anv: Allocate misc BOs from the cache
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/macros.h"
53 #include "util/hash_table.h"
54 #include "util/list.h"
55 #include "util/set.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_buffer;
73 struct anv_buffer_view;
74 struct anv_image_view;
75 struct anv_instance;
76
77 struct gen_aux_map_context;
78 struct gen_l3_config;
79 struct gen_perf_config;
80
81 #include <vulkan/vulkan.h>
82 #include <vulkan/vulkan_intel.h>
83 #include <vulkan/vk_icd.h>
84
85 #include "anv_android.h"
86 #include "anv_entrypoints.h"
87 #include "anv_extensions.h"
88 #include "isl/isl.h"
89
90 #include "dev/gen_debug.h"
91 #include "common/intel_log.h"
92 #include "wsi_common.h"
93
94 /* anv Virtual Memory Layout
95 * =========================
96 *
97 * When the anv driver is determining the virtual graphics addresses of memory
98 * objects itself using the softpin mechanism, the following memory ranges
99 * will be used.
100 *
101 * Three special considerations to notice:
102 *
103 * (1) the dynamic state pool is located within the same 4 GiB as the low
104 * heap. This is to work around a VF cache issue described in a comment in
105 * anv_physical_device_init_heaps.
106 *
107 * (2) the binding table pool is located at lower addresses than the surface
108 * state pool, within a 4 GiB range. This allows surface state base addresses
109 * to cover both binding tables (16 bit offsets) and surface states (32 bit
110 * offsets).
111 *
112 * (3) the last 4 GiB of the address space is withheld from the high
113 * heap. Various hardware units will read past the end of an object for
114 * various reasons. This healthy margin prevents reads from wrapping around
115 * 48-bit addresses.
116 */
117 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
118 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
119 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
120 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
121 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
122 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
123 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
124 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
125 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
126 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
127 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
128
129 #define LOW_HEAP_SIZE \
130 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
131 #define DYNAMIC_STATE_POOL_SIZE \
132 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
133 #define BINDING_TABLE_POOL_SIZE \
134 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
135 #define SURFACE_STATE_POOL_SIZE \
136 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
137 #define INSTRUCTION_STATE_POOL_SIZE \
138 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
139
140 /* Allowing different clear colors requires us to perform a depth resolve at
141 * the end of certain render passes. This is because while slow clears store
142 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
143 * See the PRMs for examples describing when additional resolves would be
144 * necessary. To enable fast clears without requiring extra resolves, we set
145 * the clear value to a globally-defined one. We could allow different values
146 * if the user doesn't expect coherent data during or after a render passes
147 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
148 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
149 * 1.0f seems to be the only value used. The only application that doesn't set
150 * this value does so through the usage of an seemingly uninitialized clear
151 * value.
152 */
153 #define ANV_HZ_FC_VAL 1.0f
154
155 #define MAX_VBS 28
156 #define MAX_XFB_BUFFERS 4
157 #define MAX_XFB_STREAMS 4
158 #define MAX_SETS 8
159 #define MAX_RTS 8
160 #define MAX_VIEWPORTS 16
161 #define MAX_SCISSORS 16
162 #define MAX_PUSH_CONSTANTS_SIZE 128
163 #define MAX_DYNAMIC_BUFFERS 16
164 #define MAX_IMAGES 64
165 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
166 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
167 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
168
169 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
170 *
171 * "The surface state model is used when a Binding Table Index (specified
172 * in the message descriptor) of less than 240 is specified. In this model,
173 * the Binding Table Index is used to index into the binding table, and the
174 * binding table entry contains a pointer to the SURFACE_STATE."
175 *
176 * Binding table values above 240 are used for various things in the hardware
177 * such as stateless, stateless with incoherent cache, SLM, and bindless.
178 */
179 #define MAX_BINDING_TABLE_SIZE 240
180
181 /* The kernel relocation API has a limitation of a 32-bit delta value
182 * applied to the address before it is written which, in spite of it being
183 * unsigned, is treated as signed . Because of the way that this maps to
184 * the Vulkan API, we cannot handle an offset into a buffer that does not
185 * fit into a signed 32 bits. The only mechanism we have for dealing with
186 * this at the moment is to limit all VkDeviceMemory objects to a maximum
187 * of 2GB each. The Vulkan spec allows us to do this:
188 *
189 * "Some platforms may have a limit on the maximum size of a single
190 * allocation. For example, certain systems may fail to create
191 * allocations with a size greater than or equal to 4GB. Such a limit is
192 * implementation-dependent, and if such a failure occurs then the error
193 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
194 *
195 * We don't use vk_error here because it's not an error so much as an
196 * indication to the application that the allocation is too large.
197 */
198 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
199
200 #define ANV_SVGS_VB_INDEX MAX_VBS
201 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
202
203 /* We reserve this MI ALU register for the purpose of handling predication.
204 * Other code which uses the MI ALU should leave it alone.
205 */
206 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
207
208 /* For gen12 we set the streamout buffers using 4 separate commands
209 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
210 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
211 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
212 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
213 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
214 * 3DSTATE_SO_BUFFER_INDEX_0.
215 */
216 #define SO_BUFFER_INDEX_0_CMD 0x60
217 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
218
219 static inline uint32_t
220 align_down_npot_u32(uint32_t v, uint32_t a)
221 {
222 return v - (v % a);
223 }
224
225 static inline uint32_t
226 align_u32(uint32_t v, uint32_t a)
227 {
228 assert(a != 0 && a == (a & -a));
229 return (v + a - 1) & ~(a - 1);
230 }
231
232 static inline uint64_t
233 align_u64(uint64_t v, uint64_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline int32_t
240 align_i32(int32_t v, int32_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return (v + a - 1) & ~(a - 1);
244 }
245
246 /** Alignment must be a power of 2. */
247 static inline bool
248 anv_is_aligned(uintmax_t n, uintmax_t a)
249 {
250 assert(a == (a & -a));
251 return (n & (a - 1)) == 0;
252 }
253
254 static inline uint32_t
255 anv_minify(uint32_t n, uint32_t levels)
256 {
257 if (unlikely(n == 0))
258 return 0;
259 else
260 return MAX2(n >> levels, 1);
261 }
262
263 static inline float
264 anv_clamp_f(float f, float min, float max)
265 {
266 assert(min < max);
267
268 if (f > max)
269 return max;
270 else if (f < min)
271 return min;
272 else
273 return f;
274 }
275
276 static inline bool
277 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
278 {
279 if (*inout_mask & clear_mask) {
280 *inout_mask &= ~clear_mask;
281 return true;
282 } else {
283 return false;
284 }
285 }
286
287 static inline union isl_color_value
288 vk_to_isl_color(VkClearColorValue color)
289 {
290 return (union isl_color_value) {
291 .u32 = {
292 color.uint32[0],
293 color.uint32[1],
294 color.uint32[2],
295 color.uint32[3],
296 },
297 };
298 }
299
300 #define for_each_bit(b, dword) \
301 for (uint32_t __dword = (dword); \
302 (b) = __builtin_ffs(__dword) - 1, __dword; \
303 __dword &= ~(1 << (b)))
304
305 #define typed_memcpy(dest, src, count) ({ \
306 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
307 memcpy((dest), (src), (count) * sizeof(*(src))); \
308 })
309
310 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
311 * to be added here in order to utilize mapping in debug/error/perf macros.
312 */
313 #define REPORT_OBJECT_TYPE(o) \
314 __builtin_choose_expr ( \
315 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
316 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
317 __builtin_choose_expr ( \
318 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
319 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
320 __builtin_choose_expr ( \
321 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
322 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
323 __builtin_choose_expr ( \
324 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
325 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
326 __builtin_choose_expr ( \
327 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
328 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
329 __builtin_choose_expr ( \
330 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
331 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
332 __builtin_choose_expr ( \
333 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
334 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), void*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
407 /* The void expression results in a compile-time error \
408 when assigning the result to something. */ \
409 (void)0)))))))))))))))))))))))))))))))
410
411 /* Whenever we generate an error, pass it through this function. Useful for
412 * debugging, where we can break on it. Only call at error site, not when
413 * propagating errors. Might be useful to plug in a stack trace here.
414 */
415
416 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
417 VkDebugReportObjectTypeEXT type, VkResult error,
418 const char *file, int line, const char *format,
419 va_list args);
420
421 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
422 VkDebugReportObjectTypeEXT type, VkResult error,
423 const char *file, int line, const char *format, ...)
424 anv_printflike(7, 8);
425
426 #ifdef DEBUG
427 #define vk_error(error) __vk_errorf(NULL, NULL,\
428 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
429 error, __FILE__, __LINE__, NULL)
430 #define vk_errorv(instance, obj, error, format, args)\
431 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
432 __FILE__, __LINE__, format, args)
433 #define vk_errorf(instance, obj, error, format, ...)\
434 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
435 __FILE__, __LINE__, format, ## __VA_ARGS__)
436 #else
437 #define vk_error(error) error
438 #define vk_errorf(instance, obj, error, format, ...) error
439 #endif
440
441 /**
442 * Warn on ignored extension structs.
443 *
444 * The Vulkan spec requires us to ignore unsupported or unknown structs in
445 * a pNext chain. In debug mode, emitting warnings for ignored structs may
446 * help us discover structs that we should not have ignored.
447 *
448 *
449 * From the Vulkan 1.0.38 spec:
450 *
451 * Any component of the implementation (the loader, any enabled layers,
452 * and drivers) must skip over, without processing (other than reading the
453 * sType and pNext members) any chained structures with sType values not
454 * defined by extensions supported by that component.
455 */
456 #define anv_debug_ignored_stype(sType) \
457 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
458
459 void __anv_perf_warn(struct anv_instance *instance, const void *object,
460 VkDebugReportObjectTypeEXT type, const char *file,
461 int line, const char *format, ...)
462 anv_printflike(6, 7);
463 void anv_loge(const char *format, ...) anv_printflike(1, 2);
464 void anv_loge_v(const char *format, va_list va);
465
466 /**
467 * Print a FINISHME message, including its source location.
468 */
469 #define anv_finishme(format, ...) \
470 do { \
471 static bool reported = false; \
472 if (!reported) { \
473 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
474 ##__VA_ARGS__); \
475 reported = true; \
476 } \
477 } while (0)
478
479 /**
480 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
481 */
482 #define anv_perf_warn(instance, obj, format, ...) \
483 do { \
484 static bool reported = false; \
485 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
486 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
487 format, ##__VA_ARGS__); \
488 reported = true; \
489 } \
490 } while (0)
491
492 /* A non-fatal assert. Useful for debugging. */
493 #ifdef DEBUG
494 #define anv_assert(x) ({ \
495 if (unlikely(!(x))) \
496 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
497 })
498 #else
499 #define anv_assert(x)
500 #endif
501
502 /* A multi-pointer allocator
503 *
504 * When copying data structures from the user (such as a render pass), it's
505 * common to need to allocate data for a bunch of different things. Instead
506 * of doing several allocations and having to handle all of the error checking
507 * that entails, it can be easier to do a single allocation. This struct
508 * helps facilitate that. The intended usage looks like this:
509 *
510 * ANV_MULTIALLOC(ma)
511 * anv_multialloc_add(&ma, &main_ptr, 1);
512 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
513 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
514 *
515 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
516 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
517 */
518 struct anv_multialloc {
519 size_t size;
520 size_t align;
521
522 uint32_t ptr_count;
523 void **ptrs[8];
524 };
525
526 #define ANV_MULTIALLOC_INIT \
527 ((struct anv_multialloc) { 0, })
528
529 #define ANV_MULTIALLOC(_name) \
530 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
531
532 __attribute__((always_inline))
533 static inline void
534 _anv_multialloc_add(struct anv_multialloc *ma,
535 void **ptr, size_t size, size_t align)
536 {
537 size_t offset = align_u64(ma->size, align);
538 ma->size = offset + size;
539 ma->align = MAX2(ma->align, align);
540
541 /* Store the offset in the pointer. */
542 *ptr = (void *)(uintptr_t)offset;
543
544 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
545 ma->ptrs[ma->ptr_count++] = ptr;
546 }
547
548 #define anv_multialloc_add_size(_ma, _ptr, _size) \
549 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
550
551 #define anv_multialloc_add(_ma, _ptr, _count) \
552 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
553
554 __attribute__((always_inline))
555 static inline void *
556 anv_multialloc_alloc(struct anv_multialloc *ma,
557 const VkAllocationCallbacks *alloc,
558 VkSystemAllocationScope scope)
559 {
560 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
561 if (!ptr)
562 return NULL;
563
564 /* Fill out each of the pointers with their final value.
565 *
566 * for (uint32_t i = 0; i < ma->ptr_count; i++)
567 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
568 *
569 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
570 * constant, GCC is incapable of figuring this out and unrolling the loop
571 * so we have to give it a little help.
572 */
573 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
574 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
575 if ((_i) < ma->ptr_count) \
576 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
577 _ANV_MULTIALLOC_UPDATE_POINTER(0);
578 _ANV_MULTIALLOC_UPDATE_POINTER(1);
579 _ANV_MULTIALLOC_UPDATE_POINTER(2);
580 _ANV_MULTIALLOC_UPDATE_POINTER(3);
581 _ANV_MULTIALLOC_UPDATE_POINTER(4);
582 _ANV_MULTIALLOC_UPDATE_POINTER(5);
583 _ANV_MULTIALLOC_UPDATE_POINTER(6);
584 _ANV_MULTIALLOC_UPDATE_POINTER(7);
585 #undef _ANV_MULTIALLOC_UPDATE_POINTER
586
587 return ptr;
588 }
589
590 __attribute__((always_inline))
591 static inline void *
592 anv_multialloc_alloc2(struct anv_multialloc *ma,
593 const VkAllocationCallbacks *parent_alloc,
594 const VkAllocationCallbacks *alloc,
595 VkSystemAllocationScope scope)
596 {
597 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
598 }
599
600 struct anv_bo {
601 uint32_t gem_handle;
602
603 uint32_t refcount;
604
605 /* Index into the current validation list. This is used by the
606 * validation list building alrogithm to track which buffers are already
607 * in the validation list so that we can ensure uniqueness.
