anv: split instance dispatch table
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/macros.h"
53 #include "util/hash_table.h"
54 #include "util/list.h"
55 #include "util/set.h"
56 #include "util/u_atomic.h"
57 #include "util/u_vector.h"
58 #include "util/u_math.h"
59 #include "util/vma.h"
60 #include "util/xmlconfig.h"
61 #include "vk_alloc.h"
62 #include "vk_debug_report.h"
63
64 /* Pre-declarations needed for WSI entrypoints */
65 struct wl_surface;
66 struct wl_display;
67 typedef struct xcb_connection_t xcb_connection_t;
68 typedef uint32_t xcb_visualid_t;
69 typedef uint32_t xcb_window_t;
70
71 struct anv_buffer;
72 struct anv_buffer_view;
73 struct anv_image_view;
74 struct anv_instance;
75
76 struct gen_l3_config;
77
78 #include <vulkan/vulkan.h>
79 #include <vulkan/vulkan_intel.h>
80 #include <vulkan/vk_icd.h>
81
82 #include "anv_android.h"
83 #include "anv_entrypoints.h"
84 #include "anv_extensions.h"
85 #include "isl/isl.h"
86
87 #include "dev/gen_debug.h"
88 #include "common/intel_log.h"
89 #include "wsi_common.h"
90
91 /* anv Virtual Memory Layout
92 * =========================
93 *
94 * When the anv driver is determining the virtual graphics addresses of memory
95 * objects itself using the softpin mechanism, the following memory ranges
96 * will be used.
97 *
98 * Three special considerations to notice:
99 *
100 * (1) the dynamic state pool is located within the same 4 GiB as the low
101 * heap. This is to work around a VF cache issue described in a comment in
102 * anv_physical_device_init_heaps.
103 *
104 * (2) the binding table pool is located at lower addresses than the surface
105 * state pool, within a 4 GiB range. This allows surface state base addresses
106 * to cover both binding tables (16 bit offsets) and surface states (32 bit
107 * offsets).
108 *
109 * (3) the last 4 GiB of the address space is withheld from the high
110 * heap. Various hardware units will read past the end of an object for
111 * various reasons. This healthy margin prevents reads from wrapping around
112 * 48-bit addresses.
113 */
114 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
115 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
116 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
117 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
118 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
119 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
120 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
121 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
122 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
123 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
124 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
125
126 #define LOW_HEAP_SIZE \
127 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
128 #define DYNAMIC_STATE_POOL_SIZE \
129 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
130 #define BINDING_TABLE_POOL_SIZE \
131 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
132 #define SURFACE_STATE_POOL_SIZE \
133 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
134 #define INSTRUCTION_STATE_POOL_SIZE \
135 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
136
137 /* Allowing different clear colors requires us to perform a depth resolve at
138 * the end of certain render passes. This is because while slow clears store
139 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
140 * See the PRMs for examples describing when additional resolves would be
141 * necessary. To enable fast clears without requiring extra resolves, we set
142 * the clear value to a globally-defined one. We could allow different values
143 * if the user doesn't expect coherent data during or after a render passes
144 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
145 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
146 * 1.0f seems to be the only value used. The only application that doesn't set
147 * this value does so through the usage of an seemingly uninitialized clear
148 * value.
149 */
150 #define ANV_HZ_FC_VAL 1.0f
151
152 #define MAX_VBS 28
153 #define MAX_XFB_BUFFERS 4
154 #define MAX_XFB_STREAMS 4
155 #define MAX_SETS 8
156 #define MAX_RTS 8
157 #define MAX_VIEWPORTS 16
158 #define MAX_SCISSORS 16
159 #define MAX_PUSH_CONSTANTS_SIZE 128
160 #define MAX_DYNAMIC_BUFFERS 16
161 #define MAX_IMAGES 64
162 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
163 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
164 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
165
166 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
167 *
168 * "The surface state model is used when a Binding Table Index (specified
169 * in the message descriptor) of less than 240 is specified. In this model,
170 * the Binding Table Index is used to index into the binding table, and the
171 * binding table entry contains a pointer to the SURFACE_STATE."
172 *
173 * Binding table values above 240 are used for various things in the hardware
174 * such as stateless, stateless with incoherent cache, SLM, and bindless.
175 */
176 #define MAX_BINDING_TABLE_SIZE 240
177
178 /* The kernel relocation API has a limitation of a 32-bit delta value
179 * applied to the address before it is written which, in spite of it being
180 * unsigned, is treated as signed . Because of the way that this maps to
181 * the Vulkan API, we cannot handle an offset into a buffer that does not
182 * fit into a signed 32 bits. The only mechanism we have for dealing with
183 * this at the moment is to limit all VkDeviceMemory objects to a maximum
184 * of 2GB each. The Vulkan spec allows us to do this:
185 *
186 * "Some platforms may have a limit on the maximum size of a single
187 * allocation. For example, certain systems may fail to create
188 * allocations with a size greater than or equal to 4GB. Such a limit is
189 * implementation-dependent, and if such a failure occurs then the error
190 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
191 *
192 * We don't use vk_error here because it's not an error so much as an
193 * indication to the application that the allocation is too large.
194 */
195 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
196
197 #define ANV_SVGS_VB_INDEX MAX_VBS
198 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
199
200 /* We reserve this MI ALU register for the purpose of handling predication.
201 * Other code which uses the MI ALU should leave it alone.
202 */
203 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
204
205 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
206
207 static inline uint32_t
208 align_down_npot_u32(uint32_t v, uint32_t a)
209 {
210 return v - (v % a);
211 }
212
213 static inline uint32_t
214 align_u32(uint32_t v, uint32_t a)
215 {
216 assert(a != 0 && a == (a & -a));
217 return (v + a - 1) & ~(a - 1);
218 }
219
220 static inline uint64_t
221 align_u64(uint64_t v, uint64_t a)
222 {
223 assert(a != 0 && a == (a & -a));
224 return (v + a - 1) & ~(a - 1);
225 }
226
227 static inline int32_t
228 align_i32(int32_t v, int32_t a)
229 {
230 assert(a != 0 && a == (a & -a));
231 return (v + a - 1) & ~(a - 1);
232 }
233
234 /** Alignment must be a power of 2. */
235 static inline bool
236 anv_is_aligned(uintmax_t n, uintmax_t a)
237 {
238 assert(a == (a & -a));
239 return (n & (a - 1)) == 0;
240 }
241
242 static inline uint32_t
243 anv_minify(uint32_t n, uint32_t levels)
244 {
245 if (unlikely(n == 0))
246 return 0;
247 else
248 return MAX2(n >> levels, 1);
249 }
250
251 static inline float
252 anv_clamp_f(float f, float min, float max)
253 {
254 assert(min < max);
255
256 if (f > max)
257 return max;
258 else if (f < min)
259 return min;
260 else
261 return f;
262 }
263
264 static inline bool
265 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
266 {
267 if (*inout_mask & clear_mask) {
268 *inout_mask &= ~clear_mask;
269 return true;
270 } else {
271 return false;
272 }
273 }
274
275 static inline union isl_color_value
276 vk_to_isl_color(VkClearColorValue color)
277 {
278 return (union isl_color_value) {
279 .u32 = {
280 color.uint32[0],
281 color.uint32[1],
282 color.uint32[2],
283 color.uint32[3],
284 },
285 };
286 }
287
288 #define for_each_bit(b, dword) \
289 for (uint32_t __dword = (dword); \
290 (b) = __builtin_ffs(__dword) - 1, __dword; \
291 __dword &= ~(1 << (b)))
292
293 #define typed_memcpy(dest, src, count) ({ \
294 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
295 memcpy((dest), (src), (count) * sizeof(*(src))); \
296 })
297
298 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
299 * to be added here in order to utilize mapping in debug/error/perf macros.
300 */
301 #define REPORT_OBJECT_TYPE(o) \
302 __builtin_choose_expr ( \
303 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
304 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
305 __builtin_choose_expr ( \
306 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
307 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
308 __builtin_choose_expr ( \
309 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
310 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
311 __builtin_choose_expr ( \
312 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
313 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
314 __builtin_choose_expr ( \
315 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
316 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
317 __builtin_choose_expr ( \
318 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
319 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
320 __builtin_choose_expr ( \
321 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
322 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
323 __builtin_choose_expr ( \
324 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
325 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
326 __builtin_choose_expr ( \
327 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
328 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
329 __builtin_choose_expr ( \
330 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
331 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
332 __builtin_choose_expr ( \
333 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
334 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), void*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
395 /* The void expression results in a compile-time error \
396 when assigning the result to something. */ \
397 (void)0)))))))))))))))))))))))))))))))
398
399 /* Whenever we generate an error, pass it through this function. Useful for
400 * debugging, where we can break on it. Only call at error site, not when
401 * propagating errors. Might be useful to plug in a stack trace here.
402 */
403
404 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
405 VkDebugReportObjectTypeEXT type, VkResult error,
406 const char *file, int line, const char *format,
407 va_list args);
408
409 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
410 VkDebugReportObjectTypeEXT type, VkResult error,
411 const char *file, int line, const char *format, ...);
412
413 #ifdef DEBUG
414 #define vk_error(error) __vk_errorf(NULL, NULL,\
415 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
416 error, __FILE__, __LINE__, NULL)
417 #define vk_errorv(instance, obj, error, format, args)\
418 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
419 __FILE__, __LINE__, format, args)
420 #define vk_errorf(instance, obj, error, format, ...)\
421 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
422 __FILE__, __LINE__, format, ## __VA_ARGS__)
423 #else
424 #define vk_error(error) error
425 #define vk_errorf(instance, obj, error, format, ...) error
426 #endif
427
428 /**
429 * Warn on ignored extension structs.
430 *
431 * The Vulkan spec requires us to ignore unsupported or unknown structs in
432 * a pNext chain. In debug mode, emitting warnings for ignored structs may
433 * help us discover structs that we should not have ignored.
434 *
435 *
436 * From the Vulkan 1.0.38 spec:
437 *
438 * Any component of the implementation (the loader, any enabled layers,
439 * and drivers) must skip over, without processing (other than reading the
440 * sType and pNext members) any chained structures with sType values not
441 * defined by extensions supported by that component.
442 */
443 #define anv_debug_ignored_stype(sType) \
444 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
445
446 void __anv_perf_warn(struct anv_instance *instance, const void *object,
447 VkDebugReportObjectTypeEXT type, const char *file,
448 int line, const char *format, ...)
449 anv_printflike(6, 7);
450 void anv_loge(const char *format, ...) anv_printflike(1, 2);
451 void anv_loge_v(const char *format, va_list va);
452
453 /**
454 * Print a FINISHME message, including its source location.
455 */
456 #define anv_finishme(format, ...) \
457 do { \
458 static bool reported = false; \
459 if (!reported) { \
460 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
461 ##__VA_ARGS__); \
462 reported = true; \
463 } \
464 } while (0)
465
466 /**
467 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
468 */
469 #define anv_perf_warn(instance, obj, format, ...) \
470 do { \
471 static bool reported = false; \
472 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
473 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
474 format, ##__VA_ARGS__); \
475 reported = true; \
476 } \
477 } while (0)
478
479 /* A non-fatal assert. Useful for debugging. */
480 #ifdef DEBUG
481 #define anv_assert(x) ({ \
482 if (unlikely(!(x))) \
483 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
484 })
485 #else
486 #define anv_assert(x)
487 #endif
488
489 /* A multi-pointer allocator
490 *
491 * When copying data structures from the user (such as a render pass), it's
492 * common to need to allocate data for a bunch of different things. Instead
493 * of doing several allocations and having to handle all of the error checking
494 * that entails, it can be easier to do a single allocation. This struct
495 * helps facilitate that. The intended usage looks like this:
496 *
497 * ANV_MULTIALLOC(ma)
498 * anv_multialloc_add(&ma, &main_ptr, 1);
499 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
500 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
501 *
502 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
503 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
504 */
505 struct anv_multialloc {
506 size_t size;
507 size_t align;
508
509 uint32_t ptr_count;
510 void **ptrs[8];
511 };
512
513 #define ANV_MULTIALLOC_INIT \
514 ((struct anv_multialloc) { 0, })
515
516 #define ANV_MULTIALLOC(_name) \
517 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
518
519 __attribute__((always_inline))
520 static inline void
521 _anv_multialloc_add(struct anv_multialloc *ma,
522 void **ptr, size_t size, size_t align)
523 {
524 size_t offset = align_u64(ma->size, align);
525 ma->size = offset + size;
526 ma->align = MAX2(ma->align, align);
527
528 /* Store the offset in the pointer. */
529 *ptr = (void *)(uintptr_t)offset;
530
531 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
532 ma->ptrs[ma->ptr_count++] = ptr;
533 }
534
535 #define anv_multialloc_add_size(_ma, _ptr, _size) \
536 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
537
538 #define anv_multialloc_add(_ma, _ptr, _count) \
539 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
540
541 __attribute__((always_inline))
542 static inline void *
543 anv_multialloc_alloc(struct anv_multialloc *ma,
544 const VkAllocationCallbacks *alloc,
545 VkSystemAllocationScope scope)
546 {
547 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
548 if (!ptr)
549 return NULL;
550
551 /* Fill out each of the pointers with their final value.
552 *
553 * for (uint32_t i = 0; i < ma->ptr_count; i++)
554 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
555 *
556 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
557 * constant, GCC is incapable of figuring this out and unrolling the loop
558 * so we have to give it a little help.
