d4e237025d0b09050dcaa9902e5462bdd03c1208
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "common/gen_l3_config.h"
50 #include "dev/gen_device_info.h"
51 #include "blorp/blorp.h"
52 #include "compiler/brw_compiler.h"
53 #include "util/bitset.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/sparse_array.h"
58 #include "util/u_atomic.h"
59 #include "util/u_vector.h"
60 #include "util/u_math.h"
61 #include "util/vma.h"
62 #include "util/xmlconfig.h"
63 #include "vk_alloc.h"
64 #include "vk_debug_report.h"
65
66 /* Pre-declarations needed for WSI entrypoints */
67 struct wl_surface;
68 struct wl_display;
69 typedef struct xcb_connection_t xcb_connection_t;
70 typedef uint32_t xcb_visualid_t;
71 typedef uint32_t xcb_window_t;
72
73 struct anv_batch;
74 struct anv_buffer;
75 struct anv_buffer_view;
76 struct anv_image_view;
77 struct anv_instance;
78
79 struct gen_aux_map_context;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
132 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
133
134 #define LOW_HEAP_SIZE \
135 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
136 #define DYNAMIC_STATE_POOL_SIZE \
137 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
138 #define BINDING_TABLE_POOL_SIZE \
139 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
140 #define SURFACE_STATE_POOL_SIZE \
141 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
142 #define INSTRUCTION_STATE_POOL_SIZE \
143 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
144 #define CLIENT_VISIBLE_HEAP_SIZE \
145 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
146
147 /* Allowing different clear colors requires us to perform a depth resolve at
148 * the end of certain render passes. This is because while slow clears store
149 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
150 * See the PRMs for examples describing when additional resolves would be
151 * necessary. To enable fast clears without requiring extra resolves, we set
152 * the clear value to a globally-defined one. We could allow different values
153 * if the user doesn't expect coherent data during or after a render passes
154 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
155 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
156 * 1.0f seems to be the only value used. The only application that doesn't set
157 * this value does so through the usage of an seemingly uninitialized clear
158 * value.
159 */
160 #define ANV_HZ_FC_VAL 1.0f
161
162 #define MAX_VBS 28
163 #define MAX_XFB_BUFFERS 4
164 #define MAX_XFB_STREAMS 4
165 #define MAX_SETS 8
166 #define MAX_RTS 8
167 #define MAX_VIEWPORTS 16
168 #define MAX_SCISSORS 16
169 #define MAX_PUSH_CONSTANTS_SIZE 128
170 #define MAX_DYNAMIC_BUFFERS 16
171 #define MAX_IMAGES 64
172 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
173 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
174 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
175 #define ANV_UBO_BOUNDS_CHECK_ALIGNMENT 32
176 #define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
177
178 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
179 *
180 * "The surface state model is used when a Binding Table Index (specified
181 * in the message descriptor) of less than 240 is specified. In this model,
182 * the Binding Table Index is used to index into the binding table, and the
183 * binding table entry contains a pointer to the SURFACE_STATE."
184 *
185 * Binding table values above 240 are used for various things in the hardware
186 * such as stateless, stateless with incoherent cache, SLM, and bindless.
187 */
188 #define MAX_BINDING_TABLE_SIZE 240
189
190 /* The kernel relocation API has a limitation of a 32-bit delta value
191 * applied to the address before it is written which, in spite of it being
192 * unsigned, is treated as signed . Because of the way that this maps to
193 * the Vulkan API, we cannot handle an offset into a buffer that does not
194 * fit into a signed 32 bits. The only mechanism we have for dealing with
195 * this at the moment is to limit all VkDeviceMemory objects to a maximum
196 * of 2GB each. The Vulkan spec allows us to do this:
197 *
198 * "Some platforms may have a limit on the maximum size of a single
199 * allocation. For example, certain systems may fail to create
200 * allocations with a size greater than or equal to 4GB. Such a limit is
201 * implementation-dependent, and if such a failure occurs then the error
202 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
203 *
204 * We don't use vk_error here because it's not an error so much as an
205 * indication to the application that the allocation is too large.
206 */
207 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
208
209 #define ANV_SVGS_VB_INDEX MAX_VBS
210 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
211
212 /* We reserve this MI ALU register for the purpose of handling predication.
213 * Other code which uses the MI ALU should leave it alone.
214 */
215 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
216
217 /* For gen12 we set the streamout buffers using 4 separate commands
218 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
219 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
220 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
221 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
222 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
223 * 3DSTATE_SO_BUFFER_INDEX_0.
224 */
225 #define SO_BUFFER_INDEX_0_CMD 0x60
226 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
227
228 static inline uint32_t
229 align_down_npot_u32(uint32_t v, uint32_t a)
230 {
231 return v - (v % a);
232 }
233
234 static inline uint32_t
235 align_down_u32(uint32_t v, uint32_t a)
236 {
237 assert(a != 0 && a == (a & -a));
238 return v & ~(a - 1);
239 }
240
241 static inline uint32_t
242 align_u32(uint32_t v, uint32_t a)
243 {
244 assert(a != 0 && a == (a & -a));
245 return align_down_u32(v + a - 1, a);
246 }
247
248 static inline uint64_t
249 align_down_u64(uint64_t v, uint64_t a)
250 {
251 assert(a != 0 && a == (a & -a));
252 return v & ~(a - 1);
253 }
254
255 static inline uint64_t
256 align_u64(uint64_t v, uint64_t a)
257 {
258 return align_down_u64(v + a - 1, a);
259 }
260
261 static inline int32_t
262 align_i32(int32_t v, int32_t a)
263 {
264 assert(a != 0 && a == (a & -a));
265 return (v + a - 1) & ~(a - 1);
266 }
267
268 /** Alignment must be a power of 2. */
269 static inline bool
270 anv_is_aligned(uintmax_t n, uintmax_t a)
271 {
272 assert(a == (a & -a));
273 return (n & (a - 1)) == 0;
274 }
275
276 static inline uint32_t
277 anv_minify(uint32_t n, uint32_t levels)
278 {
279 if (unlikely(n == 0))
280 return 0;
281 else
282 return MAX2(n >> levels, 1);
283 }
284
285 static inline float
286 anv_clamp_f(float f, float min, float max)
287 {
288 assert(min < max);
289
290 if (f > max)
291 return max;
292 else if (f < min)
293 return min;
294 else
295 return f;
296 }
297
298 static inline bool
299 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
300 {
301 if (*inout_mask & clear_mask) {
302 *inout_mask &= ~clear_mask;
303 return true;
304 } else {
305 return false;
306 }
307 }
308
309 static inline union isl_color_value
310 vk_to_isl_color(VkClearColorValue color)
311 {
312 return (union isl_color_value) {
313 .u32 = {
314 color.uint32[0],
315 color.uint32[1],
316 color.uint32[2],
317 color.uint32[3],
318 },
319 };
320 }
321
322 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
323 {
324 uintptr_t mask = (1ull << bits) - 1;
325 *flags = ptr & mask;
326 return (void *) (ptr & ~mask);
327 }
328
329 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
330 {
331 uintptr_t value = (uintptr_t) ptr;
332 uintptr_t mask = (1ull << bits) - 1;
333 return value | (mask & flags);
334 }
335
336 #define for_each_bit(b, dword) \
337 for (uint32_t __dword = (dword); \
338 (b) = __builtin_ffs(__dword) - 1, __dword; \
339 __dword &= ~(1 << (b)))
340
341 #define typed_memcpy(dest, src, count) ({ \
342 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
343 memcpy((dest), (src), (count) * sizeof(*(src))); \
344 })
345
346 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
347 * to be added here in order to utilize mapping in debug/error/perf macros.
348 */
349 #define REPORT_OBJECT_TYPE(o) \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
428 __builtin_choose_expr ( \
429 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
430 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
431 __builtin_choose_expr ( \
432 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
433 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
434 __builtin_choose_expr ( \
435 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
436 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
437 __builtin_choose_expr ( \
438 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
439 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
440 __builtin_choose_expr ( \
441 __builtin_types_compatible_p (__typeof (o), void*), \
442 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
443 /* The void expression results in a compile-time error \
444 when assigning the result to something. */ \
445 (void)0)))))))))))))))))))))))))))))))
446
447 /* Whenever we generate an error, pass it through this function. Useful for
448 * debugging, where we can break on it. Only call at error site, not when
449 * propagating errors. Might be useful to plug in a stack trace here.
450 */
451
452 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
453 VkDebugReportObjectTypeEXT type, VkResult error,
454 const char *file, int line, const char *format,
455 va_list args);
456
457 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
458 VkDebugReportObjectTypeEXT type, VkResult error,
459 const char *file, int line, const char *format, ...)
460 anv_printflike(7, 8);
461
462 #ifdef DEBUG
463 #define vk_error(error) __vk_errorf(NULL, NULL,\
464 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
465 error, __FILE__, __LINE__, NULL)
466 #define vk_errorfi(instance, obj, error, format, ...)\
467 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
468 __FILE__, __LINE__, format, ## __VA_ARGS__)
469 #define vk_errorf(device, obj, error, format, ...)\
470 vk_errorfi(anv_device_instance_or_null(device),\
471 obj, error, format, ## __VA_ARGS__)
472 #else
473 #define vk_error(error) error
474 #define vk_errorfi(instance, obj, error, format, ...) error
475 #define vk_errorf(device, obj, error, format, ...) error
476 #endif
477
478 /**
479 * Warn on ignored extension structs.
480 *
481 * The Vulkan spec requires us to ignore unsupported or unknown structs in
482 * a pNext chain. In debug mode, emitting warnings for ignored structs may
483 * help us discover structs that we should not have ignored.
484 *
485 *
486 * From the Vulkan 1.0.38 spec:
487 *
488 * Any component of the implementation (the loader, any enabled layers,
489 * and drivers) must skip over, without processing (other than reading the
490 * sType and pNext members) any chained structures with sType values not
491 * defined by extensions supported by that component.
492 */
493 #define anv_debug_ignored_stype(sType) \
494 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
495
496 void __anv_perf_warn(struct anv_device *device, const void *object,
497 VkDebugReportObjectTypeEXT type, const char *file,
498 int line, const char *format, ...)
499 anv_printflike(6, 7);
500 void anv_loge(const char *format, ...) anv_printflike(1, 2);
501 void anv_loge_v(const char *format, va_list va);
502
503 /**
504 * Print a FINISHME message, including its source location.
505 */
506 #define anv_finishme(format, ...) \
507 do { \
508 static bool reported = false; \
509 if (!reported) { \
510 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
511 ##__VA_ARGS__); \
512 reported = true; \
513 } \
514 } while (0)
515
516 /**
517 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
518 */
519 #define anv_perf_warn(instance, obj, format, ...) \
520 do { \
521 static bool reported = false; \
522 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
523 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
524 format, ##__VA_ARGS__); \
525 reported = true; \
526 } \
527 } while (0)
528
529 /* A non-fatal assert. Useful for debugging. */
530 #ifdef DEBUG
531 #define anv_assert(x) ({ \
532 if (unlikely(!(x))) \
533 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
534 })
535 #else
536 #define anv_assert(x)
537 #endif
538
539 /* A multi-pointer allocator
540 *
541 * When copying data structures from the user (such as a render pass), it's
542 * common to need to allocate data for a bunch of different things. Instead
543 * of doing several allocations and having to handle all of the error checking
544 * that entails, it can be easier to do a single allocation. This struct
545 * helps facilitate that. The intended usage looks like this:
546 *
547 * ANV_MULTIALLOC(ma)
548 * anv_multialloc_add(&ma, &main_ptr, 1);
549 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
550 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
551 *
552 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
553 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
554 */
555 struct anv_multialloc {
556 size_t size;
557 size_t align;
558
559 uint32_t ptr_count;
560 void **ptrs[8];
561 };
562
563 #define ANV_MULTIALLOC_INIT \
564 ((struct anv_multialloc) { 0, })
565
566 #define ANV_MULTIALLOC(_name) \
567 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
568
569 __attribute__((always_inline))
570 static inline void
571 _anv_multialloc_add(struct anv_multialloc *ma,
572 void **ptr, size_t size, size_t align)
573 {
574 size_t offset = align_u64(ma->size, align);
575 ma->size = offset + size;
576 ma->align = MAX2(ma->align, align);
577
578 /* Store the offset in the pointer. */
579 *ptr = (void *)(uintptr_t)offset;
580
581 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
582 ma->ptrs[ma->ptr_count++] = ptr;
583 }
584
585 #define anv_multialloc_add_size(_ma, _ptr, _size) \
586 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
587
588 #define anv_multialloc_add(_ma, _ptr, _count) \
589 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
590
591 __attribute__((always_inline))
592 static inline void *
593 anv_multialloc_alloc(struct anv_multialloc *ma,
594 const VkAllocationCallbacks *alloc,
595 VkSystemAllocationScope scope)
596 {
597 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
598 if (!ptr)
599 return NULL;
600
601 /* Fill out each of the pointers with their final value.
602 *
603 * for (uint32_t i = 0; i < ma->ptr_count; i++)
604 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
605 *
606 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
607 * constant, GCC is incapable of figuring this out and unrolling the loop
608 * so we have to give it a little help.
609 */
610 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
611 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
612 if ((_i) < ma->ptr_count) \
613 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
614 _ANV_MULTIALLOC_UPDATE_POINTER(0);
615 _ANV_MULTIALLOC_UPDATE_POINTER(1);
616 _ANV_MULTIALLOC_UPDATE_POINTER(2);
617 _ANV_MULTIALLOC_UPDATE_POINTER(3);
618 _ANV_MULTIALLOC_UPDATE_POINTER(4);
619 _ANV_MULTIALLOC_UPDATE_POINTER(5);
620 _ANV_MULTIALLOC_UPDATE_POINTER(6);
621 _ANV_MULTIALLOC_UPDATE_POINTER(7);
622 #undef _ANV_MULTIALLOC_UPDATE_POINTER
623
624 return ptr;
625 }
626
627 __attribute__((always_inline))
628 static inline void *
629 anv_multialloc_alloc2(struct anv_multialloc *ma,
630 const VkAllocationCallbacks *parent_alloc,
631 const VkAllocationCallbacks *alloc,
632 VkSystemAllocationScope scope)
633 {
634 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
635 }
636
637 struct anv_bo {
638 uint32_t gem_handle;
639
640 uint32_t refcount;
641
642 /* Index into the current validation list. This is used by the
643 * validation list building alrogithm to track which buffers are already
644 * in the validation list so that we can ensure uniqueness.
645 */
646 uint32_t index;
647
648 /* Index for use with util_sparse_array_free_list */
649 uint32_t free_index;
650
651 /* Last known offset. This value is provided by the kernel when we
652 * execbuf and is used as the presumed offset for the next bunch of
653 * relocations.
654 */
655 uint64_t offset;
656
657 /** Size of the buffer not including implicit aux */
658 uint64_t size;
659
660 /* Map for internally mapped BOs.
