anv: Use an actual binding for gl_NumWorkgroups
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/macros.h"
53 #include "util/hash_table.h"
54 #include "util/list.h"
55 #include "util/set.h"
56 #include "util/u_atomic.h"
57 #include "util/u_vector.h"
58 #include "util/u_math.h"
59 #include "util/vma.h"
60 #include "vk_alloc.h"
61 #include "vk_debug_report.h"
62
63 /* Pre-declarations needed for WSI entrypoints */
64 struct wl_surface;
65 struct wl_display;
66 typedef struct xcb_connection_t xcb_connection_t;
67 typedef uint32_t xcb_visualid_t;
68 typedef uint32_t xcb_window_t;
69
70 struct anv_buffer;
71 struct anv_buffer_view;
72 struct anv_image_view;
73 struct anv_instance;
74
75 struct gen_l3_config;
76
77 #include <vulkan/vulkan.h>
78 #include <vulkan/vulkan_intel.h>
79 #include <vulkan/vk_icd.h>
80
81 #include "anv_android.h"
82 #include "anv_entrypoints.h"
83 #include "anv_extensions.h"
84 #include "isl/isl.h"
85
86 #include "common/gen_debug.h"
87 #include "common/intel_log.h"
88 #include "wsi_common.h"
89
90 /* anv Virtual Memory Layout
91 * =========================
92 *
93 * When the anv driver is determining the virtual graphics addresses of memory
94 * objects itself using the softpin mechanism, the following memory ranges
95 * will be used.
96 *
97 * Three special considerations to notice:
98 *
99 * (1) the dynamic state pool is located within the same 4 GiB as the low
100 * heap. This is to work around a VF cache issue described in a comment in
101 * anv_physical_device_init_heaps.
102 *
103 * (2) the binding table pool is located at lower addresses than the surface
104 * state pool, within a 4 GiB range. This allows surface state base addresses
105 * to cover both binding tables (16 bit offsets) and surface states (32 bit
106 * offsets).
107 *
108 * (3) the last 4 GiB of the address space is withheld from the high
109 * heap. Various hardware units will read past the end of an object for
110 * various reasons. This healthy margin prevents reads from wrapping around
111 * 48-bit addresses.
112 */
113 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
114 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
115 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
116 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
117 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
118 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
119 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
120 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
121 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
122 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
123 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
124 #define HIGH_HEAP_MAX_ADDRESS 0xfffeffffffffULL
125
126 #define LOW_HEAP_SIZE \
127 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
128 #define HIGH_HEAP_SIZE \
129 (HIGH_HEAP_MAX_ADDRESS - HIGH_HEAP_MIN_ADDRESS + 1)
130 #define DYNAMIC_STATE_POOL_SIZE \
131 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
132 #define BINDING_TABLE_POOL_SIZE \
133 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
134 #define SURFACE_STATE_POOL_SIZE \
135 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
136 #define INSTRUCTION_STATE_POOL_SIZE \
137 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
138
139 /* Allowing different clear colors requires us to perform a depth resolve at
140 * the end of certain render passes. This is because while slow clears store
141 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
142 * See the PRMs for examples describing when additional resolves would be
143 * necessary. To enable fast clears without requiring extra resolves, we set
144 * the clear value to a globally-defined one. We could allow different values
145 * if the user doesn't expect coherent data during or after a render passes
146 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
147 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
148 * 1.0f seems to be the only value used. The only application that doesn't set
149 * this value does so through the usage of an seemingly uninitialized clear
150 * value.
151 */
152 #define ANV_HZ_FC_VAL 1.0f
153
154 #define MAX_VBS 28
155 #define MAX_XFB_BUFFERS 4
156 #define MAX_XFB_STREAMS 4
157 #define MAX_SETS 8
158 #define MAX_RTS 8
159 #define MAX_VIEWPORTS 16
160 #define MAX_SCISSORS 16
161 #define MAX_PUSH_CONSTANTS_SIZE 128
162 #define MAX_DYNAMIC_BUFFERS 16
163 #define MAX_IMAGES 64
164 #define MAX_GEN8_IMAGES 8
165 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
166
167 /* The kernel relocation API has a limitation of a 32-bit delta value
168 * applied to the address before it is written which, in spite of it being
169 * unsigned, is treated as signed . Because of the way that this maps to
170 * the Vulkan API, we cannot handle an offset into a buffer that does not
171 * fit into a signed 32 bits. The only mechanism we have for dealing with
172 * this at the moment is to limit all VkDeviceMemory objects to a maximum
173 * of 2GB each. The Vulkan spec allows us to do this:
174 *
175 * "Some platforms may have a limit on the maximum size of a single
176 * allocation. For example, certain systems may fail to create
177 * allocations with a size greater than or equal to 4GB. Such a limit is
178 * implementation-dependent, and if such a failure occurs then the error
179 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
180 *
181 * We don't use vk_error here because it's not an error so much as an
182 * indication to the application that the allocation is too large.
183 */
184 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
185
186 #define ANV_SVGS_VB_INDEX MAX_VBS
187 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
188
189 /* We reserve this MI ALU register for the purpose of handling predication.
190 * Other code which uses the MI ALU should leave it alone.
191 */
192 #define ANV_PREDICATE_RESULT_REG MI_ALU_REG15
193
194 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
195
196 static inline uint32_t
197 align_down_npot_u32(uint32_t v, uint32_t a)
198 {
199 return v - (v % a);
200 }
201
202 static inline uint32_t
203 align_u32(uint32_t v, uint32_t a)
204 {
205 assert(a != 0 && a == (a & -a));
206 return (v + a - 1) & ~(a - 1);
207 }
208
209 static inline uint64_t
210 align_u64(uint64_t v, uint64_t a)
211 {
212 assert(a != 0 && a == (a & -a));
213 return (v + a - 1) & ~(a - 1);
214 }
215
216 static inline int32_t
217 align_i32(int32_t v, int32_t a)
218 {
219 assert(a != 0 && a == (a & -a));
220 return (v + a - 1) & ~(a - 1);
221 }
222
223 /** Alignment must be a power of 2. */
224 static inline bool
225 anv_is_aligned(uintmax_t n, uintmax_t a)
226 {
227 assert(a == (a & -a));
228 return (n & (a - 1)) == 0;
229 }
230
231 static inline uint32_t
232 anv_minify(uint32_t n, uint32_t levels)
233 {
234 if (unlikely(n == 0))
235 return 0;
236 else
237 return MAX2(n >> levels, 1);
238 }
239
240 static inline float
241 anv_clamp_f(float f, float min, float max)
242 {
243 assert(min < max);
244
245 if (f > max)
246 return max;
247 else if (f < min)
248 return min;
249 else
250 return f;
251 }
252
253 static inline bool
254 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
255 {
256 if (*inout_mask & clear_mask) {
257 *inout_mask &= ~clear_mask;
258 return true;
259 } else {
260 return false;
261 }
262 }
263
264 static inline union isl_color_value
265 vk_to_isl_color(VkClearColorValue color)
266 {
267 return (union isl_color_value) {
268 .u32 = {
269 color.uint32[0],
270 color.uint32[1],
271 color.uint32[2],
272 color.uint32[3],
273 },
274 };
275 }
276
277 #define for_each_bit(b, dword) \
278 for (uint32_t __dword = (dword); \
279 (b) = __builtin_ffs(__dword) - 1, __dword; \
280 __dword &= ~(1 << (b)))
281
282 #define typed_memcpy(dest, src, count) ({ \
283 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
284 memcpy((dest), (src), (count) * sizeof(*(src))); \
285 })
286
287 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
288 * to be added here in order to utilize mapping in debug/error/perf macros.
289 */
290 #define REPORT_OBJECT_TYPE(o) \
291 __builtin_choose_expr ( \
292 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
293 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
294 __builtin_choose_expr ( \
295 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
296 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
297 __builtin_choose_expr ( \
298 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
299 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
300 __builtin_choose_expr ( \
301 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
302 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
303 __builtin_choose_expr ( \
304 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
305 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
306 __builtin_choose_expr ( \
307 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
308 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
309 __builtin_choose_expr ( \
310 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
311 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
312 __builtin_choose_expr ( \
313 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
314 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
315 __builtin_choose_expr ( \
316 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
317 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
318 __builtin_choose_expr ( \
319 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
320 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
321 __builtin_choose_expr ( \
322 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
323 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
324 __builtin_choose_expr ( \
325 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
326 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
327 __builtin_choose_expr ( \
328 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
329 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
330 __builtin_choose_expr ( \
331 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
332 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
333 __builtin_choose_expr ( \
334 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
335 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
336 __builtin_choose_expr ( \
337 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
338 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
339 __builtin_choose_expr ( \
340 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
341 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
342 __builtin_choose_expr ( \
343 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
344 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
345 __builtin_choose_expr ( \
346 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
347 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
348 __builtin_choose_expr ( \
349 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
350 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
351 __builtin_choose_expr ( \
352 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
353 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
354 __builtin_choose_expr ( \
355 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
356 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
357 __builtin_choose_expr ( \
358 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
359 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
360 __builtin_choose_expr ( \
361 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
362 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
363 __builtin_choose_expr ( \
364 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
365 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
366 __builtin_choose_expr ( \
367 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
368 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
369 __builtin_choose_expr ( \
370 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
371 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
372 __builtin_choose_expr ( \
373 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
374 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
375 __builtin_choose_expr ( \
376 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
377 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
378 __builtin_choose_expr ( \
379 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
380 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
381 __builtin_choose_expr ( \
382 __builtin_types_compatible_p (__typeof (o), void*), \
383 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
384 /* The void expression results in a compile-time error \
385 when assigning the result to something. */ \
386 (void)0)))))))))))))))))))))))))))))))
387
388 /* Whenever we generate an error, pass it through this function. Useful for
389 * debugging, where we can break on it. Only call at error site, not when
390 * propagating errors. Might be useful to plug in a stack trace here.
391 */
392
393 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
394 VkDebugReportObjectTypeEXT type, VkResult error,
395 const char *file, int line, const char *format,
396 va_list args);
397
398 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
399 VkDebugReportObjectTypeEXT type, VkResult error,
400 const char *file, int line, const char *format, ...);
401
402 #ifdef DEBUG
403 #define vk_error(error) __vk_errorf(NULL, NULL,\
404 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
405 error, __FILE__, __LINE__, NULL)
406 #define vk_errorv(instance, obj, error, format, args)\
407 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
408 __FILE__, __LINE__, format, args)
409 #define vk_errorf(instance, obj, error, format, ...)\
410 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
411 __FILE__, __LINE__, format, ## __VA_ARGS__)
412 #else
413 #define vk_error(error) error
414 #define vk_errorf(instance, obj, error, format, ...) error
415 #endif
416
417 /**
418 * Warn on ignored extension structs.
419 *
420 * The Vulkan spec requires us to ignore unsupported or unknown structs in
421 * a pNext chain. In debug mode, emitting warnings for ignored structs may
422 * help us discover structs that we should not have ignored.
423 *
424 *
425 * From the Vulkan 1.0.38 spec:
426 *
427 * Any component of the implementation (the loader, any enabled layers,
428 * and drivers) must skip over, without processing (other than reading the
429 * sType and pNext members) any chained structures with sType values not
430 * defined by extensions supported by that component.
431 */
432 #define anv_debug_ignored_stype(sType) \
433 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
434
435 void __anv_perf_warn(struct anv_instance *instance, const void *object,
436 VkDebugReportObjectTypeEXT type, const char *file,
437 int line, const char *format, ...)
438 anv_printflike(6, 7);
439 void anv_loge(const char *format, ...) anv_printflike(1, 2);
440 void anv_loge_v(const char *format, va_list va);
441
442 /**
443 * Print a FINISHME message, including its source location.
