anv: Support modifiers in GetImageFormatProperties2
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/bitset.h"
53 #include "util/macros.h"
54 #include "util/hash_table.h"
55 #include "util/list.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_batch;
73 struct anv_buffer;
74 struct anv_buffer_view;
75 struct anv_image_view;
76 struct anv_instance;
77
78 struct gen_aux_map_context;
79 struct gen_l3_config;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
132 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
133
134 #define LOW_HEAP_SIZE \
135 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
136 #define DYNAMIC_STATE_POOL_SIZE \
137 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
138 #define BINDING_TABLE_POOL_SIZE \
139 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
140 #define SURFACE_STATE_POOL_SIZE \
141 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
142 #define INSTRUCTION_STATE_POOL_SIZE \
143 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
144 #define CLIENT_VISIBLE_HEAP_SIZE \
145 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
146
147 /* Allowing different clear colors requires us to perform a depth resolve at
148 * the end of certain render passes. This is because while slow clears store
149 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
150 * See the PRMs for examples describing when additional resolves would be
151 * necessary. To enable fast clears without requiring extra resolves, we set
152 * the clear value to a globally-defined one. We could allow different values
153 * if the user doesn't expect coherent data during or after a render passes
154 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
155 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
156 * 1.0f seems to be the only value used. The only application that doesn't set
157 * this value does so through the usage of an seemingly uninitialized clear
158 * value.
159 */
160 #define ANV_HZ_FC_VAL 1.0f
161
162 #define MAX_VBS 28
163 #define MAX_XFB_BUFFERS 4
164 #define MAX_XFB_STREAMS 4
165 #define MAX_SETS 8
166 #define MAX_RTS 8
167 #define MAX_VIEWPORTS 16
168 #define MAX_SCISSORS 16
169 #define MAX_PUSH_CONSTANTS_SIZE 128
170 #define MAX_DYNAMIC_BUFFERS 16
171 #define MAX_IMAGES 64
172 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
173 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
174 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
175
176 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
177 *
178 * "The surface state model is used when a Binding Table Index (specified
179 * in the message descriptor) of less than 240 is specified. In this model,
180 * the Binding Table Index is used to index into the binding table, and the
181 * binding table entry contains a pointer to the SURFACE_STATE."
182 *
183 * Binding table values above 240 are used for various things in the hardware
184 * such as stateless, stateless with incoherent cache, SLM, and bindless.
185 */
186 #define MAX_BINDING_TABLE_SIZE 240
187
188 /* The kernel relocation API has a limitation of a 32-bit delta value
189 * applied to the address before it is written which, in spite of it being
190 * unsigned, is treated as signed . Because of the way that this maps to
191 * the Vulkan API, we cannot handle an offset into a buffer that does not
192 * fit into a signed 32 bits. The only mechanism we have for dealing with
193 * this at the moment is to limit all VkDeviceMemory objects to a maximum
194 * of 2GB each. The Vulkan spec allows us to do this:
195 *
196 * "Some platforms may have a limit on the maximum size of a single
197 * allocation. For example, certain systems may fail to create
198 * allocations with a size greater than or equal to 4GB. Such a limit is
199 * implementation-dependent, and if such a failure occurs then the error
200 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
201 *
202 * We don't use vk_error here because it's not an error so much as an
203 * indication to the application that the allocation is too large.
204 */
205 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
206
207 #define ANV_SVGS_VB_INDEX MAX_VBS
208 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
209
210 /* We reserve this MI ALU register for the purpose of handling predication.
211 * Other code which uses the MI ALU should leave it alone.
212 */
213 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
214
215 /* For gen12 we set the streamout buffers using 4 separate commands
216 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
217 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
218 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
219 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
220 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
221 * 3DSTATE_SO_BUFFER_INDEX_0.
222 */
223 #define SO_BUFFER_INDEX_0_CMD 0x60
224 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
225
226 static inline uint32_t
227 align_down_npot_u32(uint32_t v, uint32_t a)
228 {
229 return v - (v % a);
230 }
231
232 static inline uint32_t
233 align_u32(uint32_t v, uint32_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline uint64_t
240 align_u64(uint64_t v, uint64_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return (v + a - 1) & ~(a - 1);
244 }
245
246 static inline int32_t
247 align_i32(int32_t v, int32_t a)
248 {
249 assert(a != 0 && a == (a & -a));
250 return (v + a - 1) & ~(a - 1);
251 }
252
253 /** Alignment must be a power of 2. */
254 static inline bool
255 anv_is_aligned(uintmax_t n, uintmax_t a)
256 {
257 assert(a == (a & -a));
258 return (n & (a - 1)) == 0;
259 }
260
261 static inline uint32_t
262 anv_minify(uint32_t n, uint32_t levels)
263 {
264 if (unlikely(n == 0))
265 return 0;
266 else
267 return MAX2(n >> levels, 1);
268 }
269
270 static inline float
271 anv_clamp_f(float f, float min, float max)
272 {
273 assert(min < max);
274
275 if (f > max)
276 return max;
277 else if (f < min)
278 return min;
279 else
280 return f;
281 }
282
283 static inline bool
284 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
285 {
286 if (*inout_mask & clear_mask) {
287 *inout_mask &= ~clear_mask;
288 return true;
289 } else {
290 return false;
291 }
292 }
293
294 static inline union isl_color_value
295 vk_to_isl_color(VkClearColorValue color)
296 {
297 return (union isl_color_value) {
298 .u32 = {
299 color.uint32[0],
300 color.uint32[1],
301 color.uint32[2],
302 color.uint32[3],
303 },
304 };
305 }
306
307 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
308 {
309 uintptr_t mask = (1ull << bits) - 1;
310 *flags = ptr & mask;
311 return (void *) (ptr & ~mask);
312 }
313
314 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
315 {
316 uintptr_t value = (uintptr_t) ptr;
317 uintptr_t mask = (1ull << bits) - 1;
318 return value | (mask & flags);
319 }
320
321 #define for_each_bit(b, dword) \
322 for (uint32_t __dword = (dword); \
323 (b) = __builtin_ffs(__dword) - 1, __dword; \
324 __dword &= ~(1 << (b)))
325
326 #define typed_memcpy(dest, src, count) ({ \
327 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
328 memcpy((dest), (src), (count) * sizeof(*(src))); \
329 })
330
331 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
332 * to be added here in order to utilize mapping in debug/error/perf macros.
333 */
334 #define REPORT_OBJECT_TYPE(o) \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), void*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
428 /* The void expression results in a compile-time error \
429 when assigning the result to something. */ \
430 (void)0)))))))))))))))))))))))))))))))
431
432 /* Whenever we generate an error, pass it through this function. Useful for
433 * debugging, where we can break on it. Only call at error site, not when
434 * propagating errors. Might be useful to plug in a stack trace here.
435 */
436
437 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
438 VkDebugReportObjectTypeEXT type, VkResult error,
439 const char *file, int line, const char *format,
440 va_list args);
441
442 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
443 VkDebugReportObjectTypeEXT type, VkResult error,
444 const char *file, int line, const char *format, ...)
445 anv_printflike(7, 8);
446
447 #ifdef DEBUG
448 #define vk_error(error) __vk_errorf(NULL, NULL,\
449 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
450 error, __FILE__, __LINE__, NULL)
451 #define vk_errorv(instance, obj, error, format, args)\
452 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
453 __FILE__, __LINE__, format, args)
454 #define vk_errorf(instance, obj, error, format, ...)\
455 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
456 __FILE__, __LINE__, format, ## __VA_ARGS__)
457 #else
458 #define vk_error(error) error
459 #define vk_errorf(instance, obj, error, format, ...) error
460 #endif
461
462 /**
463 * Warn on ignored extension structs.
464 *
465 * The Vulkan spec requires us to ignore unsupported or unknown structs in
466 * a pNext chain. In debug mode, emitting warnings for ignored structs may
467 * help us discover structs that we should not have ignored.
468 *
469 *
470 * From the Vulkan 1.0.38 spec:
471 *
472 * Any component of the implementation (the loader, any enabled layers,
473 * and drivers) must skip over, without processing (other than reading the
474 * sType and pNext members) any chained structures with sType values not
475 * defined by extensions supported by that component.
476 */
477 #define anv_debug_ignored_stype(sType) \
478 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
479
480 void __anv_perf_warn(struct anv_instance *instance, const void *object,
481 VkDebugReportObjectTypeEXT type, const char *file,
482 int line, const char *format, ...)
483 anv_printflike(6, 7);
484 void anv_loge(const char *format, ...) anv_printflike(1, 2);
485 void anv_loge_v(const char *format, va_list va);
486
487 /**
488 * Print a FINISHME message, including its source location.
489 */
490 #define anv_finishme(format, ...) \
491 do { \
492 static bool reported = false; \
493 if (!reported) { \
494 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
495 ##__VA_ARGS__); \
496 reported = true; \
497 } \
498 } while (0)
499
500 /**
501 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
502 */
503 #define anv_perf_warn(instance, obj, format, ...) \
504 do { \
505 static bool reported = false; \
506 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
507 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
508 format, ##__VA_ARGS__); \
509 reported = true; \
510 } \
511 } while (0)
512
513 /* A non-fatal assert. Useful for debugging. */
514 #ifdef DEBUG
515 #define anv_assert(x) ({ \
516 if (unlikely(!(x))) \
517 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
518 })
519 #else
520 #define anv_assert(x)
521 #endif
522
523 /* A multi-pointer allocator
524 *
525 * When copying data structures from the user (such as a render pass), it's
526 * common to need to allocate data for a bunch of different things. Instead
527 * of doing several allocations and having to handle all of the error checking
528 * that entails, it can be easier to do a single allocation. This struct
529 * helps facilitate that. The intended usage looks like this:
530 *
531 * ANV_MULTIALLOC(ma)
532 * anv_multialloc_add(&ma, &main_ptr, 1);
533 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
534 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
535 *
536 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
537 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
538 */
539 struct anv_multialloc {
540 size_t size;
541 size_t align;
542
543 uint32_t ptr_count;
544 void **ptrs[8];
545 };
546
547 #define ANV_MULTIALLOC_INIT \
548 ((struct anv_multialloc) { 0, })
549
550 #define ANV_MULTIALLOC(_name) \
551 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
552
553 __attribute__((always_inline))
554 static inline void
555 _anv_multialloc_add(struct anv_multialloc *ma,
556 void **ptr, size_t size, size_t align)
557 {
558 size_t offset = align_u64(ma->size, align);
559 ma->size = offset + size;
560 ma->align = MAX2(ma->align, align);
561
562 /* Store the offset in the pointer. */
563 *ptr = (void *)(uintptr_t)offset;
564
565 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
566 ma->ptrs[ma->ptr_count++] = ptr;
567 }
568
569 #define anv_multialloc_add_size(_ma, _ptr, _size) \
570 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
571
572 #define anv_multialloc_add(_ma, _ptr, _count) \
573 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
574
575 __attribute__((always_inline))
576 static inline void *
577 anv_multialloc_alloc(struct anv_multialloc *ma,
578 const VkAllocationCallbacks *alloc,
579 VkSystemAllocationScope scope)
580 {
581 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
582 if (!ptr)
583 return NULL;
584
585 /* Fill out each of the pointers with their final value.
586 *
587 * for (uint32_t i = 0; i < ma->ptr_count; i++)
588 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
589 *
590 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
591 * constant, GCC is incapable of figuring this out and unrolling the loop
592 * so we have to give it a little help.
593 */
594 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
595 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
596 if ((_i) < ma->ptr_count) \
597 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
598 _ANV_MULTIALLOC_UPDATE_POINTER(0);
599 _ANV_MULTIALLOC_UPDATE_POINTER(1);
600 _ANV_MULTIALLOC_UPDATE_POINTER(2);
601 _ANV_MULTIALLOC_UPDATE_POINTER(3);
602 _ANV_MULTIALLOC_UPDATE_POINTER(4);
603 _ANV_MULTIALLOC_UPDATE_POINTER(5);
604 _ANV_MULTIALLOC_UPDATE_POINTER(6);
605 _ANV_MULTIALLOC_UPDATE_POINTER(7);
606 #undef _ANV_MULTIALLOC_UPDATE_POINTER
607
608 return ptr;
609 }
610
611 __attribute__((always_inline))
612 static inline void *
613 anv_multialloc_alloc2(struct anv_multialloc *ma,
614 const VkAllocationCallbacks *parent_alloc,
615 const VkAllocationCallbacks *alloc,
616 VkSystemAllocationScope scope)
617 {
618 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
619 }
620
621 struct anv_bo {
622 uint32_t gem_handle;
623
624 uint32_t refcount;
625
626 /* Index into the current validation list. This is used by the
627 * validation list building alrogithm to track which buffers are already
628 * in the validation list so that we can ensure uniqueness.
629 */
630 uint32_t index;
631
632 /* Index for use with util_sparse_array_free_list */
633 uint32_t free_index;
634
635 /* Last known offset. This value is provided by the kernel when we
636 * execbuf and is used as the presumed offset for the next bunch of
637 * relocations.
638 */
639 uint64_t offset;
640
641 uint64_t size;
642
643 /* Map for internally mapped BOs.
644 *
645 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
646 */
647 void *map;
648
649 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
650 uint32_t flags;
651
652 /** True if this BO may be shared with other processes */
653 bool is_external:1;
654
655 /** True if this BO is a wrapper
656 *
657 * When set to true, none of the fields in this BO are meaningful except
658 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
659 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
660 * is set in the physical device.
661 */
662 bool is_wrapper:1;
663
664 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
665 bool has_fixed_address:1;
666
667 /** True if this BO wraps a host pointer */
668 bool from_host_ptr:1;
669
670 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
671 bool has_client_visible_address:1;
672 };
673
674 static inline struct anv_bo *
675 anv_bo_ref(struct anv_bo *bo)
676 {
677 p_atomic_inc(&bo->refcount);
678 return bo;
679 }
680
681 static inline struct anv_bo *
682 anv_bo_unwrap(struct anv_bo *bo)
683 {
684 while (bo->is_wrapper)
685 bo = bo->map;
686 return bo;
687 }
688
689 /* Represents a lock-free linked list of "free" things. This is used by
690 * both the block pool and the state pools. Unfortunately, in order to
691 * solve the ABA problem, we can't use a single uint32_t head.