559 */
560 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
561 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
562 if ((_i) < ma->ptr_count) \
563 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
564 _ANV_MULTIALLOC_UPDATE_POINTER(0);
565 _ANV_MULTIALLOC_UPDATE_POINTER(1);
566 _ANV_MULTIALLOC_UPDATE_POINTER(2);
567 _ANV_MULTIALLOC_UPDATE_POINTER(3);
568 _ANV_MULTIALLOC_UPDATE_POINTER(4);
569 _ANV_MULTIALLOC_UPDATE_POINTER(5);
570 _ANV_MULTIALLOC_UPDATE_POINTER(6);
571 _ANV_MULTIALLOC_UPDATE_POINTER(7);
572 #undef _ANV_MULTIALLOC_UPDATE_POINTER
573
574 return ptr;
575 }
576
577 __attribute__((always_inline))
578 static inline void *
579 anv_multialloc_alloc2(struct anv_multialloc *ma,
580 const VkAllocationCallbacks *parent_alloc,
581 const VkAllocationCallbacks *alloc,
582 VkSystemAllocationScope scope)
583 {
584 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
585 }
586
587 /* Extra ANV-defined BO flags which won't be passed to the kernel */
588 #define ANV_BO_EXTERNAL (1ull << 31)
589 #define ANV_BO_FLAG_MASK (1ull << 31)
590
591 struct anv_bo {
592 uint32_t gem_handle;
593
594 /* Index into the current validation list. This is used by the
595 * validation list building alrogithm to track which buffers are already
596 * in the validation list so that we can ensure uniqueness.
597 */
598 uint32_t index;
599
600 /* Last known offset. This value is provided by the kernel when we
601 * execbuf and is used as the presumed offset for the next bunch of
602 * relocations.
603 */
604 uint64_t offset;
605
606 uint64_t size;
607 void *map;
608
609 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
610 uint32_t flags;
611 };
612
613 static inline void
614 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
615 {
616 bo->gem_handle = gem_handle;
617 bo->index = 0;
618 bo->offset = -1;
619 bo->size = size;
620 bo->map = NULL;
621 bo->flags = 0;
622 }
623
624 /* Represents a lock-free linked list of "free" things. This is used by
625 * both the block pool and the state pools. Unfortunately, in order to
626 * solve the ABA problem, we can't use a single uint32_t head.
627 */
628 union anv_free_list {
629 struct {
630 uint32_t offset;
631
632 /* A simple count that is incremented every time the head changes. */
633 uint32_t count;
634 };
635 uint64_t u64;
636 };
637
638 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
639
640 struct anv_block_state {
641 union {
642 struct {
643 uint32_t next;
644 uint32_t end;
645 };
646 uint64_t u64;
647 };
648 };
649
650 #define anv_block_pool_foreach_bo(bo, pool) \
651 for (bo = (pool)->bos; bo != &(pool)->bos[(pool)->nbos]; bo++)
652
653 #define ANV_MAX_BLOCK_POOL_BOS 20
654
655 struct anv_block_pool {
656 struct anv_device *device;
657
658 uint64_t bo_flags;
659
660 struct anv_bo bos[ANV_MAX_BLOCK_POOL_BOS];
661 struct anv_bo *bo;
662 uint32_t nbos;
663
664 uint64_t size;
665
666 /* The address where the start of the pool is pinned. The various bos that
667 * are created as the pool grows will have addresses in the range
668 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
669 */
670 uint64_t start_address;
671
672 /* The offset from the start of the bo to the "center" of the block
673 * pool. Pointers to allocated blocks are given by
674 * bo.map + center_bo_offset + offsets.
675 */
676 uint32_t center_bo_offset;
677
678 /* Current memory map of the block pool. This pointer may or may not
679 * point to the actual beginning of the block pool memory. If
680 * anv_block_pool_alloc_back has ever been called, then this pointer
681 * will point to the "center" position of the buffer and all offsets
682 * (negative or positive) given out by the block pool alloc functions
683 * will be valid relative to this pointer.
684 *
685 * In particular, map == bo.map + center_offset
686 *
687 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
688 * since it will handle the softpin case as well, where this points to NULL.
689 */
690 void *map;
691 int fd;
692
693 /**
694 * Array of mmaps and gem handles owned by the block pool, reclaimed when
695 * the block pool is destroyed.
696 */
697 struct u_vector mmap_cleanups;
698
699 struct anv_block_state state;
700
701 struct anv_block_state back_state;
702 };
703
704 /* Block pools are backed by a fixed-size 1GB memfd */
705 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
706
707 /* The center of the block pool is also the middle of the memfd. This may
708 * change in the future if we decide differently for some reason.
709 */
710 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
711
712 static inline uint32_t
713 anv_block_pool_size(struct anv_block_pool *pool)
714 {
715 return pool->state.end + pool->back_state.end;
716 }
717
718 struct anv_state {
719 int32_t offset;
720 uint32_t alloc_size;
721 void *map;
722 uint32_t idx;
723 };
724
725 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
726
727 struct anv_fixed_size_state_pool {
728 union anv_free_list free_list;
729 struct anv_block_state block;
730 };
731
732 #define ANV_MIN_STATE_SIZE_LOG2 6
733 #define ANV_MAX_STATE_SIZE_LOG2 21
734
735 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
736
737 struct anv_free_entry {
738 uint32_t next;
739 struct anv_state state;
740 };
741
742 struct anv_state_table {
743 struct anv_device *device;
744 int fd;
745 struct anv_free_entry *map;
746 uint32_t size;
747 struct anv_block_state state;
748 struct u_vector cleanups;
749 };
750
751 struct anv_state_pool {
752 struct anv_block_pool block_pool;
753
754 struct anv_state_table table;
755
756 /* The size of blocks which will be allocated from the block pool */
757 uint32_t block_size;
758
759 /** Free list for "back" allocations */
760 union anv_free_list back_alloc_free_list;
761
762 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
763 };
764
765 struct anv_state_stream_block;
766
767 struct anv_state_stream {
768 struct anv_state_pool *state_pool;
769
770 /* The size of blocks to allocate from the state pool */
771 uint32_t block_size;
772
773 /* Current block we're allocating from */
774 struct anv_state block;
775
776 /* Offset into the current block at which to allocate the next state */
777 uint32_t next;
778
779 /* List of all blocks allocated from this pool */
780 struct anv_state_stream_block *block_list;
781 };
782
783 /* The block_pool functions exported for testing only. The block pool should
784 * only be used via a state pool (see below).
785 */
786 VkResult anv_block_pool_init(struct anv_block_pool *pool,
787 struct anv_device *device,
788 uint64_t start_address,
789 uint32_t initial_size,
790 uint64_t bo_flags);
791 void anv_block_pool_finish(struct anv_block_pool *pool);
792 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
793 uint32_t block_size, uint32_t *padding);
794 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
795 uint32_t block_size);
796 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
797
798 VkResult anv_state_pool_init(struct anv_state_pool *pool,
799 struct anv_device *device,
800 uint64_t start_address,
801 uint32_t block_size,
802 uint64_t bo_flags);
803 void anv_state_pool_finish(struct anv_state_pool *pool);
804 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
805 uint32_t state_size, uint32_t alignment);
806 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
807 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
808 void anv_state_stream_init(struct anv_state_stream *stream,
809 struct anv_state_pool *state_pool,
810 uint32_t block_size);
811 void anv_state_stream_finish(struct anv_state_stream *stream);
812 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
813 uint32_t size, uint32_t alignment);
814
815 VkResult anv_state_table_init(struct anv_state_table *table,
816 struct anv_device *device,
817 uint32_t initial_entries);
818 void anv_state_table_finish(struct anv_state_table *table);
819 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
820 uint32_t count);
821 void anv_free_list_push(union anv_free_list *list,
822 struct anv_state_table *table,
823 uint32_t idx, uint32_t count);
824 struct anv_state* anv_free_list_pop(union anv_free_list *list,
825 struct anv_state_table *table);
826
827
828 static inline struct anv_state *
829 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
830 {
831 return &table->map[idx].state;
832 }
833 /**
834 * Implements a pool of re-usable BOs. The interface is identical to that
835 * of block_pool except that each block is its own BO.
836 */
837 struct anv_bo_pool {
838 struct anv_device *device;
839
840 uint64_t bo_flags;
841
842 void *free_list[16];
843 };
844
845 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
846 uint64_t bo_flags);
847 void anv_bo_pool_finish(struct anv_bo_pool *pool);
848 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
849 uint32_t size);
850 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
851
852 struct anv_scratch_bo {
853 bool exists;
854 struct anv_bo bo;
855 };
856
857 struct anv_scratch_pool {
858 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
859 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
860 };
861
862 void anv_scratch_pool_init(struct anv_device *device,
863 struct anv_scratch_pool *pool);
864 void anv_scratch_pool_finish(struct anv_device *device,
865 struct anv_scratch_pool *pool);
866 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
867 struct anv_scratch_pool *pool,
868 gl_shader_stage stage,
869 unsigned per_thread_scratch);
870
871 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
872 struct anv_bo_cache {
873 struct hash_table *bo_map;
874 pthread_mutex_t mutex;
875 };
876
877 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
878 void anv_bo_cache_finish(struct anv_bo_cache *cache);
879 VkResult anv_bo_cache_alloc(struct anv_device *device,
880 struct anv_bo_cache *cache,
881 uint64_t size, uint64_t bo_flags,
882 struct anv_bo **bo);
883 VkResult anv_bo_cache_import_host_ptr(struct anv_device *device,
884 struct anv_bo_cache *cache,
885 void *host_ptr, uint32_t size,
886 uint64_t bo_flags, struct anv_bo **bo_out);
887 VkResult anv_bo_cache_import(struct anv_device *device,
888 struct anv_bo_cache *cache,
889 int fd, uint64_t bo_flags,
890 struct anv_bo **bo);
891 VkResult anv_bo_cache_export(struct anv_device *device,
892 struct anv_bo_cache *cache,
893 struct anv_bo *bo_in, int *fd_out);
894 void anv_bo_cache_release(struct anv_device *device,
895 struct anv_bo_cache *cache,
896 struct anv_bo *bo);
897
898 struct anv_memory_type {
899 /* Standard bits passed on to the client */
900 VkMemoryPropertyFlags propertyFlags;
901 uint32_t heapIndex;
902
903 /* Driver-internal book-keeping */
904 VkBufferUsageFlags valid_buffer_usage;
905 };
906
907 struct anv_memory_heap {
908 /* Standard bits passed on to the client */
909 VkDeviceSize size;
910 VkMemoryHeapFlags flags;
911
912 /* Driver-internal book-keeping */
913 uint64_t vma_start;
914 uint64_t vma_size;
915 bool supports_48bit_addresses;
916 VkDeviceSize used;
917 };
918
919 struct anv_physical_device {
920 VK_LOADER_DATA _loader_data;
921
922 struct anv_instance * instance;
923 uint32_t chipset_id;
924 bool no_hw;
925 char path[20];
926 const char * name;
927 struct {
928 uint16_t domain;
929 uint8_t bus;
930 uint8_t device;
931 uint8_t function;
932 } pci_info;
933 struct gen_device_info info;
934 /** Amount of "GPU memory" we want to advertise
935 *
936 * Clearly, this value is bogus since Intel is a UMA architecture. On
937 * gen7 platforms, we are limited by GTT size unless we want to implement
938 * fine-grained tracking and GTT splitting. On Broadwell and above we are
939 * practically unlimited. However, we will never report more than 3/4 of
940 * the total system ram to try and avoid running out of RAM.