444 */
445 #define anv_finishme(format, ...) \
446 do { \
447 static bool reported = false; \
448 if (!reported) { \
449 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
450 ##__VA_ARGS__); \
451 reported = true; \
452 } \
453 } while (0)
454
455 /**
456 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
457 */
458 #define anv_perf_warn(instance, obj, format, ...) \
459 do { \
460 static bool reported = false; \
461 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
462 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
463 format, ##__VA_ARGS__); \
464 reported = true; \
465 } \
466 } while (0)
467
468 /* A non-fatal assert. Useful for debugging. */
469 #ifdef DEBUG
470 #define anv_assert(x) ({ \
471 if (unlikely(!(x))) \
472 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
473 })
474 #else
475 #define anv_assert(x)
476 #endif
477
478 /* A multi-pointer allocator
479 *
480 * When copying data structures from the user (such as a render pass), it's
481 * common to need to allocate data for a bunch of different things. Instead
482 * of doing several allocations and having to handle all of the error checking
483 * that entails, it can be easier to do a single allocation. This struct
484 * helps facilitate that. The intended usage looks like this:
485 *
486 * ANV_MULTIALLOC(ma)
487 * anv_multialloc_add(&ma, &main_ptr, 1);
488 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
489 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
490 *
491 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
492 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
493 */
494 struct anv_multialloc {
495 size_t size;
496 size_t align;
497
498 uint32_t ptr_count;
499 void **ptrs[8];
500 };
501
502 #define ANV_MULTIALLOC_INIT \
503 ((struct anv_multialloc) { 0, })
504
505 #define ANV_MULTIALLOC(_name) \
506 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
507
508 __attribute__((always_inline))
509 static inline void
510 _anv_multialloc_add(struct anv_multialloc *ma,
511 void **ptr, size_t size, size_t align)
512 {
513 size_t offset = align_u64(ma->size, align);
514 ma->size = offset + size;
515 ma->align = MAX2(ma->align, align);
516
517 /* Store the offset in the pointer. */
518 *ptr = (void *)(uintptr_t)offset;
519
520 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
521 ma->ptrs[ma->ptr_count++] = ptr;
522 }
523
524 #define anv_multialloc_add_size(_ma, _ptr, _size) \
525 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
526
527 #define anv_multialloc_add(_ma, _ptr, _count) \
528 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
529
530 __attribute__((always_inline))
531 static inline void *
532 anv_multialloc_alloc(struct anv_multialloc *ma,
533 const VkAllocationCallbacks *alloc,
534 VkSystemAllocationScope scope)
535 {
536 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
537 if (!ptr)
538 return NULL;
539
540 /* Fill out each of the pointers with their final value.
541 *
542 * for (uint32_t i = 0; i < ma->ptr_count; i++)
543 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
544 *
545 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
546 * constant, GCC is incapable of figuring this out and unrolling the loop
547 * so we have to give it a little help.
548 */
549 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
550 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
551 if ((_i) < ma->ptr_count) \
552 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
553 _ANV_MULTIALLOC_UPDATE_POINTER(0);
554 _ANV_MULTIALLOC_UPDATE_POINTER(1);
555 _ANV_MULTIALLOC_UPDATE_POINTER(2);
556 _ANV_MULTIALLOC_UPDATE_POINTER(3);
557 _ANV_MULTIALLOC_UPDATE_POINTER(4);
558 _ANV_MULTIALLOC_UPDATE_POINTER(5);
559 _ANV_MULTIALLOC_UPDATE_POINTER(6);
560 _ANV_MULTIALLOC_UPDATE_POINTER(7);
561 #undef _ANV_MULTIALLOC_UPDATE_POINTER
562
563 return ptr;
564 }
565
566 __attribute__((always_inline))
567 static inline void *
568 anv_multialloc_alloc2(struct anv_multialloc *ma,
569 const VkAllocationCallbacks *parent_alloc,
570 const VkAllocationCallbacks *alloc,
571 VkSystemAllocationScope scope)
572 {
573 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
574 }
575
576 /* Extra ANV-defined BO flags which won't be passed to the kernel */
577 #define ANV_BO_EXTERNAL (1ull << 31)
578 #define ANV_BO_FLAG_MASK (1ull << 31)
579
580 struct anv_bo {
581 uint32_t gem_handle;
582
583 /* Index into the current validation list. This is used by the
584 * validation list building alrogithm to track which buffers are already
585 * in the validation list so that we can ensure uniqueness.
586 */
587 uint32_t index;
588
589 /* Last known offset. This value is provided by the kernel when we
590 * execbuf and is used as the presumed offset for the next bunch of
591 * relocations.
592 */
593 uint64_t offset;
594
595 uint64_t size;
596 void *map;
597
598 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
599 uint32_t flags;
600 };
601
602 static inline void
603 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
604 {
605 bo->gem_handle = gem_handle;
606 bo->index = 0;
607 bo->offset = -1;
608 bo->size = size;
609 bo->map = NULL;
610 bo->flags = 0;
611 }
612
613 /* Represents a lock-free linked list of "free" things. This is used by
614 * both the block pool and the state pools. Unfortunately, in order to
615 * solve the ABA problem, we can't use a single uint32_t head.
616 */
617 union anv_free_list {
618 struct {
619 uint32_t offset;
620
621 /* A simple count that is incremented every time the head changes. */
622 uint32_t count;
623 };
624 uint64_t u64;
625 };
626
627 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
628
629 struct anv_block_state {
630 union {
631 struct {
632 uint32_t next;
633 uint32_t end;
634 };
635 uint64_t u64;
636 };
637 };
638
639 #define anv_block_pool_foreach_bo(bo, pool) \
640 for (bo = (pool)->bos; bo != &(pool)->bos[(pool)->nbos]; bo++)
641
642 #define ANV_MAX_BLOCK_POOL_BOS 20
643
644 struct anv_block_pool {
645 struct anv_device *device;
646
647 uint64_t bo_flags;
648
649 struct anv_bo bos[ANV_MAX_BLOCK_POOL_BOS];
650 struct anv_bo *bo;
651 uint32_t nbos;
652
653 uint64_t size;
654
655 /* The address where the start of the pool is pinned. The various bos that
656 * are created as the pool grows will have addresses in the range
657 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
658 */
659 uint64_t start_address;
660
661 /* The offset from the start of the bo to the "center" of the block
662 * pool. Pointers to allocated blocks are given by
663 * bo.map + center_bo_offset + offsets.
664 */
665 uint32_t center_bo_offset;
666
667 /* Current memory map of the block pool. This pointer may or may not
668 * point to the actual beginning of the block pool memory. If
669 * anv_block_pool_alloc_back has ever been called, then this pointer
670 * will point to the "center" position of the buffer and all offsets
671 * (negative or positive) given out by the block pool alloc functions
672 * will be valid relative to this pointer.
673 *
674 * In particular, map == bo.map + center_offset
675 *
676 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
677 * since it will handle the softpin case as well, where this points to NULL.
678 */
679 void *map;
680 int fd;
681
682 /**
683 * Array of mmaps and gem handles owned by the block pool, reclaimed when
684 * the block pool is destroyed.
685 */
686 struct u_vector mmap_cleanups;
687
688 struct anv_block_state state;
689
690 struct anv_block_state back_state;
691 };
692
693 /* Block pools are backed by a fixed-size 1GB memfd */
694 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
695
696 /* The center of the block pool is also the middle of the memfd. This may
697 * change in the future if we decide differently for some reason.
698 */
699 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
700
701 static inline uint32_t
702 anv_block_pool_size(struct anv_block_pool *pool)
703 {
704 return pool->state.end + pool->back_state.end;
705 }
706
707 struct anv_state {
708 int32_t offset;
709 uint32_t alloc_size;
710 void *map;
711 uint32_t idx;
712 };
713
714 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
715
716 struct anv_fixed_size_state_pool {
717 union anv_free_list free_list;
718 struct anv_block_state block;
719 };
720
721 #define ANV_MIN_STATE_SIZE_LOG2 6
722 #define ANV_MAX_STATE_SIZE_LOG2 20
723
724 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
725
726 struct anv_free_entry {
727 uint32_t next;
728 struct anv_state state;
729 };
730
731 struct anv_state_table {
732 struct anv_device *device;
733 int fd;
734 struct anv_free_entry *map;
735 uint32_t size;
736 struct anv_block_state state;
737 struct u_vector mmap_cleanups;
738 };
739
740 struct anv_state_pool {
741 struct anv_block_pool block_pool;
742
743 struct anv_state_table table;
744
745 /* The size of blocks which will be allocated from the block pool */
746 uint32_t block_size;
747
748 /** Free list for "back" allocations */
749 union anv_free_list back_alloc_free_list;
750
751 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
752 };
753
754 struct anv_state_stream_block;
755
756 struct anv_state_stream {
757 struct anv_state_pool *state_pool;
758
759 /* The size of blocks to allocate from the state pool */
760 uint32_t block_size;
761
762 /* Current block we're allocating from */
763 struct anv_state block;
764
765 /* Offset into the current block at which to allocate the next state */
766 uint32_t next;
767
768 /* List of all blocks allocated from this pool */
769 struct anv_state_stream_block *block_list;
770 };
771
772 /* The block_pool functions exported for testing only. The block pool should
773 * only be used via a state pool (see below).
774 */
775 VkResult anv_block_pool_init(struct anv_block_pool *pool,
776 struct anv_device *device,
777 uint64_t start_address,
778 uint32_t initial_size,
779 uint64_t bo_flags);
780 void anv_block_pool_finish(struct anv_block_pool *pool);
781 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
782 uint32_t block_size, uint32_t *padding);
783 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
784 uint32_t block_size);
785 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
786
787 VkResult anv_state_pool_init(struct anv_state_pool *pool,
788 struct anv_device *device,
789 uint64_t start_address,
790 uint32_t block_size,
791 uint64_t bo_flags);
792 void anv_state_pool_finish(struct anv_state_pool *pool);
793 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
794 uint32_t state_size, uint32_t alignment);
795 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
796 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
797 void anv_state_stream_init(struct anv_state_stream *stream,
798 struct anv_state_pool *state_pool,
799 uint32_t block_size);
800 void anv_state_stream_finish(struct anv_state_stream *stream);
801 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
802 uint32_t size, uint32_t alignment);
803
804 VkResult anv_state_table_init(struct anv_state_table *table,
805 struct anv_device *device,
806 uint32_t initial_entries);
807 void anv_state_table_finish(struct anv_state_table *table);
808 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
809 uint32_t count);
810 void anv_free_list_push(union anv_free_list *list,
811 struct anv_state_table *table,
812 uint32_t idx, uint32_t count);
813 struct anv_state* anv_free_list_pop(union anv_free_list *list,
814 struct anv_state_table *table);
815
816
817 static inline struct anv_state *
818 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
819 {
820 return &table->map[idx].state;
821 }
822 /**
823 * Implements a pool of re-usable BOs. The interface is identical to that
824 * of block_pool except that each block is its own BO.
825 */
826 struct anv_bo_pool {
827 struct anv_device *device;
828
829 uint64_t bo_flags;
830
831 void *free_list[16];
832 };
833
834 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
835 uint64_t bo_flags);
836 void anv_bo_pool_finish(struct anv_bo_pool *pool);
837 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
838 uint32_t size);
839 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
840
841 struct anv_scratch_bo {
842 bool exists;
843 struct anv_bo bo;
844 };
845
846 struct anv_scratch_pool {
847 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
848 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
849 };
850
851 void anv_scratch_pool_init(struct anv_device *device,
852 struct anv_scratch_pool *pool);
853 void anv_scratch_pool_finish(struct anv_device *device,
854 struct anv_scratch_pool *pool);
855 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
856 struct anv_scratch_pool *pool,
857 gl_shader_stage stage,
858 unsigned per_thread_scratch);
859
860 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
861 struct anv_bo_cache {
862 struct hash_table *bo_map;
863 pthread_mutex_t mutex;
864 };
865
866 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
867 void anv_bo_cache_finish(struct anv_bo_cache *cache);
868 VkResult anv_bo_cache_alloc(struct anv_device *device,
869 struct anv_bo_cache *cache,
870 uint64_t size, uint64_t bo_flags,
871 struct anv_bo **bo);
872 VkResult anv_bo_cache_import(struct anv_device *device,
873 struct anv_bo_cache *cache,
874 int fd, uint64_t bo_flags,
875 struct anv_bo **bo);
876 VkResult anv_bo_cache_export(struct anv_device *device,
877 struct anv_bo_cache *cache,
878 struct anv_bo *bo_in, int *fd_out);
879 void anv_bo_cache_release(struct anv_device *device,
880 struct anv_bo_cache *cache,
881 struct anv_bo *bo);
882
883 struct anv_memory_type {
884 /* Standard bits passed on to the client */
885 VkMemoryPropertyFlags propertyFlags;
886 uint32_t heapIndex;
887
888 /* Driver-internal book-keeping */
889 VkBufferUsageFlags valid_buffer_usage;
890 };
891
892 struct anv_memory_heap {
893 /* Standard bits passed on to the client */
894 VkDeviceSize size;
895 VkMemoryHeapFlags flags;
896
897 /* Driver-internal book-keeping */
898 bool supports_48bit_addresses;
899 };
900
901 struct anv_physical_device {
902 VK_LOADER_DATA _loader_data;
903
904 struct anv_instance * instance;
905 uint32_t chipset_id;
906 bool no_hw;
907 char path[20];
908 const char * name;
909 struct {
910 uint16_t domain;
911 uint8_t bus;
912 uint8_t device;
913 uint8_t function;
914 } pci_info;
915 struct gen_device_info info;
916 /** Amount of "GPU memory" we want to advertise
917 *
918 * Clearly, this value is bogus since Intel is a UMA architecture. On
919 * gen7 platforms, we are limited by GTT size unless we want to implement
920 * fine-grained tracking and GTT splitting. On Broadwell and above we are
921 * practically unlimited. However, we will never report more than 3/4 of
922 * the total system ram to try and avoid running out of RAM.
