anv: Add allocator support for client-visible addresses
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/bitset.h"
53 #include "util/macros.h"
54 #include "util/hash_table.h"
55 #include "util/list.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_batch;
73 struct anv_buffer;
74 struct anv_buffer_view;
75 struct anv_image_view;
76 struct anv_instance;
77
78 struct gen_aux_map_context;
79 struct gen_l3_config;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
132 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
133
134 #define LOW_HEAP_SIZE \
135 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
136 #define DYNAMIC_STATE_POOL_SIZE \
137 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
138 #define BINDING_TABLE_POOL_SIZE \
139 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
140 #define SURFACE_STATE_POOL_SIZE \
141 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
142 #define INSTRUCTION_STATE_POOL_SIZE \
143 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
144 #define CLIENT_VISIBLE_HEAP_SIZE \
145 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
146
147 /* Allowing different clear colors requires us to perform a depth resolve at
148 * the end of certain render passes. This is because while slow clears store
149 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
150 * See the PRMs for examples describing when additional resolves would be
151 * necessary. To enable fast clears without requiring extra resolves, we set
152 * the clear value to a globally-defined one. We could allow different values
153 * if the user doesn't expect coherent data during or after a render passes
154 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
155 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
156 * 1.0f seems to be the only value used. The only application that doesn't set
157 * this value does so through the usage of an seemingly uninitialized clear
158 * value.
159 */
160 #define ANV_HZ_FC_VAL 1.0f
161
162 #define MAX_VBS 28
163 #define MAX_XFB_BUFFERS 4
164 #define MAX_XFB_STREAMS 4
165 #define MAX_SETS 8
166 #define MAX_RTS 8
167 #define MAX_VIEWPORTS 16
168 #define MAX_SCISSORS 16
169 #define MAX_PUSH_CONSTANTS_SIZE 128
170 #define MAX_DYNAMIC_BUFFERS 16
171 #define MAX_IMAGES 64
172 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
173 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
174 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
175
176 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
177 *
178 * "The surface state model is used when a Binding Table Index (specified
179 * in the message descriptor) of less than 240 is specified. In this model,
180 * the Binding Table Index is used to index into the binding table, and the
181 * binding table entry contains a pointer to the SURFACE_STATE."
182 *
183 * Binding table values above 240 are used for various things in the hardware
184 * such as stateless, stateless with incoherent cache, SLM, and bindless.
185 */
186 #define MAX_BINDING_TABLE_SIZE 240
187
188 /* The kernel relocation API has a limitation of a 32-bit delta value
189 * applied to the address before it is written which, in spite of it being
190 * unsigned, is treated as signed . Because of the way that this maps to
191 * the Vulkan API, we cannot handle an offset into a buffer that does not
192 * fit into a signed 32 bits. The only mechanism we have for dealing with
193 * this at the moment is to limit all VkDeviceMemory objects to a maximum
194 * of 2GB each. The Vulkan spec allows us to do this:
195 *
196 * "Some platforms may have a limit on the maximum size of a single
197 * allocation. For example, certain systems may fail to create
198 * allocations with a size greater than or equal to 4GB. Such a limit is
199 * implementation-dependent, and if such a failure occurs then the error
200 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
201 *
202 * We don't use vk_error here because it's not an error so much as an
203 * indication to the application that the allocation is too large.
204 */
205 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
206
207 #define ANV_SVGS_VB_INDEX MAX_VBS
208 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
209
210 /* We reserve this MI ALU register for the purpose of handling predication.
211 * Other code which uses the MI ALU should leave it alone.
212 */
213 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
214
215 /* For gen12 we set the streamout buffers using 4 separate commands
216 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
217 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
218 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
219 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
220 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
221 * 3DSTATE_SO_BUFFER_INDEX_0.
222 */
223 #define SO_BUFFER_INDEX_0_CMD 0x60
224 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
225
226 static inline uint32_t
227 align_down_npot_u32(uint32_t v, uint32_t a)
228 {
229 return v - (v % a);
230 }
231
232 static inline uint32_t
233 align_u32(uint32_t v, uint32_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline uint64_t
240 align_u64(uint64_t v, uint64_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return (v + a - 1) & ~(a - 1);
244 }
245
246 static inline int32_t
247 align_i32(int32_t v, int32_t a)
248 {
249 assert(a != 0 && a == (a & -a));
250 return (v + a - 1) & ~(a - 1);
251 }
252
253 /** Alignment must be a power of 2. */
254 static inline bool
255 anv_is_aligned(uintmax_t n, uintmax_t a)
256 {
257 assert(a == (a & -a));
258 return (n & (a - 1)) == 0;
259 }
260
261 static inline uint32_t
262 anv_minify(uint32_t n, uint32_t levels)
263 {
264 if (unlikely(n == 0))
265 return 0;
266 else
267 return MAX2(n >> levels, 1);
268 }
269
270 static inline float
271 anv_clamp_f(float f, float min, float max)
272 {
273 assert(min < max);
274
275 if (f > max)
276 return max;
277 else if (f < min)
278 return min;
279 else
280 return f;
281 }
282
283 static inline bool
284 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
285 {
286 if (*inout_mask & clear_mask) {
287 *inout_mask &= ~clear_mask;
288 return true;
289 } else {
290 return false;
291 }
292 }
293
294 static inline union isl_color_value
295 vk_to_isl_color(VkClearColorValue color)
296 {
297 return (union isl_color_value) {
298 .u32 = {
299 color.uint32[0],
300 color.uint32[1],
301 color.uint32[2],
302 color.uint32[3],
303 },
304 };
305 }
306
307 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
308 {
309 uintptr_t mask = (1ull << bits) - 1;
310 *flags = ptr & mask;
311 return (void *) (ptr & ~mask);
312 }
313
314 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
315 {
316 uintptr_t value = (uintptr_t) ptr;
317 uintptr_t mask = (1ull << bits) - 1;
318 return value | (mask & flags);
319 }
320
321 #define for_each_bit(b, dword) \
322 for (uint32_t __dword = (dword); \
323 (b) = __builtin_ffs(__dword) - 1, __dword; \
324 __dword &= ~(1 << (b)))
325
326 #define typed_memcpy(dest, src, count) ({ \
327 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
328 memcpy((dest), (src), (count) * sizeof(*(src))); \
329 })
330
331 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
332 * to be added here in order to utilize mapping in debug/error/perf macros.