692 */
693 union anv_free_list {
694 struct {
695 uint32_t offset;
696
697 /* A simple count that is incremented every time the head changes. */
698 uint32_t count;
699 };
700 /* Make sure it's aligned to 64 bits. This will make atomic operations
701 * faster on 32 bit platforms.
702 */
703 uint64_t u64 __attribute__ ((aligned (8)));
704 };
705
706 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
707
708 struct anv_block_state {
709 union {
710 struct {
711 uint32_t next;
712 uint32_t end;
713 };
714 /* Make sure it's aligned to 64 bits. This will make atomic operations
715 * faster on 32 bit platforms.
716 */
717 uint64_t u64 __attribute__ ((aligned (8)));
718 };
719 };
720
721 #define anv_block_pool_foreach_bo(bo, pool) \
722 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
723 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
724 _pp_bo++)
725
726 #define ANV_MAX_BLOCK_POOL_BOS 20
727
728 struct anv_block_pool {
729 struct anv_device *device;
730 bool use_softpin;
731
732 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
733 * around the actual BO so that we grow the pool after the wrapper BO has
734 * been put in a relocation list. This is only used in the non-softpin
735 * case.
736 */
737 struct anv_bo wrapper_bo;
738
739 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
740 struct anv_bo *bo;
741 uint32_t nbos;
742
743 uint64_t size;
744
745 /* The address where the start of the pool is pinned. The various bos that
746 * are created as the pool grows will have addresses in the range
747 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
748 */
749 uint64_t start_address;
750
751 /* The offset from the start of the bo to the "center" of the block
752 * pool. Pointers to allocated blocks are given by
753 * bo.map + center_bo_offset + offsets.
754 */
755 uint32_t center_bo_offset;
756
757 /* Current memory map of the block pool. This pointer may or may not
758 * point to the actual beginning of the block pool memory. If
759 * anv_block_pool_alloc_back has ever been called, then this pointer
760 * will point to the "center" position of the buffer and all offsets
761 * (negative or positive) given out by the block pool alloc functions
762 * will be valid relative to this pointer.
763 *
764 * In particular, map == bo.map + center_offset
765 *
766 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
767 * since it will handle the softpin case as well, where this points to NULL.
768 */
769 void *map;
770 int fd;
771
772 /**
773 * Array of mmaps and gem handles owned by the block pool, reclaimed when
774 * the block pool is destroyed.
775 */
776 struct u_vector mmap_cleanups;
777
778 struct anv_block_state state;
779
780 struct anv_block_state back_state;
781 };
782
783 /* Block pools are backed by a fixed-size 1GB memfd */
784 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
785
786 /* The center of the block pool is also the middle of the memfd. This may
787 * change in the future if we decide differently for some reason.
788 */
789 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
790
791 static inline uint32_t
792 anv_block_pool_size(struct anv_block_pool *pool)
793 {
794 return pool->state.end + pool->back_state.end;
795 }
796
797 struct anv_state {
798 int32_t offset;
799 uint32_t alloc_size;
800 void *map;
801 uint32_t idx;
802 };
803
804 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
805
806 struct anv_fixed_size_state_pool {
807 union anv_free_list free_list;
808 struct anv_block_state block;
809 };
810
811 #define ANV_MIN_STATE_SIZE_LOG2 6
812 #define ANV_MAX_STATE_SIZE_LOG2 21
813
814 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
815
816 struct anv_free_entry {
817 uint32_t next;
818 struct anv_state state;
819 };
820
821 struct anv_state_table {
822 struct anv_device *device;
823 int fd;
824 struct anv_free_entry *map;
825 uint32_t size;
826 struct anv_block_state state;
827 struct u_vector cleanups;
828 };
829
830 struct anv_state_pool {
831 struct anv_block_pool block_pool;
832
833 struct anv_state_table table;
834
835 /* The size of blocks which will be allocated from the block pool */
836 uint32_t block_size;
837
838 /** Free list for "back" allocations */
839 union anv_free_list back_alloc_free_list;
840
841 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
842 };
843
844 struct anv_state_stream_block;
845
846 struct anv_state_stream {
847 struct anv_state_pool *state_pool;
848
849 /* The size of blocks to allocate from the state pool */
850 uint32_t block_size;
851
852 /* Current block we're allocating from */
853 struct anv_state block;
854
855 /* Offset into the current block at which to allocate the next state */
856 uint32_t next;
857
858 /* List of all blocks allocated from this pool */
859 struct anv_state_stream_block *block_list;
860 };
861
862 /* The block_pool functions exported for testing only. The block pool should
863 * only be used via a state pool (see below).
864 */
865 VkResult anv_block_pool_init(struct anv_block_pool *pool,
866 struct anv_device *device,
867 uint64_t start_address,
868 uint32_t initial_size);
869 void anv_block_pool_finish(struct anv_block_pool *pool);
870 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
871 uint32_t block_size, uint32_t *padding);
872 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
873 uint32_t block_size);
874 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
875
876 VkResult anv_state_pool_init(struct anv_state_pool *pool,
877 struct anv_device *device,
878 uint64_t start_address,
879 uint32_t block_size);
880 void anv_state_pool_finish(struct anv_state_pool *pool);
881 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
882 uint32_t state_size, uint32_t alignment);
883 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
884 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
885 void anv_state_stream_init(struct anv_state_stream *stream,
886 struct anv_state_pool *state_pool,
887 uint32_t block_size);
888 void anv_state_stream_finish(struct anv_state_stream *stream);
889 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
890 uint32_t size, uint32_t alignment);
891
892 VkResult anv_state_table_init(struct anv_state_table *table,
893 struct anv_device *device,
894 uint32_t initial_entries);
895 void anv_state_table_finish(struct anv_state_table *table);
896 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
897 uint32_t count);
898 void anv_free_list_push(union anv_free_list *list,
899 struct anv_state_table *table,
900 uint32_t idx, uint32_t count);
901 struct anv_state* anv_free_list_pop(union anv_free_list *list,
902 struct anv_state_table *table);
903
904
905 static inline struct anv_state *
906 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
907 {
908 return &table->map[idx].state;
909 }
910 /**
911 * Implements a pool of re-usable BOs. The interface is identical to that
912 * of block_pool except that each block is its own BO.
913 */
914 struct anv_bo_pool {
915 struct anv_device *device;
916
917 struct util_sparse_array_free_list free_list[16];
918 };
919
920 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
921 void anv_bo_pool_finish(struct anv_bo_pool *pool);
922 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
923 struct anv_bo **bo_out);
924 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
925
926 struct anv_scratch_pool {
927 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
928 struct anv_bo *bos[16][MESA_SHADER_STAGES];
929 };
930
931 void anv_scratch_pool_init(struct anv_device *device,
932 struct anv_scratch_pool *pool);
933 void anv_scratch_pool_finish(struct anv_device *device,
934 struct anv_scratch_pool *pool);
935 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
936 struct anv_scratch_pool *pool,
937 gl_shader_stage stage,
938 unsigned per_thread_scratch);
939
940 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
941 struct anv_bo_cache {
942 struct util_sparse_array bo_map;
943 pthread_mutex_t mutex;
944 };
945
946 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
947 void anv_bo_cache_finish(struct anv_bo_cache *cache);
948
949 struct anv_memory_type {
950 /* Standard bits passed on to the client */
951 VkMemoryPropertyFlags propertyFlags;
952 uint32_t heapIndex;
953 };
954
955 struct anv_memory_heap {
956 /* Standard bits passed on to the client */
957 VkDeviceSize size;
958 VkMemoryHeapFlags flags;
959
960 /* Driver-internal book-keeping */
961 VkDeviceSize used;
962 };
963
964 struct anv_physical_device {
965 VK_LOADER_DATA _loader_data;
966
967 struct anv_instance * instance;
968 uint32_t chipset_id;
969 bool no_hw;
970 char path[20];
971 const char * name;
972 struct {
973 uint16_t domain;
974 uint8_t bus;
975 uint8_t device;
976 uint8_t function;
977 } pci_info;
978 struct gen_device_info info;
979 /** Amount of "GPU memory" we want to advertise
980 *
981 * Clearly, this value is bogus since Intel is a UMA architecture. On
982 * gen7 platforms, we are limited by GTT size unless we want to implement
983 * fine-grained tracking and GTT splitting. On Broadwell and above we are
984 * practically unlimited. However, we will never report more than 3/4 of
985 * the total system ram to try and avoid running out of RAM.
986 */
987 bool supports_48bit_addresses;
988 struct brw_compiler * compiler;
989 struct isl_device isl_dev;
990 struct gen_perf_config * perf;
991 int cmd_parser_version;
992 bool has_softpin;
993 bool has_exec_async;
994 bool has_exec_capture;
995 bool has_exec_fence;
996 bool has_syncobj;
997 bool has_syncobj_wait;
998 bool has_context_priority;
999 bool has_context_isolation;
1000 bool has_mem_available;
1001 uint64_t gtt_size;
1002
1003 bool use_softpin;
1004 bool always_use_bindless;
1005
1006 /** True if we can access buffers using A64 messages */
1007 bool has_a64_buffer_access;
1008 /** True if we can use bindless access for images */
1009 bool has_bindless_images;
1010 /** True if we can use bindless access for samplers */
1011 bool has_bindless_samplers;
1012
1013 bool always_flush_cache;
1014
1015 struct anv_device_extension_table supported_extensions;
1016 struct anv_physical_device_dispatch_table dispatch;
1017
1018 uint32_t eu_total;
1019 uint32_t subslice_total;
1020
1021 struct {
1022 uint32_t type_count;
1023 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1024 uint32_t heap_count;
1025 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1026 } memory;
1027
1028 uint8_t driver_build_sha1[20];
1029 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1030 uint8_t driver_uuid[VK_UUID_SIZE];
1031 uint8_t device_uuid[VK_UUID_SIZE];
1032
1033 struct disk_cache * disk_cache;
1034
1035 struct wsi_device wsi_device;
1036 int local_fd;
1037 int master_fd;
1038 };
1039
1040 struct anv_app_info {
1041 const char* app_name;
1042 uint32_t app_version;
1043 const char* engine_name;
1044 uint32_t engine_version;
1045 uint32_t api_version;
1046 };
1047
1048 struct anv_instance {
1049 VK_LOADER_DATA _loader_data;
1050
1051 VkAllocationCallbacks alloc;
1052
1053 struct anv_app_info app_info;
1054
1055 struct anv_instance_extension_table enabled_extensions;
1056 struct anv_instance_dispatch_table dispatch;
1057 struct anv_device_dispatch_table device_dispatch;
1058
1059 int physicalDeviceCount;
1060 struct anv_physical_device physicalDevice;
1061
1062 bool pipeline_cache_enabled;
1063
1064 struct vk_debug_report_instance debug_report_callbacks;
1065
1066 struct driOptionCache dri_options;
1067 struct driOptionCache available_dri_options;
1068 };
1069
1070 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1071 void anv_finish_wsi(struct anv_physical_device *physical_device);
1072
1073 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1074 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1075 const char *name);
1076
1077 struct anv_queue_submit {
1078 struct anv_cmd_buffer * cmd_buffer;
1079
1080 uint32_t fence_count;
1081 uint32_t fence_array_length;
1082 struct drm_i915_gem_exec_fence * fences;
1083
1084 uint32_t temporary_semaphore_count;
1085 uint32_t temporary_semaphore_array_length;
1086 struct anv_semaphore_impl * temporary_semaphores;
1087
1088 /* Semaphores to be signaled with a SYNC_FD. */
1089 struct anv_semaphore ** sync_fd_semaphores;
1090 uint32_t sync_fd_semaphore_count;
1091 uint32_t sync_fd_semaphore_array_length;
1092
1093 /* Allocated only with non shareable timelines. */
1094 struct anv_timeline ** wait_timelines;
1095 uint32_t wait_timeline_count;
1096 uint32_t wait_timeline_array_length;
1097 uint64_t * wait_timeline_values;
1098
1099 struct anv_timeline ** signal_timelines;
1100 uint32_t signal_timeline_count;
1101 uint32_t signal_timeline_array_length;
1102 uint64_t * signal_timeline_values;
1103
1104 int in_fence;
1105 bool need_out_fence;
1106 int out_fence;
1107
1108 uint32_t fence_bo_count;
1109 uint32_t fence_bo_array_length;
1110 /* An array of struct anv_bo pointers with lower bit used as a flag to
1111 * signal we will wait on that BO (see anv_(un)pack_ptr).
1112 */
1113 uintptr_t * fence_bos;
1114
1115 const VkAllocationCallbacks * alloc;
1116 VkSystemAllocationScope alloc_scope;
1117
1118 struct anv_bo * simple_bo;
1119 uint32_t simple_bo_size;
1120
1121 struct list_head link;
1122 };
1123
1124 struct anv_queue {
1125 VK_LOADER_DATA _loader_data;
1126
1127 struct anv_device * device;
1128
1129 /*
1130 * A list of struct anv_queue_submit to be submitted to i915.