923 */
924 bool supports_48bit_addresses;
925 struct brw_compiler * compiler;
926 struct isl_device isl_dev;
927 int cmd_parser_version;
928 bool has_exec_async;
929 bool has_exec_capture;
930 bool has_exec_fence;
931 bool has_syncobj;
932 bool has_syncobj_wait;
933 bool has_context_priority;
934 bool use_softpin;
935 bool has_context_isolation;
936
937 struct anv_device_extension_table supported_extensions;
938
939 uint32_t eu_total;
940 uint32_t subslice_total;
941
942 struct {
943 uint32_t type_count;
944 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
945 uint32_t heap_count;
946 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
947 } memory;
948
949 uint8_t driver_build_sha1[20];
950 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
951 uint8_t driver_uuid[VK_UUID_SIZE];
952 uint8_t device_uuid[VK_UUID_SIZE];
953
954 struct disk_cache * disk_cache;
955
956 struct wsi_device wsi_device;
957 int local_fd;
958 int master_fd;
959 };
960
961 struct anv_app_info {
962 const char* app_name;
963 uint32_t app_version;
964 const char* engine_name;
965 uint32_t engine_version;
966 uint32_t api_version;
967 };
968
969 struct anv_instance {
970 VK_LOADER_DATA _loader_data;
971
972 VkAllocationCallbacks alloc;
973
974 struct anv_app_info app_info;
975
976 struct anv_instance_extension_table enabled_extensions;
977 struct anv_instance_dispatch_table dispatch;
978 struct anv_device_dispatch_table device_dispatch;
979
980 int physicalDeviceCount;
981 struct anv_physical_device physicalDevice;
982
983 bool pipeline_cache_enabled;
984
985 struct vk_debug_report_instance debug_report_callbacks;
986 };
987
988 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
989 void anv_finish_wsi(struct anv_physical_device *physical_device);
990
991 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
992 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
993 const char *name);
994
995 struct anv_queue {
996 VK_LOADER_DATA _loader_data;
997
998 struct anv_device * device;
999
1000 VkDeviceQueueCreateFlags flags;
1001 };
1002
1003 struct anv_pipeline_cache {
1004 struct anv_device * device;
1005 pthread_mutex_t mutex;
1006
1007 struct hash_table * nir_cache;
1008
1009 struct hash_table * cache;
1010 };
1011
1012 struct nir_xfb_info;
1013 struct anv_pipeline_bind_map;
1014
1015 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1016 struct anv_device *device,
1017 bool cache_enabled);
1018 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1019
1020 struct anv_shader_bin *
1021 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1022 const void *key, uint32_t key_size);
1023 struct anv_shader_bin *
1024 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1025 const void *key_data, uint32_t key_size,
1026 const void *kernel_data, uint32_t kernel_size,
1027 const void *constant_data,
1028 uint32_t constant_data_size,
1029 const struct brw_stage_prog_data *prog_data,
1030 uint32_t prog_data_size,
1031 const struct nir_xfb_info *xfb_info,
1032 const struct anv_pipeline_bind_map *bind_map);
1033
1034 struct anv_shader_bin *
1035 anv_device_search_for_kernel(struct anv_device *device,
1036 struct anv_pipeline_cache *cache,
1037 const void *key_data, uint32_t key_size);
1038
1039 struct anv_shader_bin *
1040 anv_device_upload_kernel(struct anv_device *device,
1041 struct anv_pipeline_cache *cache,
1042 const void *key_data, uint32_t key_size,
1043 const void *kernel_data, uint32_t kernel_size,
1044 const void *constant_data,
1045 uint32_t constant_data_size,
1046 const struct brw_stage_prog_data *prog_data,
1047 uint32_t prog_data_size,
1048 const struct nir_xfb_info *xfb_info,
1049 const struct anv_pipeline_bind_map *bind_map);
1050
1051 struct nir_shader;
1052 struct nir_shader_compiler_options;
1053
1054 struct nir_shader *
1055 anv_device_search_for_nir(struct anv_device *device,
1056 struct anv_pipeline_cache *cache,
1057 const struct nir_shader_compiler_options *nir_options,
1058 unsigned char sha1_key[20],
1059 void *mem_ctx);
1060
1061 void
1062 anv_device_upload_nir(struct anv_device *device,
1063 struct anv_pipeline_cache *cache,
1064 const struct nir_shader *nir,
1065 unsigned char sha1_key[20]);
1066
1067 struct anv_device {
1068 VK_LOADER_DATA _loader_data;
1069
1070 VkAllocationCallbacks alloc;
1071
1072 struct anv_instance * instance;
1073 uint32_t chipset_id;
1074 bool no_hw;
1075 struct gen_device_info info;
1076 struct isl_device isl_dev;
1077 int context_id;
1078 int fd;
1079 bool can_chain_batches;
1080 bool robust_buffer_access;
1081 struct anv_device_extension_table enabled_extensions;
1082 struct anv_device_dispatch_table dispatch;
1083
1084 pthread_mutex_t vma_mutex;
1085 struct util_vma_heap vma_lo;
1086 struct util_vma_heap vma_hi;
1087 uint64_t vma_lo_available;
1088 uint64_t vma_hi_available;
1089
1090 struct anv_bo_pool batch_bo_pool;
1091
1092 struct anv_bo_cache bo_cache;
1093
1094 struct anv_state_pool dynamic_state_pool;
1095 struct anv_state_pool instruction_state_pool;
1096 struct anv_state_pool binding_table_pool;
1097 struct anv_state_pool surface_state_pool;
1098
1099 struct anv_bo workaround_bo;
1100 struct anv_bo trivial_batch_bo;
1101 struct anv_bo hiz_clear_bo;
1102
1103 /* Set of pointers to anv_buffer objects for all pinned buffers. Pinned
1104 * buffers are always resident because they could be used at any time via
1105 * VK_EXT_buffer_device_address.
1106 */
1107 struct set * pinned_buffers;
1108
1109 struct anv_pipeline_cache default_pipeline_cache;
1110 struct blorp_context blorp;
1111
1112 struct anv_state border_colors;
1113
1114 struct anv_queue queue;
1115
1116 struct anv_scratch_pool scratch_pool;
1117
1118 uint32_t default_mocs;
1119 uint32_t external_mocs;
1120
1121 pthread_mutex_t mutex;
1122 pthread_cond_t queue_submit;
1123 bool _lost;
1124
1125 struct gen_batch_decode_ctx decoder_ctx;
1126 /*
1127 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1128 * the cmd_buffer's list.
1129 */
1130 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1131 };
1132
1133 static inline struct anv_state_pool *
1134 anv_binding_table_pool(struct anv_device *device)
1135 {
1136 if (device->instance->physicalDevice.use_softpin)
1137 return &device->binding_table_pool;
1138 else
1139 return &device->surface_state_pool;
1140 }
1141
1142 static inline struct anv_state
1143 anv_binding_table_pool_alloc(struct anv_device *device) {
1144 if (device->instance->physicalDevice.use_softpin)
1145 return anv_state_pool_alloc(&device->binding_table_pool,
1146 device->binding_table_pool.block_size, 0);
1147 else
1148 return anv_state_pool_alloc_back(&device->surface_state_pool);
1149 }
1150
1151 static inline void
1152 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1153 anv_state_pool_free(anv_binding_table_pool(device), state);
1154 }
1155
1156 static inline uint32_t
1157 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1158 {
1159 if (bo->flags & ANV_BO_EXTERNAL)
1160 return device->external_mocs;
1161 else
1162 return device->default_mocs;
1163 }
1164
1165 void anv_device_init_blorp(struct anv_device *device);
1166 void anv_device_finish_blorp(struct anv_device *device);
1167
1168 VkResult _anv_device_set_lost(struct anv_device *device,
1169 const char *file, int line,
1170 const char *msg, ...);
1171 #define anv_device_set_lost(dev, ...) \
1172 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1173
1174 static inline bool
1175 anv_device_is_lost(struct anv_device *device)
1176 {
1177 return unlikely(device->_lost);
1178 }
1179
1180 VkResult anv_device_execbuf(struct anv_device *device,
1181 struct drm_i915_gem_execbuffer2 *execbuf,
1182 struct anv_bo **execbuf_bos);
1183 VkResult anv_device_query_status(struct anv_device *device);
1184 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1185 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1186 int64_t timeout);
1187
1188 void* anv_gem_mmap(struct anv_device *device,
1189 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1190 void anv_gem_munmap(void *p, uint64_t size);
1191 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1192 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1193 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1194 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1195 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1196 int anv_gem_execbuffer(struct anv_device *device,
1197 struct drm_i915_gem_execbuffer2 *execbuf);
1198 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1199 uint32_t stride, uint32_t tiling);
1200 int anv_gem_create_context(struct anv_device *device);
1201 bool anv_gem_has_context_priority(int fd);
1202 int anv_gem_destroy_context(struct anv_device *device, int context);
1203 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1204 uint64_t value);
1205 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1206 uint64_t *value);
1207 int anv_gem_get_param(int fd, uint32_t param);
1208 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1209 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1210 int anv_gem_get_aperture(int fd, uint64_t *size);
1211 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1212 uint32_t *active, uint32_t *pending);
1213 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1214 int anv_gem_reg_read(struct anv_device *device,
1215 uint32_t offset, uint64_t *result);
1216 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1217 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1218 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1219 uint32_t read_domains, uint32_t write_domain);
1220 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1221 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1222 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1223 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1224 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1225 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1226 uint32_t handle);
1227 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1228 uint32_t handle, int fd);
1229 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1230 bool anv_gem_supports_syncobj_wait(int fd);
1231 int anv_gem_syncobj_wait(struct anv_device *device,
1232 uint32_t *handles, uint32_t num_handles,
1233 int64_t abs_timeout_ns, bool wait_all);
1234
1235 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1236 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1237
1238 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1239
1240 struct anv_reloc_list {
1241 uint32_t num_relocs;
1242 uint32_t array_length;
1243 struct drm_i915_gem_relocation_entry * relocs;
1244 struct anv_bo ** reloc_bos;
1245 struct set * deps;
1246 };
1247
1248 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1249 const VkAllocationCallbacks *alloc);
1250 void anv_reloc_list_finish(struct anv_reloc_list *list,
1251 const VkAllocationCallbacks *alloc);
1252
1253 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1254 const VkAllocationCallbacks *alloc,
1255 uint32_t offset, struct anv_bo *target_bo,
1256 uint32_t delta);
1257
1258 struct anv_batch_bo {
1259 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1260 struct list_head link;
1261
1262 struct anv_bo bo;
1263
1264 /* Bytes actually consumed in this batch BO */
1265 uint32_t length;
1266
1267 struct anv_reloc_list relocs;
1268 };
1269
1270 struct anv_batch {
1271 const VkAllocationCallbacks * alloc;
1272
1273 void * start;
1274 void * end;
1275 void * next;
1276
1277 struct anv_reloc_list * relocs;
1278
1279 /* This callback is called (with the associated user data) in the event
1280 * that the batch runs out of space.
1281 */
1282 VkResult (*extend_cb)(struct anv_batch *, void *);
1283 void * user_data;
1284
1285 /**
1286 * Current error status of the command buffer. Used to track inconsistent
1287 * or incomplete command buffer states that are the consequence of run-time
1288 * errors such as out of memory scenarios. We want to track this in the
1289 * batch because the command buffer object is not visible to some parts
1290 * of the driver.
1291 */
1292 VkResult status;
1293 };
1294
1295 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1296 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1297 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1298 void *location, struct anv_bo *bo, uint32_t offset);
1299 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1300 struct anv_batch *batch);
1301
1302 static inline VkResult
1303 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1304 {
1305 assert(error != VK_SUCCESS);
1306 if (batch->status == VK_SUCCESS)
1307 batch->status = error;
1308 return batch->status;
1309 }
1310
1311 static inline bool
1312 anv_batch_has_error(struct anv_batch *batch)
1313 {
1314 return batch->status != VK_SUCCESS;
1315 }
1316
1317 struct anv_address {
1318 struct anv_bo *bo;
1319 uint32_t offset;
1320 };
1321
1322 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1323
1324 static inline bool
1325 anv_address_is_null(struct anv_address addr)
1326 {
1327 return addr.bo == NULL && addr.offset == 0;
1328 }
1329
1330 static inline uint64_t
1331 anv_address_physical(struct anv_address addr)
1332 {
1333 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1334 return gen_canonical_address(addr.bo->offset + addr.offset);
1335 else
1336 return gen_canonical_address(addr.offset);
1337 }
1338
1339 static inline struct anv_address
1340 anv_address_add(struct anv_address addr, uint64_t offset)
1341 {
1342 addr.offset += offset;
1343 return addr;
1344 }
1345
1346 static inline void
1347 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1348 {
1349 unsigned reloc_size = 0;
1350 if (device->info.gen >= 8) {
1351 reloc_size = sizeof(uint64_t);
1352 *(uint64_t *)p = gen_canonical_address(v);
1353 } else {
1354 reloc_size = sizeof(uint32_t);
1355 *(uint32_t *)p = v;
1356 }
1357
1358 if (flush && !device->info.has_llc)
1359 gen_flush_range(p, reloc_size);
1360 }
1361
1362 static inline uint64_t
1363 _anv_combine_address(struct anv_batch *batch, void *location,
1364 const struct anv_address address, uint32_t delta)
1365 {
1366 if (address.bo == NULL) {
1367 return address.offset + delta;
1368 } else {
1369 assert(batch->start <= location && location < batch->end);
1370
1371 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1372 }
1373 }
1374
1375 #define __gen_address_type struct anv_address
1376 #define __gen_user_data struct anv_batch
1377 #define __gen_combine_address _anv_combine_address
1378
1379 /* Wrapper macros needed to work around preprocessor argument issues. In
1380 * particular, arguments don't get pre-evaluated if they are concatenated.
