anv: drop pointless struct decl.
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
40 #else
41 #define VG(x)
42 #endif
43
44 #include "common/gen_device_info.h"
45 #include "blorp/blorp.h"
46 #include "brw_compiler.h"
47 #include "util/macros.h"
48 #include "util/list.h"
49 #include "util/u_vector.h"
50 #include "util/vk_alloc.h"
51
52 /* Pre-declarations needed for WSI entrypoints */
53 struct wl_surface;
54 struct wl_display;
55 typedef struct xcb_connection_t xcb_connection_t;
56 typedef uint32_t xcb_visualid_t;
57 typedef uint32_t xcb_window_t;
58
59 struct gen_l3_config;
60
61 #include <vulkan/vulkan.h>
62 #include <vulkan/vulkan_intel.h>
63 #include <vulkan/vk_icd.h>
64
65 #include "anv_entrypoints.h"
66 #include "brw_context.h"
67 #include "isl/isl.h"
68
69 #ifdef __cplusplus
70 extern "C" {
71 #endif
72
73 #define MAX_VBS 32
74 #define MAX_SETS 8
75 #define MAX_RTS 8
76 #define MAX_VIEWPORTS 16
77 #define MAX_SCISSORS 16
78 #define MAX_PUSH_CONSTANTS_SIZE 128
79 #define MAX_DYNAMIC_BUFFERS 16
80 #define MAX_IMAGES 8
81 #define MAX_SAMPLES_LOG2 4 /* SKL supports 16 samples */
82
83 #define anv_noreturn __attribute__((__noreturn__))
84 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
85
86 static inline uint32_t
87 align_down_npot_u32(uint32_t v, uint32_t a)
88 {
89 return v - (v % a);
90 }
91
92 static inline uint32_t
93 align_u32(uint32_t v, uint32_t a)
94 {
95 assert(a != 0 && a == (a & -a));
96 return (v + a - 1) & ~(a - 1);
97 }
98
99 static inline uint64_t
100 align_u64(uint64_t v, uint64_t a)
101 {
102 assert(a != 0 && a == (a & -a));
103 return (v + a - 1) & ~(a - 1);
104 }
105
106 static inline int32_t
107 align_i32(int32_t v, int32_t a)
108 {
109 assert(a != 0 && a == (a & -a));
110 return (v + a - 1) & ~(a - 1);
111 }
112
113 /** Alignment must be a power of 2. */
114 static inline bool
115 anv_is_aligned(uintmax_t n, uintmax_t a)
116 {
117 assert(a == (a & -a));
118 return (n & (a - 1)) == 0;
119 }
120
121 static inline uint32_t
122 anv_minify(uint32_t n, uint32_t levels)
123 {
124 if (unlikely(n == 0))
125 return 0;
126 else
127 return MAX2(n >> levels, 1);
128 }
129
130 static inline float
131 anv_clamp_f(float f, float min, float max)
132 {
133 assert(min < max);
134
135 if (f > max)
136 return max;
137 else if (f < min)
138 return min;
139 else
140 return f;
141 }
142
143 static inline bool
144 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
145 {
146 if (*inout_mask & clear_mask) {
147 *inout_mask &= ~clear_mask;
148 return true;
149 } else {
150 return false;
151 }
152 }
153
154 #define for_each_bit(b, dword) \
155 for (uint32_t __dword = (dword); \
156 (b) = __builtin_ffs(__dword) - 1, __dword; \
157 __dword &= ~(1 << (b)))
158
159 #define typed_memcpy(dest, src, count) ({ \
160 static_assert(sizeof(*src) == sizeof(*dest), ""); \
161 memcpy((dest), (src), (count) * sizeof(*(src))); \
162 })
163
164 #define zero(x) (memset(&(x), 0, sizeof(x)))
165
166 /* Define no kernel as 1, since that's an illegal offset for a kernel */
167 #define NO_KERNEL 1
168
169 struct anv_common {
170 VkStructureType sType;
171 const void* pNext;
172 };
173
174 /* Whenever we generate an error, pass it through this function. Useful for
175 * debugging, where we can break on it. Only call at error site, not when
176 * propagating errors. Might be useful to plug in a stack trace here.
177 */
178
179 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
180
181 #ifdef DEBUG
182 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
183 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
184 #else
185 #define vk_error(error) error
186 #define vk_errorf(error, format, ...) error
187 #endif
188
189 void __anv_finishme(const char *file, int line, const char *format, ...)
190 anv_printflike(3, 4);
191 void anv_loge(const char *format, ...) anv_printflike(1, 2);
192 void anv_loge_v(const char *format, va_list va);
193
194 /**
195 * Print a FINISHME message, including its source location.
196 */
197 #define anv_finishme(format, ...) \
198 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__);
199
200 /* A non-fatal assert. Useful for debugging. */
201 #ifdef DEBUG
202 #define anv_assert(x) ({ \
203 if (unlikely(!(x))) \
204 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
205 })
206 #else
207 #define anv_assert(x)
208 #endif
209
210 /**
211 * If a block of code is annotated with anv_validate, then the block runs only
212 * in debug builds.
213 */
214 #ifdef DEBUG
215 #define anv_validate if (1)
216 #else
217 #define anv_validate if (0)
218 #endif
219
220 void anv_abortf(const char *format, ...) anv_noreturn anv_printflike(1, 2);
221 void anv_abortfv(const char *format, va_list va) anv_noreturn;
222
223 #define stub_return(v) \
224 do { \
225 anv_finishme("stub %s", __func__); \
226 return (v); \
227 } while (0)
228
229 #define stub() \
230 do { \
231 anv_finishme("stub %s", __func__); \
232 return; \
233 } while (0)
234
235 /**
236 * A dynamically growable, circular buffer. Elements are added at head and
237 * removed from tail. head and tail are free-running uint32_t indices and we
238 * only compute the modulo with size when accessing the array. This way,
239 * number of bytes in the queue is always head - tail, even in case of
240 * wraparound.
241 */
242
243 struct anv_bo {
244 uint32_t gem_handle;
245
246 /* Index into the current validation list. This is used by the
247 * validation list building alrogithm to track which buffers are already
248 * in the validation list so that we can ensure uniqueness.
249 */
250 uint32_t index;
251
252 /* Last known offset. This value is provided by the kernel when we
253 * execbuf and is used as the presumed offset for the next bunch of
254 * relocations.