941 */
942 bool supports_48bit_addresses;
943 struct brw_compiler * compiler;
944 struct isl_device isl_dev;
945 int cmd_parser_version;
946 bool has_exec_async;
947 bool has_exec_capture;
948 bool has_exec_fence;
949 bool has_syncobj;
950 bool has_syncobj_wait;
951 bool has_context_priority;
952 bool use_softpin;
953 bool has_context_isolation;
954 bool has_mem_available;
955 bool always_use_bindless;
956
957 /** True if we can access buffers using A64 messages */
958 bool has_a64_buffer_access;
959 /** True if we can use bindless access for images */
960 bool has_bindless_images;
961 /** True if we can use bindless access for samplers */
962 bool has_bindless_samplers;
963
964 struct anv_device_extension_table supported_extensions;
965 struct anv_physical_device_dispatch_table dispatch;
966
967 uint32_t eu_total;
968 uint32_t subslice_total;
969
970 struct {
971 uint32_t type_count;
972 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
973 uint32_t heap_count;
974 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
975 } memory;
976
977 uint8_t driver_build_sha1[20];
978 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
979 uint8_t driver_uuid[VK_UUID_SIZE];
980 uint8_t device_uuid[VK_UUID_SIZE];
981
982 struct disk_cache * disk_cache;
983
984 struct wsi_device wsi_device;
985 int local_fd;
986 int master_fd;
987 };
988
989 struct anv_app_info {
990 const char* app_name;
991 uint32_t app_version;
992 const char* engine_name;
993 uint32_t engine_version;
994 uint32_t api_version;
995 };
996
997 struct anv_instance {
998 VK_LOADER_DATA _loader_data;
999
1000 VkAllocationCallbacks alloc;
1001
1002 struct anv_app_info app_info;
1003
1004 struct anv_instance_extension_table enabled_extensions;
1005 struct anv_instance_dispatch_table dispatch;
1006 struct anv_device_dispatch_table device_dispatch;
1007
1008 int physicalDeviceCount;
1009 struct anv_physical_device physicalDevice;
1010
1011 bool pipeline_cache_enabled;
1012
1013 struct vk_debug_report_instance debug_report_callbacks;
1014
1015 struct driOptionCache dri_options;
1016 struct driOptionCache available_dri_options;
1017 };
1018
1019 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1020 void anv_finish_wsi(struct anv_physical_device *physical_device);
1021
1022 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1023 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1024 const char *name);
1025
1026 struct anv_queue {
1027 VK_LOADER_DATA _loader_data;
1028
1029 struct anv_device * device;
1030
1031 VkDeviceQueueCreateFlags flags;
1032 };
1033
1034 struct anv_pipeline_cache {
1035 struct anv_device * device;
1036 pthread_mutex_t mutex;
1037
1038 struct hash_table * nir_cache;
1039
1040 struct hash_table * cache;
1041 };
1042
1043 struct nir_xfb_info;
1044 struct anv_pipeline_bind_map;
1045
1046 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1047 struct anv_device *device,
1048 bool cache_enabled);
1049 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1050
1051 struct anv_shader_bin *
1052 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1053 const void *key, uint32_t key_size);
1054 struct anv_shader_bin *
1055 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1056 const void *key_data, uint32_t key_size,
1057 const void *kernel_data, uint32_t kernel_size,
1058 const void *constant_data,
1059 uint32_t constant_data_size,
1060 const struct brw_stage_prog_data *prog_data,
1061 uint32_t prog_data_size,
1062 const struct brw_compile_stats *stats,
1063 uint32_t num_stats,
1064 const struct nir_xfb_info *xfb_info,
1065 const struct anv_pipeline_bind_map *bind_map);
1066
1067 struct anv_shader_bin *
1068 anv_device_search_for_kernel(struct anv_device *device,
1069 struct anv_pipeline_cache *cache,
1070 const void *key_data, uint32_t key_size,
1071 bool *user_cache_bit);
1072
1073 struct anv_shader_bin *
1074 anv_device_upload_kernel(struct anv_device *device,
1075 struct anv_pipeline_cache *cache,
1076 const void *key_data, uint32_t key_size,
1077 const void *kernel_data, uint32_t kernel_size,
1078 const void *constant_data,
1079 uint32_t constant_data_size,
1080 const struct brw_stage_prog_data *prog_data,
1081 uint32_t prog_data_size,
1082 const struct brw_compile_stats *stats,
1083 uint32_t num_stats,
1084 const struct nir_xfb_info *xfb_info,
1085 const struct anv_pipeline_bind_map *bind_map);
1086
1087 struct nir_shader;
1088 struct nir_shader_compiler_options;
1089
1090 struct nir_shader *
1091 anv_device_search_for_nir(struct anv_device *device,
1092 struct anv_pipeline_cache *cache,
1093 const struct nir_shader_compiler_options *nir_options,
1094 unsigned char sha1_key[20],
1095 void *mem_ctx);
1096
1097 void
1098 anv_device_upload_nir(struct anv_device *device,
1099 struct anv_pipeline_cache *cache,
1100 const struct nir_shader *nir,
1101 unsigned char sha1_key[20]);
1102
1103 struct anv_device {
1104 VK_LOADER_DATA _loader_data;
1105
1106 VkAllocationCallbacks alloc;
1107
1108 struct anv_instance * instance;
1109 uint32_t chipset_id;
1110 bool no_hw;
1111 struct gen_device_info info;
1112 struct isl_device isl_dev;
1113 int context_id;
1114 int fd;
1115 bool can_chain_batches;
1116 bool robust_buffer_access;
1117 struct anv_device_extension_table enabled_extensions;
1118 struct anv_device_dispatch_table dispatch;
1119
1120 pthread_mutex_t vma_mutex;
1121 struct util_vma_heap vma_lo;
1122 struct util_vma_heap vma_hi;
1123 uint64_t vma_lo_available;
1124 uint64_t vma_hi_available;
1125
1126 /** List of all anv_device_memory objects */
1127 struct list_head memory_objects;
1128
1129 struct anv_bo_pool batch_bo_pool;
1130
1131 struct anv_bo_cache bo_cache;
1132
1133 struct anv_state_pool dynamic_state_pool;
1134 struct anv_state_pool instruction_state_pool;
1135 struct anv_state_pool binding_table_pool;
1136 struct anv_state_pool surface_state_pool;
1137
1138 struct anv_bo workaround_bo;
1139 struct anv_bo trivial_batch_bo;
1140 struct anv_bo hiz_clear_bo;
1141
1142 struct anv_pipeline_cache default_pipeline_cache;
1143 struct blorp_context blorp;
1144
1145 struct anv_state border_colors;
1146
1147 struct anv_state slice_hash;
1148
1149 struct anv_queue queue;
1150
1151 struct anv_scratch_pool scratch_pool;
1152
1153 uint32_t default_mocs;
1154 uint32_t external_mocs;
1155
1156 pthread_mutex_t mutex;
1157 pthread_cond_t queue_submit;
1158 bool _lost;
1159
1160 struct gen_batch_decode_ctx decoder_ctx;
1161 /*
1162 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1163 * the cmd_buffer's list.
1164 */
1165 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1166 };
1167
1168 static inline struct anv_state_pool *
1169 anv_binding_table_pool(struct anv_device *device)
1170 {
1171 if (device->instance->physicalDevice.use_softpin)
1172 return &device->binding_table_pool;
1173 else
1174 return &device->surface_state_pool;
1175 }
1176
1177 static inline struct anv_state
1178 anv_binding_table_pool_alloc(struct anv_device *device) {
1179 if (device->instance->physicalDevice.use_softpin)
1180 return anv_state_pool_alloc(&device->binding_table_pool,
1181 device->binding_table_pool.block_size, 0);
1182 else
1183 return anv_state_pool_alloc_back(&device->surface_state_pool);
1184 }
1185
1186 static inline void
1187 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1188 anv_state_pool_free(anv_binding_table_pool(device), state);
1189 }
1190
1191 static inline uint32_t
1192 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1193 {
1194 if (bo->flags & ANV_BO_EXTERNAL)
1195 return device->external_mocs;
1196 else
1197 return device->default_mocs;
1198 }
1199
1200 void anv_device_init_blorp(struct anv_device *device);
1201 void anv_device_finish_blorp(struct anv_device *device);
1202
1203 VkResult _anv_device_set_lost(struct anv_device *device,
1204 const char *file, int line,
1205 const char *msg, ...);
1206 #define anv_device_set_lost(dev, ...) \
1207 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1208
1209 static inline bool
1210 anv_device_is_lost(struct anv_device *device)
1211 {
1212 return unlikely(device->_lost);
1213 }
1214
1215 VkResult anv_device_execbuf(struct anv_device *device,
1216 struct drm_i915_gem_execbuffer2 *execbuf,
1217 struct anv_bo **execbuf_bos);
1218 VkResult anv_device_query_status(struct anv_device *device);
1219 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1220 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1221 int64_t timeout);
1222
1223 void* anv_gem_mmap(struct anv_device *device,
1224 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1225 void anv_gem_munmap(void *p, uint64_t size);
1226 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1227 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1228 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1229 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1230 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1231 int anv_gem_execbuffer(struct anv_device *device,
1232 struct drm_i915_gem_execbuffer2 *execbuf);
1233 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1234 uint32_t stride, uint32_t tiling);
1235 int anv_gem_create_context(struct anv_device *device);
1236 bool anv_gem_has_context_priority(int fd);
1237 int anv_gem_destroy_context(struct anv_device *device, int context);
1238 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1239 uint64_t value);
1240 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1241 uint64_t *value);
1242 int anv_gem_get_param(int fd, uint32_t param);
1243 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1244 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1245 int anv_gem_get_aperture(int fd, uint64_t *size);
1246 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1247 uint32_t *active, uint32_t *pending);
1248 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1249 int anv_gem_reg_read(struct anv_device *device,
1250 uint32_t offset, uint64_t *result);
1251 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1252 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1253 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1254 uint32_t read_domains, uint32_t write_domain);
1255 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1256 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1257 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1258 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1259 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1260 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1261 uint32_t handle);
1262 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1263 uint32_t handle, int fd);
1264 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1265 bool anv_gem_supports_syncobj_wait(int fd);
1266 int anv_gem_syncobj_wait(struct anv_device *device,
1267 uint32_t *handles, uint32_t num_handles,
1268 int64_t abs_timeout_ns, bool wait_all);
1269
1270 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1271 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1272
1273 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1274
1275 struct anv_reloc_list {
1276 uint32_t num_relocs;
1277 uint32_t array_length;
1278 struct drm_i915_gem_relocation_entry * relocs;
1279 struct anv_bo ** reloc_bos;
1280 struct set * deps;
1281 };
1282
1283 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1284 const VkAllocationCallbacks *alloc);
1285 void anv_reloc_list_finish(struct anv_reloc_list *list,
1286 const VkAllocationCallbacks *alloc);
1287
1288 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1289 const VkAllocationCallbacks *alloc,
1290 uint32_t offset, struct anv_bo *target_bo,
1291 uint32_t delta);
1292
1293 struct anv_batch_bo {
1294 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1295 struct list_head link;
1296
1297 struct anv_bo bo;
1298
1299 /* Bytes actually consumed in this batch BO */
1300 uint32_t length;
1301
1302 struct anv_reloc_list relocs;
1303 };
1304
1305 struct anv_batch {
1306 const VkAllocationCallbacks * alloc;
1307
1308 void * start;
1309 void * end;
1310 void * next;
1311
1312 struct anv_reloc_list * relocs;
1313
1314 /* This callback is called (with the associated user data) in the event
1315 * that the batch runs out of space.
1316 */
1317 VkResult (*extend_cb)(struct anv_batch *, void *);
1318 void * user_data;
1319
1320 /**
1321 * Current error status of the command buffer. Used to track inconsistent
1322 * or incomplete command buffer states that are the consequence of run-time
1323 * errors such as out of memory scenarios. We want to track this in the
1324 * batch because the command buffer object is not visible to some parts
1325 * of the driver.
1326 */
1327 VkResult status;
1328 };
1329
1330 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1331 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1332 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1333 void *location, struct anv_bo *bo, uint32_t offset);
1334 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1335 struct anv_batch *batch);
1336
1337 static inline VkResult
1338 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1339 {
1340 assert(error != VK_SUCCESS);
1341 if (batch->status == VK_SUCCESS)
1342 batch->status = error;
1343 return batch->status;
1344 }
1345
1346 static inline bool
1347 anv_batch_has_error(struct anv_batch *batch)
1348 {
1349 return batch->status != VK_SUCCESS;
1350 }
1351
1352 struct anv_address {
1353 struct anv_bo *bo;
1354 uint32_t offset;
1355 };
1356
1357 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1358
1359 static inline bool
1360 anv_address_is_null(struct anv_address addr)
1361 {
1362 return addr.bo == NULL && addr.offset == 0;
1363 }
1364
1365 static inline uint64_t
1366 anv_address_physical(struct anv_address addr)
1367 {
1368 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1369 return gen_canonical_address(addr.bo->offset + addr.offset);
1370 else
1371 return gen_canonical_address(addr.offset);
1372 }
1373
1374 static inline struct anv_address
1375 anv_address_add(struct anv_address addr, uint64_t offset)
1376 {
1377 addr.offset += offset;
1378 return addr;
1379 }
1380
1381 static inline void
1382 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1383 {
1384 unsigned reloc_size = 0;
1385 if (device->info.gen >= 8) {
1386 reloc_size = sizeof(uint64_t);
1387 *(uint64_t *)p = gen_canonical_address(v);
1388 } else {
1389 reloc_size = sizeof(uint32_t);
1390 *(uint32_t *)p = v;
1391 }
1392
1393 if (flush && !device->info.has_llc)
1394 gen_flush_range(p, reloc_size);
1395 }
1396
1397 static inline uint64_t
1398 _anv_combine_address(struct anv_batch *batch, void *location,
1399 const struct anv_address address, uint32_t delta)
1400 {
1401 if (address.bo == NULL) {
1402 return address.offset + delta;
1403 } else {
1404 assert(batch->start <= location && location < batch->end);
1405
1406 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1407 }
1408 }
1409
1410 #define __gen_address_type struct anv_address
1411 #define __gen_user_data struct anv_batch
1412 #define __gen_combine_address _anv_combine_address
1413
1414 /* Wrapper macros needed to work around preprocessor argument issues. In
1415 * particular, arguments don't get pre-evaluated if they are concatenated.
1416 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1417 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1418 * We can work around this easily enough with these helpers.
1419 */
1420 #define __anv_cmd_length(cmd) cmd ## _length
1421 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1422 #define __anv_cmd_header(cmd) cmd ## _header
1423 #define __anv_cmd_pack(cmd) cmd ## _pack
1424 #define __anv_reg_num(reg) reg ## _num
1425
1426 #define anv_pack_struct(dst, struc, ...) do { \
1427 struct struc __template = { \
1428 __VA_ARGS__ \
1429 }; \
1430 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1431 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1432 } while (0)
1433
1434 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1435 void *__dst = anv_batch_emit_dwords(batch, n); \
1436 if (__dst) { \
1437 struct cmd __template = { \
1438 __anv_cmd_header(cmd), \
1439 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1440 __VA_ARGS__ \
1441 }; \
1442 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1443 } \
1444 __dst; \
1445 })
1446
1447 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1448 do { \
1449 uint32_t *dw; \
1450 \
1451 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1452 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1453 if (!dw) \
1454 break; \
1455 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1456 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1457 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1458 } while (0)
1459
1460 #define anv_batch_emit(batch, cmd, name) \
1461 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1462 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1463 __builtin_expect(_dst != NULL, 1); \
1464 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1465 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1466 _dst = NULL; \
1467 }))
1468
1469 /* MEMORY_OBJECT_CONTROL_STATE:
1470 * .GraphicsDataTypeGFDT = 0,
1471 * .LLCCacheabilityControlLLCCC = 0,
1472 * .L3CacheabilityControlL3CC = 1,
1473 */
1474 #define GEN7_MOCS 1
1475
1476 /* MEMORY_OBJECT_CONTROL_STATE:
1477 * .LLCeLLCCacheabilityControlLLCCC = 0,
1478 * .L3CacheabilityControlL3CC = 1,
1479 */
1480 #define GEN75_MOCS 1
1481
1482 /* MEMORY_OBJECT_CONTROL_STATE:
1483 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1484 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1485 * .AgeforQUADLRU = 0
1486 */
1487 #define GEN8_MOCS 0x78
1488
1489 /* MEMORY_OBJECT_CONTROL_STATE:
1490 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1491 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1492 * .AgeforQUADLRU = 0
1493 */
1494 #define GEN8_EXTERNAL_MOCS 0x18
1495
1496 /* Skylake: MOCS is now an index into an array of 62 different caching
1497 * configurations programmed by the kernel.