661 *
662 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
663 */
664 void *map;
665
666 /** Size of the implicit CCS range at the end of the buffer
667 *
668 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
669 * page of main surface data maps to a 256B chunk of CCS data and that
670 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
671 * addresses in the main surface to virtual memory addresses for CCS data.
672 *
673 * Because we can't change these maps around easily and because Vulkan
674 * allows two VkImages to be bound to overlapping memory regions (as long
675 * as the app is careful), it's not feasible to make this mapping part of
676 * the image. (On Gen11 and earlier, the mapping was provided via
677 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
678 * Instead, we attach the CCS data directly to the buffer object and setup
679 * the AUX table mapping at BO creation time.
680 *
681 * This field is for internal tracking use by the BO allocator only and
682 * should not be touched by other parts of the code. If something wants to
683 * know if a BO has implicit CCS data, it should instead look at the
684 * has_implicit_ccs boolean below.
685 *
686 * This data is not included in maps of this buffer.
687 */
688 uint32_t _ccs_size;
689
690 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
691 uint32_t flags;
692
693 /** True if this BO may be shared with other processes */
694 bool is_external:1;
695
696 /** True if this BO is a wrapper
697 *
698 * When set to true, none of the fields in this BO are meaningful except
699 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
700 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
701 * is set in the physical device.
702 */
703 bool is_wrapper:1;
704
705 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
706 bool has_fixed_address:1;
707
708 /** True if this BO wraps a host pointer */
709 bool from_host_ptr:1;
710
711 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
712 bool has_client_visible_address:1;
713
714 /** True if this BO has implicit CCS data attached to it */
715 bool has_implicit_ccs:1;
716 };
717
718 static inline struct anv_bo *
719 anv_bo_ref(struct anv_bo *bo)
720 {
721 p_atomic_inc(&bo->refcount);
722 return bo;
723 }
724
725 static inline struct anv_bo *
726 anv_bo_unwrap(struct anv_bo *bo)
727 {
728 while (bo->is_wrapper)
729 bo = bo->map;
730 return bo;
731 }
732
733 /* Represents a lock-free linked list of "free" things. This is used by
734 * both the block pool and the state pools. Unfortunately, in order to
735 * solve the ABA problem, we can't use a single uint32_t head.
736 */
737 union anv_free_list {
738 struct {
739 uint32_t offset;
740
741 /* A simple count that is incremented every time the head changes. */
742 uint32_t count;
743 };
744 /* Make sure it's aligned to 64 bits. This will make atomic operations
745 * faster on 32 bit platforms.
746 */
747 uint64_t u64 __attribute__ ((aligned (8)));
748 };
749
750 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
751
752 struct anv_block_state {
753 union {
754 struct {
755 uint32_t next;
756 uint32_t end;
757 };
758 /* Make sure it's aligned to 64 bits. This will make atomic operations
759 * faster on 32 bit platforms.
760 */
761 uint64_t u64 __attribute__ ((aligned (8)));
762 };
763 };
764
765 #define anv_block_pool_foreach_bo(bo, pool) \
766 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
767 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
768 _pp_bo++)
769
770 #define ANV_MAX_BLOCK_POOL_BOS 20
771
772 struct anv_block_pool {
773 struct anv_device *device;
774 bool use_softpin;
775
776 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
777 * around the actual BO so that we grow the pool after the wrapper BO has
778 * been put in a relocation list. This is only used in the non-softpin
779 * case.
780 */
781 struct anv_bo wrapper_bo;
782
783 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
784 struct anv_bo *bo;
785 uint32_t nbos;
786
787 uint64_t size;
788
789 /* The address where the start of the pool is pinned. The various bos that
790 * are created as the pool grows will have addresses in the range
791 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
792 */
793 uint64_t start_address;
794
795 /* The offset from the start of the bo to the "center" of the block
796 * pool. Pointers to allocated blocks are given by
797 * bo.map + center_bo_offset + offsets.
798 */
799 uint32_t center_bo_offset;
800
801 /* Current memory map of the block pool. This pointer may or may not
802 * point to the actual beginning of the block pool memory. If
803 * anv_block_pool_alloc_back has ever been called, then this pointer
804 * will point to the "center" position of the buffer and all offsets
805 * (negative or positive) given out by the block pool alloc functions
806 * will be valid relative to this pointer.
807 *
808 * In particular, map == bo.map + center_offset
809 *
810 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
811 * since it will handle the softpin case as well, where this points to NULL.
812 */
813 void *map;
814 int fd;
815
816 /**
817 * Array of mmaps and gem handles owned by the block pool, reclaimed when
818 * the block pool is destroyed.
819 */
820 struct u_vector mmap_cleanups;
821
822 struct anv_block_state state;
823
824 struct anv_block_state back_state;
825 };
826
827 /* Block pools are backed by a fixed-size 1GB memfd */
828 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
829
830 /* The center of the block pool is also the middle of the memfd. This may
831 * change in the future if we decide differently for some reason.
832 */
833 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
834
835 static inline uint32_t
836 anv_block_pool_size(struct anv_block_pool *pool)
837 {
838 return pool->state.end + pool->back_state.end;
839 }
840
841 struct anv_state {
842 int32_t offset;
843 uint32_t alloc_size;
844 void *map;
845 uint32_t idx;
846 };
847
848 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
849
850 struct anv_fixed_size_state_pool {
851 union anv_free_list free_list;
852 struct anv_block_state block;
853 };
854
855 #define ANV_MIN_STATE_SIZE_LOG2 6
856 #define ANV_MAX_STATE_SIZE_LOG2 21
857
858 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
859
860 struct anv_free_entry {
861 uint32_t next;
862 struct anv_state state;
863 };
864
865 struct anv_state_table {
866 struct anv_device *device;
867 int fd;
868 struct anv_free_entry *map;
869 uint32_t size;
870 struct anv_block_state state;
871 struct u_vector cleanups;
872 };
873
874 struct anv_state_pool {
875 struct anv_block_pool block_pool;
876
877 struct anv_state_table table;
878
879 /* The size of blocks which will be allocated from the block pool */
880 uint32_t block_size;
881
882 /** Free list for "back" allocations */
883 union anv_free_list back_alloc_free_list;
884
885 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
886 };
887
888 struct anv_state_stream {
889 struct anv_state_pool *state_pool;
890
891 /* The size of blocks to allocate from the state pool */
892 uint32_t block_size;
893
894 /* Current block we're allocating from */
895 struct anv_state block;
896
897 /* Offset into the current block at which to allocate the next state */
898 uint32_t next;
899
900 /* List of all blocks allocated from this pool */
901 struct util_dynarray all_blocks;
902 };
903
904 /* The block_pool functions exported for testing only. The block pool should
905 * only be used via a state pool (see below).
906 */
907 VkResult anv_block_pool_init(struct anv_block_pool *pool,
908 struct anv_device *device,
909 uint64_t start_address,
910 uint32_t initial_size);
911 void anv_block_pool_finish(struct anv_block_pool *pool);
912 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
913 uint32_t block_size, uint32_t *padding);
914 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
915 uint32_t block_size);
916 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
917 size);
918
919 VkResult anv_state_pool_init(struct anv_state_pool *pool,
920 struct anv_device *device,
921 uint64_t start_address,
922 uint32_t block_size);
923 void anv_state_pool_finish(struct anv_state_pool *pool);
924 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
925 uint32_t state_size, uint32_t alignment);
926 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
927 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
928 void anv_state_stream_init(struct anv_state_stream *stream,
929 struct anv_state_pool *state_pool,
930 uint32_t block_size);
931 void anv_state_stream_finish(struct anv_state_stream *stream);
932 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
933 uint32_t size, uint32_t alignment);
934
935 VkResult anv_state_table_init(struct anv_state_table *table,
936 struct anv_device *device,
937 uint32_t initial_entries);
938 void anv_state_table_finish(struct anv_state_table *table);
939 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
940 uint32_t count);
941 void anv_free_list_push(union anv_free_list *list,
942 struct anv_state_table *table,
943 uint32_t idx, uint32_t count);
944 struct anv_state* anv_free_list_pop(union anv_free_list *list,
945 struct anv_state_table *table);
946
947
948 static inline struct anv_state *
949 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
950 {
951 return &table->map[idx].state;
952 }
953 /**
954 * Implements a pool of re-usable BOs. The interface is identical to that
955 * of block_pool except that each block is its own BO.
956 */
957 struct anv_bo_pool {
958 struct anv_device *device;
959
960 struct util_sparse_array_free_list free_list[16];
961 };
962
963 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
964 void anv_bo_pool_finish(struct anv_bo_pool *pool);
965 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
966 struct anv_bo **bo_out);
967 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
968
969 struct anv_scratch_pool {
970 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
971 struct anv_bo *bos[16][MESA_SHADER_STAGES];
972 };
973
974 void anv_scratch_pool_init(struct anv_device *device,
975 struct anv_scratch_pool *pool);
976 void anv_scratch_pool_finish(struct anv_device *device,
977 struct anv_scratch_pool *pool);
978 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
979 struct anv_scratch_pool *pool,
980 gl_shader_stage stage,
981 unsigned per_thread_scratch);
982
983 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
984 struct anv_bo_cache {
985 struct util_sparse_array bo_map;
986 pthread_mutex_t mutex;
987 };
988
989 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
990 void anv_bo_cache_finish(struct anv_bo_cache *cache);
991
992 struct anv_memory_type {
993 /* Standard bits passed on to the client */
994 VkMemoryPropertyFlags propertyFlags;
995 uint32_t heapIndex;
996 };
997
998 struct anv_memory_heap {
999 /* Standard bits passed on to the client */
1000 VkDeviceSize size;
1001 VkMemoryHeapFlags flags;
1002
1003 /* Driver-internal book-keeping */
1004 VkDeviceSize used;
1005 };
1006
1007 struct anv_physical_device {
1008 VK_LOADER_DATA _loader_data;
1009
1010 /* Link in anv_instance::physical_devices */
1011 struct list_head link;
1012
1013 struct anv_instance * instance;
1014 bool no_hw;
1015 char path[20];
1016 const char * name;
1017 struct {
1018 uint16_t domain;
1019 uint8_t bus;
1020 uint8_t device;
1021 uint8_t function;
1022 } pci_info;
1023 struct gen_device_info info;
1024 /** Amount of "GPU memory" we want to advertise
1025 *
1026 * Clearly, this value is bogus since Intel is a UMA architecture. On
1027 * gen7 platforms, we are limited by GTT size unless we want to implement
1028 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1029 * practically unlimited. However, we will never report more than 3/4 of
1030 * the total system ram to try and avoid running out of RAM.
1031 */
1032 bool supports_48bit_addresses;
1033 struct brw_compiler * compiler;
1034 struct isl_device isl_dev;
1035 struct gen_perf_config * perf;
1036 int cmd_parser_version;
1037 bool has_softpin;
1038 bool has_exec_async;
1039 bool has_exec_capture;
1040 bool has_exec_fence;
1041 bool has_syncobj;
1042 bool has_syncobj_wait;
1043 bool has_context_priority;
1044 bool has_context_isolation;
1045 bool has_mem_available;
1046 uint64_t gtt_size;
1047
1048 bool use_softpin;
1049 bool always_use_bindless;
1050
1051 /** True if we can access buffers using A64 messages */
1052 bool has_a64_buffer_access;
1053 /** True if we can use bindless access for images */
1054 bool has_bindless_images;
1055 /** True if we can use bindless access for samplers */
1056 bool has_bindless_samplers;
1057
1058 /** True if this device has implicit AUX
1059 *
1060 * If true, CCS is handled as an implicit attachment to the BO rather than
1061 * as an explicitly bound surface.
1062 */
1063 bool has_implicit_ccs;
1064
1065 bool always_flush_cache;
1066
1067 struct anv_device_extension_table supported_extensions;
1068
1069 uint32_t eu_total;
1070 uint32_t subslice_total;
1071
1072 struct {
1073 uint32_t type_count;
1074 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1075 uint32_t heap_count;
1076 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1077 } memory;
1078
1079 uint8_t driver_build_sha1[20];
1080 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1081 uint8_t driver_uuid[VK_UUID_SIZE];
1082 uint8_t device_uuid[VK_UUID_SIZE];
1083
1084 struct disk_cache * disk_cache;
1085
1086 struct wsi_device wsi_device;
1087 int local_fd;
1088 int master_fd;
1089 };
1090
1091 struct anv_app_info {
1092 const char* app_name;
1093 uint32_t app_version;
1094 const char* engine_name;
1095 uint32_t engine_version;
1096 uint32_t api_version;
1097 };
1098
1099 struct anv_instance {
1100 VK_LOADER_DATA _loader_data;
1101
1102 VkAllocationCallbacks alloc;
1103
1104 struct anv_app_info app_info;
1105
1106 struct anv_instance_extension_table enabled_extensions;
1107 struct anv_instance_dispatch_table dispatch;
1108 struct anv_physical_device_dispatch_table physical_device_dispatch;
1109 struct anv_device_dispatch_table device_dispatch;
1110
1111 bool physical_devices_enumerated;
1112 struct list_head physical_devices;
1113
1114 bool pipeline_cache_enabled;
1115
1116 struct vk_debug_report_instance debug_report_callbacks;
1117
1118 struct driOptionCache dri_options;
1119 struct driOptionCache available_dri_options;
1120 };
1121
1122 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1123 void anv_finish_wsi(struct anv_physical_device *physical_device);
1124
1125 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1126 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1127 const char *name);
1128
1129 struct anv_queue_submit {
1130 struct anv_cmd_buffer * cmd_buffer;
1131
1132 uint32_t fence_count;
1133 uint32_t fence_array_length;
1134 struct drm_i915_gem_exec_fence * fences;
1135
1136 uint32_t temporary_semaphore_count;
1137 uint32_t temporary_semaphore_array_length;
1138 struct anv_semaphore_impl * temporary_semaphores;
1139
1140 /* Semaphores to be signaled with a SYNC_FD. */
1141 struct anv_semaphore ** sync_fd_semaphores;
1142 uint32_t sync_fd_semaphore_count;
1143 uint32_t sync_fd_semaphore_array_length;
1144
1145 /* Allocated only with non shareable timelines. */
1146 struct anv_timeline ** wait_timelines;
1147 uint32_t wait_timeline_count;
1148 uint32_t wait_timeline_array_length;
1149 uint64_t * wait_timeline_values;
1150
1151 struct anv_timeline ** signal_timelines;
1152 uint32_t signal_timeline_count;
1153 uint32_t signal_timeline_array_length;
1154 uint64_t * signal_timeline_values;
1155
1156 int in_fence;
1157 bool need_out_fence;
1158 int out_fence;
1159
1160 uint32_t fence_bo_count;
1161 uint32_t fence_bo_array_length;
1162 /* An array of struct anv_bo pointers with lower bit used as a flag to
1163 * signal we will wait on that BO (see anv_(un)pack_ptr).