255 */
256 uint64_t offset;
257
258 uint64_t size;
259 void *map;
260
261 /* We need to set the WRITE flag on winsys bos so GEM will know we're
262 * writing to them and synchronize uses on other rings (eg if the display
263 * server uses the blitter ring).
264 */
265 bool is_winsys_bo;
266 };
267
268 /* Represents a lock-free linked list of "free" things. This is used by
269 * both the block pool and the state pools. Unfortunately, in order to
270 * solve the ABA problem, we can't use a single uint32_t head.
271 */
272 union anv_free_list {
273 struct {
274 int32_t offset;
275
276 /* A simple count that is incremented every time the head changes. */
277 uint32_t count;
278 };
279 uint64_t u64;
280 };
281
282 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
283
284 struct anv_block_state {
285 union {
286 struct {
287 uint32_t next;
288 uint32_t end;
289 };
290 uint64_t u64;
291 };
292 };
293
294 struct anv_block_pool {
295 struct anv_device *device;
296
297 struct anv_bo bo;
298
299 /* The offset from the start of the bo to the "center" of the block
300 * pool. Pointers to allocated blocks are given by
301 * bo.map + center_bo_offset + offsets.
302 */
303 uint32_t center_bo_offset;
304
305 /* Current memory map of the block pool. This pointer may or may not
306 * point to the actual beginning of the block pool memory. If
307 * anv_block_pool_alloc_back has ever been called, then this pointer
308 * will point to the "center" position of the buffer and all offsets
309 * (negative or positive) given out by the block pool alloc functions
310 * will be valid relative to this pointer.
311 *
312 * In particular, map == bo.map + center_offset
313 */
314 void *map;
315 int fd;
316
317 /**
318 * Array of mmaps and gem handles owned by the block pool, reclaimed when
319 * the block pool is destroyed.
320 */
321 struct u_vector mmap_cleanups;
322
323 uint32_t block_size;
324
325 union anv_free_list free_list;
326 struct anv_block_state state;
327
328 union anv_free_list back_free_list;
329 struct anv_block_state back_state;
330 };
331
332 /* Block pools are backed by a fixed-size 2GB memfd */
333 #define BLOCK_POOL_MEMFD_SIZE (1ull << 32)
334
335 /* The center of the block pool is also the middle of the memfd. This may
336 * change in the future if we decide differently for some reason.
337 */
338 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
339
340 static inline uint32_t
341 anv_block_pool_size(struct anv_block_pool *pool)
342 {
343 return pool->state.end + pool->back_state.end;
344 }
345
346 struct anv_state {
347 int32_t offset;
348 uint32_t alloc_size;
349 void *map;
350 };
351
352 struct anv_fixed_size_state_pool {
353 size_t state_size;
354 union anv_free_list free_list;
355 struct anv_block_state block;
356 };
357
358 #define ANV_MIN_STATE_SIZE_LOG2 6
359 #define ANV_MAX_STATE_SIZE_LOG2 17
360
361 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
362
363 struct anv_state_pool {
364 struct anv_block_pool *block_pool;
365 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
366 };
367
368 struct anv_state_stream_block;
369
370 struct anv_state_stream {
371 struct anv_block_pool *block_pool;
372
373 /* The current working block */
374 struct anv_state_stream_block *block;
375
376 /* Offset at which the current block starts */
377 uint32_t start;
378 /* Offset at which to allocate the next state */
379 uint32_t next;
380 /* Offset at which the current block ends */
381 uint32_t end;
382 };
383
384 #define CACHELINE_SIZE 64
385 #define CACHELINE_MASK 63
386
387 static inline void
388 anv_clflush_range(void *start, size_t size)
389 {
390 void *p = (void *) (((uintptr_t) start) & ~CACHELINE_MASK);
391 void *end = start + size;
392
393 __builtin_ia32_mfence();
394 while (p < end) {
395 __builtin_ia32_clflush(p);
396 p += CACHELINE_SIZE;
397 }
398 }
399
400 static void inline
401 anv_state_clflush(struct anv_state state)
402 {
403 anv_clflush_range(state.map, state.alloc_size);
404 }
405
406 void anv_block_pool_init(struct anv_block_pool *pool,
407 struct anv_device *device, uint32_t block_size);
408 void anv_block_pool_finish(struct anv_block_pool *pool);
409 int32_t anv_block_pool_alloc(struct anv_block_pool *pool);
410 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool);
411 void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset);
412 void anv_state_pool_init(struct anv_state_pool *pool,
413 struct anv_block_pool *block_pool);
414 void anv_state_pool_finish(struct anv_state_pool *pool);
415 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
416 size_t state_size, size_t alignment);
417 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
418 void anv_state_stream_init(struct anv_state_stream *stream,
419 struct anv_block_pool *block_pool);
420 void anv_state_stream_finish(struct anv_state_stream *stream);
421 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
422 uint32_t size, uint32_t alignment);
423
424 /**
425 * Implements a pool of re-usable BOs. The interface is identical to that
426 * of block_pool except that each block is its own BO.