1498 */
1499
1500 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1501 #define GEN9_MOCS (2 << 1)
1502
1503 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1504 #define GEN9_EXTERNAL_MOCS (1 << 1)
1505
1506 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1507 #define GEN10_MOCS GEN9_MOCS
1508 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1509
1510 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1511 #define GEN11_MOCS GEN9_MOCS
1512 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1513
1514 /* TigerLake MOCS */
1515 #define GEN12_MOCS GEN9_MOCS
1516 /* TC=1/LLC Only, LeCC=1/Uncacheable, LRUM=0, L3CC=1/Uncacheable */
1517 #define GEN12_EXTERNAL_MOCS (3 << 1)
1518
1519 struct anv_device_memory {
1520 struct list_head link;
1521
1522 struct anv_bo * bo;
1523 struct anv_memory_type * type;
1524 VkDeviceSize map_size;
1525 void * map;
1526
1527 /* If set, we are holding reference to AHardwareBuffer
1528 * which we must release when memory is freed.
1529 */
1530 struct AHardwareBuffer * ahw;
1531
1532 /* If set, this memory comes from a host pointer. */
1533 void * host_ptr;
1534 };
1535
1536 /**
1537 * Header for Vertex URB Entry (VUE)
1538 */
1539 struct anv_vue_header {
1540 uint32_t Reserved;
1541 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1542 uint32_t ViewportIndex;
1543 float PointWidth;
1544 };
1545
1546 /** Struct representing a sampled image descriptor
1547 *
1548 * This descriptor layout is used for sampled images, bare sampler, and
1549 * combined image/sampler descriptors.
1550 */
1551 struct anv_sampled_image_descriptor {
1552 /** Bindless image handle
1553 *
1554 * This is expected to already be shifted such that the 20-bit
1555 * SURFACE_STATE table index is in the top 20 bits.
1556 */
1557 uint32_t image;
1558
1559 /** Bindless sampler handle
1560 *
1561 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1562 * to the dynamic state base address.
1563 */
1564 uint32_t sampler;
1565 };
1566
1567 struct anv_texture_swizzle_descriptor {
1568 /** Texture swizzle
1569 *
1570 * See also nir_intrinsic_channel_select_intel
1571 */
1572 uint8_t swizzle[4];
1573
1574 /** Unused padding to ensure the struct is a multiple of 64 bits */
1575 uint32_t _pad;
1576 };
1577
1578 /** Struct representing a storage image descriptor */
1579 struct anv_storage_image_descriptor {
1580 /** Bindless image handles
1581 *
1582 * These are expected to already be shifted such that the 20-bit
1583 * SURFACE_STATE table index is in the top 20 bits.
1584 */
1585 uint32_t read_write;
1586 uint32_t write_only;
1587 };
1588
1589 /** Struct representing a address/range descriptor
1590 *
1591 * The fields of this struct correspond directly to the data layout of
1592 * nir_address_format_64bit_bounded_global addresses. The last field is the
1593 * offset in the NIR address so it must be zero so that when you load the
1594 * descriptor you get a pointer to the start of the range.
1595 */
1596 struct anv_address_range_descriptor {
1597 uint64_t address;
1598 uint32_t range;
1599 uint32_t zero;
1600 };
1601
1602 enum anv_descriptor_data {
1603 /** The descriptor contains a BTI reference to a surface state */
1604 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1605 /** The descriptor contains a BTI reference to a sampler state */
1606 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1607 /** The descriptor contains an actual buffer view */
1608 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1609 /** The descriptor contains auxiliary image layout data */
1610 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1611 /** The descriptor contains auxiliary image layout data */
1612 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1613 /** anv_address_range_descriptor with a buffer address and range */
1614 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1615 /** Bindless surface handle */
1616 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1617 /** Storage image handles */
1618 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1619 /** Storage image handles */
1620 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1621 };
1622
1623 struct anv_descriptor_set_binding_layout {
1624 #ifndef NDEBUG
1625 /* The type of the descriptors in this binding */
1626 VkDescriptorType type;
1627 #endif
1628
1629 /* Flags provided when this binding was created */
1630 VkDescriptorBindingFlagsEXT flags;
1631
1632 /* Bitfield representing the type of data this descriptor contains */
1633 enum anv_descriptor_data data;
1634
1635 /* Maximum number of YCbCr texture/sampler planes */
1636 uint8_t max_plane_count;
1637
1638 /* Number of array elements in this binding (or size in bytes for inline
1639 * uniform data)
1640 */
1641 uint16_t array_size;
1642
1643 /* Index into the flattend descriptor set */
1644 uint16_t descriptor_index;
1645
1646 /* Index into the dynamic state array for a dynamic buffer */
1647 int16_t dynamic_offset_index;
1648
1649 /* Index into the descriptor set buffer views */
1650 int16_t buffer_view_index;
1651
1652 /* Offset into the descriptor buffer where this descriptor lives */
1653 uint32_t descriptor_offset;
1654
1655 /* Immutable samplers (or NULL if no immutable samplers) */
1656 struct anv_sampler **immutable_samplers;
1657 };
1658
1659 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1660
1661 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1662 VkDescriptorType type);
1663
1664 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1665 const struct anv_descriptor_set_binding_layout *binding,
1666 bool sampler);
1667
1668 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1669 const struct anv_descriptor_set_binding_layout *binding,
1670 bool sampler);
1671
1672 struct anv_descriptor_set_layout {
1673 /* Descriptor set layouts can be destroyed at almost any time */
1674 uint32_t ref_cnt;
1675
1676 /* Number of bindings in this descriptor set */
1677 uint16_t binding_count;
1678
1679 /* Total size of the descriptor set with room for all array entries */
1680 uint16_t size;
1681
1682 /* Shader stages affected by this descriptor set */
1683 uint16_t shader_stages;
1684
1685 /* Number of buffer views in this descriptor set */
1686 uint16_t buffer_view_count;
1687
1688 /* Number of dynamic offsets used by this descriptor set */
1689 uint16_t dynamic_offset_count;
1690
1691 /* Size of the descriptor buffer for this descriptor set */
1692 uint32_t descriptor_buffer_size;
1693
1694 /* Bindings in this descriptor set */
1695 struct anv_descriptor_set_binding_layout binding[0];
1696 };
1697
1698 static inline void
1699 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1700 {
1701 assert(layout && layout->ref_cnt >= 1);
1702 p_atomic_inc(&layout->ref_cnt);
1703 }
1704
1705 static inline void
1706 anv_descriptor_set_layout_unref(struct anv_device *device,
1707 struct anv_descriptor_set_layout *layout)
1708 {
1709 assert(layout && layout->ref_cnt >= 1);
1710 if (p_atomic_dec_zero(&layout->ref_cnt))
1711 vk_free(&device->alloc, layout);
1712 }
1713
1714 struct anv_descriptor {
1715 VkDescriptorType type;
1716
1717 union {
1718 struct {
1719 VkImageLayout layout;
1720 struct anv_image_view *image_view;
1721 struct anv_sampler *sampler;
1722 };
1723
1724 struct {
1725 struct anv_buffer *buffer;
1726 uint64_t offset;
1727 uint64_t range;
1728 };
1729
1730 struct anv_buffer_view *buffer_view;
1731 };
1732 };
1733
1734 struct anv_descriptor_set {
1735 struct anv_descriptor_pool *pool;
1736 struct anv_descriptor_set_layout *layout;
1737 uint32_t size;
1738
1739 /* State relative to anv_descriptor_pool::bo */
1740 struct anv_state desc_mem;
1741 /* Surface state for the descriptor buffer */
1742 struct anv_state desc_surface_state;
1743
1744 uint32_t buffer_view_count;
1745 struct anv_buffer_view *buffer_views;
1746
1747 /* Link to descriptor pool's desc_sets list . */
1748 struct list_head pool_link;
1749
1750 struct anv_descriptor descriptors[0];
1751 };
1752
1753 struct anv_buffer_view {
1754 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1755 uint64_t range; /**< VkBufferViewCreateInfo::range */
1756
1757 struct anv_address address;
1758
1759 struct anv_state surface_state;
1760 struct anv_state storage_surface_state;
1761 struct anv_state writeonly_storage_surface_state;
1762
1763 struct brw_image_param storage_image_param;
1764 };
1765
1766 struct anv_push_descriptor_set {
1767 struct anv_descriptor_set set;
1768
1769 /* Put this field right behind anv_descriptor_set so it fills up the
1770 * descriptors[0] field. */
1771 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1772
1773 /** True if the descriptor set buffer has been referenced by a draw or
1774 * dispatch command.
1775 */
1776 bool set_used_on_gpu;
1777
1778 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1779 };
1780
1781 struct anv_descriptor_pool {
1782 uint32_t size;
1783 uint32_t next;
1784 uint32_t free_list;
1785
1786 struct anv_bo bo;
1787 struct util_vma_heap bo_heap;
1788
1789 struct anv_state_stream surface_state_stream;
1790 void *surface_state_free_list;
1791
1792 struct list_head desc_sets;
1793
1794 char data[0];
1795 };
1796
1797 enum anv_descriptor_template_entry_type {
1798 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1799 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1800 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1801 };
1802
1803 struct anv_descriptor_template_entry {
1804 /* The type of descriptor in this entry */
1805 VkDescriptorType type;
1806
1807 /* Binding in the descriptor set */
1808 uint32_t binding;
1809
1810 /* Offset at which to write into the descriptor set binding */
1811 uint32_t array_element;
1812
1813 /* Number of elements to write into the descriptor set binding */
1814 uint32_t array_count;
1815
1816 /* Offset into the user provided data */
1817 size_t offset;
1818
1819 /* Stride between elements into the user provided data */
1820 size_t stride;
1821 };
1822
1823 struct anv_descriptor_update_template {
1824 VkPipelineBindPoint bind_point;
1825
1826 /* The descriptor set this template corresponds to. This value is only
1827 * valid if the template was created with the templateType
1828 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1829 */
1830 uint8_t set;
1831
1832 /* Number of entries in this template */
1833 uint32_t entry_count;
1834
1835 /* Entries of the template */
1836 struct anv_descriptor_template_entry entries[0];
1837 };
1838
1839 size_t
1840 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1841
1842 void
1843 anv_descriptor_set_write_image_view(struct anv_device *device,
1844 struct anv_descriptor_set *set,
1845 const VkDescriptorImageInfo * const info,
1846 VkDescriptorType type,
1847 uint32_t binding,
1848 uint32_t element);
1849
1850 void
1851 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1852 struct anv_descriptor_set *set,
1853 VkDescriptorType type,
1854 struct anv_buffer_view *buffer_view,
1855 uint32_t binding,
1856 uint32_t element);
1857
1858 void
1859 anv_descriptor_set_write_buffer(struct anv_device *device,
1860 struct anv_descriptor_set *set,
1861 struct anv_state_stream *alloc_stream,
1862 VkDescriptorType type,
1863 struct anv_buffer *buffer,
1864 uint32_t binding,
1865 uint32_t element,
1866 VkDeviceSize offset,
1867 VkDeviceSize range);
1868 void
1869 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1870 struct anv_descriptor_set *set,
1871 uint32_t binding,
1872 const void *data,
1873 size_t offset,
1874 size_t size);
1875
1876 void
1877 anv_descriptor_set_write_template(struct anv_device *device,
1878 struct anv_descriptor_set *set,
1879 struct anv_state_stream *alloc_stream,
1880 const struct anv_descriptor_update_template *template,
1881 const void *data);
1882
1883 VkResult
1884 anv_descriptor_set_create(struct anv_device *device,
1885 struct anv_descriptor_pool *pool,
1886 struct anv_descriptor_set_layout *layout,
1887 struct anv_descriptor_set **out_set);
1888
1889 void
1890 anv_descriptor_set_destroy(struct anv_device *device,
1891 struct anv_descriptor_pool *pool,
1892 struct anv_descriptor_set *set);
1893
1894 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
1895 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
1896 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
1897 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1898
1899 struct anv_pipeline_binding {
1900 /* The descriptor set this surface corresponds to. The special value of
1901 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1902 * to a color attachment and not a regular descriptor.