608 */
609 uint32_t index;
610
611 /* Index for use with util_sparse_array_free_list */
612 uint32_t free_index;
613
614 /* Last known offset. This value is provided by the kernel when we
615 * execbuf and is used as the presumed offset for the next bunch of
616 * relocations.
617 */
618 uint64_t offset;
619
620 uint64_t size;
621
622 /* Map for internally mapped BOs.
623 *
624 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
625 */
626 void *map;
627
628 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
629 uint32_t flags;
630
631 /** True if this BO may be shared with other processes */
632 bool is_external:1;
633
634 /** True if this BO is a wrapper
635 *
636 * When set to true, none of the fields in this BO are meaningful except
637 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
638 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
639 * is set in the physical device.
640 */
641 bool is_wrapper:1;
642
643 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
644 bool has_fixed_address:1;
645
646 /** True if this BO wraps a host pointer */
647 bool from_host_ptr:1;
648 };
649
650 static inline void
651 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
652 {
653 bo->gem_handle = gem_handle;
654 bo->refcount = 1;
655 bo->index = 0;
656 bo->offset = -1;
657 bo->size = size;
658 bo->map = NULL;
659 bo->flags = 0;
660 bo->is_external = false;
661 bo->is_wrapper = false;
662 bo->has_fixed_address = false;
663 bo->from_host_ptr = false;
664 }
665
666 static inline struct anv_bo *
667 anv_bo_unwrap(struct anv_bo *bo)
668 {
669 while (bo->is_wrapper)
670 bo = bo->map;
671 return bo;
672 }
673
674 /* Represents a lock-free linked list of "free" things. This is used by
675 * both the block pool and the state pools. Unfortunately, in order to
676 * solve the ABA problem, we can't use a single uint32_t head.
677 */
678 union anv_free_list {
679 struct {
680 uint32_t offset;
681
682 /* A simple count that is incremented every time the head changes. */
683 uint32_t count;
684 };
685 /* Make sure it's aligned to 64 bits. This will make atomic operations
686 * faster on 32 bit platforms.
687 */
688 uint64_t u64 __attribute__ ((aligned (8)));
689 };
690
691 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
692
693 struct anv_block_state {
694 union {
695 struct {
696 uint32_t next;
697 uint32_t end;
698 };
699 /* Make sure it's aligned to 64 bits. This will make atomic operations
700 * faster on 32 bit platforms.
701 */
702 uint64_t u64 __attribute__ ((aligned (8)));
703 };
704 };
705
706 #define anv_block_pool_foreach_bo(bo, pool) \
707 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
708 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
709 _pp_bo++)
710
711 #define ANV_MAX_BLOCK_POOL_BOS 20
712
713 struct anv_block_pool {
714 struct anv_device *device;
715 bool use_softpin;
716
717 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
718 * around the actual BO so that we grow the pool after the wrapper BO has
719 * been put in a relocation list. This is only used in the non-softpin
720 * case.
721 */
722 struct anv_bo wrapper_bo;
723
724 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
725 struct anv_bo *bo;
726 uint32_t nbos;
727
728 uint64_t size;
729
730 /* The address where the start of the pool is pinned. The various bos that
731 * are created as the pool grows will have addresses in the range
732 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
733 */
734 uint64_t start_address;
735
736 /* The offset from the start of the bo to the "center" of the block
737 * pool. Pointers to allocated blocks are given by
738 * bo.map + center_bo_offset + offsets.
739 */
740 uint32_t center_bo_offset;
741
742 /* Current memory map of the block pool. This pointer may or may not
743 * point to the actual beginning of the block pool memory. If
744 * anv_block_pool_alloc_back has ever been called, then this pointer
745 * will point to the "center" position of the buffer and all offsets
746 * (negative or positive) given out by the block pool alloc functions
747 * will be valid relative to this pointer.
748 *
749 * In particular, map == bo.map + center_offset
750 *
751 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
752 * since it will handle the softpin case as well, where this points to NULL.
753 */
754 void *map;
755 int fd;
756
757 /**
758 * Array of mmaps and gem handles owned by the block pool, reclaimed when
759 * the block pool is destroyed.
760 */
761 struct u_vector mmap_cleanups;
762
763 struct anv_block_state state;
764
765 struct anv_block_state back_state;
766 };
767
768 /* Block pools are backed by a fixed-size 1GB memfd */
769 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
770
771 /* The center of the block pool is also the middle of the memfd. This may
772 * change in the future if we decide differently for some reason.
773 */
774 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
775
776 static inline uint32_t
777 anv_block_pool_size(struct anv_block_pool *pool)
778 {
779 return pool->state.end + pool->back_state.end;
780 }
781
782 struct anv_state {
783 int32_t offset;
784 uint32_t alloc_size;
785 void *map;
786 uint32_t idx;
787 };
788
789 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
790
791 struct anv_fixed_size_state_pool {
792 union anv_free_list free_list;
793 struct anv_block_state block;
794 };
795
796 #define ANV_MIN_STATE_SIZE_LOG2 6
797 #define ANV_MAX_STATE_SIZE_LOG2 21
798
799 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
800
801 struct anv_free_entry {
802 uint32_t next;
803 struct anv_state state;
804 };
805
806 struct anv_state_table {
807 struct anv_device *device;
808 int fd;
809 struct anv_free_entry *map;
810 uint32_t size;
811 struct anv_block_state state;
812 struct u_vector cleanups;
813 };
814
815 struct anv_state_pool {
816 struct anv_block_pool block_pool;
817
818 struct anv_state_table table;
819
820 /* The size of blocks which will be allocated from the block pool */
821 uint32_t block_size;
822
823 /** Free list for "back" allocations */
824 union anv_free_list back_alloc_free_list;
825
826 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
827 };
828
829 struct anv_state_stream_block;
830
831 struct anv_state_stream {
832 struct anv_state_pool *state_pool;
833
834 /* The size of blocks to allocate from the state pool */
835 uint32_t block_size;
836
837 /* Current block we're allocating from */
838 struct anv_state block;
839
840 /* Offset into the current block at which to allocate the next state */
841 uint32_t next;
842
843 /* List of all blocks allocated from this pool */
844 struct anv_state_stream_block *block_list;
845 };
846
847 /* The block_pool functions exported for testing only. The block pool should
848 * only be used via a state pool (see below).
849 */
850 VkResult anv_block_pool_init(struct anv_block_pool *pool,
851 struct anv_device *device,
852 uint64_t start_address,
853 uint32_t initial_size);
854 void anv_block_pool_finish(struct anv_block_pool *pool);
855 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
856 uint32_t block_size, uint32_t *padding);
857 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
858 uint32_t block_size);
859 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
860
861 VkResult anv_state_pool_init(struct anv_state_pool *pool,
862 struct anv_device *device,
863 uint64_t start_address,
864 uint32_t block_size);
865 void anv_state_pool_finish(struct anv_state_pool *pool);
866 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
867 uint32_t state_size, uint32_t alignment);
868 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
869 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
870 void anv_state_stream_init(struct anv_state_stream *stream,
871 struct anv_state_pool *state_pool,
872 uint32_t block_size);
873 void anv_state_stream_finish(struct anv_state_stream *stream);
874 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
875 uint32_t size, uint32_t alignment);
876
877 VkResult anv_state_table_init(struct anv_state_table *table,
878 struct anv_device *device,
879 uint32_t initial_entries);
880 void anv_state_table_finish(struct anv_state_table *table);
881 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
882 uint32_t count);
883 void anv_free_list_push(union anv_free_list *list,
884 struct anv_state_table *table,
885 uint32_t idx, uint32_t count);
886 struct anv_state* anv_free_list_pop(union anv_free_list *list,
887 struct anv_state_table *table);
888
889
890 static inline struct anv_state *
891 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
892 {
893 return &table->map[idx].state;
894 }
895 /**
896 * Implements a pool of re-usable BOs. The interface is identical to that
897 * of block_pool except that each block is its own BO.
898 */
899 struct anv_bo_pool {
900 struct anv_device *device;
901
902 uint64_t bo_flags;
903
904 struct util_sparse_array_free_list free_list[16];
905 };
906
907 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
908 uint64_t bo_flags);
909 void anv_bo_pool_finish(struct anv_bo_pool *pool);
910 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
911 struct anv_bo **bo_out);
912 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
913
914 struct anv_scratch_pool {
915 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
916 struct anv_bo *bos[16][MESA_SHADER_STAGES];
917 };
918
919 void anv_scratch_pool_init(struct anv_device *device,
920 struct anv_scratch_pool *pool);
921 void anv_scratch_pool_finish(struct anv_device *device,
922 struct anv_scratch_pool *pool);
923 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
924 struct anv_scratch_pool *pool,
925 gl_shader_stage stage,
926 unsigned per_thread_scratch);
927
928 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
929 struct anv_bo_cache {
930 struct util_sparse_array bo_map;
931 pthread_mutex_t mutex;
932 };
933
934 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
935 void anv_bo_cache_finish(struct anv_bo_cache *cache);
936
937 struct anv_memory_type {
938 /* Standard bits passed on to the client */
939 VkMemoryPropertyFlags propertyFlags;
940 uint32_t heapIndex;
941
942 /* Driver-internal book-keeping */
943 VkBufferUsageFlags valid_buffer_usage;
944 };
945
946 struct anv_memory_heap {
947 /* Standard bits passed on to the client */
948 VkDeviceSize size;
949 VkMemoryHeapFlags flags;
950
951 /* Driver-internal book-keeping */
952 uint64_t vma_start;
953 uint64_t vma_size;
954 bool supports_48bit_addresses;
955 VkDeviceSize used;
956 };
957
958 struct anv_physical_device {
959 VK_LOADER_DATA _loader_data;
960
961 struct anv_instance * instance;
962 uint32_t chipset_id;
963 bool no_hw;
964 char path[20];
965 const char * name;
966 struct {
967 uint16_t domain;
968 uint8_t bus;
969 uint8_t device;
970 uint8_t function;
971 } pci_info;
972 struct gen_device_info info;
973 /** Amount of "GPU memory" we want to advertise
974 *
975 * Clearly, this value is bogus since Intel is a UMA architecture. On
976 * gen7 platforms, we are limited by GTT size unless we want to implement
977 * fine-grained tracking and GTT splitting. On Broadwell and above we are
978 * practically unlimited. However, we will never report more than 3/4 of
979 * the total system ram to try and avoid running out of RAM.