427 */
428 struct anv_bo_pool {
429 struct anv_device *device;
430
431 void *free_list[16];
432 };
433
434 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
435 void anv_bo_pool_finish(struct anv_bo_pool *pool);
436 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
437 uint32_t size);
438 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
439
440 struct anv_scratch_pool {
441 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
442 struct anv_bo bos[16][MESA_SHADER_STAGES];
443 };
444
445 void anv_scratch_pool_init(struct anv_device *device,
446 struct anv_scratch_pool *pool);
447 void anv_scratch_pool_finish(struct anv_device *device,
448 struct anv_scratch_pool *pool);
449 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
450 struct anv_scratch_pool *pool,
451 gl_shader_stage stage,
452 unsigned per_thread_scratch);
453
454 extern struct anv_dispatch_table dtable;
455
456 #define VK_ICD_WSI_PLATFORM_MAX 5
457
458 struct anv_physical_device {
459 VK_LOADER_DATA _loader_data;
460
461 struct anv_instance * instance;
462 uint32_t chipset_id;
463 char path[20];
464 const char * name;
465 struct gen_device_info info;
466 uint64_t aperture_size;
467 struct brw_compiler * compiler;
468 struct isl_device isl_dev;
469 int cmd_parser_version;
470
471 uint32_t eu_total;
472 uint32_t subslice_total;
473
474 struct anv_wsi_interface * wsi[VK_ICD_WSI_PLATFORM_MAX];
475 };
476
477 struct anv_instance {
478 VK_LOADER_DATA _loader_data;
479
480 VkAllocationCallbacks alloc;
481
482 uint32_t apiVersion;
483 int physicalDeviceCount;
484 struct anv_physical_device physicalDevice;
485 };
486
487 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
488 void anv_finish_wsi(struct anv_physical_device *physical_device);
489
490 struct anv_queue {
491 VK_LOADER_DATA _loader_data;
492
493 struct anv_device * device;
494
495 struct anv_state_pool * pool;
496 };
497
498 struct anv_pipeline_cache {
499 struct anv_device * device;
500 pthread_mutex_t mutex;
501
502 struct hash_table * cache;
503 };
504
505 struct anv_pipeline_bind_map;
506
507 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
508 struct anv_device *device,
509 bool cache_enabled);
510 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
511
512 struct anv_shader_bin *
513 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
514 const void *key, uint32_t key_size);
515 struct anv_shader_bin *
516 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
517 const void *key_data, uint32_t key_size,
518 const void *kernel_data, uint32_t kernel_size,
519 const void *prog_data, uint32_t prog_data_size,
520 const struct anv_pipeline_bind_map *bind_map);
521
522 struct anv_device {
523 VK_LOADER_DATA _loader_data;
524
525 VkAllocationCallbacks alloc;
526
527 struct anv_instance * instance;
528 uint32_t chipset_id;
529 struct gen_device_info info;
530 struct isl_device isl_dev;
531 int context_id;
532 int fd;
533 bool can_chain_batches;
534 bool robust_buffer_access;
535
536 struct anv_bo_pool batch_bo_pool;
537
538 struct anv_block_pool dynamic_state_block_pool;
539 struct anv_state_pool dynamic_state_pool;
540
541 struct anv_block_pool instruction_block_pool;
542 struct anv_state_pool instruction_state_pool;
543
544 struct anv_block_pool surface_state_block_pool;
545 struct anv_state_pool surface_state_pool;
546
547 struct anv_bo workaround_bo;
548
549 struct anv_pipeline_cache blorp_shader_cache;
550 struct blorp_context blorp;
551
552 struct anv_state border_colors;
553
554 struct anv_queue queue;
555
556 struct anv_scratch_pool scratch_pool;
557
558 uint32_t default_mocs;
559
560 pthread_mutex_t mutex;
561 };
562
563 void anv_device_get_cache_uuid(void *uuid);
564
565 void anv_device_init_blorp(struct anv_device *device);
566 void anv_device_finish_blorp(struct anv_device *device);
567
568 void* anv_gem_mmap(struct anv_device *device,
569 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
570 void anv_gem_munmap(void *p, uint64_t size);
571 uint32_t anv_gem_create(struct anv_device *device, size_t size);
572 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
573 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
574 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
575 int anv_gem_execbuffer(struct anv_device *device,
576 struct drm_i915_gem_execbuffer2 *execbuf);
577 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
578 uint32_t stride, uint32_t tiling);
579 int anv_gem_create_context(struct anv_device *device);
580 int anv_gem_destroy_context(struct anv_device *device, int context);
581 int anv_gem_get_param(int fd, uint32_t param);
582 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
583 int anv_gem_get_aperture(int fd, uint64_t *size);
584 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
585 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
586 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
587 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
588 uint32_t read_domains, uint32_t write_domain);
589
590 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
591
592 struct anv_reloc_list {
593 size_t num_relocs;
594 size_t array_length;
595 struct drm_i915_gem_relocation_entry * relocs;
596 struct anv_bo ** reloc_bos;
597 };
598
599 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
600 const VkAllocationCallbacks *alloc);
601 void anv_reloc_list_finish(struct anv_reloc_list *list,
602 const VkAllocationCallbacks *alloc);
603
604 uint64_t anv_reloc_list_add(struct anv_reloc_list *list,
605 const VkAllocationCallbacks *alloc,
606 uint32_t offset, struct anv_bo *target_bo,
607 uint32_t delta);
608
609 struct anv_batch_bo {
610 /* Link in the anv_cmd_buffer.owned_batch_bos list */
611 struct list_head link;
612
613 struct anv_bo bo;
614
615 /* Bytes actually consumed in this batch BO */
616 size_t length;
617
618 /* Last seen surface state block pool bo offset */
619 uint32_t last_ss_pool_bo_offset;
620
621 struct anv_reloc_list relocs;
622 };
623
624 struct anv_batch {
625 const VkAllocationCallbacks * alloc;
626
627 void * start;
628 void * end;
629 void * next;
630
631 struct anv_reloc_list * relocs;
632
633 /* This callback is called (with the associated user data) in the event
634 * that the batch runs out of space.
635 */
636 VkResult (*extend_cb)(struct anv_batch *, void *);
637 void * user_data;
638 };
639
640 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
641 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
642 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
643 void *location, struct anv_bo *bo, uint32_t offset);
644 VkResult anv_device_submit_simple_batch(struct anv_device *device,
645 struct anv_batch *batch);
646
647 struct anv_address {
648 struct anv_bo *bo;
649 uint32_t offset;
650 };
651
652 static inline uint64_t
653 _anv_combine_address(struct anv_batch *batch, void *location,
654 const struct anv_address address, uint32_t delta)
655 {
656 if (address.bo == NULL) {
657 return address.offset + delta;
658 } else {
659 assert(batch->start <= location && location < batch->end);
660
661 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
662 }
663 }
664
665 #define __gen_address_type struct anv_address
666 #define __gen_user_data struct anv_batch
667 #define __gen_combine_address _anv_combine_address
668
669 /* Wrapper macros needed to work around preprocessor argument issues. In
670 * particular, arguments don't get pre-evaluated if they are concatenated.
671 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
672 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
673 * We can work around this easily enough with these helpers.
