e31e6a6579e601355fd9fc33c0eef5e166abe289
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "common/gen_l3_config.h"
50 #include "dev/gen_device_info.h"
51 #include "blorp/blorp.h"
52 #include "compiler/brw_compiler.h"
53 #include "util/bitset.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/sparse_array.h"
58 #include "util/u_atomic.h"
59 #include "util/u_vector.h"
60 #include "util/u_math.h"
61 #include "util/vma.h"
62 #include "util/xmlconfig.h"
63 #include "vk_alloc.h"
64 #include "vk_debug_report.h"
65 #include "vk_object.h"
66
67 /* Pre-declarations needed for WSI entrypoints */
68 struct wl_surface;
69 struct wl_display;
70 typedef struct xcb_connection_t xcb_connection_t;
71 typedef uint32_t xcb_visualid_t;
72 typedef uint32_t xcb_window_t;
73
74 struct anv_batch;
75 struct anv_buffer;
76 struct anv_buffer_view;
77 struct anv_image_view;
78 struct anv_instance;
79
80 struct gen_aux_map_context;
81 struct gen_perf_config;
82 struct gen_perf_counter_pass;
83 struct gen_perf_query_result;
84
85 #include <vulkan/vulkan.h>
86 #include <vulkan/vulkan_intel.h>
87 #include <vulkan/vk_icd.h>
88
89 #include "anv_android.h"
90 #include "anv_entrypoints.h"
91 #include "anv_extensions.h"
92 #include "isl/isl.h"
93
94 #include "dev/gen_debug.h"
95 #include "common/intel_log.h"
96 #include "wsi_common.h"
97
98 #define NSEC_PER_SEC 1000000000ull
99
100 /* anv Virtual Memory Layout
101 * =========================
102 *
103 * When the anv driver is determining the virtual graphics addresses of memory
104 * objects itself using the softpin mechanism, the following memory ranges
105 * will be used.
106 *
107 * Three special considerations to notice:
108 *
109 * (1) the dynamic state pool is located within the same 4 GiB as the low
110 * heap. This is to work around a VF cache issue described in a comment in
111 * anv_physical_device_init_heaps.
112 *
113 * (2) the binding table pool is located at lower addresses than the surface
114 * state pool, within a 4 GiB range. This allows surface state base addresses
115 * to cover both binding tables (16 bit offsets) and surface states (32 bit
116 * offsets).
117 *
118 * (3) the last 4 GiB of the address space is withheld from the high
119 * heap. Various hardware units will read past the end of an object for
120 * various reasons. This healthy margin prevents reads from wrapping around
121 * 48-bit addresses.
122 */
123 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
124 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
125 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
126 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
127 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
128 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
129 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
130 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
131 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
132 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
133 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
134 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
135 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
136
137 #define LOW_HEAP_SIZE \
138 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
139 #define DYNAMIC_STATE_POOL_SIZE \
140 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
141 #define BINDING_TABLE_POOL_SIZE \
142 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
143 #define SURFACE_STATE_POOL_SIZE \
144 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
145 #define INSTRUCTION_STATE_POOL_SIZE \
146 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
147 #define CLIENT_VISIBLE_HEAP_SIZE \
148 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
149
150 /* Allowing different clear colors requires us to perform a depth resolve at
151 * the end of certain render passes. This is because while slow clears store
152 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
153 * See the PRMs for examples describing when additional resolves would be
154 * necessary. To enable fast clears without requiring extra resolves, we set
155 * the clear value to a globally-defined one. We could allow different values
156 * if the user doesn't expect coherent data during or after a render passes
157 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
158 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
159 * 1.0f seems to be the only value used. The only application that doesn't set
160 * this value does so through the usage of an seemingly uninitialized clear
161 * value.
162 */
163 #define ANV_HZ_FC_VAL 1.0f
164
165 #define MAX_VBS 28
166 #define MAX_XFB_BUFFERS 4
167 #define MAX_XFB_STREAMS 4
168 #define MAX_SETS 8
169 #define MAX_RTS 8
170 #define MAX_VIEWPORTS 16
171 #define MAX_SCISSORS 16
172 #define MAX_PUSH_CONSTANTS_SIZE 128
173 #define MAX_DYNAMIC_BUFFERS 16
174 #define MAX_IMAGES 64
175 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
176 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
177 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
178 /* We need 16 for UBO block reads to work and 32 for push UBOs. However, we
179 * use 64 here to avoid cache issues. This could most likely bring it back to
180 * 32 if we had different virtual addresses for the different views on a given
181 * GEM object.
182 */
183 #define ANV_UBO_ALIGNMENT 64
184 #define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
185 #define MAX_VIEWS_FOR_PRIMITIVE_REPLICATION 16
186
187 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
188 *
189 * "The surface state model is used when a Binding Table Index (specified
190 * in the message descriptor) of less than 240 is specified. In this model,
191 * the Binding Table Index is used to index into the binding table, and the
192 * binding table entry contains a pointer to the SURFACE_STATE."
193 *
194 * Binding table values above 240 are used for various things in the hardware
195 * such as stateless, stateless with incoherent cache, SLM, and bindless.
196 */
197 #define MAX_BINDING_TABLE_SIZE 240
198
199 /* The kernel relocation API has a limitation of a 32-bit delta value
200 * applied to the address before it is written which, in spite of it being
201 * unsigned, is treated as signed . Because of the way that this maps to
202 * the Vulkan API, we cannot handle an offset into a buffer that does not
203 * fit into a signed 32 bits. The only mechanism we have for dealing with
204 * this at the moment is to limit all VkDeviceMemory objects to a maximum
205 * of 2GB each. The Vulkan spec allows us to do this:
206 *
207 * "Some platforms may have a limit on the maximum size of a single
208 * allocation. For example, certain systems may fail to create
209 * allocations with a size greater than or equal to 4GB. Such a limit is
210 * implementation-dependent, and if such a failure occurs then the error
211 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
212 *
213 * We don't use vk_error here because it's not an error so much as an
214 * indication to the application that the allocation is too large.
215 */
216 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
217
218 #define ANV_SVGS_VB_INDEX MAX_VBS
219 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
220
221 /* We reserve this MI ALU register for the purpose of handling predication.
222 * Other code which uses the MI ALU should leave it alone.
223 */
224 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
225
226 /* We reserve this MI ALU register to pass around an offset computed from
227 * VkPerformanceQuerySubmitInfoKHR::counterPassIndex VK_KHR_performance_query.
228 * Other code which uses the MI ALU should leave it alone.
229 */
230 #define ANV_PERF_QUERY_OFFSET_REG 0x2670 /* MI_ALU_REG14 */
231
232 /* For gen12 we set the streamout buffers using 4 separate commands
233 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
234 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
235 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
236 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
237 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
238 * 3DSTATE_SO_BUFFER_INDEX_0.
239 */
240 #define SO_BUFFER_INDEX_0_CMD 0x60
241 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
242
243 static inline uint32_t
244 align_down_npot_u32(uint32_t v, uint32_t a)
245 {
246 return v - (v % a);
247 }
248
249 static inline uint32_t
250 align_down_u32(uint32_t v, uint32_t a)
251 {
252 assert(a != 0 && a == (a & -a));
253 return v & ~(a - 1);
254 }
255
256 static inline uint32_t
257 align_u32(uint32_t v, uint32_t a)
258 {
259 assert(a != 0 && a == (a & -a));
260 return align_down_u32(v + a - 1, a);
261 }
262
263 static inline uint64_t
264 align_down_u64(uint64_t v, uint64_t a)
265 {
266 assert(a != 0 && a == (a & -a));
267 return v & ~(a - 1);
268 }
269
270 static inline uint64_t
271 align_u64(uint64_t v, uint64_t a)
272 {
273 return align_down_u64(v + a - 1, a);
274 }
275
276 static inline int32_t
277 align_i32(int32_t v, int32_t a)
278 {
279 assert(a != 0 && a == (a & -a));
280 return (v + a - 1) & ~(a - 1);
281 }
282
283 /** Alignment must be a power of 2. */
284 static inline bool
285 anv_is_aligned(uintmax_t n, uintmax_t a)
286 {
287 assert(a == (a & -a));
288 return (n & (a - 1)) == 0;
289 }
290
291 static inline uint32_t
292 anv_minify(uint32_t n, uint32_t levels)
293 {
294 if (unlikely(n == 0))
295 return 0;
296 else
297 return MAX2(n >> levels, 1);
298 }
299
300 static inline float
301 anv_clamp_f(float f, float min, float max)
302 {
303 assert(min < max);
304
305 if (f > max)
306 return max;
307 else if (f < min)
308 return min;
309 else
310 return f;
311 }
312
313 static inline bool
314 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
315 {
316 if (*inout_mask & clear_mask) {
317 *inout_mask &= ~clear_mask;
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324 static inline union isl_color_value
325 vk_to_isl_color(VkClearColorValue color)
326 {
327 return (union isl_color_value) {
328 .u32 = {
329 color.uint32[0],
330 color.uint32[1],
331 color.uint32[2],
332 color.uint32[3],
333 },
334 };
335 }
336
337 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
338 {
339 uintptr_t mask = (1ull << bits) - 1;
340 *flags = ptr & mask;
341 return (void *) (ptr & ~mask);
342 }
343
344 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
345 {
346 uintptr_t value = (uintptr_t) ptr;
347 uintptr_t mask = (1ull << bits) - 1;
348 return value | (mask & flags);
349 }
350
351 #define for_each_bit(b, dword) \
352 for (uint32_t __dword = (dword); \
353 (b) = __builtin_ffs(__dword) - 1, __dword; \
354 __dword &= ~(1 << (b)))
355
356 #define typed_memcpy(dest, src, count) ({ \
357 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
358 memcpy((dest), (src), (count) * sizeof(*(src))); \
359 })
360
361 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
362 * to be added here in order to utilize mapping in debug/error/perf macros.
363 */
364 #define REPORT_OBJECT_TYPE(o) \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
428 __builtin_choose_expr ( \
429 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
430 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
431 __builtin_choose_expr ( \
432 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
433 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
434 __builtin_choose_expr ( \
435 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
436 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
437 __builtin_choose_expr ( \
438 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
439 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
440 __builtin_choose_expr ( \
441 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
442 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
443 __builtin_choose_expr ( \
444 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
445 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
446 __builtin_choose_expr ( \
447 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
448 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
449 __builtin_choose_expr ( \
450 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
451 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
452 __builtin_choose_expr ( \
453 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
454 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
455 __builtin_choose_expr ( \
456 __builtin_types_compatible_p (__typeof (o), void*), \
457 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
458 /* The void expression results in a compile-time error \
459 when assigning the result to something. */ \
460 (void)0)))))))))))))))))))))))))))))))
461
462 /* Whenever we generate an error, pass it through this function. Useful for
463 * debugging, where we can break on it. Only call at error site, not when
464 * propagating errors. Might be useful to plug in a stack trace here.
465 */
466
467 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
468 VkDebugReportObjectTypeEXT type, VkResult error,
469 const char *file, int line, const char *format,
470 va_list args);
471
472 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
473 VkDebugReportObjectTypeEXT type, VkResult error,
474 const char *file, int line, const char *format, ...)
475 anv_printflike(7, 8);
476
477 #ifdef DEBUG
478 #define vk_error(error) __vk_errorf(NULL, NULL,\
479 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
480 error, __FILE__, __LINE__, NULL)
481 #define vk_errorfi(instance, obj, error, format, ...)\
482 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
483 __FILE__, __LINE__, format, ## __VA_ARGS__)
484 #define vk_errorf(device, obj, error, format, ...)\
485 vk_errorfi(anv_device_instance_or_null(device),\
486 obj, error, format, ## __VA_ARGS__)
487 #else
488 #define vk_error(error) error
489 #define vk_errorfi(instance, obj, error, format, ...) error
490 #define vk_errorf(device, obj, error, format, ...) error
491 #endif
492
493 /**
494 * Warn on ignored extension structs.
495 *
496 * The Vulkan spec requires us to ignore unsupported or unknown structs in
497 * a pNext chain. In debug mode, emitting warnings for ignored structs may
498 * help us discover structs that we should not have ignored.
499 *
500 *
501 * From the Vulkan 1.0.38 spec:
502 *
503 * Any component of the implementation (the loader, any enabled layers,
504 * and drivers) must skip over, without processing (other than reading the
505 * sType and pNext members) any chained structures with sType values not
506 * defined by extensions supported by that component.
507 */
508 #define anv_debug_ignored_stype(sType) \
509 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
510
511 void __anv_perf_warn(struct anv_device *device, const void *object,
512 VkDebugReportObjectTypeEXT type, const char *file,
513 int line, const char *format, ...)
514 anv_printflike(6, 7);
515 void anv_loge(const char *format, ...) anv_printflike(1, 2);
516 void anv_loge_v(const char *format, va_list va);
517
518 /**
519 * Print a FINISHME message, including its source location.
520 */
521 #define anv_finishme(format, ...) \
522 do { \
523 static bool reported = false; \
524 if (!reported) { \
525 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
526 ##__VA_ARGS__); \
527 reported = true; \
528 } \
529 } while (0)
530
531 /**
532 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
533 */
534 #define anv_perf_warn(instance, obj, format, ...) \
535 do { \
536 static bool reported = false; \
537 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
538 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
539 format, ##__VA_ARGS__); \
540 reported = true; \
541 } \
542 } while (0)
543
544 /* A non-fatal assert. Useful for debugging. */
545 #ifdef DEBUG
546 #define anv_assert(x) ({ \
547 if (unlikely(!(x))) \
548 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
549 })
550 #else
551 #define anv_assert(x)
552 #endif
553
554 /* A multi-pointer allocator
555 *
556 * When copying data structures from the user (such as a render pass), it's
557 * common to need to allocate data for a bunch of different things. Instead
558 * of doing several allocations and having to handle all of the error checking
559 * that entails, it can be easier to do a single allocation. This struct
560 * helps facilitate that. The intended usage looks like this:
561 *
562 * ANV_MULTIALLOC(ma)
563 * anv_multialloc_add(&ma, &main_ptr, 1);
564 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
565 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
566 *
567 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
568 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
569 */
570 struct anv_multialloc {
571 size_t size;
572 size_t align;
573
574 uint32_t ptr_count;
575 void **ptrs[8];
576 };
577
578 #define ANV_MULTIALLOC_INIT \
579 ((struct anv_multialloc) { 0, })
580
581 #define ANV_MULTIALLOC(_name) \
582 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
583
584 __attribute__((always_inline))
585 static inline void
586 _anv_multialloc_add(struct anv_multialloc *ma,
587 void **ptr, size_t size, size_t align)
588 {
589 size_t offset = align_u64(ma->size, align);
590 ma->size = offset + size;
591 ma->align = MAX2(ma->align, align);
592
593 /* Store the offset in the pointer. */
594 *ptr = (void *)(uintptr_t)offset;
595
596 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
597 ma->ptrs[ma->ptr_count++] = ptr;
598 }
599
600 #define anv_multialloc_add_size(_ma, _ptr, _size) \
601 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
602
603 #define anv_multialloc_add(_ma, _ptr, _count) \
604 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
605
606 __attribute__((always_inline))
607 static inline void *
608 anv_multialloc_alloc(struct anv_multialloc *ma,
609 const VkAllocationCallbacks *alloc,
610 VkSystemAllocationScope scope)
611 {
612 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
613 if (!ptr)
614 return NULL;
615
616 /* Fill out each of the pointers with their final value.
617 *
618 * for (uint32_t i = 0; i < ma->ptr_count; i++)
619 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
620 *
621 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
622 * constant, GCC is incapable of figuring this out and unrolling the loop
623 * so we have to give it a little help.
624 */
625 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
626 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
627 if ((_i) < ma->ptr_count) \
628 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
629 _ANV_MULTIALLOC_UPDATE_POINTER(0);
630 _ANV_MULTIALLOC_UPDATE_POINTER(1);
631 _ANV_MULTIALLOC_UPDATE_POINTER(2);
632 _ANV_MULTIALLOC_UPDATE_POINTER(3);
633 _ANV_MULTIALLOC_UPDATE_POINTER(4);
634 _ANV_MULTIALLOC_UPDATE_POINTER(5);
635 _ANV_MULTIALLOC_UPDATE_POINTER(6);
636 _ANV_MULTIALLOC_UPDATE_POINTER(7);
637 #undef _ANV_MULTIALLOC_UPDATE_POINTER
638
639 return ptr;
640 }
641
642 __attribute__((always_inline))
643 static inline void *
644 anv_multialloc_alloc2(struct anv_multialloc *ma,
645 const VkAllocationCallbacks *parent_alloc,
646 const VkAllocationCallbacks *alloc,
647 VkSystemAllocationScope scope)
648 {
649 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
650 }
651
652 struct anv_bo {
653 uint32_t gem_handle;
654
655 uint32_t refcount;
656
657 /* Index into the current validation list. This is used by the
658 * validation list building alrogithm to track which buffers are already
659 * in the validation list so that we can ensure uniqueness.