980 */
981 bool supports_48bit_addresses;
982 struct brw_compiler * compiler;
983 struct isl_device isl_dev;
984 struct gen_perf_config * perf;
985 int cmd_parser_version;
986 bool has_exec_async;
987 bool has_exec_capture;
988 bool has_exec_fence;
989 bool has_syncobj;
990 bool has_syncobj_wait;
991 bool has_context_priority;
992 bool use_softpin;
993 bool has_context_isolation;
994 bool has_mem_available;
995 bool always_use_bindless;
996
997 /** True if we can access buffers using A64 messages */
998 bool has_a64_buffer_access;
999 /** True if we can use bindless access for images */
1000 bool has_bindless_images;
1001 /** True if we can use bindless access for samplers */
1002 bool has_bindless_samplers;
1003
1004 struct anv_device_extension_table supported_extensions;
1005 struct anv_physical_device_dispatch_table dispatch;
1006
1007 uint32_t eu_total;
1008 uint32_t subslice_total;
1009
1010 struct {
1011 uint32_t type_count;
1012 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1013 uint32_t heap_count;
1014 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1015 } memory;
1016
1017 uint8_t driver_build_sha1[20];
1018 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1019 uint8_t driver_uuid[VK_UUID_SIZE];
1020 uint8_t device_uuid[VK_UUID_SIZE];
1021
1022 struct disk_cache * disk_cache;
1023
1024 struct wsi_device wsi_device;
1025 int local_fd;
1026 int master_fd;
1027 };
1028
1029 struct anv_app_info {
1030 const char* app_name;
1031 uint32_t app_version;
1032 const char* engine_name;
1033 uint32_t engine_version;
1034 uint32_t api_version;
1035 };
1036
1037 struct anv_instance {
1038 VK_LOADER_DATA _loader_data;
1039
1040 VkAllocationCallbacks alloc;
1041
1042 struct anv_app_info app_info;
1043
1044 struct anv_instance_extension_table enabled_extensions;
1045 struct anv_instance_dispatch_table dispatch;
1046 struct anv_device_dispatch_table device_dispatch;
1047
1048 int physicalDeviceCount;
1049 struct anv_physical_device physicalDevice;
1050
1051 bool pipeline_cache_enabled;
1052
1053 struct vk_debug_report_instance debug_report_callbacks;
1054
1055 struct driOptionCache dri_options;
1056 struct driOptionCache available_dri_options;
1057 };
1058
1059 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1060 void anv_finish_wsi(struct anv_physical_device *physical_device);
1061
1062 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1063 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1064 const char *name);
1065
1066 struct anv_queue {
1067 VK_LOADER_DATA _loader_data;
1068
1069 struct anv_device * device;
1070
1071 VkDeviceQueueCreateFlags flags;
1072 };
1073
1074 struct anv_pipeline_cache {
1075 struct anv_device * device;
1076 pthread_mutex_t mutex;
1077
1078 struct hash_table * nir_cache;
1079
1080 struct hash_table * cache;
1081 };
1082
1083 struct nir_xfb_info;
1084 struct anv_pipeline_bind_map;
1085
1086 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1087 struct anv_device *device,
1088 bool cache_enabled);
1089 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1090
1091 struct anv_shader_bin *
1092 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1093 const void *key, uint32_t key_size);
1094 struct anv_shader_bin *
1095 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1096 const void *key_data, uint32_t key_size,
1097 const void *kernel_data, uint32_t kernel_size,
1098 const void *constant_data,
1099 uint32_t constant_data_size,
1100 const struct brw_stage_prog_data *prog_data,
1101 uint32_t prog_data_size,
1102 const struct brw_compile_stats *stats,
1103 uint32_t num_stats,
1104 const struct nir_xfb_info *xfb_info,
1105 const struct anv_pipeline_bind_map *bind_map);
1106
1107 struct anv_shader_bin *
1108 anv_device_search_for_kernel(struct anv_device *device,
1109 struct anv_pipeline_cache *cache,
1110 const void *key_data, uint32_t key_size,
1111 bool *user_cache_bit);
1112
1113 struct anv_shader_bin *
1114 anv_device_upload_kernel(struct anv_device *device,
1115 struct anv_pipeline_cache *cache,
1116 const void *key_data, uint32_t key_size,
1117 const void *kernel_data, uint32_t kernel_size,
1118 const void *constant_data,
1119 uint32_t constant_data_size,
1120 const struct brw_stage_prog_data *prog_data,
1121 uint32_t prog_data_size,
1122 const struct brw_compile_stats *stats,
1123 uint32_t num_stats,
1124 const struct nir_xfb_info *xfb_info,
1125 const struct anv_pipeline_bind_map *bind_map);
1126
1127 struct nir_shader;
1128 struct nir_shader_compiler_options;
1129
1130 struct nir_shader *
1131 anv_device_search_for_nir(struct anv_device *device,
1132 struct anv_pipeline_cache *cache,
1133 const struct nir_shader_compiler_options *nir_options,
1134 unsigned char sha1_key[20],
1135 void *mem_ctx);
1136
1137 void
1138 anv_device_upload_nir(struct anv_device *device,
1139 struct anv_pipeline_cache *cache,
1140 const struct nir_shader *nir,
1141 unsigned char sha1_key[20]);
1142
1143 struct anv_device {
1144 VK_LOADER_DATA _loader_data;
1145
1146 VkAllocationCallbacks alloc;
1147
1148 struct anv_instance * instance;
1149 uint32_t chipset_id;
1150 bool no_hw;
1151 struct gen_device_info info;
1152 struct isl_device isl_dev;
1153 int context_id;
1154 int fd;
1155 bool can_chain_batches;
1156 bool robust_buffer_access;
1157 struct anv_device_extension_table enabled_extensions;
1158 struct anv_device_dispatch_table dispatch;
1159
1160 pthread_mutex_t vma_mutex;
1161 struct util_vma_heap vma_lo;
1162 struct util_vma_heap vma_hi;
1163 uint64_t vma_lo_available;
1164 uint64_t vma_hi_available;
1165
1166 /** List of all anv_device_memory objects */
1167 struct list_head memory_objects;
1168
1169 struct anv_bo_pool batch_bo_pool;
1170
1171 struct anv_bo_cache bo_cache;
1172
1173 struct anv_state_pool dynamic_state_pool;
1174 struct anv_state_pool instruction_state_pool;
1175 struct anv_state_pool binding_table_pool;
1176 struct anv_state_pool surface_state_pool;
1177
1178 struct anv_bo * workaround_bo;
1179 struct anv_bo * trivial_batch_bo;
1180 struct anv_bo * hiz_clear_bo;
1181
1182 struct anv_pipeline_cache default_pipeline_cache;
1183 struct blorp_context blorp;
1184
1185 struct anv_state border_colors;
1186
1187 struct anv_state slice_hash;
1188
1189 struct anv_queue queue;
1190
1191 struct anv_scratch_pool scratch_pool;
1192
1193 uint32_t default_mocs;
1194 uint32_t external_mocs;
1195
1196 pthread_mutex_t mutex;
1197 pthread_cond_t queue_submit;
1198 bool _lost;
1199
1200 struct gen_batch_decode_ctx decoder_ctx;
1201 /*
1202 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1203 * the cmd_buffer's list.
1204 */
1205 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1206
1207 int perf_fd; /* -1 if no opened */
1208 uint64_t perf_metric; /* 0 if unset */
1209
1210 struct gen_aux_map_context *aux_map_ctx;
1211 };
1212
1213 static inline struct anv_state_pool *
1214 anv_binding_table_pool(struct anv_device *device)
1215 {
1216 if (device->instance->physicalDevice.use_softpin)
1217 return &device->binding_table_pool;
1218 else
1219 return &device->surface_state_pool;
1220 }
1221
1222 static inline struct anv_state
1223 anv_binding_table_pool_alloc(struct anv_device *device) {
1224 if (device->instance->physicalDevice.use_softpin)
1225 return anv_state_pool_alloc(&device->binding_table_pool,
1226 device->binding_table_pool.block_size, 0);
1227 else
1228 return anv_state_pool_alloc_back(&device->surface_state_pool);
1229 }
1230
1231 static inline void
1232 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1233 anv_state_pool_free(anv_binding_table_pool(device), state);
1234 }
1235
1236 static inline uint32_t
1237 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1238 {
1239 if (bo->is_external)
1240 return device->external_mocs;
1241 else
1242 return device->default_mocs;
1243 }
1244
1245 void anv_device_init_blorp(struct anv_device *device);
1246 void anv_device_finish_blorp(struct anv_device *device);
1247
1248 VkResult _anv_device_set_lost(struct anv_device *device,
1249 const char *file, int line,
1250 const char *msg, ...)
1251 anv_printflike(4, 5);
1252 #define anv_device_set_lost(dev, ...) \
1253 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1254
1255 static inline bool
1256 anv_device_is_lost(struct anv_device *device)
1257 {
1258 return unlikely(device->_lost);
1259 }
1260
1261 VkResult anv_device_execbuf(struct anv_device *device,
1262 struct drm_i915_gem_execbuffer2 *execbuf,
1263 struct anv_bo **execbuf_bos);
1264 VkResult anv_device_query_status(struct anv_device *device);
1265
1266
1267 enum anv_bo_alloc_flags {
1268 /** Specifies that the BO must have a 32-bit address
1269 *
1270 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1271 */
1272 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1273
1274 /** Specifies that the BO may be shared externally */
1275 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1276
1277 /** Specifies that the BO should be mapped */
1278 ANV_BO_ALLOC_MAPPED = (1 << 2),
1279
1280 /** Specifies that the BO should be snooped so we get coherency */
1281 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1282
1283 /** Specifies that the BO should be captured in error states */
1284 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1285
1286 /** Specifies that the BO will have an address assigned by the caller */
1287 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1288
1289 /** Enables implicit synchronization on the BO
1290 *
1291 * This is the opposite of EXEC_OBJECT_ASYNC.
1292 */
1293 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1294
1295 /** Enables implicit synchronization on the BO
1296 *
1297 * This is equivalent to EXEC_OBJECT_WRITE.
1298 */
1299 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1300 };
1301
1302 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1303 enum anv_bo_alloc_flags alloc_flags,
1304 struct anv_bo **bo);
1305 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1306 void *host_ptr, uint32_t size,
1307 enum anv_bo_alloc_flags alloc_flags,
1308 struct anv_bo **bo_out);
1309 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1310 enum anv_bo_alloc_flags alloc_flags,
1311 struct anv_bo **bo);
1312 VkResult anv_device_export_bo(struct anv_device *device,
1313 struct anv_bo *bo, int *fd_out);
1314 void anv_device_release_bo(struct anv_device *device,
1315 struct anv_bo *bo);
1316
1317 static inline struct anv_bo *
1318 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1319 {
1320 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1321 }
1322
1323 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1324 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1325 int64_t timeout);
1326
1327 void* anv_gem_mmap(struct anv_device *device,
1328 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1329 void anv_gem_munmap(void *p, uint64_t size);
1330 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1331 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1332 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1333 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1334 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1335 int anv_gem_execbuffer(struct anv_device *device,
1336 struct drm_i915_gem_execbuffer2 *execbuf);
1337 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1338 uint32_t stride, uint32_t tiling);
1339 int anv_gem_create_context(struct anv_device *device);
1340 bool anv_gem_has_context_priority(int fd);
1341 int anv_gem_destroy_context(struct anv_device *device, int context);
1342 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1343 uint64_t value);
1344 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1345 uint64_t *value);
1346 int anv_gem_get_param(int fd, uint32_t param);
1347 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1348 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1349 int anv_gem_get_aperture(int fd, uint64_t *size);
1350 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1351 uint32_t *active, uint32_t *pending);
1352 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1353 int anv_gem_reg_read(struct anv_device *device,
1354 uint32_t offset, uint64_t *result);
1355 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1356 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1357 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1358 uint32_t read_domains, uint32_t write_domain);
1359 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1360 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1361 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1362 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1363 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1364 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1365 uint32_t handle);
1366 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1367 uint32_t handle, int fd);
1368 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1369 bool anv_gem_supports_syncobj_wait(int fd);
1370 int anv_gem_syncobj_wait(struct anv_device *device,
1371 uint32_t *handles, uint32_t num_handles,
1372 int64_t abs_timeout_ns, bool wait_all);
1373
1374 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1375 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1376
1377 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1378
1379 struct anv_reloc_list {
1380 uint32_t num_relocs;
1381 uint32_t array_length;
1382 struct drm_i915_gem_relocation_entry * relocs;
1383 struct anv_bo ** reloc_bos;
1384 struct set * deps;
1385 };
1386
1387 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1388 const VkAllocationCallbacks *alloc);
1389 void anv_reloc_list_finish(struct anv_reloc_list *list,
1390 const VkAllocationCallbacks *alloc);
1391
1392 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1393 const VkAllocationCallbacks *alloc,
1394 uint32_t offset, struct anv_bo *target_bo,
1395 uint32_t delta, uint64_t *address_u64_out);
1396
1397 struct anv_batch_bo {
1398 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1399 struct list_head link;
1400
1401 struct anv_bo * bo;
1402
1403 /* Bytes actually consumed in this batch BO */
1404 uint32_t length;
1405
1406 struct anv_reloc_list relocs;
1407 };
1408
1409 struct anv_batch {
1410 const VkAllocationCallbacks * alloc;
1411
1412 void * start;
1413 void * end;
1414 void * next;
1415
1416 struct anv_reloc_list * relocs;
1417
1418 /* This callback is called (with the associated user data) in the event
1419 * that the batch runs out of space.
1420 */
1421 VkResult (*extend_cb)(struct anv_batch *, void *);
1422 void * user_data;
1423
1424 /**
1425 * Current error status of the command buffer. Used to track inconsistent
1426 * or incomplete command buffer states that are the consequence of run-time
1427 * errors such as out of memory scenarios. We want to track this in the
1428 * batch because the command buffer object is not visible to some parts
1429 * of the driver.
1430 */
1431 VkResult status;
1432 };
1433
1434 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1435 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1436 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1437 void *location, struct anv_bo *bo, uint32_t offset);
1438 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1439 struct anv_batch *batch);
1440
1441 static inline VkResult
1442 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1443 {
1444 assert(error != VK_SUCCESS);
1445 if (batch->status == VK_SUCCESS)
1446 batch->status = error;
1447 return batch->status;
1448 }
1449
1450 static inline bool
1451 anv_batch_has_error(struct anv_batch *batch)
1452 {
1453 return batch->status != VK_SUCCESS;
1454 }
1455
1456 struct anv_address {
1457 struct anv_bo *bo;
1458 uint32_t offset;
1459 };
1460
1461 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1462
1463 static inline bool
1464 anv_address_is_null(struct anv_address addr)
1465 {
1466 return addr.bo == NULL && addr.offset == 0;
1467 }
1468
1469 static inline uint64_t
1470 anv_address_physical(struct anv_address addr)
1471 {
1472 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1473 return gen_canonical_address(addr.bo->offset + addr.offset);
1474 else
1475 return gen_canonical_address(addr.offset);
1476 }
1477
1478 static inline struct anv_address
1479 anv_address_add(struct anv_address addr, uint64_t offset)
1480 {
1481 addr.offset += offset;
1482 return addr;
1483 }
1484
1485 static inline void
1486 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1487 {
1488 unsigned reloc_size = 0;
1489 if (device->info.gen >= 8) {
1490 reloc_size = sizeof(uint64_t);
1491 *(uint64_t *)p = gen_canonical_address(v);
1492 } else {
1493 reloc_size = sizeof(uint32_t);
1494 *(uint32_t *)p = v;
1495 }
1496
1497 if (flush && !device->info.has_llc)
1498 gen_flush_range(p, reloc_size);
1499 }
1500
1501 static inline uint64_t
1502 _anv_combine_address(struct anv_batch *batch, void *location,
1503 const struct anv_address address, uint32_t delta)
1504 {
1505 if (address.bo == NULL) {
1506 return address.offset + delta;
1507 } else {
1508 assert(batch->start <= location && location < batch->end);
1509
1510 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1511 }
1512 }
1513
1514 #define __gen_address_type struct anv_address
1515 #define __gen_user_data struct anv_batch
1516 #define __gen_combine_address _anv_combine_address
1517
1518 /* Wrapper macros needed to work around preprocessor argument issues. In
1519 * particular, arguments don't get pre-evaluated if they are concatenated.
1520 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1521 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1522 * We can work around this easily enough with these helpers.