674 */
675 #define __anv_cmd_length(cmd) cmd ## _length
676 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
677 #define __anv_cmd_header(cmd) cmd ## _header
678 #define __anv_cmd_pack(cmd) cmd ## _pack
679 #define __anv_reg_num(reg) reg ## _num
680
681 #define anv_pack_struct(dst, struc, ...) do { \
682 struct struc __template = { \
683 __VA_ARGS__ \
684 }; \
685 __anv_cmd_pack(struc)(NULL, dst, &__template); \
686 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
687 } while (0)
688
689 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
690 void *__dst = anv_batch_emit_dwords(batch, n); \
691 struct cmd __template = { \
692 __anv_cmd_header(cmd), \
693 .DWordLength = n - __anv_cmd_length_bias(cmd), \
694 __VA_ARGS__ \
695 }; \
696 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
697 __dst; \
698 })
699
700 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
701 do { \
702 uint32_t *dw; \
703 \
704 static_assert(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1), "mismatch merge"); \
705 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
706 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
707 dw[i] = (dwords0)[i] | (dwords1)[i]; \
708 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
709 } while (0)
710
711 #define anv_batch_emit(batch, cmd, name) \
712 for (struct cmd name = { __anv_cmd_header(cmd) }, \
713 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
714 __builtin_expect(_dst != NULL, 1); \
715 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
716 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
717 _dst = NULL; \
718 }))
719
720 #define anv_state_pool_emit(pool, cmd, align, ...) ({ \
721 const uint32_t __size = __anv_cmd_length(cmd) * 4; \
722 struct anv_state __state = \
723 anv_state_pool_alloc((pool), __size, align); \
724 struct cmd __template = { \
725 __VA_ARGS__ \
726 }; \
727 __anv_cmd_pack(cmd)(NULL, __state.map, &__template); \
728 VG(VALGRIND_CHECK_MEM_IS_DEFINED(__state.map, __anv_cmd_length(cmd) * 4)); \
729 if (!(pool)->block_pool->device->info.has_llc) \
730 anv_state_clflush(__state); \
731 __state; \
732 })
733
734 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
735 .GraphicsDataTypeGFDT = 0, \
736 .LLCCacheabilityControlLLCCC = 0, \
737 .L3CacheabilityControlL3CC = 1, \
738 }
739
740 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
741 .LLCeLLCCacheabilityControlLLCCC = 0, \
742 .L3CacheabilityControlL3CC = 1, \
743 }
744
745 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
746 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
747 .TargetCache = L3DefertoPATforLLCeLLCselection, \
748 .AgeforQUADLRU = 0 \
749 }
750
751 /* Skylake: MOCS is now an index into an array of 62 different caching
752 * configurations programmed by the kernel.
753 */
754
755 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
756 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
757 .IndextoMOCSTables = 2 \
758 }
759
760 #define GEN9_MOCS_PTE { \
761 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
762 .IndextoMOCSTables = 1 \
763 }
764
765 struct anv_device_memory {
766 struct anv_bo bo;
767 uint32_t type_index;
768 VkDeviceSize map_size;
769 void * map;
770 };
771
772 /**
773 * Header for Vertex URB Entry (VUE)
774 */
775 struct anv_vue_header {
776 uint32_t Reserved;
777 uint32_t RTAIndex; /* RenderTargetArrayIndex */
778 uint32_t ViewportIndex;
779 float PointWidth;
780 };
781
782 struct anv_descriptor_set_binding_layout {
783 #ifndef NDEBUG
784 /* The type of the descriptors in this binding */
785 VkDescriptorType type;
786 #endif
787
788 /* Number of array elements in this binding */
789 uint16_t array_size;
790
791 /* Index into the flattend descriptor set */
792 uint16_t descriptor_index;
793
794 /* Index into the dynamic state array for a dynamic buffer */
795 int16_t dynamic_offset_index;
796
797 /* Index into the descriptor set buffer views */
798 int16_t buffer_index;
799
800 struct {
801 /* Index into the binding table for the associated surface */
802 int16_t surface_index;
803
804 /* Index into the sampler table for the associated sampler */
805 int16_t sampler_index;
806
807 /* Index into the image table for the associated image */
808 int16_t image_index;
809 } stage[MESA_SHADER_STAGES];
810
811 /* Immutable samplers (or NULL if no immutable samplers) */
812 struct anv_sampler **immutable_samplers;
813 };
814
815 struct anv_descriptor_set_layout {
816 /* Number of bindings in this descriptor set */
817 uint16_t binding_count;
818
819 /* Total size of the descriptor set with room for all array entries */
820 uint16_t size;
821
822 /* Shader stages affected by this descriptor set */
823 uint16_t shader_stages;
824
825 /* Number of buffers in this descriptor set */
826 uint16_t buffer_count;
827
828 /* Number of dynamic offsets used by this descriptor set */
829 uint16_t dynamic_offset_count;
830
831 /* Bindings in this descriptor set */
832 struct anv_descriptor_set_binding_layout binding[0];
833 };
834
835 struct anv_descriptor {
836 VkDescriptorType type;
837
838 union {
839 struct {
840 struct anv_image_view *image_view;
841 struct anv_sampler *sampler;
842 };
843
844 struct anv_buffer_view *buffer_view;
845 };
846 };
847
848 struct anv_descriptor_set {
849 const struct anv_descriptor_set_layout *layout;
850 uint32_t size;
851 uint32_t buffer_count;
852 struct anv_buffer_view *buffer_views;
853 struct anv_descriptor descriptors[0];
854 };
855
856 struct anv_descriptor_pool {
857 uint32_t size;
858 uint32_t next;
859 uint32_t free_list;
860
861 struct anv_state_stream surface_state_stream;
862 void *surface_state_free_list;
863
864 char data[0];
865 };
866
867 VkResult
868 anv_descriptor_set_create(struct anv_device *device,
869 struct anv_descriptor_pool *pool,
870 const struct anv_descriptor_set_layout *layout,
871 struct anv_descriptor_set **out_set);
872
873 void
874 anv_descriptor_set_destroy(struct anv_device *device,
875 struct anv_descriptor_pool *pool,
876 struct anv_descriptor_set *set);
877
878 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
879
880 struct anv_pipeline_binding {
881 /* The descriptor set this surface corresponds to. The special value of
882 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
883 * to a color attachment and not a regular descriptor.
884 */
885 uint8_t set;
886
887 /* Binding in the descriptor set */
888 uint8_t binding;
889
890 /* Index in the binding */
891 uint8_t index;
892 };
893
894 struct anv_pipeline_layout {
895 struct {
896 struct anv_descriptor_set_layout *layout;
897 uint32_t dynamic_offset_start;
898 } set[MAX_SETS];
899
900 uint32_t num_sets;
901
902 struct {
903 bool has_dynamic_offsets;
904 } stage[MESA_SHADER_STAGES];
905
906 unsigned char sha1[20];
907 };
908
909 struct anv_buffer {
910 struct anv_device * device;
911 VkDeviceSize size;
912
913 VkBufferUsageFlags usage;
914
915 /* Set when bound */
916 struct anv_bo * bo;
917 VkDeviceSize offset;
918 };
919
920 enum anv_cmd_dirty_bits {
921 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
922 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
923 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
924 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
925 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
926 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
927 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
928 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
929 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
930 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
931 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
932 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
933 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
934 };
935 typedef uint32_t anv_cmd_dirty_mask_t;
936
937 enum anv_pipe_bits {
938 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
939 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
940 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
941 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
942 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
943 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
944 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
945 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
946 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
947 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
948 ANV_PIPE_CS_STALL_BIT = (1 << 20),
949
950 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
951 * a flush has happened but not a CS stall. The next time we do any sort
952 * of invalidation we need to insert a CS stall at that time. Otherwise,
953 * we would have to CS stall on every flush which could be bad.