660 */
661 uint32_t index;
662
663 /* Index for use with util_sparse_array_free_list */
664 uint32_t free_index;
665
666 /* Last known offset. This value is provided by the kernel when we
667 * execbuf and is used as the presumed offset for the next bunch of
668 * relocations.
669 */
670 uint64_t offset;
671
672 /** Size of the buffer not including implicit aux */
673 uint64_t size;
674
675 /* Map for internally mapped BOs.
676 *
677 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
678 */
679 void *map;
680
681 /** Size of the implicit CCS range at the end of the buffer
682 *
683 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
684 * page of main surface data maps to a 256B chunk of CCS data and that
685 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
686 * addresses in the main surface to virtual memory addresses for CCS data.
687 *
688 * Because we can't change these maps around easily and because Vulkan
689 * allows two VkImages to be bound to overlapping memory regions (as long
690 * as the app is careful), it's not feasible to make this mapping part of
691 * the image. (On Gen11 and earlier, the mapping was provided via
692 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
693 * Instead, we attach the CCS data directly to the buffer object and setup
694 * the AUX table mapping at BO creation time.
695 *
696 * This field is for internal tracking use by the BO allocator only and
697 * should not be touched by other parts of the code. If something wants to
698 * know if a BO has implicit CCS data, it should instead look at the
699 * has_implicit_ccs boolean below.
700 *
701 * This data is not included in maps of this buffer.
702 */
703 uint32_t _ccs_size;
704
705 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
706 uint32_t flags;
707
708 /** True if this BO may be shared with other processes */
709 bool is_external:1;
710
711 /** True if this BO is a wrapper
712 *
713 * When set to true, none of the fields in this BO are meaningful except
714 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
715 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
716 * is set in the physical device.
717 */
718 bool is_wrapper:1;
719
720 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
721 bool has_fixed_address:1;
722
723 /** True if this BO wraps a host pointer */
724 bool from_host_ptr:1;
725
726 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
727 bool has_client_visible_address:1;
728
729 /** True if this BO has implicit CCS data attached to it */
730 bool has_implicit_ccs:1;
731 };
732
733 static inline struct anv_bo *
734 anv_bo_ref(struct anv_bo *bo)
735 {
736 p_atomic_inc(&bo->refcount);
737 return bo;
738 }
739
740 static inline struct anv_bo *
741 anv_bo_unwrap(struct anv_bo *bo)
742 {
743 while (bo->is_wrapper)
744 bo = bo->map;
745 return bo;
746 }
747
748 /* Represents a lock-free linked list of "free" things. This is used by
749 * both the block pool and the state pools. Unfortunately, in order to
750 * solve the ABA problem, we can't use a single uint32_t head.
751 */
752 union anv_free_list {
753 struct {
754 uint32_t offset;
755
756 /* A simple count that is incremented every time the head changes. */
757 uint32_t count;
758 };
759 /* Make sure it's aligned to 64 bits. This will make atomic operations
760 * faster on 32 bit platforms.
761 */
762 uint64_t u64 __attribute__ ((aligned (8)));
763 };
764
765 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
766
767 struct anv_block_state {
768 union {
769 struct {
770 uint32_t next;
771 uint32_t end;
772 };
773 /* Make sure it's aligned to 64 bits. This will make atomic operations
774 * faster on 32 bit platforms.
775 */
776 uint64_t u64 __attribute__ ((aligned (8)));
777 };
778 };
779
780 #define anv_block_pool_foreach_bo(bo, pool) \
781 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
782 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
783 _pp_bo++)
784
785 #define ANV_MAX_BLOCK_POOL_BOS 20
786
787 struct anv_block_pool {
788 struct anv_device *device;
789 bool use_softpin;
790
791 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
792 * around the actual BO so that we grow the pool after the wrapper BO has
793 * been put in a relocation list. This is only used in the non-softpin
794 * case.
795 */
796 struct anv_bo wrapper_bo;
797
798 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
799 struct anv_bo *bo;
800 uint32_t nbos;
801
802 uint64_t size;
803
804 /* The address where the start of the pool is pinned. The various bos that
805 * are created as the pool grows will have addresses in the range
806 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
807 */
808 uint64_t start_address;
809
810 /* The offset from the start of the bo to the "center" of the block
811 * pool. Pointers to allocated blocks are given by
812 * bo.map + center_bo_offset + offsets.
813 */
814 uint32_t center_bo_offset;
815
816 /* Current memory map of the block pool. This pointer may or may not
817 * point to the actual beginning of the block pool memory. If
818 * anv_block_pool_alloc_back has ever been called, then this pointer
819 * will point to the "center" position of the buffer and all offsets
820 * (negative or positive) given out by the block pool alloc functions
821 * will be valid relative to this pointer.
822 *
823 * In particular, map == bo.map + center_offset
824 *
825 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
826 * since it will handle the softpin case as well, where this points to NULL.
827 */
828 void *map;
829 int fd;
830
831 /**
832 * Array of mmaps and gem handles owned by the block pool, reclaimed when
833 * the block pool is destroyed.
834 */
835 struct u_vector mmap_cleanups;
836
837 struct anv_block_state state;
838
839 struct anv_block_state back_state;
840 };
841
842 /* Block pools are backed by a fixed-size 1GB memfd */
843 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
844
845 /* The center of the block pool is also the middle of the memfd. This may
846 * change in the future if we decide differently for some reason.
847 */
848 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
849
850 static inline uint32_t
851 anv_block_pool_size(struct anv_block_pool *pool)
852 {
853 return pool->state.end + pool->back_state.end;
854 }
855
856 struct anv_state {
857 int32_t offset;
858 uint32_t alloc_size;
859 void *map;
860 uint32_t idx;
861 };
862
863 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
864
865 struct anv_fixed_size_state_pool {
866 union anv_free_list free_list;
867 struct anv_block_state block;
868 };
869
870 #define ANV_MIN_STATE_SIZE_LOG2 6
871 #define ANV_MAX_STATE_SIZE_LOG2 21
872
873 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
874
875 struct anv_free_entry {
876 uint32_t next;
877 struct anv_state state;
878 };
879
880 struct anv_state_table {
881 struct anv_device *device;
882 int fd;
883 struct anv_free_entry *map;
884 uint32_t size;
885 struct anv_block_state state;
886 struct u_vector cleanups;
887 };
888
889 struct anv_state_pool {
890 struct anv_block_pool block_pool;
891
892 /* Offset into the relevant state base address where the state pool starts
893 * allocating memory.
894 */
895 int32_t start_offset;
896
897 struct anv_state_table table;
898
899 /* The size of blocks which will be allocated from the block pool */
900 uint32_t block_size;
901
902 /** Free list for "back" allocations */
903 union anv_free_list back_alloc_free_list;
904
905 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
906 };
907
908 struct anv_state_reserved_pool {
909 struct anv_state_pool *pool;
910 union anv_free_list reserved_blocks;
911 uint32_t count;
912 };
913
914 struct anv_state_stream {
915 struct anv_state_pool *state_pool;
916
917 /* The size of blocks to allocate from the state pool */
918 uint32_t block_size;
919
920 /* Current block we're allocating from */
921 struct anv_state block;
922
923 /* Offset into the current block at which to allocate the next state */
924 uint32_t next;
925
926 /* List of all blocks allocated from this pool */
927 struct util_dynarray all_blocks;
928 };
929
930 /* The block_pool functions exported for testing only. The block pool should
931 * only be used via a state pool (see below).
932 */
933 VkResult anv_block_pool_init(struct anv_block_pool *pool,
934 struct anv_device *device,
935 uint64_t start_address,
936 uint32_t initial_size);
937 void anv_block_pool_finish(struct anv_block_pool *pool);
938 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
939 uint32_t block_size, uint32_t *padding);
940 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
941 uint32_t block_size);
942 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
943 size);
944
945 VkResult anv_state_pool_init(struct anv_state_pool *pool,
946 struct anv_device *device,
947 uint64_t base_address,
948 int32_t start_offset,
949 uint32_t block_size);
950 void anv_state_pool_finish(struct anv_state_pool *pool);
951 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
952 uint32_t state_size, uint32_t alignment);
953 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
954 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
955 void anv_state_stream_init(struct anv_state_stream *stream,
956 struct anv_state_pool *state_pool,
957 uint32_t block_size);
958 void anv_state_stream_finish(struct anv_state_stream *stream);
959 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
960 uint32_t size, uint32_t alignment);
961
962 void anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
963 struct anv_state_pool *parent,
964 uint32_t count, uint32_t size,
965 uint32_t alignment);
966 void anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool);
967 struct anv_state anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool);
968 void anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
969 struct anv_state state);
970
971 VkResult anv_state_table_init(struct anv_state_table *table,
972 struct anv_device *device,
973 uint32_t initial_entries);
974 void anv_state_table_finish(struct anv_state_table *table);
975 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
976 uint32_t count);
977 void anv_free_list_push(union anv_free_list *list,
978 struct anv_state_table *table,
979 uint32_t idx, uint32_t count);
980 struct anv_state* anv_free_list_pop(union anv_free_list *list,
981 struct anv_state_table *table);
982
983
984 static inline struct anv_state *
985 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
986 {
987 return &table->map[idx].state;
988 }
989 /**
990 * Implements a pool of re-usable BOs. The interface is identical to that
991 * of block_pool except that each block is its own BO.
992 */
993 struct anv_bo_pool {
994 struct anv_device *device;
995
996 struct util_sparse_array_free_list free_list[16];
997 };
998
999 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
1000 void anv_bo_pool_finish(struct anv_bo_pool *pool);
1001 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1002 struct anv_bo **bo_out);
1003 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
1004
1005 struct anv_scratch_pool {
1006 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
1007 struct anv_bo *bos[16][MESA_SHADER_STAGES];
1008 };
1009
1010 void anv_scratch_pool_init(struct anv_device *device,
1011 struct anv_scratch_pool *pool);
1012 void anv_scratch_pool_finish(struct anv_device *device,
1013 struct anv_scratch_pool *pool);
1014 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
1015 struct anv_scratch_pool *pool,
1016 gl_shader_stage stage,
1017 unsigned per_thread_scratch);
1018
1019 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
1020 struct anv_bo_cache {
1021 struct util_sparse_array bo_map;
1022 pthread_mutex_t mutex;
1023 };
1024
1025 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
1026 void anv_bo_cache_finish(struct anv_bo_cache *cache);
1027
1028 struct anv_memory_type {
1029 /* Standard bits passed on to the client */
1030 VkMemoryPropertyFlags propertyFlags;
1031 uint32_t heapIndex;
1032 };
1033
1034 struct anv_memory_heap {
1035 /* Standard bits passed on to the client */
1036 VkDeviceSize size;
1037 VkMemoryHeapFlags flags;
1038
1039 /** Driver-internal book-keeping.
1040 *
1041 * Align it to 64 bits to make atomic operations faster on 32 bit platforms.
1042 */
1043 VkDeviceSize used __attribute__ ((aligned (8)));
1044 };
1045
1046 struct anv_physical_device {
1047 struct vk_object_base base;
1048
1049 /* Link in anv_instance::physical_devices */
1050 struct list_head link;
1051
1052 struct anv_instance * instance;
1053 bool no_hw;
1054 char path[20];
1055 const char * name;
1056 struct {
1057 uint16_t domain;
1058 uint8_t bus;
1059 uint8_t device;
1060 uint8_t function;
1061 } pci_info;
1062 struct gen_device_info info;
1063 /** Amount of "GPU memory" we want to advertise
1064 *
1065 * Clearly, this value is bogus since Intel is a UMA architecture. On
1066 * gen7 platforms, we are limited by GTT size unless we want to implement
1067 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1068 * practically unlimited. However, we will never report more than 3/4 of
1069 * the total system ram to try and avoid running out of RAM.
1070 */
1071 bool supports_48bit_addresses;
1072 struct brw_compiler * compiler;
1073 struct isl_device isl_dev;
1074 struct gen_perf_config * perf;
1075 int cmd_parser_version;
1076 bool has_softpin;
1077 bool has_exec_async;
1078 bool has_exec_capture;
1079 bool has_exec_fence;
1080 bool has_syncobj;
1081 bool has_syncobj_wait;
1082 bool has_context_priority;
1083 bool has_context_isolation;
1084 bool has_mem_available;
1085 bool has_mmap_offset;
1086 uint64_t gtt_size;
1087
1088 bool use_softpin;
1089 bool always_use_bindless;
1090 bool use_call_secondary;
1091
1092 /** True if we can access buffers using A64 messages */
1093 bool has_a64_buffer_access;
1094 /** True if we can use bindless access for images */
1095 bool has_bindless_images;
1096 /** True if we can use bindless access for samplers */
1097 bool has_bindless_samplers;
1098
1099 /** True if we can read the GPU timestamp register
1100 *
1101 * When running in a virtual context, the timestamp register is unreadable
1102 * on Gen12+.
1103 */
1104 bool has_reg_timestamp;
1105
1106 /** True if this device has implicit AUX
1107 *
1108 * If true, CCS is handled as an implicit attachment to the BO rather than
1109 * as an explicitly bound surface.
1110 */
1111 bool has_implicit_ccs;
1112
1113 bool always_flush_cache;
1114
1115 struct anv_device_extension_table supported_extensions;
1116
1117 uint32_t eu_total;
1118 uint32_t subslice_total;
1119
1120 struct {
1121 uint32_t type_count;
1122 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1123 uint32_t heap_count;
1124 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1125 } memory;
1126
1127 uint8_t driver_build_sha1[20];
1128 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1129 uint8_t driver_uuid[VK_UUID_SIZE];
1130 uint8_t device_uuid[VK_UUID_SIZE];
1131
1132 struct disk_cache * disk_cache;
1133
1134 struct wsi_device wsi_device;
1135 int local_fd;
1136 int master_fd;
1137 };
1138
1139 struct anv_app_info {
1140 const char* app_name;
1141 uint32_t app_version;
1142 const char* engine_name;
1143 uint32_t engine_version;
1144 uint32_t api_version;
1145 };
1146
1147 struct anv_instance {
1148 struct vk_object_base base;
1149
1150 VkAllocationCallbacks alloc;
1151
1152 struct anv_app_info app_info;
1153
1154 struct anv_instance_extension_table enabled_extensions;
1155 struct anv_instance_dispatch_table dispatch;
1156 struct anv_physical_device_dispatch_table physical_device_dispatch;
1157 struct anv_device_dispatch_table device_dispatch;
1158
1159 bool physical_devices_enumerated;
1160 struct list_head physical_devices;
1161
1162 bool pipeline_cache_enabled;
1163
1164 struct vk_debug_report_instance debug_report_callbacks;
1165
1166 struct driOptionCache dri_options;
1167 struct driOptionCache available_dri_options;
1168 };
1169
1170 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1171 void anv_finish_wsi(struct anv_physical_device *physical_device);
1172
1173 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1174 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1175 const char *name);
1176
1177 struct anv_queue_submit {
1178 struct anv_cmd_buffer * cmd_buffer;
1179
1180 uint32_t fence_count;
1181 uint32_t fence_array_length;
1182 struct drm_i915_gem_exec_fence * fences;
1183
1184 uint32_t temporary_semaphore_count;
1185 uint32_t temporary_semaphore_array_length;
1186 struct anv_semaphore_impl * temporary_semaphores;
1187
1188 /* Semaphores to be signaled with a SYNC_FD. */
1189 struct anv_semaphore ** sync_fd_semaphores;
1190 uint32_t sync_fd_semaphore_count;
1191 uint32_t sync_fd_semaphore_array_length;
1192
1193 /* Allocated only with non shareable timelines. */
1194 struct anv_timeline ** wait_timelines;
1195 uint32_t wait_timeline_count;
1196 uint32_t wait_timeline_array_length;
1197 uint64_t * wait_timeline_values;
1198
1199 struct anv_timeline ** signal_timelines;
1200 uint32_t signal_timeline_count;
1201 uint32_t signal_timeline_array_length;
1202 uint64_t * signal_timeline_values;
1203
1204 int in_fence;
1205 bool need_out_fence;
1206 int out_fence;
1207
1208 uint32_t fence_bo_count;
1209 uint32_t fence_bo_array_length;
1210 /* An array of struct anv_bo pointers with lower bit used as a flag to
1211 * signal we will wait on that BO (see anv_(un)pack_ptr).