1381 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1382 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1383 * We can work around this easily enough with these helpers.
1384 */
1385 #define __anv_cmd_length(cmd) cmd ## _length
1386 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1387 #define __anv_cmd_header(cmd) cmd ## _header
1388 #define __anv_cmd_pack(cmd) cmd ## _pack
1389 #define __anv_reg_num(reg) reg ## _num
1390
1391 #define anv_pack_struct(dst, struc, ...) do { \
1392 struct struc __template = { \
1393 __VA_ARGS__ \
1394 }; \
1395 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1396 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1397 } while (0)
1398
1399 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1400 void *__dst = anv_batch_emit_dwords(batch, n); \
1401 if (__dst) { \
1402 struct cmd __template = { \
1403 __anv_cmd_header(cmd), \
1404 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1405 __VA_ARGS__ \
1406 }; \
1407 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1408 } \
1409 __dst; \
1410 })
1411
1412 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1413 do { \
1414 uint32_t *dw; \
1415 \
1416 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1417 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1418 if (!dw) \
1419 break; \
1420 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1421 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1422 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1423 } while (0)
1424
1425 #define anv_batch_emit(batch, cmd, name) \
1426 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1427 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1428 __builtin_expect(_dst != NULL, 1); \
1429 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1430 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1431 _dst = NULL; \
1432 }))
1433
1434 /* MEMORY_OBJECT_CONTROL_STATE:
1435 * .GraphicsDataTypeGFDT = 0,
1436 * .LLCCacheabilityControlLLCCC = 0,
1437 * .L3CacheabilityControlL3CC = 1,
1438 */
1439 #define GEN7_MOCS 1
1440
1441 /* MEMORY_OBJECT_CONTROL_STATE:
1442 * .LLCeLLCCacheabilityControlLLCCC = 0,
1443 * .L3CacheabilityControlL3CC = 1,
1444 */
1445 #define GEN75_MOCS 1
1446
1447 /* MEMORY_OBJECT_CONTROL_STATE:
1448 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1449 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1450 * .AgeforQUADLRU = 0
1451 */
1452 #define GEN8_MOCS 0x78
1453
1454 /* MEMORY_OBJECT_CONTROL_STATE:
1455 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1456 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1457 * .AgeforQUADLRU = 0
1458 */
1459 #define GEN8_EXTERNAL_MOCS 0x18
1460
1461 /* Skylake: MOCS is now an index into an array of 62 different caching
1462 * configurations programmed by the kernel.
1463 */
1464
1465 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1466 #define GEN9_MOCS (2 << 1)
1467
1468 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1469 #define GEN9_EXTERNAL_MOCS (1 << 1)
1470
1471 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1472 #define GEN10_MOCS GEN9_MOCS
1473 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1474
1475 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1476 #define GEN11_MOCS GEN9_MOCS
1477 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1478
1479 struct anv_device_memory {
1480 struct anv_bo * bo;
1481 struct anv_memory_type * type;
1482 VkDeviceSize map_size;
1483 void * map;
1484
1485 /* If set, we are holding reference to AHardwareBuffer
1486 * which we must release when memory is freed.
1487 */
1488 struct AHardwareBuffer * ahw;
1489 };
1490
1491 /**
1492 * Header for Vertex URB Entry (VUE)
1493 */
1494 struct anv_vue_header {
1495 uint32_t Reserved;
1496 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1497 uint32_t ViewportIndex;
1498 float PointWidth;
1499 };
1500
1501 struct anv_descriptor_set_binding_layout {
1502 #ifndef NDEBUG
1503 /* The type of the descriptors in this binding */
1504 VkDescriptorType type;
1505 #endif
1506
1507 /* Number of array elements in this binding */
1508 uint16_t array_size;
1509
1510 /* Index into the flattend descriptor set */
1511 uint16_t descriptor_index;
1512
1513 /* Index into the dynamic state array for a dynamic buffer */
1514 int16_t dynamic_offset_index;
1515
1516 /* Index into the descriptor set buffer views */
1517 int16_t buffer_index;
1518
1519 struct {
1520 /* Index into the binding table for the associated surface */
1521 int16_t surface_index;
1522
1523 /* Index into the sampler table for the associated sampler */
1524 int16_t sampler_index;
1525
1526 /* Index into the image table for the associated image */
1527 int16_t image_index;
1528 } stage[MESA_SHADER_STAGES];
1529
1530 /* Immutable samplers (or NULL if no immutable samplers) */
1531 struct anv_sampler **immutable_samplers;
1532 };
1533
1534 struct anv_descriptor_set_layout {
1535 /* Descriptor set layouts can be destroyed at almost any time */
1536 uint32_t ref_cnt;
1537
1538 /* Number of bindings in this descriptor set */
1539 uint16_t binding_count;
1540
1541 /* Total size of the descriptor set with room for all array entries */
1542 uint16_t size;
1543
1544 /* Shader stages affected by this descriptor set */
1545 uint16_t shader_stages;
1546
1547 /* Number of buffers in this descriptor set */
1548 uint16_t buffer_count;
1549
1550 /* Number of dynamic offsets used by this descriptor set */
1551 uint16_t dynamic_offset_count;
1552
1553 /* Bindings in this descriptor set */
1554 struct anv_descriptor_set_binding_layout binding[0];
1555 };
1556
1557 static inline void
1558 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1559 {
1560 assert(layout && layout->ref_cnt >= 1);
1561 p_atomic_inc(&layout->ref_cnt);
1562 }
1563
1564 static inline void
1565 anv_descriptor_set_layout_unref(struct anv_device *device,
1566 struct anv_descriptor_set_layout *layout)
1567 {
1568 assert(layout && layout->ref_cnt >= 1);
1569 if (p_atomic_dec_zero(&layout->ref_cnt))
1570 vk_free(&device->alloc, layout);
1571 }
1572
1573 struct anv_descriptor {
1574 VkDescriptorType type;
1575
1576 union {
1577 struct {
1578 VkImageLayout layout;
1579 struct anv_image_view *image_view;
1580 struct anv_sampler *sampler;
1581 };
1582
1583 struct {
1584 struct anv_buffer *buffer;
1585 uint64_t offset;
1586 uint64_t range;
1587 };
1588
1589 struct anv_buffer_view *buffer_view;
1590 };
1591 };
1592
1593 struct anv_descriptor_set {
1594 struct anv_descriptor_set_layout *layout;
1595 uint32_t size;
1596 uint32_t buffer_count;
1597 struct anv_buffer_view *buffer_views;
1598 struct anv_descriptor descriptors[0];
1599 };
1600
1601 struct anv_buffer_view {
1602 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1603 uint64_t range; /**< VkBufferViewCreateInfo::range */
1604
1605 struct anv_address address;
1606
1607 struct anv_state surface_state;
1608 struct anv_state storage_surface_state;
1609 struct anv_state writeonly_storage_surface_state;
1610
1611 struct brw_image_param storage_image_param;
1612 };
1613
1614 struct anv_push_descriptor_set {
1615 struct anv_descriptor_set set;
1616
1617 /* Put this field right behind anv_descriptor_set so it fills up the
1618 * descriptors[0] field. */
1619 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1620 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1621 };
1622
1623 struct anv_descriptor_pool {
1624 uint32_t size;
1625 uint32_t next;
1626 uint32_t free_list;
1627
1628 struct anv_state_stream surface_state_stream;
1629 void *surface_state_free_list;
1630
1631 char data[0];
1632 };
1633
1634 enum anv_descriptor_template_entry_type {
1635 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1636 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1637 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1638 };
1639
1640 struct anv_descriptor_template_entry {
1641 /* The type of descriptor in this entry */
1642 VkDescriptorType type;
1643
1644 /* Binding in the descriptor set */
1645 uint32_t binding;
1646
1647 /* Offset at which to write into the descriptor set binding */
1648 uint32_t array_element;
1649
1650 /* Number of elements to write into the descriptor set binding */
1651 uint32_t array_count;
1652
1653 /* Offset into the user provided data */
1654 size_t offset;
1655
1656 /* Stride between elements into the user provided data */
1657 size_t stride;
1658 };
1659
1660 struct anv_descriptor_update_template {
1661 VkPipelineBindPoint bind_point;
1662
1663 /* The descriptor set this template corresponds to. This value is only
1664 * valid if the template was created with the templateType
1665 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1666 */
1667 uint8_t set;
1668
1669 /* Number of entries in this template */
1670 uint32_t entry_count;
1671
1672 /* Entries of the template */
1673 struct anv_descriptor_template_entry entries[0];
1674 };
1675
1676 size_t
1677 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1678
1679 void
1680 anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
1681 const struct gen_device_info * const devinfo,
1682 const VkDescriptorImageInfo * const info,
1683 VkDescriptorType type,
1684 uint32_t binding,
1685 uint32_t element);
1686
1687 void
1688 anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
1689 VkDescriptorType type,
1690 struct anv_buffer_view *buffer_view,
1691 uint32_t binding,
1692 uint32_t element);
1693
1694 void
1695 anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
1696 struct anv_device *device,
1697 struct anv_state_stream *alloc_stream,
1698 VkDescriptorType type,
1699 struct anv_buffer *buffer,
1700 uint32_t binding,
1701 uint32_t element,
1702 VkDeviceSize offset,
1703 VkDeviceSize range);
1704
1705 void
1706 anv_descriptor_set_write_template(struct anv_descriptor_set *set,
1707 struct anv_device *device,
1708 struct anv_state_stream *alloc_stream,
1709 const struct anv_descriptor_update_template *template,
1710 const void *data);
1711
1712 VkResult
1713 anv_descriptor_set_create(struct anv_device *device,
1714 struct anv_descriptor_pool *pool,
1715 struct anv_descriptor_set_layout *layout,
1716 struct anv_descriptor_set **out_set);
1717
1718 void
1719 anv_descriptor_set_destroy(struct anv_device *device,
1720 struct anv_descriptor_pool *pool,
1721 struct anv_descriptor_set *set);
1722
1723 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
1724 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
1725 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1726
1727 struct anv_pipeline_binding {
1728 /* The descriptor set this surface corresponds to. The special value of
1729 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1730 * to a color attachment and not a regular descriptor.
1731 */
1732 uint8_t set;
1733
1734 /* Binding in the descriptor set */
1735 uint32_t binding;
1736
1737 /* Index in the binding */
1738 uint32_t index;
1739
1740 /* Plane in the binding index */
1741 uint8_t plane;
1742
1743 /* Input attachment index (relative to the subpass) */
1744 uint8_t input_attachment_index;
1745
1746 /* For a storage image, whether it is write-only */
1747 bool write_only;
1748 };
1749
1750 struct anv_pipeline_layout {
1751 struct {
1752 struct anv_descriptor_set_layout *layout;
1753 uint32_t dynamic_offset_start;
1754 } set[MAX_SETS];
1755
1756 uint32_t num_sets;
1757
1758 struct {
1759 bool has_dynamic_offsets;
1760 } stage[MESA_SHADER_STAGES];
1761
1762 unsigned char sha1[20];
1763 };
1764
1765 struct anv_buffer {
1766 struct anv_device * device;
1767 VkDeviceSize size;
1768
1769 VkBufferUsageFlags usage;
1770
1771 /* Set when bound */
1772 struct anv_address address;
1773 };
1774
1775 static inline uint64_t
1776 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1777 {
1778 assert(offset <= buffer->size);
1779 if (range == VK_WHOLE_SIZE) {
1780 return buffer->size - offset;
1781 } else {
1782 assert(range + offset >= range);
1783 assert(range + offset <= buffer->size);
1784 return range;
1785 }
1786 }
1787
1788 enum anv_cmd_dirty_bits {
1789 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1790 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1791 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1792 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1793 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1794 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1795 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1796 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1797 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1798 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1799 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1800 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1801 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1802 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
1803 };
1804 typedef uint32_t anv_cmd_dirty_mask_t;
1805
1806 enum anv_pipe_bits {
1807 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1808 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1809 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1810 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1811 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1812 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1813 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1814 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1815 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1816 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1817 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1818
1819 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1820 * a flush has happened but not a CS stall. The next time we do any sort
1821 * of invalidation we need to insert a CS stall at that time. Otherwise,
1822 * we would have to CS stall on every flush which could be bad.
1823 */
1824 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1825
1826 /* This bit does not exist directly in PIPE_CONTROL. It means that render
1827 * target operations related to transfer commands with VkBuffer as
1828 * destination are ongoing. Some operations like copies on the command
1829 * streamer might need to be aware of this to trigger the appropriate stall
1830 * before they can proceed with the copy.