1523 */
1524 #define __anv_cmd_length(cmd) cmd ## _length
1525 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1526 #define __anv_cmd_header(cmd) cmd ## _header
1527 #define __anv_cmd_pack(cmd) cmd ## _pack
1528 #define __anv_reg_num(reg) reg ## _num
1529
1530 #define anv_pack_struct(dst, struc, ...) do { \
1531 struct struc __template = { \
1532 __VA_ARGS__ \
1533 }; \
1534 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1535 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1536 } while (0)
1537
1538 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1539 void *__dst = anv_batch_emit_dwords(batch, n); \
1540 if (__dst) { \
1541 struct cmd __template = { \
1542 __anv_cmd_header(cmd), \
1543 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1544 __VA_ARGS__ \
1545 }; \
1546 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1547 } \
1548 __dst; \
1549 })
1550
1551 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1552 do { \
1553 uint32_t *dw; \
1554 \
1555 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1556 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1557 if (!dw) \
1558 break; \
1559 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1560 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1561 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1562 } while (0)
1563
1564 #define anv_batch_emit(batch, cmd, name) \
1565 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1566 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1567 __builtin_expect(_dst != NULL, 1); \
1568 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1569 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1570 _dst = NULL; \
1571 }))
1572
1573 /* MEMORY_OBJECT_CONTROL_STATE:
1574 * .GraphicsDataTypeGFDT = 0,
1575 * .LLCCacheabilityControlLLCCC = 0,
1576 * .L3CacheabilityControlL3CC = 1,
1577 */
1578 #define GEN7_MOCS 1
1579
1580 /* MEMORY_OBJECT_CONTROL_STATE:
1581 * .LLCeLLCCacheabilityControlLLCCC = 0,
1582 * .L3CacheabilityControlL3CC = 1,
1583 */
1584 #define GEN75_MOCS 1
1585
1586 /* MEMORY_OBJECT_CONTROL_STATE:
1587 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1588 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1589 * .AgeforQUADLRU = 0
1590 */
1591 #define GEN8_MOCS 0x78
1592
1593 /* MEMORY_OBJECT_CONTROL_STATE:
1594 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1595 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1596 * .AgeforQUADLRU = 0
1597 */
1598 #define GEN8_EXTERNAL_MOCS 0x18
1599
1600 /* Skylake: MOCS is now an index into an array of 62 different caching
1601 * configurations programmed by the kernel.
1602 */
1603
1604 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1605 #define GEN9_MOCS (2 << 1)
1606
1607 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1608 #define GEN9_EXTERNAL_MOCS (1 << 1)
1609
1610 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1611 #define GEN10_MOCS GEN9_MOCS
1612 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1613
1614 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1615 #define GEN11_MOCS GEN9_MOCS
1616 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1617
1618 /* TigerLake MOCS */
1619 #define GEN12_MOCS GEN9_MOCS
1620 /* TC=1/LLC Only, LeCC=1/Uncacheable, LRUM=0, L3CC=1/Uncacheable */
1621 #define GEN12_EXTERNAL_MOCS (3 << 1)
1622
1623 struct anv_device_memory {
1624 struct list_head link;
1625
1626 struct anv_bo * bo;
1627 struct anv_memory_type * type;
1628 VkDeviceSize map_size;
1629 void * map;
1630
1631 /* If set, we are holding reference to AHardwareBuffer
1632 * which we must release when memory is freed.
1633 */
1634 struct AHardwareBuffer * ahw;
1635
1636 /* If set, this memory comes from a host pointer. */
1637 void * host_ptr;
1638 };
1639
1640 /**
1641 * Header for Vertex URB Entry (VUE)
1642 */
1643 struct anv_vue_header {
1644 uint32_t Reserved;
1645 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1646 uint32_t ViewportIndex;
1647 float PointWidth;
1648 };
1649
1650 /** Struct representing a sampled image descriptor
1651 *
1652 * This descriptor layout is used for sampled images, bare sampler, and
1653 * combined image/sampler descriptors.
1654 */
1655 struct anv_sampled_image_descriptor {
1656 /** Bindless image handle
1657 *
1658 * This is expected to already be shifted such that the 20-bit
1659 * SURFACE_STATE table index is in the top 20 bits.
1660 */
1661 uint32_t image;
1662
1663 /** Bindless sampler handle
1664 *
1665 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1666 * to the dynamic state base address.
1667 */
1668 uint32_t sampler;
1669 };
1670
1671 struct anv_texture_swizzle_descriptor {
1672 /** Texture swizzle
1673 *
1674 * See also nir_intrinsic_channel_select_intel
1675 */
1676 uint8_t swizzle[4];
1677
1678 /** Unused padding to ensure the struct is a multiple of 64 bits */
1679 uint32_t _pad;
1680 };
1681
1682 /** Struct representing a storage image descriptor */
1683 struct anv_storage_image_descriptor {
1684 /** Bindless image handles
1685 *
1686 * These are expected to already be shifted such that the 20-bit
1687 * SURFACE_STATE table index is in the top 20 bits.
1688 */
1689 uint32_t read_write;
1690 uint32_t write_only;
1691 };
1692
1693 /** Struct representing a address/range descriptor
1694 *
1695 * The fields of this struct correspond directly to the data layout of
1696 * nir_address_format_64bit_bounded_global addresses. The last field is the
1697 * offset in the NIR address so it must be zero so that when you load the
1698 * descriptor you get a pointer to the start of the range.
1699 */
1700 struct anv_address_range_descriptor {
1701 uint64_t address;
1702 uint32_t range;
1703 uint32_t zero;
1704 };
1705
1706 enum anv_descriptor_data {
1707 /** The descriptor contains a BTI reference to a surface state */
1708 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1709 /** The descriptor contains a BTI reference to a sampler state */
1710 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1711 /** The descriptor contains an actual buffer view */
1712 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1713 /** The descriptor contains auxiliary image layout data */
1714 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1715 /** The descriptor contains auxiliary image layout data */
1716 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1717 /** anv_address_range_descriptor with a buffer address and range */
1718 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1719 /** Bindless surface handle */
1720 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1721 /** Storage image handles */
1722 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1723 /** Storage image handles */
1724 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1725 };
1726
1727 struct anv_descriptor_set_binding_layout {
1728 #ifndef NDEBUG
1729 /* The type of the descriptors in this binding */
1730 VkDescriptorType type;
1731 #endif
1732
1733 /* Flags provided when this binding was created */
1734 VkDescriptorBindingFlagsEXT flags;
1735
1736 /* Bitfield representing the type of data this descriptor contains */
1737 enum anv_descriptor_data data;
1738
1739 /* Maximum number of YCbCr texture/sampler planes */
1740 uint8_t max_plane_count;
1741
1742 /* Number of array elements in this binding (or size in bytes for inline
1743 * uniform data)
1744 */
1745 uint16_t array_size;
1746
1747 /* Index into the flattend descriptor set */
1748 uint16_t descriptor_index;
1749
1750 /* Index into the dynamic state array for a dynamic buffer */
1751 int16_t dynamic_offset_index;
1752
1753 /* Index into the descriptor set buffer views */
1754 int16_t buffer_view_index;
1755
1756 /* Offset into the descriptor buffer where this descriptor lives */
1757 uint32_t descriptor_offset;
1758
1759 /* Immutable samplers (or NULL if no immutable samplers) */
1760 struct anv_sampler **immutable_samplers;
1761 };
1762
1763 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1764
1765 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1766 VkDescriptorType type);
1767
1768 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1769 const struct anv_descriptor_set_binding_layout *binding,
1770 bool sampler);
1771
1772 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1773 const struct anv_descriptor_set_binding_layout *binding,
1774 bool sampler);
1775
1776 struct anv_descriptor_set_layout {
1777 /* Descriptor set layouts can be destroyed at almost any time */
1778 uint32_t ref_cnt;
1779
1780 /* Number of bindings in this descriptor set */
1781 uint16_t binding_count;
1782
1783 /* Total size of the descriptor set with room for all array entries */
1784 uint16_t size;
1785
1786 /* Shader stages affected by this descriptor set */
1787 uint16_t shader_stages;
1788
1789 /* Number of buffer views in this descriptor set */
1790 uint16_t buffer_view_count;
1791
1792 /* Number of dynamic offsets used by this descriptor set */
1793 uint16_t dynamic_offset_count;
1794
1795 /* Size of the descriptor buffer for this descriptor set */
1796 uint32_t descriptor_buffer_size;
1797
1798 /* Bindings in this descriptor set */
1799 struct anv_descriptor_set_binding_layout binding[0];
1800 };
1801
1802 static inline void
1803 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1804 {
1805 assert(layout && layout->ref_cnt >= 1);
1806 p_atomic_inc(&layout->ref_cnt);
1807 }
1808
1809 static inline void
1810 anv_descriptor_set_layout_unref(struct anv_device *device,
1811 struct anv_descriptor_set_layout *layout)
1812 {
1813 assert(layout && layout->ref_cnt >= 1);
1814 if (p_atomic_dec_zero(&layout->ref_cnt))
1815 vk_free(&device->alloc, layout);
1816 }
1817
1818 struct anv_descriptor {
1819 VkDescriptorType type;
1820
1821 union {
1822 struct {
1823 VkImageLayout layout;
1824 struct anv_image_view *image_view;
1825 struct anv_sampler *sampler;
1826 };
1827
1828 struct {
1829 struct anv_buffer *buffer;
1830 uint64_t offset;
1831 uint64_t range;
1832 };
1833
1834 struct anv_buffer_view *buffer_view;
1835 };
1836 };
1837
1838 struct anv_descriptor_set {
1839 struct anv_descriptor_pool *pool;
1840 struct anv_descriptor_set_layout *layout;
1841 uint32_t size;
1842
1843 /* State relative to anv_descriptor_pool::bo */
1844 struct anv_state desc_mem;
1845 /* Surface state for the descriptor buffer */
1846 struct anv_state desc_surface_state;
1847
1848 uint32_t buffer_view_count;
1849 struct anv_buffer_view *buffer_views;
1850
1851 /* Link to descriptor pool's desc_sets list . */
1852 struct list_head pool_link;
1853
1854 struct anv_descriptor descriptors[0];
1855 };
1856
1857 struct anv_buffer_view {
1858 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1859 uint64_t range; /**< VkBufferViewCreateInfo::range */
1860
1861 struct anv_address address;
1862
1863 struct anv_state surface_state;
1864 struct anv_state storage_surface_state;
1865 struct anv_state writeonly_storage_surface_state;
1866
1867 struct brw_image_param storage_image_param;
1868 };
1869
1870 struct anv_push_descriptor_set {
1871 struct anv_descriptor_set set;
1872
1873 /* Put this field right behind anv_descriptor_set so it fills up the
1874 * descriptors[0] field. */
1875 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1876
1877 /** True if the descriptor set buffer has been referenced by a draw or
1878 * dispatch command.
1879 */
1880 bool set_used_on_gpu;
1881
1882 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1883 };
1884
1885 struct anv_descriptor_pool {
1886 uint32_t size;
1887 uint32_t next;
1888 uint32_t free_list;
1889
1890 struct anv_bo *bo;
1891 struct util_vma_heap bo_heap;
1892
1893 struct anv_state_stream surface_state_stream;
1894 void *surface_state_free_list;
1895
1896 struct list_head desc_sets;
1897
1898 char data[0];
1899 };
1900
1901 enum anv_descriptor_template_entry_type {
1902 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1903 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1904 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1905 };
1906
1907 struct anv_descriptor_template_entry {
1908 /* The type of descriptor in this entry */
1909 VkDescriptorType type;
1910
1911 /* Binding in the descriptor set */
1912 uint32_t binding;
1913
1914 /* Offset at which to write into the descriptor set binding */
1915 uint32_t array_element;
1916
1917 /* Number of elements to write into the descriptor set binding */
1918 uint32_t array_count;
1919
1920 /* Offset into the user provided data */
1921 size_t offset;
1922
1923 /* Stride between elements into the user provided data */
1924 size_t stride;
1925 };
1926
1927 struct anv_descriptor_update_template {
1928 VkPipelineBindPoint bind_point;
1929
1930 /* The descriptor set this template corresponds to. This value is only
1931 * valid if the template was created with the templateType
1932 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1933 */
1934 uint8_t set;
1935
1936 /* Number of entries in this template */
1937 uint32_t entry_count;
1938
1939 /* Entries of the template */
1940 struct anv_descriptor_template_entry entries[0];
1941 };
1942
1943 size_t
1944 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1945
1946 void
1947 anv_descriptor_set_write_image_view(struct anv_device *device,
1948 struct anv_descriptor_set *set,
1949 const VkDescriptorImageInfo * const info,
1950 VkDescriptorType type,
1951 uint32_t binding,
1952 uint32_t element);
1953
1954 void
1955 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1956 struct anv_descriptor_set *set,
1957 VkDescriptorType type,
1958 struct anv_buffer_view *buffer_view,
1959 uint32_t binding,
1960 uint32_t element);
1961
1962 void
1963 anv_descriptor_set_write_buffer(struct anv_device *device,
1964 struct anv_descriptor_set *set,
1965 struct anv_state_stream *alloc_stream,
1966 VkDescriptorType type,
1967 struct anv_buffer *buffer,
1968 uint32_t binding,
1969 uint32_t element,
1970 VkDeviceSize offset,
1971 VkDeviceSize range);
1972 void
1973 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1974 struct anv_descriptor_set *set,
1975 uint32_t binding,
1976 const void *data,
1977 size_t offset,
1978 size_t size);
1979
1980 void
1981 anv_descriptor_set_write_template(struct anv_device *device,
1982 struct anv_descriptor_set *set,
1983 struct anv_state_stream *alloc_stream,
1984 const struct anv_descriptor_update_template *template,
1985 const void *data);
1986
1987 VkResult
1988 anv_descriptor_set_create(struct anv_device *device,
1989 struct anv_descriptor_pool *pool,
1990 struct anv_descriptor_set_layout *layout,
1991 struct anv_descriptor_set **out_set);
1992
1993 void
1994 anv_descriptor_set_destroy(struct anv_device *device,
1995 struct anv_descriptor_pool *pool,
1996 struct anv_descriptor_set *set);
1997
1998 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
1999 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2000 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2001 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2002
2003 struct anv_pipeline_binding {
2004 /* The descriptor set this surface corresponds to. The special value of
2005 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
2006 * to a color attachment and not a regular descriptor.