1212 */
1213 uintptr_t * fence_bos;
1214
1215 int perf_query_pass;
1216
1217 const VkAllocationCallbacks * alloc;
1218 VkSystemAllocationScope alloc_scope;
1219
1220 struct anv_bo * simple_bo;
1221 uint32_t simple_bo_size;
1222
1223 struct list_head link;
1224 };
1225
1226 struct anv_queue {
1227 struct vk_object_base base;
1228
1229 struct anv_device * device;
1230
1231 /*
1232 * A list of struct anv_queue_submit to be submitted to i915.
1233 */
1234 struct list_head queued_submits;
1235
1236 VkDeviceQueueCreateFlags flags;
1237 };
1238
1239 struct anv_pipeline_cache {
1240 struct vk_object_base base;
1241 struct anv_device * device;
1242 pthread_mutex_t mutex;
1243
1244 struct hash_table * nir_cache;
1245
1246 struct hash_table * cache;
1247
1248 bool external_sync;
1249 };
1250
1251 struct nir_xfb_info;
1252 struct anv_pipeline_bind_map;
1253
1254 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1255 struct anv_device *device,
1256 bool cache_enabled);
1257 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1258
1259 struct anv_shader_bin *
1260 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1261 const void *key, uint32_t key_size);
1262 struct anv_shader_bin *
1263 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1264 gl_shader_stage stage,
1265 const void *key_data, uint32_t key_size,
1266 const void *kernel_data, uint32_t kernel_size,
1267 const void *constant_data,
1268 uint32_t constant_data_size,
1269 const struct brw_stage_prog_data *prog_data,
1270 uint32_t prog_data_size,
1271 const struct brw_compile_stats *stats,
1272 uint32_t num_stats,
1273 const struct nir_xfb_info *xfb_info,
1274 const struct anv_pipeline_bind_map *bind_map);
1275
1276 struct anv_shader_bin *
1277 anv_device_search_for_kernel(struct anv_device *device,
1278 struct anv_pipeline_cache *cache,
1279 const void *key_data, uint32_t key_size,
1280 bool *user_cache_bit);
1281
1282 struct anv_shader_bin *
1283 anv_device_upload_kernel(struct anv_device *device,
1284 struct anv_pipeline_cache *cache,
1285 gl_shader_stage stage,
1286 const void *key_data, uint32_t key_size,
1287 const void *kernel_data, uint32_t kernel_size,
1288 const void *constant_data,
1289 uint32_t constant_data_size,
1290 const struct brw_stage_prog_data *prog_data,
1291 uint32_t prog_data_size,
1292 const struct brw_compile_stats *stats,
1293 uint32_t num_stats,
1294 const struct nir_xfb_info *xfb_info,
1295 const struct anv_pipeline_bind_map *bind_map);
1296
1297 struct nir_shader;
1298 struct nir_shader_compiler_options;
1299
1300 struct nir_shader *
1301 anv_device_search_for_nir(struct anv_device *device,
1302 struct anv_pipeline_cache *cache,
1303 const struct nir_shader_compiler_options *nir_options,
1304 unsigned char sha1_key[20],
1305 void *mem_ctx);
1306
1307 void
1308 anv_device_upload_nir(struct anv_device *device,
1309 struct anv_pipeline_cache *cache,
1310 const struct nir_shader *nir,
1311 unsigned char sha1_key[20]);
1312
1313 struct anv_address {
1314 struct anv_bo *bo;
1315 uint32_t offset;
1316 };
1317
1318 struct anv_device {
1319 struct vk_device vk;
1320
1321 struct anv_physical_device * physical;
1322 bool no_hw;
1323 struct gen_device_info info;
1324 struct isl_device isl_dev;
1325 int context_id;
1326 int fd;
1327 bool can_chain_batches;
1328 bool robust_buffer_access;
1329 struct anv_device_extension_table enabled_extensions;
1330 struct anv_device_dispatch_table dispatch;
1331
1332 pthread_mutex_t vma_mutex;
1333 struct util_vma_heap vma_lo;
1334 struct util_vma_heap vma_cva;
1335 struct util_vma_heap vma_hi;
1336
1337 /** List of all anv_device_memory objects */
1338 struct list_head memory_objects;
1339
1340 struct anv_bo_pool batch_bo_pool;
1341
1342 struct anv_bo_cache bo_cache;
1343
1344 struct anv_state_pool dynamic_state_pool;
1345 struct anv_state_pool instruction_state_pool;
1346 struct anv_state_pool binding_table_pool;
1347 struct anv_state_pool surface_state_pool;
1348
1349 struct anv_state_reserved_pool custom_border_colors;
1350
1351 /** BO used for various workarounds
1352 *
1353 * There are a number of workarounds on our hardware which require writing
1354 * data somewhere and it doesn't really matter where. For that, we use
1355 * this BO and just write to the first dword or so.
1356 *
1357 * We also need to be able to handle NULL buffers bound as pushed UBOs.
1358 * For that, we use the high bytes (>= 1024) of the workaround BO.
1359 */
1360 struct anv_bo * workaround_bo;
1361 struct anv_address workaround_address;
1362
1363 struct anv_bo * trivial_batch_bo;
1364 struct anv_bo * hiz_clear_bo;
1365 struct anv_state null_surface_state;
1366
1367 struct anv_pipeline_cache default_pipeline_cache;
1368 struct blorp_context blorp;
1369
1370 struct anv_state border_colors;
1371
1372 struct anv_state slice_hash;
1373
1374 struct anv_queue queue;
1375
1376 struct anv_scratch_pool scratch_pool;
1377
1378 pthread_mutex_t mutex;
1379 pthread_cond_t queue_submit;
1380 int _lost;
1381
1382 struct gen_batch_decode_ctx decoder_ctx;
1383 /*
1384 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1385 * the cmd_buffer's list.
1386 */
1387 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1388
1389 int perf_fd; /* -1 if no opened */
1390 uint64_t perf_metric; /* 0 if unset */
1391
1392 struct gen_aux_map_context *aux_map_ctx;
1393 };
1394
1395 static inline struct anv_instance *
1396 anv_device_instance_or_null(const struct anv_device *device)
1397 {
1398 return device ? device->physical->instance : NULL;
1399 }
1400
1401 static inline struct anv_state_pool *
1402 anv_binding_table_pool(struct anv_device *device)
1403 {
1404 if (device->physical->use_softpin)
1405 return &device->binding_table_pool;
1406 else
1407 return &device->surface_state_pool;
1408 }
1409
1410 static inline struct anv_state
1411 anv_binding_table_pool_alloc(struct anv_device *device) {
1412 if (device->physical->use_softpin)
1413 return anv_state_pool_alloc(&device->binding_table_pool,
1414 device->binding_table_pool.block_size, 0);
1415 else
1416 return anv_state_pool_alloc_back(&device->surface_state_pool);
1417 }
1418
1419 static inline void
1420 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1421 anv_state_pool_free(anv_binding_table_pool(device), state);
1422 }
1423
1424 static inline uint32_t
1425 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1426 {
1427 if (bo->is_external)
1428 return device->isl_dev.mocs.external;
1429 else
1430 return device->isl_dev.mocs.internal;
1431 }
1432
1433 void anv_device_init_blorp(struct anv_device *device);
1434 void anv_device_finish_blorp(struct anv_device *device);
1435
1436 void _anv_device_set_all_queue_lost(struct anv_device *device);
1437 VkResult _anv_device_set_lost(struct anv_device *device,
1438 const char *file, int line,
1439 const char *msg, ...)
1440 anv_printflike(4, 5);
1441 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1442 const char *file, int line,
1443 const char *msg, ...)
1444 anv_printflike(4, 5);
1445 #define anv_device_set_lost(dev, ...) \
1446 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1447 #define anv_queue_set_lost(queue, ...) \
1448 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1449
1450 static inline bool
1451 anv_device_is_lost(struct anv_device *device)
1452 {
1453 return unlikely(p_atomic_read(&device->_lost));
1454 }
1455
1456 VkResult anv_device_query_status(struct anv_device *device);
1457
1458
1459 enum anv_bo_alloc_flags {
1460 /** Specifies that the BO must have a 32-bit address
1461 *
1462 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1463 */
1464 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1465
1466 /** Specifies that the BO may be shared externally */
1467 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1468
1469 /** Specifies that the BO should be mapped */
1470 ANV_BO_ALLOC_MAPPED = (1 << 2),
1471
1472 /** Specifies that the BO should be snooped so we get coherency */
1473 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1474
1475 /** Specifies that the BO should be captured in error states */
1476 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1477
1478 /** Specifies that the BO will have an address assigned by the caller
1479 *
1480 * Such BOs do not exist in any VMA heap.
1481 */
1482 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1483
1484 /** Enables implicit synchronization on the BO
1485 *
1486 * This is the opposite of EXEC_OBJECT_ASYNC.
1487 */
1488 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1489
1490 /** Enables implicit synchronization on the BO
1491 *
1492 * This is equivalent to EXEC_OBJECT_WRITE.
1493 */
1494 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1495
1496 /** Has an address which is visible to the client */
1497 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1498
1499 /** This buffer has implicit CCS data attached to it */
1500 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1501 };
1502
1503 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1504 enum anv_bo_alloc_flags alloc_flags,
1505 uint64_t explicit_address,
1506 struct anv_bo **bo);
1507 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1508 void *host_ptr, uint32_t size,
1509 enum anv_bo_alloc_flags alloc_flags,
1510 uint64_t client_address,
1511 struct anv_bo **bo_out);
1512 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1513 enum anv_bo_alloc_flags alloc_flags,
1514 uint64_t client_address,
1515 struct anv_bo **bo);
1516 VkResult anv_device_export_bo(struct anv_device *device,
1517 struct anv_bo *bo, int *fd_out);
1518 void anv_device_release_bo(struct anv_device *device,
1519 struct anv_bo *bo);
1520
1521 static inline struct anv_bo *
1522 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1523 {
1524 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1525 }
1526
1527 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1528 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1529 int64_t timeout);
1530
1531 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1532 void anv_queue_finish(struct anv_queue *queue);
1533
1534 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1535 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1536 struct anv_batch *batch);
1537
1538 uint64_t anv_gettime_ns(void);
1539 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1540
1541 void* anv_gem_mmap(struct anv_device *device,
1542 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1543 void anv_gem_munmap(struct anv_device *device, void *p, uint64_t size);
1544 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1545 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1546 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1547 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1548 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1549 int anv_gem_execbuffer(struct anv_device *device,
1550 struct drm_i915_gem_execbuffer2 *execbuf);
1551 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1552 uint32_t stride, uint32_t tiling);
1553 int anv_gem_create_context(struct anv_device *device);
1554 bool anv_gem_has_context_priority(int fd);
1555 int anv_gem_destroy_context(struct anv_device *device, int context);
1556 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1557 uint64_t value);
1558 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1559 uint64_t *value);
1560 int anv_gem_get_param(int fd, uint32_t param);
1561 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1562 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1563 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1564 uint32_t *active, uint32_t *pending);
1565 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1566 int anv_gem_reg_read(int fd, uint32_t offset, uint64_t *result);
1567 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1568 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1569 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1570 uint32_t read_domains, uint32_t write_domain);
1571 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1572 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1573 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1574 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1575 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1576 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1577 uint32_t handle);
1578 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1579 uint32_t handle, int fd);
1580 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1581 bool anv_gem_supports_syncobj_wait(int fd);
1582 int anv_gem_syncobj_wait(struct anv_device *device,
1583 uint32_t *handles, uint32_t num_handles,
1584 int64_t abs_timeout_ns, bool wait_all);
1585
1586 uint64_t anv_vma_alloc(struct anv_device *device,
1587 uint64_t size, uint64_t align,
1588 enum anv_bo_alloc_flags alloc_flags,
1589 uint64_t client_address);
1590 void anv_vma_free(struct anv_device *device,
1591 uint64_t address, uint64_t size);
1592
1593 struct anv_reloc_list {
1594 uint32_t num_relocs;
1595 uint32_t array_length;
1596 struct drm_i915_gem_relocation_entry * relocs;
1597 struct anv_bo ** reloc_bos;
1598 uint32_t dep_words;
1599 BITSET_WORD * deps;
1600 };
1601
1602 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1603 const VkAllocationCallbacks *alloc);
1604 void anv_reloc_list_finish(struct anv_reloc_list *list,
1605 const VkAllocationCallbacks *alloc);
1606
1607 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1608 const VkAllocationCallbacks *alloc,
1609 uint32_t offset, struct anv_bo *target_bo,
1610 uint32_t delta, uint64_t *address_u64_out);
1611
1612 struct anv_batch_bo {
1613 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1614 struct list_head link;
1615
1616 struct anv_bo * bo;
1617
1618 /* Bytes actually consumed in this batch BO */
1619 uint32_t length;
1620
1621 struct anv_reloc_list relocs;
1622 };
1623
1624 struct anv_batch {
1625 const VkAllocationCallbacks * alloc;
1626
1627 struct anv_address start_addr;
1628
1629 void * start;
1630 void * end;
1631 void * next;
1632
1633 struct anv_reloc_list * relocs;
1634
1635 /* This callback is called (with the associated user data) in the event
1636 * that the batch runs out of space.
1637 */
1638 VkResult (*extend_cb)(struct anv_batch *, void *);
1639 void * user_data;
1640
1641 /**
1642 * Current error status of the command buffer. Used to track inconsistent
1643 * or incomplete command buffer states that are the consequence of run-time
1644 * errors such as out of memory scenarios. We want to track this in the
1645 * batch because the command buffer object is not visible to some parts
1646 * of the driver.
1647 */
1648 VkResult status;
1649 };
1650
1651 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1652 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1653 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1654 void *location, struct anv_bo *bo, uint32_t offset);
1655 struct anv_address anv_batch_address(struct anv_batch *batch, void *batch_location);
1656
1657 static inline void
1658 anv_batch_set_storage(struct anv_batch *batch, struct anv_address addr,
1659 void *map, size_t size)
1660 {
1661 batch->start_addr = addr;
1662 batch->next = batch->start = map;
1663 batch->end = map + size;
1664 }
1665
1666 static inline VkResult
1667 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1668 {
1669 assert(error != VK_SUCCESS);
1670 if (batch->status == VK_SUCCESS)
1671 batch->status = error;
1672 return batch->status;
1673 }
1674
1675 static inline bool
1676 anv_batch_has_error(struct anv_batch *batch)
1677 {
1678 return batch->status != VK_SUCCESS;
1679 }
1680
1681 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1682
1683 static inline bool
1684 anv_address_is_null(struct anv_address addr)
1685 {
1686 return addr.bo == NULL && addr.offset == 0;
1687 }
1688
1689 static inline uint64_t
1690 anv_address_physical(struct anv_address addr)
1691 {
1692 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1693 return gen_canonical_address(addr.bo->offset + addr.offset);
1694 else
1695 return gen_canonical_address(addr.offset);
1696 }
1697
1698 static inline struct anv_address
1699 anv_address_add(struct anv_address addr, uint64_t offset)
1700 {
1701 addr.offset += offset;
1702 return addr;
1703 }
1704
1705 static inline void
1706 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1707 {
1708 unsigned reloc_size = 0;
1709 if (device->info.gen >= 8) {
1710 reloc_size = sizeof(uint64_t);
1711 *(uint64_t *)p = gen_canonical_address(v);
1712 } else {
1713 reloc_size = sizeof(uint32_t);
1714 *(uint32_t *)p = v;
1715 }
1716
1717 if (flush && !device->info.has_llc)
1718 gen_flush_range(p, reloc_size);
1719 }
1720
1721 static inline uint64_t
1722 _anv_combine_address(struct anv_batch *batch, void *location,
1723 const struct anv_address address, uint32_t delta)
1724 {
1725 if (address.bo == NULL) {
1726 return address.offset + delta;
1727 } else {
1728 assert(batch->start <= location && location < batch->end);
1729
1730 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1731 }
1732 }
1733
1734 #define __gen_address_type struct anv_address
1735 #define __gen_user_data struct anv_batch
1736 #define __gen_combine_address _anv_combine_address
1737
1738 /* Wrapper macros needed to work around preprocessor argument issues. In
1739 * particular, arguments don't get pre-evaluated if they are concatenated.