1164 */
1165 uintptr_t * fence_bos;
1166
1167 const VkAllocationCallbacks * alloc;
1168 VkSystemAllocationScope alloc_scope;
1169
1170 struct anv_bo * simple_bo;
1171 uint32_t simple_bo_size;
1172
1173 struct list_head link;
1174 };
1175
1176 struct anv_queue {
1177 VK_LOADER_DATA _loader_data;
1178
1179 struct anv_device * device;
1180
1181 /*
1182 * A list of struct anv_queue_submit to be submitted to i915.
1183 */
1184 struct list_head queued_submits;
1185
1186 VkDeviceQueueCreateFlags flags;
1187 };
1188
1189 struct anv_pipeline_cache {
1190 struct anv_device * device;
1191 pthread_mutex_t mutex;
1192
1193 struct hash_table * nir_cache;
1194
1195 struct hash_table * cache;
1196 };
1197
1198 struct nir_xfb_info;
1199 struct anv_pipeline_bind_map;
1200
1201 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1202 struct anv_device *device,
1203 bool cache_enabled);
1204 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1205
1206 struct anv_shader_bin *
1207 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1208 const void *key, uint32_t key_size);
1209 struct anv_shader_bin *
1210 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1211 gl_shader_stage stage,
1212 const void *key_data, uint32_t key_size,
1213 const void *kernel_data, uint32_t kernel_size,
1214 const void *constant_data,
1215 uint32_t constant_data_size,
1216 const struct brw_stage_prog_data *prog_data,
1217 uint32_t prog_data_size,
1218 const struct brw_compile_stats *stats,
1219 uint32_t num_stats,
1220 const struct nir_xfb_info *xfb_info,
1221 const struct anv_pipeline_bind_map *bind_map);
1222
1223 struct anv_shader_bin *
1224 anv_device_search_for_kernel(struct anv_device *device,
1225 struct anv_pipeline_cache *cache,
1226 const void *key_data, uint32_t key_size,
1227 bool *user_cache_bit);
1228
1229 struct anv_shader_bin *
1230 anv_device_upload_kernel(struct anv_device *device,
1231 struct anv_pipeline_cache *cache,
1232 gl_shader_stage stage,
1233 const void *key_data, uint32_t key_size,
1234 const void *kernel_data, uint32_t kernel_size,
1235 const void *constant_data,
1236 uint32_t constant_data_size,
1237 const struct brw_stage_prog_data *prog_data,
1238 uint32_t prog_data_size,
1239 const struct brw_compile_stats *stats,
1240 uint32_t num_stats,
1241 const struct nir_xfb_info *xfb_info,
1242 const struct anv_pipeline_bind_map *bind_map);
1243
1244 struct nir_shader;
1245 struct nir_shader_compiler_options;
1246
1247 struct nir_shader *
1248 anv_device_search_for_nir(struct anv_device *device,
1249 struct anv_pipeline_cache *cache,
1250 const struct nir_shader_compiler_options *nir_options,
1251 unsigned char sha1_key[20],
1252 void *mem_ctx);
1253
1254 void
1255 anv_device_upload_nir(struct anv_device *device,
1256 struct anv_pipeline_cache *cache,
1257 const struct nir_shader *nir,
1258 unsigned char sha1_key[20]);
1259
1260 struct anv_device {
1261 VK_LOADER_DATA _loader_data;
1262
1263 VkAllocationCallbacks alloc;
1264
1265 struct anv_physical_device * physical;
1266 bool no_hw;
1267 struct gen_device_info info;
1268 struct isl_device isl_dev;
1269 int context_id;
1270 int fd;
1271 bool can_chain_batches;
1272 bool robust_buffer_access;
1273 struct anv_device_extension_table enabled_extensions;
1274 struct anv_device_dispatch_table dispatch;
1275
1276 pthread_mutex_t vma_mutex;
1277 struct util_vma_heap vma_lo;
1278 struct util_vma_heap vma_cva;
1279 struct util_vma_heap vma_hi;
1280
1281 /** List of all anv_device_memory objects */
1282 struct list_head memory_objects;
1283
1284 struct anv_bo_pool batch_bo_pool;
1285
1286 struct anv_bo_cache bo_cache;
1287
1288 struct anv_state_pool dynamic_state_pool;
1289 struct anv_state_pool instruction_state_pool;
1290 struct anv_state_pool binding_table_pool;
1291 struct anv_state_pool surface_state_pool;
1292
1293 struct anv_bo * workaround_bo;
1294 struct anv_bo * trivial_batch_bo;
1295 struct anv_bo * hiz_clear_bo;
1296
1297 struct anv_pipeline_cache default_pipeline_cache;
1298 struct blorp_context blorp;
1299
1300 struct anv_state border_colors;
1301
1302 struct anv_state slice_hash;
1303
1304 struct anv_queue queue;
1305
1306 struct anv_scratch_pool scratch_pool;
1307
1308 pthread_mutex_t mutex;
1309 pthread_cond_t queue_submit;
1310 int _lost;
1311
1312 struct gen_batch_decode_ctx decoder_ctx;
1313 /*
1314 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1315 * the cmd_buffer's list.
1316 */
1317 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1318
1319 int perf_fd; /* -1 if no opened */
1320 uint64_t perf_metric; /* 0 if unset */
1321
1322 struct gen_aux_map_context *aux_map_ctx;
1323 };
1324
1325 static inline struct anv_instance *
1326 anv_device_instance_or_null(const struct anv_device *device)
1327 {
1328 return device ? device->physical->instance : NULL;
1329 }
1330
1331 static inline struct anv_state_pool *
1332 anv_binding_table_pool(struct anv_device *device)
1333 {
1334 if (device->physical->use_softpin)
1335 return &device->binding_table_pool;
1336 else
1337 return &device->surface_state_pool;
1338 }
1339
1340 static inline struct anv_state
1341 anv_binding_table_pool_alloc(struct anv_device *device) {
1342 if (device->physical->use_softpin)
1343 return anv_state_pool_alloc(&device->binding_table_pool,
1344 device->binding_table_pool.block_size, 0);
1345 else
1346 return anv_state_pool_alloc_back(&device->surface_state_pool);
1347 }
1348
1349 static inline void
1350 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1351 anv_state_pool_free(anv_binding_table_pool(device), state);
1352 }
1353
1354 static inline uint32_t
1355 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1356 {
1357 if (bo->is_external)
1358 return device->isl_dev.mocs.external;
1359 else
1360 return device->isl_dev.mocs.internal;
1361 }
1362
1363 void anv_device_init_blorp(struct anv_device *device);
1364 void anv_device_finish_blorp(struct anv_device *device);
1365
1366 void _anv_device_set_all_queue_lost(struct anv_device *device);
1367 VkResult _anv_device_set_lost(struct anv_device *device,
1368 const char *file, int line,
1369 const char *msg, ...)
1370 anv_printflike(4, 5);
1371 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1372 const char *file, int line,
1373 const char *msg, ...)
1374 anv_printflike(4, 5);
1375 #define anv_device_set_lost(dev, ...) \
1376 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1377 #define anv_queue_set_lost(queue, ...) \
1378 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1379
1380 static inline bool
1381 anv_device_is_lost(struct anv_device *device)
1382 {
1383 return unlikely(p_atomic_read(&device->_lost));
1384 }
1385
1386 VkResult anv_device_query_status(struct anv_device *device);
1387
1388
1389 enum anv_bo_alloc_flags {
1390 /** Specifies that the BO must have a 32-bit address
1391 *
1392 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1393 */
1394 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1395
1396 /** Specifies that the BO may be shared externally */
1397 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1398
1399 /** Specifies that the BO should be mapped */
1400 ANV_BO_ALLOC_MAPPED = (1 << 2),
1401
1402 /** Specifies that the BO should be snooped so we get coherency */
1403 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1404
1405 /** Specifies that the BO should be captured in error states */
1406 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1407
1408 /** Specifies that the BO will have an address assigned by the caller
1409 *
1410 * Such BOs do not exist in any VMA heap.
1411 */
1412 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1413
1414 /** Enables implicit synchronization on the BO
1415 *
1416 * This is the opposite of EXEC_OBJECT_ASYNC.
1417 */
1418 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1419
1420 /** Enables implicit synchronization on the BO
1421 *
1422 * This is equivalent to EXEC_OBJECT_WRITE.
1423 */
1424 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1425
1426 /** Has an address which is visible to the client */
1427 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1428
1429 /** This buffer has implicit CCS data attached to it */
1430 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1431 };
1432
1433 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1434 enum anv_bo_alloc_flags alloc_flags,
1435 uint64_t explicit_address,
1436 struct anv_bo **bo);
1437 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1438 void *host_ptr, uint32_t size,
1439 enum anv_bo_alloc_flags alloc_flags,
1440 uint64_t client_address,
1441 struct anv_bo **bo_out);
1442 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1443 enum anv_bo_alloc_flags alloc_flags,
1444 uint64_t client_address,
1445 struct anv_bo **bo);
1446 VkResult anv_device_export_bo(struct anv_device *device,
1447 struct anv_bo *bo, int *fd_out);
1448 void anv_device_release_bo(struct anv_device *device,
1449 struct anv_bo *bo);
1450
1451 static inline struct anv_bo *
1452 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1453 {
1454 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1455 }
1456
1457 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1458 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1459 int64_t timeout);
1460
1461 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1462 void anv_queue_finish(struct anv_queue *queue);
1463
1464 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1465 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1466 struct anv_batch *batch);
1467
1468 uint64_t anv_gettime_ns(void);
1469 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1470
1471 void* anv_gem_mmap(struct anv_device *device,
1472 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1473 void anv_gem_munmap(void *p, uint64_t size);
1474 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1475 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1476 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1477 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1478 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1479 int anv_gem_execbuffer(struct anv_device *device,
1480 struct drm_i915_gem_execbuffer2 *execbuf);
1481 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1482 uint32_t stride, uint32_t tiling);
1483 int anv_gem_create_context(struct anv_device *device);
1484 bool anv_gem_has_context_priority(int fd);
1485 int anv_gem_destroy_context(struct anv_device *device, int context);
1486 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1487 uint64_t value);
1488 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1489 uint64_t *value);
1490 int anv_gem_get_param(int fd, uint32_t param);
1491 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1492 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1493 int anv_gem_get_aperture(int fd, uint64_t *size);
1494 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1495 uint32_t *active, uint32_t *pending);
1496 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1497 int anv_gem_reg_read(struct anv_device *device,
1498 uint32_t offset, uint64_t *result);
1499 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1500 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1501 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1502 uint32_t read_domains, uint32_t write_domain);
1503 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1504 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1505 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1506 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1507 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1508 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1509 uint32_t handle);
1510 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1511 uint32_t handle, int fd);
1512 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1513 bool anv_gem_supports_syncobj_wait(int fd);
1514 int anv_gem_syncobj_wait(struct anv_device *device,
1515 uint32_t *handles, uint32_t num_handles,
1516 int64_t abs_timeout_ns, bool wait_all);
1517
1518 uint64_t anv_vma_alloc(struct anv_device *device,
1519 uint64_t size, uint64_t align,
1520 enum anv_bo_alloc_flags alloc_flags,
1521 uint64_t client_address);
1522 void anv_vma_free(struct anv_device *device,
1523 uint64_t address, uint64_t size);
1524
1525 struct anv_reloc_list {
1526 uint32_t num_relocs;
1527 uint32_t array_length;
1528 struct drm_i915_gem_relocation_entry * relocs;
1529 struct anv_bo ** reloc_bos;
1530 uint32_t dep_words;
1531 BITSET_WORD * deps;
1532 };
1533
1534 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1535 const VkAllocationCallbacks *alloc);
1536 void anv_reloc_list_finish(struct anv_reloc_list *list,
1537 const VkAllocationCallbacks *alloc);
1538
1539 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1540 const VkAllocationCallbacks *alloc,
1541 uint32_t offset, struct anv_bo *target_bo,
1542 uint32_t delta, uint64_t *address_u64_out);
1543
1544 struct anv_batch_bo {
1545 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1546 struct list_head link;
1547
1548 struct anv_bo * bo;
1549
1550 /* Bytes actually consumed in this batch BO */
1551 uint32_t length;
1552
1553 struct anv_reloc_list relocs;
1554 };
1555
1556 struct anv_batch {
1557 const VkAllocationCallbacks * alloc;
1558
1559 void * start;
1560 void * end;
1561 void * next;
1562
1563 struct anv_reloc_list * relocs;
1564
1565 /* This callback is called (with the associated user data) in the event
1566 * that the batch runs out of space.
1567 */
1568 VkResult (*extend_cb)(struct anv_batch *, void *);
1569 void * user_data;
1570
1571 /**
1572 * Current error status of the command buffer. Used to track inconsistent
1573 * or incomplete command buffer states that are the consequence of run-time
1574 * errors such as out of memory scenarios. We want to track this in the
1575 * batch because the command buffer object is not visible to some parts
1576 * of the driver.
1577 */
1578 VkResult status;
1579 };
1580
1581 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1582 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1583 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1584 void *location, struct anv_bo *bo, uint32_t offset);
1585
1586 static inline VkResult
1587 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1588 {
1589 assert(error != VK_SUCCESS);
1590 if (batch->status == VK_SUCCESS)
1591 batch->status = error;
1592 return batch->status;
1593 }
1594
1595 static inline bool
1596 anv_batch_has_error(struct anv_batch *batch)
1597 {
1598 return batch->status != VK_SUCCESS;
1599 }
1600
1601 struct anv_address {
1602 struct anv_bo *bo;
1603 uint32_t offset;
1604 };
1605
1606 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1607
1608 static inline bool
1609 anv_address_is_null(struct anv_address addr)
1610 {
1611 return addr.bo == NULL && addr.offset == 0;
1612 }
1613
1614 static inline uint64_t
1615 anv_address_physical(struct anv_address addr)
1616 {
1617 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1618 return gen_canonical_address(addr.bo->offset + addr.offset);
1619 else
1620 return gen_canonical_address(addr.offset);
1621 }
1622
1623 static inline struct anv_address
1624 anv_address_add(struct anv_address addr, uint64_t offset)
1625 {
1626 addr.offset += offset;
1627 return addr;
1628 }
1629
1630 static inline void
1631 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1632 {
1633 unsigned reloc_size = 0;
1634 if (device->info.gen >= 8) {
1635 reloc_size = sizeof(uint64_t);
1636 *(uint64_t *)p = gen_canonical_address(v);
1637 } else {
1638 reloc_size = sizeof(uint32_t);
1639 *(uint32_t *)p = v;
1640 }
1641
1642 if (flush && !device->info.has_llc)
1643 gen_flush_range(p, reloc_size);
1644 }
1645
1646 static inline uint64_t
1647 _anv_combine_address(struct anv_batch *batch, void *location,
1648 const struct anv_address address, uint32_t delta)
1649 {
1650 if (address.bo == NULL) {
1651 return address.offset + delta;
1652 } else {
1653 assert(batch->start <= location && location < batch->end);
1654
1655 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1656 }
1657 }
1658
1659 #define __gen_address_type struct anv_address
1660 #define __gen_user_data struct anv_batch
1661 #define __gen_combine_address _anv_combine_address
1662
1663 /* Wrapper macros needed to work around preprocessor argument issues. In
1664 * particular, arguments don't get pre-evaluated if they are concatenated.
