULL; \
3234 } \
3235 }
3236
3237 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3238 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3239 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3240 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3241 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3242 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3243
3244 static inline const struct brw_vue_prog_data *
3245 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3246 {
3247 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3248 return &get_gs_prog_data(pipeline)->base;
3249 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3250 return &get_tes_prog_data(pipeline)->base;
3251 else
3252 return &get_vs_prog_data(pipeline)->base;
3253 }
3254
3255 VkResult
3256 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3257 struct anv_pipeline_cache *cache,
3258 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3259 const VkAllocationCallbacks *alloc);
3260
3261 VkResult
3262 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3263 struct anv_pipeline_cache *cache,
3264 const VkComputePipelineCreateInfo *info,
3265 const struct anv_shader_module *module,
3266 const char *entrypoint,
3267 const VkSpecializationInfo *spec_info);
3268
3269 struct anv_format_plane {
3270 enum isl_format isl_format:16;
3271 struct isl_swizzle swizzle;
3272
3273 /* Whether this plane contains chroma channels */
3274 bool has_chroma;
3275
3276 /* For downscaling of YUV planes */
3277 uint8_t denominator_scales[2];
3278
3279 /* How to map sampled ycbcr planes to a single 4 component element. */
3280 struct isl_swizzle ycbcr_swizzle;
3281
3282 /* What aspect is associated to this plane */
3283 VkImageAspectFlags aspect;
3284 };
3285
3286
3287 struct anv_format {
3288 struct anv_format_plane planes[3];
3289 VkFormat vk_format;
3290 uint8_t n_planes;
3291 bool can_ycbcr;
3292 };
3293
3294 /**
3295 * Return the aspect's _format_ plane, not its _memory_ plane (using the
3296 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
3297 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
3298 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
3299 */
3300 static inline uint32_t
3301 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3302 VkImageAspectFlags aspect_mask)
3303 {
3304 switch (aspect_mask) {
3305 case VK_IMAGE_ASPECT_COLOR_BIT:
3306 case VK_IMAGE_ASPECT_DEPTH_BIT:
3307 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3308 return 0;
3309 case VK_IMAGE_ASPECT_STENCIL_BIT:
3310 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3311 return 0;
3312 /* Fall-through */
3313 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3314 return 1;
3315 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3316 return 2;
3317 default:
3318 /* Purposefully assert with depth/stencil aspects. */
3319 unreachable("invalid image aspect");
3320 }
3321 }
3322
3323 static inline VkImageAspectFlags
3324 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3325 uint32_t plane)
3326 {
3327 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3328 if (util_bitcount(image_aspects) > 1)
3329 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3330 return VK_IMAGE_ASPECT_COLOR_BIT;
3331 }
3332 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3333 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3334 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3335 return VK_IMAGE_ASPECT_STENCIL_BIT;
3336 }
3337
3338 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3339 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3340
3341 const struct anv_format *
3342 anv_get_format(VkFormat format);
3343
3344 static inline uint32_t
3345 anv_get_format_planes(VkFormat vk_format)
3346 {
3347 const struct anv_format *format = anv_get_format(vk_format);
3348
3349 return format != NULL ? format->n_planes : 0;
3350 }
3351
3352 struct anv_format_plane
3353 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3354 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3355
3356 static inline enum isl_format
3357 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3358 VkImageAspectFlags aspect, VkImageTiling tiling)
3359 {
3360 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3361 }
3362
3363 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3364 VkImageCreateFlags create_flags,
3365 VkFormat vk_format,
3366 VkImageTiling vk_tiling,
3367 const VkImageFormatListCreateInfoKHR *fmt_list);
3368
3369 static inline struct isl_swizzle
3370 anv_swizzle_for_render(struct isl_swizzle swizzle)
3371 {
3372 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3373 * RGB as RGBA for texturing
3374 */
3375 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3376 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3377
3378 /* But it doesn't matter what we render to that channel */
3379 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3380
3381 return swizzle;
3382 }
3383
3384 void
3385 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3386
3387 /**
3388 * Subsurface of an anv_image.