954 */
955 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
956 };
957
958 #define ANV_PIPE_FLUSH_BITS ( \
959 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
960 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
961 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
962
963 #define ANV_PIPE_STALL_BITS ( \
964 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
965 ANV_PIPE_DEPTH_STALL_BIT | \
966 ANV_PIPE_CS_STALL_BIT)
967
968 #define ANV_PIPE_INVALIDATE_BITS ( \
969 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
970 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
971 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
972 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
973 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
974 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
975
976 struct anv_vertex_binding {
977 struct anv_buffer * buffer;
978 VkDeviceSize offset;
979 };
980
981 struct anv_push_constants {
982 /* Current allocated size of this push constants data structure.
983 * Because a decent chunk of it may not be used (images on SKL, for
984 * instance), we won't actually allocate the entire structure up-front.
985 */
986 uint32_t size;
987
988 /* Push constant data provided by the client through vkPushConstants */
989 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
990
991 /* Our hardware only provides zero-based vertex and instance id so, in
992 * order to satisfy the vulkan requirements, we may have to push one or
993 * both of these into the shader.
994 */
995 uint32_t base_vertex;
996 uint32_t base_instance;
997
998 /* Offsets and ranges for dynamically bound buffers */
999 struct {
1000 uint32_t offset;
1001 uint32_t range;
1002 } dynamic[MAX_DYNAMIC_BUFFERS];
1003
1004 /* Image data for image_load_store on pre-SKL */
1005 struct brw_image_param images[MAX_IMAGES];
1006 };
1007
1008 struct anv_dynamic_state {
1009 struct {
1010 uint32_t count;
1011 VkViewport viewports[MAX_VIEWPORTS];
1012 } viewport;
1013
1014 struct {
1015 uint32_t count;
1016 VkRect2D scissors[MAX_SCISSORS];
1017 } scissor;
1018
1019 float line_width;
1020
1021 struct {
1022 float bias;
1023 float clamp;
1024 float slope;
1025 } depth_bias;
1026
1027 float blend_constants[4];
1028
1029 struct {
1030 float min;
1031 float max;
1032 } depth_bounds;
1033
1034 struct {
1035 uint32_t front;
1036 uint32_t back;
1037 } stencil_compare_mask;
1038
1039 struct {
1040 uint32_t front;
1041 uint32_t back;
1042 } stencil_write_mask;
1043
1044 struct {
1045 uint32_t front;
1046 uint32_t back;
1047 } stencil_reference;
1048 };
1049
1050 extern const struct anv_dynamic_state default_dynamic_state;
1051
1052 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1053 const struct anv_dynamic_state *src,
1054 uint32_t copy_mask);
1055
1056 /**
1057 * Attachment state when recording a renderpass instance.
1058 *
1059 * The clear value is valid only if there exists a pending clear.
1060 */
1061 struct anv_attachment_state {
1062 VkImageAspectFlags pending_clear_aspects;
1063 VkClearValue clear_value;
1064 };
1065
1066 /** State required while building cmd buffer */
1067 struct anv_cmd_state {
1068 /* PIPELINE_SELECT.PipelineSelection */
1069 uint32_t current_pipeline;
1070 const struct gen_l3_config * current_l3_config;
1071 uint32_t vb_dirty;
1072 anv_cmd_dirty_mask_t dirty;
1073 anv_cmd_dirty_mask_t compute_dirty;
1074 enum anv_pipe_bits pending_pipe_bits;
1075 uint32_t num_workgroups_offset;
1076 struct anv_bo *num_workgroups_bo;
1077 VkShaderStageFlags descriptors_dirty;
1078 VkShaderStageFlags push_constants_dirty;
1079 uint32_t scratch_size;
1080 struct anv_pipeline * pipeline;
1081 struct anv_pipeline * compute_pipeline;
1082 struct anv_framebuffer * framebuffer;
1083 struct anv_render_pass * pass;
1084 struct anv_subpass * subpass;
1085 VkRect2D render_area;
1086 uint32_t restart_index;
1087 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1088 struct anv_descriptor_set * descriptors[MAX_SETS];
1089 VkShaderStageFlags push_constant_stages;
1090 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1091 struct anv_state binding_tables[MESA_SHADER_STAGES];
1092 struct anv_state samplers[MESA_SHADER_STAGES];
1093 struct anv_dynamic_state dynamic;
1094 bool need_query_wa;
1095
1096 /**
1097 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1098 * valid only when recording a render pass instance.
1099 */
1100 struct anv_attachment_state * attachments;
1101
1102 struct {
1103 struct anv_buffer * index_buffer;
1104 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1105 uint32_t index_offset;
1106 } gen7;
1107 };
1108
1109 struct anv_cmd_pool {
1110 VkAllocationCallbacks alloc;
1111 struct list_head cmd_buffers;
1112 };
1113
1114 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1115
1116 enum anv_cmd_buffer_exec_mode {
1117 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1118 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1119 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1120 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1121 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1122 };
1123
1124 struct anv_cmd_buffer {
1125 VK_LOADER_DATA _loader_data;
1126
1127 struct anv_device * device;
1128
1129 struct anv_cmd_pool * pool;
1130 struct list_head pool_link;
1131
1132 struct anv_batch batch;
1133
1134 /* Fields required for the actual chain of anv_batch_bo's.
1135 *
1136 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1137 */
1138 struct list_head batch_bos;
1139 enum anv_cmd_buffer_exec_mode exec_mode;
1140
1141 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1142 * referenced by this command buffer
1143 *
1144 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1145 */
1146 struct u_vector seen_bbos;
1147
1148 /* A vector of int32_t's for every block of binding tables.
1149 *
1150 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1151 */
1152 struct u_vector bt_blocks;
1153 uint32_t bt_next;
1154 struct anv_reloc_list surface_relocs;
1155
1156 /* Information needed for execbuf
1157 *
1158 * These fields are generated by anv_cmd_buffer_prepare_execbuf().