1740 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1741 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1742 * We can work around this easily enough with these helpers.
1743 */
1744 #define __anv_cmd_length(cmd) cmd ## _length
1745 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1746 #define __anv_cmd_header(cmd) cmd ## _header
1747 #define __anv_cmd_pack(cmd) cmd ## _pack
1748 #define __anv_reg_num(reg) reg ## _num
1749
1750 #define anv_pack_struct(dst, struc, ...) do { \
1751 struct struc __template = { \
1752 __VA_ARGS__ \
1753 }; \
1754 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1755 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1756 } while (0)
1757
1758 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1759 void *__dst = anv_batch_emit_dwords(batch, n); \
1760 if (__dst) { \
1761 struct cmd __template = { \
1762 __anv_cmd_header(cmd), \
1763 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1764 __VA_ARGS__ \
1765 }; \
1766 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1767 } \
1768 __dst; \
1769 })
1770
1771 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1772 do { \
1773 uint32_t *dw; \
1774 \
1775 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1776 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1777 if (!dw) \
1778 break; \
1779 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1780 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1781 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1782 } while (0)
1783
1784 #define anv_batch_emit(batch, cmd, name) \
1785 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1786 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1787 __builtin_expect(_dst != NULL, 1); \
1788 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1789 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1790 _dst = NULL; \
1791 }))
1792
1793 /* #define __gen_get_batch_dwords anv_batch_emit_dwords */
1794 /* #define __gen_get_batch_address anv_batch_address */
1795 /* #define __gen_address_value anv_address_physical */
1796 /* #define __gen_address_offset anv_address_add */
1797
1798 struct anv_device_memory {
1799 struct vk_object_base base;
1800
1801 struct list_head link;
1802
1803 struct anv_bo * bo;
1804 struct anv_memory_type * type;
1805 VkDeviceSize map_size;
1806 void * map;
1807
1808 /* If set, we are holding reference to AHardwareBuffer
1809 * which we must release when memory is freed.
1810 */
1811 struct AHardwareBuffer * ahw;
1812
1813 /* If set, this memory comes from a host pointer. */
1814 void * host_ptr;
1815 };
1816
1817 /**
1818 * Header for Vertex URB Entry (VUE)
1819 */
1820 struct anv_vue_header {
1821 uint32_t Reserved;
1822 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1823 uint32_t ViewportIndex;
1824 float PointWidth;
1825 };
1826
1827 /** Struct representing a sampled image descriptor
1828 *
1829 * This descriptor layout is used for sampled images, bare sampler, and
1830 * combined image/sampler descriptors.
1831 */
1832 struct anv_sampled_image_descriptor {
1833 /** Bindless image handle
1834 *
1835 * This is expected to already be shifted such that the 20-bit
1836 * SURFACE_STATE table index is in the top 20 bits.
1837 */
1838 uint32_t image;
1839
1840 /** Bindless sampler handle
1841 *
1842 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1843 * to the dynamic state base address.
1844 */
1845 uint32_t sampler;
1846 };
1847
1848 struct anv_texture_swizzle_descriptor {
1849 /** Texture swizzle
1850 *
1851 * See also nir_intrinsic_channel_select_intel
1852 */
1853 uint8_t swizzle[4];
1854
1855 /** Unused padding to ensure the struct is a multiple of 64 bits */
1856 uint32_t _pad;
1857 };
1858
1859 /** Struct representing a storage image descriptor */
1860 struct anv_storage_image_descriptor {
1861 /** Bindless image handles
1862 *
1863 * These are expected to already be shifted such that the 20-bit
1864 * SURFACE_STATE table index is in the top 20 bits.
1865 */
1866 uint32_t read_write;
1867 uint32_t write_only;
1868 };
1869
1870 /** Struct representing a address/range descriptor
1871 *
1872 * The fields of this struct correspond directly to the data layout of
1873 * nir_address_format_64bit_bounded_global addresses. The last field is the
1874 * offset in the NIR address so it must be zero so that when you load the
1875 * descriptor you get a pointer to the start of the range.
1876 */
1877 struct anv_address_range_descriptor {
1878 uint64_t address;
1879 uint32_t range;
1880 uint32_t zero;
1881 };
1882
1883 enum anv_descriptor_data {
1884 /** The descriptor contains a BTI reference to a surface state */
1885 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1886 /** The descriptor contains a BTI reference to a sampler state */
1887 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1888 /** The descriptor contains an actual buffer view */
1889 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1890 /** The descriptor contains auxiliary image layout data */
1891 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1892 /** The descriptor contains auxiliary image layout data */
1893 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1894 /** anv_address_range_descriptor with a buffer address and range */
1895 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1896 /** Bindless surface handle */
1897 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1898 /** Storage image handles */
1899 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1900 /** Storage image handles */
1901 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1902 };
1903
1904 struct anv_descriptor_set_binding_layout {
1905 #ifndef NDEBUG
1906 /* The type of the descriptors in this binding */
1907 VkDescriptorType type;
1908 #endif
1909
1910 /* Flags provided when this binding was created */
1911 VkDescriptorBindingFlagsEXT flags;
1912
1913 /* Bitfield representing the type of data this descriptor contains */
1914 enum anv_descriptor_data data;
1915
1916 /* Maximum number of YCbCr texture/sampler planes */
1917 uint8_t max_plane_count;
1918
1919 /* Number of array elements in this binding (or size in bytes for inline
1920 * uniform data)
1921 */
1922 uint16_t array_size;
1923
1924 /* Index into the flattend descriptor set */
1925 uint16_t descriptor_index;
1926
1927 /* Index into the dynamic state array for a dynamic buffer */
1928 int16_t dynamic_offset_index;
1929
1930 /* Index into the descriptor set buffer views */
1931 int16_t buffer_view_index;
1932
1933 /* Offset into the descriptor buffer where this descriptor lives */
1934 uint32_t descriptor_offset;
1935
1936 /* Immutable samplers (or NULL if no immutable samplers) */
1937 struct anv_sampler **immutable_samplers;
1938 };
1939
1940 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1941
1942 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1943 VkDescriptorType type);
1944
1945 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1946 const struct anv_descriptor_set_binding_layout *binding,
1947 bool sampler);
1948
1949 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1950 const struct anv_descriptor_set_binding_layout *binding,
1951 bool sampler);
1952
1953 struct anv_descriptor_set_layout {
1954 struct vk_object_base base;
1955
1956 /* Descriptor set layouts can be destroyed at almost any time */
1957 uint32_t ref_cnt;
1958
1959 /* Number of bindings in this descriptor set */
1960 uint16_t binding_count;
1961
1962 /* Total size of the descriptor set with room for all array entries */
1963 uint16_t size;
1964
1965 /* Shader stages affected by this descriptor set */
1966 uint16_t shader_stages;
1967
1968 /* Number of buffer views in this descriptor set */
1969 uint16_t buffer_view_count;
1970
1971 /* Number of dynamic offsets used by this descriptor set */
1972 uint16_t dynamic_offset_count;
1973
1974 /* For each shader stage, which offsets apply to that stage */
1975 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1976
1977 /* Size of the descriptor buffer for this descriptor set */
1978 uint32_t descriptor_buffer_size;
1979
1980 /* Bindings in this descriptor set */
1981 struct anv_descriptor_set_binding_layout binding[0];
1982 };
1983
1984 void anv_descriptor_set_layout_destroy(struct anv_device *device,
1985 struct anv_descriptor_set_layout *layout);
1986
1987 static inline void
1988 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1989 {
1990 assert(layout && layout->ref_cnt >= 1);
1991 p_atomic_inc(&layout->ref_cnt);
1992 }
1993
1994 static inline void
1995 anv_descriptor_set_layout_unref(struct anv_device *device,
1996 struct anv_descriptor_set_layout *layout)
1997 {
1998 assert(layout && layout->ref_cnt >= 1);
1999 if (p_atomic_dec_zero(&layout->ref_cnt))
2000 anv_descriptor_set_layout_destroy(device, layout);
2001 }
2002
2003 struct anv_descriptor {
2004 VkDescriptorType type;
2005
2006 union {
2007 struct {
2008 VkImageLayout layout;
2009 struct anv_image_view *image_view;
2010 struct anv_sampler *sampler;
2011 };
2012
2013 struct {
2014 struct anv_buffer *buffer;
2015 uint64_t offset;
2016 uint64_t range;
2017 };
2018
2019 struct anv_buffer_view *buffer_view;
2020 };
2021 };
2022
2023 struct anv_descriptor_set {
2024 struct vk_object_base base;
2025
2026 struct anv_descriptor_pool *pool;
2027 struct anv_descriptor_set_layout *layout;
2028 uint32_t size;
2029
2030 /* State relative to anv_descriptor_pool::bo */
2031 struct anv_state desc_mem;
2032 /* Surface state for the descriptor buffer */
2033 struct anv_state desc_surface_state;
2034
2035 uint32_t buffer_view_count;
2036 struct anv_buffer_view *buffer_views;
2037
2038 /* Link to descriptor pool's desc_sets list . */
2039 struct list_head pool_link;
2040
2041 struct anv_descriptor descriptors[0];
2042 };
2043
2044 struct anv_buffer_view {
2045 struct vk_object_base base;
2046
2047 enum isl_format format; /**< VkBufferViewCreateInfo::format */
2048 uint64_t range; /**< VkBufferViewCreateInfo::range */
2049
2050 struct anv_address address;
2051
2052 struct anv_state surface_state;
2053 struct anv_state storage_surface_state;
2054 struct anv_state writeonly_storage_surface_state;
2055
2056 struct brw_image_param storage_image_param;
2057 };
2058
2059 struct anv_push_descriptor_set {
2060 struct anv_descriptor_set set;
2061
2062 /* Put this field right behind anv_descriptor_set so it fills up the
2063 * descriptors[0] field. */
2064 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
2065
2066 /** True if the descriptor set buffer has been referenced by a draw or
2067 * dispatch command.
2068 */
2069 bool set_used_on_gpu;
2070
2071 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
2072 };
2073
2074 struct anv_descriptor_pool {
2075 struct vk_object_base base;
2076
2077 uint32_t size;
2078 uint32_t next;
2079 uint32_t free_list;
2080
2081 struct anv_bo *bo;
2082 struct util_vma_heap bo_heap;
2083
2084 struct anv_state_stream surface_state_stream;
2085 void *surface_state_free_list;
2086
2087 struct list_head desc_sets;
2088
2089 char data[0];
2090 };
2091
2092 enum anv_descriptor_template_entry_type {
2093 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
2094 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
2095 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
2096 };
2097
2098 struct anv_descriptor_template_entry {
2099 /* The type of descriptor in this entry */
2100 VkDescriptorType type;
2101
2102 /* Binding in the descriptor set */
2103 uint32_t binding;
2104
2105 /* Offset at which to write into the descriptor set binding */
2106 uint32_t array_element;
2107
2108 /* Number of elements to write into the descriptor set binding */
2109 uint32_t array_count;
2110
2111 /* Offset into the user provided data */
2112 size_t offset;
2113
2114 /* Stride between elements into the user provided data */
2115 size_t stride;
2116 };
2117
2118 struct anv_descriptor_update_template {
2119 struct vk_object_base base;
2120
2121 VkPipelineBindPoint bind_point;
2122
2123 /* The descriptor set this template corresponds to. This value is only
2124 * valid if the template was created with the templateType
2125 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2126 */
2127 uint8_t set;
2128
2129 /* Number of entries in this template */
2130 uint32_t entry_count;
2131
2132 /* Entries of the template */
2133 struct anv_descriptor_template_entry entries[0];
2134 };
2135
2136 size_t
2137 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2138
2139 void
2140 anv_descriptor_set_write_image_view(struct anv_device *device,
2141 struct anv_descriptor_set *set,
2142 const VkDescriptorImageInfo * const info,
2143 VkDescriptorType type,
2144 uint32_t binding,
2145 uint32_t element);
2146
2147 void
2148 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2149 struct anv_descriptor_set *set,
2150 VkDescriptorType type,
2151 struct anv_buffer_view *buffer_view,
2152 uint32_t binding,
2153 uint32_t element);
2154
2155 void
2156 anv_descriptor_set_write_buffer(struct anv_device *device,
2157 struct anv_descriptor_set *set,
2158 struct anv_state_stream *alloc_stream,
2159 VkDescriptorType type,
2160 struct anv_buffer *buffer,
2161 uint32_t binding,
2162 uint32_t element,
2163 VkDeviceSize offset,
2164 VkDeviceSize range);
2165 void
2166 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2167 struct anv_descriptor_set *set,
2168 uint32_t binding,
2169 const void *data,
2170 size_t offset,
2171 size_t size);
2172
2173 void
2174 anv_descriptor_set_write_template(struct anv_device *device,
2175 struct anv_descriptor_set *set,
2176 struct anv_state_stream *alloc_stream,
2177 const struct anv_descriptor_update_template *template,
2178 const void *data);
2179
2180 VkResult
2181 anv_descriptor_set_create(struct anv_device *device,
2182 struct anv_descriptor_pool *pool,
2183 struct anv_descriptor_set_layout *layout,
2184 struct anv_descriptor_set **out_set);
2185
2186 void
2187 anv_descriptor_set_destroy(struct anv_device *device,
2188 struct anv_descriptor_pool *pool,
2189 struct anv_descriptor_set *set);
2190
2191 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2192 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2193 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2194 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2195 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2196 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2197
2198 struct anv_pipeline_binding {
2199 /** Index in the descriptor set
2200 *
2201 * This is a flattened index; the descriptor set layout is already taken
2202 * into account.
2203 */
2204 uint32_t index;
2205
2206 /** The descriptor set this surface corresponds to.
2207 *
2208 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2209 * binding is not a normal descriptor set but something else.
2210 */
2211 uint8_t set;
2212
2213 union {
2214 /** Plane in the binding index for images */
2215 uint8_t plane;
2216
2217 /** Input attachment index (relative to the subpass) */
2218 uint8_t input_attachment_index;
2219
2220 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2221 uint8_t dynamic_offset_index;
2222 };
2223
2224 /** For a storage image, whether it is write-only */
2225 uint8_t write_only;
2226
2227 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2228 * assuming POD zero-initialization.
2229 */
2230 uint8_t pad;
2231 };
2232
2233 struct anv_push_range {
2234 /** Index in the descriptor set */
2235 uint32_t index;
2236
2237 /** Descriptor set index */
2238 uint8_t set;
2239
2240 /** Dynamic offset index (for dynamic UBOs) */
2241 uint8_t dynamic_offset_index;
2242
2243 /** Start offset in units of 32B */
2244 uint8_t start;
2245
2246 /** Range in units of 32B */
2247 uint8_t length;
2248 };
2249
2250 struct anv_pipeline_layout {
2251 struct vk_object_base base;
2252
2253 struct {
2254 struct anv_descriptor_set_layout *layout;
2255 uint32_t dynamic_offset_start;
2256 } set[MAX_SETS];
2257
2258 uint32_t num_sets;
2259
2260 unsigned char sha1[20];
2261 };
2262
2263 struct anv_buffer {
2264 struct vk_object_base base;
2265
2266 struct anv_device * device;
2267 VkDeviceSize size;
2268
2269 VkBufferUsageFlags usage;
2270
2271 /* Set when bound */
2272 struct anv_address address;
2273 };
2274
2275 static inline uint64_t
2276 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2277 {
2278 assert(offset <= buffer->size);
2279 if (range == VK_WHOLE_SIZE) {
2280 return buffer->size - offset;
2281 } else {
2282 assert(range + offset >= range);
2283 assert(range + offset <= buffer->size);
2284 return range;
2285 }
2286 }
2287
2288 enum anv_cmd_dirty_bits {
2289 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2290 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2291 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2292 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2293 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2294 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2295 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2296 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2297 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2298 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2299 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2300 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2301 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2302 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2303 };
2304 typedef uint32_t anv_cmd_dirty_mask_t;
2305
2306 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2307 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2308 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2309 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2310 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2311 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2312 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2313 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2314 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2315 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2316 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2317
2318 static inline enum anv_cmd_dirty_bits
2319 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2320 {
2321 switch (vk_state) {
2322 case VK_DYNAMIC_STATE_VIEWPORT:
2323 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2324 case VK_DYNAMIC_STATE_SCISSOR:
2325 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2326 case VK_DYNAMIC_STATE_LINE_WIDTH:
2327 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2328 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2329 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2330 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2331 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2332 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2333 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2334 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2335 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2336 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2337 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2338 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2339 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2340 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2341 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2342 default:
2343 assert(!"Unsupported dynamic state");
2344 return 0;
2345 }
2346 }
2347
2348
2349 enum anv_pipe_bits {
2350 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2351 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2352 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2353 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2354 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2355 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2356 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2357 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2358 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2359 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2360 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2361 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2362 ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
2363
2364 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2365 * a flush has happened but not a CS stall. The next time we do any sort
2366 * of invalidation we need to insert a CS stall at that time. Otherwise,
2367 * we would have to CS stall on every flush which could be bad.