1665 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1666 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1667 * We can work around this easily enough with these helpers.
1668 */
1669 #define __anv_cmd_length(cmd) cmd ## _length
1670 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1671 #define __anv_cmd_header(cmd) cmd ## _header
1672 #define __anv_cmd_pack(cmd) cmd ## _pack
1673 #define __anv_reg_num(reg) reg ## _num
1674
1675 #define anv_pack_struct(dst, struc, ...) do { \
1676 struct struc __template = { \
1677 __VA_ARGS__ \
1678 }; \
1679 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1680 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1681 } while (0)
1682
1683 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1684 void *__dst = anv_batch_emit_dwords(batch, n); \
1685 if (__dst) { \
1686 struct cmd __template = { \
1687 __anv_cmd_header(cmd), \
1688 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1689 __VA_ARGS__ \
1690 }; \
1691 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1692 } \
1693 __dst; \
1694 })
1695
1696 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1697 do { \
1698 uint32_t *dw; \
1699 \
1700 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1701 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1702 if (!dw) \
1703 break; \
1704 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1705 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1706 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1707 } while (0)
1708
1709 #define anv_batch_emit(batch, cmd, name) \
1710 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1711 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1712 __builtin_expect(_dst != NULL, 1); \
1713 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1714 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1715 _dst = NULL; \
1716 }))
1717
1718 struct anv_device_memory {
1719 struct list_head link;
1720
1721 struct anv_bo * bo;
1722 struct anv_memory_type * type;
1723 VkDeviceSize map_size;
1724 void * map;
1725
1726 /* If set, we are holding reference to AHardwareBuffer
1727 * which we must release when memory is freed.
1728 */
1729 struct AHardwareBuffer * ahw;
1730
1731 /* If set, this memory comes from a host pointer. */
1732 void * host_ptr;
1733 };
1734
1735 /**
1736 * Header for Vertex URB Entry (VUE)
1737 */
1738 struct anv_vue_header {
1739 uint32_t Reserved;
1740 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1741 uint32_t ViewportIndex;
1742 float PointWidth;
1743 };
1744
1745 /** Struct representing a sampled image descriptor
1746 *
1747 * This descriptor layout is used for sampled images, bare sampler, and
1748 * combined image/sampler descriptors.
1749 */
1750 struct anv_sampled_image_descriptor {
1751 /** Bindless image handle
1752 *
1753 * This is expected to already be shifted such that the 20-bit
1754 * SURFACE_STATE table index is in the top 20 bits.
1755 */
1756 uint32_t image;
1757
1758 /** Bindless sampler handle
1759 *
1760 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1761 * to the dynamic state base address.
1762 */
1763 uint32_t sampler;
1764 };
1765
1766 struct anv_texture_swizzle_descriptor {
1767 /** Texture swizzle
1768 *
1769 * See also nir_intrinsic_channel_select_intel
1770 */
1771 uint8_t swizzle[4];
1772
1773 /** Unused padding to ensure the struct is a multiple of 64 bits */
1774 uint32_t _pad;
1775 };
1776
1777 /** Struct representing a storage image descriptor */
1778 struct anv_storage_image_descriptor {
1779 /** Bindless image handles
1780 *
1781 * These are expected to already be shifted such that the 20-bit
1782 * SURFACE_STATE table index is in the top 20 bits.
1783 */
1784 uint32_t read_write;
1785 uint32_t write_only;
1786 };
1787
1788 /** Struct representing a address/range descriptor
1789 *
1790 * The fields of this struct correspond directly to the data layout of
1791 * nir_address_format_64bit_bounded_global addresses. The last field is the
1792 * offset in the NIR address so it must be zero so that when you load the
1793 * descriptor you get a pointer to the start of the range.
1794 */
1795 struct anv_address_range_descriptor {
1796 uint64_t address;
1797 uint32_t range;
1798 uint32_t zero;
1799 };
1800
1801 enum anv_descriptor_data {
1802 /** The descriptor contains a BTI reference to a surface state */
1803 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1804 /** The descriptor contains a BTI reference to a sampler state */
1805 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1806 /** The descriptor contains an actual buffer view */
1807 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1808 /** The descriptor contains auxiliary image layout data */
1809 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1810 /** The descriptor contains auxiliary image layout data */
1811 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1812 /** anv_address_range_descriptor with a buffer address and range */
1813 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1814 /** Bindless surface handle */
1815 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1816 /** Storage image handles */
1817 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1818 /** Storage image handles */
1819 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1820 };
1821
1822 struct anv_descriptor_set_binding_layout {
1823 #ifndef NDEBUG
1824 /* The type of the descriptors in this binding */
1825 VkDescriptorType type;
1826 #endif
1827
1828 /* Flags provided when this binding was created */
1829 VkDescriptorBindingFlagsEXT flags;
1830
1831 /* Bitfield representing the type of data this descriptor contains */
1832 enum anv_descriptor_data data;
1833
1834 /* Maximum number of YCbCr texture/sampler planes */
1835 uint8_t max_plane_count;
1836
1837 /* Number of array elements in this binding (or size in bytes for inline
1838 * uniform data)
1839 */
1840 uint16_t array_size;
1841
1842 /* Index into the flattend descriptor set */
1843 uint16_t descriptor_index;
1844
1845 /* Index into the dynamic state array for a dynamic buffer */
1846 int16_t dynamic_offset_index;
1847
1848 /* Index into the descriptor set buffer views */
1849 int16_t buffer_view_index;
1850
1851 /* Offset into the descriptor buffer where this descriptor lives */
1852 uint32_t descriptor_offset;
1853
1854 /* Immutable samplers (or NULL if no immutable samplers) */
1855 struct anv_sampler **immutable_samplers;
1856 };
1857
1858 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1859
1860 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1861 VkDescriptorType type);
1862
1863 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1864 const struct anv_descriptor_set_binding_layout *binding,
1865 bool sampler);
1866
1867 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1868 const struct anv_descriptor_set_binding_layout *binding,
1869 bool sampler);
1870
1871 struct anv_descriptor_set_layout {
1872 /* Descriptor set layouts can be destroyed at almost any time */
1873 uint32_t ref_cnt;
1874
1875 /* Number of bindings in this descriptor set */
1876 uint16_t binding_count;
1877
1878 /* Total size of the descriptor set with room for all array entries */
1879 uint16_t size;
1880
1881 /* Shader stages affected by this descriptor set */
1882 uint16_t shader_stages;
1883
1884 /* Number of buffer views in this descriptor set */
1885 uint16_t buffer_view_count;
1886
1887 /* Number of dynamic offsets used by this descriptor set */
1888 uint16_t dynamic_offset_count;
1889
1890 /* For each shader stage, which offsets apply to that stage */
1891 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1892
1893 /* Size of the descriptor buffer for this descriptor set */
1894 uint32_t descriptor_buffer_size;
1895
1896 /* Bindings in this descriptor set */
1897 struct anv_descriptor_set_binding_layout binding[0];
1898 };
1899
1900 static inline void
1901 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1902 {
1903 assert(layout && layout->ref_cnt >= 1);
1904 p_atomic_inc(&layout->ref_cnt);
1905 }
1906
1907 static inline void
1908 anv_descriptor_set_layout_unref(struct anv_device *device,
1909 struct anv_descriptor_set_layout *layout)
1910 {
1911 assert(layout && layout->ref_cnt >= 1);
1912 if (p_atomic_dec_zero(&layout->ref_cnt))
1913 vk_free(&device->alloc, layout);
1914 }
1915
1916 struct anv_descriptor {
1917 VkDescriptorType type;
1918
1919 union {
1920 struct {
1921 VkImageLayout layout;
1922 struct anv_image_view *image_view;
1923 struct anv_sampler *sampler;
1924 };
1925
1926 struct {
1927 struct anv_buffer *buffer;
1928 uint64_t offset;
1929 uint64_t range;
1930 };
1931
1932 struct anv_buffer_view *buffer_view;
1933 };
1934 };
1935
1936 struct anv_descriptor_set {
1937 struct anv_descriptor_pool *pool;
1938 struct anv_descriptor_set_layout *layout;
1939 uint32_t size;
1940
1941 /* State relative to anv_descriptor_pool::bo */
1942 struct anv_state desc_mem;
1943 /* Surface state for the descriptor buffer */
1944 struct anv_state desc_surface_state;
1945
1946 uint32_t buffer_view_count;
1947 struct anv_buffer_view *buffer_views;
1948
1949 /* Link to descriptor pool's desc_sets list . */
1950 struct list_head pool_link;
1951
1952 struct anv_descriptor descriptors[0];
1953 };
1954
1955 struct anv_buffer_view {
1956 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1957 uint64_t range; /**< VkBufferViewCreateInfo::range */
1958
1959 struct anv_address address;
1960
1961 struct anv_state surface_state;
1962 struct anv_state storage_surface_state;
1963 struct anv_state writeonly_storage_surface_state;
1964
1965 struct brw_image_param storage_image_param;
1966 };
1967
1968 struct anv_push_descriptor_set {
1969 struct anv_descriptor_set set;
1970
1971 /* Put this field right behind anv_descriptor_set so it fills up the
1972 * descriptors[0] field. */
1973 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1974
1975 /** True if the descriptor set buffer has been referenced by a draw or
1976 * dispatch command.
1977 */
1978 bool set_used_on_gpu;
1979
1980 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1981 };
1982
1983 struct anv_descriptor_pool {
1984 uint32_t size;
1985 uint32_t next;
1986 uint32_t free_list;
1987
1988 struct anv_bo *bo;
1989 struct util_vma_heap bo_heap;
1990
1991 struct anv_state_stream surface_state_stream;
1992 void *surface_state_free_list;
1993
1994 struct list_head desc_sets;
1995
1996 char data[0];
1997 };
1998
1999 enum anv_descriptor_template_entry_type {
2000 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
2001 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
2002 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
2003 };
2004
2005 struct anv_descriptor_template_entry {
2006 /* The type of descriptor in this entry */
2007 VkDescriptorType type;
2008
2009 /* Binding in the descriptor set */
2010 uint32_t binding;
2011
2012 /* Offset at which to write into the descriptor set binding */
2013 uint32_t array_element;
2014
2015 /* Number of elements to write into the descriptor set binding */
2016 uint32_t array_count;
2017
2018 /* Offset into the user provided data */
2019 size_t offset;
2020
2021 /* Stride between elements into the user provided data */
2022 size_t stride;
2023 };
2024
2025 struct anv_descriptor_update_template {
2026 VkPipelineBindPoint bind_point;
2027
2028 /* The descriptor set this template corresponds to. This value is only
2029 * valid if the template was created with the templateType
2030 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2031 */
2032 uint8_t set;
2033
2034 /* Number of entries in this template */
2035 uint32_t entry_count;
2036
2037 /* Entries of the template */
2038 struct anv_descriptor_template_entry entries[0];
2039 };
2040
2041 size_t
2042 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2043
2044 void
2045 anv_descriptor_set_write_image_view(struct anv_device *device,
2046 struct anv_descriptor_set *set,
2047 const VkDescriptorImageInfo * const info,
2048 VkDescriptorType type,
2049 uint32_t binding,
2050 uint32_t element);
2051
2052 void
2053 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2054 struct anv_descriptor_set *set,
2055 VkDescriptorType type,
2056 struct anv_buffer_view *buffer_view,
2057 uint32_t binding,
2058 uint32_t element);
2059
2060 void
2061 anv_descriptor_set_write_buffer(struct anv_device *device,
2062 struct anv_descriptor_set *set,
2063 struct anv_state_stream *alloc_stream,
2064 VkDescriptorType type,
2065 struct anv_buffer *buffer,
2066 uint32_t binding,
2067 uint32_t element,
2068 VkDeviceSize offset,
2069 VkDeviceSize range);
2070 void
2071 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2072 struct anv_descriptor_set *set,
2073 uint32_t binding,
2074 const void *data,
2075 size_t offset,
2076 size_t size);
2077
2078 void
2079 anv_descriptor_set_write_template(struct anv_device *device,
2080 struct anv_descriptor_set *set,
2081 struct anv_state_stream *alloc_stream,
2082 const struct anv_descriptor_update_template *template,
2083 const void *data);
2084
2085 VkResult
2086 anv_descriptor_set_create(struct anv_device *device,
2087 struct anv_descriptor_pool *pool,
2088 struct anv_descriptor_set_layout *layout,
2089 struct anv_descriptor_set **out_set);
2090
2091 void
2092 anv_descriptor_set_destroy(struct anv_device *device,
2093 struct anv_descriptor_pool *pool,
2094 struct anv_descriptor_set *set);
2095
2096 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2097 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2098 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2099 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2100 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2101 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2102
2103 struct anv_pipeline_binding {
2104 /** Index in the descriptor set
2105 *
2106 * This is a flattened index; the descriptor set layout is already taken
2107 * into account.
2108 */
2109 uint32_t index;
2110
2111 /** The descriptor set this surface corresponds to.
2112 *
2113 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2114 * binding is not a normal descriptor set but something else.
2115 */
2116 uint8_t set;
2117
2118 union {
2119 /** Plane in the binding index for images */
2120 uint8_t plane;
2121
2122 /** Input attachment index (relative to the subpass) */
2123 uint8_t input_attachment_index;
2124
2125 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2126 uint8_t dynamic_offset_index;
2127 };
2128
2129 /** For a storage image, whether it is write-only */
2130 uint8_t write_only;
2131
2132 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2133 * assuming POD zero-initialization.