1159 */
1160 struct {
1161 struct drm_i915_gem_execbuffer2 execbuf;
1162
1163 struct drm_i915_gem_exec_object2 * objects;
1164 uint32_t bo_count;
1165 struct anv_bo ** bos;
1166
1167 /* Allocated length of the 'objects' and 'bos' arrays */
1168 uint32_t array_length;
1169
1170 bool need_reloc;
1171 } execbuf2;
1172
1173 /* Serial for tracking buffer completion */
1174 uint32_t serial;
1175
1176 /* Stream objects for storing temporary data */
1177 struct anv_state_stream surface_state_stream;
1178 struct anv_state_stream dynamic_state_stream;
1179
1180 VkCommandBufferUsageFlags usage_flags;
1181 VkCommandBufferLevel level;
1182
1183 struct anv_cmd_state state;
1184 };
1185
1186 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1187 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1188 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1189 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1190 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1191 struct anv_cmd_buffer *secondary);
1192 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1193
1194 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
1195
1196 VkResult
1197 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
1198 gl_shader_stage stage, uint32_t size);
1199 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
1200 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
1201 (offsetof(struct anv_push_constants, field) + \
1202 sizeof(cmd_buffer->state.push_constants[0]->field)))
1203
1204 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1205 const void *data, uint32_t size, uint32_t alignment);
1206 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1207 uint32_t *a, uint32_t *b,
1208 uint32_t dwords, uint32_t alignment);
1209
1210 struct anv_address
1211 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1212 struct anv_state
1213 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1214 uint32_t entries, uint32_t *state_offset);
1215 struct anv_state
1216 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1217 struct anv_state
1218 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1219 uint32_t size, uint32_t alignment);
1220
1221 VkResult
1222 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1223
1224 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1225 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
1226 bool depth_clamp_enable);
1227 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1228
1229 void anv_cmd_state_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1230 const VkRenderPassBeginInfo *info);
1231
1232 struct anv_state
1233 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1234 gl_shader_stage stage);
1235 struct anv_state
1236 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1237
1238 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1239 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1240
1241 const struct anv_image_view *
1242 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1243
1244 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1245
1246 struct anv_fence {
1247 struct anv_bo bo;
1248 struct drm_i915_gem_execbuffer2 execbuf;
1249 struct drm_i915_gem_exec_object2 exec2_objects[1];
1250 bool ready;
1251 };
1252
1253 struct anv_event {
1254 uint64_t semaphore;
1255 struct anv_state state;
1256 };
1257
1258 struct anv_shader_module {
1259 unsigned char sha1[20];
1260 uint32_t size;
1261 char data[0];
1262 };
1263
1264 void anv_hash_shader(unsigned char *hash, const void *key, size_t key_size,
1265 struct anv_shader_module *module,
1266 const char *entrypoint,
1267 const struct anv_pipeline_layout *pipeline_layout,
1268 const VkSpecializationInfo *spec_info);
1269
1270 static inline gl_shader_stage
1271 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1272 {
1273 assert(__builtin_popcount(vk_stage) == 1);
1274 return ffs(vk_stage) - 1;
1275 }
1276
1277 static inline VkShaderStageFlagBits
1278 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1279 {
1280 return (1 << mesa_stage);
1281 }
1282
1283 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
1284
1285 #define anv_foreach_stage(stage, stage_bits) \
1286 for (gl_shader_stage stage, \
1287 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
1288 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1289 __tmp &= ~(1 << (stage)))
1290
1291 struct anv_pipeline_bind_map {
1292 uint32_t surface_count;
1293 uint32_t sampler_count;
1294 uint32_t image_count;
1295
1296 struct anv_pipeline_binding * surface_to_descriptor;
1297 struct anv_pipeline_binding * sampler_to_descriptor;
1298 };
1299
1300 struct anv_shader_bin {
1301 uint32_t ref_cnt;
1302
1303 struct anv_state kernel;
1304 uint32_t kernel_size;
1305
1306 struct anv_pipeline_bind_map bind_map;
1307
1308 uint32_t prog_data_size;
1309
1310 /* Prog data follows, then the key, both aligned to 8-bytes */
1311 };
1312
1313 struct anv_shader_bin *
1314 anv_shader_bin_create(struct anv_device *device,
1315 const void *key, uint32_t key_size,
1316 const void *kernel, uint32_t kernel_size,
1317 const void *prog_data, uint32_t prog_data_size,
1318 const struct anv_pipeline_bind_map *bind_map);
1319
1320 void
1321 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
1322
1323 static inline void
1324 anv_shader_bin_ref(struct anv_shader_bin *shader)
1325 {
1326 assert(shader->ref_cnt >= 1);
1327 __sync_fetch_and_add(&shader->ref_cnt, 1);
1328 }
1329
1330 static inline void
1331 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
1332 {
1333 assert(shader->ref_cnt >= 1);
1334 if (__sync_fetch_and_add(&shader->ref_cnt, -1) == 1)
1335 anv_shader_bin_destroy(device, shader);
1336 }
1337
1338 static inline const struct brw_stage_prog_data *
1339 anv_shader_bin_get_prog_data(const struct anv_shader_bin *shader)
1340 {
1341 const void *data = shader;
1342 data += align_u32(sizeof(struct anv_shader_bin), 8);
1343 return data;
1344 }
1345
1346 struct anv_pipeline {
1347 struct anv_device * device;
1348 struct anv_batch batch;
1349 uint32_t batch_data[512];
1350 struct anv_reloc_list batch_relocs;
1351 uint32_t dynamic_state_mask;
1352 struct anv_dynamic_state dynamic_state;
1353
1354 struct anv_pipeline_layout * layout;
1355
1356 bool needs_data_cache;
1357
1358 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
1359
1360 struct {