1131 */
1132 struct list_head queued_submits;
1133
1134 VkDeviceQueueCreateFlags flags;
1135 };
1136
1137 struct anv_pipeline_cache {
1138 struct anv_device * device;
1139 pthread_mutex_t mutex;
1140
1141 struct hash_table * nir_cache;
1142
1143 struct hash_table * cache;
1144 };
1145
1146 struct nir_xfb_info;
1147 struct anv_pipeline_bind_map;
1148
1149 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1150 struct anv_device *device,
1151 bool cache_enabled);
1152 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1153
1154 struct anv_shader_bin *
1155 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1156 const void *key, uint32_t key_size);
1157 struct anv_shader_bin *
1158 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1159 const void *key_data, uint32_t key_size,
1160 const void *kernel_data, uint32_t kernel_size,
1161 const void *constant_data,
1162 uint32_t constant_data_size,
1163 const struct brw_stage_prog_data *prog_data,
1164 uint32_t prog_data_size,
1165 const struct brw_compile_stats *stats,
1166 uint32_t num_stats,
1167 const struct nir_xfb_info *xfb_info,
1168 const struct anv_pipeline_bind_map *bind_map);
1169
1170 struct anv_shader_bin *
1171 anv_device_search_for_kernel(struct anv_device *device,
1172 struct anv_pipeline_cache *cache,
1173 const void *key_data, uint32_t key_size,
1174 bool *user_cache_bit);
1175
1176 struct anv_shader_bin *
1177 anv_device_upload_kernel(struct anv_device *device,
1178 struct anv_pipeline_cache *cache,
1179 const void *key_data, uint32_t key_size,
1180 const void *kernel_data, uint32_t kernel_size,
1181 const void *constant_data,
1182 uint32_t constant_data_size,
1183 const struct brw_stage_prog_data *prog_data,
1184 uint32_t prog_data_size,
1185 const struct brw_compile_stats *stats,
1186 uint32_t num_stats,
1187 const struct nir_xfb_info *xfb_info,
1188 const struct anv_pipeline_bind_map *bind_map);
1189
1190 struct nir_shader;
1191 struct nir_shader_compiler_options;
1192
1193 struct nir_shader *
1194 anv_device_search_for_nir(struct anv_device *device,
1195 struct anv_pipeline_cache *cache,
1196 const struct nir_shader_compiler_options *nir_options,
1197 unsigned char sha1_key[20],
1198 void *mem_ctx);
1199
1200 void
1201 anv_device_upload_nir(struct anv_device *device,
1202 struct anv_pipeline_cache *cache,
1203 const struct nir_shader *nir,
1204 unsigned char sha1_key[20]);
1205
1206 struct anv_device {
1207 VK_LOADER_DATA _loader_data;
1208
1209 VkAllocationCallbacks alloc;
1210
1211 struct anv_instance * instance;
1212 uint32_t chipset_id;
1213 bool no_hw;
1214 struct gen_device_info info;
1215 struct isl_device isl_dev;
1216 int context_id;
1217 int fd;
1218 bool can_chain_batches;
1219 bool robust_buffer_access;
1220 struct anv_device_extension_table enabled_extensions;
1221 struct anv_device_dispatch_table dispatch;
1222
1223 pthread_mutex_t vma_mutex;
1224 struct util_vma_heap vma_lo;
1225 struct util_vma_heap vma_cva;
1226 struct util_vma_heap vma_hi;
1227
1228 /** List of all anv_device_memory objects */
1229 struct list_head memory_objects;
1230
1231 struct anv_bo_pool batch_bo_pool;
1232
1233 struct anv_bo_cache bo_cache;
1234
1235 struct anv_state_pool dynamic_state_pool;
1236 struct anv_state_pool instruction_state_pool;
1237 struct anv_state_pool binding_table_pool;
1238 struct anv_state_pool surface_state_pool;
1239
1240 struct anv_bo * workaround_bo;
1241 struct anv_bo * trivial_batch_bo;
1242 struct anv_bo * hiz_clear_bo;
1243
1244 struct anv_pipeline_cache default_pipeline_cache;
1245 struct blorp_context blorp;
1246
1247 struct anv_state border_colors;
1248
1249 struct anv_state slice_hash;
1250
1251 struct anv_queue queue;
1252
1253 struct anv_scratch_pool scratch_pool;
1254
1255 pthread_mutex_t mutex;
1256 pthread_cond_t queue_submit;
1257 int _lost;
1258
1259 struct gen_batch_decode_ctx decoder_ctx;
1260 /*
1261 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1262 * the cmd_buffer's list.
1263 */
1264 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1265
1266 int perf_fd; /* -1 if no opened */
1267 uint64_t perf_metric; /* 0 if unset */
1268
1269 struct gen_aux_map_context *aux_map_ctx;
1270 };
1271
1272 static inline struct anv_state_pool *
1273 anv_binding_table_pool(struct anv_device *device)
1274 {
1275 if (device->instance->physicalDevice.use_softpin)
1276 return &device->binding_table_pool;
1277 else
1278 return &device->surface_state_pool;
1279 }
1280
1281 static inline struct anv_state
1282 anv_binding_table_pool_alloc(struct anv_device *device) {
1283 if (device->instance->physicalDevice.use_softpin)
1284 return anv_state_pool_alloc(&device->binding_table_pool,
1285 device->binding_table_pool.block_size, 0);
1286 else
1287 return anv_state_pool_alloc_back(&device->surface_state_pool);
1288 }
1289
1290 static inline void
1291 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1292 anv_state_pool_free(anv_binding_table_pool(device), state);
1293 }
1294
1295 static inline uint32_t
1296 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1297 {
1298 if (bo->is_external)
1299 return device->isl_dev.mocs.external;
1300 else
1301 return device->isl_dev.mocs.internal;
1302 }
1303
1304 void anv_device_init_blorp(struct anv_device *device);
1305 void anv_device_finish_blorp(struct anv_device *device);
1306
1307 void _anv_device_set_all_queue_lost(struct anv_device *device);
1308 VkResult _anv_device_set_lost(struct anv_device *device,
1309 const char *file, int line,
1310 const char *msg, ...)
1311 anv_printflike(4, 5);
1312 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1313 const char *file, int line,
1314 const char *msg, ...)
1315 anv_printflike(4, 5);
1316 #define anv_device_set_lost(dev, ...) \
1317 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1318 #define anv_queue_set_lost(queue, ...) \
1319 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1320
1321 static inline bool
1322 anv_device_is_lost(struct anv_device *device)
1323 {
1324 return unlikely(p_atomic_read(&device->_lost));
1325 }
1326
1327 VkResult anv_device_query_status(struct anv_device *device);
1328
1329
1330 enum anv_bo_alloc_flags {
1331 /** Specifies that the BO must have a 32-bit address
1332 *
1333 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1334 */
1335 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1336
1337 /** Specifies that the BO may be shared externally */
1338 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1339
1340 /** Specifies that the BO should be mapped */
1341 ANV_BO_ALLOC_MAPPED = (1 << 2),
1342
1343 /** Specifies that the BO should be snooped so we get coherency */
1344 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1345
1346 /** Specifies that the BO should be captured in error states */
1347 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1348
1349 /** Specifies that the BO will have an address assigned by the caller
1350 *
1351 * Such BOs do not exist in any VMA heap.
1352 */
1353 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1354
1355 /** Enables implicit synchronization on the BO
1356 *
1357 * This is the opposite of EXEC_OBJECT_ASYNC.
1358 */
1359 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1360
1361 /** Enables implicit synchronization on the BO
1362 *
1363 * This is equivalent to EXEC_OBJECT_WRITE.
1364 */
1365 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1366
1367 /** Has an address which is visible to the client */
1368 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1369 };
1370
1371 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1372 enum anv_bo_alloc_flags alloc_flags,
1373 uint64_t explicit_address,
1374 struct anv_bo **bo);
1375 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1376 void *host_ptr, uint32_t size,
1377 enum anv_bo_alloc_flags alloc_flags,
1378 uint64_t client_address,
1379 struct anv_bo **bo_out);
1380 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1381 enum anv_bo_alloc_flags alloc_flags,
1382 uint64_t client_address,
1383 struct anv_bo **bo);
1384 VkResult anv_device_export_bo(struct anv_device *device,
1385 struct anv_bo *bo, int *fd_out);
1386 void anv_device_release_bo(struct anv_device *device,
1387 struct anv_bo *bo);
1388
1389 static inline struct anv_bo *
1390 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1391 {
1392 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1393 }
1394
1395 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1396 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1397 int64_t timeout);
1398
1399 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1400 void anv_queue_finish(struct anv_queue *queue);
1401
1402 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1403 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1404 struct anv_batch *batch);
1405
1406 uint64_t anv_gettime_ns(void);
1407 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1408
1409 void* anv_gem_mmap(struct anv_device *device,
1410 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1411 void anv_gem_munmap(void *p, uint64_t size);
1412 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1413 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1414 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1415 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1416 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1417 int anv_gem_execbuffer(struct anv_device *device,
1418 struct drm_i915_gem_execbuffer2 *execbuf);
1419 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1420 uint32_t stride, uint32_t tiling);
1421 int anv_gem_create_context(struct anv_device *device);
1422 bool anv_gem_has_context_priority(int fd);
1423 int anv_gem_destroy_context(struct anv_device *device, int context);
1424 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1425 uint64_t value);
1426 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1427 uint64_t *value);
1428 int anv_gem_get_param(int fd, uint32_t param);
1429 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1430 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1431 int anv_gem_get_aperture(int fd, uint64_t *size);
1432 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1433 uint32_t *active, uint32_t *pending);
1434 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1435 int anv_gem_reg_read(struct anv_device *device,
1436 uint32_t offset, uint64_t *result);
1437 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1438 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1439 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1440 uint32_t read_domains, uint32_t write_domain);
1441 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1442 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1443 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1444 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1445 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1446 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1447 uint32_t handle);
1448 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1449 uint32_t handle, int fd);
1450 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1451 bool anv_gem_supports_syncobj_wait(int fd);
1452 int anv_gem_syncobj_wait(struct anv_device *device,
1453 uint32_t *handles, uint32_t num_handles,
1454 int64_t abs_timeout_ns, bool wait_all);
1455
1456 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo,
1457 uint64_t client_address);
1458 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1459
1460 struct anv_reloc_list {
1461 uint32_t num_relocs;
1462 uint32_t array_length;
1463 struct drm_i915_gem_relocation_entry * relocs;
1464 struct anv_bo ** reloc_bos;
1465 uint32_t dep_words;
1466 BITSET_WORD * deps;
1467 };
1468
1469 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1470 const VkAllocationCallbacks *alloc);
1471 void anv_reloc_list_finish(struct anv_reloc_list *list,
1472 const VkAllocationCallbacks *alloc);
1473
1474 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1475 const VkAllocationCallbacks *alloc,
1476 uint32_t offset, struct anv_bo *target_bo,
1477 uint32_t delta, uint64_t *address_u64_out);
1478
1479 struct anv_batch_bo {
1480 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1481 struct list_head link;
1482
1483 struct anv_bo * bo;
1484
1485 /* Bytes actually consumed in this batch BO */
1486 uint32_t length;
1487
1488 struct anv_reloc_list relocs;
1489 };
1490
1491 struct anv_batch {
1492 const VkAllocationCallbacks * alloc;
1493
1494 void * start;
1495 void * end;
1496 void * next;
1497
1498 struct anv_reloc_list * relocs;
1499
1500 /* This callback is called (with the associated user data) in the event
1501 * that the batch runs out of space.
1502 */
1503 VkResult (*extend_cb)(struct anv_batch *, void *);
1504 void * user_data;
1505
1506 /**
1507 * Current error status of the command buffer. Used to track inconsistent
1508 * or incomplete command buffer states that are the consequence of run-time
1509 * errors such as out of memory scenarios. We want to track this in the
1510 * batch because the command buffer object is not visible to some parts
1511 * of the driver.
1512 */
1513 VkResult status;
1514 };
1515
1516 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1517 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1518 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1519 void *location, struct anv_bo *bo, uint32_t offset);
1520
1521 static inline VkResult
1522 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1523 {
1524 assert(error != VK_SUCCESS);
1525 if (batch->status == VK_SUCCESS)
1526 batch->status = error;
1527 return batch->status;
1528 }
1529
1530 static inline bool
1531 anv_batch_has_error(struct anv_batch *batch)
1532 {
1533 return batch->status != VK_SUCCESS;
1534 }
1535
1536 struct anv_address {
1537 struct anv_bo *bo;
1538 uint32_t offset;
1539 };
1540
1541 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1542
1543 static inline bool
1544 anv_address_is_null(struct anv_address addr)
1545 {
1546 return addr.bo == NULL && addr.offset == 0;
1547 }
1548
1549 static inline uint64_t
1550 anv_address_physical(struct anv_address addr)
1551 {
1552 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1553 return gen_canonical_address(addr.bo->offset + addr.offset);
1554 else
1555 return gen_canonical_address(addr.offset);
1556 }
1557
1558 static inline struct anv_address
1559 anv_address_add(struct anv_address addr, uint64_t offset)
1560 {
1561 addr.offset += offset;
1562 return addr;
1563 }
1564
1565 static inline void
1566 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1567 {
1568 unsigned reloc_size = 0;
1569 if (device->info.gen >= 8) {
1570 reloc_size = sizeof(uint64_t);
1571 *(uint64_t *)p = gen_canonical_address(v);
1572 } else {
1573 reloc_size = sizeof(uint32_t);
1574 *(uint32_t *)p = v;
1575 }
1576
1577 if (flush && !device->info.has_llc)
1578 gen_flush_range(p, reloc_size);
1579 }
1580
1581 static inline uint64_t
1582 _anv_combine_address(struct anv_batch *batch, void *location,
1583 const struct anv_address address, uint32_t delta)
1584 {
1585 if (address.bo == NULL) {
1586 return address.offset + delta;
1587 } else {
1588 assert(batch->start <= location && location < batch->end);
1589
1590 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1591 }
1592 }
1593
1594 #define __gen_address_type struct anv_address
1595 #define __gen_user_data struct anv_batch
1596 #define __gen_combine_address _anv_combine_address
1597
1598 /* Wrapper macros needed to work around preprocessor argument issues. In
1599 * particular, arguments don't get pre-evaluated if they are concatenated.
1600 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1601 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1602 * We can work around this easily enough with these helpers.
1603 */
1604 #define __anv_cmd_length(cmd) cmd ## _length
1605 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1606 #define __anv_cmd_header(cmd) cmd ## _header
1607 #define __anv_cmd_pack(cmd) cmd ## _pack
1608 #define __anv_reg_num(reg) reg ## _num
1609
1610 #define anv_pack_struct(dst, struc, ...) do { \
1611 struct struc __template = { \
1612 __VA_ARGS__ \
1613 }; \
1614 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1615 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1616 } while (0)
1617
1618 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1619 void *__dst = anv_batch_emit_dwords(batch, n); \
1620 if (__dst) { \
1621 struct cmd __template = { \
1622 __anv_cmd_header(cmd), \
1623 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1624 __VA_ARGS__ \
1625 }; \
1626 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1627 } \
1628 __dst; \
1629 })
1630
1631 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1632 do { \
1633 uint32_t *dw; \
1634 \
1635 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1636 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1637 if (!dw) \
1638 break; \
1639 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1640 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1641 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1642 } while (0)
1643
1644 #define anv_batch_emit(batch, cmd, name) \
1645 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1646 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1647 __builtin_expect(_dst != NULL, 1); \
1648 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1649 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1650 _dst = NULL; \
1651 }))
1652
1653 struct anv_device_memory {
1654 struct list_head link;
1655
1656 struct anv_bo * bo;
1657 struct anv_memory_type * type;
1658 VkDeviceSize map_size;
1659 void * map;
1660
1661 /* If set, we are holding reference to AHardwareBuffer
1662 * which we must release when memory is freed.