333 */
334 #define REPORT_OBJECT_TYPE(o) \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), void*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
428 /* The void expression results in a compile-time error \
429 when assigning the result to something. */ \
430 (void)0)))))))))))))))))))))))))))))))
431
432 /* Whenever we generate an error, pass it through this function. Useful for
433 * debugging, where we can break on it. Only call at error site, not when
434 * propagating errors. Might be useful to plug in a stack trace here.
435 */
436
437 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
438 VkDebugReportObjectTypeEXT type, VkResult error,
439 const char *file, int line, const char *format,
440 va_list args);
441
442 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
443 VkDebugReportObjectTypeEXT type, VkResult error,
444 const char *file, int line, const char *format, ...)
445 anv_printflike(7, 8);
446
447 #ifdef DEBUG
448 #define vk_error(error) __vk_errorf(NULL, NULL,\
449 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
450 error, __FILE__, __LINE__, NULL)
451 #define vk_errorv(instance, obj, error, format, args)\
452 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
453 __FILE__, __LINE__, format, args)
454 #define vk_errorf(instance, obj, error, format, ...)\
455 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
456 __FILE__, __LINE__, format, ## __VA_ARGS__)
457 #else
458 #define vk_error(error) error
459 #define vk_errorf(instance, obj, error, format, ...) error
460 #endif
461
462 /**
463 * Warn on ignored extension structs.
464 *
465 * The Vulkan spec requires us to ignore unsupported or unknown structs in
466 * a pNext chain. In debug mode, emitting warnings for ignored structs may
467 * help us discover structs that we should not have ignored.
468 *
469 *
470 * From the Vulkan 1.0.38 spec:
471 *
472 * Any component of the implementation (the loader, any enabled layers,
473 * and drivers) must skip over, without processing (other than reading the
474 * sType and pNext members) any chained structures with sType values not
475 * defined by extensions supported by that component.
476 */
477 #define anv_debug_ignored_stype(sType) \
478 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
479
480 void __anv_perf_warn(struct anv_instance *instance, const void *object,
481 VkDebugReportObjectTypeEXT type, const char *file,
482 int line, const char *format, ...)
483 anv_printflike(6, 7);
484 void anv_loge(const char *format, ...) anv_printflike(1, 2);
485 void anv_loge_v(const char *format, va_list va);
486
487 /**
488 * Print a FINISHME message, including its source location.
489 */
490 #define anv_finishme(format, ...) \
491 do { \
492 static bool reported = false; \
493 if (!reported) { \
494 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
495 ##__VA_ARGS__); \
496 reported = true; \
497 } \
498 } while (0)
499
500 /**
501 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
502 */
503 #define anv_perf_warn(instance, obj, format, ...) \
504 do { \
505 static bool reported = false; \
506 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
507 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
508 format, ##__VA_ARGS__); \
509 reported = true; \
510 } \
511 } while (0)
512
513 /* A non-fatal assert. Useful for debugging. */
514 #ifdef DEBUG
515 #define anv_assert(x) ({ \
516 if (unlikely(!(x))) \
517 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
518 })
519 #else
520 #define anv_assert(x)
521 #endif
522
523 /* A multi-pointer allocator
524 *
525 * When copying data structures from the user (such as a render pass), it's
526 * common to need to allocate data for a bunch of different things. Instead
527 * of doing several allocations and having to handle all of the error checking
528 * that entails, it can be easier to do a single allocation. This struct
529 * helps facilitate that. The intended usage looks like this:
530 *
531 * ANV_MULTIALLOC(ma)
532 * anv_multialloc_add(&ma, &main_ptr, 1);
533 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
534 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
535 *
536 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
537 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
538 */
539 struct anv_multialloc {
540 size_t size;
541 size_t align;
542
543 uint32_t ptr_count;
544 void **ptrs[8];
545 };
546
547 #define ANV_MULTIALLOC_INIT \
548 ((struct anv_multialloc) { 0, })
549
550 #define ANV_MULTIALLOC(_name) \
551 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
552
553 __attribute__((always_inline))
554 static inline void
555 _anv_multialloc_add(struct anv_multialloc *ma,
556 void **ptr, size_t size, size_t align)
557 {
558 size_t offset = align_u64(ma->size, align);
559 ma->size = offset + size;
560 ma->align = MAX2(ma->align, align);
561
562 /* Store the offset in the pointer. */
563 *ptr = (void *)(uintptr_t)offset;
564
565 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
566 ma->ptrs[ma->ptr_count++] = ptr;
567 }
568
569 #define anv_multialloc_add_size(_ma, _ptr, _size) \
570 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
571
572 #define anv_multialloc_add(_ma, _ptr, _count) \
573 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
574
575 __attribute__((always_inline))
576 static inline void *
577 anv_multialloc_alloc(struct anv_multialloc *ma,
578 const VkAllocationCallbacks *alloc,
579 VkSystemAllocationScope scope)
580 {
581 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
582 if (!ptr)
583 return NULL;
584
585 /* Fill out each of the pointers with their final value.