1361 const struct gen_l3_config * l3_config;
1362 uint32_t total_size;
1363 } urb;
1364
1365 VkShaderStageFlags active_stages;
1366 struct anv_state blend_state;
1367 uint32_t vs_simd8;
1368 uint32_t vs_vec4;
1369 uint32_t ps_ksp0;
1370 uint32_t gs_kernel;
1371 uint32_t cs_simd;
1372
1373 uint32_t vb_used;
1374 uint32_t binding_stride[MAX_VBS];
1375 bool instancing_enable[MAX_VBS];
1376 bool primitive_restart;
1377 uint32_t topology;
1378
1379 uint32_t cs_right_mask;
1380
1381 bool depth_clamp_enable;
1382
1383 struct {
1384 uint32_t sf[7];
1385 uint32_t depth_stencil_state[3];
1386 } gen7;
1387
1388 struct {
1389 uint32_t sf[4];
1390 uint32_t raster[5];
1391 uint32_t wm_depth_stencil[3];
1392 } gen8;
1393
1394 struct {
1395 uint32_t wm_depth_stencil[4];
1396 } gen9;
1397 };
1398
1399 static inline bool
1400 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
1401 gl_shader_stage stage)
1402 {
1403 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
1404 }
1405
1406 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
1407 static inline const struct brw_##prefix##_prog_data * \
1408 get_##prefix##_prog_data(struct anv_pipeline *pipeline) \
1409 { \
1410 if (anv_pipeline_has_stage(pipeline, stage)) { \
1411 return (const struct brw_##prefix##_prog_data *) \
1412 anv_shader_bin_get_prog_data(pipeline->shaders[stage]); \
1413 } else { \
1414 return NULL; \
1415 } \
1416 }
1417
1418 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
1419 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
1420 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
1421 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
1422
1423 VkResult
1424 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1425 struct anv_pipeline_cache *cache,
1426 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1427 const VkAllocationCallbacks *alloc);
1428
1429 VkResult
1430 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1431 struct anv_pipeline_cache *cache,
1432 const VkComputePipelineCreateInfo *info,
1433 struct anv_shader_module *module,
1434 const char *entrypoint,
1435 const VkSpecializationInfo *spec_info);
1436
1437 struct anv_format {
1438 enum isl_format isl_format:16;
1439 struct isl_swizzle swizzle;
1440 };
1441
1442 struct anv_format
1443 anv_get_format(const struct gen_device_info *devinfo, VkFormat format,
1444 VkImageAspectFlags aspect, VkImageTiling tiling);
1445
1446 static inline enum isl_format
1447 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
1448 VkImageAspectFlags aspect, VkImageTiling tiling)
1449 {
1450 return anv_get_format(devinfo, vk_format, aspect, tiling).isl_format;
1451 }
1452
1453 void
1454 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
1455
1456 /**
1457 * Subsurface of an anv_image.
1458 */
1459 struct anv_surface {
1460 /** Valid only if isl_surf::size > 0. */
1461 struct isl_surf isl;
1462
1463 /**
1464 * Offset from VkImage's base address, as bound by vkBindImageMemory().
1465 */
1466 uint32_t offset;
1467 };
1468
1469 struct anv_image {
1470 VkImageType type;
1471 /* The original VkFormat provided by the client. This may not match any
1472 * of the actual surface formats.
1473 */
1474 VkFormat vk_format;
1475 VkImageAspectFlags aspects;
1476 VkExtent3D extent;
1477 uint32_t levels;
1478 uint32_t array_size;
1479 uint32_t samples; /**< VkImageCreateInfo::samples */
1480 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1481 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
1482
1483 VkDeviceSize size;
1484 uint32_t alignment;
1485
1486 /* Set when bound */
1487 struct anv_bo *bo;
1488 VkDeviceSize offset;
1489
1490 /**
1491 * Image subsurfaces
1492 *
1493 * For each foo, anv_image::foo_surface is valid if and only if
1494 * anv_image::aspects has a foo aspect.
1495 *
1496 * The hardware requires that the depth buffer and stencil buffer be
1497 * separate surfaces. From Vulkan's perspective, though, depth and stencil
1498 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
1499 * allocate the depth and stencil buffers as separate surfaces in the same
1500 * bo.
1501 */
1502 union {
1503 struct anv_surface color_surface;
1504
1505 struct {
1506 struct anv_surface depth_surface;
1507 struct anv_surface hiz_surface;
1508 struct anv_surface stencil_surface;
1509 };
1510 };
1511 };
1512
1513 static inline uint32_t
1514 anv_get_layerCount(const struct anv_image *image,
1515 const VkImageSubresourceRange *range)
1516 {
1517 return range->layerCount == VK_REMAINING_ARRAY_LAYERS ?
1518 image->array_size - range->baseArrayLayer : range->layerCount;
1519 }
1520
1521 static inline uint32_t
1522 anv_get_levelCount(const struct anv_image *image,
1523 const VkImageSubresourceRange *range)
1524 {
1525 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
1526 image->levels - range->baseMipLevel : range->levelCount;
1527 }
1528
1529
1530 struct anv_image_view {
1531 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
1532 struct anv_bo *bo;
1533 uint32_t offset; /**< Offset into bo. */
1534
1535 struct isl_view isl;
1536
1537 VkImageAspectFlags aspect_mask;
1538 VkFormat vk_format;
1539 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
1540
1541 /** RENDER_SURFACE_STATE when using image as a color render target. */
1542 struct anv_state color_rt_surface_state;
1543
1544 /** RENDER_SURFACE_STATE when using image as a sampler surface. */
1545 struct anv_state sampler_surface_state;
1546
1547 /** RENDER_SURFACE_STATE when using image as a storage image. */
1548 struct anv_state storage_surface_state;
1549
1550 struct brw_image_param storage_image_param;
1551 };
1552
1553 struct anv_image_create_info {
1554 const VkImageCreateInfo *vk_info;
1555
1556 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
1557 isl_tiling_flags_t isl_tiling_flags;
1558
1559 uint32_t stride;
1560 };
1561
1562 VkResult anv_image_create(VkDevice _device,
1563 const struct anv_image_create_info *info,
1564 const VkAllocationCallbacks* alloc,
1565 VkImage *pImage);
1566
1567 const struct anv_surface *
1568 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
1569 VkImageAspectFlags aspect_mask);
1570
1571 static inline bool
1572 anv_image_has_hiz(const struct anv_image *image)
1573 {
1574 /* We must check the aspect because anv_image::hiz_surface belongs to
1575 * a union.