3389 */
3390 struct anv_surface {
3391 /** Valid only if isl_surf::size_B > 0. */
3392 struct isl_surf isl;
3393
3394 /**
3395 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3396 */
3397 uint32_t offset;
3398 };
3399
3400 struct anv_image {
3401 VkImageType type; /**< VkImageCreateInfo::imageType */
3402 /* The original VkFormat provided by the client. This may not match any
3403 * of the actual surface formats.
3404 */
3405 VkFormat vk_format;
3406 const struct anv_format *format;
3407
3408 VkImageAspectFlags aspects;
3409 VkExtent3D extent;
3410 uint32_t levels;
3411 uint32_t array_size;
3412 uint32_t samples; /**< VkImageCreateInfo::samples */
3413 uint32_t n_planes;
3414 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3415 VkImageUsageFlags stencil_usage;
3416 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3417 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3418
3419 /** True if this is needs to be bound to an appropriately tiled BO.
3420 *
3421 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3422 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3423 * we require a dedicated allocation so that we can know to allocate a
3424 * tiled buffer.
3425 */
3426 bool needs_set_tiling;
3427
3428 /**
3429 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3430 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3431 */
3432 uint64_t drm_format_mod;
3433
3434 VkDeviceSize size;
3435 uint32_t alignment;
3436
3437 /* Whether the image is made of several underlying buffer objects rather a
3438 * single one with different offsets.
3439 */
3440 bool disjoint;
3441
3442 /* Image was created with external format. */
3443 bool external_format;
3444
3445 /**
3446 * Image subsurfaces
3447 *
3448 * For each foo, anv_image::planes[x].surface is valid if and only if
3449 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3450 * to figure the number associated with a given aspect.
3451 *
3452 * The hardware requires that the depth buffer and stencil buffer be
3453 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3454 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3455 * allocate the depth and stencil buffers as separate surfaces in the same
3456 * bo.
3457 *
3458 * Memory layout :
3459 *
3460 * -----------------------
3461 * | surface0 | /|\
3462 * ----------------------- |
3463 * | shadow surface0 | |
3464 * ----------------------- | Plane 0
3465 * | aux surface0 | |
3466 * ----------------------- |
3467 * | fast clear colors0 | \|/
3468 * -----------------------
3469 * | surface1 | /|\
3470 * ----------------------- |
3471 * | shadow surface1 | |
3472 * ----------------------- | Plane 1
3473 * | aux surface1 | |
3474 * ----------------------- |
3475 * | fast clear colors1 | \|/
3476 * -----------------------
3477 * | ... |
3478 * | |
3479 * -----------------------
3480 */
3481 struct {
3482 /**
3483 * Offset of the entire plane (whenever the image is disjoint this is
3484 * set to 0).
3485 */
3486 uint32_t offset;
3487
3488 VkDeviceSize size;
3489 uint32_t alignment;
3490
3491 struct anv_surface surface;
3492
3493 /**
3494 * A surface which shadows the main surface and may have different
3495 * tiling. This is used for sampling using a tiling that isn't supported
3496 * for other operations.
3497 */
3498 struct anv_surface shadow_surface;
3499
3500 /**
3501 * The base aux usage for this image. For color images, this can be
3502 * either CCS_E or CCS_D depending on whether or not we can reliably
3503 * leave CCS on all the time.
3504 */
3505 enum isl_aux_usage aux_usage;
3506
3507 struct anv_surface aux_surface;
3508
3509 /**
3510 * Offset of the fast clear state (used to compute the
3511 * fast_clear_state_offset of the following planes).
3512 */
3513 uint32_t fast_clear_state_offset;
3514
3515 /**
3516 * BO associated with this plane, set when bound.
3517 */
3518 struct anv_address address;
3519
3520 /**
3521 * When destroying the image, also free the bo.