2007 */
2008 uint8_t set;
2009
2010 /* Binding in the descriptor set */
2011 uint32_t binding;
2012
2013 /* Index in the binding */
2014 uint32_t index;
2015
2016 /* Plane in the binding index */
2017 uint8_t plane;
2018
2019 /* Input attachment index (relative to the subpass) */
2020 uint8_t input_attachment_index;
2021
2022 /* For a storage image, whether it is write-only */
2023 bool write_only;
2024 };
2025
2026 struct anv_pipeline_layout {
2027 struct {
2028 struct anv_descriptor_set_layout *layout;
2029 uint32_t dynamic_offset_start;
2030 } set[MAX_SETS];
2031
2032 uint32_t num_sets;
2033
2034 unsigned char sha1[20];
2035 };
2036
2037 struct anv_buffer {
2038 struct anv_device * device;
2039 VkDeviceSize size;
2040
2041 VkBufferUsageFlags usage;
2042
2043 /* Set when bound */
2044 struct anv_address address;
2045 };
2046
2047 static inline uint64_t
2048 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2049 {
2050 assert(offset <= buffer->size);
2051 if (range == VK_WHOLE_SIZE) {
2052 return buffer->size - offset;
2053 } else {
2054 assert(range + offset >= range);
2055 assert(range + offset <= buffer->size);
2056 return range;
2057 }
2058 }
2059
2060 enum anv_cmd_dirty_bits {
2061 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2062 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2063 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2064 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2065 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2066 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2067 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2068 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2069 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2070 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2071 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2072 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2073 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2074 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2075 };
2076 typedef uint32_t anv_cmd_dirty_mask_t;
2077
2078 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2079 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2080 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2081 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2082 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2083 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2084 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2085 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2086 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2087 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2088 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2089
2090 static inline enum anv_cmd_dirty_bits
2091 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2092 {
2093 switch (vk_state) {
2094 case VK_DYNAMIC_STATE_VIEWPORT:
2095 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2096 case VK_DYNAMIC_STATE_SCISSOR:
2097 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2098 case VK_DYNAMIC_STATE_LINE_WIDTH:
2099 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2100 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2101 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2102 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2103 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2104 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2105 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2106 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2107 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2108 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2109 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2110 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2111 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2112 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2113 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2114 default:
2115 assert(!"Unsupported dynamic state");
2116 return 0;
2117 }
2118 }
2119
2120
2121 enum anv_pipe_bits {
2122 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2123 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2124 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2125 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2126 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2127 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2128 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2129 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2130 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2131 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2132 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2133 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2134
2135 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2136 * a flush has happened but not a CS stall. The next time we do any sort
2137 * of invalidation we need to insert a CS stall at that time. Otherwise,
2138 * we would have to CS stall on every flush which could be bad.
2139 */
2140 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2141
2142 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2143 * target operations related to transfer commands with VkBuffer as
2144 * destination are ongoing. Some operations like copies on the command
2145 * streamer might need to be aware of this to trigger the appropriate stall
2146 * before they can proceed with the copy.
2147 */
2148 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2149 };
2150
2151 #define ANV_PIPE_FLUSH_BITS ( \
2152 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2153 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2154 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2155 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2156
2157 #define ANV_PIPE_STALL_BITS ( \
2158 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2159 ANV_PIPE_DEPTH_STALL_BIT | \
2160 ANV_PIPE_CS_STALL_BIT)
2161
2162 #define ANV_PIPE_INVALIDATE_BITS ( \
2163 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2164 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2165 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2166 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2167 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2168 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2169
2170 static inline enum anv_pipe_bits
2171 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2172 {
2173 enum anv_pipe_bits pipe_bits = 0;
2174
2175 unsigned b;
2176 for_each_bit(b, flags) {
2177 switch ((VkAccessFlagBits)(1 << b)) {
2178 case VK_ACCESS_SHADER_WRITE_BIT:
2179 /* We're transitioning a buffer that was previously used as write
2180 * destination through the data port. To make its content available
2181 * to future operations, flush the data cache.
2182 */
2183 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2184 break;
2185 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2186 /* We're transitioning a buffer that was previously used as render
2187 * target. To make its content available to future operations, flush
2188 * the render target cache.
2189 */
2190 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2191 break;
2192 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2193 /* We're transitioning a buffer that was previously used as depth
2194 * buffer. To make its content available to future operations, flush
2195 * the depth cache.
2196 */
2197 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2198 break;
2199 case VK_ACCESS_TRANSFER_WRITE_BIT:
2200 /* We're transitioning a buffer that was previously used as a
2201 * transfer write destination. Generic write operations include color
2202 * & depth operations as well as buffer operations like :
2203 * - vkCmdClearColorImage()
2204 * - vkCmdClearDepthStencilImage()
2205 * - vkCmdBlitImage()
2206 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2207 *
2208 * Most of these operations are implemented using Blorp which writes
2209 * through the render target, so flush that cache to make it visible
2210 * to future operations. And for depth related operations we also
2211 * need to flush the depth cache.
2212 */
2213 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2214 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2215 break;
2216 case VK_ACCESS_MEMORY_WRITE_BIT:
2217 /* We're transitioning a buffer for generic write operations. Flush
2218 * all the caches.
2219 */
2220 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2221 break;
2222 default:
2223 break; /* Nothing to do */
2224 }
2225 }
2226
2227 return pipe_bits;
2228 }
2229
2230 static inline enum anv_pipe_bits
2231 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2232 {
2233 enum anv_pipe_bits pipe_bits = 0;
2234
2235 unsigned b;
2236 for_each_bit(b, flags) {
2237 switch ((VkAccessFlagBits)(1 << b)) {
2238 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2239 /* Indirect draw commands take a buffer as input that we're going to
2240 * read from the command streamer to load some of the HW registers
2241 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2242 * command streamer stall so that all the cache flushes have
2243 * completed before the command streamer loads from memory.
2244 */
2245 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2246 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2247 * through a vertex buffer, so invalidate that cache.
2248 */
2249 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2250 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2251 * UBO from the buffer, so we need to invalidate constant cache.
2252 */
2253 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2254 break;
2255 case VK_ACCESS_INDEX_READ_BIT:
2256 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2257 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2258 * commands, so we invalidate the VF cache to make sure there is no
2259 * stale data when we start rendering.
2260 */
2261 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2262 break;
2263 case VK_ACCESS_UNIFORM_READ_BIT:
2264 /* We transitioning a buffer to be used as uniform data. Because
2265 * uniform is accessed through the data port & sampler, we need to
2266 * invalidate the texture cache (sampler) & constant cache (data
2267 * port) to avoid stale data.
2268 */
2269 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2270 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2271 break;
2272 case VK_ACCESS_SHADER_READ_BIT:
2273 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2274 case VK_ACCESS_TRANSFER_READ_BIT:
2275 /* Transitioning a buffer to be read through the sampler, so
2276 * invalidate the texture cache, we don't want any stale data.
2277 */
2278 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2279 break;
2280 case VK_ACCESS_MEMORY_READ_BIT:
2281 /* Transitioning a buffer for generic read, invalidate all the
2282 * caches.
2283 */
2284 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2285 break;
2286 case VK_ACCESS_MEMORY_WRITE_BIT:
2287 /* Generic write, make sure all previously written things land in
2288 * memory.
2289 */
2290 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2291 break;
2292 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2293 /* Transitioning a buffer for conditional rendering. We'll load the
2294 * content of this buffer into HW registers using the command
2295 * streamer, so we need to stall the command streamer to make sure
2296 * any in-flight flush operations have completed.
2297 */
2298 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2299 break;
2300 default:
2301 break; /* Nothing to do */
2302 }
2303 }
2304
2305 return pipe_bits;
2306 }
2307
2308 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2309 VK_IMAGE_ASPECT_COLOR_BIT | \
2310 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2311 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2312 VK_IMAGE_ASPECT_PLANE_2_BIT)
2313 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2314 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2315 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2316 VK_IMAGE_ASPECT_PLANE_2_BIT)
2317
2318 struct anv_vertex_binding {
2319 struct anv_buffer * buffer;
2320 VkDeviceSize offset;
2321 };
2322
2323 struct anv_xfb_binding {
2324 struct anv_buffer * buffer;
2325 VkDeviceSize offset;
2326 VkDeviceSize size;
2327 };
2328
2329 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2330 #define ANV_PARAM_IS_PUSH(param) ((uint32_t)(param) >> 16 == 1)
2331 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2332
2333 #define ANV_PARAM_DYN_OFFSET(offset) ((2 << 16) | (uint32_t)(offset))
2334 #define ANV_PARAM_IS_DYN_OFFSET(param) ((uint32_t)(param) >> 16 == 2)
2335 #define ANV_PARAM_DYN_OFFSET_IDX(param) ((param) & 0xffff)
2336
2337 struct anv_push_constants {
2338 /* Push constant data provided by the client through vkPushConstants */
2339 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2340
2341 /* Used for vkCmdDispatchBase */
2342 uint32_t base_work_group_id[3];
2343 };
2344
2345 struct anv_dynamic_state {
2346 struct {
2347 uint32_t count;
2348 VkViewport viewports[MAX_VIEWPORTS];
2349 } viewport;
2350
2351 struct {
2352 uint32_t count;
2353 VkRect2D scissors[MAX_SCISSORS];
2354 } scissor;
2355
2356 float line_width;
2357
2358 struct {
2359 float bias;
2360 float clamp;
2361 float slope;
2362 } depth_bias;
2363
2364 float blend_constants[4];
2365
2366 struct {
2367 float min;
2368 float max;
2369 } depth_bounds;
2370
2371 struct {
2372 uint32_t front;
2373 uint32_t back;
2374 } stencil_compare_mask;
2375
2376 struct {
2377 uint32_t front;
2378 uint32_t back;
2379 } stencil_write_mask;
2380
2381 struct {
2382 uint32_t front;
2383 uint32_t back;
2384 } stencil_reference;
2385
2386 struct {
2387 uint32_t factor;
2388 uint16_t pattern;
2389 } line_stipple;
2390 };
2391
2392 extern const struct anv_dynamic_state default_dynamic_state;
2393
2394 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2395 const struct anv_dynamic_state *src,
2396 uint32_t copy_mask);
2397
2398 struct anv_surface_state {
2399 struct anv_state state;
2400 /** Address of the surface referred to by this state
2401 *
2402 * This address is relative to the start of the BO.
2403 */
2404 struct anv_address address;
2405 /* Address of the aux surface, if any
2406 *
2407 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2408 *
2409 * With the exception of gen8, the bottom 12 bits of this address' offset
2410 * include extra aux information.
2411 */
2412 struct anv_address aux_address;
2413 /* Address of the clear color, if any
2414 *
2415 * This address is relative to the start of the BO.
2416 */
2417 struct anv_address clear_address;
2418 };
2419
2420 /**
2421 * Attachment state when recording a renderpass instance.
2422 *
2423 * The clear value is valid only if there exists a pending clear.
2424 */
2425 struct anv_attachment_state {
2426 enum isl_aux_usage aux_usage;
2427 enum isl_aux_usage input_aux_usage;
2428 struct anv_surface_state color;
2429 struct anv_surface_state input;
2430
2431 VkImageLayout current_layout;
2432 VkImageAspectFlags pending_clear_aspects;
2433 VkImageAspectFlags pending_load_aspects;
2434 bool fast_clear;
2435 VkClearValue clear_value;
2436 bool clear_color_is_zero_one;
2437 bool clear_color_is_zero;
2438
2439 /* When multiview is active, attachments with a renderpass clear
2440 * operation have their respective layers cleared on the first
2441 * subpass that uses them, and only in that subpass. We keep track
2442 * of this using a bitfield to indicate which layers of an attachment
2443 * have not been cleared yet when multiview is active.
2444 */
2445 uint32_t pending_clear_views;
2446 struct anv_image_view * image_view;
2447 };
2448
2449 /** State tracking for particular pipeline bind point
2450 *
2451 * This struct is the base struct for anv_cmd_graphics_state and
2452 * anv_cmd_compute_state. These are used to track state which is bound to a
2453 * particular type of pipeline. Generic state that applies per-stage such as
2454 * binding table offsets and push constants is tracked generically with a
2455 * per-stage array in anv_cmd_state.
2456 */
2457 struct anv_cmd_pipeline_state {
2458 struct anv_pipeline *pipeline;
2459 struct anv_pipeline_layout *layout;
2460
2461 struct anv_descriptor_set *descriptors[MAX_SETS];
2462 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2463
2464 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2465 };
2466
2467 /** State tracking for graphics pipeline
2468 *
2469 * This has anv_cmd_pipeline_state as a base struct to track things which get
2470 * bound to a graphics pipeline. Along with general pipeline bind point state
2471 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2472 * state which is graphics-specific.
2473 */
2474 struct anv_cmd_graphics_state {
2475 struct anv_cmd_pipeline_state base;
2476
2477 anv_cmd_dirty_mask_t dirty;
2478 uint32_t vb_dirty;
2479
2480 struct anv_dynamic_state dynamic;
2481
2482 struct {
2483 struct anv_buffer *index_buffer;
2484 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2485 uint32_t index_offset;
2486 } gen7;
2487 };
2488
2489 /** State tracking for compute pipeline
2490 *
2491 * This has anv_cmd_pipeline_state as a base struct to track things which get
2492 * bound to a compute pipeline. Along with general pipeline bind point state
2493 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2494 * state which is compute-specific.
2495 */
2496 struct anv_cmd_compute_state {
2497 struct anv_cmd_pipeline_state base;
2498
2499 bool pipeline_dirty;
2500
2501 struct anv_address num_workgroups;
2502 };
2503
2504 /** State required while building cmd buffer */
2505 struct anv_cmd_state {
2506 /* PIPELINE_SELECT.PipelineSelection */
2507 uint32_t current_pipeline;
2508 const struct gen_l3_config * current_l3_config;
2509 uint32_t last_aux_map_state;
2510
2511 struct anv_cmd_graphics_state gfx;
2512 struct anv_cmd_compute_state compute;
2513
2514 enum anv_pipe_bits pending_pipe_bits;
2515 VkShaderStageFlags descriptors_dirty;
2516 VkShaderStageFlags push_constants_dirty;
2517
2518 struct anv_framebuffer * framebuffer;
2519 struct anv_render_pass * pass;
2520 struct anv_subpass * subpass;
2521 VkRect2D render_area;
2522 uint32_t restart_index;
2523 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2524 bool xfb_enabled;
2525 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2526 VkShaderStageFlags push_constant_stages;
2527 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2528 struct anv_state binding_tables[MESA_SHADER_STAGES];
2529 struct anv_state samplers[MESA_SHADER_STAGES];
2530
2531 /**
2532 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2533 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2534 * and before invoking the secondary in ExecuteCommands.