1576 */
1577 return (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
1578 image->hiz_surface.isl.size > 0;
1579 }
1580
1581 struct anv_buffer_view {
1582 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1583 struct anv_bo *bo;
1584 uint32_t offset; /**< Offset into bo. */
1585 uint64_t range; /**< VkBufferViewCreateInfo::range */
1586
1587 struct anv_state surface_state;
1588 struct anv_state storage_surface_state;
1589
1590 struct brw_image_param storage_image_param;
1591 };
1592
1593 enum isl_format
1594 anv_isl_format_for_descriptor_type(VkDescriptorType type);
1595
1596 static inline struct VkExtent3D
1597 anv_sanitize_image_extent(const VkImageType imageType,
1598 const struct VkExtent3D imageExtent)
1599 {
1600 switch (imageType) {
1601 case VK_IMAGE_TYPE_1D:
1602 return (VkExtent3D) { imageExtent.width, 1, 1 };
1603 case VK_IMAGE_TYPE_2D:
1604 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
1605 case VK_IMAGE_TYPE_3D:
1606 return imageExtent;
1607 default:
1608 unreachable("invalid image type");
1609 }
1610 }
1611
1612 static inline struct VkOffset3D
1613 anv_sanitize_image_offset(const VkImageType imageType,
1614 const struct VkOffset3D imageOffset)
1615 {
1616 switch (imageType) {
1617 case VK_IMAGE_TYPE_1D:
1618 return (VkOffset3D) { imageOffset.x, 0, 0 };
1619 case VK_IMAGE_TYPE_2D:
1620 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
1621 case VK_IMAGE_TYPE_3D:
1622 return imageOffset;
1623 default:
1624 unreachable("invalid image type");
1625 }
1626 }
1627
1628
1629 void anv_fill_buffer_surface_state(struct anv_device *device,
1630 struct anv_state state,
1631 enum isl_format format,
1632 uint32_t offset, uint32_t range,
1633 uint32_t stride);
1634
1635 void anv_image_view_fill_image_param(struct anv_device *device,
1636 struct anv_image_view *view,
1637 struct brw_image_param *param);
1638 void anv_buffer_view_fill_image_param(struct anv_device *device,
1639 struct anv_buffer_view *view,
1640 struct brw_image_param *param);
1641
1642 struct anv_sampler {
1643 uint32_t state[4];
1644 };
1645
1646 struct anv_framebuffer {
1647 uint32_t width;
1648 uint32_t height;
1649 uint32_t layers;
1650
1651 uint32_t attachment_count;
1652 struct anv_image_view * attachments[0];
1653 };
1654
1655 struct anv_subpass {
1656 uint32_t input_count;
1657 uint32_t * input_attachments;
1658 uint32_t color_count;
1659 uint32_t * color_attachments;
1660 uint32_t * resolve_attachments;
1661 uint32_t depth_stencil_attachment;
1662
1663 /** Subpass has at least one resolve attachment */
1664 bool has_resolve;
1665 };
1666
1667 struct anv_render_pass_attachment {
1668 VkFormat format;
1669 uint32_t samples;
1670 VkAttachmentLoadOp load_op;
1671 VkAttachmentStoreOp store_op;
1672 VkAttachmentLoadOp stencil_load_op;
1673 };
1674
1675 struct anv_render_pass {
1676 uint32_t attachment_count;
1677 uint32_t subpass_count;
1678 uint32_t * subpass_attachments;
1679 struct anv_render_pass_attachment * attachments;
1680 struct anv_subpass subpasses[0];
1681 };
1682
1683 struct anv_query_pool_slot {
1684 uint64_t begin;
1685 uint64_t end;
1686 uint64_t available;
1687 };
1688
1689 struct anv_query_pool {
1690 VkQueryType type;
1691 uint32_t slots;
1692 struct anv_bo bo;
1693 };
1694
1695 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
1696 const char *name);
1697
1698 void anv_dump_image_to_ppm(struct anv_device *device,
1699 struct anv_image *image, unsigned miplevel,
1700 unsigned array_layer, VkImageAspectFlagBits aspect,
1701 const char *filename);
1702
1703 enum anv_dump_action {
1704 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
1705 };
1706
1707 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
1708 void anv_dump_finish(void);
1709
1710 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
1711 struct anv_framebuffer *fb);
1712
1713 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
1714 \
1715 static inline struct __anv_type * \
1716 __anv_type ## _from_handle(__VkType _handle) \
1717 { \
1718 return (struct __anv_type *) _handle; \
1719 } \
1720 \
1721 static inline __VkType \
1722 __anv_type ## _to_handle(struct __anv_type *_obj) \
1723 { \
1724 return (__VkType) _obj; \
1725 }
1726
1727 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
1728 \
1729 static inline struct __anv_type * \
1730 __anv_type ## _from_handle(__VkType _handle) \
1731 { \
1732 return (struct __anv_type *)(uintptr_t) _handle; \
1733 } \
1734 \
1735 static inline __VkType \
1736 __anv_type ## _to_handle(struct __anv_type *_obj) \
1737 { \
1738 return (__VkType)(uintptr_t) _obj; \
1739 }
1740
1741 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
1742 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
1743
1744 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
1745 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
1746 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
1747 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
1748 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
1749
1750 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
1751 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
1752 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
1753 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
1754 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
1755 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
1756 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
1757 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
1758 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
1759 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
1760 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
1761 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
1762 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
1763 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
1764 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
1765 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
1766 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
1767 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
1768 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
1769
1770 #define ANV_DEFINE_STRUCT_CASTS(__anv_type, __VkType) \
1771 \
1772 static inline const __VkType * \
1773 __anv_type ## _to_ ## __VkType(const struct __anv_type *__anv_obj) \
1774 { \
1775 return (const __VkType *) __anv_obj; \
1776 }
1777
1778 #define ANV_COMMON_TO_STRUCT(__VkType, __vk_name, __common_name) \
1779 const __VkType *__vk_name = anv_common_to_ ## __VkType(__common_name)
1780
1781 ANV_DEFINE_STRUCT_CASTS(anv_common, VkMemoryBarrier)
1782 ANV_DEFINE_STRUCT_CASTS(anv_common, VkBufferMemoryBarrier)
1783 ANV_DEFINE_STRUCT_CASTS(anv_common, VkImageMemoryBarrier)
1784
1785 /* Gen-specific function declarations */
1786 #ifdef genX
1787 # include "anv_genX.h"
1788 #else
1789 # define genX(x) gen7_##x
1790 # include "anv_genX.h"
1791 # undef genX
1792 # define genX(x) gen75_##x
1793 # include "anv_genX.h"
1794 # undef genX
1795 # define genX(x) gen8_##x
1796 # include "anv_genX.h"
1797 # undef genX
1798 # define genX(x) gen9_##x
1799 # include "anv_genX.h"
1800 # undef genX
1801 #endif
1802
1803 #ifdef __cplusplus
1804 }
1805 #endif
1806
1807 #endif /* ANV_PRIVATE_H */