2368 */
2369 ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
2370
2371 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2372 * target operations related to transfer commands with VkBuffer as
2373 * destination are ongoing. Some operations like copies on the command
2374 * streamer might need to be aware of this to trigger the appropriate stall
2375 * before they can proceed with the copy.
2376 */
2377 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 23),
2378
2379 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2380 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2381 * done by writing the AUX-TT register.
2382 */
2383 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 24),
2384
2385 /* This bit does not exist directly in PIPE_CONTROL. It means that a
2386 * PIPE_CONTROL with a post-sync operation will follow. This is used to
2387 * implement a workaround for Gen9.
2388 */
2389 ANV_PIPE_POST_SYNC_BIT = (1 << 25),
2390 };
2391
2392 #define ANV_PIPE_FLUSH_BITS ( \
2393 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2394 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2395 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2396 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2397
2398 #define ANV_PIPE_STALL_BITS ( \
2399 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2400 ANV_PIPE_DEPTH_STALL_BIT | \
2401 ANV_PIPE_CS_STALL_BIT)
2402
2403 #define ANV_PIPE_INVALIDATE_BITS ( \
2404 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2405 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2406 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2407 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2408 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2409 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2410 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2411
2412 static inline enum anv_pipe_bits
2413 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2414 {
2415 enum anv_pipe_bits pipe_bits = 0;
2416
2417 unsigned b;
2418 for_each_bit(b, flags) {
2419 switch ((VkAccessFlagBits)(1 << b)) {
2420 case VK_ACCESS_SHADER_WRITE_BIT:
2421 /* We're transitioning a buffer that was previously used as write
2422 * destination through the data port. To make its content available
2423 * to future operations, flush the data cache.
2424 */
2425 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2426 break;
2427 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2428 /* We're transitioning a buffer that was previously used as render
2429 * target. To make its content available to future operations, flush
2430 * the render target cache.
2431 */
2432 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2433 break;
2434 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2435 /* We're transitioning a buffer that was previously used as depth
2436 * buffer. To make its content available to future operations, flush
2437 * the depth cache.
2438 */
2439 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2440 break;
2441 case VK_ACCESS_TRANSFER_WRITE_BIT:
2442 /* We're transitioning a buffer that was previously used as a
2443 * transfer write destination. Generic write operations include color
2444 * & depth operations as well as buffer operations like :
2445 * - vkCmdClearColorImage()
2446 * - vkCmdClearDepthStencilImage()
2447 * - vkCmdBlitImage()
2448 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2449 *
2450 * Most of these operations are implemented using Blorp which writes
2451 * through the render target, so flush that cache to make it visible
2452 * to future operations. And for depth related operations we also
2453 * need to flush the depth cache.
2454 */
2455 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2456 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2457 break;
2458 case VK_ACCESS_MEMORY_WRITE_BIT:
2459 /* We're transitioning a buffer for generic write operations. Flush
2460 * all the caches.
2461 */
2462 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2463 break;
2464 default:
2465 break; /* Nothing to do */
2466 }
2467 }
2468
2469 return pipe_bits;
2470 }
2471
2472 static inline enum anv_pipe_bits
2473 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2474 {
2475 enum anv_pipe_bits pipe_bits = 0;
2476
2477 unsigned b;
2478 for_each_bit(b, flags) {
2479 switch ((VkAccessFlagBits)(1 << b)) {
2480 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2481 /* Indirect draw commands take a buffer as input that we're going to
2482 * read from the command streamer to load some of the HW registers
2483 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2484 * command streamer stall so that all the cache flushes have
2485 * completed before the command streamer loads from memory.
2486 */
2487 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2488 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2489 * through a vertex buffer, so invalidate that cache.
2490 */
2491 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2492 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2493 * UBO from the buffer, so we need to invalidate constant cache.
2494 */
2495 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2496 break;
2497 case VK_ACCESS_INDEX_READ_BIT:
2498 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2499 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2500 * commands, so we invalidate the VF cache to make sure there is no
2501 * stale data when we start rendering.
2502 */
2503 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2504 break;
2505 case VK_ACCESS_UNIFORM_READ_BIT:
2506 /* We transitioning a buffer to be used as uniform data. Because
2507 * uniform is accessed through the data port & sampler, we need to
2508 * invalidate the texture cache (sampler) & constant cache (data
2509 * port) to avoid stale data.
2510 */
2511 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2512 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2513 break;
2514 case VK_ACCESS_SHADER_READ_BIT:
2515 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2516 case VK_ACCESS_TRANSFER_READ_BIT:
2517 /* Transitioning a buffer to be read through the sampler, so
2518 * invalidate the texture cache, we don't want any stale data.
2519 */
2520 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2521 break;
2522 case VK_ACCESS_MEMORY_READ_BIT:
2523 /* Transitioning a buffer for generic read, invalidate all the
2524 * caches.
2525 */
2526 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2527 break;
2528 case VK_ACCESS_MEMORY_WRITE_BIT:
2529 /* Generic write, make sure all previously written things land in
2530 * memory.
2531 */
2532 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2533 break;
2534 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2535 /* Transitioning a buffer for conditional rendering. We'll load the
2536 * content of this buffer into HW registers using the command
2537 * streamer, so we need to stall the command streamer to make sure
2538 * any in-flight flush operations have completed.
2539 */
2540 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2541 break;
2542 default:
2543 break; /* Nothing to do */
2544 }
2545 }
2546
2547 return pipe_bits;
2548 }
2549
2550 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2551 VK_IMAGE_ASPECT_COLOR_BIT | \
2552 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2553 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2554 VK_IMAGE_ASPECT_PLANE_2_BIT)
2555 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2556 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2557 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2558 VK_IMAGE_ASPECT_PLANE_2_BIT)
2559
2560 struct anv_vertex_binding {
2561 struct anv_buffer * buffer;
2562 VkDeviceSize offset;
2563 };
2564
2565 struct anv_xfb_binding {
2566 struct anv_buffer * buffer;
2567 VkDeviceSize offset;
2568 VkDeviceSize size;
2569 };
2570
2571 struct anv_push_constants {
2572 /** Push constant data provided by the client through vkPushConstants */
2573 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2574
2575 /** Dynamic offsets for dynamic UBOs and SSBOs */
2576 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2577
2578 uint64_t push_reg_mask;
2579
2580 /** Pad out to a multiple of 32 bytes */
2581 uint32_t pad[2];
2582
2583 struct {
2584 /** Base workgroup ID
2585 *
2586 * Used for vkCmdDispatchBase.
2587 */
2588 uint32_t base_work_group_id[3];
2589
2590 /** Subgroup ID
2591 *
2592 * This is never set by software but is implicitly filled out when
2593 * uploading the push constants for compute shaders.
2594 */
2595 uint32_t subgroup_id;
2596 } cs;
2597 };
2598
2599 struct anv_dynamic_state {
2600 struct {
2601 uint32_t count;
2602 VkViewport viewports[MAX_VIEWPORTS];
2603 } viewport;
2604
2605 struct {
2606 uint32_t count;
2607 VkRect2D scissors[MAX_SCISSORS];
2608 } scissor;
2609
2610 float line_width;
2611
2612 struct {
2613 float bias;
2614 float clamp;
2615 float slope;
2616 } depth_bias;
2617
2618 float blend_constants[4];
2619
2620 struct {
2621 float min;
2622 float max;
2623 } depth_bounds;
2624
2625 struct {
2626 uint32_t front;
2627 uint32_t back;
2628 } stencil_compare_mask;
2629
2630 struct {
2631 uint32_t front;
2632 uint32_t back;
2633 } stencil_write_mask;
2634
2635 struct {
2636 uint32_t front;
2637 uint32_t back;
2638 } stencil_reference;
2639
2640 struct {
2641 uint32_t factor;
2642 uint16_t pattern;
2643 } line_stipple;
2644 };
2645
2646 extern const struct anv_dynamic_state default_dynamic_state;
2647
2648 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2649 const struct anv_dynamic_state *src,
2650 uint32_t copy_mask);
2651
2652 struct anv_surface_state {
2653 struct anv_state state;
2654 /** Address of the surface referred to by this state
2655 *
2656 * This address is relative to the start of the BO.
2657 */
2658 struct anv_address address;
2659 /* Address of the aux surface, if any
2660 *
2661 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2662 *
2663 * With the exception of gen8, the bottom 12 bits of this address' offset
2664 * include extra aux information.
2665 */
2666 struct anv_address aux_address;
2667 /* Address of the clear color, if any
2668 *
2669 * This address is relative to the start of the BO.
2670 */
2671 struct anv_address clear_address;
2672 };
2673
2674 /**
2675 * Attachment state when recording a renderpass instance.
2676 *
2677 * The clear value is valid only if there exists a pending clear.
2678 */
2679 struct anv_attachment_state {
2680 enum isl_aux_usage aux_usage;
2681 struct anv_surface_state color;
2682 struct anv_surface_state input;
2683
2684 VkImageLayout current_layout;
2685 VkImageLayout current_stencil_layout;
2686 VkImageAspectFlags pending_clear_aspects;
2687 VkImageAspectFlags pending_load_aspects;
2688 bool fast_clear;
2689 VkClearValue clear_value;
2690
2691 /* When multiview is active, attachments with a renderpass clear
2692 * operation have their respective layers cleared on the first
2693 * subpass that uses them, and only in that subpass. We keep track
2694 * of this using a bitfield to indicate which layers of an attachment
2695 * have not been cleared yet when multiview is active.
2696 */
2697 uint32_t pending_clear_views;
2698 struct anv_image_view * image_view;
2699 };
2700
2701 /** State tracking for vertex buffer flushes
2702 *
2703 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2704 * addresses. If you happen to have two vertex buffers which get placed
2705 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2706 * collisions. In order to solve this problem, we track vertex address ranges
2707 * which are live in the cache and invalidate the cache if one ever exceeds 32
2708 * bits.
2709 */
2710 struct anv_vb_cache_range {
2711 /* Virtual address at which the live vertex buffer cache range starts for
2712 * this vertex buffer index.
2713 */
2714 uint64_t start;
2715
2716 /* Virtual address of the byte after where vertex buffer cache range ends.
2717 * This is exclusive such that end - start is the size of the range.
2718 */
2719 uint64_t end;
2720 };
2721
2722 /** State tracking for particular pipeline bind point
2723 *
2724 * This struct is the base struct for anv_cmd_graphics_state and
2725 * anv_cmd_compute_state. These are used to track state which is bound to a
2726 * particular type of pipeline. Generic state that applies per-stage such as
2727 * binding table offsets and push constants is tracked generically with a
2728 * per-stage array in anv_cmd_state.
2729 */
2730 struct anv_cmd_pipeline_state {
2731 struct anv_descriptor_set *descriptors[MAX_SETS];
2732 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2733 };
2734
2735 /** State tracking for graphics pipeline
2736 *
2737 * This has anv_cmd_pipeline_state as a base struct to track things which get
2738 * bound to a graphics pipeline. Along with general pipeline bind point state
2739 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2740 * state which is graphics-specific.
2741 */
2742 struct anv_cmd_graphics_state {
2743 struct anv_cmd_pipeline_state base;
2744
2745 struct anv_graphics_pipeline *pipeline;
2746
2747 anv_cmd_dirty_mask_t dirty;
2748 uint32_t vb_dirty;
2749
2750 struct anv_vb_cache_range ib_bound_range;
2751 struct anv_vb_cache_range ib_dirty_range;
2752 struct anv_vb_cache_range vb_bound_ranges[33];
2753 struct anv_vb_cache_range vb_dirty_ranges[33];
2754
2755 struct anv_dynamic_state dynamic;
2756
2757 struct {
2758 struct anv_buffer *index_buffer;
2759 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2760 uint32_t index_offset;
2761 } gen7;
2762 };
2763
2764 /** State tracking for compute pipeline
2765 *
2766 * This has anv_cmd_pipeline_state as a base struct to track things which get
2767 * bound to a compute pipeline. Along with general pipeline bind point state
2768 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2769 * state which is compute-specific.
2770 */
2771 struct anv_cmd_compute_state {
2772 struct anv_cmd_pipeline_state base;
2773
2774 struct anv_compute_pipeline *pipeline;
2775
2776 bool pipeline_dirty;
2777
2778 struct anv_address num_workgroups;
2779 };
2780
2781 /** State required while building cmd buffer */
2782 struct anv_cmd_state {
2783 /* PIPELINE_SELECT.PipelineSelection */
2784 uint32_t current_pipeline;
2785 const struct gen_l3_config * current_l3_config;
2786 uint32_t last_aux_map_state;
2787
2788 struct anv_cmd_graphics_state gfx;
2789 struct anv_cmd_compute_state compute;
2790
2791 enum anv_pipe_bits pending_pipe_bits;
2792 VkShaderStageFlags descriptors_dirty;
2793 VkShaderStageFlags push_constants_dirty;
2794
2795 struct anv_framebuffer * framebuffer;
2796 struct anv_render_pass * pass;
2797 struct anv_subpass * subpass;
2798 VkRect2D render_area;
2799 uint32_t restart_index;
2800 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2801 bool xfb_enabled;
2802 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2803 VkShaderStageFlags push_constant_stages;
2804 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2805 struct anv_state binding_tables[MESA_SHADER_STAGES];
2806 struct anv_state samplers[MESA_SHADER_STAGES];
2807
2808 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2809 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2810 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2811
2812 /**
2813 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2814 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2815 * and before invoking the secondary in ExecuteCommands.
2816 */
2817 bool pma_fix_enabled;
2818
2819 /**
2820 * Whether or not we know for certain that HiZ is enabled for the current
2821 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2822 * enabled or not, this will be false.
2823 */
2824 bool hiz_enabled;
2825
2826 bool conditional_render_enabled;
2827
2828 /**
2829 * Last rendering scale argument provided to
2830 * genX(cmd_buffer_emit_hashing_mode)().
2831 */
2832 unsigned current_hash_scale;
2833
2834 /**
2835 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2836 * valid only when recording a render pass instance.
2837 */
2838 struct anv_attachment_state * attachments;
2839
2840 /**
2841 * Surface states for color render targets. These are stored in a single
2842 * flat array. For depth-stencil attachments, the surface state is simply
2843 * left blank.
2844 */
2845 struct anv_state attachment_states;
2846
2847 /**
2848 * A null surface state of the right size to match the framebuffer. This
2849 * is one of the states in attachment_states.
2850 */
2851 struct anv_state null_surface_state;
2852 };
2853
2854 struct anv_cmd_pool {
2855 struct vk_object_base base;
2856 VkAllocationCallbacks alloc;
2857 struct list_head cmd_buffers;
2858 };
2859
2860 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2861
2862 enum anv_cmd_buffer_exec_mode {
2863 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2864 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2865 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2866 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2867 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2868 ANV_CMD_BUFFER_EXEC_MODE_CALL_AND_RETURN,
2869 };
2870
2871 struct anv_cmd_buffer {
2872 struct vk_object_base base;
2873
2874 struct anv_device * device;
2875
2876 struct anv_cmd_pool * pool;
2877 struct list_head pool_link;
2878
2879 struct anv_batch batch;
2880
2881 /* Fields required for the actual chain of anv_batch_bo's.