1663 */
1664 struct AHardwareBuffer * ahw;
1665
1666 /* If set, this memory comes from a host pointer. */
1667 void * host_ptr;
1668 };
1669
1670 /**
1671 * Header for Vertex URB Entry (VUE)
1672 */
1673 struct anv_vue_header {
1674 uint32_t Reserved;
1675 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1676 uint32_t ViewportIndex;
1677 float PointWidth;
1678 };
1679
1680 /** Struct representing a sampled image descriptor
1681 *
1682 * This descriptor layout is used for sampled images, bare sampler, and
1683 * combined image/sampler descriptors.
1684 */
1685 struct anv_sampled_image_descriptor {
1686 /** Bindless image handle
1687 *
1688 * This is expected to already be shifted such that the 20-bit
1689 * SURFACE_STATE table index is in the top 20 bits.
1690 */
1691 uint32_t image;
1692
1693 /** Bindless sampler handle
1694 *
1695 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1696 * to the dynamic state base address.
1697 */
1698 uint32_t sampler;
1699 };
1700
1701 struct anv_texture_swizzle_descriptor {
1702 /** Texture swizzle
1703 *
1704 * See also nir_intrinsic_channel_select_intel
1705 */
1706 uint8_t swizzle[4];
1707
1708 /** Unused padding to ensure the struct is a multiple of 64 bits */
1709 uint32_t _pad;
1710 };
1711
1712 /** Struct representing a storage image descriptor */
1713 struct anv_storage_image_descriptor {
1714 /** Bindless image handles
1715 *
1716 * These are expected to already be shifted such that the 20-bit
1717 * SURFACE_STATE table index is in the top 20 bits.
1718 */
1719 uint32_t read_write;
1720 uint32_t write_only;
1721 };
1722
1723 /** Struct representing a address/range descriptor
1724 *
1725 * The fields of this struct correspond directly to the data layout of
1726 * nir_address_format_64bit_bounded_global addresses. The last field is the
1727 * offset in the NIR address so it must be zero so that when you load the
1728 * descriptor you get a pointer to the start of the range.
1729 */
1730 struct anv_address_range_descriptor {
1731 uint64_t address;
1732 uint32_t range;
1733 uint32_t zero;
1734 };
1735
1736 enum anv_descriptor_data {
1737 /** The descriptor contains a BTI reference to a surface state */
1738 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1739 /** The descriptor contains a BTI reference to a sampler state */
1740 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1741 /** The descriptor contains an actual buffer view */
1742 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1743 /** The descriptor contains auxiliary image layout data */
1744 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1745 /** The descriptor contains auxiliary image layout data */
1746 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1747 /** anv_address_range_descriptor with a buffer address and range */
1748 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1749 /** Bindless surface handle */
1750 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1751 /** Storage image handles */
1752 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1753 /** Storage image handles */
1754 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1755 };
1756
1757 struct anv_descriptor_set_binding_layout {
1758 #ifndef NDEBUG
1759 /* The type of the descriptors in this binding */
1760 VkDescriptorType type;
1761 #endif
1762
1763 /* Flags provided when this binding was created */
1764 VkDescriptorBindingFlagsEXT flags;
1765
1766 /* Bitfield representing the type of data this descriptor contains */
1767 enum anv_descriptor_data data;
1768
1769 /* Maximum number of YCbCr texture/sampler planes */
1770 uint8_t max_plane_count;
1771
1772 /* Number of array elements in this binding (or size in bytes for inline
1773 * uniform data)
1774 */
1775 uint16_t array_size;
1776
1777 /* Index into the flattend descriptor set */
1778 uint16_t descriptor_index;
1779
1780 /* Index into the dynamic state array for a dynamic buffer */
1781 int16_t dynamic_offset_index;
1782
1783 /* Index into the descriptor set buffer views */
1784 int16_t buffer_view_index;
1785
1786 /* Offset into the descriptor buffer where this descriptor lives */
1787 uint32_t descriptor_offset;
1788
1789 /* Immutable samplers (or NULL if no immutable samplers) */
1790 struct anv_sampler **immutable_samplers;
1791 };
1792
1793 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1794
1795 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1796 VkDescriptorType type);
1797
1798 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1799 const struct anv_descriptor_set_binding_layout *binding,
1800 bool sampler);
1801
1802 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1803 const struct anv_descriptor_set_binding_layout *binding,
1804 bool sampler);
1805
1806 struct anv_descriptor_set_layout {
1807 /* Descriptor set layouts can be destroyed at almost any time */
1808 uint32_t ref_cnt;
1809
1810 /* Number of bindings in this descriptor set */
1811 uint16_t binding_count;
1812
1813 /* Total size of the descriptor set with room for all array entries */
1814 uint16_t size;
1815
1816 /* Shader stages affected by this descriptor set */
1817 uint16_t shader_stages;
1818
1819 /* Number of buffer views in this descriptor set */
1820 uint16_t buffer_view_count;
1821
1822 /* Number of dynamic offsets used by this descriptor set */
1823 uint16_t dynamic_offset_count;
1824
1825 /* For each shader stage, which offsets apply to that stage */
1826 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1827
1828 /* Size of the descriptor buffer for this descriptor set */
1829 uint32_t descriptor_buffer_size;
1830
1831 /* Bindings in this descriptor set */
1832 struct anv_descriptor_set_binding_layout binding[0];
1833 };
1834
1835 static inline void
1836 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1837 {
1838 assert(layout && layout->ref_cnt >= 1);
1839 p_atomic_inc(&layout->ref_cnt);
1840 }
1841
1842 static inline void
1843 anv_descriptor_set_layout_unref(struct anv_device *device,
1844 struct anv_descriptor_set_layout *layout)
1845 {
1846 assert(layout && layout->ref_cnt >= 1);
1847 if (p_atomic_dec_zero(&layout->ref_cnt))
1848 vk_free(&device->alloc, layout);
1849 }
1850
1851 struct anv_descriptor {
1852 VkDescriptorType type;
1853
1854 union {
1855 struct {
1856 VkImageLayout layout;
1857 struct anv_image_view *image_view;
1858 struct anv_sampler *sampler;
1859 };
1860
1861 struct {
1862 struct anv_buffer *buffer;
1863 uint64_t offset;
1864 uint64_t range;
1865 };
1866
1867 struct anv_buffer_view *buffer_view;
1868 };
1869 };
1870
1871 struct anv_descriptor_set {
1872 struct anv_descriptor_pool *pool;
1873 struct anv_descriptor_set_layout *layout;
1874 uint32_t size;
1875
1876 /* State relative to anv_descriptor_pool::bo */
1877 struct anv_state desc_mem;
1878 /* Surface state for the descriptor buffer */
1879 struct anv_state desc_surface_state;
1880
1881 uint32_t buffer_view_count;
1882 struct anv_buffer_view *buffer_views;
1883
1884 /* Link to descriptor pool's desc_sets list . */
1885 struct list_head pool_link;
1886
1887 struct anv_descriptor descriptors[0];
1888 };
1889
1890 struct anv_buffer_view {
1891 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1892 uint64_t range; /**< VkBufferViewCreateInfo::range */
1893
1894 struct anv_address address;
1895
1896 struct anv_state surface_state;
1897 struct anv_state storage_surface_state;
1898 struct anv_state writeonly_storage_surface_state;
1899
1900 struct brw_image_param storage_image_param;
1901 };
1902
1903 struct anv_push_descriptor_set {
1904 struct anv_descriptor_set set;
1905
1906 /* Put this field right behind anv_descriptor_set so it fills up the
1907 * descriptors[0] field. */
1908 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1909
1910 /** True if the descriptor set buffer has been referenced by a draw or
1911 * dispatch command.
1912 */
1913 bool set_used_on_gpu;
1914
1915 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1916 };
1917
1918 struct anv_descriptor_pool {
1919 uint32_t size;
1920 uint32_t next;
1921 uint32_t free_list;
1922
1923 struct anv_bo *bo;
1924 struct util_vma_heap bo_heap;
1925
1926 struct anv_state_stream surface_state_stream;
1927 void *surface_state_free_list;
1928
1929 struct list_head desc_sets;
1930
1931 char data[0];
1932 };
1933
1934 enum anv_descriptor_template_entry_type {
1935 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1936 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1937 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1938 };
1939
1940 struct anv_descriptor_template_entry {
1941 /* The type of descriptor in this entry */
1942 VkDescriptorType type;
1943
1944 /* Binding in the descriptor set */
1945 uint32_t binding;
1946
1947 /* Offset at which to write into the descriptor set binding */
1948 uint32_t array_element;
1949
1950 /* Number of elements to write into the descriptor set binding */
1951 uint32_t array_count;
1952
1953 /* Offset into the user provided data */
1954 size_t offset;
1955
1956 /* Stride between elements into the user provided data */
1957 size_t stride;
1958 };
1959
1960 struct anv_descriptor_update_template {
1961 VkPipelineBindPoint bind_point;
1962
1963 /* The descriptor set this template corresponds to. This value is only
1964 * valid if the template was created with the templateType
1965 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1966 */
1967 uint8_t set;
1968
1969 /* Number of entries in this template */
1970 uint32_t entry_count;
1971
1972 /* Entries of the template */
1973 struct anv_descriptor_template_entry entries[0];
1974 };
1975
1976 size_t
1977 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1978
1979 void
1980 anv_descriptor_set_write_image_view(struct anv_device *device,
1981 struct anv_descriptor_set *set,
1982 const VkDescriptorImageInfo * const info,
1983 VkDescriptorType type,
1984 uint32_t binding,
1985 uint32_t element);
1986
1987 void
1988 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1989 struct anv_descriptor_set *set,
1990 VkDescriptorType type,
1991 struct anv_buffer_view *buffer_view,
1992 uint32_t binding,
1993 uint32_t element);
1994
1995 void
1996 anv_descriptor_set_write_buffer(struct anv_device *device,
1997 struct anv_descriptor_set *set,
1998 struct anv_state_stream *alloc_stream,
1999 VkDescriptorType type,
2000 struct anv_buffer *buffer,
2001 uint32_t binding,
2002 uint32_t element,
2003 VkDeviceSize offset,
2004 VkDeviceSize range);
2005 void
2006 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2007 struct anv_descriptor_set *set,
2008 uint32_t binding,
2009 const void *data,
2010 size_t offset,
2011 size_t size);
2012
2013 void
2014 anv_descriptor_set_write_template(struct anv_device *device,
2015 struct anv_descriptor_set *set,
2016 struct anv_state_stream *alloc_stream,
2017 const struct anv_descriptor_update_template *template,
2018 const void *data);
2019
2020 VkResult
2021 anv_descriptor_set_create(struct anv_device *device,
2022 struct anv_descriptor_pool *pool,
2023 struct anv_descriptor_set_layout *layout,
2024 struct anv_descriptor_set **out_set);
2025
2026 void
2027 anv_descriptor_set_destroy(struct anv_device *device,
2028 struct anv_descriptor_pool *pool,
2029 struct anv_descriptor_set *set);
2030
2031 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2032 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2033 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2034 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2035 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2036 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2037
2038 struct anv_pipeline_binding {
2039 /** Index in the descriptor set
2040 *
2041 * This is a flattened index; the descriptor set layout is already taken
2042 * into account.
2043 */
2044 uint32_t index;
2045
2046 /** The descriptor set this surface corresponds to.
2047 *
2048 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2049 * binding is not a normal descriptor set but something else.
2050 */
2051 uint8_t set;
2052
2053 union {
2054 /** Plane in the binding index for images */
2055 uint8_t plane;
2056
2057 /** Input attachment index (relative to the subpass) */
2058 uint8_t input_attachment_index;
2059
2060 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2061 uint8_t dynamic_offset_index;
2062 };
2063
2064 /** For a storage image, whether it is write-only */
2065 uint8_t write_only;
2066
2067 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2068 * assuming POD zero-initialization.
2069 */
2070 uint8_t pad;
2071 };
2072
2073 struct anv_push_range {
2074 /** Index in the descriptor set */
2075 uint32_t index;
2076
2077 /** Descriptor set index */
2078 uint8_t set;
2079
2080 /** Dynamic offset index (for dynamic UBOs) */
2081 uint8_t dynamic_offset_index;
2082
2083 /** Start offset in units of 32B */
2084 uint8_t start;
2085
2086 /** Range in units of 32B */
2087 uint8_t length;
2088 };
2089
2090 struct anv_pipeline_layout {
2091 struct {
2092 struct anv_descriptor_set_layout *layout;
2093 uint32_t dynamic_offset_start;
2094 } set[MAX_SETS];
2095
2096 uint32_t num_sets;
2097
2098 unsigned char sha1[20];
2099 };
2100
2101 struct anv_buffer {
2102 struct anv_device * device;
2103 VkDeviceSize size;
2104
2105 VkBufferUsageFlags usage;
2106
2107 /* Set when bound */
2108 struct anv_address address;
2109 };
2110
2111 static inline uint64_t
2112 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2113 {
2114 assert(offset <= buffer->size);
2115 if (range == VK_WHOLE_SIZE) {
2116 return buffer->size - offset;
2117 } else {
2118 assert(range + offset >= range);
2119 assert(range + offset <= buffer->size);
2120 return range;
2121 }
2122 }
2123
2124 enum anv_cmd_dirty_bits {
2125 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2126 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2127 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2128 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2129 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2130 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2131 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2132 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2133 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2134 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2135 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2136 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2137 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2138 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2139 };
2140 typedef uint32_t anv_cmd_dirty_mask_t;
2141
2142 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2143 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2144 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2145 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2146 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2147 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2148 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2149 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2150 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2151 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2152 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2153
2154 static inline enum anv_cmd_dirty_bits
2155 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2156 {
2157 switch (vk_state) {
2158 case VK_DYNAMIC_STATE_VIEWPORT:
2159 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2160 case VK_DYNAMIC_STATE_SCISSOR:
2161 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2162 case VK_DYNAMIC_STATE_LINE_WIDTH:
2163 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2164 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2165 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2166 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2167 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2168 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2169 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2170 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2171 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2172 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2173 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2174 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2175 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2176 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2177 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2178 default:
2179 assert(!"Unsupported dynamic state");
2180 return 0;
2181 }
2182 }
2183
2184
2185 enum anv_pipe_bits {
2186 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2187 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2188 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2189 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2190 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2191 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2192 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2193 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2194 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2195 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2196 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2197 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2198
2199 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2200 * a flush has happened but not a CS stall. The next time we do any sort
2201 * of invalidation we need to insert a CS stall at that time. Otherwise,
2202 * we would have to CS stall on every flush which could be bad.