586 *
587 * for (uint32_t i = 0; i < ma->ptr_count; i++)
588 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
589 *
590 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
591 * constant, GCC is incapable of figuring this out and unrolling the loop
592 * so we have to give it a little help.
593 */
594 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
595 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
596 if ((_i) < ma->ptr_count) \
597 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
598 _ANV_MULTIALLOC_UPDATE_POINTER(0);
599 _ANV_MULTIALLOC_UPDATE_POINTER(1);
600 _ANV_MULTIALLOC_UPDATE_POINTER(2);
601 _ANV_MULTIALLOC_UPDATE_POINTER(3);
602 _ANV_MULTIALLOC_UPDATE_POINTER(4);
603 _ANV_MULTIALLOC_UPDATE_POINTER(5);
604 _ANV_MULTIALLOC_UPDATE_POINTER(6);
605 _ANV_MULTIALLOC_UPDATE_POINTER(7);
606 #undef _ANV_MULTIALLOC_UPDATE_POINTER
607
608 return ptr;
609 }
610
611 __attribute__((always_inline))
612 static inline void *
613 anv_multialloc_alloc2(struct anv_multialloc *ma,
614 const VkAllocationCallbacks *parent_alloc,
615 const VkAllocationCallbacks *alloc,
616 VkSystemAllocationScope scope)
617 {
618 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
619 }
620
621 struct anv_bo {
622 uint32_t gem_handle;
623
624 uint32_t refcount;
625
626 /* Index into the current validation list. This is used by the
627 * validation list building alrogithm to track which buffers are already
628 * in the validation list so that we can ensure uniqueness.
629 */
630 uint32_t index;
631
632 /* Index for use with util_sparse_array_free_list */
633 uint32_t free_index;
634
635 /* Last known offset. This value is provided by the kernel when we
636 * execbuf and is used as the presumed offset for the next bunch of
637 * relocations.
638 */
639 uint64_t offset;
640
641 uint64_t size;
642
643 /* Map for internally mapped BOs.
644 *
645 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
646 */
647 void *map;
648
649 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
650 uint32_t flags;
651
652 /** True if this BO may be shared with other processes */
653 bool is_external:1;
654
655 /** True if this BO is a wrapper
656 *
657 * When set to true, none of the fields in this BO are meaningful except
658 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
659 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
660 * is set in the physical device.
661 */
662 bool is_wrapper:1;
663
664 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
665 bool has_fixed_address:1;
666
667 /** True if this BO wraps a host pointer */
668 bool from_host_ptr:1;
669
670 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
671 bool has_client_visible_address:1;
672 };
673
674 static inline struct anv_bo *
675 anv_bo_unwrap(struct anv_bo *bo)
676 {
677 while (bo->is_wrapper)
678 bo = bo->map;
679 return bo;
680 }
681
682 /* Represents a lock-free linked list of "free" things. This is used by
683 * both the block pool and the state pools. Unfortunately, in order to
684 * solve the ABA problem, we can't use a single uint32_t head.
685 */
686 union anv_free_list {
687 struct {
688 uint32_t offset;
689
690 /* A simple count that is incremented every time the head changes. */
691 uint32_t count;
692 };
693 /* Make sure it's aligned to 64 bits. This will make atomic operations
694 * faster on 32 bit platforms.
695 */
696 uint64_t u64 __attribute__ ((aligned (8)));
697 };
698
699 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
700
701 struct anv_block_state {
702 union {
703 struct {
704 uint32_t next;
705 uint32_t end;
706 };
707 /* Make sure it's aligned to 64 bits. This will make atomic operations
708 * faster on 32 bit platforms.
709 */
710 uint64_t u64 __attribute__ ((aligned (8)));
711 };
712 };
713
714 #define anv_block_pool_foreach_bo(bo, pool) \
715 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
716 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
717 _pp_bo++)
718
719 #define ANV_MAX_BLOCK_POOL_BOS 20
720
721 struct anv_block_pool {
722 struct anv_device *device;
723 bool use_softpin;
724
725 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
726 * around the actual BO so that we grow the pool after the wrapper BO has
727 * been put in a relocation list. This is only used in the non-softpin
728 * case.
729 */
730 struct anv_bo wrapper_bo;
731
732 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
733 struct anv_bo *bo;
734 uint32_t nbos;
735
736 uint64_t size;
737
738 /* The address where the start of the pool is pinned. The various bos that
739 * are created as the pool grows will have addresses in the range
740 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
741 */
742 uint64_t start_address;
743
744 /* The offset from the start of the bo to the "center" of the block
745 * pool. Pointers to allocated blocks are given by
746 * bo.map + center_bo_offset + offsets.
747 */
748 uint32_t center_bo_offset;
749
750 /* Current memory map of the block pool. This pointer may or may not
751 * point to the actual beginning of the block pool memory. If
752 * anv_block_pool_alloc_back has ever been called, then this pointer
753 * will point to the "center" position of the buffer and all offsets
754 * (negative or positive) given out by the block pool alloc functions
755 * will be valid relative to this pointer.
756 *
757 * In particular, map == bo.map + center_offset
758 *
759 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
760 * since it will handle the softpin case as well, where this points to NULL.
761 */
762 void *map;
763 int fd;
764
765 /**
766 * Array of mmaps and gem handles owned by the block pool, reclaimed when
767 * the block pool is destroyed.
768 */
769 struct u_vector mmap_cleanups;
770
771 struct anv_block_state state;
772
773 struct anv_block_state back_state;
774 };
775
776 /* Block pools are backed by a fixed-size 1GB memfd */
777 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
778
779 /* The center of the block pool is also the middle of the memfd. This may
780 * change in the future if we decide differently for some reason.