2134 */
2135 uint8_t pad;
2136 };
2137
2138 struct anv_push_range {
2139 /** Index in the descriptor set */
2140 uint32_t index;
2141
2142 /** Descriptor set index */
2143 uint8_t set;
2144
2145 /** Dynamic offset index (for dynamic UBOs) */
2146 uint8_t dynamic_offset_index;
2147
2148 /** Start offset in units of 32B */
2149 uint8_t start;
2150
2151 /** Range in units of 32B */
2152 uint8_t length;
2153 };
2154
2155 struct anv_pipeline_layout {
2156 struct {
2157 struct anv_descriptor_set_layout *layout;
2158 uint32_t dynamic_offset_start;
2159 } set[MAX_SETS];
2160
2161 uint32_t num_sets;
2162
2163 unsigned char sha1[20];
2164 };
2165
2166 struct anv_buffer {
2167 struct anv_device * device;
2168 VkDeviceSize size;
2169
2170 VkBufferUsageFlags usage;
2171
2172 /* Set when bound */
2173 struct anv_address address;
2174 };
2175
2176 static inline uint64_t
2177 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2178 {
2179 assert(offset <= buffer->size);
2180 if (range == VK_WHOLE_SIZE) {
2181 return buffer->size - offset;
2182 } else {
2183 assert(range + offset >= range);
2184 assert(range + offset <= buffer->size);
2185 return range;
2186 }
2187 }
2188
2189 enum anv_cmd_dirty_bits {
2190 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2191 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2192 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2193 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2194 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2195 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2196 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2197 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2198 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2199 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2200 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2201 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2202 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2203 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2204 };
2205 typedef uint32_t anv_cmd_dirty_mask_t;
2206
2207 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2208 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2209 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2210 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2211 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2212 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2213 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2214 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2215 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2216 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2217 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2218
2219 static inline enum anv_cmd_dirty_bits
2220 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2221 {
2222 switch (vk_state) {
2223 case VK_DYNAMIC_STATE_VIEWPORT:
2224 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2225 case VK_DYNAMIC_STATE_SCISSOR:
2226 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2227 case VK_DYNAMIC_STATE_LINE_WIDTH:
2228 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2229 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2230 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2231 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2232 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2233 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2234 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2235 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2236 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2237 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2238 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2239 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2240 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2241 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2242 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2243 default:
2244 assert(!"Unsupported dynamic state");
2245 return 0;
2246 }
2247 }
2248
2249
2250 enum anv_pipe_bits {
2251 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2252 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2253 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2254 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2255 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2256 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2257 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2258 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2259 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2260 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2261 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2262 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2263 ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
2264
2265 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2266 * a flush has happened but not a CS stall. The next time we do any sort
2267 * of invalidation we need to insert a CS stall at that time. Otherwise,
2268 * we would have to CS stall on every flush which could be bad.
2269 */
2270 ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
2271
2272 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2273 * target operations related to transfer commands with VkBuffer as
2274 * destination are ongoing. Some operations like copies on the command
2275 * streamer might need to be aware of this to trigger the appropriate stall
2276 * before they can proceed with the copy.
2277 */
2278 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 23),
2279
2280 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2281 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2282 * done by writing the AUX-TT register.
2283 */
2284 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 24),
2285
2286 /* This bit does not exist directly in PIPE_CONTROL. It means that a
2287 * PIPE_CONTROL with a post-sync operation will follow. This is used to
2288 * implement a workaround for Gen9.
2289 */
2290 ANV_PIPE_POST_SYNC_BIT = (1 << 25),
2291 };
2292
2293 #define ANV_PIPE_FLUSH_BITS ( \
2294 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2295 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2296 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2297 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2298
2299 #define ANV_PIPE_STALL_BITS ( \
2300 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2301 ANV_PIPE_DEPTH_STALL_BIT | \
2302 ANV_PIPE_CS_STALL_BIT)
2303
2304 #define ANV_PIPE_INVALIDATE_BITS ( \
2305 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2306 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2307 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2308 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2309 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2310 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2311 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2312
2313 static inline enum anv_pipe_bits
2314 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2315 {
2316 enum anv_pipe_bits pipe_bits = 0;
2317
2318 unsigned b;
2319 for_each_bit(b, flags) {
2320 switch ((VkAccessFlagBits)(1 << b)) {
2321 case VK_ACCESS_SHADER_WRITE_BIT:
2322 /* We're transitioning a buffer that was previously used as write
2323 * destination through the data port. To make its content available
2324 * to future operations, flush the data cache.
2325 */
2326 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2327 break;
2328 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2329 /* We're transitioning a buffer that was previously used as render
2330 * target. To make its content available to future operations, flush
2331 * the render target cache.
2332 */
2333 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2334 break;
2335 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2336 /* We're transitioning a buffer that was previously used as depth
2337 * buffer. To make its content available to future operations, flush
2338 * the depth cache.
2339 */
2340 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2341 break;
2342 case VK_ACCESS_TRANSFER_WRITE_BIT:
2343 /* We're transitioning a buffer that was previously used as a
2344 * transfer write destination. Generic write operations include color
2345 * & depth operations as well as buffer operations like :
2346 * - vkCmdClearColorImage()
2347 * - vkCmdClearDepthStencilImage()
2348 * - vkCmdBlitImage()
2349 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2350 *
2351 * Most of these operations are implemented using Blorp which writes
2352 * through the render target, so flush that cache to make it visible
2353 * to future operations. And for depth related operations we also
2354 * need to flush the depth cache.
2355 */
2356 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2357 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2358 break;
2359 case VK_ACCESS_MEMORY_WRITE_BIT:
2360 /* We're transitioning a buffer for generic write operations. Flush
2361 * all the caches.
2362 */
2363 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2364 break;
2365 default:
2366 break; /* Nothing to do */
2367 }
2368 }
2369
2370 return pipe_bits;
2371 }
2372
2373 static inline enum anv_pipe_bits
2374 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2375 {
2376 enum anv_pipe_bits pipe_bits = 0;
2377
2378 unsigned b;
2379 for_each_bit(b, flags) {
2380 switch ((VkAccessFlagBits)(1 << b)) {
2381 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2382 /* Indirect draw commands take a buffer as input that we're going to
2383 * read from the command streamer to load some of the HW registers
2384 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2385 * command streamer stall so that all the cache flushes have
2386 * completed before the command streamer loads from memory.
2387 */
2388 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2389 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2390 * through a vertex buffer, so invalidate that cache.
2391 */
2392 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2393 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2394 * UBO from the buffer, so we need to invalidate constant cache.
2395 */
2396 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2397 break;
2398 case VK_ACCESS_INDEX_READ_BIT:
2399 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2400 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2401 * commands, so we invalidate the VF cache to make sure there is no
2402 * stale data when we start rendering.
2403 */
2404 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2405 break;
2406 case VK_ACCESS_UNIFORM_READ_BIT:
2407 /* We transitioning a buffer to be used as uniform data. Because
2408 * uniform is accessed through the data port & sampler, we need to
2409 * invalidate the texture cache (sampler) & constant cache (data
2410 * port) to avoid stale data.
2411 */
2412 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2413 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2414 break;
2415 case VK_ACCESS_SHADER_READ_BIT:
2416 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2417 case VK_ACCESS_TRANSFER_READ_BIT:
2418 /* Transitioning a buffer to be read through the sampler, so
2419 * invalidate the texture cache, we don't want any stale data.
2420 */
2421 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2422 break;
2423 case VK_ACCESS_MEMORY_READ_BIT:
2424 /* Transitioning a buffer for generic read, invalidate all the
2425 * caches.
2426 */
2427 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2428 break;
2429 case VK_ACCESS_MEMORY_WRITE_BIT:
2430 /* Generic write, make sure all previously written things land in
2431 * memory.
2432 */
2433 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2434 break;
2435 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2436 /* Transitioning a buffer for conditional rendering. We'll load the
2437 * content of this buffer into HW registers using the command
2438 * streamer, so we need to stall the command streamer to make sure
2439 * any in-flight flush operations have completed.
2440 */
2441 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2442 break;
2443 default:
2444 break; /* Nothing to do */
2445 }
2446 }
2447
2448 return pipe_bits;
2449 }
2450
2451 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2452 VK_IMAGE_ASPECT_COLOR_BIT | \
2453 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2454 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2455 VK_IMAGE_ASPECT_PLANE_2_BIT)
2456 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2457 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2458 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2459 VK_IMAGE_ASPECT_PLANE_2_BIT)
2460
2461 struct anv_vertex_binding {
2462 struct anv_buffer * buffer;
2463 VkDeviceSize offset;
2464 };
2465
2466 struct anv_xfb_binding {
2467 struct anv_buffer * buffer;
2468 VkDeviceSize offset;
2469 VkDeviceSize size;
2470 };
2471
2472 struct anv_push_constants {
2473 /** Push constant data provided by the client through vkPushConstants */
2474 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2475
2476 /** Dynamic offsets for dynamic UBOs and SSBOs */
2477 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2478
2479 /** Pad out to a multiple of 32 bytes */
2480 uint32_t push_ubo_sizes[4];
2481
2482 struct {
2483 /** Base workgroup ID
2484 *
2485 * Used for vkCmdDispatchBase.
2486 */
2487 uint32_t base_work_group_id[3];
2488
2489 /** Subgroup ID
2490 *
2491 * This is never set by software but is implicitly filled out when
2492 * uploading the push constants for compute shaders.
2493 */
2494 uint32_t subgroup_id;
2495 } cs;
2496 };
2497
2498 struct anv_dynamic_state {
2499 struct {
2500 uint32_t count;
2501 VkViewport viewports[MAX_VIEWPORTS];
2502 } viewport;
2503
2504 struct {
2505 uint32_t count;
2506 VkRect2D scissors[MAX_SCISSORS];
2507 } scissor;
2508
2509 float line_width;
2510
2511 struct {
2512 float bias;
2513 float clamp;
2514 float slope;
2515 } depth_bias;
2516
2517 float blend_constants[4];
2518
2519 struct {
2520 float min;
2521 float max;
2522 } depth_bounds;
2523
2524 struct {
2525 uint32_t front;
2526 uint32_t back;
2527 } stencil_compare_mask;
2528
2529 struct {
2530 uint32_t front;
2531 uint32_t back;
2532 } stencil_write_mask;
2533
2534 struct {
2535 uint32_t front;
2536 uint32_t back;
2537 } stencil_reference;
2538
2539 struct {
2540 uint32_t factor;
2541 uint16_t pattern;
2542 } line_stipple;
2543 };
2544
2545 extern const struct anv_dynamic_state default_dynamic_state;
2546
2547 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2548 const struct anv_dynamic_state *src,
2549 uint32_t copy_mask);
2550
2551 struct anv_surface_state {
2552 struct anv_state state;
2553 /** Address of the surface referred to by this state
2554 *
2555 * This address is relative to the start of the BO.
2556 */
2557 struct anv_address address;
2558 /* Address of the aux surface, if any
2559 *
2560 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2561 *
2562 * With the exception of gen8, the bottom 12 bits of this address' offset
2563 * include extra aux information.
2564 */
2565 struct anv_address aux_address;
2566 /* Address of the clear color, if any
2567 *
2568 * This address is relative to the start of the BO.
2569 */
2570 struct anv_address clear_address;
2571 };
2572
2573 /**
2574 * Attachment state when recording a renderpass instance.
2575 *
2576 * The clear value is valid only if there exists a pending clear.
2577 */
2578 struct anv_attachment_state {
2579 enum isl_aux_usage aux_usage;
2580 enum isl_aux_usage input_aux_usage;
2581 struct anv_surface_state color;
2582 struct anv_surface_state input;
2583
2584 VkImageLayout current_layout;
2585 VkImageLayout current_stencil_layout;
2586 VkImageAspectFlags pending_clear_aspects;
2587 VkImageAspectFlags pending_load_aspects;
2588 bool fast_clear;
2589 VkClearValue clear_value;
2590 bool clear_color_is_zero_one;
2591 bool clear_color_is_zero;
2592
2593 /* When multiview is active, attachments with a renderpass clear
2594 * operation have their respective layers cleared on the first
2595 * subpass that uses them, and only in that subpass. We keep track
2596 * of this using a bitfield to indicate which layers of an attachment
2597 * have not been cleared yet when multiview is active.
2598 */
2599 uint32_t pending_clear_views;
2600 struct anv_image_view * image_view;
2601 };
2602
2603 /** State tracking for vertex buffer flushes
2604 *
2605 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2606 * addresses. If you happen to have two vertex buffers which get placed
2607 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2608 * collisions. In order to solve this problem, we track vertex address ranges
2609 * which are live in the cache and invalidate the cache if one ever exceeds 32
2610 * bits.
2611 */
2612 struct anv_vb_cache_range {
2613 /* Virtual address at which the live vertex buffer cache range starts for
2614 * this vertex buffer index.
2615 */
2616 uint64_t start;
2617
2618 /* Virtual address of the byte after where vertex buffer cache range ends.
2619 * This is exclusive such that end - start is the size of the range.
2620 */
2621 uint64_t end;
2622 };
2623
2624 /** State tracking for particular pipeline bind point
2625 *
2626 * This struct is the base struct for anv_cmd_graphics_state and
2627 * anv_cmd_compute_state. These are used to track state which is bound to a
2628 * particular type of pipeline. Generic state that applies per-stage such as
2629 * binding table offsets and push constants is tracked generically with a
2630 * per-stage array in anv_cmd_state.
2631 */
2632 struct anv_cmd_pipeline_state {
2633 struct anv_descriptor_set *descriptors[MAX_SETS];
2634 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2635 };
2636
2637 /** State tracking for graphics pipeline
2638 *
2639 * This has anv_cmd_pipeline_state as a base struct to track things which get
2640 * bound to a graphics pipeline. Along with general pipeline bind point state
2641 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2642 * state which is graphics-specific.
2643 */
2644 struct anv_cmd_graphics_state {
2645 struct anv_cmd_pipeline_state base;
2646
2647 struct anv_graphics_pipeline *pipeline;
2648
2649 anv_cmd_dirty_mask_t dirty;
2650 uint32_t vb_dirty;
2651
2652 struct anv_vb_cache_range ib_bound_range;
2653 struct anv_vb_cache_range ib_dirty_range;
2654 struct anv_vb_cache_range vb_bound_ranges[33];
2655 struct anv_vb_cache_range vb_dirty_ranges[33];
2656
2657 struct anv_dynamic_state dynamic;
2658
2659 struct {
2660 struct anv_buffer *index_buffer;
2661 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2662 uint32_t index_offset;
2663 } gen7;
2664 };
2665
2666 /** State tracking for compute pipeline
2667 *
2668 * This has anv_cmd_pipeline_state as a base struct to track things which get
2669 * bound to a compute pipeline. Along with general pipeline bind point state
2670 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2671 * state which is compute-specific.
2672 */
2673 struct anv_cmd_compute_state {
2674 struct anv_cmd_pipeline_state base;
2675
2676 struct anv_compute_pipeline *pipeline;
2677
2678 bool pipeline_dirty;
2679
2680 struct anv_address num_workgroups;
2681 };
2682
2683 /** State required while building cmd buffer */
2684 struct anv_cmd_state {
2685 /* PIPELINE_SELECT.PipelineSelection */
2686 uint32_t current_pipeline;
2687 const struct gen_l3_config * current_l3_config;
2688 uint32_t last_aux_map_state;
2689
2690 struct anv_cmd_graphics_state gfx;
2691 struct anv_cmd_compute_state compute;
2692
2693 enum anv_pipe_bits pending_pipe_bits;
2694 VkShaderStageFlags descriptors_dirty;
2695 VkShaderStageFlags push_constants_dirty;
2696
2697 struct anv_framebuffer * framebuffer;
2698 struct anv_render_pass * pass;
2699 struct anv_subpass * subpass;
2700 VkRect2D render_area;
2701 uint32_t restart_index;
2702 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2703 bool xfb_enabled;
2704 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2705 VkShaderStageFlags push_constant_stages;
2706 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2707 struct anv_state binding_tables[MESA_SHADER_STAGES];
2708 struct anv_state samplers[MESA_SHADER_STAGES];
2709
2710 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2711 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2712 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2713
2714 /**
2715 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2716 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2717 * and before invoking the secondary in ExecuteCommands.