2203 */
2204 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2205
2206 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2207 * target operations related to transfer commands with VkBuffer as
2208 * destination are ongoing. Some operations like copies on the command
2209 * streamer might need to be aware of this to trigger the appropriate stall
2210 * before they can proceed with the copy.
2211 */
2212 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2213 };
2214
2215 #define ANV_PIPE_FLUSH_BITS ( \
2216 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2217 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2218 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2219 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2220
2221 #define ANV_PIPE_STALL_BITS ( \
2222 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2223 ANV_PIPE_DEPTH_STALL_BIT | \
2224 ANV_PIPE_CS_STALL_BIT)
2225
2226 #define ANV_PIPE_INVALIDATE_BITS ( \
2227 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2228 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2229 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2230 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2231 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2232 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2233
2234 static inline enum anv_pipe_bits
2235 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2236 {
2237 enum anv_pipe_bits pipe_bits = 0;
2238
2239 unsigned b;
2240 for_each_bit(b, flags) {
2241 switch ((VkAccessFlagBits)(1 << b)) {
2242 case VK_ACCESS_SHADER_WRITE_BIT:
2243 /* We're transitioning a buffer that was previously used as write
2244 * destination through the data port. To make its content available
2245 * to future operations, flush the data cache.
2246 */
2247 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2248 break;
2249 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2250 /* We're transitioning a buffer that was previously used as render
2251 * target. To make its content available to future operations, flush
2252 * the render target cache.
2253 */
2254 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2255 break;
2256 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2257 /* We're transitioning a buffer that was previously used as depth
2258 * buffer. To make its content available to future operations, flush
2259 * the depth cache.
2260 */
2261 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2262 break;
2263 case VK_ACCESS_TRANSFER_WRITE_BIT:
2264 /* We're transitioning a buffer that was previously used as a
2265 * transfer write destination. Generic write operations include color
2266 * & depth operations as well as buffer operations like :
2267 * - vkCmdClearColorImage()
2268 * - vkCmdClearDepthStencilImage()
2269 * - vkCmdBlitImage()
2270 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2271 *
2272 * Most of these operations are implemented using Blorp which writes
2273 * through the render target, so flush that cache to make it visible
2274 * to future operations. And for depth related operations we also
2275 * need to flush the depth cache.
2276 */
2277 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2278 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2279 break;
2280 case VK_ACCESS_MEMORY_WRITE_BIT:
2281 /* We're transitioning a buffer for generic write operations. Flush
2282 * all the caches.
2283 */
2284 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2285 break;
2286 default:
2287 break; /* Nothing to do */
2288 }
2289 }
2290
2291 return pipe_bits;
2292 }
2293
2294 static inline enum anv_pipe_bits
2295 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2296 {
2297 enum anv_pipe_bits pipe_bits = 0;
2298
2299 unsigned b;
2300 for_each_bit(b, flags) {
2301 switch ((VkAccessFlagBits)(1 << b)) {
2302 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2303 /* Indirect draw commands take a buffer as input that we're going to
2304 * read from the command streamer to load some of the HW registers
2305 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2306 * command streamer stall so that all the cache flushes have
2307 * completed before the command streamer loads from memory.
2308 */
2309 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2310 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2311 * through a vertex buffer, so invalidate that cache.
2312 */
2313 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2314 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2315 * UBO from the buffer, so we need to invalidate constant cache.
2316 */
2317 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2318 break;
2319 case VK_ACCESS_INDEX_READ_BIT:
2320 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2321 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2322 * commands, so we invalidate the VF cache to make sure there is no
2323 * stale data when we start rendering.
2324 */
2325 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2326 break;
2327 case VK_ACCESS_UNIFORM_READ_BIT:
2328 /* We transitioning a buffer to be used as uniform data. Because
2329 * uniform is accessed through the data port & sampler, we need to
2330 * invalidate the texture cache (sampler) & constant cache (data
2331 * port) to avoid stale data.
2332 */
2333 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2334 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2335 break;
2336 case VK_ACCESS_SHADER_READ_BIT:
2337 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2338 case VK_ACCESS_TRANSFER_READ_BIT:
2339 /* Transitioning a buffer to be read through the sampler, so
2340 * invalidate the texture cache, we don't want any stale data.
2341 */
2342 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2343 break;
2344 case VK_ACCESS_MEMORY_READ_BIT:
2345 /* Transitioning a buffer for generic read, invalidate all the
2346 * caches.
2347 */
2348 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2349 break;
2350 case VK_ACCESS_MEMORY_WRITE_BIT:
2351 /* Generic write, make sure all previously written things land in
2352 * memory.
2353 */
2354 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2355 break;
2356 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2357 /* Transitioning a buffer for conditional rendering. We'll load the
2358 * content of this buffer into HW registers using the command
2359 * streamer, so we need to stall the command streamer to make sure
2360 * any in-flight flush operations have completed.
2361 */
2362 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2363 break;
2364 default:
2365 break; /* Nothing to do */
2366 }
2367 }
2368
2369 return pipe_bits;
2370 }
2371
2372 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2373 VK_IMAGE_ASPECT_COLOR_BIT | \
2374 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2375 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2376 VK_IMAGE_ASPECT_PLANE_2_BIT)
2377 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2378 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2379 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2380 VK_IMAGE_ASPECT_PLANE_2_BIT)
2381
2382 struct anv_vertex_binding {
2383 struct anv_buffer * buffer;
2384 VkDeviceSize offset;
2385 };
2386
2387 struct anv_xfb_binding {
2388 struct anv_buffer * buffer;
2389 VkDeviceSize offset;
2390 VkDeviceSize size;
2391 };
2392
2393 struct anv_push_constants {
2394 /** Push constant data provided by the client through vkPushConstants */
2395 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2396
2397 /** Dynamic offsets for dynamic UBOs and SSBOs */
2398 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2399
2400 struct {
2401 /** Base workgroup ID
2402 *
2403 * Used for vkCmdDispatchBase.
2404 */
2405 uint32_t base_work_group_id[3];
2406
2407 /** Subgroup ID
2408 *
2409 * This is never set by software but is implicitly filled out when
2410 * uploading the push constants for compute shaders.
2411 */
2412 uint32_t subgroup_id;
2413
2414 /** Pad out to a multiple of 32 bytes */
2415 uint32_t pad[4];
2416 } cs;
2417 };
2418
2419 struct anv_dynamic_state {
2420 struct {
2421 uint32_t count;
2422 VkViewport viewports[MAX_VIEWPORTS];
2423 } viewport;
2424
2425 struct {
2426 uint32_t count;
2427 VkRect2D scissors[MAX_SCISSORS];
2428 } scissor;
2429
2430 float line_width;
2431
2432 struct {
2433 float bias;
2434 float clamp;
2435 float slope;
2436 } depth_bias;
2437
2438 float blend_constants[4];
2439
2440 struct {
2441 float min;
2442 float max;
2443 } depth_bounds;
2444
2445 struct {
2446 uint32_t front;
2447 uint32_t back;
2448 } stencil_compare_mask;
2449
2450 struct {
2451 uint32_t front;
2452 uint32_t back;
2453 } stencil_write_mask;
2454
2455 struct {
2456 uint32_t front;
2457 uint32_t back;
2458 } stencil_reference;
2459
2460 struct {
2461 uint32_t factor;
2462 uint16_t pattern;
2463 } line_stipple;
2464 };
2465
2466 extern const struct anv_dynamic_state default_dynamic_state;
2467
2468 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2469 const struct anv_dynamic_state *src,
2470 uint32_t copy_mask);
2471
2472 struct anv_surface_state {
2473 struct anv_state state;
2474 /** Address of the surface referred to by this state
2475 *
2476 * This address is relative to the start of the BO.
2477 */
2478 struct anv_address address;
2479 /* Address of the aux surface, if any
2480 *
2481 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2482 *
2483 * With the exception of gen8, the bottom 12 bits of this address' offset
2484 * include extra aux information.
2485 */
2486 struct anv_address aux_address;
2487 /* Address of the clear color, if any
2488 *
2489 * This address is relative to the start of the BO.
2490 */
2491 struct anv_address clear_address;
2492 };
2493
2494 /**
2495 * Attachment state when recording a renderpass instance.
2496 *
2497 * The clear value is valid only if there exists a pending clear.
2498 */
2499 struct anv_attachment_state {
2500 enum isl_aux_usage aux_usage;
2501 enum isl_aux_usage input_aux_usage;
2502 struct anv_surface_state color;
2503 struct anv_surface_state input;
2504
2505 VkImageLayout current_layout;
2506 VkImageLayout current_stencil_layout;
2507 VkImageAspectFlags pending_clear_aspects;
2508 VkImageAspectFlags pending_load_aspects;
2509 bool fast_clear;
2510 VkClearValue clear_value;
2511 bool clear_color_is_zero_one;
2512 bool clear_color_is_zero;
2513
2514 /* When multiview is active, attachments with a renderpass clear
2515 * operation have their respective layers cleared on the first
2516 * subpass that uses them, and only in that subpass. We keep track
2517 * of this using a bitfield to indicate which layers of an attachment
2518 * have not been cleared yet when multiview is active.
2519 */
2520 uint32_t pending_clear_views;
2521 struct anv_image_view * image_view;
2522 };
2523
2524 /** State tracking for vertex buffer flushes
2525 *
2526 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2527 * addresses. If you happen to have two vertex buffers which get placed
2528 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2529 * collisions. In order to solve this problem, we track vertex address ranges
2530 * which are live in the cache and invalidate the cache if one ever exceeds 32
2531 * bits.
2532 */
2533 struct anv_vb_cache_range {
2534 /* Virtual address at which the live vertex buffer cache range starts for
2535 * this vertex buffer index.
2536 */
2537 uint64_t start;
2538
2539 /* Virtual address of the byte after where vertex buffer cache range ends.
2540 * This is exclusive such that end - start is the size of the range.
2541 */
2542 uint64_t end;
2543 };
2544
2545 /** State tracking for particular pipeline bind point
2546 *
2547 * This struct is the base struct for anv_cmd_graphics_state and
2548 * anv_cmd_compute_state. These are used to track state which is bound to a
2549 * particular type of pipeline. Generic state that applies per-stage such as
2550 * binding table offsets and push constants is tracked generically with a
2551 * per-stage array in anv_cmd_state.
2552 */
2553 struct anv_cmd_pipeline_state {
2554 struct anv_pipeline *pipeline;
2555
2556 struct anv_descriptor_set *descriptors[MAX_SETS];
2557 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2558 };
2559
2560 /** State tracking for graphics pipeline
2561 *
2562 * This has anv_cmd_pipeline_state as a base struct to track things which get
2563 * bound to a graphics pipeline. Along with general pipeline bind point state
2564 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2565 * state which is graphics-specific.
2566 */
2567 struct anv_cmd_graphics_state {
2568 struct anv_cmd_pipeline_state base;
2569
2570 anv_cmd_dirty_mask_t dirty;
2571 uint32_t vb_dirty;
2572
2573 struct anv_vb_cache_range ib_bound_range;
2574 struct anv_vb_cache_range ib_dirty_range;
2575 struct anv_vb_cache_range vb_bound_ranges[33];
2576 struct anv_vb_cache_range vb_dirty_ranges[33];
2577
2578 struct anv_dynamic_state dynamic;
2579
2580 struct {
2581 struct anv_buffer *index_buffer;
2582 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2583 uint32_t index_offset;
2584 } gen7;
2585 };
2586
2587 /** State tracking for compute pipeline
2588 *
2589 * This has anv_cmd_pipeline_state as a base struct to track things which get
2590 * bound to a compute pipeline. Along with general pipeline bind point state
2591 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2592 * state which is compute-specific.
2593 */
2594 struct anv_cmd_compute_state {
2595 struct anv_cmd_pipeline_state base;
2596
2597 bool pipeline_dirty;
2598
2599 struct anv_address num_workgroups;
2600 };
2601
2602 /** State required while building cmd buffer */
2603 struct anv_cmd_state {
2604 /* PIPELINE_SELECT.PipelineSelection */
2605 uint32_t current_pipeline;
2606 const struct gen_l3_config * current_l3_config;
2607 uint32_t last_aux_map_state;
2608
2609 struct anv_cmd_graphics_state gfx;
2610 struct anv_cmd_compute_state compute;
2611
2612 enum anv_pipe_bits pending_pipe_bits;
2613 VkShaderStageFlags descriptors_dirty;
2614 VkShaderStageFlags push_constants_dirty;
2615
2616 struct anv_framebuffer * framebuffer;
2617 struct anv_render_pass * pass;
2618 struct anv_subpass * subpass;
2619 VkRect2D render_area;
2620 uint32_t restart_index;
2621 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2622 bool xfb_enabled;
2623 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2624 VkShaderStageFlags push_constant_stages;
2625 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2626 struct anv_state binding_tables[MESA_SHADER_STAGES];
2627 struct anv_state samplers[MESA_SHADER_STAGES];
2628
2629 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2630 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2631 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2632
2633 /**
2634 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2635 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2636 * and before invoking the secondary in ExecuteCommands.
2637 */
2638 bool pma_fix_enabled;
2639
2640 /**
2641 * Whether or not we know for certain that HiZ is enabled for the current
2642 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2643 * enabled or not, this will be false.
2644 */
2645 bool hiz_enabled;
2646
2647 bool conditional_render_enabled;
2648
2649 /**
2650 * Last rendering scale argument provided to
2651 * genX(cmd_buffer_emit_hashing_mode)().
2652 */
2653 unsigned current_hash_scale;
2654
2655 /**
2656 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2657 * valid only when recording a render pass instance.