781 */
782 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
783
784 static inline uint32_t
785 anv_block_pool_size(struct anv_block_pool *pool)
786 {
787 return pool->state.end + pool->back_state.end;
788 }
789
790 struct anv_state {
791 int32_t offset;
792 uint32_t alloc_size;
793 void *map;
794 uint32_t idx;
795 };
796
797 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
798
799 struct anv_fixed_size_state_pool {
800 union anv_free_list free_list;
801 struct anv_block_state block;
802 };
803
804 #define ANV_MIN_STATE_SIZE_LOG2 6
805 #define ANV_MAX_STATE_SIZE_LOG2 21
806
807 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
808
809 struct anv_free_entry {
810 uint32_t next;
811 struct anv_state state;
812 };
813
814 struct anv_state_table {
815 struct anv_device *device;
816 int fd;
817 struct anv_free_entry *map;
818 uint32_t size;
819 struct anv_block_state state;
820 struct u_vector cleanups;
821 };
822
823 struct anv_state_pool {
824 struct anv_block_pool block_pool;
825
826 struct anv_state_table table;
827
828 /* The size of blocks which will be allocated from the block pool */
829 uint32_t block_size;
830
831 /** Free list for "back" allocations */
832 union anv_free_list back_alloc_free_list;
833
834 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
835 };
836
837 struct anv_state_stream_block;
838
839 struct anv_state_stream {
840 struct anv_state_pool *state_pool;
841
842 /* The size of blocks to allocate from the state pool */
843 uint32_t block_size;
844
845 /* Current block we're allocating from */
846 struct anv_state block;
847
848 /* Offset into the current block at which to allocate the next state */
849 uint32_t next;
850
851 /* List of all blocks allocated from this pool */
852 struct anv_state_stream_block *block_list;
853 };
854
855 /* The block_pool functions exported for testing only. The block pool should
856 * only be used via a state pool (see below).
857 */
858 VkResult anv_block_pool_init(struct anv_block_pool *pool,
859 struct anv_device *device,
860 uint64_t start_address,
861 uint32_t initial_size);
862 void anv_block_pool_finish(struct anv_block_pool *pool);
863 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
864 uint32_t block_size, uint32_t *padding);
865 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
866 uint32_t block_size);
867 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
868
869 VkResult anv_state_pool_init(struct anv_state_pool *pool,
870 struct anv_device *device,
871 uint64_t start_address,
872 uint32_t block_size);
873 void anv_state_pool_finish(struct anv_state_pool *pool);
874 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
875 uint32_t state_size, uint32_t alignment);
876 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
877 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
878 void anv_state_stream_init(struct anv_state_stream *stream,
879 struct anv_state_pool *state_pool,
880 uint32_t block_size);
881 void anv_state_stream_finish(struct anv_state_stream *stream);
882 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
883 uint32_t size, uint32_t alignment);
884
885 VkResult anv_state_table_init(struct anv_state_table *table,
886 struct anv_device *device,
887 uint32_t initial_entries);
888 void anv_state_table_finish(struct anv_state_table *table);
889 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
890 uint32_t count);
891 void anv_free_list_push(union anv_free_list *list,
892 struct anv_state_table *table,
893 uint32_t idx, uint32_t count);
894 struct anv_state* anv_free_list_pop(union anv_free_list *list,
895 struct anv_state_table *table);
896
897
898 static inline struct anv_state *
899 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
900 {
901 return &table->map[idx].state;
902 }
903 /**
904 * Implements a pool of re-usable BOs. The interface is identical to that
905 * of block_pool except that each block is its own BO.
906 */
907 struct anv_bo_pool {
908 struct anv_device *device;
909
910 struct util_sparse_array_free_list free_list[16];
911 };
912
913 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
914 void anv_bo_pool_finish(struct anv_bo_pool *pool);
915 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
916 struct anv_bo **bo_out);
917 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
918
919 struct anv_scratch_pool {
920 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
921 struct anv_bo *bos[16][MESA_SHADER_STAGES];
922 };
923
924 void anv_scratch_pool_init(struct anv_device *device,
925 struct anv_scratch_pool *pool);
926 void anv_scratch_pool_finish(struct anv_device *device,
927 struct anv_scratch_pool *pool);
928 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
929 struct anv_scratch_pool *pool,
930 gl_shader_stage stage,
931 unsigned per_thread_scratch);
932
933 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
934 struct anv_bo_cache {
935 struct util_sparse_array bo_map;
936 pthread_mutex_t mutex;
937 };
938
939 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
940 void anv_bo_cache_finish(struct anv_bo_cache *cache);
941
942 struct anv_memory_type {
943 /* Standard bits passed on to the client */
944 VkMemoryPropertyFlags propertyFlags;
945 uint32_t heapIndex;
946 };
947
948 struct anv_memory_heap {
949 /* Standard bits passed on to the client */
950 VkDeviceSize size;
951 VkMemoryHeapFlags flags;
952
953 /* Driver-internal book-keeping */
954 VkDeviceSize used;
955 };
956
957 struct anv_physical_device {
958 VK_LOADER_DATA _loader_data;
959
960 struct anv_instance * instance;
961 uint32_t chipset_id;
962 bool no_hw;
963 char path[20];
964 const char * name;
965 struct {
966 uint16_t domain;
967 uint8_t bus;
968 uint8_t device;
969 uint8_t function;
970 } pci_info;
971 struct gen_device_info info;
972 /** Amount of "GPU memory" we want to advertise
973 *
974 * Clearly, this value is bogus since Intel is a UMA architecture. On
975 * gen7 platforms, we are limited by GTT size unless we want to implement
976 * fine-grained tracking and GTT splitting. On Broadwell and above we are
977 * practically unlimited. However, we will never report more than 3/4 of
978 * the total system ram to try and avoid running out of RAM.