1831 */
1832 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
1833 };
1834
1835 #define ANV_PIPE_FLUSH_BITS ( \
1836 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1837 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1838 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1839
1840 #define ANV_PIPE_STALL_BITS ( \
1841 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1842 ANV_PIPE_DEPTH_STALL_BIT | \
1843 ANV_PIPE_CS_STALL_BIT)
1844
1845 #define ANV_PIPE_INVALIDATE_BITS ( \
1846 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1847 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1848 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1849 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1850 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1851 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1852
1853 static inline enum anv_pipe_bits
1854 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1855 {
1856 enum anv_pipe_bits pipe_bits = 0;
1857
1858 unsigned b;
1859 for_each_bit(b, flags) {
1860 switch ((VkAccessFlagBits)(1 << b)) {
1861 case VK_ACCESS_SHADER_WRITE_BIT:
1862 /* We're transitioning a buffer that was previously used as write
1863 * destination through the data port. To make its content available
1864 * to future operations, flush the data cache.
1865 */
1866 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1867 break;
1868 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1869 /* We're transitioning a buffer that was previously used as render
1870 * target. To make its content available to future operations, flush
1871 * the render target cache.
1872 */
1873 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1874 break;
1875 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1876 /* We're transitioning a buffer that was previously used as depth
1877 * buffer. To make its content available to future operations, flush
1878 * the depth cache.
1879 */
1880 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1881 break;
1882 case VK_ACCESS_TRANSFER_WRITE_BIT:
1883 /* We're transitioning a buffer that was previously used as a
1884 * transfer write destination. Generic write operations include color
1885 * & depth operations as well as buffer operations like :
1886 * - vkCmdClearColorImage()
1887 * - vkCmdClearDepthStencilImage()
1888 * - vkCmdBlitImage()
1889 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
1890 *
1891 * Most of these operations are implemented using Blorp which writes
1892 * through the render target, so flush that cache to make it visible
1893 * to future operations. And for depth related operations we also
1894 * need to flush the depth cache.
1895 */
1896 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1897 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1898 break;
1899 case VK_ACCESS_MEMORY_WRITE_BIT:
1900 /* We're transitioning a buffer for generic write operations. Flush
1901 * all the caches.
1902 */
1903 pipe_bits |= ANV_PIPE_FLUSH_BITS;
1904 break;
1905 default:
1906 break; /* Nothing to do */
1907 }
1908 }
1909
1910 return pipe_bits;
1911 }
1912
1913 static inline enum anv_pipe_bits
1914 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1915 {
1916 enum anv_pipe_bits pipe_bits = 0;
1917
1918 unsigned b;
1919 for_each_bit(b, flags) {
1920 switch ((VkAccessFlagBits)(1 << b)) {
1921 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1922 /* Indirect draw commands take a buffer as input that we're going to
1923 * read from the command streamer to load some of the HW registers
1924 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
1925 * command streamer stall so that all the cache flushes have
1926 * completed before the command streamer loads from memory.
1927 */
1928 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1929 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
1930 * through a vertex buffer, so invalidate that cache.
1931 */
1932 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1933 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
1934 * UBO from the buffer, so we need to invalidate constant cache.
1935 */
1936 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1937 break;
1938 case VK_ACCESS_INDEX_READ_BIT:
1939 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
1940 /* We transitioning a buffer to be used for as input for vkCmdDraw*
1941 * commands, so we invalidate the VF cache to make sure there is no
1942 * stale data when we start rendering.
1943 */
1944 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1945 break;
1946 case VK_ACCESS_UNIFORM_READ_BIT:
1947 /* We transitioning a buffer to be used as uniform data. Because
1948 * uniform is accessed through the data port & sampler, we need to
1949 * invalidate the texture cache (sampler) & constant cache (data
1950 * port) to avoid stale data.
1951 */
1952 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1953 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1954 break;
1955 case VK_ACCESS_SHADER_READ_BIT:
1956 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
1957 case VK_ACCESS_TRANSFER_READ_BIT:
1958 /* Transitioning a buffer to be read through the sampler, so
1959 * invalidate the texture cache, we don't want any stale data.
1960 */
1961 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1962 break;
1963 case VK_ACCESS_MEMORY_READ_BIT:
1964 /* Transitioning a buffer for generic read, invalidate all the
1965 * caches.
1966 */
1967 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
1968 break;
1969 case VK_ACCESS_MEMORY_WRITE_BIT:
1970 /* Generic write, make sure all previously written things land in
1971 * memory.
1972 */
1973 pipe_bits |= ANV_PIPE_FLUSH_BITS;
1974 break;
1975 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
1976 /* Transitioning a buffer for conditional rendering. We'll load the
1977 * content of this buffer into HW registers using the command
1978 * streamer, so we need to stall the command streamer to make sure
1979 * any in-flight flush operations have completed.
1980 */
1981 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1982 break;
1983 default:
1984 break; /* Nothing to do */
1985 }
1986 }
1987
1988 return pipe_bits;
1989 }
1990
1991 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
1992 VK_IMAGE_ASPECT_COLOR_BIT | \
1993 VK_IMAGE_ASPECT_PLANE_0_BIT | \
1994 VK_IMAGE_ASPECT_PLANE_1_BIT | \
1995 VK_IMAGE_ASPECT_PLANE_2_BIT)
1996 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
1997 VK_IMAGE_ASPECT_PLANE_0_BIT | \
1998 VK_IMAGE_ASPECT_PLANE_1_BIT | \
1999 VK_IMAGE_ASPECT_PLANE_2_BIT)
2000
2001 struct anv_vertex_binding {
2002 struct anv_buffer * buffer;
2003 VkDeviceSize offset;
2004 };
2005
2006 struct anv_xfb_binding {
2007 struct anv_buffer * buffer;
2008 VkDeviceSize offset;
2009 VkDeviceSize size;
2010 };
2011
2012 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2013 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2014
2015 struct anv_push_constants {
2016 /* Current allocated size of this push constants data structure.
2017 * Because a decent chunk of it may not be used (images on SKL, for
2018 * instance), we won't actually allocate the entire structure up-front.
2019 */
2020 uint32_t size;
2021
2022 /* Push constant data provided by the client through vkPushConstants */
2023 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2024
2025 /* Used for vkCmdDispatchBase */
2026 uint32_t base_work_group_id[3];
2027
2028 /* Image data for image_load_store on pre-SKL */
2029 struct brw_image_param images[MAX_GEN8_IMAGES];
2030 };
2031
2032 struct anv_dynamic_state {
2033 struct {
2034 uint32_t count;
2035 VkViewport viewports[MAX_VIEWPORTS];
2036 } viewport;
2037
2038 struct {
2039 uint32_t count;
2040 VkRect2D scissors[MAX_SCISSORS];
2041 } scissor;
2042
2043 float line_width;
2044
2045 struct {
2046 float bias;
2047 float clamp;
2048 float slope;
2049 } depth_bias;
2050
2051 float blend_constants[4];
2052
2053 struct {
2054 float min;
2055 float max;
2056 } depth_bounds;
2057
2058 struct {
2059 uint32_t front;
2060 uint32_t back;
2061 } stencil_compare_mask;
2062
2063 struct {
2064 uint32_t front;
2065 uint32_t back;
2066 } stencil_write_mask;
2067
2068 struct {
2069 uint32_t front;
2070 uint32_t back;
2071 } stencil_reference;
2072 };
2073
2074 extern const struct anv_dynamic_state default_dynamic_state;
2075
2076 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2077 const struct anv_dynamic_state *src,
2078 uint32_t copy_mask);
2079
2080 struct anv_surface_state {
2081 struct anv_state state;
2082 /** Address of the surface referred to by this state
2083 *
2084 * This address is relative to the start of the BO.
2085 */
2086 struct anv_address address;
2087 /* Address of the aux surface, if any
2088 *
2089 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2090 *
2091 * With the exception of gen8, the bottom 12 bits of this address' offset
2092 * include extra aux information.
2093 */
2094 struct anv_address aux_address;
2095 /* Address of the clear color, if any
2096 *
2097 * This address is relative to the start of the BO.
2098 */
2099 struct anv_address clear_address;
2100 };
2101
2102 /**
2103 * Attachment state when recording a renderpass instance.
2104 *
2105 * The clear value is valid only if there exists a pending clear.
2106 */
2107 struct anv_attachment_state {
2108 enum isl_aux_usage aux_usage;
2109 enum isl_aux_usage input_aux_usage;
2110 struct anv_surface_state color;
2111 struct anv_surface_state input;
2112
2113 VkImageLayout current_layout;
2114 VkImageAspectFlags pending_clear_aspects;
2115 VkImageAspectFlags pending_load_aspects;
2116 bool fast_clear;
2117 VkClearValue clear_value;
2118 bool clear_color_is_zero_one;
2119 bool clear_color_is_zero;
2120
2121 /* When multiview is active, attachments with a renderpass clear
2122 * operation have their respective layers cleared on the first
2123 * subpass that uses them, and only in that subpass. We keep track
2124 * of this using a bitfield to indicate which layers of an attachment
2125 * have not been cleared yet when multiview is active.
2126 */
2127 uint32_t pending_clear_views;
2128 };
2129
2130 /** State tracking for particular pipeline bind point
2131 *
2132 * This struct is the base struct for anv_cmd_graphics_state and
2133 * anv_cmd_compute_state. These are used to track state which is bound to a
2134 * particular type of pipeline. Generic state that applies per-stage such as
2135 * binding table offsets and push constants is tracked generically with a
2136 * per-stage array in anv_cmd_state.
2137 */
2138 struct anv_cmd_pipeline_state {
2139 struct anv_pipeline *pipeline;
2140 struct anv_pipeline_layout *layout;
2141
2142 struct anv_descriptor_set *descriptors[MAX_SETS];
2143 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2144
2145 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2146 };
2147
2148 /** State tracking for graphics pipeline
2149 *
2150 * This has anv_cmd_pipeline_state as a base struct to track things which get
2151 * bound to a graphics pipeline. Along with general pipeline bind point state
2152 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2153 * state which is graphics-specific.
2154 */
2155 struct anv_cmd_graphics_state {
2156 struct anv_cmd_pipeline_state base;
2157
2158 anv_cmd_dirty_mask_t dirty;
2159 uint32_t vb_dirty;
2160
2161 struct anv_dynamic_state dynamic;
2162
2163 struct {
2164 struct anv_buffer *index_buffer;
2165 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2166 uint32_t index_offset;
2167 } gen7;
2168 };
2169
2170 /** State tracking for compute pipeline
2171 *
2172 * This has anv_cmd_pipeline_state as a base struct to track things which get
2173 * bound to a compute pipeline. Along with general pipeline bind point state
2174 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2175 * state which is compute-specific.
2176 */
2177 struct anv_cmd_compute_state {
2178 struct anv_cmd_pipeline_state base;
2179
2180 bool pipeline_dirty;
2181
2182 struct anv_address num_workgroups;
2183 };
2184
2185 /** State required while building cmd buffer */
2186 struct anv_cmd_state {
2187 /* PIPELINE_SELECT.PipelineSelection */
2188 uint32_t current_pipeline;
2189 const struct gen_l3_config * current_l3_config;
2190
2191 struct anv_cmd_graphics_state gfx;
2192 struct anv_cmd_compute_state compute;
2193
2194 enum anv_pipe_bits pending_pipe_bits;
2195 VkShaderStageFlags descriptors_dirty;
2196 VkShaderStageFlags push_constants_dirty;
2197
2198 struct anv_framebuffer * framebuffer;
2199 struct anv_render_pass * pass;
2200 struct anv_subpass * subpass;
2201 VkRect2D render_area;
2202 uint32_t restart_index;
2203 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2204 bool xfb_enabled;
2205 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2206 VkShaderStageFlags push_constant_stages;
2207 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
2208 struct anv_state binding_tables[MESA_SHADER_STAGES];
2209 struct anv_state samplers[MESA_SHADER_STAGES];
2210
2211 /**
2212 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2213 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2214 * and before invoking the secondary in ExecuteCommands.
2215 */
2216 bool pma_fix_enabled;
2217
2218 /**
2219 * Whether or not we know for certain that HiZ is enabled for the current
2220 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2221 * enabled or not, this will be false.
2222 */
2223 bool hiz_enabled;
2224
2225 bool conditional_render_enabled;
2226
2227 /**
2228 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2229 * valid only when recording a render pass instance.
2230 */
2231 struct anv_attachment_state * attachments;
2232
2233 /**
2234 * Surface states for color render targets. These are stored in a single
2235 * flat array. For depth-stencil attachments, the surface state is simply
2236 * left blank.
2237 */
2238 struct anv_state render_pass_states;
2239
2240 /**
2241 * A null surface state of the right size to match the framebuffer. This
2242 * is one of the states in render_pass_states.