2658 */
2659 struct anv_attachment_state * attachments;
2660
2661 /**
2662 * Surface states for color render targets. These are stored in a single
2663 * flat array. For depth-stencil attachments, the surface state is simply
2664 * left blank.
2665 */
2666 struct anv_state render_pass_states;
2667
2668 /**
2669 * A null surface state of the right size to match the framebuffer. This
2670 * is one of the states in render_pass_states.
2671 */
2672 struct anv_state null_surface_state;
2673 };
2674
2675 struct anv_cmd_pool {
2676 VkAllocationCallbacks alloc;
2677 struct list_head cmd_buffers;
2678 };
2679
2680 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2681
2682 enum anv_cmd_buffer_exec_mode {
2683 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2684 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2685 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2686 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2687 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2688 };
2689
2690 struct anv_cmd_buffer {
2691 VK_LOADER_DATA _loader_data;
2692
2693 struct anv_device * device;
2694
2695 struct anv_cmd_pool * pool;
2696 struct list_head pool_link;
2697
2698 struct anv_batch batch;
2699
2700 /* Fields required for the actual chain of anv_batch_bo's.
2701 *
2702 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2703 */
2704 struct list_head batch_bos;
2705 enum anv_cmd_buffer_exec_mode exec_mode;
2706
2707 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2708 * referenced by this command buffer
2709 *
2710 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2711 */
2712 struct u_vector seen_bbos;
2713
2714 /* A vector of int32_t's for every block of binding tables.
2715 *
2716 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2717 */
2718 struct u_vector bt_block_states;
2719 struct anv_state bt_next;
2720
2721 struct anv_reloc_list surface_relocs;
2722 /** Last seen surface state block pool center bo offset */
2723 uint32_t last_ss_pool_center;
2724
2725 /* Serial for tracking buffer completion */
2726 uint32_t serial;
2727
2728 /* Stream objects for storing temporary data */
2729 struct anv_state_stream surface_state_stream;
2730 struct anv_state_stream dynamic_state_stream;
2731
2732 VkCommandBufferUsageFlags usage_flags;
2733 VkCommandBufferLevel level;
2734
2735 struct anv_cmd_state state;
2736
2737 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2738 uint64_t intel_perf_marker;
2739 };
2740
2741 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2742 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2743 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2744 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2745 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2746 struct anv_cmd_buffer *secondary);
2747 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2748 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2749 struct anv_cmd_buffer *cmd_buffer,
2750 const VkSemaphore *in_semaphores,
2751 const uint64_t *in_wait_values,
2752 uint32_t num_in_semaphores,
2753 const VkSemaphore *out_semaphores,
2754 const uint64_t *out_signal_values,
2755 uint32_t num_out_semaphores,
2756 VkFence fence);
2757
2758 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2759
2760 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2761 const void *data, uint32_t size, uint32_t alignment);
2762 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2763 uint32_t *a, uint32_t *b,
2764 uint32_t dwords, uint32_t alignment);
2765
2766 struct anv_address
2767 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2768 struct anv_state
2769 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2770 uint32_t entries, uint32_t *state_offset);
2771 struct anv_state
2772 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2773 struct anv_state
2774 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2775 uint32_t size, uint32_t alignment);
2776
2777 VkResult
2778 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2779
2780 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2781 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2782 bool depth_clamp_enable);
2783 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2784
2785 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2786 struct anv_render_pass *pass,
2787 struct anv_framebuffer *framebuffer,
2788 const VkClearValue *clear_values);
2789
2790 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2791
2792 struct anv_state
2793 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2794 gl_shader_stage stage);
2795 struct anv_state
2796 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2797
2798 const struct anv_image_view *
2799 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2800
2801 VkResult
2802 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2803 uint32_t num_entries,
2804 uint32_t *state_offset,
2805 struct anv_state *bt_state);
2806
2807 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2808
2809 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2810
2811 enum anv_fence_type {
2812 ANV_FENCE_TYPE_NONE = 0,
2813 ANV_FENCE_TYPE_BO,
2814 ANV_FENCE_TYPE_WSI_BO,
2815 ANV_FENCE_TYPE_SYNCOBJ,
2816 ANV_FENCE_TYPE_WSI,
2817 };
2818
2819 enum anv_bo_fence_state {
2820 /** Indicates that this is a new (or newly reset fence) */
2821 ANV_BO_FENCE_STATE_RESET,
2822
2823 /** Indicates that this fence has been submitted to the GPU but is still
2824 * (as far as we know) in use by the GPU.
2825 */
2826 ANV_BO_FENCE_STATE_SUBMITTED,
2827
2828 ANV_BO_FENCE_STATE_SIGNALED,
2829 };
2830
2831 struct anv_fence_impl {
2832 enum anv_fence_type type;
2833
2834 union {
2835 /** Fence implementation for BO fences
2836 *
2837 * These fences use a BO and a set of CPU-tracked state flags. The BO
2838 * is added to the object list of the last execbuf call in a QueueSubmit
2839 * and is marked EXEC_WRITE. The state flags track when the BO has been
2840 * submitted to the kernel. We need to do this because Vulkan lets you
2841 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2842 * will say it's idle in this case.
2843 */
2844 struct {
2845 struct anv_bo *bo;
2846 enum anv_bo_fence_state state;
2847 } bo;
2848
2849 /** DRM syncobj handle for syncobj-based fences */
2850 uint32_t syncobj;
2851
2852 /** WSI fence */
2853 struct wsi_fence *fence_wsi;
2854 };
2855 };
2856
2857 struct anv_fence {
2858 /* Permanent fence state. Every fence has some form of permanent state
2859 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2860 * cross-process fences) or it could just be a dummy for use internally.
2861 */
2862 struct anv_fence_impl permanent;
2863
2864 /* Temporary fence state. A fence *may* have temporary state. That state
2865 * is added to the fence by an import operation and is reset back to
2866 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2867 * state cannot be signaled because the fence must already be signaled
2868 * before the temporary state can be exported from the fence in the other
2869 * process and imported here.
2870 */
2871 struct anv_fence_impl temporary;
2872 };
2873
2874 void anv_fence_reset_temporary(struct anv_device *device,
2875 struct anv_fence *fence);
2876
2877 struct anv_event {
2878 uint64_t semaphore;
2879 struct anv_state state;
2880 };
2881
2882 enum anv_semaphore_type {
2883 ANV_SEMAPHORE_TYPE_NONE = 0,
2884 ANV_SEMAPHORE_TYPE_DUMMY,
2885 ANV_SEMAPHORE_TYPE_BO,
2886 ANV_SEMAPHORE_TYPE_WSI_BO,
2887 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2888 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2889 ANV_SEMAPHORE_TYPE_TIMELINE,
2890 };
2891
2892 struct anv_timeline_point {
2893 struct list_head link;
2894
2895 uint64_t serial;
2896
2897 /* Number of waiter on this point, when > 0 the point should not be garbage
2898 * collected.
2899 */
2900 int waiting;
2901
2902 /* BO used for synchronization. */
2903 struct anv_bo *bo;
2904 };
2905
2906 struct anv_timeline {
2907 pthread_mutex_t mutex;
2908 pthread_cond_t cond;
2909
2910 uint64_t highest_past;
2911 uint64_t highest_pending;
2912
2913 struct list_head points;
2914 struct list_head free_points;
2915 };
2916
2917 struct anv_semaphore_impl {
2918 enum anv_semaphore_type type;
2919
2920 union {
2921 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
2922 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
2923 * object list on any execbuf2 calls for which this semaphore is used as
2924 * a wait or signal fence. When used as a signal fence or when type ==
2925 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
2926 */
2927 struct anv_bo *bo;
2928
2929 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2930 * If the semaphore is in the unsignaled state due to either just being
2931 * created or because it has been used for a wait, fd will be -1.
2932 */
2933 int fd;
2934
2935 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2936 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2937 * import so we don't need to bother with a userspace cache.
2938 */
2939 uint32_t syncobj;
2940
2941 /* Non shareable timeline semaphore
2942 *
2943 * Used when kernel don't have support for timeline semaphores.
2944 */
2945 struct anv_timeline timeline;
2946 };
2947 };
2948
2949 struct anv_semaphore {
2950 uint32_t refcount;
2951
2952 /* Permanent semaphore state. Every semaphore has some form of permanent
2953 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2954 * (for cross-process semaphores0 or it could just be a dummy for use
2955 * internally.
2956 */
2957 struct anv_semaphore_impl permanent;
2958
2959 /* Temporary semaphore state. A semaphore *may* have temporary state.
2960 * That state is added to the semaphore by an import operation and is reset
2961 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2962 * semaphore with temporary state cannot be signaled because the semaphore
2963 * must already be signaled before the temporary state can be exported from
2964 * the semaphore in the other process and imported here.
2965 */
2966 struct anv_semaphore_impl temporary;
2967 };
2968
2969 void anv_semaphore_reset_temporary(struct anv_device *device,
2970 struct anv_semaphore *semaphore);
2971
2972 struct anv_shader_module {
2973 unsigned char sha1[20];
2974 uint32_t size;
2975 char data[0];
2976 };
2977
2978 static inline gl_shader_stage
2979 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2980 {
2981 assert(__builtin_popcount(vk_stage) == 1);
2982 return ffs(vk_stage) - 1;
2983 }
2984
2985 static inline VkShaderStageFlagBits
2986 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2987 {
2988 return (1 << mesa_stage);
2989 }
2990
2991 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2992
2993 #define anv_foreach_stage(stage, stage_bits) \
2994 for (gl_shader_stage stage, \
2995 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2996 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2997 __tmp &= ~(1 << (stage)))
2998
2999 struct anv_pipeline_bind_map {
3000 unsigned char surface_sha1[20];
3001 unsigned char sampler_sha1[20];
3002 unsigned char push_sha1[20];
3003
3004 uint32_t surface_count;
3005 uint32_t sampler_count;
3006
3007 struct anv_pipeline_binding * surface_to_descriptor;
3008 struct anv_pipeline_binding * sampler_to_descriptor;
3009
3010 struct anv_push_range push_ranges[4];
3011 };
3012
3013 struct anv_shader_bin_key {
3014 uint32_t size;
3015 uint8_t data[0];
3016 };
3017
3018 struct anv_shader_bin {
3019 uint32_t ref_cnt;
3020
3021 const struct anv_shader_bin_key *key;
3022
3023 struct anv_state kernel;
3024 uint32_t kernel_size;
3025
3026 struct anv_state constant_data;
3027 uint32_t constant_data_size;
3028
3029 const struct brw_stage_prog_data *prog_data;
3030 uint32_t prog_data_size;
3031
3032 struct brw_compile_stats stats[3];
3033 uint32_t num_stats;
3034
3035 struct nir_xfb_info *xfb_info;
3036
3037 struct anv_pipeline_bind_map bind_map;
3038 };
3039
3040 struct anv_shader_bin *
3041 anv_shader_bin_create(struct anv_device *device,
3042 const void *key, uint32_t key_size,
3043 const void *kernel, uint32_t kernel_size,
3044 const void *constant_data, uint32_t constant_data_size,
3045 const struct brw_stage_prog_data *prog_data,
3046 uint32_t prog_data_size, const void *prog_data_param,
3047 const struct brw_compile_stats *stats, uint32_t num_stats,
3048 const struct nir_xfb_info *xfb_info,
3049 const struct anv_pipeline_bind_map *bind_map);
3050
3051 void
3052 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3053
3054 static inline void
3055 anv_shader_bin_ref(struct anv_shader_bin *shader)
3056 {
3057 assert(shader && shader->ref_cnt >= 1);
3058 p_atomic_inc(&shader->ref_cnt);
3059 }
3060
3061 static inline void
3062 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3063 {
3064 assert(shader && shader->ref_cnt >= 1);
3065 if (p_atomic_dec_zero(&shader->ref_cnt))
3066 anv_shader_bin_destroy(device, shader);
3067 }
3068
3069 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
3070 #define MAX_PIPELINE_EXECUTABLES 7
3071
3072 struct anv_pipeline_executable {
3073 gl_shader_stage stage;
3074
3075 struct brw_compile_stats stats;
3076
3077 char *nir;
3078 char *disasm;
3079 };
3080
3081 struct anv_pipeline {
3082 struct anv_device * device;
3083 struct anv_batch batch;
3084 uint32_t batch_data[512];
3085 struct anv_reloc_list batch_relocs;
3086 anv_cmd_dirty_mask_t dynamic_state_mask;
3087 struct anv_dynamic_state dynamic_state;
3088
3089 void * mem_ctx;
3090
3091 VkPipelineCreateFlags flags;
3092 struct anv_subpass * subpass;
3093
3094 bool needs_data_cache;
3095
3096 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3097
3098 uint32_t num_executables;
3099 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
3100
3101 struct {
3102 const struct gen_l3_config * l3_config;
3103 uint32_t total_size;
3104 } urb;
3105
3106 VkShaderStageFlags active_stages;
3107 struct anv_state blend_state;
3108
3109 uint32_t vb_used;
3110 struct anv_pipeline_vertex_binding {
3111 uint32_t stride;
3112 bool instanced;
3113 uint32_t instance_divisor;
3114 } vb[MAX_VBS];
3115
3116 uint8_t xfb_used;
3117
3118 bool primitive_restart;
3119 uint32_t topology;
3120
3121 uint32_t cs_right_mask;
3122
3123 bool writes_depth;
3124 bool depth_test_enable;
3125 bool writes_stencil;
3126 bool stencil_test_enable;
3127 bool depth_clamp_enable;
3128 bool depth_clip_enable;
3129 bool sample_shading_enable;
3130 bool kill_pixel;
3131 bool depth_bounds_test_enable;
3132
3133 struct {
3134 uint32_t sf[7];
3135 uint32_t depth_stencil_state[3];
3136 } gen7;
3137
3138 struct {
3139 uint32_t sf[4];
3140 uint32_t raster[5];
3141 uint32_t wm_depth_stencil[3];
3142 } gen8;
3143
3144 struct {
3145 uint32_t wm_depth_stencil[4];
3146 } gen9;
3147
3148 uint32_t interface_descriptor_data[8];
3149 };
3150
3151 static inline bool
3152 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3153 gl_shader_stage stage)
3154 {
3155 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3156 }
3157
3158 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3159 static inline const struct brw_##prefix##_prog_data * \
3160 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3161 { \
3162 if (anv_pipeline_has_stage(pipeline, stage)) { \
3163 return (const struct brw_##prefix##_prog_data *) \
3164 pipeline->shaders[stage]->prog_data; \
3165 } else { \
3166 return NULL; \
3167 } \
3168 }
3169
3170 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3171 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3172 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3173 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3174 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3175 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3176
3177 static inline const struct brw_vue_prog_data *
3178 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3179 {
3180 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3181 return &get_gs_prog_data(pipeline)->base;
3182 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3183 return &get_tes_prog_data(pipeline)->base;
3184 else
3185 return &get_vs_prog_data(pipeline)->base;
3186 }
3187
3188 VkResult
3189 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3190 struct anv_pipeline_cache *cache,
3191 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3192 const VkAllocationCallbacks *alloc);
3193
3194 VkResult
3195 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3196 struct anv_pipeline_cache *cache,
3197 const VkComputePipelineCreateInfo *info,
3198 const struct anv_shader_module *module,
3199 const char *entrypoint,
3200 const VkSpecializationInfo *spec_info);
3201
3202 struct anv_format_plane {
3203 enum isl_format isl_format:16;
3204 struct isl_swizzle swizzle;
3205
3206 /* Whether this plane contains chroma channels */
3207 bool has_chroma;
3208
3209 /* For downscaling of YUV planes */
3210 uint8_t denominator_scales[2];
3211
3212 /* How to map sampled ycbcr planes to a single 4 component element. */
3213 struct isl_swizzle ycbcr_swizzle;
3214
3215 /* What aspect is associated to this plane */
3216 VkImageAspectFlags aspect;
3217 };
3218
3219
3220 struct anv_format {
3221 struct anv_format_plane planes[3];
3222 VkFormat vk_format;
3223 uint8_t n_planes;
3224 bool can_ycbcr;
3225 };
3226
3227 static inline uint32_t
3228 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3229 VkImageAspectFlags aspect_mask)
3230 {
3231 switch (aspect_mask) {
3232 case VK_IMAGE_ASPECT_COLOR_BIT:
3233 case VK_IMAGE_ASPECT_DEPTH_BIT:
3234 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3235 return 0;
3236 case VK_IMAGE_ASPECT_STENCIL_BIT:
3237 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3238 return 0;
3239 /* Fall-through */
3240 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3241 return 1;
3242 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3243 return 2;
3244 default:
3245 /* Purposefully assert with depth/stencil aspects. */
3246 unreachable("invalid image aspect");
3247 }
3248 }
3249
3250 static inline VkImageAspectFlags
3251 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3252 uint32_t plane)
3253 {
3254 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3255 if (util_bitcount(image_aspects) > 1)
3256 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3257 return VK_IMAGE_ASPECT_COLOR_BIT;
3258 }
3259 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3260 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3261 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3262 return VK_IMAGE_ASPECT_STENCIL_BIT;
3263 }
3264
3265 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3266 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3267
3268 const struct anv_format *
3269 anv_get_format(VkFormat format);
3270
3271 static inline uint32_t
3272 anv_get_format_planes(VkFormat vk_format)
3273 {
3274 const struct anv_format *format = anv_get_format(vk_format);
3275
3276 return format != NULL ? format->n_planes : 0;
3277 }
3278
3279 struct anv_format_plane
3280 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3281 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3282
3283 static inline enum isl_format
3284 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3285 VkImageAspectFlags aspect, VkImageTiling tiling)
3286 {
3287 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3288 }
3289
3290 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3291 VkImageCreateFlags create_flags,
3292 VkFormat vk_format,
3293 VkImageTiling vk_tiling,
3294 const VkImageFormatListCreateInfoKHR *fmt_list);
3295
3296 static inline struct isl_swizzle
3297 anv_swizzle_for_render(struct isl_swizzle swizzle)
3298 {
3299 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3300 * RGB as RGBA for texturing
3301 */
3302 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3303 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3304
3305 /* But it doesn't matter what we render to that channel */
3306 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3307
3308 return swizzle;
3309 }
3310
3311 void
3312 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3313
3314 /**
3315 * Subsurface of an anv_image.