979 */
980 bool supports_48bit_addresses;
981 struct brw_compiler * compiler;
982 struct isl_device isl_dev;
983 struct gen_perf_config * perf;
984 int cmd_parser_version;
985 bool has_softpin;
986 bool has_exec_async;
987 bool has_exec_capture;
988 bool has_exec_fence;
989 bool has_syncobj;
990 bool has_syncobj_wait;
991 bool has_context_priority;
992 bool has_context_isolation;
993 bool has_mem_available;
994 uint64_t gtt_size;
995
996 bool use_softpin;
997 bool always_use_bindless;
998
999 /** True if we can access buffers using A64 messages */
1000 bool has_a64_buffer_access;
1001 /** True if we can use bindless access for images */
1002 bool has_bindless_images;
1003 /** True if we can use bindless access for samplers */
1004 bool has_bindless_samplers;
1005
1006 bool always_flush_cache;
1007
1008 struct anv_device_extension_table supported_extensions;
1009 struct anv_physical_device_dispatch_table dispatch;
1010
1011 uint32_t eu_total;
1012 uint32_t subslice_total;
1013
1014 struct {
1015 uint32_t type_count;
1016 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1017 uint32_t heap_count;
1018 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1019 } memory;
1020
1021 uint8_t driver_build_sha1[20];
1022 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1023 uint8_t driver_uuid[VK_UUID_SIZE];
1024 uint8_t device_uuid[VK_UUID_SIZE];
1025
1026 struct disk_cache * disk_cache;
1027
1028 struct wsi_device wsi_device;
1029 int local_fd;
1030 int master_fd;
1031 };
1032
1033 struct anv_app_info {
1034 const char* app_name;
1035 uint32_t app_version;
1036 const char* engine_name;
1037 uint32_t engine_version;
1038 uint32_t api_version;
1039 };
1040
1041 struct anv_instance {
1042 VK_LOADER_DATA _loader_data;
1043
1044 VkAllocationCallbacks alloc;
1045
1046 struct anv_app_info app_info;
1047
1048 struct anv_instance_extension_table enabled_extensions;
1049 struct anv_instance_dispatch_table dispatch;
1050 struct anv_device_dispatch_table device_dispatch;
1051
1052 int physicalDeviceCount;
1053 struct anv_physical_device physicalDevice;
1054
1055 bool pipeline_cache_enabled;
1056
1057 struct vk_debug_report_instance debug_report_callbacks;
1058
1059 struct driOptionCache dri_options;
1060 struct driOptionCache available_dri_options;
1061 };
1062
1063 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1064 void anv_finish_wsi(struct anv_physical_device *physical_device);
1065
1066 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1067 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1068 const char *name);
1069
1070 struct anv_queue_submit {
1071 struct anv_cmd_buffer * cmd_buffer;
1072
1073 uint32_t fence_count;
1074 uint32_t fence_array_length;
1075 struct drm_i915_gem_exec_fence * fences;
1076
1077 uint32_t temporary_semaphore_count;
1078 uint32_t temporary_semaphore_array_length;
1079 struct anv_semaphore_impl * temporary_semaphores;
1080
1081 /* Semaphores to be signaled with a SYNC_FD. */
1082 struct anv_semaphore ** sync_fd_semaphores;
1083 uint32_t sync_fd_semaphore_count;
1084 uint32_t sync_fd_semaphore_array_length;
1085
1086 /* Allocated only with non shareable timelines. */
1087 struct anv_timeline ** wait_timelines;
1088 uint32_t wait_timeline_count;
1089 uint32_t wait_timeline_array_length;
1090 uint64_t * wait_timeline_values;
1091
1092 struct anv_timeline ** signal_timelines;
1093 uint32_t signal_timeline_count;
1094 uint32_t signal_timeline_array_length;
1095 uint64_t * signal_timeline_values;
1096
1097 int in_fence;
1098 bool need_out_fence;
1099 int out_fence;
1100
1101 uint32_t fence_bo_count;
1102 uint32_t fence_bo_array_length;
1103 /* An array of struct anv_bo pointers with lower bit used as a flag to
1104 * signal we will wait on that BO (see anv_(un)pack_ptr).
1105 */
1106 uintptr_t * fence_bos;
1107
1108 const VkAllocationCallbacks * alloc;
1109 VkSystemAllocationScope alloc_scope;
1110
1111 struct anv_bo * simple_bo;
1112 uint32_t simple_bo_size;
1113
1114 struct list_head link;
1115 };
1116
1117 struct anv_queue {
1118 VK_LOADER_DATA _loader_data;
1119
1120 struct anv_device * device;
1121
1122 /*
1123 * A list of struct anv_queue_submit to be submitted to i915.