2535 */
2536 bool pma_fix_enabled;
2537
2538 /**
2539 * Whether or not we know for certain that HiZ is enabled for the current
2540 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2541 * enabled or not, this will be false.
2542 */
2543 bool hiz_enabled;
2544
2545 bool conditional_render_enabled;
2546
2547 /**
2548 * Last rendering scale argument provided to
2549 * genX(cmd_buffer_emit_hashing_mode)().
2550 */
2551 unsigned current_hash_scale;
2552
2553 /**
2554 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2555 * valid only when recording a render pass instance.
2556 */
2557 struct anv_attachment_state * attachments;
2558
2559 /**
2560 * Surface states for color render targets. These are stored in a single
2561 * flat array. For depth-stencil attachments, the surface state is simply
2562 * left blank.
2563 */
2564 struct anv_state render_pass_states;
2565
2566 /**
2567 * A null surface state of the right size to match the framebuffer. This
2568 * is one of the states in render_pass_states.
2569 */
2570 struct anv_state null_surface_state;
2571 };
2572
2573 struct anv_cmd_pool {
2574 VkAllocationCallbacks alloc;
2575 struct list_head cmd_buffers;
2576 };
2577
2578 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2579
2580 enum anv_cmd_buffer_exec_mode {
2581 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2582 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2583 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2584 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2585 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2586 };
2587
2588 struct anv_cmd_buffer {
2589 VK_LOADER_DATA _loader_data;
2590
2591 struct anv_device * device;
2592
2593 struct anv_cmd_pool * pool;
2594 struct list_head pool_link;
2595
2596 struct anv_batch batch;
2597
2598 /* Fields required for the actual chain of anv_batch_bo's.
2599 *
2600 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2601 */
2602 struct list_head batch_bos;
2603 enum anv_cmd_buffer_exec_mode exec_mode;
2604
2605 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2606 * referenced by this command buffer
2607 *
2608 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2609 */
2610 struct u_vector seen_bbos;
2611
2612 /* A vector of int32_t's for every block of binding tables.
2613 *
2614 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2615 */
2616 struct u_vector bt_block_states;
2617 uint32_t bt_next;
2618
2619 struct anv_reloc_list surface_relocs;
2620 /** Last seen surface state block pool center bo offset */
2621 uint32_t last_ss_pool_center;
2622
2623 /* Serial for tracking buffer completion */
2624 uint32_t serial;
2625
2626 /* Stream objects for storing temporary data */
2627 struct anv_state_stream surface_state_stream;
2628 struct anv_state_stream dynamic_state_stream;
2629
2630 VkCommandBufferUsageFlags usage_flags;
2631 VkCommandBufferLevel level;
2632
2633 struct anv_cmd_state state;
2634
2635 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2636 uint64_t intel_perf_marker;
2637 };
2638
2639 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2640 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2641 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2642 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2643 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2644 struct anv_cmd_buffer *secondary);
2645 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2646 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2647 struct anv_cmd_buffer *cmd_buffer,
2648 const VkSemaphore *in_semaphores,
2649 uint32_t num_in_semaphores,
2650 const VkSemaphore *out_semaphores,
2651 uint32_t num_out_semaphores,
2652 VkFence fence);
2653
2654 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2655
2656 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2657 const void *data, uint32_t size, uint32_t alignment);
2658 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2659 uint32_t *a, uint32_t *b,
2660 uint32_t dwords, uint32_t alignment);
2661
2662 struct anv_address
2663 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2664 struct anv_state
2665 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2666 uint32_t entries, uint32_t *state_offset);
2667 struct anv_state
2668 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2669 struct anv_state
2670 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2671 uint32_t size, uint32_t alignment);
2672
2673 VkResult
2674 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2675
2676 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2677 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2678 bool depth_clamp_enable);
2679 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2680
2681 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2682 struct anv_render_pass *pass,
2683 struct anv_framebuffer *framebuffer,
2684 const VkClearValue *clear_values);
2685
2686 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2687
2688 struct anv_state
2689 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2690 gl_shader_stage stage);
2691 struct anv_state
2692 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2693
2694 const struct anv_image_view *
2695 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2696
2697 VkResult
2698 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2699 uint32_t num_entries,
2700 uint32_t *state_offset,
2701 struct anv_state *bt_state);
2702
2703 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2704
2705 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2706
2707 enum anv_fence_type {
2708 ANV_FENCE_TYPE_NONE = 0,
2709 ANV_FENCE_TYPE_BO,
2710 ANV_FENCE_TYPE_SYNCOBJ,
2711 ANV_FENCE_TYPE_WSI,
2712 };
2713
2714 enum anv_bo_fence_state {
2715 /** Indicates that this is a new (or newly reset fence) */
2716 ANV_BO_FENCE_STATE_RESET,
2717
2718 /** Indicates that this fence has been submitted to the GPU but is still
2719 * (as far as we know) in use by the GPU.
2720 */
2721 ANV_BO_FENCE_STATE_SUBMITTED,
2722
2723 ANV_BO_FENCE_STATE_SIGNALED,
2724 };
2725
2726 struct anv_fence_impl {
2727 enum anv_fence_type type;
2728
2729 union {
2730 /** Fence implementation for BO fences
2731 *
2732 * These fences use a BO and a set of CPU-tracked state flags. The BO
2733 * is added to the object list of the last execbuf call in a QueueSubmit
2734 * and is marked EXEC_WRITE. The state flags track when the BO has been
2735 * submitted to the kernel. We need to do this because Vulkan lets you
2736 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2737 * will say it's idle in this case.
2738 */
2739 struct {
2740 struct anv_bo *bo;
2741 enum anv_bo_fence_state state;
2742 } bo;
2743
2744 /** DRM syncobj handle for syncobj-based fences */
2745 uint32_t syncobj;
2746
2747 /** WSI fence */
2748 struct wsi_fence *fence_wsi;
2749 };
2750 };
2751
2752 struct anv_fence {
2753 /* Permanent fence state. Every fence has some form of permanent state
2754 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2755 * cross-process fences) or it could just be a dummy for use internally.
2756 */
2757 struct anv_fence_impl permanent;
2758
2759 /* Temporary fence state. A fence *may* have temporary state. That state
2760 * is added to the fence by an import operation and is reset back to
2761 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2762 * state cannot be signaled because the fence must already be signaled
2763 * before the temporary state can be exported from the fence in the other
2764 * process and imported here.
2765 */
2766 struct anv_fence_impl temporary;
2767 };
2768
2769 struct anv_event {
2770 uint64_t semaphore;
2771 struct anv_state state;
2772 };
2773
2774 enum anv_semaphore_type {
2775 ANV_SEMAPHORE_TYPE_NONE = 0,
2776 ANV_SEMAPHORE_TYPE_DUMMY,
2777 ANV_SEMAPHORE_TYPE_BO,
2778 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2779 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2780 };
2781
2782 struct anv_semaphore_impl {
2783 enum anv_semaphore_type type;
2784
2785 union {
2786 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2787 * This BO will be added to the object list on any execbuf2 calls for
2788 * which this semaphore is used as a wait or signal fence. When used as
2789 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2790 */
2791 struct anv_bo *bo;
2792
2793 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2794 * If the semaphore is in the unsignaled state due to either just being
2795 * created or because it has been used for a wait, fd will be -1.
2796 */
2797 int fd;
2798
2799 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2800 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2801 * import so we don't need to bother with a userspace cache.
2802 */
2803 uint32_t syncobj;
2804 };
2805 };
2806
2807 struct anv_semaphore {
2808 /* Permanent semaphore state. Every semaphore has some form of permanent
2809 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2810 * (for cross-process semaphores0 or it could just be a dummy for use
2811 * internally.
2812 */
2813 struct anv_semaphore_impl permanent;
2814
2815 /* Temporary semaphore state. A semaphore *may* have temporary state.
2816 * That state is added to the semaphore by an import operation and is reset
2817 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2818 * semaphore with temporary state cannot be signaled because the semaphore
2819 * must already be signaled before the temporary state can be exported from
2820 * the semaphore in the other process and imported here.
2821 */
2822 struct anv_semaphore_impl temporary;
2823 };
2824
2825 void anv_semaphore_reset_temporary(struct anv_device *device,
2826 struct anv_semaphore *semaphore);
2827
2828 struct anv_shader_module {
2829 unsigned char sha1[20];
2830 uint32_t size;
2831 char data[0];
2832 };
2833
2834 static inline gl_shader_stage
2835 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2836 {
2837 assert(__builtin_popcount(vk_stage) == 1);
2838 return ffs(vk_stage) - 1;
2839 }
2840
2841 static inline VkShaderStageFlagBits
2842 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2843 {
2844 return (1 << mesa_stage);
2845 }
2846
2847 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2848
2849 #define anv_foreach_stage(stage, stage_bits) \
2850 for (gl_shader_stage stage, \
2851 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2852 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2853 __tmp &= ~(1 << (stage)))
2854
2855 struct anv_pipeline_bind_map {
2856 uint32_t surface_count;
2857 uint32_t sampler_count;
2858
2859 struct anv_pipeline_binding * surface_to_descriptor;
2860 struct anv_pipeline_binding * sampler_to_descriptor;
2861 };
2862
2863 struct anv_shader_bin_key {
2864 uint32_t size;
2865 uint8_t data[0];
2866 };
2867
2868 struct anv_shader_bin {
2869 uint32_t ref_cnt;
2870
2871 const struct anv_shader_bin_key *key;
2872
2873 struct anv_state kernel;
2874 uint32_t kernel_size;
2875
2876 struct anv_state constant_data;
2877 uint32_t constant_data_size;
2878
2879 const struct brw_stage_prog_data *prog_data;
2880 uint32_t prog_data_size;
2881
2882 struct brw_compile_stats stats[3];
2883 uint32_t num_stats;
2884
2885 struct nir_xfb_info *xfb_info;
2886
2887 struct anv_pipeline_bind_map bind_map;
2888 };
2889
2890 struct anv_shader_bin *
2891 anv_shader_bin_create(struct anv_device *device,
2892 const void *key, uint32_t key_size,
2893 const void *kernel, uint32_t kernel_size,
2894 const void *constant_data, uint32_t constant_data_size,
2895 const struct brw_stage_prog_data *prog_data,
2896 uint32_t prog_data_size, const void *prog_data_param,
2897 const struct brw_compile_stats *stats, uint32_t num_stats,
2898 const struct nir_xfb_info *xfb_info,
2899 const struct anv_pipeline_bind_map *bind_map);
2900
2901 void
2902 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2903
2904 static inline void
2905 anv_shader_bin_ref(struct anv_shader_bin *shader)
2906 {
2907 assert(shader && shader->ref_cnt >= 1);
2908 p_atomic_inc(&shader->ref_cnt);
2909 }
2910
2911 static inline void
2912 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2913 {
2914 assert(shader && shader->ref_cnt >= 1);
2915 if (p_atomic_dec_zero(&shader->ref_cnt))
2916 anv_shader_bin_destroy(device, shader);
2917 }
2918
2919 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
2920 #define MAX_PIPELINE_EXECUTABLES 7
2921
2922 struct anv_pipeline_executable {
2923 gl_shader_stage stage;
2924
2925 struct brw_compile_stats stats;
2926
2927 char *nir;
2928 char *disasm;
2929 };
2930
2931 struct anv_pipeline {
2932 struct anv_device * device;
2933 struct anv_batch batch;
2934 uint32_t batch_data[512];
2935 struct anv_reloc_list batch_relocs;
2936 anv_cmd_dirty_mask_t dynamic_state_mask;
2937 struct anv_dynamic_state dynamic_state;
2938
2939 void * mem_ctx;
2940
2941 VkPipelineCreateFlags flags;
2942 struct anv_subpass * subpass;
2943
2944 bool needs_data_cache;
2945
2946 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2947
2948 uint32_t num_executables;
2949 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
2950
2951 struct {
2952 const struct gen_l3_config * l3_config;
2953 uint32_t total_size;
2954 } urb;
2955
2956 VkShaderStageFlags active_stages;
2957 struct anv_state blend_state;
2958
2959 uint32_t vb_used;
2960 struct anv_pipeline_vertex_binding {
2961 uint32_t stride;
2962 bool instanced;
2963 uint32_t instance_divisor;
2964 } vb[MAX_VBS];
2965
2966 uint8_t xfb_used;
2967
2968 bool primitive_restart;
2969 uint32_t topology;
2970
2971 uint32_t cs_right_mask;
2972
2973 bool writes_depth;
2974 bool depth_test_enable;
2975 bool writes_stencil;
2976 bool stencil_test_enable;
2977 bool depth_clamp_enable;
2978 bool depth_clip_enable;
2979 bool sample_shading_enable;
2980 bool kill_pixel;
2981 bool depth_bounds_test_enable;
2982
2983 struct {
2984 uint32_t sf[7];
2985 uint32_t depth_stencil_state[3];
2986 } gen7;
2987
2988 struct {
2989 uint32_t sf[4];
2990 uint32_t raster[5];
2991 uint32_t wm_depth_stencil[3];
2992 } gen8;
2993
2994 struct {
2995 uint32_t wm_depth_stencil[4];
2996 } gen9;
2997
2998 uint32_t interface_descriptor_data[8];
2999 };
3000
3001 static inline bool
3002 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3003 gl_shader_stage stage)
3004 {
3005 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3006 }
3007
3008 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3009 static inline const struct brw_##prefix##_prog_data * \
3010 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3011 { \
3012 if (anv_pipeline_has_stage(pipeline, stage)) { \
3013 return (const struct brw_##prefix##_prog_data *) \
3014 pipeline->shaders[stage]->prog_data; \
3015 } else { \
3016 return NULL; \
3017 } \
3018 }
3019
3020 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3021 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3022 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3023 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3024 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3025 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3026
3027 static inline const struct brw_vue_prog_data *
3028 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3029 {
3030 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3031 return &get_gs_prog_data(pipeline)->base;
3032 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3033 return &get_tes_prog_data(pipeline)->base;
3034 else
3035 return &get_vs_prog_data(pipeline)->base;
3036 }
3037
3038 VkResult
3039 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3040 struct anv_pipeline_cache *cache,
3041 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3042 const VkAllocationCallbacks *alloc);
3043
3044 VkResult
3045 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3046 struct anv_pipeline_cache *cache,
3047 const VkComputePipelineCreateInfo *info,
3048 const struct anv_shader_module *module,
3049 const char *entrypoint,
3050 const VkSpecializationInfo *spec_info);
3051
3052 struct anv_format_plane {
3053 enum isl_format isl_format:16;
3054 struct isl_swizzle swizzle;
3055
3056 /* Whether this plane contains chroma channels */
3057 bool has_chroma;
3058
3059 /* For downscaling of YUV planes */
3060 uint8_t denominator_scales[2];
3061
3062 /* How to map sampled ycbcr planes to a single 4 component element. */
3063 struct isl_swizzle ycbcr_swizzle;
3064
3065 /* What aspect is associated to this plane */
3066 VkImageAspectFlags aspect;
3067 };
3068
3069
3070 struct anv_format {
3071 struct anv_format_plane planes[3];
3072 VkFormat vk_format;
3073 uint8_t n_planes;
3074 bool can_ycbcr;
3075 };
3076
3077 static inline uint32_t
3078 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3079 VkImageAspectFlags aspect_mask)
3080 {
3081 switch (aspect_mask) {
3082 case VK_IMAGE_ASPECT_COLOR_BIT:
3083 case VK_IMAGE_ASPECT_DEPTH_BIT:
3084 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3085 return 0;
3086 case VK_IMAGE_ASPECT_STENCIL_BIT:
3087 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3088 return 0;
3089 /* Fall-through */
3090 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3091 return 1;
3092 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3093 return 2;
3094 default:
3095 /* Purposefully assert with depth/stencil aspects. */
3096 unreachable("invalid image aspect");
3097 }
3098 }
3099
3100 static inline VkImageAspectFlags
3101 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3102 uint32_t plane)
3103 {
3104 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3105 if (util_bitcount(image_aspects) > 1)
3106 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3107 return VK_IMAGE_ASPECT_COLOR_BIT;
3108 }
3109 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3110 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3111 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3112 return VK_IMAGE_ASPECT_STENCIL_BIT;
3113 }
3114
3115 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3116 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3117
3118 const struct anv_format *
3119 anv_get_format(VkFormat format);
3120
3121 static inline uint32_t
3122 anv_get_format_planes(VkFormat vk_format)
3123 {
3124 const struct anv_format *format = anv_get_format(vk_format);
3125
3126 return format != NULL ? format->n_planes : 0;
3127 }
3128
3129 struct anv_format_plane
3130 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3131 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3132
3133 static inline enum isl_format
3134 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3135 VkImageAspectFlags aspect, VkImageTiling tiling)
3136 {
3137 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3138 }
3139
3140 static inline struct isl_swizzle
3141 anv_swizzle_for_render(struct isl_swizzle swizzle)
3142 {
3143 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3144 * RGB as RGBA for texturing
3145 */
3146 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3147 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3148
3149 /* But it doesn't matter what we render to that channel */
3150 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3151
3152 return swizzle;
3153 }
3154
3155 void
3156 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3157
3158 /**
3159 * Subsurface of an anv_image.