1903 */
1904 uint8_t set;
1905
1906 /* Binding in the descriptor set */
1907 uint32_t binding;
1908
1909 /* Index in the binding */
1910 uint32_t index;
1911
1912 /* Plane in the binding index */
1913 uint8_t plane;
1914
1915 /* Input attachment index (relative to the subpass) */
1916 uint8_t input_attachment_index;
1917
1918 /* For a storage image, whether it is write-only */
1919 bool write_only;
1920 };
1921
1922 struct anv_pipeline_layout {
1923 struct {
1924 struct anv_descriptor_set_layout *layout;
1925 uint32_t dynamic_offset_start;
1926 } set[MAX_SETS];
1927
1928 uint32_t num_sets;
1929
1930 unsigned char sha1[20];
1931 };
1932
1933 struct anv_buffer {
1934 struct anv_device * device;
1935 VkDeviceSize size;
1936
1937 VkBufferUsageFlags usage;
1938
1939 /* Set when bound */
1940 struct anv_address address;
1941 };
1942
1943 static inline uint64_t
1944 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1945 {
1946 assert(offset <= buffer->size);
1947 if (range == VK_WHOLE_SIZE) {
1948 return buffer->size - offset;
1949 } else {
1950 assert(range + offset >= range);
1951 assert(range + offset <= buffer->size);
1952 return range;
1953 }
1954 }
1955
1956 enum anv_cmd_dirty_bits {
1957 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1958 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1959 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1960 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1961 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1962 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1963 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1964 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1965 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1966 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1967 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1968 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1969 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
1970 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
1971 };
1972 typedef uint32_t anv_cmd_dirty_mask_t;
1973
1974 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
1975 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
1976 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
1977 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
1978 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
1979 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
1980 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
1981 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
1982 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
1983 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
1984 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
1985
1986 static inline enum anv_cmd_dirty_bits
1987 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
1988 {
1989 switch (vk_state) {
1990 case VK_DYNAMIC_STATE_VIEWPORT:
1991 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
1992 case VK_DYNAMIC_STATE_SCISSOR:
1993 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
1994 case VK_DYNAMIC_STATE_LINE_WIDTH:
1995 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
1996 case VK_DYNAMIC_STATE_DEPTH_BIAS:
1997 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
1998 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
1999 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2000 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2001 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2002 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2003 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2004 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2005 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2006 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2007 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2008 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2009 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2010 default:
2011 assert(!"Unsupported dynamic state");
2012 return 0;
2013 }
2014 }
2015
2016
2017 enum anv_pipe_bits {
2018 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2019 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2020 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2021 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2022 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2023 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2024 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2025 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2026 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2027 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2028 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2029
2030 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2031 * a flush has happened but not a CS stall. The next time we do any sort
2032 * of invalidation we need to insert a CS stall at that time. Otherwise,
2033 * we would have to CS stall on every flush which could be bad.
2034 */
2035 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2036
2037 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2038 * target operations related to transfer commands with VkBuffer as
2039 * destination are ongoing. Some operations like copies on the command
2040 * streamer might need to be aware of this to trigger the appropriate stall
2041 * before they can proceed with the copy.
2042 */
2043 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2044 };
2045
2046 #define ANV_PIPE_FLUSH_BITS ( \
2047 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2048 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2049 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
2050
2051 #define ANV_PIPE_STALL_BITS ( \
2052 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2053 ANV_PIPE_DEPTH_STALL_BIT | \
2054 ANV_PIPE_CS_STALL_BIT)
2055
2056 #define ANV_PIPE_INVALIDATE_BITS ( \
2057 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2058 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2059 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2060 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2061 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2062 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2063
2064 static inline enum anv_pipe_bits
2065 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2066 {
2067 enum anv_pipe_bits pipe_bits = 0;
2068
2069 unsigned b;
2070 for_each_bit(b, flags) {
2071 switch ((VkAccessFlagBits)(1 << b)) {
2072 case VK_ACCESS_SHADER_WRITE_BIT:
2073 /* We're transitioning a buffer that was previously used as write
2074 * destination through the data port. To make its content available
2075 * to future operations, flush the data cache.
2076 */
2077 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2078 break;
2079 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2080 /* We're transitioning a buffer that was previously used as render
2081 * target. To make its content available to future operations, flush
2082 * the render target cache.
2083 */
2084 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2085 break;
2086 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2087 /* We're transitioning a buffer that was previously used as depth
2088 * buffer. To make its content available to future operations, flush
2089 * the depth cache.
2090 */
2091 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2092 break;
2093 case VK_ACCESS_TRANSFER_WRITE_BIT:
2094 /* We're transitioning a buffer that was previously used as a
2095 * transfer write destination. Generic write operations include color
2096 * & depth operations as well as buffer operations like :
2097 * - vkCmdClearColorImage()
2098 * - vkCmdClearDepthStencilImage()
2099 * - vkCmdBlitImage()
2100 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2101 *
2102 * Most of these operations are implemented using Blorp which writes
2103 * through the render target, so flush that cache to make it visible
2104 * to future operations. And for depth related operations we also
2105 * need to flush the depth cache.
2106 */
2107 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2108 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2109 break;
2110 case VK_ACCESS_MEMORY_WRITE_BIT:
2111 /* We're transitioning a buffer for generic write operations. Flush
2112 * all the caches.
2113 */
2114 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2115 break;
2116 default:
2117 break; /* Nothing to do */
2118 }
2119 }
2120
2121 return pipe_bits;
2122 }
2123
2124 static inline enum anv_pipe_bits
2125 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2126 {
2127 enum anv_pipe_bits pipe_bits = 0;
2128
2129 unsigned b;
2130 for_each_bit(b, flags) {
2131 switch ((VkAccessFlagBits)(1 << b)) {
2132 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2133 /* Indirect draw commands take a buffer as input that we're going to
2134 * read from the command streamer to load some of the HW registers
2135 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2136 * command streamer stall so that all the cache flushes have
2137 * completed before the command streamer loads from memory.
2138 */
2139 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2140 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2141 * through a vertex buffer, so invalidate that cache.
2142 */
2143 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2144 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2145 * UBO from the buffer, so we need to invalidate constant cache.
2146 */
2147 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2148 break;
2149 case VK_ACCESS_INDEX_READ_BIT:
2150 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2151 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2152 * commands, so we invalidate the VF cache to make sure there is no
2153 * stale data when we start rendering.
2154 */
2155 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2156 break;
2157 case VK_ACCESS_UNIFORM_READ_BIT:
2158 /* We transitioning a buffer to be used as uniform data. Because
2159 * uniform is accessed through the data port & sampler, we need to
2160 * invalidate the texture cache (sampler) & constant cache (data
2161 * port) to avoid stale data.
2162 */
2163 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2164 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2165 break;
2166 case VK_ACCESS_SHADER_READ_BIT:
2167 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2168 case VK_ACCESS_TRANSFER_READ_BIT:
2169 /* Transitioning a buffer to be read through the sampler, so
2170 * invalidate the texture cache, we don't want any stale data.
2171 */
2172 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2173 break;
2174 case VK_ACCESS_MEMORY_READ_BIT:
2175 /* Transitioning a buffer for generic read, invalidate all the
2176 * caches.
2177 */
2178 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2179 break;
2180 case VK_ACCESS_MEMORY_WRITE_BIT:
2181 /* Generic write, make sure all previously written things land in
2182 * memory.
2183 */
2184 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2185 break;
2186 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2187 /* Transitioning a buffer for conditional rendering. We'll load the
2188 * content of this buffer into HW registers using the command
2189 * streamer, so we need to stall the command streamer to make sure
2190 * any in-flight flush operations have completed.
2191 */
2192 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2193 break;
2194 default:
2195 break; /* Nothing to do */
2196 }
2197 }
2198
2199 return pipe_bits;
2200 }
2201
2202 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2203 VK_IMAGE_ASPECT_COLOR_BIT | \
2204 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2205 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2206 VK_IMAGE_ASPECT_PLANE_2_BIT)
2207 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2208 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2209 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2210 VK_IMAGE_ASPECT_PLANE_2_BIT)
2211
2212 struct anv_vertex_binding {
2213 struct anv_buffer * buffer;
2214 VkDeviceSize offset;
2215 };
2216
2217 struct anv_xfb_binding {
2218 struct anv_buffer * buffer;
2219 VkDeviceSize offset;
2220 VkDeviceSize size;
2221 };
2222
2223 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2224 #define ANV_PARAM_IS_PUSH(param) ((uint32_t)(param) >> 16 == 1)
2225 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2226
2227 #define ANV_PARAM_DYN_OFFSET(offset) ((2 << 16) | (uint32_t)(offset))
2228 #define ANV_PARAM_IS_DYN_OFFSET(param) ((uint32_t)(param) >> 16 == 2)
2229 #define ANV_PARAM_DYN_OFFSET_IDX(param) ((param) & 0xffff)
2230
2231 struct anv_push_constants {
2232 /* Push constant data provided by the client through vkPushConstants */
2233 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2234
2235 /* Used for vkCmdDispatchBase */
2236 uint32_t base_work_group_id[3];
2237 };
2238
2239 struct anv_dynamic_state {
2240 struct {
2241 uint32_t count;
2242 VkViewport viewports[MAX_VIEWPORTS];
2243 } viewport;
2244
2245 struct {
2246 uint32_t count;
2247 VkRect2D scissors[MAX_SCISSORS];
2248 } scissor;
2249
2250 float line_width;
2251
2252 struct {
2253 float bias;
2254 float clamp;
2255 float slope;
2256 } depth_bias;
2257
2258 float blend_constants[4];
2259
2260 struct {
2261 float min;
2262 float max;
2263 } depth_bounds;
2264
2265 struct {
2266 uint32_t front;
2267 uint32_t back;
2268 } stencil_compare_mask;
2269
2270 struct {
2271 uint32_t front;
2272 uint32_t back;
2273 } stencil_write_mask;
2274
2275 struct {
2276 uint32_t front;
2277 uint32_t back;
2278 } stencil_reference;
2279
2280 struct {
2281 uint32_t factor;
2282 uint16_t pattern;
2283 } line_stipple;
2284 };
2285
2286 extern const struct anv_dynamic_state default_dynamic_state;
2287
2288 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2289 const struct anv_dynamic_state *src,
2290 uint32_t copy_mask);
2291
2292 struct anv_surface_state {
2293 struct anv_state state;
2294 /** Address of the surface referred to by this state
2295 *
2296 * This address is relative to the start of the BO.
2297 */
2298 struct anv_address address;
2299 /* Address of the aux surface, if any
2300 *
2301 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2302 *
2303 * With the exception of gen8, the bottom 12 bits of this address' offset
2304 * include extra aux information.
2305 */
2306 struct anv_address aux_address;
2307 /* Address of the clear color, if any
2308 *
2309 * This address is relative to the start of the BO.
2310 */
2311 struct anv_address clear_address;
2312 };
2313
2314 /**
2315 * Attachment state when recording a renderpass instance.
2316 *
2317 * The clear value is valid only if there exists a pending clear.
2318 */
2319 struct anv_attachment_state {
2320 enum isl_aux_usage aux_usage;
2321 enum isl_aux_usage input_aux_usage;
2322 struct anv_surface_state color;
2323 struct anv_surface_state input;
2324
2325 VkImageLayout current_layout;
2326 VkImageAspectFlags pending_clear_aspects;
2327 VkImageAspectFlags pending_load_aspects;
2328 bool fast_clear;
2329 VkClearValue clear_value;
2330 bool clear_color_is_zero_one;
2331 bool clear_color_is_zero;
2332
2333 /* When multiview is active, attachments with a renderpass clear
2334 * operation have their respective layers cleared on the first
2335 * subpass that uses them, and only in that subpass. We keep track
2336 * of this using a bitfield to indicate which layers of an attachment
2337 * have not been cleared yet when multiview is active.
2338 */
2339 uint32_t pending_clear_views;
2340 struct anv_image_view * image_view;
2341 };
2342
2343 /** State tracking for particular pipeline bind point
2344 *
2345 * This struct is the base struct for anv_cmd_graphics_state and
2346 * anv_cmd_compute_state. These are used to track state which is bound to a
2347 * particular type of pipeline. Generic state that applies per-stage such as
2348 * binding table offsets and push constants is tracked generically with a
2349 * per-stage array in anv_cmd_state.
2350 */
2351 struct anv_cmd_pipeline_state {
2352 struct anv_pipeline *pipeline;
2353 struct anv_pipeline_layout *layout;
2354
2355 struct anv_descriptor_set *descriptors[MAX_SETS];
2356 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2357
2358 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2359 };
2360
2361 /** State tracking for graphics pipeline
2362 *
2363 * This has anv_cmd_pipeline_state as a base struct to track things which get
2364 * bound to a graphics pipeline. Along with general pipeline bind point state
2365 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2366 * state which is graphics-specific.
2367 */
2368 struct anv_cmd_graphics_state {
2369 struct anv_cmd_pipeline_state base;
2370
2371 anv_cmd_dirty_mask_t dirty;
2372 uint32_t vb_dirty;
2373
2374 struct anv_dynamic_state dynamic;
2375
2376 struct {
2377 struct anv_buffer *index_buffer;
2378 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2379 uint32_t index_offset;
2380 } gen7;
2381 };
2382
2383 /** State tracking for compute pipeline
2384 *
2385 * This has anv_cmd_pipeline_state as a base struct to track things which get
2386 * bound to a compute pipeline. Along with general pipeline bind point state
2387 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2388 * state which is compute-specific.
2389 */
2390 struct anv_cmd_compute_state {
2391 struct anv_cmd_pipeline_state base;
2392
2393 bool pipeline_dirty;
2394
2395 struct anv_address num_workgroups;
2396 };
2397
2398 /** State required while building cmd buffer */
2399 struct anv_cmd_state {
2400 /* PIPELINE_SELECT.PipelineSelection */
2401 uint32_t current_pipeline;
2402 const struct gen_l3_config * current_l3_config;
2403
2404 struct anv_cmd_graphics_state gfx;
2405 struct anv_cmd_compute_state compute;
2406
2407 enum anv_pipe_bits pending_pipe_bits;
2408 VkShaderStageFlags descriptors_dirty;
2409 VkShaderStageFlags push_constants_dirty;
2410
2411 struct anv_framebuffer * framebuffer;
2412 struct anv_render_pass * pass;
2413 struct anv_subpass * subpass;
2414 VkRect2D render_area;
2415 uint32_t restart_index;
2416 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2417 bool xfb_enabled;
2418 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2419 VkShaderStageFlags push_constant_stages;
2420 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2421 struct anv_state binding_tables[MESA_SHADER_STAGES];
2422 struct anv_state samplers[MESA_SHADER_STAGES];
2423
2424 /**
2425 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2426 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2427 * and before invoking the secondary in ExecuteCommands.