2243 */
2244 struct anv_state null_surface_state;
2245 };
2246
2247 struct anv_cmd_pool {
2248 VkAllocationCallbacks alloc;
2249 struct list_head cmd_buffers;
2250 };
2251
2252 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2253
2254 enum anv_cmd_buffer_exec_mode {
2255 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2256 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2257 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2258 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2259 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2260 };
2261
2262 struct anv_cmd_buffer {
2263 VK_LOADER_DATA _loader_data;
2264
2265 struct anv_device * device;
2266
2267 struct anv_cmd_pool * pool;
2268 struct list_head pool_link;
2269
2270 struct anv_batch batch;
2271
2272 /* Fields required for the actual chain of anv_batch_bo's.
2273 *
2274 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2275 */
2276 struct list_head batch_bos;
2277 enum anv_cmd_buffer_exec_mode exec_mode;
2278
2279 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2280 * referenced by this command buffer
2281 *
2282 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2283 */
2284 struct u_vector seen_bbos;
2285
2286 /* A vector of int32_t's for every block of binding tables.
2287 *
2288 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2289 */
2290 struct u_vector bt_block_states;
2291 uint32_t bt_next;
2292
2293 struct anv_reloc_list surface_relocs;
2294 /** Last seen surface state block pool center bo offset */
2295 uint32_t last_ss_pool_center;
2296
2297 /* Serial for tracking buffer completion */
2298 uint32_t serial;
2299
2300 /* Stream objects for storing temporary data */
2301 struct anv_state_stream surface_state_stream;
2302 struct anv_state_stream dynamic_state_stream;
2303
2304 VkCommandBufferUsageFlags usage_flags;
2305 VkCommandBufferLevel level;
2306
2307 struct anv_cmd_state state;
2308 };
2309
2310 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2311 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2312 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2313 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2314 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2315 struct anv_cmd_buffer *secondary);
2316 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2317 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2318 struct anv_cmd_buffer *cmd_buffer,
2319 const VkSemaphore *in_semaphores,
2320 uint32_t num_in_semaphores,
2321 const VkSemaphore *out_semaphores,
2322 uint32_t num_out_semaphores,
2323 VkFence fence);
2324
2325 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2326
2327 VkResult
2328 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
2329 gl_shader_stage stage, uint32_t size);
2330 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
2331 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
2332 (offsetof(struct anv_push_constants, field) + \
2333 sizeof(cmd_buffer->state.push_constants[0]->field)))
2334
2335 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2336 const void *data, uint32_t size, uint32_t alignment);
2337 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2338 uint32_t *a, uint32_t *b,
2339 uint32_t dwords, uint32_t alignment);
2340
2341 struct anv_address
2342 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2343 struct anv_state
2344 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2345 uint32_t entries, uint32_t *state_offset);
2346 struct anv_state
2347 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2348 struct anv_state
2349 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2350 uint32_t size, uint32_t alignment);
2351
2352 VkResult
2353 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2354
2355 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2356 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2357 bool depth_clamp_enable);
2358 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2359
2360 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2361 struct anv_render_pass *pass,
2362 struct anv_framebuffer *framebuffer,
2363 const VkClearValue *clear_values);
2364
2365 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2366
2367 struct anv_state
2368 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2369 gl_shader_stage stage);
2370 struct anv_state
2371 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2372
2373 const struct anv_image_view *
2374 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2375
2376 VkResult
2377 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2378 uint32_t num_entries,
2379 uint32_t *state_offset,
2380 struct anv_state *bt_state);
2381
2382 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2383
2384 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2385
2386 enum anv_fence_type {
2387 ANV_FENCE_TYPE_NONE = 0,
2388 ANV_FENCE_TYPE_BO,
2389 ANV_FENCE_TYPE_SYNCOBJ,
2390 ANV_FENCE_TYPE_WSI,
2391 };
2392
2393 enum anv_bo_fence_state {
2394 /** Indicates that this is a new (or newly reset fence) */
2395 ANV_BO_FENCE_STATE_RESET,
2396
2397 /** Indicates that this fence has been submitted to the GPU but is still
2398 * (as far as we know) in use by the GPU.
2399 */
2400 ANV_BO_FENCE_STATE_SUBMITTED,
2401
2402 ANV_BO_FENCE_STATE_SIGNALED,
2403 };
2404
2405 struct anv_fence_impl {
2406 enum anv_fence_type type;
2407
2408 union {
2409 /** Fence implementation for BO fences
2410 *
2411 * These fences use a BO and a set of CPU-tracked state flags. The BO
2412 * is added to the object list of the last execbuf call in a QueueSubmit
2413 * and is marked EXEC_WRITE. The state flags track when the BO has been
2414 * submitted to the kernel. We need to do this because Vulkan lets you
2415 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2416 * will say it's idle in this case.
2417 */
2418 struct {
2419 struct anv_bo bo;
2420 enum anv_bo_fence_state state;
2421 } bo;
2422
2423 /** DRM syncobj handle for syncobj-based fences */
2424 uint32_t syncobj;
2425
2426 /** WSI fence */
2427 struct wsi_fence *fence_wsi;
2428 };
2429 };
2430
2431 struct anv_fence {
2432 /* Permanent fence state. Every fence has some form of permanent state
2433 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2434 * cross-process fences) or it could just be a dummy for use internally.
2435 */
2436 struct anv_fence_impl permanent;
2437
2438 /* Temporary fence state. A fence *may* have temporary state. That state
2439 * is added to the fence by an import operation and is reset back to
2440 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2441 * state cannot be signaled because the fence must already be signaled
2442 * before the temporary state can be exported from the fence in the other
2443 * process and imported here.
2444 */
2445 struct anv_fence_impl temporary;
2446 };
2447
2448 struct anv_event {
2449 uint64_t semaphore;
2450 struct anv_state state;
2451 };
2452
2453 enum anv_semaphore_type {
2454 ANV_SEMAPHORE_TYPE_NONE = 0,
2455 ANV_SEMAPHORE_TYPE_DUMMY,
2456 ANV_SEMAPHORE_TYPE_BO,
2457 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2458 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2459 };
2460
2461 struct anv_semaphore_impl {
2462 enum anv_semaphore_type type;
2463
2464 union {
2465 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2466 * This BO will be added to the object list on any execbuf2 calls for
2467 * which this semaphore is used as a wait or signal fence. When used as
2468 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2469 */
2470 struct anv_bo *bo;
2471
2472 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2473 * If the semaphore is in the unsignaled state due to either just being
2474 * created or because it has been used for a wait, fd will be -1.
2475 */
2476 int fd;
2477
2478 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2479 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2480 * import so we don't need to bother with a userspace cache.
2481 */
2482 uint32_t syncobj;
2483 };
2484 };
2485
2486 struct anv_semaphore {
2487 /* Permanent semaphore state. Every semaphore has some form of permanent
2488 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2489 * (for cross-process semaphores0 or it could just be a dummy for use
2490 * internally.
2491 */
2492 struct anv_semaphore_impl permanent;
2493
2494 /* Temporary semaphore state. A semaphore *may* have temporary state.
2495 * That state is added to the semaphore by an import operation and is reset
2496 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2497 * semaphore with temporary state cannot be signaled because the semaphore
2498 * must already be signaled before the temporary state can be exported from
2499 * the semaphore in the other process and imported here.
2500 */
2501 struct anv_semaphore_impl temporary;
2502 };
2503
2504 void anv_semaphore_reset_temporary(struct anv_device *device,
2505 struct anv_semaphore *semaphore);
2506
2507 struct anv_shader_module {
2508 unsigned char sha1[20];
2509 uint32_t size;
2510 char data[0];
2511 };
2512
2513 static inline gl_shader_stage
2514 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2515 {
2516 assert(__builtin_popcount(vk_stage) == 1);
2517 return ffs(vk_stage) - 1;
2518 }
2519
2520 static inline VkShaderStageFlagBits
2521 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2522 {
2523 return (1 << mesa_stage);
2524 }
2525
2526 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2527
2528 #define anv_foreach_stage(stage, stage_bits) \
2529 for (gl_shader_stage stage, \
2530 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2531 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2532 __tmp &= ~(1 << (stage)))
2533
2534 struct anv_pipeline_bind_map {
2535 uint32_t surface_count;
2536 uint32_t sampler_count;
2537 uint32_t image_count;
2538
2539 struct anv_pipeline_binding * surface_to_descriptor;
2540 struct anv_pipeline_binding * sampler_to_descriptor;
2541 };
2542
2543 struct anv_shader_bin_key {
2544 uint32_t size;
2545 uint8_t data[0];
2546 };
2547
2548 struct anv_shader_bin {
2549 uint32_t ref_cnt;
2550
2551 const struct anv_shader_bin_key *key;
2552
2553 struct anv_state kernel;
2554 uint32_t kernel_size;
2555
2556 struct anv_state constant_data;
2557 uint32_t constant_data_size;
2558
2559 const struct brw_stage_prog_data *prog_data;
2560 uint32_t prog_data_size;
2561
2562 struct nir_xfb_info *xfb_info;
2563
2564 struct anv_pipeline_bind_map bind_map;
2565 };
2566
2567 struct anv_shader_bin *
2568 anv_shader_bin_create(struct anv_device *device,
2569 const void *key, uint32_t key_size,
2570 const void *kernel, uint32_t kernel_size,
2571 const void *constant_data, uint32_t constant_data_size,
2572 const struct brw_stage_prog_data *prog_data,
2573 uint32_t prog_data_size, const void *prog_data_param,
2574 const struct nir_xfb_info *xfb_info,
2575 const struct anv_pipeline_bind_map *bind_map);
2576
2577 void
2578 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2579
2580 static inline void
2581 anv_shader_bin_ref(struct anv_shader_bin *shader)
2582 {
2583 assert(shader && shader->ref_cnt >= 1);
2584 p_atomic_inc(&shader->ref_cnt);
2585 }
2586
2587 static inline void
2588 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2589 {
2590 assert(shader && shader->ref_cnt >= 1);
2591 if (p_atomic_dec_zero(&shader->ref_cnt))
2592 anv_shader_bin_destroy(device, shader);
2593 }
2594
2595 struct anv_pipeline {
2596 struct anv_device * device;
2597 struct anv_batch batch;
2598 uint32_t batch_data[512];
2599 struct anv_reloc_list batch_relocs;
2600 uint32_t dynamic_state_mask;
2601 struct anv_dynamic_state dynamic_state;
2602
2603 struct anv_subpass * subpass;
2604
2605 bool needs_data_cache;
2606
2607 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2608
2609 struct {
2610 const struct gen_l3_config * l3_config;
2611 uint32_t total_size;
2612 } urb;
2613
2614 VkShaderStageFlags active_stages;
2615 struct anv_state blend_state;
2616
2617 uint32_t vb_used;
2618 struct anv_pipeline_vertex_binding {
2619 uint32_t stride;
2620 bool instanced;
2621 uint32_t instance_divisor;
2622 } vb[MAX_VBS];
2623
2624 uint8_t xfb_used;
2625
2626 bool primitive_restart;
2627 uint32_t topology;
2628
2629 uint32_t cs_right_mask;
2630
2631 bool writes_depth;
2632 bool depth_test_enable;
2633 bool writes_stencil;
2634 bool stencil_test_enable;
2635 bool depth_clamp_enable;
2636 bool depth_clip_enable;
2637 bool sample_shading_enable;
2638 bool kill_pixel;
2639
2640 struct {
2641 uint32_t sf[7];
2642 uint32_t depth_stencil_state[3];
2643 } gen7;
2644
2645 struct {
2646 uint32_t sf[4];
2647 uint32_t raster[5];
2648 uint32_t wm_depth_stencil[3];
2649 } gen8;
2650
2651 struct {
2652 uint32_t wm_depth_stencil[4];
2653 } gen9;
2654
2655 uint32_t interface_descriptor_data[8];
2656 };
2657
2658 static inline bool
2659 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2660 gl_shader_stage stage)
2661 {
2662 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2663 }
2664
2665 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2666 static inline const struct brw_##prefix##_prog_data * \
2667 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2668 { \
2669 if (anv_pipeline_has_stage(pipeline, stage)) { \
2670 return (const struct brw_##prefix##_prog_data *) \
2671 pipeline->shaders[stage]->prog_data; \
2672 } else { \
2673 return NULL; \
2674 } \
2675 }
2676
2677 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2678 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2679 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2680 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2681 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2682 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2683
2684 static inline const struct brw_vue_prog_data *
2685 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2686 {
2687 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2688 return &get_gs_prog_data(pipeline)->base;
2689 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2690 return &get_tes_prog_data(pipeline)->base;
2691 else
2692 return &get_vs_prog_data(pipeline)->base;
2693 }
2694
2695 VkResult
2696 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2697 struct anv_pipeline_cache *cache,
2698 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2699 const VkAllocationCallbacks *alloc);
2700
2701 VkResult
2702 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2703 struct anv_pipeline_cache *cache,
2704 const VkComputePipelineCreateInfo *info,
2705 const struct anv_shader_module *module,
2706 const char *entrypoint,
2707 const VkSpecializationInfo *spec_info);
2708
2709 struct anv_format_plane {
2710 enum isl_format isl_format:16;
2711 struct isl_swizzle swizzle;
2712
2713 /* Whether this plane contains chroma channels */
2714 bool has_chroma;
2715
2716 /* For downscaling of YUV planes */
2717 uint8_t denominator_scales[2];
2718
2719 /* How to map sampled ycbcr planes to a single 4 component element. */
2720 struct isl_swizzle ycbcr_swizzle;
2721
2722 /* What aspect is associated to this plane */
2723 VkImageAspectFlags aspect;
2724 };
2725
2726
2727 struct anv_format {
2728 struct anv_format_plane planes[3];
2729 VkFormat vk_format;
2730 uint8_t n_planes;
2731 bool can_ycbcr;
2732 };
2733
2734 static inline uint32_t
2735 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
2736 VkImageAspectFlags aspect_mask)
2737 {
2738 switch (aspect_mask) {
2739 case VK_IMAGE_ASPECT_COLOR_BIT:
2740 case VK_IMAGE_ASPECT_DEPTH_BIT:
2741 case VK_IMAGE_ASPECT_PLANE_0_BIT:
2742 return 0;
2743 case VK_IMAGE_ASPECT_STENCIL_BIT:
2744 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
2745 return 0;
2746 /* Fall-through */
2747 case VK_IMAGE_ASPECT_PLANE_1_BIT:
2748 return 1;
2749 case VK_IMAGE_ASPECT_PLANE_2_BIT:
2750 return 2;
2751 default:
2752 /* Purposefully assert with depth/stencil aspects. */
2753 unreachable("invalid image aspect");
2754 }
2755 }
2756
2757 static inline VkImageAspectFlags
2758 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
2759 uint32_t plane)
2760 {
2761 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2762 if (util_bitcount(image_aspects) > 1)
2763 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
2764 return VK_IMAGE_ASPECT_COLOR_BIT;
2765 }
2766 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
2767 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
2768 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
2769 return VK_IMAGE_ASPECT_STENCIL_BIT;
2770 }
2771
2772 #define anv_foreach_image_aspect_bit(b, image, aspects) \
2773 for_each_bit(b, anv_image_expand_aspects(image, aspects))
2774
2775 const struct anv_format *
2776 anv_get_format(VkFormat format);
2777
2778 static inline uint32_t
2779 anv_get_format_planes(VkFormat vk_format)
2780 {
2781 const struct anv_format *format = anv_get_format(vk_format);
2782
2783 return format != NULL ? format->n_planes : 0;
2784 }
2785
2786 struct anv_format_plane
2787 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
2788 VkImageAspectFlagBits aspect, VkImageTiling tiling);
2789
2790 static inline enum isl_format
2791 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
2792 VkImageAspectFlags aspect, VkImageTiling tiling)
2793 {
2794 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
2795 }
2796
2797 static inline struct isl_swizzle
2798 anv_swizzle_for_render(struct isl_swizzle swizzle)
2799 {
2800 /* Sometimes the swizzle will have alpha map to one. We do this to fake
2801 * RGB as RGBA for texturing
2802 */
2803 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
2804 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
2805
2806 /* But it doesn't matter what we render to that channel */
2807 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
2808
2809 return swizzle;
2810 }
2811
2812 void
2813 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
2814
2815 /**
2816 * Subsurface of an anv_image.