3160 */
3161 struct anv_surface {
3162 /** Valid only if isl_surf::size_B > 0. */
3163 struct isl_surf isl;
3164
3165 /**
3166 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3167 */
3168 uint32_t offset;
3169 };
3170
3171 struct anv_image {
3172 VkImageType type; /**< VkImageCreateInfo::imageType */
3173 /* The original VkFormat provided by the client. This may not match any
3174 * of the actual surface formats.
3175 */
3176 VkFormat vk_format;
3177 const struct anv_format *format;
3178
3179 VkImageAspectFlags aspects;
3180 VkExtent3D extent;
3181 uint32_t levels;
3182 uint32_t array_size;
3183 uint32_t samples; /**< VkImageCreateInfo::samples */
3184 uint32_t n_planes;
3185 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3186 VkImageUsageFlags stencil_usage;
3187 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3188 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3189
3190 /** True if this is needs to be bound to an appropriately tiled BO.
3191 *
3192 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3193 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3194 * we require a dedicated allocation so that we can know to allocate a
3195 * tiled buffer.
3196 */
3197 bool needs_set_tiling;
3198
3199 /**
3200 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3201 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3202 */
3203 uint64_t drm_format_mod;
3204
3205 VkDeviceSize size;
3206 uint32_t alignment;
3207
3208 /* Whether the image is made of several underlying buffer objects rather a
3209 * single one with different offsets.
3210 */
3211 bool disjoint;
3212
3213 /* All the formats that can be used when creating views of this image
3214 * are CCS_E compatible.
3215 */
3216 bool ccs_e_compatible;
3217
3218 /* Image was created with external format. */
3219 bool external_format;
3220
3221 /**
3222 * Image subsurfaces
3223 *
3224 * For each foo, anv_image::planes[x].surface is valid if and only if
3225 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3226 * to figure the number associated with a given aspect.
3227 *
3228 * The hardware requires that the depth buffer and stencil buffer be
3229 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3230 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3231 * allocate the depth and stencil buffers as separate surfaces in the same
3232 * bo.
3233 *
3234 * Memory layout :
3235 *
3236 * -----------------------
3237 * | surface0 | /|\
3238 * ----------------------- |
3239 * | shadow surface0 | |
3240 * ----------------------- | Plane 0
3241 * | aux surface0 | |
3242 * ----------------------- |
3243 * | fast clear colors0 | \|/
3244 * -----------------------
3245 * | surface1 | /|\
3246 * ----------------------- |
3247 * | shadow surface1 | |
3248 * ----------------------- | Plane 1
3249 * | aux surface1 | |
3250 * ----------------------- |
3251 * | fast clear colors1 | \|/
3252 * -----------------------
3253 * | ... |
3254 * | |
3255 * -----------------------
3256 */
3257 struct {
3258 /**
3259 * Offset of the entire plane (whenever the image is disjoint this is
3260 * set to 0).
3261 */
3262 uint32_t offset;
3263
3264 VkDeviceSize size;
3265 uint32_t alignment;
3266
3267 struct anv_surface surface;
3268
3269 /**
3270 * A surface which shadows the main surface and may have different
3271 * tiling. This is used for sampling using a tiling that isn't supported
3272 * for other operations.
3273 */
3274 struct anv_surface shadow_surface;
3275
3276 /**
3277 * For color images, this is the aux usage for this image when not used
3278 * as a color attachment.
3279 *
3280 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3281 * image has a HiZ buffer.
3282 */
3283 enum isl_aux_usage aux_usage;
3284
3285 struct anv_surface aux_surface;
3286
3287 /**
3288 * Offset of the fast clear state (used to compute the
3289 * fast_clear_state_offset of the following planes).
3290 */
3291 uint32_t fast_clear_state_offset;
3292
3293 /**
3294 * BO associated with this plane, set when bound.
3295 */
3296 struct anv_address address;
3297
3298 /**
3299 * Address of the main surface used to fill the aux map table. This is
3300 * used at destruction of the image since the Vulkan spec does not
3301 * guarantee that the address.bo field we still be valid at destruction.
3302 */
3303 uint64_t aux_map_surface_address;
3304
3305 /**
3306 * When destroying the image, also free the bo.
3307 * */
3308 bool bo_is_owned;
3309 } planes[3];
3310 };
3311
3312 /* The ordering of this enum is important */
3313 enum anv_fast_clear_type {
3314 /** Image does not have/support any fast-clear blocks */
3315 ANV_FAST_CLEAR_NONE = 0,
3316 /** Image has/supports fast-clear but only to the default value */
3317 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3318 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3319 ANV_FAST_CLEAR_ANY = 2,
3320 };
3321
3322 /* Returns the number of auxiliary buffer levels attached to an image. */
3323 static inline uint8_t
3324 anv_image_aux_levels(const struct anv_image * const image,
3325 VkImageAspectFlagBits aspect)
3326 {
3327 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3328
3329 /* The Gen12 CCS aux surface is represented with only one level. */
3330 const uint8_t aux_logical_levels =
3331 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3332 image->planes[plane].surface.isl.levels :
3333 image->planes[plane].aux_surface.isl.levels;
3334
3335 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3336 aux_logical_levels : 0;
3337 }
3338
3339 /* Returns the number of auxiliary buffer layers attached to an image. */
3340 static inline uint32_t
3341 anv_image_aux_layers(const struct anv_image * const image,
3342 VkImageAspectFlagBits aspect,
3343 const uint8_t miplevel)
3344 {
3345 assert(image);
3346
3347 /* The miplevel must exist in the main buffer. */
3348 assert(miplevel < image->levels);
3349
3350 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3351 /* There are no layers with auxiliary data because the miplevel has no
3352 * auxiliary data.
3353 */
3354 return 0;
3355 } else {
3356 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3357
3358 /* The Gen12 CCS aux surface is represented with only one layer. */
3359 const struct isl_extent4d *aux_logical_level0_px =
3360 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3361 &image->planes[plane].surface.isl.logical_level0_px :
3362 &image->planes[plane].aux_surface.isl.logical_level0_px;
3363
3364 return MAX2(aux_logical_level0_px->array_len,
3365 aux_logical_level0_px->depth >> miplevel);
3366 }
3367 }
3368
3369 static inline struct anv_address
3370 anv_image_get_clear_color_addr(const struct anv_device *device,
3371 const struct anv_image *image,
3372 VkImageAspectFlagBits aspect)
3373 {
3374 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3375
3376 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3377 return anv_address_add(image->planes[plane].address,
3378 image->planes[plane].fast_clear_state_offset);
3379 }
3380
3381 static inline struct anv_address
3382 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3383 const struct anv_image *image,
3384 VkImageAspectFlagBits aspect)
3385 {
3386 struct anv_address addr =
3387 anv_image_get_clear_color_addr(device, image, aspect);
3388
3389 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3390 device->isl_dev.ss.clear_color_state_size :
3391 device->isl_dev.ss.clear_value_size;
3392 return anv_address_add(addr, clear_color_state_size);
3393 }
3394
3395 static inline struct anv_address
3396 anv_image_get_compression_state_addr(const struct anv_device *device,
3397 const struct anv_image *image,
3398 VkImageAspectFlagBits aspect,
3399 uint32_t level, uint32_t array_layer)
3400 {
3401 assert(level < anv_image_aux_levels(image, aspect));
3402 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3403 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3404 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3405
3406 struct anv_address addr =
3407 anv_image_get_fast_clear_type_addr(device, image, aspect);
3408 addr.offset += 4; /* Go past the fast clear type */
3409
3410 if (image->type == VK_IMAGE_TYPE_3D) {
3411 for (uint32_t l = 0; l < level; l++)
3412 addr.offset += anv_minify(image->extent.depth, l) * 4;
3413 } else {
3414 addr.offset += level * image->array_size * 4;
3415 }
3416 addr.offset += array_layer * 4;
3417
3418 assert(addr.offset <
3419 image->planes[plane].address.offset + image->planes[plane].size);
3420 return addr;
3421 }
3422
3423 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3424 static inline bool
3425 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3426 const struct anv_image *image)
3427 {
3428 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3429 return false;
3430
3431 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3432 * struct. There's documentation which suggests that this feature actually
3433 * reduces performance on BDW, but it has only been observed to help so
3434 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3435 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3436 */
3437 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3438 return false;
3439
3440 return image->samples == 1;
3441 }
3442
3443 static inline bool
3444 anv_image_plane_uses_aux_map(const struct anv_device *device,
3445 const struct anv_image *image,
3446 uint32_t plane)
3447 {
3448 return device->info.has_aux_map &&
3449 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3450 }
3451
3452 void
3453 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3454 const struct anv_image *image,
3455 VkImageAspectFlagBits aspect,
3456 enum isl_aux_usage aux_usage,
3457 uint32_t level,
3458 uint32_t base_layer,
3459 uint32_t layer_count);
3460
3461 void
3462 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3463 const struct anv_image *image,
3464 VkImageAspectFlagBits aspect,
3465 enum isl_aux_usage aux_usage,
3466 enum isl_format format, struct isl_swizzle swizzle,
3467 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3468 VkRect2D area, union isl_color_value clear_color);
3469 void
3470 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3471 const struct anv_image *image,
3472 VkImageAspectFlags aspects,
3473 enum isl_aux_usage depth_aux_usage,
3474 uint32_t level,
3475 uint32_t base_layer, uint32_t layer_count,
3476 VkRect2D area,
3477 float depth_value, uint8_t stencil_value);
3478 void
3479 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3480 const struct anv_image *src_image,
3481 enum isl_aux_usage src_aux_usage,
3482 uint32_t src_level, uint32_t src_base_layer,
3483 const struct anv_image *dst_image,
3484 enum isl_aux_usage dst_aux_usage,
3485 uint32_t dst_level, uint32_t dst_base_layer,
3486 VkImageAspectFlagBits aspect,
3487 uint32_t src_x, uint32_t src_y,
3488 uint32_t dst_x, uint32_t dst_y,
3489 uint32_t width, uint32_t height,
3490 uint32_t layer_count,
3491 enum blorp_filter filter);
3492 void
3493 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3494 const struct anv_image *image,
3495 VkImageAspectFlagBits aspect, uint32_t level,
3496 uint32_t base_layer, uint32_t layer_count,
3497 enum isl_aux_op hiz_op);
3498 void
3499 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3500 const struct anv_image *image,
3501 VkImageAspectFlags aspects,
3502 uint32_t level,
3503 uint32_t base_layer, uint32_t layer_count,
3504 VkRect2D area, uint8_t stencil_value);
3505 void
3506 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3507 const struct anv_image *image,
3508 enum isl_format format,
3509 VkImageAspectFlagBits aspect,
3510 uint32_t base_layer, uint32_t layer_count,
3511 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3512 bool predicate);
3513 void
3514 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3515 const struct anv_image *image,
3516 enum isl_format format,
3517 VkImageAspectFlagBits aspect, uint32_t level,
3518 uint32_t base_layer, uint32_t layer_count,
3519 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3520 bool predicate);
3521
3522 void
3523 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3524 const struct anv_image *image,
3525 VkImageAspectFlagBits aspect,
3526 uint32_t base_level, uint32_t level_count,
3527 uint32_t base_layer, uint32_t layer_count);
3528
3529 enum isl_aux_usage
3530 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3531 const struct anv_image *image,
3532 const VkImageAspectFlagBits aspect,
3533 const VkImageLayout layout);
3534
3535 enum anv_fast_clear_type
3536 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3537 const struct anv_image * const image,
3538 const VkImageAspectFlagBits aspect,
3539 const VkImageLayout layout);
3540
3541 /* This is defined as a macro so that it works for both
3542 * VkImageSubresourceRange and VkImageSubresourceLayers
3543 */
3544 #define anv_get_layerCount(_image, _range) \
3545 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3546 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3547
3548 static inline uint32_t
3549 anv_get_levelCount(const struct anv_image *image,
3550 const VkImageSubresourceRange *range)
3551 {
3552 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3553 image->levels - range->baseMipLevel : range->levelCount;
3554 }
3555
3556 static inline VkImageAspectFlags
3557 anv_image_expand_aspects(const struct anv_image *image,
3558 VkImageAspectFlags aspects)
3559 {
3560 /* If the underlying image has color plane aspects and
3561 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3562 * the underlying image. */
3563 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3564 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3565 return image->aspects;
3566
3567 return aspects;
3568 }
3569
3570 static inline bool
3571 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3572 VkImageAspectFlags aspects2)
3573 {
3574 if (aspects1 == aspects2)
3575 return true;
3576
3577 /* Only 1 color aspects are compatibles. */
3578 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3579 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3580 util_bitcount(aspects1) == util_bitcount(aspects2))
3581 return true;
3582
3583 return false;
3584 }
3585
3586 struct anv_image_view {
3587 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3588
3589 VkImageAspectFlags aspect_mask;
3590 VkFormat vk_format;
3591 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3592
3593 unsigned n_planes;
3594 struct {
3595 uint32_t image_plane;
3596
3597 struct isl_view isl;
3598
3599 /**
3600 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3601 * image layout of SHADER_READ_ONLY_OPTIMAL or
3602 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3603 */
3604 struct anv_surface_state optimal_sampler_surface_state;
3605
3606 /**
3607 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3608 * image layout of GENERAL.