1124 */
1125 struct list_head queued_submits;
1126
1127 VkDeviceQueueCreateFlags flags;
1128 };
1129
1130 struct anv_pipeline_cache {
1131 struct anv_device * device;
1132 pthread_mutex_t mutex;
1133
1134 struct hash_table * nir_cache;
1135
1136 struct hash_table * cache;
1137 };
1138
1139 struct nir_xfb_info;
1140 struct anv_pipeline_bind_map;
1141
1142 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1143 struct anv_device *device,
1144 bool cache_enabled);
1145 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1146
1147 struct anv_shader_bin *
1148 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1149 const void *key, uint32_t key_size);
1150 struct anv_shader_bin *
1151 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1152 const void *key_data, uint32_t key_size,
1153 const void *kernel_data, uint32_t kernel_size,
1154 const void *constant_data,
1155 uint32_t constant_data_size,
1156 const struct brw_stage_prog_data *prog_data,
1157 uint32_t prog_data_size,
1158 const struct brw_compile_stats *stats,
1159 uint32_t num_stats,
1160 const struct nir_xfb_info *xfb_info,
1161 const struct anv_pipeline_bind_map *bind_map);
1162
1163 struct anv_shader_bin *
1164 anv_device_search_for_kernel(struct anv_device *device,
1165 struct anv_pipeline_cache *cache,
1166 const void *key_data, uint32_t key_size,
1167 bool *user_cache_bit);
1168
1169 struct anv_shader_bin *
1170 anv_device_upload_kernel(struct anv_device *device,
1171 struct anv_pipeline_cache *cache,
1172 const void *key_data, uint32_t key_size,
1173 const void *kernel_data, uint32_t kernel_size,
1174 const void *constant_data,
1175 uint32_t constant_data_size,
1176 const struct brw_stage_prog_data *prog_data,
1177 uint32_t prog_data_size,
1178 const struct brw_compile_stats *stats,
1179 uint32_t num_stats,
1180 const struct nir_xfb_info *xfb_info,
1181 const struct anv_pipeline_bind_map *bind_map);
1182
1183 struct nir_shader;
1184 struct nir_shader_compiler_options;
1185
1186 struct nir_shader *
1187 anv_device_search_for_nir(struct anv_device *device,
1188 struct anv_pipeline_cache *cache,
1189 const struct nir_shader_compiler_options *nir_options,
1190 unsigned char sha1_key[20],
1191 void *mem_ctx);
1192
1193 void
1194 anv_device_upload_nir(struct anv_device *device,
1195 struct anv_pipeline_cache *cache,
1196 const struct nir_shader *nir,
1197 unsigned char sha1_key[20]);
1198
1199 struct anv_device {
1200 VK_LOADER_DATA _loader_data;
1201
1202 VkAllocationCallbacks alloc;
1203
1204 struct anv_instance * instance;
1205 uint32_t chipset_id;
1206 bool no_hw;
1207 struct gen_device_info info;
1208 struct isl_device isl_dev;
1209 int context_id;
1210 int fd;
1211 bool can_chain_batches;
1212 bool robust_buffer_access;
1213 struct anv_device_extension_table enabled_extensions;
1214 struct anv_device_dispatch_table dispatch;
1215
1216 pthread_mutex_t vma_mutex;
1217 struct util_vma_heap vma_lo;
1218 struct util_vma_heap vma_cva;
1219 struct util_vma_heap vma_hi;
1220
1221 /** List of all anv_device_memory objects */
1222 struct list_head memory_objects;
1223
1224 struct anv_bo_pool batch_bo_pool;
1225
1226 struct anv_bo_cache bo_cache;
1227
1228 struct anv_state_pool dynamic_state_pool;
1229 struct anv_state_pool instruction_state_pool;
1230 struct anv_state_pool binding_table_pool;
1231 struct anv_state_pool surface_state_pool;
1232
1233 struct anv_bo * workaround_bo;
1234 struct anv_bo * trivial_batch_bo;
1235 struct anv_bo * hiz_clear_bo;
1236
1237 struct anv_pipeline_cache default_pipeline_cache;
1238 struct blorp_context blorp;
1239
1240 struct anv_state border_colors;
1241
1242 struct anv_state slice_hash;
1243
1244 struct anv_queue queue;
1245
1246 struct anv_scratch_pool scratch_pool;
1247
1248 pthread_mutex_t mutex;
1249 pthread_cond_t queue_submit;
1250 int _lost;
1251
1252 struct gen_batch_decode_ctx decoder_ctx;
1253 /*
1254 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1255 * the cmd_buffer's list.
1256 */
1257 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1258
1259 int perf_fd; /* -1 if no opened */
1260 uint64_t perf_metric; /* 0 if unset */
1261
1262 struct gen_aux_map_context *aux_map_ctx;
1263 };
1264
1265 static inline struct anv_state_pool *
1266 anv_binding_table_pool(struct anv_device *device)
1267 {
1268 if (device->instance->physicalDevice.use_softpin)
1269 return &device->binding_table_pool;
1270 else
1271 return &device->surface_state_pool;
1272 }
1273
1274 static inline struct anv_state
1275 anv_binding_table_pool_alloc(struct anv_device *device) {
1276 if (device->instance->physicalDevice.use_softpin)
1277 return anv_state_pool_alloc(&device->binding_table_pool,
1278 device->binding_table_pool.block_size, 0);
1279 else
1280 return anv_state_pool_alloc_back(&device->surface_state_pool);
1281 }
1282
1283 static inline void
1284 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1285 anv_state_pool_free(anv_binding_table_pool(device), state);
1286 }
1287
1288 static inline uint32_t
1289 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1290 {
1291 if (bo->is_external)
1292 return device->isl_dev.mocs.external;
1293 else
1294 return device->isl_dev.mocs.internal;
1295 }
1296
1297 void anv_device_init_blorp(struct anv_device *device);
1298 void anv_device_finish_blorp(struct anv_device *device);
1299
1300 void _anv_device_set_all_queue_lost(struct anv_device *device);
1301 VkResult _anv_device_set_lost(struct anv_device *device,
1302 const char *file, int line,
1303 const char *msg, ...)
1304 anv_printflike(4, 5);
1305 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1306 const char *file, int line,
1307 const char *msg, ...)