3316 */
3317 struct anv_surface {
3318 /** Valid only if isl_surf::size_B > 0. */
3319 struct isl_surf isl;
3320
3321 /**
3322 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3323 */
3324 uint32_t offset;
3325 };
3326
3327 struct anv_image {
3328 VkImageType type; /**< VkImageCreateInfo::imageType */
3329 /* The original VkFormat provided by the client. This may not match any
3330 * of the actual surface formats.
3331 */
3332 VkFormat vk_format;
3333 const struct anv_format *format;
3334
3335 VkImageAspectFlags aspects;
3336 VkExtent3D extent;
3337 uint32_t levels;
3338 uint32_t array_size;
3339 uint32_t samples; /**< VkImageCreateInfo::samples */
3340 uint32_t n_planes;
3341 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3342 VkImageUsageFlags stencil_usage;
3343 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3344 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3345
3346 /** True if this is needs to be bound to an appropriately tiled BO.
3347 *
3348 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3349 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3350 * we require a dedicated allocation so that we can know to allocate a
3351 * tiled buffer.
3352 */
3353 bool needs_set_tiling;
3354
3355 /**
3356 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3357 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3358 */
3359 uint64_t drm_format_mod;
3360
3361 VkDeviceSize size;
3362 uint32_t alignment;
3363
3364 /* Whether the image is made of several underlying buffer objects rather a
3365 * single one with different offsets.
3366 */
3367 bool disjoint;
3368
3369 /* All the formats that can be used when creating views of this image
3370 * are CCS_E compatible.
3371 */
3372 bool ccs_e_compatible;
3373
3374 /* Image was created with external format. */
3375 bool external_format;
3376
3377 /**
3378 * Image subsurfaces
3379 *
3380 * For each foo, anv_image::planes[x].surface is valid if and only if
3381 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3382 * to figure the number associated with a given aspect.
3383 *
3384 * The hardware requires that the depth buffer and stencil buffer be
3385 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3386 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3387 * allocate the depth and stencil buffers as separate surfaces in the same
3388 * bo.
3389 *
3390 * Memory layout :
3391 *
3392 * -----------------------
3393 * | surface0 | /|\
3394 * ----------------------- |
3395 * | shadow surface0 | |
3396 * ----------------------- | Plane 0
3397 * | aux surface0 | |
3398 * ----------------------- |
3399 * | fast clear colors0 | \|/
3400 * -----------------------
3401 * | surface1 | /|\
3402 * ----------------------- |
3403 * | shadow surface1 | |
3404 * ----------------------- | Plane 1
3405 * | aux surface1 | |
3406 * ----------------------- |
3407 * | fast clear colors1 | \|/
3408 * -----------------------
3409 * | ... |
3410 * | |
3411 * -----------------------
3412 */
3413 struct {
3414 /**
3415 * Offset of the entire plane (whenever the image is disjoint this is
3416 * set to 0).
3417 */
3418 uint32_t offset;
3419
3420 VkDeviceSize size;
3421 uint32_t alignment;
3422
3423 struct anv_surface surface;
3424
3425 /**
3426 * A surface which shadows the main surface and may have different
3427 * tiling. This is used for sampling using a tiling that isn't supported
3428 * for other operations.
3429 */
3430 struct anv_surface shadow_surface;
3431
3432 /**
3433 * For color images, this is the aux usage for this image when not used
3434 * as a color attachment.
3435 *
3436 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3437 * image has a HiZ buffer.
3438 */
3439 enum isl_aux_usage aux_usage;
3440
3441 struct anv_surface aux_surface;
3442
3443 /**
3444 * Offset of the fast clear state (used to compute the
3445 * fast_clear_state_offset of the following planes).
3446 */
3447 uint32_t fast_clear_state_offset;
3448
3449 /**
3450 * BO associated with this plane, set when bound.
3451 */
3452 struct anv_address address;
3453
3454 /**
3455 * Address of the main surface used to fill the aux map table. This is
3456 * used at destruction of the image since the Vulkan spec does not
3457 * guarantee that the address.bo field we still be valid at destruction.
3458 */
3459 uint64_t aux_map_surface_address;
3460
3461 /**
3462 * When destroying the image, also free the bo.
3463 * */
3464 bool bo_is_owned;
3465 } planes[3];
3466 };
3467
3468 /* The ordering of this enum is important */
3469 enum anv_fast_clear_type {
3470 /** Image does not have/support any fast-clear blocks */
3471 ANV_FAST_CLEAR_NONE = 0,
3472 /** Image has/supports fast-clear but only to the default value */
3473 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3474 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3475 ANV_FAST_CLEAR_ANY = 2,
3476 };
3477
3478 /* Returns the number of auxiliary buffer levels attached to an image. */
3479 static inline uint8_t
3480 anv_image_aux_levels(const struct anv_image * const image,
3481 VkImageAspectFlagBits aspect)
3482 {
3483 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3484
3485 /* The Gen12 CCS aux surface is represented with only one level. */
3486 const uint8_t aux_logical_levels =
3487 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3488 image->planes[plane].surface.isl.levels :
3489 image->planes[plane].aux_surface.isl.levels;
3490
3491 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3492 aux_logical_levels : 0;
3493 }
3494
3495 /* Returns the number of auxiliary buffer layers attached to an image. */
3496 static inline uint32_t
3497 anv_image_aux_layers(const struct anv_image * const image,
3498 VkImageAspectFlagBits aspect,
3499 const uint8_t miplevel)
3500 {
3501 assert(image);
3502
3503 /* The miplevel must exist in the main buffer. */
3504 assert(miplevel < image->levels);
3505
3506 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3507 /* There are no layers with auxiliary data because the miplevel has no
3508 * auxiliary data.
3509 */
3510 return 0;
3511 } else {
3512 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3513
3514 /* The Gen12 CCS aux surface is represented with only one layer. */
3515 const struct isl_extent4d *aux_logical_level0_px =
3516 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3517 &image->planes[plane].surface.isl.logical_level0_px :
3518 &image->planes[plane].aux_surface.isl.logical_level0_px;
3519
3520 return MAX2(aux_logical_level0_px->array_len,
3521 aux_logical_level0_px->depth >> miplevel);
3522 }
3523 }
3524
3525 static inline struct anv_address
3526 anv_image_get_clear_color_addr(const struct anv_device *device,
3527 const struct anv_image *image,
3528 VkImageAspectFlagBits aspect)
3529 {
3530 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3531
3532 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3533 return anv_address_add(image->planes[plane].address,
3534 image->planes[plane].fast_clear_state_offset);
3535 }
3536
3537 static inline struct anv_address
3538 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3539 const struct anv_image *image,
3540 VkImageAspectFlagBits aspect)
3541 {
3542 struct anv_address addr =
3543 anv_image_get_clear_color_addr(device, image, aspect);
3544
3545 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3546 device->isl_dev.ss.clear_color_state_size :
3547 device->isl_dev.ss.clear_value_size;
3548 return anv_address_add(addr, clear_color_state_size);
3549 }
3550
3551 static inline struct anv_address
3552 anv_image_get_compression_state_addr(const struct anv_device *device,
3553 const struct anv_image *image,
3554 VkImageAspectFlagBits aspect,
3555 uint32_t level, uint32_t array_layer)
3556 {
3557 assert(level < anv_image_aux_levels(image, aspect));
3558 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3559 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3560 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3561
3562 struct anv_address addr =
3563 anv_image_get_fast_clear_type_addr(device, image, aspect);
3564 addr.offset += 4; /* Go past the fast clear type */
3565
3566 if (image->type == VK_IMAGE_TYPE_3D) {
3567 for (uint32_t l = 0; l < level; l++)
3568 addr.offset += anv_minify(image->extent.depth, l) * 4;
3569 } else {
3570 addr.offset += level * image->array_size * 4;
3571 }
3572 addr.offset += array_layer * 4;
3573
3574 assert(addr.offset <
3575 image->planes[plane].address.offset + image->planes[plane].size);
3576 return addr;
3577 }
3578
3579 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3580 static inline bool
3581 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3582 const struct anv_image *image)
3583 {
3584 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3585 return false;
3586
3587 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3588 * struct. There's documentation which suggests that this feature actually
3589 * reduces performance on BDW, but it has only been observed to help so
3590 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3591 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3592 */
3593 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3594 return false;
3595
3596 return image->samples == 1;
3597 }
3598
3599 static inline bool
3600 anv_image_plane_uses_aux_map(const struct anv_device *device,
3601 const struct anv_image *image,
3602 uint32_t plane)
3603 {
3604 return device->info.has_aux_map &&
3605 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3606 }
3607
3608 void
3609 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3610 const struct anv_image *image,
3611 VkImageAspectFlagBits aspect,
3612 enum isl_aux_usage aux_usage,
3613 uint32_t level,
3614 uint32_t base_layer,
3615 uint32_t layer_count);
3616
3617 void
3618 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3619 const struct anv_image *image,
3620 VkImageAspectFlagBits aspect,
3621 enum isl_aux_usage aux_usage,
3622 enum isl_format format, struct isl_swizzle swizzle,
3623 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3624 VkRect2D area, union isl_color_value clear_color);
3625 void
3626 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3627 const struct anv_image *image,
3628 VkImageAspectFlags aspects,
3629 enum isl_aux_usage depth_aux_usage,
3630 uint32_t level,
3631 uint32_t base_layer, uint32_t layer_count,
3632 VkRect2D area,
3633 float depth_value, uint8_t stencil_value);
3634 void
3635 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3636 const struct anv_image *src_image,
3637 enum isl_aux_usage src_aux_usage,
3638 uint32_t src_level, uint32_t src_base_layer,
3639 const struct anv_image *dst_image,
3640 enum isl_aux_usage dst_aux_usage,
3641 uint32_t dst_level, uint32_t dst_base_layer,
3642 VkImageAspectFlagBits aspect,
3643 uint32_t src_x, uint32_t src_y,
3644 uint32_t dst_x, uint32_t dst_y,
3645 uint32_t width, uint32_t height,
3646 uint32_t layer_count,
3647 enum blorp_filter filter);
3648 void
3649 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3650 const struct anv_image *image,
3651 VkImageAspectFlagBits aspect, uint32_t level,
3652 uint32_t base_layer, uint32_t layer_count,
3653 enum isl_aux_op hiz_op);
3654 void
3655 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3656 const struct anv_image *image,
3657 VkImageAspectFlags aspects,
3658 uint32_t level,
3659 uint32_t base_layer, uint32_t layer_count,
3660 VkRect2D area, uint8_t stencil_value);
3661 void
3662 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3663 const struct anv_image *image,
3664 enum isl_format format,
3665 VkImageAspectFlagBits aspect,
3666 uint32_t base_layer, uint32_t layer_count,
3667 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3668 bool predicate);
3669 void
3670 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3671 const struct anv_image *image,
3672 enum isl_format format,
3673 VkImageAspectFlagBits aspect, uint32_t level,
3674 uint32_t base_layer, uint32_t layer_count,
3675 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3676 bool predicate);
3677
3678 void
3679 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3680 const struct anv_image *image,
3681 VkImageAspectFlagBits aspect,
3682 uint32_t base_level, uint32_t level_count,
3683 uint32_t base_layer, uint32_t layer_count);
3684
3685 enum isl_aux_usage
3686 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3687 const struct anv_image *image,
3688 const VkImageAspectFlagBits aspect,
3689 const VkImageLayout layout);
3690
3691 enum anv_fast_clear_type
3692 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3693 const struct anv_image * const image,
3694 const VkImageAspectFlagBits aspect,
3695 const VkImageLayout layout);
3696
3697 /* This is defined as a macro so that it works for both
3698 * VkImageSubresourceRange and VkImageSubresourceLayers
3699 */
3700 #define anv_get_layerCount(_image, _range) \
3701 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3702 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3703
3704 static inline uint32_t
3705 anv_get_levelCount(const struct anv_image *image,
3706 const VkImageSubresourceRange *range)
3707 {
3708 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3709 image->levels - range->baseMipLevel : range->levelCount;
3710 }
3711
3712 static inline VkImageAspectFlags
3713 anv_image_expand_aspects(const struct anv_image *image,
3714 VkImageAspectFlags aspects)
3715 {
3716 /* If the underlying image has color plane aspects and
3717 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3718 * the underlying image. */
3719 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3720 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3721 return image->aspects;
3722
3723 return aspects;
3724 }
3725
3726 static inline bool
3727 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3728 VkImageAspectFlags aspects2)
3729 {
3730 if (aspects1 == aspects2)
3731 return true;
3732
3733 /* Only 1 color aspects are compatibles. */
3734 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3735 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3736 util_bitcount(aspects1) == util_bitcount(aspects2))
3737 return true;
3738
3739 return false;
3740 }
3741
3742 struct anv_image_view {
3743 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3744
3745 VkImageAspectFlags aspect_mask;
3746 VkFormat vk_format;
3747 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3748
3749 unsigned n_planes;
3750 struct {
3751 uint32_t image_plane;
3752
3753 struct isl_view isl;
3754
3755 /**
3756 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3757 * image layout of SHADER_READ_ONLY_OPTIMAL or
3758 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3759 */
3760 struct anv_surface_state optimal_sampler_surface_state;
3761
3762 /**
3763 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3764 * image layout of GENERAL.