2882 *
2883 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2884 */
2885 struct list_head batch_bos;
2886 enum anv_cmd_buffer_exec_mode exec_mode;
2887
2888 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2889 * referenced by this command buffer
2890 *
2891 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2892 */
2893 struct u_vector seen_bbos;
2894
2895 /* A vector of int32_t's for every block of binding tables.
2896 *
2897 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2898 */
2899 struct u_vector bt_block_states;
2900 struct anv_state bt_next;
2901
2902 struct anv_reloc_list surface_relocs;
2903 /** Last seen surface state block pool center bo offset */
2904 uint32_t last_ss_pool_center;
2905
2906 /* Serial for tracking buffer completion */
2907 uint32_t serial;
2908
2909 /* Stream objects for storing temporary data */
2910 struct anv_state_stream surface_state_stream;
2911 struct anv_state_stream dynamic_state_stream;
2912
2913 VkCommandBufferUsageFlags usage_flags;
2914 VkCommandBufferLevel level;
2915
2916 struct anv_query_pool *perf_query_pool;
2917
2918 struct anv_cmd_state state;
2919
2920 struct anv_address return_addr;
2921
2922 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2923 uint64_t intel_perf_marker;
2924 };
2925
2926 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2927 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2928 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2929 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2930 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2931 struct anv_cmd_buffer *secondary);
2932 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2933 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2934 struct anv_cmd_buffer *cmd_buffer,
2935 const VkSemaphore *in_semaphores,
2936 const uint64_t *in_wait_values,
2937 uint32_t num_in_semaphores,
2938 const VkSemaphore *out_semaphores,
2939 const uint64_t *out_signal_values,
2940 uint32_t num_out_semaphores,
2941 VkFence fence,
2942 int perf_query_pass);
2943
2944 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2945
2946 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2947 const void *data, uint32_t size, uint32_t alignment);
2948 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2949 uint32_t *a, uint32_t *b,
2950 uint32_t dwords, uint32_t alignment);
2951
2952 struct anv_address
2953 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2954 struct anv_state
2955 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2956 uint32_t entries, uint32_t *state_offset);
2957 struct anv_state
2958 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2959 struct anv_state
2960 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2961 uint32_t size, uint32_t alignment);
2962
2963 VkResult
2964 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2965
2966 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2967 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2968 bool depth_clamp_enable);
2969 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2970
2971 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2972 struct anv_render_pass *pass,
2973 struct anv_framebuffer *framebuffer,
2974 const VkClearValue *clear_values);
2975
2976 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2977
2978 struct anv_state
2979 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2980 gl_shader_stage stage);
2981 struct anv_state
2982 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2983
2984 const struct anv_image_view *
2985 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2986
2987 VkResult
2988 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2989 uint32_t num_entries,
2990 uint32_t *state_offset,
2991 struct anv_state *bt_state);
2992
2993 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2994
2995 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2996
2997 enum anv_fence_type {
2998 ANV_FENCE_TYPE_NONE = 0,
2999 ANV_FENCE_TYPE_BO,
3000 ANV_FENCE_TYPE_WSI_BO,
3001 ANV_FENCE_TYPE_SYNCOBJ,
3002 ANV_FENCE_TYPE_WSI,
3003 };
3004
3005 enum anv_bo_fence_state {
3006 /** Indicates that this is a new (or newly reset fence) */
3007 ANV_BO_FENCE_STATE_RESET,
3008
3009 /** Indicates that this fence has been submitted to the GPU but is still
3010 * (as far as we know) in use by the GPU.
3011 */
3012 ANV_BO_FENCE_STATE_SUBMITTED,
3013
3014 ANV_BO_FENCE_STATE_SIGNALED,
3015 };
3016
3017 struct anv_fence_impl {
3018 enum anv_fence_type type;
3019
3020 union {
3021 /** Fence implementation for BO fences
3022 *
3023 * These fences use a BO and a set of CPU-tracked state flags. The BO
3024 * is added to the object list of the last execbuf call in a QueueSubmit
3025 * and is marked EXEC_WRITE. The state flags track when the BO has been
3026 * submitted to the kernel. We need to do this because Vulkan lets you
3027 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
3028 * will say it's idle in this case.
3029 */
3030 struct {
3031 struct anv_bo *bo;
3032 enum anv_bo_fence_state state;
3033 } bo;
3034
3035 /** DRM syncobj handle for syncobj-based fences */
3036 uint32_t syncobj;
3037
3038 /** WSI fence */
3039 struct wsi_fence *fence_wsi;
3040 };
3041 };
3042
3043 struct anv_fence {
3044 struct vk_object_base base;
3045
3046 /* Permanent fence state. Every fence has some form of permanent state
3047 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
3048 * cross-process fences) or it could just be a dummy for use internally.
3049 */
3050 struct anv_fence_impl permanent;
3051
3052 /* Temporary fence state. A fence *may* have temporary state. That state
3053 * is added to the fence by an import operation and is reset back to
3054 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
3055 * state cannot be signaled because the fence must already be signaled
3056 * before the temporary state can be exported from the fence in the other
3057 * process and imported here.
3058 */
3059 struct anv_fence_impl temporary;
3060 };
3061
3062 void anv_fence_reset_temporary(struct anv_device *device,
3063 struct anv_fence *fence);
3064
3065 struct anv_event {
3066 struct vk_object_base base;
3067 uint64_t semaphore;
3068 struct anv_state state;
3069 };
3070
3071 enum anv_semaphore_type {
3072 ANV_SEMAPHORE_TYPE_NONE = 0,
3073 ANV_SEMAPHORE_TYPE_DUMMY,
3074 ANV_SEMAPHORE_TYPE_BO,
3075 ANV_SEMAPHORE_TYPE_WSI_BO,
3076 ANV_SEMAPHORE_TYPE_SYNC_FILE,
3077 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
3078 ANV_SEMAPHORE_TYPE_TIMELINE,
3079 };
3080
3081 struct anv_timeline_point {
3082 struct list_head link;
3083
3084 uint64_t serial;
3085
3086 /* Number of waiter on this point, when > 0 the point should not be garbage
3087 * collected.
3088 */
3089 int waiting;
3090
3091 /* BO used for synchronization. */
3092 struct anv_bo *bo;
3093 };
3094
3095 struct anv_timeline {
3096 pthread_mutex_t mutex;
3097 pthread_cond_t cond;
3098
3099 uint64_t highest_past;
3100 uint64_t highest_pending;
3101
3102 struct list_head points;
3103 struct list_head free_points;
3104 };
3105
3106 struct anv_semaphore_impl {
3107 enum anv_semaphore_type type;
3108
3109 union {
3110 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
3111 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
3112 * object list on any execbuf2 calls for which this semaphore is used as
3113 * a wait or signal fence. When used as a signal fence or when type ==
3114 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
3115 */
3116 struct anv_bo *bo;
3117
3118 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
3119 * If the semaphore is in the unsignaled state due to either just being
3120 * created or because it has been used for a wait, fd will be -1.
3121 */
3122 int fd;
3123
3124 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
3125 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
3126 * import so we don't need to bother with a userspace cache.
3127 */
3128 uint32_t syncobj;
3129
3130 /* Non shareable timeline semaphore
3131 *
3132 * Used when kernel don't have support for timeline semaphores.
3133 */
3134 struct anv_timeline timeline;
3135 };
3136 };
3137
3138 struct anv_semaphore {
3139 struct vk_object_base base;
3140
3141 uint32_t refcount;
3142
3143 /* Permanent semaphore state. Every semaphore has some form of permanent
3144 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3145 * (for cross-process semaphores0 or it could just be a dummy for use
3146 * internally.
3147 */
3148 struct anv_semaphore_impl permanent;
3149
3150 /* Temporary semaphore state. A semaphore *may* have temporary state.
3151 * That state is added to the semaphore by an import operation and is reset
3152 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3153 * semaphore with temporary state cannot be signaled because the semaphore
3154 * must already be signaled before the temporary state can be exported from
3155 * the semaphore in the other process and imported here.
3156 */
3157 struct anv_semaphore_impl temporary;
3158 };
3159
3160 void anv_semaphore_reset_temporary(struct anv_device *device,
3161 struct anv_semaphore *semaphore);
3162
3163 struct anv_shader_module {
3164 struct vk_object_base base;
3165
3166 unsigned char sha1[20];
3167 uint32_t size;
3168 char data[0];
3169 };
3170
3171 static inline gl_shader_stage
3172 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3173 {
3174 assert(__builtin_popcount(vk_stage) == 1);
3175 return ffs(vk_stage) - 1;
3176 }
3177
3178 static inline VkShaderStageFlagBits
3179 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3180 {
3181 return (1 << mesa_stage);
3182 }
3183
3184 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3185
3186 #define anv_foreach_stage(stage, stage_bits) \
3187 for (gl_shader_stage stage, \
3188 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3189 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3190 __tmp &= ~(1 << (stage)))
3191
3192 struct anv_pipeline_bind_map {
3193 unsigned char surface_sha1[20];
3194 unsigned char sampler_sha1[20];
3195 unsigned char push_sha1[20];
3196
3197 uint32_t surface_count;
3198 uint32_t sampler_count;
3199
3200 struct anv_pipeline_binding * surface_to_descriptor;
3201 struct anv_pipeline_binding * sampler_to_descriptor;
3202
3203 struct anv_push_range push_ranges[4];
3204 };
3205
3206 struct anv_shader_bin_key {
3207 uint32_t size;
3208 uint8_t data[0];
3209 };
3210
3211 struct anv_shader_bin {
3212 uint32_t ref_cnt;
3213
3214 gl_shader_stage stage;
3215
3216 const struct anv_shader_bin_key *key;
3217
3218 struct anv_state kernel;
3219 uint32_t kernel_size;
3220
3221 struct anv_state constant_data;
3222 uint32_t constant_data_size;
3223
3224 const struct brw_stage_prog_data *prog_data;
3225 uint32_t prog_data_size;
3226
3227 struct brw_compile_stats stats[3];
3228 uint32_t num_stats;
3229
3230 struct nir_xfb_info *xfb_info;
3231
3232 struct anv_pipeline_bind_map bind_map;
3233 };
3234
3235 struct anv_shader_bin *
3236 anv_shader_bin_create(struct anv_device *device,
3237 gl_shader_stage stage,
3238 const void *key, uint32_t key_size,
3239 const void *kernel, uint32_t kernel_size,
3240 const void *constant_data, uint32_t constant_data_size,
3241 const struct brw_stage_prog_data *prog_data,
3242 uint32_t prog_data_size,
3243 const struct brw_compile_stats *stats, uint32_t num_stats,
3244 const struct nir_xfb_info *xfb_info,
3245 const struct anv_pipeline_bind_map *bind_map);
3246
3247 void
3248 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3249
3250 static inline void
3251 anv_shader_bin_ref(struct anv_shader_bin *shader)
3252 {
3253 assert(shader && shader->ref_cnt >= 1);
3254 p_atomic_inc(&shader->ref_cnt);
3255 }
3256
3257 static inline void
3258 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3259 {
3260 assert(shader && shader->ref_cnt >= 1);
3261 if (p_atomic_dec_zero(&shader->ref_cnt))
3262 anv_shader_bin_destroy(device, shader);
3263 }
3264
3265 struct anv_pipeline_executable {
3266 gl_shader_stage stage;
3267
3268 struct brw_compile_stats stats;
3269
3270 char *nir;
3271 char *disasm;
3272 };
3273
3274 enum anv_pipeline_type {
3275 ANV_PIPELINE_GRAPHICS,
3276 ANV_PIPELINE_COMPUTE,
3277 };
3278
3279 struct anv_pipeline {
3280 struct vk_object_base base;
3281
3282 struct anv_device * device;
3283
3284 struct anv_batch batch;
3285 struct anv_reloc_list batch_relocs;
3286
3287 void * mem_ctx;
3288
3289 enum anv_pipeline_type type;
3290 VkPipelineCreateFlags flags;
3291
3292 struct util_dynarray executables;
3293
3294 const struct gen_l3_config * l3_config;
3295 };
3296
3297 struct anv_graphics_pipeline {
3298 struct anv_pipeline base;
3299
3300 uint32_t batch_data[512];
3301
3302 anv_cmd_dirty_mask_t dynamic_state_mask;
3303 struct anv_dynamic_state dynamic_state;
3304
3305 uint32_t topology;
3306
3307 struct anv_subpass * subpass;
3308
3309 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3310
3311 VkShaderStageFlags active_stages;
3312
3313 bool primitive_restart;
3314 bool writes_depth;
3315 bool depth_test_enable;
3316 bool writes_stencil;
3317 bool stencil_test_enable;
3318 bool depth_clamp_enable;
3319 bool depth_clip_enable;
3320 bool sample_shading_enable;
3321 bool kill_pixel;
3322 bool depth_bounds_test_enable;
3323
3324 /* When primitive replication is used, subpass->view_mask will describe what
3325 * views to replicate.
3326 */
3327 bool use_primitive_replication;
3328
3329 struct anv_state blend_state;
3330
3331 uint32_t vb_used;
3332 struct anv_pipeline_vertex_binding {
3333 uint32_t stride;
3334 bool instanced;
3335 uint32_t instance_divisor;
3336 } vb[MAX_VBS];
3337
3338 struct {
3339 uint32_t sf[7];
3340 uint32_t depth_stencil_state[3];
3341 } gen7;
3342
3343 struct {
3344 uint32_t sf[4];
3345 uint32_t raster[5];
3346 uint32_t wm_depth_stencil[3];
3347 } gen8;
3348
3349 struct {
3350 uint32_t wm_depth_stencil[4];
3351 } gen9;
3352 };
3353
3354 struct anv_compute_pipeline {
3355 struct anv_pipeline base;
3356
3357 struct anv_shader_bin * cs;
3358 uint32_t cs_right_mask;
3359 uint32_t batch_data[9];
3360 uint32_t interface_descriptor_data[8];
3361 };
3362
3363 #define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
3364 static inline struct anv_##pipe_type##_pipeline * \
3365 anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
3366 { \
3367 assert(pipeline->type == pipe_enum); \
3368 return (struct anv_##pipe_type##_pipeline *) pipeline; \
3369 }
3370
3371 ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
3372 ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
3373
3374 static inline bool
3375 anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
3376 gl_shader_stage stage)
3377 {
3378 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3379 }
3380
3381 #define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
3382 static inline const struct brw_##prefix##_prog_data * \
3383 get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
3384 { \
3385 if (anv_pipeline_has_stage(pipeline, stage)) { \
3386 return (const struct brw_##prefix##_prog_data *) \
3387 pipeline->shaders[stage]->prog_data; \
3388 } else { \
3389 return NULL; \
3390 } \
3391 }
3392
3393 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3394 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3395 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3396 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3397 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3398
3399 static inline const struct brw_cs_prog_data *
3400 get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
3401 {
3402 assert(pipeline->cs);
3403 return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
3404 }
3405
3406 static inline const struct brw_vue_prog_data *
3407 anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
3408 {
3409 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3410 return &get_gs_prog_data(pipeline)->base;
3411 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3412 return &get_tes_prog_data(pipeline)->base;
3413 else
3414 return &get_vs_prog_data(pipeline)->base;
3415 }
3416
3417 VkResult
3418 anv_pipeline_init(struct anv_pipeline *pipeline,
3419 struct anv_device *device,
3420 enum anv_pipeline_type type,
3421 VkPipelineCreateFlags flags,
3422 const VkAllocationCallbacks *pAllocator);
3423
3424 void
3425 anv_pipeline_finish(struct anv_pipeline *pipeline,
3426 struct anv_device *device,
3427 const VkAllocationCallbacks *pAllocator);
3428
3429 VkResult
3430 anv_graphics_pipeline_init(struct anv_graphics_pipeline *pipeline, struct anv_device *device,
3431 struct anv_pipeline_cache *cache,
3432 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3433 const VkAllocationCallbacks *alloc);
3434
3435 VkResult
3436 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
3437 struct anv_pipeline_cache *cache,
3438 const VkComputePipelineCreateInfo *info,
3439 const struct anv_shader_module *module,
3440 const char *entrypoint,
3441 const VkSpecializationInfo *spec_info);
3442
3443 struct anv_cs_parameters {
3444 uint32_t group_size;
3445 uint32_t simd_size;
3446 uint32_t threads;
3447 };
3448
3449 struct anv_cs_parameters
3450 anv_cs_parameters(const struct anv_compute_pipeline *pipeline);
3451
3452 struct anv_format_plane {
3453 enum isl_format isl_format:16;
3454 struct isl_swizzle swizzle;
3455
3456 /* Whether this plane contains chroma channels */
3457 bool has_chroma;
3458
3459 /* For downscaling of YUV planes */
3460 uint8_t denominator_scales[2];
3461
3462 /* How to map sampled ycbcr planes to a single 4 component element. */
3463 struct isl_swizzle ycbcr_swizzle;
3464
3465 /* What aspect is associated to this plane */
3466 VkImageAspectFlags aspect;
3467 };
3468
3469
3470 struct anv_format {
3471 struct anv_format_plane planes[3];
3472 VkFormat vk_format;
3473 uint8_t n_planes;
3474 bool can_ycbcr;
3475 };
3476
3477 /**
3478 * Return the aspect's _format_ plane, not its _memory_ plane (using the
3479 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
3480 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
3481 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
3482 */
3483 static inline uint32_t
3484 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3485 VkImageAspectFlags aspect_mask)
3486 {
3487 switch (aspect_mask) {
3488 case VK_IMAGE_ASPECT_COLOR_BIT:
3489 case VK_IMAGE_ASPECT_DEPTH_BIT:
3490 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3491 return 0;
3492 case VK_IMAGE_ASPECT_STENCIL_BIT:
3493 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3494 return 0;
3495 /* Fall-through */
3496 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3497 return 1;
3498 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3499 return 2;
3500 default:
3501 /* Purposefully assert with depth/stencil aspects. */
3502 unreachable("invalid image aspect");
3503 }
3504 }
3505
3506 static inline VkImageAspectFlags
3507 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3508 uint32_t plane)
3509 {
3510 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3511 if (util_bitcount(image_aspects) > 1)
3512 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3513 return VK_IMAGE_ASPECT_COLOR_BIT;
3514 }
3515 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3516 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3517 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3518 return VK_IMAGE_ASPECT_STENCIL_BIT;
3519 }
3520
3521 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3522 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3523
3524 const struct anv_format *
3525 anv_get_format(VkFormat format);
3526
3527 static inline uint32_t
3528 anv_get_format_planes(VkFormat vk_format)
3529 {
3530 const struct anv_format *format = anv_get_format(vk_format);
3531
3532 return format != NULL ? format->n_planes : 0;
3533 }
3534
3535 struct anv_format_plane
3536 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3537 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3538
3539 static inline enum isl_format
3540 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3541 VkImageAspectFlags aspect, VkImageTiling tiling)
3542 {
3543 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3544 }
3545
3546 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3547 VkImageCreateFlags create_flags,
3548 VkFormat vk_format,
3549 VkImageTiling vk_tiling,
3550 const VkImageFormatListCreateInfoKHR *fmt_list);
3551
3552 static inline struct isl_swizzle
3553 anv_swizzle_for_render(struct isl_swizzle swizzle)
3554 {
3555 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3556 * RGB as RGBA for texturing
3557 */
3558 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3559 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3560
3561 /* But it doesn't matter what we render to that channel */
3562 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3563
3564 return swizzle;
3565 }
3566
3567 void
3568 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3569
3570 /**
3571 * Subsurface of an anv_image.