1308 anv_printflike(4, 5);
1309 #define anv_device_set_lost(dev, ...) \
1310 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1311 #define anv_queue_set_lost(queue, ...) \
1312 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1313
1314 static inline bool
1315 anv_device_is_lost(struct anv_device *device)
1316 {
1317 return unlikely(p_atomic_read(&device->_lost));
1318 }
1319
1320 VkResult anv_device_query_status(struct anv_device *device);
1321
1322
1323 enum anv_bo_alloc_flags {
1324 /** Specifies that the BO must have a 32-bit address
1325 *
1326 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1327 */
1328 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1329
1330 /** Specifies that the BO may be shared externally */
1331 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1332
1333 /** Specifies that the BO should be mapped */
1334 ANV_BO_ALLOC_MAPPED = (1 << 2),
1335
1336 /** Specifies that the BO should be snooped so we get coherency */
1337 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1338
1339 /** Specifies that the BO should be captured in error states */
1340 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1341
1342 /** Specifies that the BO will have an address assigned by the caller
1343 *
1344 * Such BOs do not exist in any VMA heap.
1345 */
1346 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1347
1348 /** Enables implicit synchronization on the BO
1349 *
1350 * This is the opposite of EXEC_OBJECT_ASYNC.
1351 */
1352 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1353
1354 /** Enables implicit synchronization on the BO
1355 *
1356 * This is equivalent to EXEC_OBJECT_WRITE.
1357 */
1358 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1359
1360 /** Has an address which is visible to the client */
1361 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1362 };
1363
1364 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1365 enum anv_bo_alloc_flags alloc_flags,
1366 uint64_t explicit_address,
1367 struct anv_bo **bo);
1368 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1369 void *host_ptr, uint32_t size,
1370 enum anv_bo_alloc_flags alloc_flags,
1371 uint64_t client_address,
1372 struct anv_bo **bo_out);
1373 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1374 enum anv_bo_alloc_flags alloc_flags,
1375 uint64_t client_address,
1376 struct anv_bo **bo);
1377 VkResult anv_device_export_bo(struct anv_device *device,
1378 struct anv_bo *bo, int *fd_out);
1379 void anv_device_release_bo(struct anv_device *device,
1380 struct anv_bo *bo);
1381
1382 static inline struct anv_bo *
1383 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1384 {
1385 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1386 }
1387
1388 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1389 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1390 int64_t timeout);
1391
1392 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1393 void anv_queue_finish(struct anv_queue *queue);
1394
1395 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1396 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1397 struct anv_batch *batch);
1398
1399 uint64_t anv_gettime_ns(void);
1400 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1401
1402 void* anv_gem_mmap(struct anv_device *device,
1403 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1404 void anv_gem_munmap(void *p, uint64_t size);
1405 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1406 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1407 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1408 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1409 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1410 int anv_gem_execbuffer(struct anv_device *device,
1411 struct drm_i915_gem_execbuffer2 *execbuf);
1412 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1413 uint32_t stride, uint32_t tiling);
1414 int anv_gem_create_context(struct anv_device *device);
1415 bool anv_gem_has_context_priority(int fd);
1416 int anv_gem_destroy_context(struct anv_device *device, int context);
1417 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1418 uint64_t value);
1419 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1420 uint64_t *value);
1421 int anv_gem_get_param(int fd, uint32_t param);
1422 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1423 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1424 int anv_gem_get_aperture(int fd, uint64_t *size);
1425 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1426 uint32_t *active, uint32_t *pending);
1427 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1428 int anv_gem_reg_read(struct anv_device *device,
1429 uint32_t offset, uint64_t *result);
1430 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1431 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1432 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1433 uint32_t read_domains, uint32_t write_domain);
1434 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1435 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1436 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1437 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1438 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1439 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1440 uint32_t handle);
1441 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1442 uint32_t handle, int fd);
1443 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1444 bool anv_gem_supports_syncobj_wait(int fd);
1445 int anv_gem_syncobj_wait(struct anv_device *device,
1446 uint32_t *handles, uint32_t num_handles,
1447 int64_t abs_timeout_ns, bool wait_all);
1448
1449 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo,
1450 uint64_t client_address);
1451 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1452
1453 struct anv_reloc_list {
1454 uint32_t num_relocs;
1455 uint32_t array_length;
1456 struct drm_i915_gem_relocation_entry * relocs;
1457 struct anv_bo ** reloc_bos;
1458 uint32_t dep_words;
1459 BITSET_WORD * deps;
1460 };
1461
1462 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1463 const VkAllocationCallbacks *alloc);
1464 void anv_reloc_list_finish(struct anv_reloc_list *list,
1465 const VkAllocationCallbacks *alloc);
1466
1467 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1468 const VkAllocationCallbacks *alloc,
1469 uint32_t offset, struct anv_bo *target_bo,
1470 uint32_t delta, uint64_t *address_u64_out);
1471
1472 struct anv_batch_bo {
1473 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1474 struct list_head link;
1475
1476 struct anv_bo * bo;
1477
1478 /* Bytes actually consumed in this batch BO */
1479 uint32_t length;
1480
1481 struct anv_reloc_list relocs;
1482 };
1483
1484 struct anv_batch {
1485 const VkAllocationCallbacks * alloc;
1486
1487 void * start;
1488 void * end;
1489 void * next;
1490
1491 struct anv_reloc_list * relocs;
1492
1493 /* This callback is called (with the associated user data) in the event
1494 * that the batch runs out of space.
1495 */
1496 VkResult (*extend_cb)(struct anv_batch *, void *);
1497 void * user_data;
1498
1499 /**
1500 * Current error status of the command buffer. Used to track inconsistent
1501 * or incomplete command buffer states that are the consequence of run-time
1502 * errors such as out of memory scenarios. We want to track this in the
1503 * batch because the command buffer object is not visible to some parts
1504 * of the driver.