3522 * */
3523 bool bo_is_owned;
3524 } planes[3];
3525 };
3526
3527 /* The ordering of this enum is important */
3528 enum anv_fast_clear_type {
3529 /** Image does not have/support any fast-clear blocks */
3530 ANV_FAST_CLEAR_NONE = 0,
3531 /** Image has/supports fast-clear but only to the default value */
3532 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3533 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3534 ANV_FAST_CLEAR_ANY = 2,
3535 };
3536
3537 /* Returns the number of auxiliary buffer levels attached to an image. */
3538 static inline uint8_t
3539 anv_image_aux_levels(const struct anv_image * const image,
3540 VkImageAspectFlagBits aspect)
3541 {
3542 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3543 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3544 return 0;
3545
3546 /* The Gen12 CCS aux surface is represented with only one level. */
3547 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3548 image->planes[plane].surface.isl.levels :
3549 image->planes[plane].aux_surface.isl.levels;
3550 }
3551
3552 /* Returns the number of auxiliary buffer layers attached to an image. */
3553 static inline uint32_t
3554 anv_image_aux_layers(const struct anv_image * const image,
3555 VkImageAspectFlagBits aspect,
3556 const uint8_t miplevel)
3557 {
3558 assert(image);
3559
3560 /* The miplevel must exist in the main buffer. */
3561 assert(miplevel < image->levels);
3562
3563 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3564 /* There are no layers with auxiliary data because the miplevel has no
3565 * auxiliary data.
3566 */
3567 return 0;
3568 } else {
3569 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3570
3571 /* The Gen12 CCS aux surface is represented with only one layer. */
3572 const struct isl_extent4d *aux_logical_level0_px =
3573 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3574 &image->planes[plane].surface.isl.logical_level0_px :
3575 &image->planes[plane].aux_surface.isl.logical_level0_px;
3576
3577 return MAX2(aux_logical_level0_px->array_len,
3578 aux_logical_level0_px->depth >> miplevel);
3579 }
3580 }
3581
3582 static inline struct anv_address
3583 anv_image_get_clear_color_addr(const struct anv_device *device,
3584 const struct anv_image *image,
3585 VkImageAspectFlagBits aspect)
3586 {
3587 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3588
3589 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3590 return anv_address_add(image->planes[plane].address,
3591 image->planes[plane].fast_clear_state_offset);
3592 }
3593
3594 static inline struct anv_address
3595 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3596 const struct anv_image *image,
3597 VkImageAspectFlagBits aspect)
3598 {
3599 struct anv_address addr =
3600 anv_image_get_clear_color_addr(device, image, aspect);
3601
3602 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3603 device->isl_dev.ss.clear_color_state_size :
3604 device->isl_dev.ss.clear_value_size;
3605 return anv_address_add(addr, clear_color_state_size);
3606 }
3607
3608 static inline struct anv_address
3609 anv_image_get_compression_state_addr(const struct anv_device *device,
3610 const struct anv_image *image,
3611 VkImageAspectFlagBits aspect,
3612 uint32_t level, uint32_t array_layer)
3613 {
3614 assert(level < anv_image_aux_levels(image, aspect));
3615 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3616 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3617 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3618
3619 struct anv_address addr =
3620 anv_image_get_fast_clear_type_addr(device, image, aspect);
3621 addr.offset += 4; /* Go past the fast clear type */
3622
3623 if (image->type == VK_IMAGE_TYPE_3D) {
3624 for (uint32_t l = 0; l < level; l++)
3625 addr.offset += anv_minify(image->extent.depth, l) * 4;
3626 } else {
3627 addr.offset += level * image->array_size * 4;
3628 }
3629 addr.offset += array_layer * 4;
3630
3631 assert(addr.offset <
3632 image->planes[plane].address.offset + image->planes[plane].size);
3633 return addr;
3634 }
3635
3636 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3637 static inline bool
3638 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3639 const struct anv_image *image)
3640 {
3641 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3642 return false;
3643
3644 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3645 * struct. There's documentation which suggests that this feature actually
3646 * reduces performance on BDW, but it has only been observed to help so
3647 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3648 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3649 */
3650 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3651 return false;
3652
3653 return image->samples == 1;
3654 }
3655
3656 static inline bool
3657 anv_image_plane_uses_aux_map(const struct anv_device *device,
3658 const struct anv_image *image,
3659 uint32_t plane)
3660 {
3661 return device->info.has_aux_map &&
3662 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3663 }
3664
3665 void
3666 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3667 const struct anv_image *image,
3668 VkImageAspectFlagBits aspect,
3669 enum isl_aux_usage aux_usage,
3670 uint32_t level,
3671 uint32_t base_layer,
3672 uint32_t layer_count);
3673
3674 void