2428 */
2429 bool pma_fix_enabled;
2430
2431 /**
2432 * Whether or not we know for certain that HiZ is enabled for the current
2433 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2434 * enabled or not, this will be false.
2435 */
2436 bool hiz_enabled;
2437
2438 bool conditional_render_enabled;
2439
2440 /**
2441 * Last rendering scale argument provided to
2442 * genX(cmd_buffer_emit_hashing_mode)().
2443 */
2444 unsigned current_hash_scale;
2445
2446 /**
2447 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2448 * valid only when recording a render pass instance.
2449 */
2450 struct anv_attachment_state * attachments;
2451
2452 /**
2453 * Surface states for color render targets. These are stored in a single
2454 * flat array. For depth-stencil attachments, the surface state is simply
2455 * left blank.
2456 */
2457 struct anv_state render_pass_states;
2458
2459 /**
2460 * A null surface state of the right size to match the framebuffer. This
2461 * is one of the states in render_pass_states.
2462 */
2463 struct anv_state null_surface_state;
2464 };
2465
2466 struct anv_cmd_pool {
2467 VkAllocationCallbacks alloc;
2468 struct list_head cmd_buffers;
2469 };
2470
2471 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2472
2473 enum anv_cmd_buffer_exec_mode {
2474 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2475 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2476 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2477 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2478 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2479 };
2480
2481 struct anv_cmd_buffer {
2482 VK_LOADER_DATA _loader_data;
2483
2484 struct anv_device * device;
2485
2486 struct anv_cmd_pool * pool;
2487 struct list_head pool_link;
2488
2489 struct anv_batch batch;
2490
2491 /* Fields required for the actual chain of anv_batch_bo's.
2492 *
2493 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2494 */
2495 struct list_head batch_bos;
2496 enum anv_cmd_buffer_exec_mode exec_mode;
2497
2498 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2499 * referenced by this command buffer
2500 *
2501 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2502 */
2503 struct u_vector seen_bbos;
2504
2505 /* A vector of int32_t's for every block of binding tables.
2506 *
2507 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2508 */
2509 struct u_vector bt_block_states;
2510 uint32_t bt_next;
2511
2512 struct anv_reloc_list surface_relocs;
2513 /** Last seen surface state block pool center bo offset */
2514 uint32_t last_ss_pool_center;
2515
2516 /* Serial for tracking buffer completion */
2517 uint32_t serial;
2518
2519 /* Stream objects for storing temporary data */
2520 struct anv_state_stream surface_state_stream;
2521 struct anv_state_stream dynamic_state_stream;
2522
2523 VkCommandBufferUsageFlags usage_flags;
2524 VkCommandBufferLevel level;
2525
2526 struct anv_cmd_state state;
2527 };
2528
2529 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2530 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2531 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2532 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2533 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2534 struct anv_cmd_buffer *secondary);
2535 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2536 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2537 struct anv_cmd_buffer *cmd_buffer,
2538 const VkSemaphore *in_semaphores,
2539 uint32_t num_in_semaphores,
2540 const VkSemaphore *out_semaphores,
2541 uint32_t num_out_semaphores,
2542 VkFence fence);
2543
2544 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2545
2546 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2547 const void *data, uint32_t size, uint32_t alignment);
2548 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2549 uint32_t *a, uint32_t *b,
2550 uint32_t dwords, uint32_t alignment);
2551
2552 struct anv_address
2553 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2554 struct anv_state
2555 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2556 uint32_t entries, uint32_t *state_offset);
2557 struct anv_state
2558 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2559 struct anv_state
2560 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2561 uint32_t size, uint32_t alignment);
2562
2563 VkResult
2564 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2565
2566 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2567 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2568 bool depth_clamp_enable);
2569 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2570
2571 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2572 struct anv_render_pass *pass,
2573 struct anv_framebuffer *framebuffer,
2574 const VkClearValue *clear_values);
2575
2576 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2577
2578 struct anv_state
2579 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2580 gl_shader_stage stage);
2581 struct anv_state
2582 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2583
2584 const struct anv_image_view *
2585 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2586
2587 VkResult
2588 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2589 uint32_t num_entries,
2590 uint32_t *state_offset,
2591 struct anv_state *bt_state);
2592
2593 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2594
2595 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2596
2597 enum anv_fence_type {
2598 ANV_FENCE_TYPE_NONE = 0,
2599 ANV_FENCE_TYPE_BO,
2600 ANV_FENCE_TYPE_SYNCOBJ,
2601 ANV_FENCE_TYPE_WSI,
2602 };
2603
2604 enum anv_bo_fence_state {
2605 /** Indicates that this is a new (or newly reset fence) */
2606 ANV_BO_FENCE_STATE_RESET,
2607
2608 /** Indicates that this fence has been submitted to the GPU but is still
2609 * (as far as we know) in use by the GPU.
2610 */
2611 ANV_BO_FENCE_STATE_SUBMITTED,
2612
2613 ANV_BO_FENCE_STATE_SIGNALED,
2614 };
2615
2616 struct anv_fence_impl {
2617 enum anv_fence_type type;
2618
2619 union {
2620 /** Fence implementation for BO fences
2621 *
2622 * These fences use a BO and a set of CPU-tracked state flags. The BO
2623 * is added to the object list of the last execbuf call in a QueueSubmit
2624 * and is marked EXEC_WRITE. The state flags track when the BO has been
2625 * submitted to the kernel. We need to do this because Vulkan lets you
2626 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2627 * will say it's idle in this case.
2628 */
2629 struct {
2630 struct anv_bo bo;
2631 enum anv_bo_fence_state state;
2632 } bo;
2633
2634 /** DRM syncobj handle for syncobj-based fences */
2635 uint32_t syncobj;
2636
2637 /** WSI fence */
2638 struct wsi_fence *fence_wsi;
2639 };
2640 };
2641
2642 struct anv_fence {
2643 /* Permanent fence state. Every fence has some form of permanent state
2644 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2645 * cross-process fences) or it could just be a dummy for use internally.
2646 */
2647 struct anv_fence_impl permanent;
2648
2649 /* Temporary fence state. A fence *may* have temporary state. That state
2650 * is added to the fence by an import operation and is reset back to
2651 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2652 * state cannot be signaled because the fence must already be signaled
2653 * before the temporary state can be exported from the fence in the other
2654 * process and imported here.
2655 */
2656 struct anv_fence_impl temporary;
2657 };
2658
2659 struct anv_event {
2660 uint64_t semaphore;
2661 struct anv_state state;
2662 };
2663
2664 enum anv_semaphore_type {
2665 ANV_SEMAPHORE_TYPE_NONE = 0,
2666 ANV_SEMAPHORE_TYPE_DUMMY,
2667 ANV_SEMAPHORE_TYPE_BO,
2668 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2669 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2670 };
2671
2672 struct anv_semaphore_impl {
2673 enum anv_semaphore_type type;
2674
2675 union {
2676 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2677 * This BO will be added to the object list on any execbuf2 calls for
2678 * which this semaphore is used as a wait or signal fence. When used as
2679 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2680 */
2681 struct anv_bo *bo;
2682
2683 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2684 * If the semaphore is in the unsignaled state due to either just being
2685 * created or because it has been used for a wait, fd will be -1.
2686 */
2687 int fd;
2688
2689 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2690 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2691 * import so we don't need to bother with a userspace cache.
2692 */
2693 uint32_t syncobj;
2694 };
2695 };
2696
2697 struct anv_semaphore {
2698 /* Permanent semaphore state. Every semaphore has some form of permanent
2699 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2700 * (for cross-process semaphores0 or it could just be a dummy for use
2701 * internally.
2702 */
2703 struct anv_semaphore_impl permanent;
2704
2705 /* Temporary semaphore state. A semaphore *may* have temporary state.
2706 * That state is added to the semaphore by an import operation and is reset
2707 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2708 * semaphore with temporary state cannot be signaled because the semaphore
2709 * must already be signaled before the temporary state can be exported from
2710 * the semaphore in the other process and imported here.
2711 */
2712 struct anv_semaphore_impl temporary;
2713 };
2714
2715 void anv_semaphore_reset_temporary(struct anv_device *device,
2716 struct anv_semaphore *semaphore);
2717
2718 struct anv_shader_module {
2719 unsigned char sha1[20];
2720 uint32_t size;
2721 char data[0];
2722 };
2723
2724 static inline gl_shader_stage
2725 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2726 {
2727 assert(__builtin_popcount(vk_stage) == 1);
2728 return ffs(vk_stage) - 1;
2729 }
2730
2731 static inline VkShaderStageFlagBits
2732 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2733 {
2734 return (1 << mesa_stage);
2735 }
2736
2737 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2738
2739 #define anv_foreach_stage(stage, stage_bits) \
2740 for (gl_shader_stage stage, \
2741 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2742 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2743 __tmp &= ~(1 << (stage)))
2744
2745 struct anv_pipeline_bind_map {
2746 uint32_t surface_count;
2747 uint32_t sampler_count;
2748
2749 struct anv_pipeline_binding * surface_to_descriptor;
2750 struct anv_pipeline_binding * sampler_to_descriptor;
2751 };
2752
2753 struct anv_shader_bin_key {
2754 uint32_t size;
2755 uint8_t data[0];
2756 };
2757
2758 struct anv_shader_bin {
2759 uint32_t ref_cnt;
2760
2761 const struct anv_shader_bin_key *key;
2762
2763 struct anv_state kernel;
2764 uint32_t kernel_size;
2765
2766 struct anv_state constant_data;
2767 uint32_t constant_data_size;
2768
2769 const struct brw_stage_prog_data *prog_data;
2770 uint32_t prog_data_size;
2771
2772 struct brw_compile_stats stats[3];
2773 uint32_t num_stats;
2774
2775 struct nir_xfb_info *xfb_info;
2776
2777 struct anv_pipeline_bind_map bind_map;
2778 };
2779
2780 struct anv_shader_bin *
2781 anv_shader_bin_create(struct anv_device *device,
2782 const void *key, uint32_t key_size,
2783 const void *kernel, uint32_t kernel_size,
2784 const void *constant_data, uint32_t constant_data_size,
2785 const struct brw_stage_prog_data *prog_data,
2786 uint32_t prog_data_size, const void *prog_data_param,
2787 const struct brw_compile_stats *stats, uint32_t num_stats,
2788 const struct nir_xfb_info *xfb_info,
2789 const struct anv_pipeline_bind_map *bind_map);
2790
2791 void
2792 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2793
2794 static inline void
2795 anv_shader_bin_ref(struct anv_shader_bin *shader)
2796 {
2797 assert(shader && shader->ref_cnt >= 1);
2798 p_atomic_inc(&shader->ref_cnt);
2799 }
2800
2801 static inline void
2802 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2803 {
2804 assert(shader && shader->ref_cnt >= 1);
2805 if (p_atomic_dec_zero(&shader->ref_cnt))
2806 anv_shader_bin_destroy(device, shader);
2807 }
2808
2809 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
2810 #define MAX_PIPELINE_EXECUTABLES 7
2811
2812 struct anv_pipeline_executable {
2813 gl_shader_stage stage;
2814
2815 struct brw_compile_stats stats;
2816
2817 char *disasm;
2818 };
2819
2820 struct anv_pipeline {
2821 struct anv_device * device;
2822 struct anv_batch batch;
2823 uint32_t batch_data[512];
2824 struct anv_reloc_list batch_relocs;
2825 anv_cmd_dirty_mask_t dynamic_state_mask;
2826 struct anv_dynamic_state dynamic_state;
2827
2828 void * mem_ctx;
2829
2830 VkPipelineCreateFlags flags;
2831 struct anv_subpass * subpass;
2832
2833 bool needs_data_cache;
2834
2835 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2836
2837 uint32_t num_executables;
2838 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
2839
2840 struct {
2841 const struct gen_l3_config * l3_config;
2842 uint32_t total_size;
2843 } urb;
2844
2845 VkShaderStageFlags active_stages;
2846 struct anv_state blend_state;
2847
2848 uint32_t vb_used;
2849 struct anv_pipeline_vertex_binding {
2850 uint32_t stride;
2851 bool instanced;
2852 uint32_t instance_divisor;
2853 } vb[MAX_VBS];
2854
2855 uint8_t xfb_used;
2856
2857 bool primitive_restart;
2858 uint32_t topology;
2859
2860 uint32_t cs_right_mask;
2861
2862 bool writes_depth;
2863 bool depth_test_enable;
2864 bool writes_stencil;
2865 bool stencil_test_enable;
2866 bool depth_clamp_enable;
2867 bool depth_clip_enable;
2868 bool sample_shading_enable;
2869 bool kill_pixel;
2870
2871 struct {
2872 uint32_t sf[7];
2873 uint32_t depth_stencil_state[3];
2874 } gen7;
2875
2876 struct {
2877 uint32_t sf[4];
2878 uint32_t raster[5];
2879 uint32_t wm_depth_stencil[3];
2880 } gen8;
2881
2882 struct {
2883 uint32_t wm_depth_stencil[4];
2884 } gen9;
2885
2886 uint32_t interface_descriptor_data[8];
2887 };
2888
2889 static inline bool
2890 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2891 gl_shader_stage stage)
2892 {
2893 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2894 }
2895
2896 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2897 static inline const struct brw_##prefix##_prog_data * \
2898 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2899 { \
2900 if (anv_pipeline_has_stage(pipeline, stage)) { \
2901 return (const struct brw_##prefix##_prog_data *) \
2902 pipeline->shaders[stage]->prog_data; \
2903 } else { \
2904 return NULL; \
2905 } \
2906 }
2907
2908 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2909 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2910 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2911 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2912 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2913 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2914
2915 static inline const struct brw_vue_prog_data *
2916 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2917 {
2918 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2919 return &get_gs_prog_data(pipeline)->base;
2920 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2921 return &get_tes_prog_data(pipeline)->base;
2922 else
2923 return &get_vs_prog_data(pipeline)->base;
2924 }
2925
2926 VkResult
2927 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2928 struct anv_pipeline_cache *cache,
2929 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2930 const VkAllocationCallbacks *alloc);
2931
2932 VkResult
2933 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2934 struct anv_pipeline_cache *cache,
2935 const VkComputePipelineCreateInfo *info,
2936 const struct anv_shader_module *module,
2937 const char *entrypoint,
2938 const VkSpecializationInfo *spec_info);
2939
2940 struct anv_format_plane {
2941 enum isl_format isl_format:16;
2942 struct isl_swizzle swizzle;
2943
2944 /* Whether this plane contains chroma channels */
2945 bool has_chroma;
2946
2947 /* For downscaling of YUV planes */
2948 uint8_t denominator_scales[2];
2949
2950 /* How to map sampled ycbcr planes to a single 4 component element. */
2951 struct isl_swizzle ycbcr_swizzle;
2952
2953 /* What aspect is associated to this plane */
2954 VkImageAspectFlags aspect;
2955 };
2956
2957
2958 struct anv_format {
2959 struct anv_format_plane planes[3];