2817 */
2818 struct anv_surface {
2819 /** Valid only if isl_surf::size_B > 0. */
2820 struct isl_surf isl;
2821
2822 /**
2823 * Offset from VkImage's base address, as bound by vkBindImageMemory().
2824 */
2825 uint32_t offset;
2826 };
2827
2828 struct anv_image {
2829 VkImageType type;
2830 /* The original VkFormat provided by the client. This may not match any
2831 * of the actual surface formats.
2832 */
2833 VkFormat vk_format;
2834 const struct anv_format *format;
2835
2836 VkImageAspectFlags aspects;
2837 VkExtent3D extent;
2838 uint32_t levels;
2839 uint32_t array_size;
2840 uint32_t samples; /**< VkImageCreateInfo::samples */
2841 uint32_t n_planes;
2842 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
2843 VkImageCreateFlags create_flags; /* Flags used when creating image. */
2844 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
2845
2846 /** True if this is needs to be bound to an appropriately tiled BO.
2847 *
2848 * When not using modifiers, consumers such as X11, Wayland, and KMS need
2849 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
2850 * we require a dedicated allocation so that we can know to allocate a
2851 * tiled buffer.
2852 */
2853 bool needs_set_tiling;
2854
2855 /**
2856 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
2857 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
2858 */
2859 uint64_t drm_format_mod;
2860
2861 VkDeviceSize size;
2862 uint32_t alignment;
2863
2864 /* Whether the image is made of several underlying buffer objects rather a
2865 * single one with different offsets.
2866 */
2867 bool disjoint;
2868
2869 /* All the formats that can be used when creating views of this image
2870 * are CCS_E compatible.
2871 */
2872 bool ccs_e_compatible;
2873
2874 /* Image was created with external format. */
2875 bool external_format;
2876
2877 /**
2878 * Image subsurfaces
2879 *
2880 * For each foo, anv_image::planes[x].surface is valid if and only if
2881 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
2882 * to figure the number associated with a given aspect.
2883 *
2884 * The hardware requires that the depth buffer and stencil buffer be
2885 * separate surfaces. From Vulkan's perspective, though, depth and stencil
2886 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
2887 * allocate the depth and stencil buffers as separate surfaces in the same
2888 * bo.
2889 *
2890 * Memory layout :
2891 *
2892 * -----------------------
2893 * | surface0 | /|\
2894 * ----------------------- |
2895 * | shadow surface0 | |
2896 * ----------------------- | Plane 0
2897 * | aux surface0 | |
2898 * ----------------------- |
2899 * | fast clear colors0 | \|/
2900 * -----------------------
2901 * | surface1 | /|\
2902 * ----------------------- |
2903 * | shadow surface1 | |
2904 * ----------------------- | Plane 1
2905 * | aux surface1 | |
2906 * ----------------------- |
2907 * | fast clear colors1 | \|/
2908 * -----------------------
2909 * | ... |
2910 * | |
2911 * -----------------------
2912 */
2913 struct {
2914 /**
2915 * Offset of the entire plane (whenever the image is disjoint this is
2916 * set to 0).
2917 */
2918 uint32_t offset;
2919
2920 VkDeviceSize size;
2921 uint32_t alignment;
2922
2923 struct anv_surface surface;
2924
2925 /**
2926 * A surface which shadows the main surface and may have different
2927 * tiling. This is used for sampling using a tiling that isn't supported
2928 * for other operations.
2929 */
2930 struct anv_surface shadow_surface;
2931
2932 /**
2933 * For color images, this is the aux usage for this image when not used
2934 * as a color attachment.
2935 *
2936 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
2937 * image has a HiZ buffer.
2938 */
2939 enum isl_aux_usage aux_usage;
2940
2941 struct anv_surface aux_surface;
2942
2943 /**
2944 * Offset of the fast clear state (used to compute the
2945 * fast_clear_state_offset of the following planes).
2946 */
2947 uint32_t fast_clear_state_offset;
2948
2949 /**
2950 * BO associated with this plane, set when bound.
2951 */
2952 struct anv_address address;
2953
2954 /**
2955 * When destroying the image, also free the bo.
2956 * */
2957 bool bo_is_owned;
2958 } planes[3];
2959 };
2960
2961 /* The ordering of this enum is important */
2962 enum anv_fast_clear_type {
2963 /** Image does not have/support any fast-clear blocks */
2964 ANV_FAST_CLEAR_NONE = 0,
2965 /** Image has/supports fast-clear but only to the default value */
2966 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
2967 /** Image has/supports fast-clear with an arbitrary fast-clear value */
2968 ANV_FAST_CLEAR_ANY = 2,
2969 };
2970
2971 /* Returns the number of auxiliary buffer levels attached to an image. */
2972 static inline uint8_t
2973 anv_image_aux_levels(const struct anv_image * const image,
2974 VkImageAspectFlagBits aspect)
2975 {
2976 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2977 return image->planes[plane].aux_surface.isl.size_B > 0 ?
2978 image->planes[plane].aux_surface.isl.levels : 0;
2979 }
2980
2981 /* Returns the number of auxiliary buffer layers attached to an image. */
2982 static inline uint32_t
2983 anv_image_aux_layers(const struct anv_image * const image,
2984 VkImageAspectFlagBits aspect,
2985 const uint8_t miplevel)
2986 {
2987 assert(image);
2988
2989 /* The miplevel must exist in the main buffer. */
2990 assert(miplevel < image->levels);
2991
2992 if (miplevel >= anv_image_aux_levels(image, aspect)) {
2993 /* There are no layers with auxiliary data because the miplevel has no
2994 * auxiliary data.
2995 */
2996 return 0;
2997 } else {
2998 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2999 return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
3000 image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
3001 }
3002 }
3003
3004 static inline struct anv_address
3005 anv_image_get_clear_color_addr(const struct anv_device *device,
3006 const struct anv_image *image,
3007 VkImageAspectFlagBits aspect)
3008 {
3009 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3010
3011 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3012 return anv_address_add(image->planes[plane].address,
3013 image->planes[plane].fast_clear_state_offset);
3014 }
3015
3016 static inline struct anv_address
3017 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3018 const struct anv_image *image,
3019 VkImageAspectFlagBits aspect)
3020 {
3021 struct anv_address addr =
3022 anv_image_get_clear_color_addr(device, image, aspect);
3023
3024 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3025 device->isl_dev.ss.clear_color_state_size :
3026 device->isl_dev.ss.clear_value_size;
3027 return anv_address_add(addr, clear_color_state_size);
3028 }
3029
3030 static inline struct anv_address
3031 anv_image_get_compression_state_addr(const struct anv_device *device,
3032 const struct anv_image *image,
3033 VkImageAspectFlagBits aspect,
3034 uint32_t level, uint32_t array_layer)
3035 {
3036 assert(level < anv_image_aux_levels(image, aspect));
3037 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3038 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3039 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3040
3041 struct anv_address addr =
3042 anv_image_get_fast_clear_type_addr(device, image, aspect);
3043 addr.offset += 4; /* Go past the fast clear type */
3044
3045 if (image->type == VK_IMAGE_TYPE_3D) {
3046 for (uint32_t l = 0; l < level; l++)
3047 addr.offset += anv_minify(image->extent.depth, l) * 4;
3048 } else {
3049 addr.offset += level * image->array_size * 4;
3050 }
3051 addr.offset += array_layer * 4;
3052
3053 return addr;
3054 }
3055
3056 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3057 static inline bool
3058 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3059 const struct anv_image *image)
3060 {
3061 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3062 return false;
3063
3064 if (devinfo->gen < 8)
3065 return false;
3066
3067 return image->samples == 1;
3068 }
3069
3070 void
3071 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3072 const struct anv_image *image,
3073 VkImageAspectFlagBits aspect,
3074 enum isl_aux_usage aux_usage,
3075 uint32_t level,
3076 uint32_t base_layer,
3077 uint32_t layer_count);
3078
3079 void
3080 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3081 const struct anv_image *image,
3082 VkImageAspectFlagBits aspect,
3083 enum isl_aux_usage aux_usage,
3084 enum isl_format format, struct isl_swizzle swizzle,
3085 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3086 VkRect2D area, union isl_color_value clear_color);
3087 void
3088 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3089 const struct anv_image *image,
3090 VkImageAspectFlags aspects,
3091 enum isl_aux_usage depth_aux_usage,
3092 uint32_t level,
3093 uint32_t base_layer, uint32_t layer_count,
3094 VkRect2D area,
3095 float depth_value, uint8_t stencil_value);
3096 void
3097 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3098 const struct anv_image *src_image,
3099 enum isl_aux_usage src_aux_usage,
3100 uint32_t src_level, uint32_t src_base_layer,
3101 const struct anv_image *dst_image,
3102 enum isl_aux_usage dst_aux_usage,
3103 uint32_t dst_level, uint32_t dst_base_layer,
3104 VkImageAspectFlagBits aspect,
3105 uint32_t src_x, uint32_t src_y,
3106 uint32_t dst_x, uint32_t dst_y,
3107 uint32_t width, uint32_t height,
3108 uint32_t layer_count,
3109 enum blorp_filter filter);
3110 void
3111 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3112 const struct anv_image *image,
3113 VkImageAspectFlagBits aspect, uint32_t level,
3114 uint32_t base_layer, uint32_t layer_count,
3115 enum isl_aux_op hiz_op);
3116 void
3117 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3118 const struct anv_image *image,
3119 VkImageAspectFlags aspects,
3120 uint32_t level,
3121 uint32_t base_layer, uint32_t layer_count,
3122 VkRect2D area, uint8_t stencil_value);
3123 void
3124 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3125 const struct anv_image *image,
3126 enum isl_format format,
3127 VkImageAspectFlagBits aspect,
3128 uint32_t base_layer, uint32_t layer_count,
3129 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3130 bool predicate);
3131 void
3132 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3133 const struct anv_image *image,
3134 enum isl_format format,
3135 VkImageAspectFlagBits aspect, uint32_t level,
3136 uint32_t base_layer, uint32_t layer_count,
3137 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3138 bool predicate);
3139
3140 void
3141 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3142 const struct anv_image *image,
3143 uint32_t base_level, uint32_t level_count,
3144 uint32_t base_layer, uint32_t layer_count);
3145
3146 enum isl_aux_usage
3147 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3148 const struct anv_image *image,
3149 const VkImageAspectFlagBits aspect,
3150 const VkImageLayout layout);
3151
3152 enum anv_fast_clear_type
3153 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3154 const struct anv_image * const image,
3155 const VkImageAspectFlagBits aspect,
3156 const VkImageLayout layout);
3157
3158 /* This is defined as a macro so that it works for both
3159 * VkImageSubresourceRange and VkImageSubresourceLayers
3160 */
3161 #define anv_get_layerCount(_image, _range) \
3162 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3163 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3164
3165 static inline uint32_t
3166 anv_get_levelCount(const struct anv_image *image,
3167 const VkImageSubresourceRange *range)
3168 {
3169 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3170 image->levels - range->baseMipLevel : range->levelCount;
3171 }
3172
3173 static inline VkImageAspectFlags
3174 anv_image_expand_aspects(const struct anv_image *image,
3175 VkImageAspectFlags aspects)
3176 {
3177 /* If the underlying image has color plane aspects and
3178 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3179 * the underlying image. */
3180 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3181 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3182 return image->aspects;
3183
3184 return aspects;
3185 }
3186
3187 static inline bool
3188 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3189 VkImageAspectFlags aspects2)
3190 {
3191 if (aspects1 == aspects2)
3192 return true;
3193
3194 /* Only 1 color aspects are compatibles. */
3195 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3196 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3197 util_bitcount(aspects1) == util_bitcount(aspects2))
3198 return true;
3199
3200 return false;
3201 }
3202
3203 struct anv_image_view {
3204 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3205
3206 VkImageAspectFlags aspect_mask;
3207 VkFormat vk_format;
3208 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3209
3210 unsigned n_planes;
3211 struct {
3212 uint32_t image_plane;
3213
3214 struct isl_view isl;
3215
3216 /**
3217 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3218 * image layout of SHADER_READ_ONLY_OPTIMAL or
3219 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3220 */
3221 struct anv_surface_state optimal_sampler_surface_state;
3222
3223 /**
3224 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3225 * image layout of GENERAL.