3675 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3676 const struct anv_image *image,
3677 VkImageAspectFlagBits aspect,
3678 enum isl_aux_usage aux_usage,
3679 enum isl_format format, struct isl_swizzle swizzle,
3680 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3681 VkRect2D area, union isl_color_value clear_color);
3682 void
3683 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3684 const struct anv_image *image,
3685 VkImageAspectFlags aspects,
3686 enum isl_aux_usage depth_aux_usage,
3687 uint32_t level,
3688 uint32_t base_layer, uint32_t layer_count,
3689 VkRect2D area,
3690 float depth_value, uint8_t stencil_value);
3691 void
3692 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3693 const struct anv_image *src_image,
3694 enum isl_aux_usage src_aux_usage,
3695 uint32_t src_level, uint32_t src_base_layer,
3696 const struct anv_image *dst_image,
3697 enum isl_aux_usage dst_aux_usage,
3698 uint32_t dst_level, uint32_t dst_base_layer,
3699 VkImageAspectFlagBits aspect,
3700 uint32_t src_x, uint32_t src_y,
3701 uint32_t dst_x, uint32_t dst_y,
3702 uint32_t width, uint32_t height,
3703 uint32_t layer_count,
3704 enum blorp_filter filter);
3705 void
3706 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3707 const struct anv_image *image,
3708 VkImageAspectFlagBits aspect, uint32_t level,
3709 uint32_t base_layer, uint32_t layer_count,
3710 enum isl_aux_op hiz_op);
3711 void
3712 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3713 const struct anv_image *image,
3714 VkImageAspectFlags aspects,
3715 uint32_t level,
3716 uint32_t base_layer, uint32_t layer_count,
3717 VkRect2D area, uint8_t stencil_value);
3718 void
3719 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3720 const struct anv_image *image,
3721 enum isl_format format,
3722 VkImageAspectFlagBits aspect,
3723 uint32_t base_layer, uint32_t layer_count,
3724 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3725 bool predicate);
3726 void
3727 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3728 const struct anv_image *image,
3729 enum isl_format format,
3730 VkImageAspectFlagBits aspect, uint32_t level,
3731 uint32_t base_layer, uint32_t layer_count,
3732 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3733 bool predicate);
3734
3735 void
3736 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3737 const struct anv_image *image,
3738 VkImageAspectFlagBits aspect,
3739 uint32_t base_level, uint32_t level_count,
3740 uint32_t base_layer, uint32_t layer_count);
3741
3742 enum isl_aux_state
3743 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3744 const struct anv_image *image,
3745 const VkImageAspectFlagBits aspect,
3746 const VkImageLayout layout);
3747
3748 enum isl_aux_usage
3749 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3750 const struct anv_image *image,
3751 const VkImageAspectFlagBits aspect,
3752 const VkImageUsageFlagBits usage,
3753 const VkImageLayout layout);
3754
3755 enum anv_fast_clear_type
3756 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3757 const struct anv_image * const image,
3758 const VkImageAspectFlagBits aspect,
3759 const VkImageLayout layout);
3760
3761 /* This is defined as a macro so that it works for both
3762 * VkImageSubresourceRange and VkImageSubresourceLayers
3763 */
3764 #define anv_get_layerCount(_image, _range) \
3765 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3766 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3767
3768 static inline uint32_t
3769 anv_get_levelCount(const struct anv_image *image,
3770 const VkImageSubresourceRange *range)
3771 {
3772 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3773 image->levels - range->baseMipLevel : range->levelCount;
3774 }
3775
3776 static inline VkImageAspectFlags
3777 anv_image_expand_aspects(const struct anv_image *image,
3778 VkImageAspectFlags aspects)
3779 {
3780 /* If the underlying image has color plane aspects and
3781 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3782 * the underlying image. */
3783 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3784 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3785 return image->aspects;
3786
3787 return aspects;
3788 }
3789
3790 static inline bool
3791 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3792 VkImageAspectFlags aspects2)
3793 {
3794 if (aspects1 == aspects2)
3795 return true;
3796
3797 /* Only 1 color aspects are compatibles. */
3798 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3799 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3800 util_bitcount(aspects1) == util_bitcount(aspects2))
3801 return true;
3802
3803 return false;
3804 }
3805
3806 struct anv_image_view {
3807 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3808
3809 VkImageAspectFlags aspect_mask;
3810 VkFormat vk_format;
3811 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3812
3813 unsigned n_planes;
3814 struct {
3815 uint32_t image_plane;
3816
3817 struct isl_view isl;
3818
3819 /**
3820 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3821 * image layout of SHADER_READ_ONLY_OPTIMAL or
3822 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3823 */
3824 struct anv_surface_state optimal_sampler_surface_state;
3825
3826 /**
3827 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3828 * image layout of GENERAL.