2960 VkFormat vk_format;
2961 uint8_t n_planes;
2962 bool can_ycbcr;
2963 };
2964
2965 static inline uint32_t
2966 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
2967 VkImageAspectFlags aspect_mask)
2968 {
2969 switch (aspect_mask) {
2970 case VK_IMAGE_ASPECT_COLOR_BIT:
2971 case VK_IMAGE_ASPECT_DEPTH_BIT:
2972 case VK_IMAGE_ASPECT_PLANE_0_BIT:
2973 return 0;
2974 case VK_IMAGE_ASPECT_STENCIL_BIT:
2975 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
2976 return 0;
2977 /* Fall-through */
2978 case VK_IMAGE_ASPECT_PLANE_1_BIT:
2979 return 1;
2980 case VK_IMAGE_ASPECT_PLANE_2_BIT:
2981 return 2;
2982 default:
2983 /* Purposefully assert with depth/stencil aspects. */
2984 unreachable("invalid image aspect");
2985 }
2986 }
2987
2988 static inline VkImageAspectFlags
2989 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
2990 uint32_t plane)
2991 {
2992 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2993 if (util_bitcount(image_aspects) > 1)
2994 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
2995 return VK_IMAGE_ASPECT_COLOR_BIT;
2996 }
2997 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
2998 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
2999 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3000 return VK_IMAGE_ASPECT_STENCIL_BIT;
3001 }
3002
3003 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3004 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3005
3006 const struct anv_format *
3007 anv_get_format(VkFormat format);
3008
3009 static inline uint32_t
3010 anv_get_format_planes(VkFormat vk_format)
3011 {
3012 const struct anv_format *format = anv_get_format(vk_format);
3013
3014 return format != NULL ? format->n_planes : 0;
3015 }
3016
3017 struct anv_format_plane
3018 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3019 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3020
3021 static inline enum isl_format
3022 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3023 VkImageAspectFlags aspect, VkImageTiling tiling)
3024 {
3025 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3026 }
3027
3028 static inline struct isl_swizzle
3029 anv_swizzle_for_render(struct isl_swizzle swizzle)
3030 {
3031 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3032 * RGB as RGBA for texturing
3033 */
3034 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3035 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3036
3037 /* But it doesn't matter what we render to that channel */
3038 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3039
3040 return swizzle;
3041 }
3042
3043 void
3044 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3045
3046 /**
3047 * Subsurface of an anv_image.
3048 */
3049 struct anv_surface {
3050 /** Valid only if isl_surf::size_B > 0. */
3051 struct isl_surf isl;
3052
3053 /**
3054 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3055 */
3056 uint32_t offset;
3057 };
3058
3059 struct anv_image {
3060 VkImageType type; /**< VkImageCreateInfo::imageType */
3061 /* The original VkFormat provided by the client. This may not match any
3062 * of the actual surface formats.
3063 */
3064 VkFormat vk_format;
3065 const struct anv_format *format;
3066
3067 VkImageAspectFlags aspects;
3068 VkExtent3D extent;
3069 uint32_t levels;
3070 uint32_t array_size;
3071 uint32_t samples; /**< VkImageCreateInfo::samples */
3072 uint32_t n_planes;
3073 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3074 VkImageUsageFlags stencil_usage;
3075 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3076 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3077
3078 /** True if this is needs to be bound to an appropriately tiled BO.
3079 *
3080 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3081 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3082 * we require a dedicated allocation so that we can know to allocate a
3083 * tiled buffer.
3084 */
3085 bool needs_set_tiling;
3086
3087 /**
3088 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3089 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3090 */
3091 uint64_t drm_format_mod;
3092
3093 VkDeviceSize size;
3094 uint32_t alignment;
3095
3096 /* Whether the image is made of several underlying buffer objects rather a
3097 * single one with different offsets.
3098 */
3099 bool disjoint;
3100
3101 /* All the formats that can be used when creating views of this image
3102 * are CCS_E compatible.
3103 */
3104 bool ccs_e_compatible;
3105
3106 /* Image was created with external format. */
3107 bool external_format;
3108
3109 /**
3110 * Image subsurfaces
3111 *
3112 * For each foo, anv_image::planes[x].surface is valid if and only if
3113 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3114 * to figure the number associated with a given aspect.
3115 *
3116 * The hardware requires that the depth buffer and stencil buffer be
3117 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3118 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3119 * allocate the depth and stencil buffers as separate surfaces in the same
3120 * bo.
3121 *
3122 * Memory layout :
3123 *
3124 * -----------------------
3125 * | surface0 | /|\
3126 * ----------------------- |
3127 * | shadow surface0 | |
3128 * ----------------------- | Plane 0
3129 * | aux surface0 | |
3130 * ----------------------- |
3131 * | fast clear colors0 | \|/
3132 * -----------------------
3133 * | surface1 | /|\
3134 * ----------------------- |
3135 * | shadow surface1 | |
3136 * ----------------------- | Plane 1
3137 * | aux surface1 | |
3138 * ----------------------- |
3139 * | fast clear colors1 | \|/
3140 * -----------------------
3141 * | ... |
3142 * | |
3143 * -----------------------
3144 */
3145 struct {
3146 /**
3147 * Offset of the entire plane (whenever the image is disjoint this is
3148 * set to 0).
3149 */
3150 uint32_t offset;
3151
3152 VkDeviceSize size;
3153 uint32_t alignment;
3154
3155 struct anv_surface surface;
3156
3157 /**
3158 * A surface which shadows the main surface and may have different
3159 * tiling. This is used for sampling using a tiling that isn't supported
3160 * for other operations.
3161 */
3162 struct anv_surface shadow_surface;
3163
3164 /**
3165 * For color images, this is the aux usage for this image when not used
3166 * as a color attachment.
3167 *
3168 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3169 * image has a HiZ buffer.
3170 */
3171 enum isl_aux_usage aux_usage;
3172
3173 struct anv_surface aux_surface;
3174
3175 /**
3176 * Offset of the fast clear state (used to compute the
3177 * fast_clear_state_offset of the following planes).
3178 */
3179 uint32_t fast_clear_state_offset;
3180
3181 /**
3182 * BO associated with this plane, set when bound.
3183 */
3184 struct anv_address address;
3185
3186 /**
3187 * When destroying the image, also free the bo.
3188 * */
3189 bool bo_is_owned;
3190 } planes[3];
3191 };
3192
3193 /* The ordering of this enum is important */
3194 enum anv_fast_clear_type {
3195 /** Image does not have/support any fast-clear blocks */
3196 ANV_FAST_CLEAR_NONE = 0,
3197 /** Image has/supports fast-clear but only to the default value */
3198 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3199 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3200 ANV_FAST_CLEAR_ANY = 2,
3201 };
3202
3203 /* Returns the number of auxiliary buffer levels attached to an image. */
3204 static inline uint8_t
3205 anv_image_aux_levels(const struct anv_image * const image,
3206 VkImageAspectFlagBits aspect)
3207 {
3208 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3209 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3210 image->planes[plane].aux_surface.isl.levels : 0;
3211 }
3212
3213 /* Returns the number of auxiliary buffer layers attached to an image. */
3214 static inline uint32_t
3215 anv_image_aux_layers(const struct anv_image * const image,
3216 VkImageAspectFlagBits aspect,
3217 const uint8_t miplevel)
3218 {
3219 assert(image);
3220
3221 /* The miplevel must exist in the main buffer. */
3222 assert(miplevel < image->levels);
3223
3224 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3225 /* There are no layers with auxiliary data because the miplevel has no
3226 * auxiliary data.
3227 */
3228 return 0;
3229 } else {
3230 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3231 return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
3232 image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
3233 }
3234 }
3235
3236 static inline struct anv_address
3237 anv_image_get_clear_color_addr(const struct anv_device *device,
3238 const struct anv_image *image,
3239 VkImageAspectFlagBits aspect)
3240 {
3241 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3242
3243 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3244 return anv_address_add(image->planes[plane].address,
3245 image->planes[plane].fast_clear_state_offset);
3246 }
3247
3248 static inline struct anv_address
3249 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3250 const struct anv_image *image,
3251 VkImageAspectFlagBits aspect)
3252 {
3253 struct anv_address addr =
3254 anv_image_get_clear_color_addr(device, image, aspect);
3255
3256 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3257 device->isl_dev.ss.clear_color_state_size :
3258 device->isl_dev.ss.clear_value_size;
3259 return anv_address_add(addr, clear_color_state_size);
3260 }
3261
3262 static inline struct anv_address
3263 anv_image_get_compression_state_addr(const struct anv_device *device,
3264 const struct anv_image *image,
3265 VkImageAspectFlagBits aspect,
3266 uint32_t level, uint32_t array_layer)
3267 {
3268 assert(level < anv_image_aux_levels(image, aspect));
3269 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3270 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3271 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3272
3273 struct anv_address addr =
3274 anv_image_get_fast_clear_type_addr(device, image, aspect);
3275 addr.offset += 4; /* Go past the fast clear type */
3276
3277 if (image->type == VK_IMAGE_TYPE_3D) {
3278 for (uint32_t l = 0; l < level; l++)
3279 addr.offset += anv_minify(image->extent.depth, l) * 4;
3280 } else {
3281 addr.offset += level * image->array_size * 4;
3282 }
3283 addr.offset += array_layer * 4;
3284
3285 return addr;
3286 }
3287
3288 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3289 static inline bool
3290 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3291 const struct anv_image *image)
3292 {
3293 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3294 return false;
3295
3296 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3297 * struct. There's documentation which suggests that this feature actually
3298 * reduces performance on BDW, but it has only been observed to help so
3299 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3300 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3301 */
3302 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3303 return false;
3304
3305 return image->samples == 1;
3306 }
3307
3308 void
3309 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3310 const struct anv_image *image,
3311 VkImageAspectFlagBits aspect,
3312 enum isl_aux_usage aux_usage,
3313 uint32_t level,
3314 uint32_t base_layer,
3315 uint32_t layer_count);
3316
3317 void
3318 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3319 const struct anv_image *image,
3320 VkImageAspectFlagBits aspect,
3321 enum isl_aux_usage aux_usage,
3322 enum isl_format format, struct isl_swizzle swizzle,
3323 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3324 VkRect2D area, union isl_color_value clear_color);
3325 void
3326 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3327 const struct anv_image *image,
3328 VkImageAspectFlags aspects,
3329 enum isl_aux_usage depth_aux_usage,
3330 uint32_t level,
3331 uint32_t base_layer, uint32_t layer_count,
3332 VkRect2D area,
3333 float depth_value, uint8_t stencil_value);
3334 void
3335 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3336 const struct anv_image *src_image,
3337 enum isl_aux_usage src_aux_usage,
3338 uint32_t src_level, uint32_t src_base_layer,
3339 const struct anv_image *dst_image,
3340 enum isl_aux_usage dst_aux_usage,
3341 uint32_t dst_level, uint32_t dst_base_layer,
3342 VkImageAspectFlagBits aspect,
3343 uint32_t src_x, uint32_t src_y,
3344 uint32_t dst_x, uint32_t dst_y,
3345 uint32_t width, uint32_t height,
3346 uint32_t layer_count,
3347 enum blorp_filter filter);
3348 void
3349 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3350 const struct anv_image *image,
3351 VkImageAspectFlagBits aspect, uint32_t level,
3352 uint32_t base_layer, uint32_t layer_count,
3353 enum isl_aux_op hiz_op);
3354 void
3355 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3356 const struct anv_image *image,
3357 VkImageAspectFlags aspects,
3358 uint32_t level,
3359 uint32_t base_layer, uint32_t layer_count,
3360 VkRect2D area, uint8_t stencil_value);
3361 void
3362 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3363 const struct anv_image *image,
3364 enum isl_format format,
3365 VkImageAspectFlagBits aspect,
3366 uint32_t base_layer, uint32_t layer_count,
3367 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3368 bool predicate);
3369 void
3370 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3371 const struct anv_image *image,
3372 enum isl_format format,
3373 VkImageAspectFlagBits aspect, uint32_t level,
3374 uint32_t base_layer, uint32_t layer_count,
3375 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3376 bool predicate);
3377
3378 void
3379 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3380 const struct anv_image *image,
3381 VkImageAspectFlagBits aspect,
3382 uint32_t base_level, uint32_t level_count,
3383 uint32_t base_layer, uint32_t layer_count);
3384
3385 enum isl_aux_usage
3386 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3387 const struct anv_image *image,
3388 const VkImageAspectFlagBits aspect,
3389 const VkImageLayout layout);
3390
3391 enum anv_fast_clear_type
3392 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3393 const struct anv_image * const image,
3394 const VkImageAspectFlagBits aspect,
3395 const VkImageLayout layout);
3396
3397 /* This is defined as a macro so that it works for both
3398 * VkImageSubresourceRange and VkImageSubresourceLayers
3399 */
3400 #define anv_get_layerCount(_image, _range) \
3401 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3402 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3403
3404 static inline uint32_t
3405 anv_get_levelCount(const struct anv_image *image,
3406 const VkImageSubresourceRange *range)
3407 {
3408 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3409 image->levels - range->baseMipLevel : range->levelCount;
3410 }
3411
3412 static inline VkImageAspectFlags
3413 anv_image_expand_aspects(const struct anv_image *image,
3414 VkImageAspectFlags aspects)
3415 {
3416 /* If the underlying image has color plane aspects and
3417 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3418 * the underlying image. */
3419 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3420 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3421 return image->aspects;
3422
3423 return aspects;
3424 }
3425
3426 static inline bool
3427 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3428 VkImageAspectFlags aspects2)
3429 {
3430 if (aspects1 == aspects2)
3431 return true;
3432
3433 /* Only 1 color aspects are compatibles. */
3434 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3435 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3436 util_bitcount(aspects1) == util_bitcount(aspects2))
3437 return true;
3438
3439 return false;
3440 }
3441
3442 struct anv_image_view {
3443 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3444
3445 VkImageAspectFlags aspect_mask;
3446 VkFormat vk_format;
3447 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3448
3449 unsigned n_planes;
3450 struct {
3451 uint32_t image_plane;
3452
3453 struct isl_view isl;
3454
3455 /**
3456 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3457 * image layout of SHADER_READ_ONLY_OPTIMAL or
3458 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3459 */
3460 struct anv_surface_state optimal_sampler_surface_state;
3461
3462 /**
3463 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3464 * image layout of GENERAL.