2718 */
2719 bool pma_fix_enabled;
2720
2721 /**
2722 * Whether or not we know for certain that HiZ is enabled for the current
2723 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2724 * enabled or not, this will be false.
2725 */
2726 bool hiz_enabled;
2727
2728 bool conditional_render_enabled;
2729
2730 /**
2731 * Last rendering scale argument provided to
2732 * genX(cmd_buffer_emit_hashing_mode)().
2733 */
2734 unsigned current_hash_scale;
2735
2736 /**
2737 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2738 * valid only when recording a render pass instance.
2739 */
2740 struct anv_attachment_state * attachments;
2741
2742 /**
2743 * Surface states for color render targets. These are stored in a single
2744 * flat array. For depth-stencil attachments, the surface state is simply
2745 * left blank.
2746 */
2747 struct anv_state render_pass_states;
2748
2749 /**
2750 * A null surface state of the right size to match the framebuffer. This
2751 * is one of the states in render_pass_states.
2752 */
2753 struct anv_state null_surface_state;
2754 };
2755
2756 struct anv_cmd_pool {
2757 VkAllocationCallbacks alloc;
2758 struct list_head cmd_buffers;
2759 };
2760
2761 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2762
2763 enum anv_cmd_buffer_exec_mode {
2764 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2765 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2766 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2767 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2768 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2769 };
2770
2771 struct anv_cmd_buffer {
2772 VK_LOADER_DATA _loader_data;
2773
2774 struct anv_device * device;
2775
2776 struct anv_cmd_pool * pool;
2777 struct list_head pool_link;
2778
2779 struct anv_batch batch;
2780
2781 /* Fields required for the actual chain of anv_batch_bo's.
2782 *
2783 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2784 */
2785 struct list_head batch_bos;
2786 enum anv_cmd_buffer_exec_mode exec_mode;
2787
2788 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2789 * referenced by this command buffer
2790 *
2791 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2792 */
2793 struct u_vector seen_bbos;
2794
2795 /* A vector of int32_t's for every block of binding tables.
2796 *
2797 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2798 */
2799 struct u_vector bt_block_states;
2800 struct anv_state bt_next;
2801
2802 struct anv_reloc_list surface_relocs;
2803 /** Last seen surface state block pool center bo offset */
2804 uint32_t last_ss_pool_center;
2805
2806 /* Serial for tracking buffer completion */
2807 uint32_t serial;
2808
2809 /* Stream objects for storing temporary data */
2810 struct anv_state_stream surface_state_stream;
2811 struct anv_state_stream dynamic_state_stream;
2812
2813 VkCommandBufferUsageFlags usage_flags;
2814 VkCommandBufferLevel level;
2815
2816 struct anv_cmd_state state;
2817
2818 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2819 uint64_t intel_perf_marker;
2820 };
2821
2822 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2823 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2824 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2825 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2826 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2827 struct anv_cmd_buffer *secondary);
2828 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2829 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2830 struct anv_cmd_buffer *cmd_buffer,
2831 const VkSemaphore *in_semaphores,
2832 const uint64_t *in_wait_values,
2833 uint32_t num_in_semaphores,
2834 const VkSemaphore *out_semaphores,
2835 const uint64_t *out_signal_values,
2836 uint32_t num_out_semaphores,
2837 VkFence fence);
2838
2839 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2840
2841 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2842 const void *data, uint32_t size, uint32_t alignment);
2843 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2844 uint32_t *a, uint32_t *b,
2845 uint32_t dwords, uint32_t alignment);
2846
2847 struct anv_address
2848 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2849 struct anv_state
2850 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2851 uint32_t entries, uint32_t *state_offset);
2852 struct anv_state
2853 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2854 struct anv_state
2855 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2856 uint32_t size, uint32_t alignment);
2857
2858 VkResult
2859 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2860
2861 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2862 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2863 bool depth_clamp_enable);
2864 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2865
2866 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2867 struct anv_render_pass *pass,
2868 struct anv_framebuffer *framebuffer,
2869 const VkClearValue *clear_values);
2870
2871 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2872
2873 struct anv_state
2874 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2875 gl_shader_stage stage);
2876 struct anv_state
2877 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2878
2879 const struct anv_image_view *
2880 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2881
2882 VkResult
2883 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2884 uint32_t num_entries,
2885 uint32_t *state_offset,
2886 struct anv_state *bt_state);
2887
2888 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2889
2890 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2891
2892 enum anv_fence_type {
2893 ANV_FENCE_TYPE_NONE = 0,
2894 ANV_FENCE_TYPE_BO,
2895 ANV_FENCE_TYPE_WSI_BO,
2896 ANV_FENCE_TYPE_SYNCOBJ,
2897 ANV_FENCE_TYPE_WSI,
2898 };
2899
2900 enum anv_bo_fence_state {
2901 /** Indicates that this is a new (or newly reset fence) */
2902 ANV_BO_FENCE_STATE_RESET,
2903
2904 /** Indicates that this fence has been submitted to the GPU but is still
2905 * (as far as we know) in use by the GPU.
2906 */
2907 ANV_BO_FENCE_STATE_SUBMITTED,
2908
2909 ANV_BO_FENCE_STATE_SIGNALED,
2910 };
2911
2912 struct anv_fence_impl {
2913 enum anv_fence_type type;
2914
2915 union {
2916 /** Fence implementation for BO fences
2917 *
2918 * These fences use a BO and a set of CPU-tracked state flags. The BO
2919 * is added to the object list of the last execbuf call in a QueueSubmit
2920 * and is marked EXEC_WRITE. The state flags track when the BO has been
2921 * submitted to the kernel. We need to do this because Vulkan lets you
2922 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2923 * will say it's idle in this case.
2924 */
2925 struct {
2926 struct anv_bo *bo;
2927 enum anv_bo_fence_state state;
2928 } bo;
2929
2930 /** DRM syncobj handle for syncobj-based fences */
2931 uint32_t syncobj;
2932
2933 /** WSI fence */
2934 struct wsi_fence *fence_wsi;
2935 };
2936 };
2937
2938 struct anv_fence {
2939 /* Permanent fence state. Every fence has some form of permanent state
2940 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2941 * cross-process fences) or it could just be a dummy for use internally.
2942 */
2943 struct anv_fence_impl permanent;
2944
2945 /* Temporary fence state. A fence *may* have temporary state. That state
2946 * is added to the fence by an import operation and is reset back to
2947 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2948 * state cannot be signaled because the fence must already be signaled
2949 * before the temporary state can be exported from the fence in the other
2950 * process and imported here.
2951 */
2952 struct anv_fence_impl temporary;
2953 };
2954
2955 void anv_fence_reset_temporary(struct anv_device *device,
2956 struct anv_fence *fence);
2957
2958 struct anv_event {
2959 uint64_t semaphore;
2960 struct anv_state state;
2961 };
2962
2963 enum anv_semaphore_type {
2964 ANV_SEMAPHORE_TYPE_NONE = 0,
2965 ANV_SEMAPHORE_TYPE_DUMMY,
2966 ANV_SEMAPHORE_TYPE_BO,
2967 ANV_SEMAPHORE_TYPE_WSI_BO,
2968 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2969 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2970 ANV_SEMAPHORE_TYPE_TIMELINE,
2971 };
2972
2973 struct anv_timeline_point {
2974 struct list_head link;
2975
2976 uint64_t serial;
2977
2978 /* Number of waiter on this point, when > 0 the point should not be garbage
2979 * collected.
2980 */
2981 int waiting;
2982
2983 /* BO used for synchronization. */
2984 struct anv_bo *bo;
2985 };
2986
2987 struct anv_timeline {
2988 pthread_mutex_t mutex;
2989 pthread_cond_t cond;
2990
2991 uint64_t highest_past;
2992 uint64_t highest_pending;
2993
2994 struct list_head points;
2995 struct list_head free_points;
2996 };
2997
2998 struct anv_semaphore_impl {
2999 enum anv_semaphore_type type;
3000
3001 union {
3002 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
3003 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
3004 * object list on any execbuf2 calls for which this semaphore is used as
3005 * a wait or signal fence. When used as a signal fence or when type ==
3006 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
3007 */
3008 struct anv_bo *bo;
3009
3010 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
3011 * If the semaphore is in the unsignaled state due to either just being
3012 * created or because it has been used for a wait, fd will be -1.
3013 */
3014 int fd;
3015
3016 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
3017 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
3018 * import so we don't need to bother with a userspace cache.
3019 */
3020 uint32_t syncobj;
3021
3022 /* Non shareable timeline semaphore
3023 *
3024 * Used when kernel don't have support for timeline semaphores.
3025 */
3026 struct anv_timeline timeline;
3027 };
3028 };
3029
3030 struct anv_semaphore {
3031 uint32_t refcount;
3032
3033 /* Permanent semaphore state. Every semaphore has some form of permanent
3034 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3035 * (for cross-process semaphores0 or it could just be a dummy for use
3036 * internally.
3037 */
3038 struct anv_semaphore_impl permanent;
3039
3040 /* Temporary semaphore state. A semaphore *may* have temporary state.
3041 * That state is added to the semaphore by an import operation and is reset
3042 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3043 * semaphore with temporary state cannot be signaled because the semaphore
3044 * must already be signaled before the temporary state can be exported from
3045 * the semaphore in the other process and imported here.
3046 */
3047 struct anv_semaphore_impl temporary;
3048 };
3049
3050 void anv_semaphore_reset_temporary(struct anv_device *device,
3051 struct anv_semaphore *semaphore);
3052
3053 struct anv_shader_module {
3054 unsigned char sha1[20];
3055 uint32_t size;
3056 char data[0];
3057 };
3058
3059 static inline gl_shader_stage
3060 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3061 {
3062 assert(__builtin_popcount(vk_stage) == 1);
3063 return ffs(vk_stage) - 1;
3064 }
3065
3066 static inline VkShaderStageFlagBits
3067 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3068 {
3069 return (1 << mesa_stage);
3070 }
3071
3072 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3073
3074 #define anv_foreach_stage(stage, stage_bits) \
3075 for (gl_shader_stage stage, \
3076 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3077 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3078 __tmp &= ~(1 << (stage)))
3079
3080 struct anv_pipeline_bind_map {
3081 unsigned char surface_sha1[20];
3082 unsigned char sampler_sha1[20];
3083 unsigned char push_sha1[20];
3084
3085 uint32_t surface_count;
3086 uint32_t sampler_count;
3087
3088 struct anv_pipeline_binding * surface_to_descriptor;
3089 struct anv_pipeline_binding * sampler_to_descriptor;
3090
3091 struct anv_push_range push_ranges[4];
3092 };
3093
3094 struct anv_shader_bin_key {
3095 uint32_t size;
3096 uint8_t data[0];
3097 };
3098
3099 struct anv_shader_bin {
3100 uint32_t ref_cnt;
3101
3102 gl_shader_stage stage;
3103
3104 const struct anv_shader_bin_key *key;
3105
3106 struct anv_state kernel;
3107 uint32_t kernel_size;
3108
3109 struct anv_state constant_data;
3110 uint32_t constant_data_size;
3111
3112 const struct brw_stage_prog_data *prog_data;
3113 uint32_t prog_data_size;
3114
3115 struct brw_compile_stats stats[3];
3116 uint32_t num_stats;
3117
3118 struct nir_xfb_info *xfb_info;
3119
3120 struct anv_pipeline_bind_map bind_map;
3121 };
3122
3123 struct anv_shader_bin *
3124 anv_shader_bin_create(struct anv_device *device,
3125 gl_shader_stage stage,
3126 const void *key, uint32_t key_size,
3127 const void *kernel, uint32_t kernel_size,
3128 const void *constant_data, uint32_t constant_data_size,
3129 const struct brw_stage_prog_data *prog_data,
3130 uint32_t prog_data_size,
3131 const struct brw_compile_stats *stats, uint32_t num_stats,
3132 const struct nir_xfb_info *xfb_info,
3133 const struct anv_pipeline_bind_map *bind_map);
3134
3135 void
3136 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3137
3138 static inline void
3139 anv_shader_bin_ref(struct anv_shader_bin *shader)
3140 {
3141 assert(shader && shader->ref_cnt >= 1);
3142 p_atomic_inc(&shader->ref_cnt);
3143 }
3144
3145 static inline void
3146 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3147 {
3148 assert(shader && shader->ref_cnt >= 1);
3149 if (p_atomic_dec_zero(&shader->ref_cnt))
3150 anv_shader_bin_destroy(device, shader);
3151 }
3152
3153 struct anv_pipeline_executable {
3154 gl_shader_stage stage;
3155
3156 struct brw_compile_stats stats;
3157
3158 char *nir;
3159 char *disasm;
3160 };
3161
3162 enum anv_pipeline_type {
3163 ANV_PIPELINE_GRAPHICS,
3164 ANV_PIPELINE_COMPUTE,
3165 };
3166
3167 struct anv_pipeline {
3168 struct anv_device * device;
3169
3170 struct anv_batch batch;
3171 struct anv_reloc_list batch_relocs;
3172
3173 void * mem_ctx;
3174
3175 enum anv_pipeline_type type;
3176 VkPipelineCreateFlags flags;
3177
3178 struct util_dynarray executables;
3179
3180 const struct gen_l3_config * l3_config;
3181 };
3182
3183 struct anv_graphics_pipeline {
3184 struct anv_pipeline base;
3185
3186 uint32_t batch_data[512];
3187
3188 anv_cmd_dirty_mask_t dynamic_state_mask;
3189 struct anv_dynamic_state dynamic_state;
3190
3191 uint32_t topology;
3192
3193 struct anv_subpass * subpass;
3194
3195 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3196
3197 VkShaderStageFlags active_stages;
3198
3199 bool primitive_restart;
3200 bool writes_depth;
3201 bool depth_test_enable;
3202 bool writes_stencil;
3203 bool stencil_test_enable;
3204 bool depth_clamp_enable;
3205 bool depth_clip_enable;
3206 bool sample_shading_enable;
3207 bool kill_pixel;
3208 bool depth_bounds_test_enable;
3209
3210 struct anv_state blend_state;
3211
3212 uint32_t vb_used;
3213 struct anv_pipeline_vertex_binding {
3214 uint32_t stride;
3215 bool instanced;
3216 uint32_t instance_divisor;
3217 } vb[MAX_VBS];
3218
3219 struct {
3220 uint32_t sf[7];
3221 uint32_t depth_stencil_state[3];
3222 } gen7;
3223
3224 struct {
3225 uint32_t sf[4];
3226 uint32_t raster[5];
3227 uint32_t wm_depth_stencil[3];
3228 } gen8;
3229
3230 struct {
3231 uint32_t wm_depth_stencil[4];
3232 } gen9;
3233 };
3234
3235 struct anv_compute_pipeline {
3236 struct anv_pipeline base;
3237
3238 struct anv_shader_bin * cs;
3239 uint32_t cs_right_mask;
3240 uint32_t batch_data[9];
3241 uint32_t interface_descriptor_data[8];
3242 };
3243
3244 #define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
3245 static inline struct anv_##pipe_type##_pipeline * \
3246 anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
3247 { \
3248 assert(pipeline->type == pipe_enum); \
3249 return (struct anv_##pipe_type##_pipeline *) pipeline; \
3250 }
3251
3252 ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
3253 ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
3254
3255 static inline bool
3256 anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
3257 gl_shader_stage stage)
3258 {
3259 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3260 }
3261
3262 #define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
3263 static inline const struct brw_##prefix##_prog_data * \
3264 get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
3265 { \
3266 if (anv_pipeline_has_stage(pipeline, stage)) { \
3267 return (const struct brw_##prefix##_prog_data *) \
3268 pipeline->shaders[stage]->prog_data; \
3269 } else { \
3270 return NULL; \
3271 } \
3272 }
3273
3274 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3275 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3276 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3277 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3278 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3279
3280 static inline const struct brw_cs_prog_data *
3281 get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
3282 {
3283 assert(pipeline->cs);
3284 return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
3285 }
3286
3287 static inline const struct brw_vue_prog_data *
3288 anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
3289 {
3290 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3291 return &get_gs_prog_data(pipeline)->base;
3292 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3293 return &get_tes_prog_data(pipeline)->base;
3294 else
3295 return &get_vs_prog_data(pipeline)->base;
3296 }
3297
3298 VkResult
3299 anv_pipeline_init(struct anv_graphics_pipeline *pipeline, struct anv_device *device,
3300 struct anv_pipeline_cache *cache,
3301 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3302 const VkAllocationCallbacks *alloc);
3303
3304 VkResult
3305 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
3306 struct anv_pipeline_cache *cache,
3307 const VkComputePipelineCreateInfo *info,
3308 const struct anv_shader_module *module,
3309 const char *entrypoint,
3310 const VkSpecializationInfo *spec_info);
3311
3312 struct anv_format_plane {
3313 enum isl_format isl_format:16;
3314 struct isl_swizzle swizzle;
3315
3316 /* Whether this plane contains chroma channels */
3317 bool has_chroma;
3318
3319 /* For downscaling of YUV planes */