3829 */
3830 struct anv_surface_state general_sampler_surface_state;
3831
3832 /**
3833 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3834 * states for write-only and readable, using the real format for
3835 * write-only and the lowered format for readable.
3836 */
3837 struct anv_surface_state storage_surface_state;
3838 struct anv_surface_state writeonly_storage_surface_state;
3839
3840 struct brw_image_param storage_image_param;
3841 } planes[3];
3842 };
3843
3844 enum anv_image_view_state_flags {
3845 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3846 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3847 };
3848
3849 void anv_image_fill_surface_state(struct anv_device *device,
3850 const struct anv_image *image,
3851 VkImageAspectFlagBits aspect,
3852 const struct isl_view *view,
3853 isl_surf_usage_flags_t view_usage,
3854 enum isl_aux_usage aux_usage,
3855 const union isl_color_value *clear_color,
3856 enum anv_image_view_state_flags flags,
3857 struct anv_surface_state *state_inout,
3858 struct brw_image_param *image_param_out);
3859
3860 struct anv_image_create_info {
3861 const VkImageCreateInfo *vk_info;
3862
3863 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3864 isl_tiling_flags_t isl_tiling_flags;
3865
3866 /** These flags will be added to any derived from VkImageCreateInfo. */
3867 isl_surf_usage_flags_t isl_extra_usage_flags;
3868
3869 uint32_t stride;
3870 bool external_format;
3871 };
3872
3873 VkResult anv_image_create(VkDevice _device,
3874 const struct anv_image_create_info *info,
3875 const VkAllocationCallbacks* alloc,
3876 VkImage *pImage);
3877
3878 enum isl_format
3879 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3880
3881 static inline VkExtent3D
3882 anv_sanitize_image_extent(const VkImageType imageType,
3883 const VkExtent3D imageExtent)
3884 {
3885 switch (imageType) {
3886 case VK_IMAGE_TYPE_1D:
3887 return (VkExtent3D) { imageExtent.width, 1, 1 };
3888 case VK_IMAGE_TYPE_2D:
3889 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3890 case VK_IMAGE_TYPE_3D:
3891 return imageExtent;
3892 default:
3893 unreachable("invalid image type");
3894 }
3895 }
3896
3897 static inline VkOffset3D
3898 anv_sanitize_image_offset(const VkImageType imageType,
3899 const VkOffset3D imageOffset)
3900 {
3901 switch (imageType) {
3902 case VK_IMAGE_TYPE_1D:
3903 return (VkOffset3D) { imageOffset.x, 0, 0 };
3904 case VK_IMAGE_TYPE_2D:
3905 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3906 case VK_IMAGE_TYPE_3D:
3907 return imageOffset;
3908 default:
3909 unreachable("invalid image type");
3910 }
3911 }
3912
3913 VkFormatFeatureFlags
3914 anv_get_image_format_features(const struct gen_device_info *devinfo,
3915 VkFormat vk_format,
3916 const struct anv_format *anv_format,
3917 VkImageTiling vk_tiling);
3918
3919 void anv_fill_buffer_surface_state(struct anv_device *device,
3920 struct anv_state state,
3921 enum isl_format format,
3922 struct anv_address address,
3923 uint32_t range, uint32_t stride);
3924