3465 */
3466 struct anv_surface_state general_sampler_surface_state;
3467
3468 /**
3469 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3470 * states for write-only and readable, using the real format for
3471 * write-only and the lowered format for readable.
3472 */
3473 struct anv_surface_state storage_surface_state;
3474 struct anv_surface_state writeonly_storage_surface_state;
3475
3476 struct brw_image_param storage_image_param;
3477 } planes[3];
3478 };
3479
3480 enum anv_image_view_state_flags {
3481 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3482 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3483 };
3484
3485 void anv_image_fill_surface_state(struct anv_device *device,
3486 const struct anv_image *image,
3487 VkImageAspectFlagBits aspect,
3488 const struct isl_view *view,
3489 isl_surf_usage_flags_t view_usage,
3490 enum isl_aux_usage aux_usage,
3491 const union isl_color_value *clear_color,
3492 enum anv_image_view_state_flags flags,
3493 struct anv_surface_state *state_inout,
3494 struct brw_image_param *image_param_out);
3495
3496 struct anv_image_create_info {
3497 const VkImageCreateInfo *vk_info;
3498
3499 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3500 isl_tiling_flags_t isl_tiling_flags;
3501
3502 /** These flags will be added to any derived from VkImageCreateInfo. */
3503 isl_surf_usage_flags_t isl_extra_usage_flags;
3504
3505 uint32_t stride;
3506 bool external_format;
3507 };
3508
3509 VkResult anv_image_create(VkDevice _device,
3510 const struct anv_image_create_info *info,
3511 const VkAllocationCallbacks* alloc,
3512 VkImage *pImage);
3513
3514 const struct anv_surface *
3515 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3516 VkImageAspectFlags aspect_mask);
3517
3518 enum isl_format
3519 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3520
3521 static inline struct VkExtent3D
3522 anv_sanitize_image_extent(const VkImageType imageType,
3523 const struct VkExtent3D imageExtent)
3524 {
3525 switch (imageType) {
3526 case VK_IMAGE_TYPE_1D:
3527 return (VkExtent3D) { imageExtent.width, 1, 1 };
3528 case VK_IMAGE_TYPE_2D:
3529 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3530 case VK_IMAGE_TYPE_3D:
3531 return imageExtent;
3532 default:
3533 unreachable("invalid image type");
3534 }
3535 }
3536
3537 static inline struct VkOffset3D
3538 anv_sanitize_image_offset(const VkImageType imageType,
3539 const struct VkOffset3D imageOffset)
3540 {
3541 switch (imageType) {
3542 case VK_IMAGE_TYPE_1D:
3543 return (VkOffset3D) { imageOffset.x, 0, 0 };
3544 case VK_IMAGE_TYPE_2D:
3545 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3546 case VK_IMAGE_TYPE_3D:
3547 return imageOffset;
3548 default:
3549 unreachable("invalid image type");
3550 }
3551 }
3552
3553 VkFormatFeatureFlags
3554 anv_get_image_format_features(const struct gen_device_info *devinfo,
3555 VkFormat vk_format,
3556 const struct anv_format *anv_format,
3557 VkImageTiling vk_tiling);
3558
3559 void anv_fill_buffer_surface_state(struct anv_device *device,
3560 struct anv_state state,
3561 enum isl_format format,
3562 struct anv_address address,
3563 uint32_t range, uint32_t stride);
3564
3565 static inline void
3566 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3567 const struct anv_attachment_state *att_state,
3568 const struct anv_image_view *iview)
3569 {
3570 const struct isl_format_layout *view_fmtl =
3571 isl_format_get_layout(iview->planes[0].isl.format);
3572
3573 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3574 if (view_fmtl->channels.c.bits) \
3575 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3576
3577 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3578 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3579 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3580 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3581
3582 #undef COPY_CLEAR_COLOR_CHANNEL
3583 }
3584
3585
3586 struct anv_ycbcr_conversion {
3587 const struct anv_format * format;
3588 VkSamplerYcbcrModelConversion ycbcr_model;
3589 VkSamplerYcbcrRange ycbcr_range;
3590 VkComponentSwizzle mapping[4];
3591 VkChromaLocation chroma_offsets[2];
3592 VkFilter chroma_filter;
3593 bool chroma_reconstruction;
3594 };
3595
3596 struct anv_sampler {
3597 uint32_t state[3][4];
3598 uint32_t n_planes;
3599 struct anv_ycbcr_conversion *conversion;
3600
3601 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3602 * and with a 32-byte stride for use as bindless samplers.
3603 */
3604 struct anv_state bindless_state;
3605 };
3606
3607 struct anv_framebuffer {
3608 uint32_t width;
3609 uint32_t height;
3610 uint32_t layers;
3611
3612 uint32_t attachment_count;
3613 struct anv_image_view * attachments[0];
3614 };
3615
3616 struct anv_subpass_attachment {
3617 VkImageUsageFlagBits usage;
3618 uint32_t attachment;
3619 VkImageLayout layout;
3620 };
3621
3622 struct anv_subpass {
3623 uint32_t attachment_count;
3624
3625 /**
3626 * A pointer to all attachment references used in this subpass.
3627 * Only valid if ::attachment_count > 0.
3628 */
3629 struct anv_subpass_attachment * attachments;
3630 uint32_t input_count;
3631 struct anv_subpass_attachment * input_attachments;
3632 uint32_t color_count;
3633 struct anv_subpass_attachment * color_attachments;
3634 struct anv_subpass_attachment * resolve_attachments;
3635
3636 struct anv_subpass_attachment * depth_stencil_attachment;
3637 struct anv_subpass_attachment * ds_resolve_attachment;
3638 VkResolveModeFlagBitsKHR depth_resolve_mode;
3639 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3640
3641 uint32_t view_mask;
3642
3643 /** Subpass has a depth/stencil self-dependency */
3644 bool has_ds_self_dep;
3645
3646 /** Subpass has at least one color resolve attachment */
3647 bool has_color_resolve;
3648 };
3649
3650 static inline unsigned
3651 anv_subpass_view_count(const struct anv_subpass *subpass)
3652 {
3653 return MAX2(1, util_bitcount(subpass->view_mask));
3654 }
3655
3656 struct anv_render_pass_attachment {
3657 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3658 * its members individually.
3659 */
3660 VkFormat format;
3661 uint32_t samples;
3662 VkImageUsageFlags usage;
3663 VkAttachmentLoadOp load_op;
3664 VkAttachmentStoreOp store_op;
3665 VkAttachmentLoadOp stencil_load_op;
3666 VkImageLayout initial_layout;
3667 VkImageLayout final_layout;
3668 VkImageLayout first_subpass_layout;
3669
3670 /* The subpass id in which the attachment will be used last. */
3671 uint32_t last_subpass_idx;
3672 };
3673
3674 struct anv_render_pass {
3675 uint32_t attachment_count;
3676 uint32_t subpass_count;
3677 /* An array of subpass_count+1 flushes, one per subpass boundary */
3678 enum anv_pipe_bits * subpass_flushes;
3679 struct anv_render_pass_attachment * attachments;
3680 struct anv_subpass subpasses[0];
3681 };
3682
3683 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3684
3685 struct anv_query_pool {
3686 VkQueryType type;
3687 VkQueryPipelineStatisticFlags pipeline_statistics;
3688 /** Stride between slots, in bytes */
3689 uint32_t stride;
3690 /** Number of slots in this query pool */
3691 uint32_t slots;
3692 struct anv_bo bo;
3693 };
3694
3695 int anv_get_instance_entrypoint_index(const char *name);
3696 int anv_get_device_entrypoint_index(const char *name);
3697 int anv_get_physical_device_entrypoint_index(const char *name);
3698
3699 const char *anv_get_instance_entry_name(int index);
3700 const char *anv_get_physical_device_entry_name(int index);
3701 const char *anv_get_device_entry_name(int index);
3702
3703 bool
3704 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3705 const struct anv_instance_extension_table *instance);
3706 bool
3707 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
3708 const struct anv_instance_extension_table *instance);
3709 bool
3710 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3711 const struct anv_instance_extension_table *instance,
3712 const struct anv_device_extension_table *device);
3713
3714 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3715 const char *name);
3716
3717 void anv_dump_image_to_ppm(struct anv_device *device,
3718 struct anv_image *image, unsigned miplevel,
3719 unsigned array_layer, VkImageAspectFlagBits aspect,
3720 const char *filename);
3721
3722 enum anv_dump_action {
3723 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3724 };
3725
3726 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3727 void anv_dump_finish(void);
3728
3729 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
3730
3731 static inline uint32_t
3732 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3733 {
3734 /* This function must be called from within a subpass. */
3735 assert(cmd_state->pass && cmd_state->subpass);
3736
3737 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3738
3739 /* The id of this subpass shouldn't exceed the number of subpasses in this
3740 * render pass minus 1.
3741 */
3742 assert(subpass_id < cmd_state->pass->subpass_count);
3743 return subpass_id;
3744 }
3745
3746 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3747 \
3748 static inline struct __anv_type * \
3749 __anv_type ## _from_handle(__VkType _handle) \
3750 { \
3751 return (struct __anv_type *) _handle; \
3752 } \
3753 \
3754 static inline __VkType \
3755 __anv_type ## _to_handle(struct __anv_type *_obj) \
3756 { \
3757 return (__VkType) _obj; \
3758 }
3759
3760 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3761 \
3762 static inline struct __anv_type * \
3763 __anv_type ## _from_handle(__VkType _handle) \
3764 { \
3765 return (struct __anv_type *)(uintptr_t) _handle; \
3766 } \
3767 \
3768 static inline __VkType \
3769 __anv_type ## _to_handle(struct __anv_type *_obj) \
3770 { \
3771 return (__VkType)(uintptr_t) _obj; \
3772 }
3773
3774 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3775 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3776
3777 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3778 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3779 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3780 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3781 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3782
3783 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3784 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3785 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3786 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3787 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3788 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3789 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3790 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3791 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3792 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3793 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3794 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3795 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3796 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3797 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3798 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3799 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3800 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3801 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3802 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3803 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3804 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3805 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3806
3807 /* Gen-specific function declarations */
3808 #ifdef genX
3809 # include "anv_genX.h"
3810 #else
3811 # define genX(x) gen7_##x
3812 # include "anv_genX.h"
3813 # undef genX
3814 # define genX(x) gen75_##x
3815 # include "anv_genX.h"
3816 # undef genX
3817 # define genX(x) gen8_##x
3818 # include "anv_genX.h"
3819 # undef genX
3820 # define genX(x) gen9_##x
3821 # include "anv_genX.h"
3822 # undef genX
3823 # define genX(x) gen10_##x
3824 # include "anv_genX.h"
3825 # undef genX
3826 # define genX(x) gen11_##x
3827 # include "anv_genX.h"
3828 # undef genX
3829 # define genX(x) gen12_##x
3830 # include "anv_genX.h"
3831 # undef genX
3832 #endif
3833
3834 #endif /* ANV_PRIVATE_H */