3320 uint8_t denominator_scales[2];
3321
3322 /* How to map sampled ycbcr planes to a single 4 component element. */
3323 struct isl_swizzle ycbcr_swizzle;
3324
3325 /* What aspect is associated to this plane */
3326 VkImageAspectFlags aspect;
3327 };
3328
3329
3330 struct anv_format {
3331 struct anv_format_plane planes[3];
3332 VkFormat vk_format;
3333 uint8_t n_planes;
3334 bool can_ycbcr;
3335 };
3336
3337 /**
3338 * Return the aspect's _format_ plane, not its _memory_ plane (using the
3339 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
3340 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
3341 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
3342 */
3343 static inline uint32_t
3344 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3345 VkImageAspectFlags aspect_mask)
3346 {
3347 switch (aspect_mask) {
3348 case VK_IMAGE_ASPECT_COLOR_BIT:
3349 case VK_IMAGE_ASPECT_DEPTH_BIT:
3350 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3351 return 0;
3352 case VK_IMAGE_ASPECT_STENCIL_BIT:
3353 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3354 return 0;
3355 /* Fall-through */
3356 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3357 return 1;
3358 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3359 return 2;
3360 default:
3361 /* Purposefully assert with depth/stencil aspects. */
3362 unreachable("invalid image aspect");
3363 }
3364 }
3365
3366 static inline VkImageAspectFlags
3367 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3368 uint32_t plane)
3369 {
3370 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3371 if (util_bitcount(image_aspects) > 1)
3372 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3373 return VK_IMAGE_ASPECT_COLOR_BIT;
3374 }
3375 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3376 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3377 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3378 return VK_IMAGE_ASPECT_STENCIL_BIT;
3379 }
3380
3381 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3382 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3383
3384 const struct anv_format *
3385 anv_get_format(VkFormat format);
3386
3387 static inline uint32_t
3388 anv_get_format_planes(VkFormat vk_format)
3389 {
3390 const struct anv_format *format = anv_get_format(vk_format);
3391
3392 return format != NULL ? format->n_planes : 0;
3393 }
3394
3395 struct anv_format_plane
3396 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3397 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3398
3399 static inline enum isl_format
3400 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3401 VkImageAspectFlags aspect, VkImageTiling tiling)
3402 {
3403 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3404 }
3405
3406 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3407 VkImageCreateFlags create_flags,
3408 VkFormat vk_format,
3409 VkImageTiling vk_tiling,
3410 const VkImageFormatListCreateInfoKHR *fmt_list);
3411
3412 static inline struct isl_swizzle
3413 anv_swizzle_for_render(struct isl_swizzle swizzle)
3414 {
3415 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3416 * RGB as RGBA for texturing
3417 */
3418 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3419 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3420
3421 /* But it doesn't matter what we render to that channel */
3422 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3423
3424 return swizzle;
3425 }
3426
3427 void
3428 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3429
3430 /**
3431 * Subsurface of an anv_image.
3432 */
3433 struct anv_surface {
3434 /** Valid only if isl_surf::size_B > 0. */
3435 struct isl_surf isl;
3436
3437 /**
3438 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3439 */
3440 uint32_t offset;
3441 };
3442
3443 struct anv_image {
3444 VkImageType type; /**< VkImageCreateInfo::imageType */
3445 /* The original VkFormat provided by the client. This may not match any
3446 * of the actual surface formats.
3447 */
3448 VkFormat vk_format;
3449 const struct anv_format *format;
3450
3451 VkImageAspectFlags aspects;
3452 VkExtent3D extent;
3453 uint32_t levels;
3454 uint32_t array_size;
3455 uint32_t samples; /**< VkImageCreateInfo::samples */
3456 uint32_t n_planes;
3457 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3458 VkImageUsageFlags stencil_usage;
3459 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3460 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3461
3462 /** True if this is needs to be bound to an appropriately tiled BO.
3463 *
3464 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3465 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3466 * we require a dedicated allocation so that we can know to allocate a
3467 * tiled buffer.
3468 */
3469 bool needs_set_tiling;
3470
3471 /**
3472 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3473 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3474 */
3475 uint64_t drm_format_mod;
3476
3477 VkDeviceSize size;
3478 uint32_t alignment;
3479
3480 /* Whether the image is made of several underlying buffer objects rather a
3481 * single one with different offsets.
3482 */
3483 bool disjoint;
3484
3485 /* Image was created with external format. */
3486 bool external_format;
3487
3488 /**
3489 * Image subsurfaces
3490 *
3491 * For each foo, anv_image::planes[x].surface is valid if and only if
3492 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3493 * to figure the number associated with a given aspect.
3494 *
3495 * The hardware requires that the depth buffer and stencil buffer be
3496 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3497 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3498 * allocate the depth and stencil buffers as separate surfaces in the same
3499 * bo.
3500 *
3501 * Memory layout :
3502 *
3503 * -----------------------
3504 * | surface0 | /|\
3505 * ----------------------- |
3506 * | shadow surface0 | |
3507 * ----------------------- | Plane 0
3508 * | aux surface0 | |
3509 * ----------------------- |
3510 * | fast clear colors0 | \|/
3511 * -----------------------
3512 * | surface1 | /|\
3513 * ----------------------- |
3514 * | shadow surface1 | |
3515 * ----------------------- | Plane 1
3516 * | aux surface1 | |
3517 * ----------------------- |
3518 * | fast clear colors1 | \|/
3519 * -----------------------
3520 * | ... |
3521 * | |
3522 * -----------------------
3523 */
3524 struct {
3525 /**
3526 * Offset of the entire plane (whenever the image is disjoint this is
3527 * set to 0).
3528 */
3529 uint32_t offset;
3530
3531 VkDeviceSize size;
3532 uint32_t alignment;
3533
3534 struct anv_surface surface;
3535
3536 /**
3537 * A surface which shadows the main surface and may have different
3538 * tiling. This is used for sampling using a tiling that isn't supported
3539 * for other operations.
3540 */
3541 struct anv_surface shadow_surface;
3542
3543 /**
3544 * The base aux usage for this image. For color images, this can be
3545 * either CCS_E or CCS_D depending on whether or not we can reliably
3546 * leave CCS on all the time.
3547 */
3548 enum isl_aux_usage aux_usage;
3549
3550 struct anv_surface aux_surface;
3551
3552 /**
3553 * Offset of the fast clear state (used to compute the
3554 * fast_clear_state_offset of the following planes).
3555 */
3556 uint32_t fast_clear_state_offset;
3557
3558 /**
3559 * BO associated with this plane, set when bound.
3560 */
3561 struct anv_address address;
3562
3563 /**
3564 * When destroying the image, also free the bo.
3565 * */
3566 bool bo_is_owned;
3567 } planes[3];
3568 };
3569
3570 /* The ordering of this enum is important */
3571 enum anv_fast_clear_type {
3572 /** Image does not have/support any fast-clear blocks */
3573 ANV_FAST_CLEAR_NONE = 0,
3574 /** Image has/supports fast-clear but only to the default value */
3575 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3576 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3577 ANV_FAST_CLEAR_ANY = 2,
3578 };
3579
3580 /* Returns the number of auxiliary buffer levels attached to an image. */
3581 static inline uint8_t
3582 anv_image_aux_levels(const struct anv_image * const image,
3583 VkImageAspectFlagBits aspect)
3584 {
3585 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3586 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3587 return 0;
3588
3589 /* The Gen12 CCS aux surface is represented with only one level. */
3590 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3591 image->planes[plane].surface.isl.levels :
3592 image->planes[plane].aux_surface.isl.levels;
3593 }
3594
3595 /* Returns the number of auxiliary buffer layers attached to an image. */
3596 static inline uint32_t
3597 anv_image_aux_layers(const struct anv_image * const image,
3598 VkImageAspectFlagBits aspect,
3599 const uint8_t miplevel)
3600 {
3601 assert(image);
3602
3603 /* The miplevel must exist in the main buffer. */
3604 assert(miplevel < image->levels);
3605
3606 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3607 /* There are no layers with auxiliary data because the miplevel has no
3608 * auxiliary data.
3609 */
3610 return 0;
3611 } else {
3612 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3613
3614 /* The Gen12 CCS aux surface is represented with only one layer. */
3615 const struct isl_extent4d *aux_logical_level0_px =
3616 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3617 &image->planes[plane].surface.isl.logical_level0_px :
3618 &image->planes[plane].aux_surface.isl.logical_level0_px;
3619
3620 return MAX2(aux_logical_level0_px->array_len,
3621 aux_logical_level0_px->depth >> miplevel);
3622 }
3623 }
3624
3625 static inline struct anv_address
3626 anv_image_get_clear_color_addr(const struct anv_device *device,
3627 const struct anv_image *image,
3628 VkImageAspectFlagBits aspect)
3629 {
3630 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3631
3632 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3633 return anv_address_add(image->planes[plane].address,
3634 image->planes[plane].fast_clear_state_offset);
3635 }
3636
3637 static inline struct anv_address
3638 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3639 const struct anv_image *image,
3640 VkImageAspectFlagBits aspect)
3641 {
3642 struct anv_address addr =
3643 anv_image_get_clear_color_addr(device, image, aspect);
3644
3645 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3646 device->isl_dev.ss.clear_color_state_size :
3647 device->isl_dev.ss.clear_value_size;
3648 return anv_address_add(addr, clear_color_state_size);
3649 }
3650
3651 static inline struct anv_address
3652 anv_image_get_compression_state_addr(const struct anv_device *device,
3653 const struct anv_image *image,
3654 VkImageAspectFlagBits aspect,
3655 uint32_t level, uint32_t array_layer)
3656 {
3657 assert(level < anv_image_aux_levels(image, aspect));
3658 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3659 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3660 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3661
3662 struct anv_address addr =
3663 anv_image_get_fast_clear_type_addr(device, image, aspect);
3664 addr.offset += 4; /* Go past the fast clear type */
3665
3666 if (image->type == VK_IMAGE_TYPE_3D) {
3667 for (uint32_t l = 0; l < level; l++)
3668 addr.offset += anv_minify(image->extent.depth, l) * 4;
3669 } else {
3670 addr.offset += level * image->array_size * 4;
3671 }
3672 addr.offset += array_layer * 4;
3673
3674 assert(addr.offset <
3675 image->planes[plane].address.offset + image->planes[plane].size);
3676 return addr;
3677 }
3678
3679 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3680 static inline bool
3681 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3682 const struct anv_image *image)
3683 {
3684 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3685 return false;
3686
3687 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3688 * struct. There's documentation which suggests that this feature actually
3689 * reduces performance on BDW, but it has only been observed to help so
3690 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3691 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3692 */
3693 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3694 return false;
3695
3696 return image->samples == 1;
3697 }
3698
3699 static inline bool
3700 anv_image_plane_uses_aux_map(const struct anv_device *device,
3701 const struct anv_image *image,
3702 uint32_t plane)
3703 {
3704 return device->info.has_aux_map &&
3705 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3706 }
3707
3708 void
3709 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3710 const struct anv_image *image,
3711 VkImageAspectFlagBits aspect,
3712 enum isl_aux_usage aux_usage,
3713 uint32_t level,
3714 uint32_t base_layer,
3715 uint32_t layer_count);
3716
3717 void
3718 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3719 const struct anv_image *image,
3720 VkImageAspectFlagBits aspect,
3721 enum isl_aux_usage aux_usage,
3722 enum isl_format format, struct isl_swizzle swizzle,
3723 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3724 VkRect2D area, union isl_color_value clear_color);
3725 void
3726 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3727 const struct anv_image *image,
3728 VkImageAspectFlags aspects,
3729 enum isl_aux_usage depth_aux_usage,
3730 uint32_t level,
3731 uint32_t base_layer, uint32_t layer_count,
3732 VkRect2D area,
3733 float depth_value, uint8_t stencil_value);
3734 void
3735 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3736 const struct anv_image *src_image,
3737 enum isl_aux_usage src_aux_usage,
3738 uint32_t src_level, uint32_t src_base_layer,
3739 const struct anv_image *dst_image,
3740 enum isl_aux_usage dst_aux_usage,
3741 uint32_t dst_level, uint32_t dst_base_layer,
3742 VkImageAspectFlagBits aspect,
3743 uint32_t src_x, uint32_t src_y,
3744 uint32_t dst_x, uint32_t dst_y,
3745 uint32_t width, uint32_t height,
3746 uint32_t layer_count,
3747 enum blorp_filter filter);
3748 void
3749 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3750 const struct anv_image *image,
3751 VkImageAspectFlagBits aspect, uint32_t level,
3752 uint32_t base_layer, uint32_t layer_count,
3753 enum isl_aux_op hiz_op);
3754 void
3755 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3756 const struct anv_image *image,
3757 VkImageAspectFlags aspects,
3758 uint32_t level,
3759 uint32_t base_layer, uint32_t layer_count,
3760 VkRect2D area, uint8_t stencil_value);
3761 void
3762 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3763 const struct anv_image *image,
3764 enum isl_format format, struct isl_swizzle swizzle,
3765 VkImageAspectFlagBits aspect,
3766 uint32_t base_layer, uint32_t layer_count,
3767 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3768 bool predicate);
3769 void
3770 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3771 const struct anv_image *image,
3772 enum isl_format format, struct isl_swizzle swizzle,
3773 VkImageAspectFlagBits aspect, uint32_t level,
3774 uint32_t base_layer, uint32_t layer_count,
3775 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3776 bool predicate);
3777
3778 void
3779 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3780 const struct anv_image *image,
3781 VkImageAspectFlagBits aspect,
3782 uint32_t base_level, uint32_t level_count,
3783 uint32_t base_layer, uint32_t layer_count);
3784
3785 enum isl_aux_state
3786 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3787 const struct anv_image *image,
3788 const VkImageAspectFlagBits aspect,
3789 const VkImageLayout layout);
3790
3791 enum isl_aux_usage
3792 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3793 const struct anv_image *image,
3794 const VkImageAspectFlagBits aspect,
3795 const VkImageUsageFlagBits usage,
3796 const VkImageLayout layout);
3797
3798 enum anv_fast_clear_type
3799 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3800 const struct anv_image * const image,
3801 const VkImageAspectFlagBits aspect,
3802 const VkImageLayout layout);
3803
3804 /* This is defined as a macro so that it works for both
3805 * VkImageSubresourceRange and VkImageSubresourceLayers
3806 */
3807 #define anv_get_layerCount(_image, _range) \
3808 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3809 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3810
3811 static inline uint32_t
3812 anv_get_levelCount(const struct anv_image *image,
3813 const VkImageSubresourceRange *range)
3814 {
3815 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3816 image->levels - range->baseMipLevel : range->levelCount;
3817 }
3818
3819 static inline VkImageAspectFlags
3820 anv_image_expand_aspects(const struct anv_image *image,
3821 VkImageAspectFlags aspects)
3822 {
3823 /* If the underlying image has color plane aspects and
3824 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3825 * the underlying image. */
3826 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3827 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3828 return image->aspects;
3829
3830 return aspects;
3831 }
3832
3833 static inline bool
3834 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3835 VkImageAspectFlags aspects2)
3836 {
3837 if (aspects1 == aspects2)
3838 return true;
3839
3840 /* Only 1 color aspects are compatibles. */
3841 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3842 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3843 util_bitcount(aspects1) == util_bitcount(aspects2))
3844 return true;
3845
3846 return false;
3847 }
3848
3849 struct anv_image_view {
3850 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3851
3852 VkImageAspectFlags aspect_mask;
3853 VkFormat vk_format;
3854 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3855
3856 unsigned n_planes;
3857 struct {
3858 uint32_t image_plane;
3859
3860 struct isl_view isl;
3861
3862 /**
3863 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3864 * image layout of SHADER_READ_ONLY_OPTIMAL or
3865 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3866 */
3867 struct anv_surface_state optimal_sampler_surface_state;
3868
3869 /**
3870 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3871 * image layout of GENERAL.