3572 */
3573 struct anv_surface {
3574 /** Valid only if isl_surf::size_B > 0. */
3575 struct isl_surf isl;
3576
3577 /**
3578 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3579 */
3580 uint32_t offset;
3581 };
3582
3583 struct anv_image {
3584 struct vk_object_base base;
3585
3586 VkImageType type; /**< VkImageCreateInfo::imageType */
3587 /* The original VkFormat provided by the client. This may not match any
3588 * of the actual surface formats.
3589 */
3590 VkFormat vk_format;
3591 const struct anv_format *format;
3592
3593 VkImageAspectFlags aspects;
3594 VkExtent3D extent;
3595 uint32_t levels;
3596 uint32_t array_size;
3597 uint32_t samples; /**< VkImageCreateInfo::samples */
3598 uint32_t n_planes;
3599 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3600 VkImageUsageFlags stencil_usage;
3601 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3602 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3603
3604 /** True if this is needs to be bound to an appropriately tiled BO.
3605 *
3606 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3607 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3608 * we require a dedicated allocation so that we can know to allocate a
3609 * tiled buffer.
3610 */
3611 bool needs_set_tiling;
3612
3613 /**
3614 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3615 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3616 */
3617 uint64_t drm_format_mod;
3618
3619 VkDeviceSize size;
3620 uint32_t alignment;
3621
3622 /* Whether the image is made of several underlying buffer objects rather a
3623 * single one with different offsets.
3624 */
3625 bool disjoint;
3626
3627 /* Image was created with external format. */
3628 bool external_format;
3629
3630 /**
3631 * Image subsurfaces
3632 *
3633 * For each foo, anv_image::planes[x].surface is valid if and only if
3634 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3635 * to figure the number associated with a given aspect.
3636 *
3637 * The hardware requires that the depth buffer and stencil buffer be
3638 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3639 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3640 * allocate the depth and stencil buffers as separate surfaces in the same
3641 * bo.
3642 *
3643 * Memory layout :
3644 *
3645 * -----------------------
3646 * | surface0 | /|\
3647 * ----------------------- |
3648 * | shadow surface0 | |
3649 * ----------------------- | Plane 0
3650 * | aux surface0 | |
3651 * ----------------------- |
3652 * | fast clear colors0 | \|/
3653 * -----------------------
3654 * | surface1 | /|\
3655 * ----------------------- |
3656 * | shadow surface1 | |
3657 * ----------------------- | Plane 1
3658 * | aux surface1 | |
3659 * ----------------------- |
3660 * | fast clear colors1 | \|/
3661 * -----------------------
3662 * | ... |
3663 * | |
3664 * -----------------------
3665 */
3666 struct {
3667 /**
3668 * Offset of the entire plane (whenever the image is disjoint this is
3669 * set to 0).
3670 */
3671 uint32_t offset;
3672
3673 VkDeviceSize size;
3674 uint32_t alignment;
3675
3676 struct anv_surface surface;
3677
3678 /**
3679 * A surface which shadows the main surface and may have different
3680 * tiling. This is used for sampling using a tiling that isn't supported
3681 * for other operations.
3682 */
3683 struct anv_surface shadow_surface;
3684
3685 /**
3686 * The base aux usage for this image. For color images, this can be
3687 * either CCS_E or CCS_D depending on whether or not we can reliably
3688 * leave CCS on all the time.
3689 */
3690 enum isl_aux_usage aux_usage;
3691
3692 struct anv_surface aux_surface;
3693
3694 /**
3695 * Offset of the fast clear state (used to compute the
3696 * fast_clear_state_offset of the following planes).
3697 */
3698 uint32_t fast_clear_state_offset;
3699
3700 /**
3701 * BO associated with this plane, set when bound.
3702 */
3703 struct anv_address address;
3704
3705 /**
3706 * When destroying the image, also free the bo.
3707 * */
3708 bool bo_is_owned;
3709 } planes[3];
3710 };
3711
3712 /* The ordering of this enum is important */
3713 enum anv_fast_clear_type {
3714 /** Image does not have/support any fast-clear blocks */
3715 ANV_FAST_CLEAR_NONE = 0,
3716 /** Image has/supports fast-clear but only to the default value */
3717 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3718 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3719 ANV_FAST_CLEAR_ANY = 2,
3720 };
3721
3722 /* Returns the number of auxiliary buffer levels attached to an image. */
3723 static inline uint8_t
3724 anv_image_aux_levels(const struct anv_image * const image,
3725 VkImageAspectFlagBits aspect)
3726 {
3727 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3728 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3729 return 0;
3730
3731 /* The Gen12 CCS aux surface is represented with only one level. */
3732 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3733 image->planes[plane].surface.isl.levels :
3734 image->planes[plane].aux_surface.isl.levels;
3735 }
3736
3737 /* Returns the number of auxiliary buffer layers attached to an image. */
3738 static inline uint32_t
3739 anv_image_aux_layers(const struct anv_image * const image,
3740 VkImageAspectFlagBits aspect,
3741 const uint8_t miplevel)
3742 {
3743 assert(image);
3744
3745 /* The miplevel must exist in the main buffer. */
3746 assert(miplevel < image->levels);
3747
3748 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3749 /* There are no layers with auxiliary data because the miplevel has no
3750 * auxiliary data.
3751 */
3752 return 0;
3753 } else {
3754 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3755
3756 /* The Gen12 CCS aux surface is represented with only one layer. */
3757 const struct isl_extent4d *aux_logical_level0_px =
3758 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3759 &image->planes[plane].surface.isl.logical_level0_px :
3760 &image->planes[plane].aux_surface.isl.logical_level0_px;
3761
3762 return MAX2(aux_logical_level0_px->array_len,
3763 aux_logical_level0_px->depth >> miplevel);
3764 }
3765 }
3766
3767 static inline struct anv_address
3768 anv_image_get_clear_color_addr(UNUSED const struct anv_device *device,
3769 const struct anv_image *image,
3770 VkImageAspectFlagBits aspect)
3771 {
3772 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3773
3774 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3775 return anv_address_add(image->planes[plane].address,
3776 image->planes[plane].fast_clear_state_offset);
3777 }
3778
3779 static inline struct anv_address
3780 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3781 const struct anv_image *image,
3782 VkImageAspectFlagBits aspect)
3783 {
3784 struct anv_address addr =
3785 anv_image_get_clear_color_addr(device, image, aspect);
3786
3787 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3788 device->isl_dev.ss.clear_color_state_size :
3789 device->isl_dev.ss.clear_value_size;
3790 return anv_address_add(addr, clear_color_state_size);
3791 }
3792
3793 static inline struct anv_address
3794 anv_image_get_compression_state_addr(const struct anv_device *device,
3795 const struct anv_image *image,
3796 VkImageAspectFlagBits aspect,
3797 uint32_t level, uint32_t array_layer)
3798 {
3799 assert(level < anv_image_aux_levels(image, aspect));
3800 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3801 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3802 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3803
3804 struct anv_address addr =
3805 anv_image_get_fast_clear_type_addr(device, image, aspect);
3806 addr.offset += 4; /* Go past the fast clear type */
3807
3808 if (image->type == VK_IMAGE_TYPE_3D) {
3809 for (uint32_t l = 0; l < level; l++)
3810 addr.offset += anv_minify(image->extent.depth, l) * 4;
3811 } else {
3812 addr.offset += level * image->array_size * 4;
3813 }
3814 addr.offset += array_layer * 4;
3815
3816 assert(addr.offset <
3817 image->planes[plane].address.offset + image->planes[plane].size);
3818 return addr;
3819 }
3820
3821 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3822 static inline bool
3823 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3824 const struct anv_image *image)
3825 {
3826 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3827 return false;
3828
3829 /* For Gen8-11, there are some restrictions around sampling from HiZ.
3830 * The Skylake PRM docs for RENDER_SURFACE_STATE::AuxiliarySurfaceMode
3831 * say:
3832 *
3833 * "If this field is set to AUX_HIZ, Number of Multisamples must
3834 * be MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D."
3835 */
3836 if (image->type == VK_IMAGE_TYPE_3D)
3837 return false;
3838
3839 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3840 * struct. There's documentation which suggests that this feature actually
3841 * reduces performance on BDW, but it has only been observed to help so
3842 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3843 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3844 */
3845 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3846 return false;
3847
3848 return image->samples == 1;
3849 }
3850
3851 static inline bool
3852 anv_image_plane_uses_aux_map(const struct anv_device *device,
3853 const struct anv_image *image,
3854 uint32_t plane)
3855 {
3856 return device->info.has_aux_map &&
3857 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3858 }
3859
3860 void
3861 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3862 const struct anv_image *image,
3863 VkImageAspectFlagBits aspect,
3864 enum isl_aux_usage aux_usage,
3865 uint32_t level,
3866 uint32_t base_layer,
3867 uint32_t layer_count);
3868
3869 void
3870 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3871 const struct anv_image *image,
3872 VkImageAspectFlagBits aspect,
3873 enum isl_aux_usage aux_usage,
3874 enum isl_format format, struct isl_swizzle swizzle,
3875 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3876 VkRect2D area, union isl_color_value clear_color);
3877 void
3878 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3879 const struct anv_image *image,
3880 VkImageAspectFlags aspects,
3881 enum isl_aux_usage depth_aux_usage,
3882 uint32_t level,
3883 uint32_t base_layer, uint32_t layer_count,
3884 VkRect2D area,
3885 float depth_value, uint8_t stencil_value);
3886 void
3887 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3888 const struct anv_image *src_image,
3889 enum isl_aux_usage src_aux_usage,
3890 uint32_t src_level, uint32_t src_base_layer,
3891 const struct anv_image *dst_image,
3892 enum isl_aux_usage dst_aux_usage,
3893 uint32_t dst_level, uint32_t dst_base_layer,
3894 VkImageAspectFlagBits aspect,
3895 uint32_t src_x, uint32_t src_y,
3896 uint32_t dst_x, uint32_t dst_y,
3897 uint32_t width, uint32_t height,
3898 uint32_t layer_count,
3899 enum blorp_filter filter);
3900 void
3901 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3902 const struct anv_image *image,
3903 VkImageAspectFlagBits aspect, uint32_t level,
3904 uint32_t base_layer, uint32_t layer_count,
3905 enum isl_aux_op hiz_op);
3906 void
3907 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3908 const struct anv_image *image,
3909 VkImageAspectFlags aspects,
3910 uint32_t level,
3911 uint32_t base_layer, uint32_t layer_count,
3912 VkRect2D area, uint8_t stencil_value);
3913 void
3914 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3915 const struct anv_image *image,
3916 enum isl_format format, struct isl_swizzle swizzle,
3917 VkImageAspectFlagBits aspect,
3918 uint32_t base_layer, uint32_t layer_count,
3919 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3920 bool predicate);
3921 void
3922 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3923 const struct anv_image *image,
3924 enum isl_format format, struct isl_swizzle swizzle,
3925 VkImageAspectFlagBits aspect, uint32_t level,
3926 uint32_t base_layer, uint32_t layer_count,
3927 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3928 bool predicate);
3929
3930 void
3931 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3932 const struct anv_image *image,
3933 VkImageAspectFlagBits aspect,
3934 uint32_t base_level, uint32_t level_count,
3935 uint32_t base_layer, uint32_t layer_count);
3936
3937 enum isl_aux_state
3938 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3939 const struct anv_image *image,
3940 const VkImageAspectFlagBits aspect,
3941 const VkImageLayout layout);
3942
3943 enum isl_aux_usage
3944 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3945 const struct anv_image *image,
3946 const VkImageAspectFlagBits aspect,
3947 const VkImageUsageFlagBits usage,
3948 const VkImageLayout layout);
3949
3950 enum anv_fast_clear_type
3951 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3952 const struct anv_image * const image,
3953 const VkImageAspectFlagBits aspect,
3954 const VkImageLayout layout);
3955
3956 /* This is defined as a macro so that it works for both
3957 * VkImageSubresourceRange and VkImageSubresourceLayers
3958 */
3959 #define anv_get_layerCount(_image, _range) \
3960 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3961 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3962
3963 static inline uint32_t
3964 anv_get_levelCount(const struct anv_image *image,
3965 const VkImageSubresourceRange *range)
3966 {
3967 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3968 image->levels - range->baseMipLevel : range->levelCount;
3969 }
3970
3971 static inline VkImageAspectFlags
3972 anv_image_expand_aspects(const struct anv_image *image,
3973 VkImageAspectFlags aspects)
3974 {
3975 /* If the underlying image has color plane aspects and
3976 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3977 * the underlying image. */
3978 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3979 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3980 return image->aspects;
3981
3982 return aspects;
3983 }
3984
3985 static inline bool
3986 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3987 VkImageAspectFlags aspects2)
3988 {
3989 if (aspects1 == aspects2)
3990 return true;
3991
3992 /* Only 1 color aspects are compatibles. */
3993 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3994 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3995 util_bitcount(aspects1) == util_bitcount(aspects2))
3996 return true;
3997
3998 return false;
3999 }
4000
4001 struct anv_image_view {
4002 struct vk_object_base base;
4003
4004 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
4005
4006 VkImageAspectFlags aspect_mask;
4007 VkFormat vk_format;
4008 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
4009
4010 unsigned n_planes;
4011 struct {
4012 uint32_t image_plane;
4013
4014 struct isl_view isl;
4015
4016 /**
4017 * RENDER_SURFACE_STATE when using image as a sampler surface with an
4018 * image layout of SHADER_READ_ONLY_OPTIMAL or
4019 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
4020 */
4021 struct anv_surface_state optimal_sampler_surface_state;
4022
4023 /**
4024 * RENDER_SURFACE_STATE when using image as a sampler surface with an
4025 * image layout of GENERAL.