3226 */
3227 struct anv_surface_state general_sampler_surface_state;
3228
3229 /**
3230 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3231 * states for write-only and readable, using the real format for
3232 * write-only and the lowered format for readable.
3233 */
3234 struct anv_surface_state storage_surface_state;
3235 struct anv_surface_state writeonly_storage_surface_state;
3236
3237 struct brw_image_param storage_image_param;
3238 } planes[3];
3239 };
3240
3241 enum anv_image_view_state_flags {
3242 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3243 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3244 };
3245
3246 void anv_image_fill_surface_state(struct anv_device *device,
3247 const struct anv_image *image,
3248 VkImageAspectFlagBits aspect,
3249 const struct isl_view *view,
3250 isl_surf_usage_flags_t view_usage,
3251 enum isl_aux_usage aux_usage,
3252 const union isl_color_value *clear_color,
3253 enum anv_image_view_state_flags flags,
3254 struct anv_surface_state *state_inout,
3255 struct brw_image_param *image_param_out);
3256
3257 struct anv_image_create_info {
3258 const VkImageCreateInfo *vk_info;
3259
3260 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3261 isl_tiling_flags_t isl_tiling_flags;
3262
3263 /** These flags will be added to any derived from VkImageCreateInfo. */
3264 isl_surf_usage_flags_t isl_extra_usage_flags;
3265
3266 uint32_t stride;
3267 bool external_format;
3268 };
3269
3270 VkResult anv_image_create(VkDevice _device,
3271 const struct anv_image_create_info *info,
3272 const VkAllocationCallbacks* alloc,
3273 VkImage *pImage);
3274
3275 const struct anv_surface *
3276 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3277 VkImageAspectFlags aspect_mask);
3278
3279 enum isl_format
3280 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3281
3282 static inline struct VkExtent3D
3283 anv_sanitize_image_extent(const VkImageType imageType,
3284 const struct VkExtent3D imageExtent)
3285 {
3286 switch (imageType) {
3287 case VK_IMAGE_TYPE_1D:
3288 return (VkExtent3D) { imageExtent.width, 1, 1 };
3289 case VK_IMAGE_TYPE_2D:
3290 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3291 case VK_IMAGE_TYPE_3D:
3292 return imageExtent;
3293 default:
3294 unreachable("invalid image type");
3295 }
3296 }
3297
3298 static inline struct VkOffset3D
3299 anv_sanitize_image_offset(const VkImageType imageType,
3300 const struct VkOffset3D imageOffset)
3301 {
3302 switch (imageType) {
3303 case VK_IMAGE_TYPE_1D:
3304 return (VkOffset3D) { imageOffset.x, 0, 0 };
3305 case VK_IMAGE_TYPE_2D:
3306 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3307 case VK_IMAGE_TYPE_3D:
3308 return imageOffset;
3309 default:
3310 unreachable("invalid image type");
3311 }
3312 }
3313
3314 VkFormatFeatureFlags
3315 anv_get_image_format_features(const struct gen_device_info *devinfo,
3316 VkFormat vk_format,
3317 const struct anv_format *anv_format,
3318 VkImageTiling vk_tiling);
3319
3320 void anv_fill_buffer_surface_state(struct anv_device *device,
3321 struct anv_state state,
3322 enum isl_format format,
3323 struct anv_address address,
3324 uint32_t range, uint32_t stride);
3325
3326 static inline void
3327 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3328 const struct anv_attachment_state *att_state,
3329 const struct anv_image_view *iview)
3330 {
3331 const struct isl_format_layout *view_fmtl =
3332 isl_format_get_layout(iview->planes[0].isl.format);
3333
3334 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3335 if (view_fmtl->channels.c.bits) \
3336 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3337
3338 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3339 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3340 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3341 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3342
3343 #undef COPY_CLEAR_COLOR_CHANNEL
3344 }
3345
3346
3347 struct anv_ycbcr_conversion {
3348 const struct anv_format * format;
3349 VkSamplerYcbcrModelConversion ycbcr_model;
3350 VkSamplerYcbcrRange ycbcr_range;
3351 VkComponentSwizzle mapping[4];
3352 VkChromaLocation chroma_offsets[2];
3353 VkFilter chroma_filter;
3354 bool chroma_reconstruction;
3355 };
3356
3357 struct anv_sampler {
3358 uint32_t state[3][4];
3359 uint32_t n_planes;
3360 struct anv_ycbcr_conversion *conversion;
3361 };
3362
3363 struct anv_framebuffer {
3364 uint32_t width;
3365 uint32_t height;
3366 uint32_t layers;
3367
3368 uint32_t attachment_count;
3369 struct anv_image_view * attachments[0];
3370 };
3371
3372 struct anv_subpass_attachment {
3373 VkImageUsageFlagBits usage;
3374 uint32_t attachment;
3375 VkImageLayout layout;
3376 };
3377
3378 struct anv_subpass {
3379 uint32_t attachment_count;
3380
3381 /**
3382 * A pointer to all attachment references used in this subpass.
3383 * Only valid if ::attachment_count > 0.
3384 */
3385 struct anv_subpass_attachment * attachments;
3386 uint32_t input_count;
3387 struct anv_subpass_attachment * input_attachments;
3388 uint32_t color_count;
3389 struct anv_subpass_attachment * color_attachments;
3390 struct anv_subpass_attachment * resolve_attachments;
3391
3392 struct anv_subpass_attachment * depth_stencil_attachment;
3393 struct anv_subpass_attachment * ds_resolve_attachment;
3394 VkResolveModeFlagBitsKHR depth_resolve_mode;
3395 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3396
3397 uint32_t view_mask;
3398
3399 /** Subpass has a depth/stencil self-dependency */
3400 bool has_ds_self_dep;
3401
3402 /** Subpass has at least one color resolve attachment */
3403 bool has_color_resolve;
3404 };
3405
3406 static inline unsigned
3407 anv_subpass_view_count(const struct anv_subpass *subpass)
3408 {
3409 return MAX2(1, util_bitcount(subpass->view_mask));
3410 }
3411
3412 struct anv_render_pass_attachment {
3413 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3414 * its members individually.
3415 */
3416 VkFormat format;
3417 uint32_t samples;
3418 VkImageUsageFlags usage;
3419 VkAttachmentLoadOp load_op;
3420 VkAttachmentStoreOp store_op;
3421 VkAttachmentLoadOp stencil_load_op;
3422 VkImageLayout initial_layout;
3423 VkImageLayout final_layout;
3424 VkImageLayout first_subpass_layout;
3425
3426 /* The subpass id in which the attachment will be used last. */
3427 uint32_t last_subpass_idx;
3428 };
3429
3430 struct anv_render_pass {
3431 uint32_t attachment_count;
3432 uint32_t subpass_count;
3433 /* An array of subpass_count+1 flushes, one per subpass boundary */
3434 enum anv_pipe_bits * subpass_flushes;
3435 struct anv_render_pass_attachment * attachments;
3436 struct anv_subpass subpasses[0];
3437 };
3438
3439 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3440
3441 struct anv_query_pool {
3442 VkQueryType type;
3443 VkQueryPipelineStatisticFlags pipeline_statistics;
3444 /** Stride between slots, in bytes */
3445 uint32_t stride;
3446 /** Number of slots in this query pool */
3447 uint32_t slots;
3448 struct anv_bo bo;
3449 };
3450
3451 int anv_get_instance_entrypoint_index(const char *name);
3452 int anv_get_device_entrypoint_index(const char *name);
3453
3454 bool
3455 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3456 const struct anv_instance_extension_table *instance);
3457
3458 bool
3459 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3460 const struct anv_instance_extension_table *instance,
3461 const struct anv_device_extension_table *device);
3462
3463 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3464 const char *name);
3465
3466 void anv_dump_image_to_ppm(struct anv_device *device,
3467 struct anv_image *image, unsigned miplevel,
3468 unsigned array_layer, VkImageAspectFlagBits aspect,
3469 const char *filename);
3470
3471 enum anv_dump_action {
3472 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3473 };
3474
3475 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3476 void anv_dump_finish(void);
3477
3478 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
3479 struct anv_framebuffer *fb);
3480
3481 static inline uint32_t
3482 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3483 {
3484 /* This function must be called from within a subpass. */
3485 assert(cmd_state->pass && cmd_state->subpass);
3486
3487 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3488
3489 /* The id of this subpass shouldn't exceed the number of subpasses in this
3490 * render pass minus 1.
3491 */
3492 assert(subpass_id < cmd_state->pass->subpass_count);
3493 return subpass_id;
3494 }
3495
3496 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3497 \
3498 static inline struct __anv_type * \
3499 __anv_type ## _from_handle(__VkType _handle) \
3500 { \
3501 return (struct __anv_type *) _handle; \
3502 } \
3503 \
3504 static inline __VkType \
3505 __anv_type ## _to_handle(struct __anv_type *_obj) \
3506 { \
3507 return (__VkType) _obj; \
3508 }
3509
3510 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3511 \
3512 static inline struct __anv_type * \
3513 __anv_type ## _from_handle(__VkType _handle) \
3514 { \
3515 return (struct __anv_type *)(uintptr_t) _handle; \
3516 } \
3517 \
3518 static inline __VkType \
3519 __anv_type ## _to_handle(struct __anv_type *_obj) \
3520 { \
3521 return (__VkType)(uintptr_t) _obj; \
3522 }
3523
3524 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3525 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3526
3527 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3528 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3529 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3530 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3531 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3532
3533 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3534 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3535 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3536 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3537 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3538 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3539 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3540 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3541 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3542 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3543 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3544 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3545 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3546 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3547 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3548 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3549 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3550 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3551 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3552 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3553 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3554 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3555 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3556
3557 /* Gen-specific function declarations */
3558 #ifdef genX
3559 # include "anv_genX.h"
3560 #else
3561 # define genX(x) gen7_##x
3562 # include "anv_genX.h"
3563 # undef genX
3564 # define genX(x) gen75_##x
3565 # include "anv_genX.h"
3566 # undef genX
3567 # define genX(x) gen8_##x
3568 # include "anv_genX.h"
3569 # undef genX
3570 # define genX(x) gen9_##x
3571 # include "anv_genX.h"
3572 # undef genX
3573 # define genX(x) gen10_##x
3574 # include "anv_genX.h"
3575 # undef genX
3576 # define genX(x) gen11_##x
3577 # include "anv_genX.h"
3578 # undef genX
3579 #endif
3580
3581 #endif /* ANV_PRIVATE_H */