3925 static inline void
3926 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3927 const struct anv_attachment_state *att_state,
3928 const struct anv_image_view *iview)
3929 {
3930 const struct isl_format_layout *view_fmtl =
3931 isl_format_get_layout(iview->planes[0].isl.format);
3932
3933 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3934 if (view_fmtl->channels.c.bits) \
3935 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3936
3937 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3938 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3939 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3940 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3941
3942 #undef COPY_CLEAR_COLOR_CHANNEL
3943 }
3944
3945
3946 struct anv_ycbcr_conversion {
3947 const struct anv_format * format;
3948 VkSamplerYcbcrModelConversion ycbcr_model;
3949 VkSamplerYcbcrRange ycbcr_range;
3950 VkComponentSwizzle mapping[4];
3951 VkChromaLocation chroma_offsets[2];
3952 VkFilter chroma_filter;
3953 bool chroma_reconstruction;
3954 };
3955
3956 struct anv_sampler {
3957 uint32_t state[3][4];
3958 uint32_t n_planes;
3959 struct anv_ycbcr_conversion *conversion;
3960
3961 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3962 * and with a 32-byte stride for use as bindless samplers.
3963 */
3964 struct anv_state bindless_state;
3965 };
3966
3967 struct anv_framebuffer {
3968 uint32_t width;
3969 uint32_t height;
3970 uint32_t layers;
3971
3972 uint32_t attachment_count;
3973 struct anv_image_view * attachments[0];
3974 };
3975
3976 struct anv_subpass_attachment {
3977 VkImageUsageFlagBits usage;
3978 uint32_t attachment;
3979 VkImageLayout layout;
3980
3981 /* Used only with attachment containing stencil data. */
3982 VkImageLayout stencil_layout;
3983 };
3984
3985 struct anv_subpass {
3986 uint32_t attachment_count;
3987
3988 /**
3989 * A pointer to all attachment references used in this subpass.
3990 * Only valid if ::attachment_count > 0.
3991 */
3992 struct anv_subpass_attachment * attachments;
3993 uint32_t input_count;
3994 struct anv_subpass_attachment * input_attachments;
3995 uint32_t color_count;
3996 struct anv_subpass_attachment * color_attachments;
3997 struct anv_subpass_attachment * resolve_attachments;
3998
3999 struct anv_subpass_attachment * depth_stencil_attachment;
4000 struct anv_subpass_attachment * ds_resolve_attachment;
4001 VkResolveModeFlagBitsKHR depth_resolve_mode;
4002 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4003
4004 uint32_t view_mask;
4005
4006 /** Subpass has a depth/stencil self-dependency */
4007 bool has_ds_self_dep;
4008
4009 /** Subpass has at least one color resolve attachment */
4010 bool has_color_resolve;
4011 };
4012
4013 static inline unsigned
4014 anv_subpass_view_count(const struct anv_subpass *subpass)
4015 {
4016 return MAX2(1, util_bitcount(subpass->view_mask));
4017 }
4018
4019 struct anv_render_pass_attachment {
4020 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4021 * its members individually.