3872 */
3873 struct anv_surface_state general_sampler_surface_state;
3874
3875 /**
3876 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3877 * states for write-only and readable, using the real format for
3878 * write-only and the lowered format for readable.
3879 */
3880 struct anv_surface_state storage_surface_state;
3881 struct anv_surface_state writeonly_storage_surface_state;
3882
3883 struct brw_image_param storage_image_param;
3884 } planes[3];
3885 };
3886
3887 enum anv_image_view_state_flags {
3888 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3889 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3890 };
3891
3892 void anv_image_fill_surface_state(struct anv_device *device,
3893 const struct anv_image *image,
3894 VkImageAspectFlagBits aspect,
3895 const struct isl_view *view,
3896 isl_surf_usage_flags_t view_usage,
3897 enum isl_aux_usage aux_usage,
3898 const union isl_color_value *clear_color,
3899 enum anv_image_view_state_flags flags,
3900 struct anv_surface_state *state_inout,
3901 struct brw_image_param *image_param_out);
3902
3903 struct anv_image_create_info {
3904 const VkImageCreateInfo *vk_info;
3905
3906 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3907 isl_tiling_flags_t isl_tiling_flags;
3908
3909 /** These flags will be added to any derived from VkImageCreateInfo. */
3910 isl_surf_usage_flags_t isl_extra_usage_flags;
3911
3912 uint32_t stride;
3913 bool external_format;
3914 };
3915
3916 VkResult anv_image_create(VkDevice _device,
3917 const struct anv_image_create_info *info,
3918 const VkAllocationCallbacks* alloc,
3919 VkImage *pImage);
3920
3921 enum isl_format
3922 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3923
3924 static inline VkExtent3D
3925 anv_sanitize_image_extent(const VkImageType imageType,
3926 const VkExtent3D imageExtent)
3927 {
3928 switch (imageType) {
3929 case VK_IMAGE_TYPE_1D:
3930 return (VkExtent3D) { imageExtent.width, 1, 1 };
3931 case VK_IMAGE_TYPE_2D:
3932 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3933 case VK_IMAGE_TYPE_3D:
3934 return imageExtent;
3935 default:
3936 unreachable("invalid image type");
3937 }
3938 }
3939
3940 static inline VkOffset3D
3941 anv_sanitize_image_offset(const VkImageType imageType,
3942 const VkOffset3D imageOffset)
3943 {
3944 switch (imageType) {
3945 case VK_IMAGE_TYPE_1D:
3946 return (VkOffset3D) { imageOffset.x, 0, 0 };
3947 case VK_IMAGE_TYPE_2D:
3948 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3949 case VK_IMAGE_TYPE_3D:
3950 return imageOffset;
3951 default:
3952 unreachable("invalid image type");
3953 }
3954 }
3955
3956 VkFormatFeatureFlags
3957 anv_get_image_format_features(const struct gen_device_info *devinfo,
3958 VkFormat vk_format,
3959 const struct anv_format *anv_format,
3960 VkImageTiling vk_tiling);
3961
3962 void anv_fill_buffer_surface_state(struct anv_device *device,
3963 struct anv_state state,
3964 enum isl_format format,
3965 struct anv_address address,
3966 uint32_t range, uint32_t stride);
3967
3968 static inline void
3969 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3970 const struct anv_attachment_state *att_state,
3971 const struct anv_image_view *iview)
3972 {
3973 const struct isl_format_layout *view_fmtl =
3974 isl_format_get_layout(iview->planes[0].isl.format);
3975
3976 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3977 if (view_fmtl->channels.c.bits) \
3978 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3979
3980 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3981 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3982 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3983 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3984
3985 #undef COPY_CLEAR_COLOR_CHANNEL
3986 }
3987
3988
3989 struct anv_ycbcr_conversion {
3990 const struct anv_format * format;
3991 VkSamplerYcbcrModelConversion ycbcr_model;
3992 VkSamplerYcbcrRange ycbcr_range;
3993 VkComponentSwizzle mapping[4];
3994 VkChromaLocation chroma_offsets[2];
3995 VkFilter chroma_filter;
3996 bool chroma_reconstruction;
3997 };
3998
3999 struct anv_sampler {
4000 uint32_t state[3][4];
4001 uint32_t n_planes;
4002 struct anv_ycbcr_conversion *conversion;
4003
4004 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
4005 * and with a 32-byte stride for use as bindless samplers.
4006 */
4007 struct anv_state bindless_state;
4008 };
4009
4010 struct anv_framebuffer {
4011 uint32_t width;
4012 uint32_t height;
4013 uint32_t layers;
4014
4015 uint32_t attachment_count;
4016 struct anv_image_view * attachments[0];
4017 };
4018
4019 struct anv_subpass_attachment {
4020 VkImageUsageFlagBits usage;
4021 uint32_t attachment;
4022 VkImageLayout layout;
4023
4024 /* Used only with attachment containing stencil data. */
4025 VkImageLayout stencil_layout;
4026 };
4027
4028 struct anv_subpass {
4029 uint32_t attachment_count;
4030
4031 /**
4032 * A pointer to all attachment references used in this subpass.
4033 * Only valid if ::attachment_count > 0.
4034 */
4035 struct anv_subpass_attachment * attachments;
4036 uint32_t input_count;
4037 struct anv_subpass_attachment * input_attachments;
4038 uint32_t color_count;
4039 struct anv_subpass_attachment * color_attachments;
4040 struct anv_subpass_attachment * resolve_attachments;
4041
4042 struct anv_subpass_attachment * depth_stencil_attachment;
4043 struct anv_subpass_attachment * ds_resolve_attachment;
4044 VkResolveModeFlagBitsKHR depth_resolve_mode;
4045 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4046
4047 uint32_t view_mask;
4048
4049 /** Subpass has a depth/stencil self-dependency */
4050 bool has_ds_self_dep;
4051
4052 /** Subpass has at least one color resolve attachment */
4053 bool has_color_resolve;
4054 };
4055
4056 static inline unsigned
4057 anv_subpass_view_count(const struct anv_subpass *subpass)
4058 {
4059 return MAX2(1, util_bitcount(subpass->view_mask));
4060 }
4061
4062 struct anv_render_pass_attachment {
4063 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4064 * its members individually.
4065 */
4066 VkFormat format;
4067 uint32_t samples;
4068 VkImageUsageFlags usage;
4069 VkAttachmentLoadOp load_op;
4070 VkAttachmentStoreOp store_op;
4071 VkAttachmentLoadOp stencil_load_op;
4072 VkImageLayout initial_layout;
4073 VkImageLayout final_layout;
4074 VkImageLayout first_subpass_layout;
4075
4076 VkImageLayout stencil_initial_layout;
4077 VkImageLayout stencil_final_layout;
4078
4079 /* The subpass id in which the attachment will be used last. */
4080 uint32_t last_subpass_idx;
4081 };
4082
4083 struct anv_render_pass {
4084 uint32_t attachment_count;
4085 uint32_t subpass_count;
4086 /* An array of subpass_count+1 flushes, one per subpass boundary */
4087 enum anv_pipe_bits * subpass_flushes;
4088 struct anv_render_pass_attachment * attachments;
4089 struct anv_subpass subpasses[0];
4090 };
4091
4092 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4093
4094 struct anv_query_pool {
4095 VkQueryType type;
4096 VkQueryPipelineStatisticFlags pipeline_statistics;
4097 /** Stride between slots, in bytes */
4098 uint32_t stride;
4099 /** Number of slots in this query pool */
4100 uint32_t slots;
4101 struct anv_bo * bo;
4102 };
4103
4104 int anv_get_instance_entrypoint_index(const char *name);
4105 int anv_get_device_entrypoint_index(const char *name);
4106 int anv_get_physical_device_entrypoint_index(const char *name);
4107
4108 const char *anv_get_instance_entry_name(int index);
4109 const char *anv_get_physical_device_entry_name(int index);
4110 const char *anv_get_device_entry_name(int index);
4111
4112 bool
4113 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4114 const struct anv_instance_extension_table *instance);
4115 bool
4116 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4117 const struct anv_instance_extension_table *instance);
4118 bool
4119 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4120 const struct anv_instance_extension_table *instance,
4121 const struct anv_device_extension_table *device);
4122
4123 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4124 const char *name);
4125
4126 void anv_dump_image_to_ppm(struct anv_device *device,
4127 struct anv_image *image, unsigned miplevel,
4128 unsigned array_layer, VkImageAspectFlagBits aspect,
4129 const char *filename);
4130
4131 enum anv_dump_action {
4132 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4133 };
4134
4135 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4136 void anv_dump_finish(void);
4137
4138 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4139
4140 static inline uint32_t
4141 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4142 {
4143 /* This function must be called from within a subpass. */
4144 assert(cmd_state->pass && cmd_state->subpass);
4145
4146 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4147
4148 /* The id of this subpass shouldn't exceed the number of subpasses in this
4149 * render pass minus 1.
4150 */
4151 assert(subpass_id < cmd_state->pass->subpass_count);
4152 return subpass_id;
4153 }
4154
4155 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4156 void anv_device_perf_init(struct anv_device *device);
4157
4158 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4159 \
4160 static inline struct __anv_type * \
4161 __anv_type ## _from_handle(__VkType _handle) \
4162 { \
4163 return (struct __anv_type *) _handle; \
4164 } \
4165 \
4166 static inline __VkType \
4167 __anv_type ## _to_handle(struct __anv_type *_obj) \
4168 { \
4169 return (__VkType) _obj; \
4170 }
4171
4172 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4173 \
4174 static inline struct __anv_type * \
4175 __anv_type ## _from_handle(__VkType _handle) \
4176 { \
4177 return (struct __anv_type *)(uintptr_t) _handle; \
4178 } \
4179 \
4180 static inline __VkType \
4181 __anv_type ## _to_handle(struct __anv_type *_obj) \
4182 { \
4183 return (__VkType)(uintptr_t) _obj; \
4184 }
4185
4186 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4187 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4188
4189 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4190 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4191 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4192 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4193 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4194
4195 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4196 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4197 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4198 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4199 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4200 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4201 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4202 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4203 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4204 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4205 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4206 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4207 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4208 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4209 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4210 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4211 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4212 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4213 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4214 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4215 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4216 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4217 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4218
4219 /* Gen-specific function declarations */
4220 #ifdef genX
4221 # include "anv_genX.h"
4222 #else
4223 # define genX(x) gen7_##x
4224 # include "anv_genX.h"
4225 # undef genX
4226 # define genX(x) gen75_##x
4227 # include "anv_genX.h"
4228 # undef genX
4229 # define genX(x) gen8_##x
4230 # include "anv_genX.h"
4231 # undef genX
4232 # define genX(x) gen9_##x
4233 # include "anv_genX.h"
4234 # undef genX
4235 # define genX(x) gen10_##x
4236 # include "anv_genX.h"
4237 # undef genX
4238 # define genX(x) gen11_##x
4239 # include "anv_genX.h"
4240 # undef genX
4241 # define genX(x) gen12_##x
4242 # include "anv_genX.h"
4243 # undef genX
4244 #endif
4245
4246 #endif /* ANV_PRIVATE_H */