4026 */
4027 struct anv_surface_state general_sampler_surface_state;
4028
4029 /**
4030 * RENDER_SURFACE_STATE when using image as a storage image. Separate
4031 * states for write-only and readable, using the real format for
4032 * write-only and the lowered format for readable.
4033 */
4034 struct anv_surface_state storage_surface_state;
4035 struct anv_surface_state writeonly_storage_surface_state;
4036
4037 struct brw_image_param storage_image_param;
4038 } planes[3];
4039 };
4040
4041 enum anv_image_view_state_flags {
4042 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
4043 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
4044 };
4045
4046 void anv_image_fill_surface_state(struct anv_device *device,
4047 const struct anv_image *image,
4048 VkImageAspectFlagBits aspect,
4049 const struct isl_view *view,
4050 isl_surf_usage_flags_t view_usage,
4051 enum isl_aux_usage aux_usage,
4052 const union isl_color_value *clear_color,
4053 enum anv_image_view_state_flags flags,
4054 struct anv_surface_state *state_inout,
4055 struct brw_image_param *image_param_out);
4056
4057 struct anv_image_create_info {
4058 const VkImageCreateInfo *vk_info;
4059
4060 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
4061 isl_tiling_flags_t isl_tiling_flags;
4062
4063 /** These flags will be added to any derived from VkImageCreateInfo. */
4064 isl_surf_usage_flags_t isl_extra_usage_flags;
4065
4066 uint32_t stride;
4067 bool external_format;
4068 };
4069
4070 VkResult anv_image_create(VkDevice _device,
4071 const struct anv_image_create_info *info,
4072 const VkAllocationCallbacks* alloc,
4073 VkImage *pImage);
4074
4075 enum isl_format
4076 anv_isl_format_for_descriptor_type(VkDescriptorType type);
4077
4078 static inline VkExtent3D
4079 anv_sanitize_image_extent(const VkImageType imageType,
4080 const VkExtent3D imageExtent)
4081 {
4082 switch (imageType) {
4083 case VK_IMAGE_TYPE_1D:
4084 return (VkExtent3D) { imageExtent.width, 1, 1 };
4085 case VK_IMAGE_TYPE_2D:
4086 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
4087 case VK_IMAGE_TYPE_3D:
4088 return imageExtent;
4089 default:
4090 unreachable("invalid image type");
4091 }
4092 }
4093
4094 static inline VkOffset3D
4095 anv_sanitize_image_offset(const VkImageType imageType,
4096 const VkOffset3D imageOffset)
4097 {
4098 switch (imageType) {
4099 case VK_IMAGE_TYPE_1D:
4100 return (VkOffset3D) { imageOffset.x, 0, 0 };
4101 case VK_IMAGE_TYPE_2D:
4102 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
4103 case VK_IMAGE_TYPE_3D:
4104 return imageOffset;
4105 default:
4106 unreachable("invalid image type");
4107 }
4108 }
4109
4110 VkFormatFeatureFlags
4111 anv_get_image_format_features(const struct gen_device_info *devinfo,
4112 VkFormat vk_format,
4113 const struct anv_format *anv_format,
4114 VkImageTiling vk_tiling);
4115
4116 void anv_fill_buffer_surface_state(struct anv_device *device,
4117 struct anv_state state,
4118 enum isl_format format,
4119 struct anv_address address,
4120 uint32_t range, uint32_t stride);
4121
4122 static inline void
4123 anv_clear_color_from_att_state(union isl_color_value *clear_color,
4124 const struct anv_attachment_state *att_state,
4125 const struct anv_image_view *iview)
4126 {
4127 const struct isl_format_layout *view_fmtl =
4128 isl_format_get_layout(iview->planes[0].isl.format);
4129
4130 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
4131 if (view_fmtl->channels.c.bits) \
4132 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
4133
4134 COPY_CLEAR_COLOR_CHANNEL(r, 0);
4135 COPY_CLEAR_COLOR_CHANNEL(g, 1);
4136 COPY_CLEAR_COLOR_CHANNEL(b, 2);
4137 COPY_CLEAR_COLOR_CHANNEL(a, 3);
4138
4139 #undef COPY_CLEAR_COLOR_CHANNEL
4140 }
4141
4142
4143 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
4144 * straightforward 32-bit float color in the first 64 bytes. Instead of using
4145 * a nice float/integer union like Gen8+, Haswell specifies the integer border
4146 * color as a separate entry /after/ the float color. The layout of this entry
4147 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
4148 *
4149 * Since we don't know the format/bpp, we can't make any of the border colors
4150 * containing '1' work for all formats, as it would be in the wrong place for
4151 * some of them. We opt to make 32-bit integers work as this seems like the
4152 * most common option. Fortunately, transparent black works regardless, as
4153 * all zeroes is the same in every bit-size.
4154 */
4155 struct hsw_border_color {
4156 float float32[4];
4157 uint32_t _pad0[12];
4158 uint32_t uint32[4];
4159 uint32_t _pad1[108];
4160 };
4161
4162 struct gen8_border_color {
4163 union {
4164 float float32[4];
4165 uint32_t uint32[4];
4166 };
4167 /* Pad out to 64 bytes */
4168 uint32_t _pad[12];
4169 };
4170
4171 struct anv_ycbcr_conversion {
4172 struct vk_object_base base;
4173
4174 const struct anv_format * format;
4175 VkSamplerYcbcrModelConversion ycbcr_model;
4176 VkSamplerYcbcrRange ycbcr_range;
4177 VkComponentSwizzle mapping[4];
4178 VkChromaLocation chroma_offsets[2];
4179 VkFilter chroma_filter;
4180 bool chroma_reconstruction;
4181 };
4182
4183 struct anv_sampler {
4184 struct vk_object_base base;
4185
4186 uint32_t state[3][4];
4187 uint32_t n_planes;
4188 struct anv_ycbcr_conversion *conversion;
4189
4190 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
4191 * and with a 32-byte stride for use as bindless samplers.
4192 */
4193 struct anv_state bindless_state;
4194
4195 struct anv_state custom_border_color;
4196 };
4197
4198 struct anv_framebuffer {
4199 struct vk_object_base base;
4200
4201 uint32_t width;
4202 uint32_t height;
4203 uint32_t layers;
4204
4205 uint32_t attachment_count;
4206 struct anv_image_view * attachments[0];
4207 };
4208
4209 struct anv_subpass_attachment {
4210 VkImageUsageFlagBits usage;
4211 uint32_t attachment;
4212 VkImageLayout layout;
4213
4214 /* Used only with attachment containing stencil data. */
4215 VkImageLayout stencil_layout;
4216 };
4217
4218 struct anv_subpass {
4219 uint32_t attachment_count;
4220
4221 /**
4222 * A pointer to all attachment references used in this subpass.
4223 * Only valid if ::attachment_count > 0.
4224 */
4225 struct anv_subpass_attachment * attachments;
4226 uint32_t input_count;
4227 struct anv_subpass_attachment * input_attachments;
4228 uint32_t color_count;
4229 struct anv_subpass_attachment * color_attachments;
4230 struct anv_subpass_attachment * resolve_attachments;
4231
4232 struct anv_subpass_attachment * depth_stencil_attachment;
4233 struct anv_subpass_attachment * ds_resolve_attachment;
4234 VkResolveModeFlagBitsKHR depth_resolve_mode;
4235 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4236
4237 uint32_t view_mask;
4238
4239 /** Subpass has a depth/stencil self-dependency */
4240 bool has_ds_self_dep;
4241
4242 /** Subpass has at least one color resolve attachment */
4243 bool has_color_resolve;
4244 };
4245
4246 static inline unsigned
4247 anv_subpass_view_count(const struct anv_subpass *subpass)
4248 {
4249 return MAX2(1, util_bitcount(subpass->view_mask));
4250 }
4251
4252 struct anv_render_pass_attachment {
4253 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4254 * its members individually.
4255 */
4256 VkFormat format;
4257 uint32_t samples;
4258 VkImageUsageFlags usage;
4259 VkAttachmentLoadOp load_op;
4260 VkAttachmentStoreOp store_op;
4261 VkAttachmentLoadOp stencil_load_op;
4262 VkImageLayout initial_layout;
4263 VkImageLayout final_layout;
4264 VkImageLayout first_subpass_layout;
4265
4266 VkImageLayout stencil_initial_layout;
4267 VkImageLayout stencil_final_layout;
4268
4269 /* The subpass id in which the attachment will be used last. */
4270 uint32_t last_subpass_idx;
4271 };
4272
4273 struct anv_render_pass {
4274 struct vk_object_base base;
4275
4276 uint32_t attachment_count;
4277 uint32_t subpass_count;
4278 /* An array of subpass_count+1 flushes, one per subpass boundary */
4279 enum anv_pipe_bits * subpass_flushes;
4280 struct anv_render_pass_attachment * attachments;
4281 struct anv_subpass subpasses[0];
4282 };
4283
4284 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4285
4286 #define OA_SNAPSHOT_SIZE (256)
4287 #define ANV_KHR_PERF_QUERY_SIZE (ALIGN(sizeof(uint64_t), 64) + 2 * OA_SNAPSHOT_SIZE)
4288
4289 struct anv_query_pool {
4290 struct vk_object_base base;
4291
4292 VkQueryType type;
4293 VkQueryPipelineStatisticFlags pipeline_statistics;
4294 /** Stride between slots, in bytes */
4295 uint32_t stride;
4296 /** Number of slots in this query pool */
4297 uint32_t slots;
4298 struct anv_bo * bo;
4299
4300 /* Perf queries : */
4301 struct anv_bo reset_bo;
4302 uint32_t n_counters;
4303 struct gen_perf_counter_pass *counter_pass;
4304 uint32_t n_passes;
4305 struct gen_perf_query_info **pass_query;
4306 };
4307
4308 static inline uint32_t khr_perf_query_preamble_offset(struct anv_query_pool *pool,
4309 uint32_t pass)
4310 {
4311 return pass * ANV_KHR_PERF_QUERY_SIZE + 8;
4312 }
4313
4314 int anv_get_instance_entrypoint_index(const char *name);
4315 int anv_get_device_entrypoint_index(const char *name);
4316 int anv_get_physical_device_entrypoint_index(const char *name);
4317
4318 const char *anv_get_instance_entry_name(int index);
4319 const char *anv_get_physical_device_entry_name(int index);
4320 const char *anv_get_device_entry_name(int index);
4321
4322 bool
4323 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4324 const struct anv_instance_extension_table *instance);
4325 bool
4326 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4327 const struct anv_instance_extension_table *instance);
4328 bool
4329 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4330 const struct anv_instance_extension_table *instance,
4331 const struct anv_device_extension_table *device);
4332
4333 void *anv_resolve_device_entrypoint(const struct gen_device_info *devinfo,
4334 uint32_t index);
4335 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4336 const char *name);
4337
4338 void anv_dump_image_to_ppm(struct anv_device *device,
4339 struct anv_image *image, unsigned miplevel,
4340 unsigned array_layer, VkImageAspectFlagBits aspect,
4341 const char *filename);
4342
4343 enum anv_dump_action {
4344 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4345 };
4346
4347 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4348 void anv_dump_finish(void);
4349
4350 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4351
4352 static inline uint32_t
4353 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4354 {
4355 /* This function must be called from within a subpass. */
4356 assert(cmd_state->pass && cmd_state->subpass);
4357
4358 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4359
4360 /* The id of this subpass shouldn't exceed the number of subpasses in this
4361 * render pass minus 1.
4362 */
4363 assert(subpass_id < cmd_state->pass->subpass_count);
4364 return subpass_id;
4365 }
4366
4367 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4368 void anv_device_perf_init(struct anv_device *device);
4369 void anv_perf_write_pass_results(struct gen_perf_config *perf,
4370 struct anv_query_pool *pool, uint32_t pass,
4371 const struct gen_perf_query_result *accumulated_results,
4372 union VkPerformanceCounterResultKHR *results);
4373
4374 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4375 VK_FROM_HANDLE(__anv_type, __name, __handle)
4376
4377 VK_DEFINE_HANDLE_CASTS(anv_cmd_buffer, base, VkCommandBuffer,
4378 VK_OBJECT_TYPE_COMMAND_BUFFER)
4379 VK_DEFINE_HANDLE_CASTS(anv_device, vk.base, VkDevice, VK_OBJECT_TYPE_DEVICE)
4380 VK_DEFINE_HANDLE_CASTS(anv_instance, base, VkInstance, VK_OBJECT_TYPE_INSTANCE)
4381 VK_DEFINE_HANDLE_CASTS(anv_physical_device, base, VkPhysicalDevice,
4382 VK_OBJECT_TYPE_PHYSICAL_DEVICE)
4383 VK_DEFINE_HANDLE_CASTS(anv_queue, base, VkQueue, VK_OBJECT_TYPE_QUEUE)
4384
4385 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, base, VkCommandPool,
4386 VK_OBJECT_TYPE_COMMAND_POOL)
4387 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, base, VkBuffer,
4388 VK_OBJECT_TYPE_BUFFER)
4389 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, base, VkBufferView,
4390 VK_OBJECT_TYPE_BUFFER_VIEW)
4391 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, base, VkDescriptorPool,
4392 VK_OBJECT_TYPE_DESCRIPTOR_POOL)
4393 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, base, VkDescriptorSet,
4394 VK_OBJECT_TYPE_DESCRIPTOR_SET)
4395 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, base,
4396 VkDescriptorSetLayout,
4397 VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT)
4398 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, base,
4399 VkDescriptorUpdateTemplate,
4400 VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE)
4401 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, base, VkDeviceMemory,
4402 VK_OBJECT_TYPE_DEVICE_MEMORY)
4403 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, base, VkFence, VK_OBJECT_TYPE_FENCE)
4404 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_event, base, VkEvent, VK_OBJECT_TYPE_EVENT)
4405 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, base, VkFramebuffer,
4406 VK_OBJECT_TYPE_FRAMEBUFFER)
4407 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image, base, VkImage, VK_OBJECT_TYPE_IMAGE)
4408 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, base, VkImageView,
4409 VK_OBJECT_TYPE_IMAGE_VIEW);
4410 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, base, VkPipelineCache,
4411 VK_OBJECT_TYPE_PIPELINE_CACHE)
4412 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, base, VkPipeline,
4413 VK_OBJECT_TYPE_PIPELINE)
4414 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, base, VkPipelineLayout,
4415 VK_OBJECT_TYPE_PIPELINE_LAYOUT)
4416 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, base, VkQueryPool,
4417 VK_OBJECT_TYPE_QUERY_POOL)
4418 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, base, VkRenderPass,
4419 VK_OBJECT_TYPE_RENDER_PASS)
4420 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, base, VkSampler,
4421 VK_OBJECT_TYPE_SAMPLER)
4422 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, base, VkSemaphore,
4423 VK_OBJECT_TYPE_SEMAPHORE)
4424 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, base, VkShaderModule,
4425 VK_OBJECT_TYPE_SHADER_MODULE)
4426 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, base,
4427 VkSamplerYcbcrConversion,
4428 VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION)
4429
4430 /* Gen-specific function declarations */
4431 #ifdef genX
4432 # include "anv_genX.h"
4433 #else
4434 # define genX(x) gen7_##x
4435 # include "anv_genX.h"
4436 # undef genX
4437 # define genX(x) gen75_##x
4438 # include "anv_genX.h"
4439 # undef genX
4440 # define genX(x) gen8_##x
4441 # include "anv_genX.h"
4442 # undef genX
4443 # define genX(x) gen9_##x
4444 # include "anv_genX.h"
4445 # undef genX
4446 # define genX(x) gen10_##x
4447 # include "anv_genX.h"
4448 # undef genX
4449 # define genX(x) gen11_##x
4450 # include "anv_genX.h"
4451 # undef genX
4452 # define genX(x) gen12_##x
4453 # include "anv_genX.h"
4454 # undef genX
4455 #endif
4456
4457 #endif /* ANV_PRIVATE_H */