4022 */
4023 VkFormat format;
4024 uint32_t samples;
4025 VkImageUsageFlags usage;
4026 VkAttachmentLoadOp load_op;
4027 VkAttachmentStoreOp store_op;
4028 VkAttachmentLoadOp stencil_load_op;
4029 VkImageLayout initial_layout;
4030 VkImageLayout final_layout;
4031 VkImageLayout first_subpass_layout;
4032
4033 VkImageLayout stencil_initial_layout;
4034 VkImageLayout stencil_final_layout;
4035
4036 /* The subpass id in which the attachment will be used last. */
4037 uint32_t last_subpass_idx;
4038 };
4039
4040 struct anv_render_pass {
4041 uint32_t attachment_count;
4042 uint32_t subpass_count;
4043 /* An array of subpass_count+1 flushes, one per subpass boundary */
4044 enum anv_pipe_bits * subpass_flushes;
4045 struct anv_render_pass_attachment * attachments;
4046 struct anv_subpass subpasses[0];
4047 };
4048
4049 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4050
4051 struct anv_query_pool {
4052 VkQueryType type;
4053 VkQueryPipelineStatisticFlags pipeline_statistics;
4054 /** Stride between slots, in bytes */
4055 uint32_t stride;
4056 /** Number of slots in this query pool */
4057 uint32_t slots;
4058 struct anv_bo * bo;
4059 };
4060
4061 int anv_get_instance_entrypoint_index(const char *name);
4062 int anv_get_device_entrypoint_index(const char *name);
4063 int anv_get_physical_device_entrypoint_index(const char *name);
4064
4065 const char *anv_get_instance_entry_name(int index);
4066 const char *anv_get_physical_device_entry_name(int index);
4067 const char *anv_get_device_entry_name(int index);
4068
4069 bool
4070 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4071 const struct anv_instance_extension_table *instance);
4072 bool
4073 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4074 const struct anv_instance_extension_table *instance);
4075 bool
4076 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4077 const struct anv_instance_extension_table *instance,
4078 const struct anv_device_extension_table *device);
4079
4080 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4081 const char *name);
4082
4083 void anv_dump_image_to_ppm(struct anv_device *device,
4084 struct anv_image *image, unsigned miplevel,
4085 unsigned array_layer, VkImageAspectFlagBits aspect,
4086 const char *filename);
4087
4088 enum anv_dump_action {
4089 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4090 };
4091
4092 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4093 void anv_dump_finish(void);
4094
4095 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4096
4097 static inline uint32_t
4098 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4099 {
4100 /* This function must be called from within a subpass. */
4101 assert(cmd_state->pass && cmd_state->subpass);
4102
4103 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4104
4105 /* The id of this subpass shouldn't exceed the number of subpasses in this
4106 * render pass minus 1.
4107 */
4108 assert(subpass_id < cmd_state->pass->subpass_count);
4109 return subpass_id;
4110 }
4111
4112 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4113 void anv_device_perf_init(struct anv_device *device);
4114
4115 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4116 \
4117 static inline struct __anv_type * \
4118 __anv_type ## _from_handle(__VkType _handle) \
4119 { \
4120 return (struct __anv_type *) _handle; \
4121 } \
4122 \
4123 static inline __VkType \
4124 __anv_type ## _to_handle(struct __anv_type *_obj) \
4125 { \
4126 return (__VkType) _obj; \
4127 }
4128
4129 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4130 \
4131 static inline struct __anv_type * \
4132 __anv_type ## _from_handle(__VkType _handle) \
4133 { \
4134 return (struct __anv_type *)(uintptr_t) _handle; \
4135 } \
4136 \
4137 static inline __VkType \
4138 __anv_type ## _to_handle(struct __anv_type *_obj) \
4139 { \
4140 return (__VkType)(uintptr_t) _obj; \
4141 }
4142
4143 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4144 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4145
4146 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4147 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4148 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4149 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4150 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4151
4152 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4153 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4154 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4155 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4156 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4157 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4158 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4159 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4160 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4161 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4162 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4163 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4164 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4165 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4166 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4167 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4168 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4169 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4170 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4171 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4172 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4173 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4174 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4175
4176 /* Gen-specific function declarations */
4177 #ifdef genX
4178 # include "anv_genX.h"
4179 #else
4180 # define genX(x) gen7_##x
4181 # include "anv_genX.h"
4182 # undef genX
4183 # define genX(x) gen75_##x
4184 # include "anv_genX.h"
4185 # undef genX
4186 # define genX(x) gen8_##x
4187 # include "anv_genX.h"
4188 # undef genX
4189 # define genX(x) gen9_##x
4190 # include "anv_genX.h"
4191 # undef genX
4192 # define genX(x) gen10_##x
4193 # include "anv_genX.h"
4194 # undef genX
4195 # define genX(x) gen11_##x
4196 # include "anv_genX.h"
4197 # undef genX
4198 # define genX(x) gen12_##x
4199 # include "anv_genX.h"
4200 # undef genX
4201 #endif
4202
4203 #endif /* ANV_PRIVATE_H */