3609 */
3610 struct anv_surface_state general_sampler_surface_state;
3611
3612 /**
3613 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3614 * states for write-only and readable, using the real format for
3615 * write-only and the lowered format for readable.
3616 */
3617 struct anv_surface_state storage_surface_state;
3618 struct anv_surface_state writeonly_storage_surface_state;
3619
3620 struct brw_image_param storage_image_param;
3621 } planes[3];
3622 };
3623
3624 enum anv_image_view_state_flags {
3625 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3626 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3627 };
3628
3629 void anv_image_fill_surface_state(struct anv_device *device,
3630 const struct anv_image *image,
3631 VkImageAspectFlagBits aspect,
3632 const struct isl_view *view,
3633 isl_surf_usage_flags_t view_usage,
3634 enum isl_aux_usage aux_usage,
3635 const union isl_color_value *clear_color,
3636 enum anv_image_view_state_flags flags,
3637 struct anv_surface_state *state_inout,
3638 struct brw_image_param *image_param_out);
3639
3640 struct anv_image_create_info {
3641 const VkImageCreateInfo *vk_info;
3642
3643 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3644 isl_tiling_flags_t isl_tiling_flags;
3645
3646 /** These flags will be added to any derived from VkImageCreateInfo. */
3647 isl_surf_usage_flags_t isl_extra_usage_flags;
3648
3649 uint32_t stride;
3650 bool external_format;
3651 };
3652
3653 VkResult anv_image_create(VkDevice _device,
3654 const struct anv_image_create_info *info,
3655 const VkAllocationCallbacks* alloc,
3656 VkImage *pImage);
3657
3658 const struct anv_surface *
3659 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3660 VkImageAspectFlags aspect_mask);
3661
3662 enum isl_format
3663 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3664
3665 static inline struct VkExtent3D
3666 anv_sanitize_image_extent(const VkImageType imageType,
3667 const struct VkExtent3D imageExtent)
3668 {
3669 switch (imageType) {
3670 case VK_IMAGE_TYPE_1D:
3671 return (VkExtent3D) { imageExtent.width, 1, 1 };
3672 case VK_IMAGE_TYPE_2D:
3673 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3674 case VK_IMAGE_TYPE_3D:
3675 return imageExtent;
3676 default:
3677 unreachable("invalid image type");
3678 }
3679 }
3680
3681 static inline struct VkOffset3D
3682 anv_sanitize_image_offset(const VkImageType imageType,
3683 const struct VkOffset3D imageOffset)
3684 {
3685 switch (imageType) {
3686 case VK_IMAGE_TYPE_1D:
3687 return (VkOffset3D) { imageOffset.x, 0, 0 };
3688 case VK_IMAGE_TYPE_2D:
3689 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3690 case VK_IMAGE_TYPE_3D:
3691 return imageOffset;
3692 default:
3693 unreachable("invalid image type");
3694 }
3695 }
3696
3697 VkFormatFeatureFlags
3698 anv_get_image_format_features(const struct gen_device_info *devinfo,
3699 VkFormat vk_format,
3700 const struct anv_format *anv_format,
3701 VkImageTiling vk_tiling);
3702
3703 void anv_fill_buffer_surface_state(struct anv_device *device,
3704 struct anv_state state,
3705 enum isl_format format,
3706 struct anv_address address,
3707 uint32_t range, uint32_t stride);
3708
3709 static inline void
3710 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3711 const struct anv_attachment_state *att_state,
3712 const struct anv_image_view *iview)
3713 {
3714 const struct isl_format_layout *view_fmtl =
3715 isl_format_get_layout(iview->planes[0].isl.format);
3716
3717 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3718 if (view_fmtl->channels.c.bits) \
3719 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3720
3721 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3722 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3723 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3724 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3725
3726 #undef COPY_CLEAR_COLOR_CHANNEL
3727 }
3728
3729
3730 struct anv_ycbcr_conversion {
3731 const struct anv_format * format;
3732 VkSamplerYcbcrModelConversion ycbcr_model;
3733 VkSamplerYcbcrRange ycbcr_range;
3734 VkComponentSwizzle mapping[4];
3735 VkChromaLocation chroma_offsets[2];
3736 VkFilter chroma_filter;
3737 bool chroma_reconstruction;
3738 };
3739
3740 struct anv_sampler {
3741 uint32_t state[3][4];
3742 uint32_t n_planes;
3743 struct anv_ycbcr_conversion *conversion;
3744
3745 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3746 * and with a 32-byte stride for use as bindless samplers.
3747 */
3748 struct anv_state bindless_state;
3749 };
3750
3751 struct anv_framebuffer {
3752 uint32_t width;
3753 uint32_t height;
3754 uint32_t layers;
3755
3756 uint32_t attachment_count;
3757 struct anv_image_view * attachments[0];
3758 };
3759
3760 struct anv_subpass_attachment {
3761 VkImageUsageFlagBits usage;
3762 uint32_t attachment;
3763 VkImageLayout layout;
3764 };
3765
3766 struct anv_subpass {
3767 uint32_t attachment_count;
3768
3769 /**
3770 * A pointer to all attachment references used in this subpass.
3771 * Only valid if ::attachment_count > 0.
3772 */
3773 struct anv_subpass_attachment * attachments;
3774 uint32_t input_count;
3775 struct anv_subpass_attachment * input_attachments;
3776 uint32_t color_count;
3777 struct anv_subpass_attachment * color_attachments;
3778 struct anv_subpass_attachment * resolve_attachments;
3779
3780 struct anv_subpass_attachment * depth_stencil_attachment;
3781 struct anv_subpass_attachment * ds_resolve_attachment;
3782 VkResolveModeFlagBitsKHR depth_resolve_mode;
3783 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3784
3785 uint32_t view_mask;
3786
3787 /** Subpass has a depth/stencil self-dependency */
3788 bool has_ds_self_dep;
3789
3790 /** Subpass has at least one color resolve attachment */
3791 bool has_color_resolve;
3792 };
3793
3794 static inline unsigned
3795 anv_subpass_view_count(const struct anv_subpass *subpass)
3796 {
3797 return MAX2(1, util_bitcount(subpass->view_mask));
3798 }
3799
3800 struct anv_render_pass_attachment {
3801 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3802 * its members individually.
3803 */
3804 VkFormat format;
3805 uint32_t samples;
3806 VkImageUsageFlags usage;
3807 VkAttachmentLoadOp load_op;
3808 VkAttachmentStoreOp store_op;
3809 VkAttachmentLoadOp stencil_load_op;
3810 VkImageLayout initial_layout;
3811 VkImageLayout final_layout;
3812 VkImageLayout first_subpass_layout;
3813
3814 /* The subpass id in which the attachment will be used last. */
3815 uint32_t last_subpass_idx;
3816 };
3817
3818 struct anv_render_pass {
3819 uint32_t attachment_count;
3820 uint32_t subpass_count;
3821 /* An array of subpass_count+1 flushes, one per subpass boundary */
3822 enum anv_pipe_bits * subpass_flushes;
3823 struct anv_render_pass_attachment * attachments;
3824 struct anv_subpass subpasses[0];
3825 };
3826
3827 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3828
3829 struct anv_query_pool {
3830 VkQueryType type;
3831 VkQueryPipelineStatisticFlags pipeline_statistics;
3832 /** Stride between slots, in bytes */
3833 uint32_t stride;
3834 /** Number of slots in this query pool */
3835 uint32_t slots;
3836 struct anv_bo * bo;
3837 };
3838
3839 int anv_get_instance_entrypoint_index(const char *name);
3840 int anv_get_device_entrypoint_index(const char *name);
3841 int anv_get_physical_device_entrypoint_index(const char *name);
3842
3843 const char *anv_get_instance_entry_name(int index);
3844 const char *anv_get_physical_device_entry_name(int index);
3845 const char *anv_get_device_entry_name(int index);
3846
3847 bool
3848 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3849 const struct anv_instance_extension_table *instance);
3850 bool
3851 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
3852 const struct anv_instance_extension_table *instance);
3853 bool
3854 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3855 const struct anv_instance_extension_table *instance,
3856 const struct anv_device_extension_table *device);
3857
3858 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3859 const char *name);
3860
3861 void anv_dump_image_to_ppm(struct anv_device *device,
3862 struct anv_image *image, unsigned miplevel,
3863 unsigned array_layer, VkImageAspectFlagBits aspect,
3864 const char *filename);
3865
3866 enum anv_dump_action {
3867 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3868 };
3869
3870 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3871 void anv_dump_finish(void);
3872
3873 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
3874
3875 static inline uint32_t
3876 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3877 {
3878 /* This function must be called from within a subpass. */
3879 assert(cmd_state->pass && cmd_state->subpass);
3880
3881 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3882
3883 /* The id of this subpass shouldn't exceed the number of subpasses in this
3884 * render pass minus 1.
3885 */
3886 assert(subpass_id < cmd_state->pass->subpass_count);
3887 return subpass_id;
3888 }
3889
3890 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
3891 void anv_device_perf_init(struct anv_device *device);
3892
3893 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3894 \
3895 static inline struct __anv_type * \
3896 __anv_type ## _from_handle(__VkType _handle) \
3897 { \
3898 return (struct __anv_type *) _handle; \
3899 } \
3900 \
3901 static inline __VkType \
3902 __anv_type ## _to_handle(struct __anv_type *_obj) \
3903 { \
3904 return (__VkType) _obj; \
3905 }
3906
3907 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3908 \
3909 static inline struct __anv_type * \
3910 __anv_type ## _from_handle(__VkType _handle) \
3911 { \
3912 return (struct __anv_type *)(uintptr_t) _handle; \
3913 } \
3914 \
3915 static inline __VkType \
3916 __anv_type ## _to_handle(struct __anv_type *_obj) \
3917 { \
3918 return (__VkType)(uintptr_t) _obj; \
3919 }
3920
3921 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3922 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3923
3924 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3925 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3926 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3927 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3928 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3929
3930 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3931 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3932 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3933 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3934 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3935 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3936 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3937 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3938 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3939 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3940 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3941 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3942 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3943 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3944 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3945 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3946 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3947 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3948 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3949 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3950 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3951 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3952 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3953
3954 /* Gen-specific function declarations */
3955 #ifdef genX
3956 # include "anv_genX.h"
3957 #else
3958 # define genX(x) gen7_##x
3959 # include "anv_genX.h"
3960 # undef genX
3961 # define genX(x) gen75_##x
3962 # include "anv_genX.h"
3963 # undef genX
3964 # define genX(x) gen8_##x
3965 # include "anv_genX.h"
3966 # undef genX
3967 # define genX(x) gen9_##x
3968 # include "anv_genX.h"
3969 # undef genX
3970 # define genX(x) gen10_##x
3971 # include "anv_genX.h"
3972 # undef genX
3973 # define genX(x) gen11_##x
3974 # include "anv_genX.h"
3975 # undef genX
3976 # define genX(x) gen12_##x
3977 # include "anv_genX.h"
3978 # undef genX
3979 #endif
3980
3981 #endif /* ANV_PRIVATE_H */