3765 */
3766 struct anv_surface_state general_sampler_surface_state;
3767
3768 /**
3769 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3770 * states for write-only and readable, using the real format for
3771 * write-only and the lowered format for readable.
3772 */
3773 struct anv_surface_state storage_surface_state;
3774 struct anv_surface_state writeonly_storage_surface_state;
3775
3776 struct brw_image_param storage_image_param;
3777 } planes[3];
3778 };
3779
3780 enum anv_image_view_state_flags {
3781 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3782 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3783 };
3784
3785 void anv_image_fill_surface_state(struct anv_device *device,
3786 const struct anv_image *image,
3787 VkImageAspectFlagBits aspect,
3788 const struct isl_view *view,
3789 isl_surf_usage_flags_t view_usage,
3790 enum isl_aux_usage aux_usage,
3791 const union isl_color_value *clear_color,
3792 enum anv_image_view_state_flags flags,
3793 struct anv_surface_state *state_inout,
3794 struct brw_image_param *image_param_out);
3795
3796 struct anv_image_create_info {
3797 const VkImageCreateInfo *vk_info;
3798
3799 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3800 isl_tiling_flags_t isl_tiling_flags;
3801
3802 /** These flags will be added to any derived from VkImageCreateInfo. */
3803 isl_surf_usage_flags_t isl_extra_usage_flags;
3804
3805 uint32_t stride;
3806 bool external_format;
3807 };
3808
3809 VkResult anv_image_create(VkDevice _device,
3810 const struct anv_image_create_info *info,
3811 const VkAllocationCallbacks* alloc,
3812 VkImage *pImage);
3813
3814 const struct anv_surface *
3815 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3816 VkImageAspectFlags aspect_mask);
3817
3818 enum isl_format
3819 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3820
3821 static inline VkExtent3D
3822 anv_sanitize_image_extent(const VkImageType imageType,
3823 const VkExtent3D imageExtent)
3824 {
3825 switch (imageType) {
3826 case VK_IMAGE_TYPE_1D:
3827 return (VkExtent3D) { imageExtent.width, 1, 1 };
3828 case VK_IMAGE_TYPE_2D:
3829 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3830 case VK_IMAGE_TYPE_3D:
3831 return imageExtent;
3832 default:
3833 unreachable("invalid image type");
3834 }
3835 }
3836
3837 static inline VkOffset3D
3838 anv_sanitize_image_offset(const VkImageType imageType,
3839 const VkOffset3D imageOffset)
3840 {
3841 switch (imageType) {
3842 case VK_IMAGE_TYPE_1D:
3843 return (VkOffset3D) { imageOffset.x, 0, 0 };
3844 case VK_IMAGE_TYPE_2D:
3845 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3846 case VK_IMAGE_TYPE_3D:
3847 return imageOffset;
3848 default:
3849 unreachable("invalid image type");
3850 }
3851 }
3852
3853 VkFormatFeatureFlags
3854 anv_get_image_format_features(const struct gen_device_info *devinfo,
3855 VkFormat vk_format,
3856 const struct anv_format *anv_format,
3857 VkImageTiling vk_tiling);
3858
3859 void anv_fill_buffer_surface_state(struct anv_device *device,
3860 struct anv_state state,
3861 enum isl_format format,
3862 struct anv_address address,
3863 uint32_t range, uint32_t stride);
3864
3865 static inline void
3866 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3867 const struct anv_attachment_state *att_state,
3868 const struct anv_image_view *iview)
3869 {
3870 const struct isl_format_layout *view_fmtl =
3871 isl_format_get_layout(iview->planes[0].isl.format);
3872
3873 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3874 if (view_fmtl->channels.c.bits) \
3875 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3876
3877 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3878 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3879 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3880 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3881
3882 #undef COPY_CLEAR_COLOR_CHANNEL
3883 }
3884
3885
3886 struct anv_ycbcr_conversion {
3887 const struct anv_format * format;
3888 VkSamplerYcbcrModelConversion ycbcr_model;
3889 VkSamplerYcbcrRange ycbcr_range;
3890 VkComponentSwizzle mapping[4];
3891 VkChromaLocation chroma_offsets[2];
3892 VkFilter chroma_filter;
3893 bool chroma_reconstruction;
3894 };
3895
3896 struct anv_sampler {
3897 uint32_t state[3][4];
3898 uint32_t n_planes;
3899 struct anv_ycbcr_conversion *conversion;
3900
3901 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3902 * and with a 32-byte stride for use as bindless samplers.
3903 */
3904 struct anv_state bindless_state;
3905 };
3906
3907 struct anv_framebuffer {
3908 uint32_t width;
3909 uint32_t height;
3910 uint32_t layers;
3911
3912 uint32_t attachment_count;
3913 struct anv_image_view * attachments[0];
3914 };
3915
3916 struct anv_subpass_attachment {
3917 VkImageUsageFlagBits usage;
3918 uint32_t attachment;
3919 VkImageLayout layout;
3920
3921 /* Used only with attachment containing stencil data. */
3922 VkImageLayout stencil_layout;
3923 };
3924
3925 struct anv_subpass {
3926 uint32_t attachment_count;
3927
3928 /**
3929 * A pointer to all attachment references used in this subpass.
3930 * Only valid if ::attachment_count > 0.
3931 */
3932 struct anv_subpass_attachment * attachments;
3933 uint32_t input_count;
3934 struct anv_subpass_attachment * input_attachments;
3935 uint32_t color_count;
3936 struct anv_subpass_attachment * color_attachments;
3937 struct anv_subpass_attachment * resolve_attachments;
3938
3939 struct anv_subpass_attachment * depth_stencil_attachment;
3940 struct anv_subpass_attachment * ds_resolve_attachment;
3941 VkResolveModeFlagBitsKHR depth_resolve_mode;
3942 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3943
3944 uint32_t view_mask;
3945
3946 /** Subpass has a depth/stencil self-dependency */
3947 bool has_ds_self_dep;
3948
3949 /** Subpass has at least one color resolve attachment */
3950 bool has_color_resolve;
3951 };
3952
3953 static inline unsigned
3954 anv_subpass_view_count(const struct anv_subpass *subpass)
3955 {
3956 return MAX2(1, util_bitcount(subpass->view_mask));
3957 }
3958
3959 struct anv_render_pass_attachment {
3960 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3961 * its members individually.
3962 */
3963 VkFormat format;
3964 uint32_t samples;
3965 VkImageUsageFlags usage;
3966 VkAttachmentLoadOp load_op;
3967 VkAttachmentStoreOp store_op;
3968 VkAttachmentLoadOp stencil_load_op;
3969 VkImageLayout initial_layout;
3970 VkImageLayout final_layout;
3971 VkImageLayout first_subpass_layout;
3972
3973 VkImageLayout stencil_initial_layout;
3974 VkImageLayout stencil_final_layout;
3975
3976 /* The subpass id in which the attachment will be used last. */
3977 uint32_t last_subpass_idx;
3978 };
3979
3980 struct anv_render_pass {
3981 uint32_t attachment_count;
3982 uint32_t subpass_count;
3983 /* An array of subpass_count+1 flushes, one per subpass boundary */
3984 enum anv_pipe_bits * subpass_flushes;
3985 struct anv_render_pass_attachment * attachments;
3986 struct anv_subpass subpasses[0];
3987 };
3988
3989 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3990
3991 struct anv_query_pool {
3992 VkQueryType type;
3993 VkQueryPipelineStatisticFlags pipeline_statistics;
3994 /** Stride between slots, in bytes */
3995 uint32_t stride;
3996 /** Number of slots in this query pool */
3997 uint32_t slots;
3998 struct anv_bo * bo;
3999 };
4000
4001 int anv_get_instance_entrypoint_index(const char *name);
4002 int anv_get_device_entrypoint_index(const char *name);
4003 int anv_get_physical_device_entrypoint_index(const char *name);
4004
4005 const char *anv_get_instance_entry_name(int index);
4006 const char *anv_get_physical_device_entry_name(int index);
4007 const char *anv_get_device_entry_name(int index);
4008
4009 bool
4010 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4011 const struct anv_instance_extension_table *instance);
4012 bool
4013 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4014 const struct anv_instance_extension_table *instance);
4015 bool
4016 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4017 const struct anv_instance_extension_table *instance,
4018 const struct anv_device_extension_table *device);
4019
4020 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4021 const char *name);
4022
4023 void anv_dump_image_to_ppm(struct anv_device *device,
4024 struct anv_image *image, unsigned miplevel,
4025 unsigned array_layer, VkImageAspectFlagBits aspect,
4026 const char *filename);
4027
4028 enum anv_dump_action {
4029 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4030 };
4031
4032 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4033 void anv_dump_finish(void);
4034
4035 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4036
4037 static inline uint32_t
4038 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4039 {
4040 /* This function must be called from within a subpass. */
4041 assert(cmd_state->pass && cmd_state->subpass);
4042
4043 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4044
4045 /* The id of this subpass shouldn't exceed the number of subpasses in this
4046 * render pass minus 1.
4047 */
4048 assert(subpass_id < cmd_state->pass->subpass_count);
4049 return subpass_id;
4050 }
4051
4052 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4053 void anv_device_perf_init(struct anv_device *device);
4054
4055 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4056 \
4057 static inline struct __anv_type * \
4058 __anv_type ## _from_handle(__VkType _handle) \
4059 { \
4060 return (struct __anv_type *) _handle; \
4061 } \
4062 \
4063 static inline __VkType \
4064 __anv_type ## _to_handle(struct __anv_type *_obj) \
4065 { \
4066 return (__VkType) _obj; \
4067 }
4068
4069 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4070 \
4071 static inline struct __anv_type * \
4072 __anv_type ## _from_handle(__VkType _handle) \
4073 { \
4074 return (struct __anv_type *)(uintptr_t) _handle; \
4075 } \
4076 \
4077 static inline __VkType \
4078 __anv_type ## _to_handle(struct __anv_type *_obj) \
4079 { \
4080 return (__VkType)(uintptr_t) _obj; \
4081 }
4082
4083 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4084 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4085
4086 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4087 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4088 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4089 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4090 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4091
4092 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4093 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4094 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4095 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4096 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4097 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4098 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4099 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4100 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4101 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4102 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4103 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4104 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4105 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4106 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4107 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4108 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4109 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4110 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4111 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4112 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4113 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4114 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4115
4116 /* Gen-specific function declarations */
4117 #ifdef genX
4118 # include "anv_genX.h"
4119 #else
4120 # define genX(x) gen7_##x
4121 # include "anv_genX.h"
4122 # undef genX
4123 # define genX(x) gen75_##x
4124 # include "anv_genX.h"
4125 # undef genX
4126 # define genX(x) gen8_##x
4127 # include "anv_genX.h"
4128 # undef genX
4129 # define genX(x) gen9_##x
4130 # include "anv_genX.h"
4131 # undef genX
4132 # define genX(x) gen10_##x
4133 # include "anv_genX.h"
4134 # undef genX
4135 # define genX(x) gen11_##x
4136 # include "anv_genX.h"
4137 # undef genX
4138 # define genX(x) gen12_##x
4139 # include "anv_genX.h"
4140 # undef genX
4141 #endif
4142
4143 #endif /* ANV_PRIVATE_H */