1505 */
1506 VkResult status;
1507 };
1508
1509 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1510 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1511 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1512 void *location, struct anv_bo *bo, uint32_t offset);
1513
1514 static inline VkResult
1515 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1516 {
1517 assert(error != VK_SUCCESS);
1518 if (batch->status == VK_SUCCESS)
1519 batch->status = error;
1520 return batch->status;
1521 }
1522
1523 static inline bool
1524 anv_batch_has_error(struct anv_batch *batch)
1525 {
1526 return batch->status != VK_SUCCESS;
1527 }
1528
1529 struct anv_address {
1530 struct anv_bo *bo;
1531 uint32_t offset;
1532 };
1533
1534 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1535
1536 static inline bool
1537 anv_address_is_null(struct anv_address addr)
1538 {
1539 return addr.bo == NULL && addr.offset == 0;
1540 }
1541
1542 static inline uint64_t
1543 anv_address_physical(struct anv_address addr)
1544 {
1545 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1546 return gen_canonical_address(addr.bo->offset + addr.offset);
1547 else
1548 return gen_canonical_address(addr.offset);
1549 }
1550
1551 static inline struct anv_address
1552 anv_address_add(struct anv_address addr, uint64_t offset)
1553 {
1554 addr.offset += offset;
1555 return addr;
1556 }
1557
1558 static inline void
1559 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1560 {
1561 unsigned reloc_size = 0;
1562 if (device->info.gen >= 8) {
1563 reloc_size = sizeof(uint64_t);
1564 *(uint64_t *)p = gen_canonical_address(v);
1565 } else {
1566 reloc_size = sizeof(uint32_t);
1567 *(uint32_t *)p = v;
1568 }
1569
1570 if (flush && !device->info.has_llc)
1571 gen_flush_range(p, reloc_size);
1572 }
1573
1574 static inline uint64_t
1575 _anv_combine_address(struct anv_batch *batch, void *location,
1576 const struct anv_address address, uint32_t delta)
1577 {
1578 if (address.bo == NULL) {
1579 return address.offset + delta;
1580 } else {
1581 assert(batch->start <= location && location < batch->end);
1582
1583 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1584 }
1585 }
1586
1587 #define __gen_address_type struct anv_address
1588 #define __gen_user_data struct anv_batch
1589 #define __gen_combine_address _anv_combine_address
1590
1591 /* Wrapper macros needed to work around preprocessor argument issues. In
1592 * particular, arguments don't get pre-evaluated if they are concatenated.
1593 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1594 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1595 * We can work around this easily enough with these helpers.
1596 */
1597 #define __anv_cmd_length(cmd) cmd ## _length
1598 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1599 #define __anv_cmd_header(cmd) cmd ## _header
1600 #define __anv_cmd_pack(cmd) cmd ## _pack
1601 #define __anv_reg_num(reg) reg ## _num
1602
1603 #define anv_pack_struct(dst, struc, ...) do { \
1604 struct struc __template = { \
1605 __VA_ARGS__ \
1606 }; \
1607 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1608 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1609 } while (0)
1610
1611 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1612 void *__dst = anv_batch_emit_dwords(batch, n); \
1613 if (__dst) { \
1614 struct cmd __template = { \
1615 __anv_cmd_header(cmd), \
1616 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1617 __VA_ARGS__ \
1618 }; \
1619 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1620 } \
1621 __dst; \
1622 })
1623
1624 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1625 do { \
1626 uint32_t *dw; \
1627 \
1628 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1629 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1630 if (!dw) \
1631 break; \
1632 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1633 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1634 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1635 } while (0)
1636
1637 #define anv_batch_emit(batch, cmd, name) \
1638 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1639 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1640 __builtin_expect(_dst != NULL, 1); \
1641 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1642 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1643 _dst = NULL; \
1644 }))
1645
1646 struct anv_device_memory {
1647 struct list_head link;
1648
1649 struct anv_bo * bo;
1650 struct anv_memory_type * type;
1651 VkDeviceSize map_size;
1652 void * map;
1653
1654 /* If set, we are holding reference to AHardwareBuffer
1655 * which we must release when memory is freed.
1656 */
1657 struct AHardwareBuffer * ahw;
1658
1659 /* If set, this memory comes from a host pointer. */
1660 void * host_ptr;
1661 };
1662
1663 /**
1664 * Header for Vertex URB Entry (VUE)
1665 */
1666 struct anv_vue_header {
1667 uint32_t Reserved;
1668 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1669 uint32_t ViewportIndex;
1670 float PointWidth;
1671 };
1672
1673 /** Struct representing a sampled image descriptor
1674 *
1675 * This descriptor layout is used for sampled images, bare sampler, and
1676 * combined image/sampler descriptors.
1677 */
1678 struct anv_sampled_image_descriptor {
1679 /** Bindless image handle
1680 *
1681 * This is expected to already be shifted such that the 20-bit
1682 * SURFACE_STATE table index is in the top 20 bits.
1683 */
1684 uint32_t image;
1685
1686 /** Bindless sampler handle
1687 *
1688 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1689 * to the dynamic state base address.
1690 */
1691 uint32_t sampler;
1692 };
1693
1694 struct anv_texture_swizzle_descriptor {
1695 /** Texture swizzle
1696 *
1697 * See also nir_intrinsic_channel_select_intel
1698 */
1699 uint8_t swizzle[4];
1700
1701 /** Unused padding to ensure the struct is a multiple of 64 bits */
1702 uint32_t _pad;
1703 };
1704
1705 /** Struct representing a storage image descriptor */
1706 struct anv_storage_image_descriptor {
1707 /** Bindless image handles
1708 *
1709 * These are expected to already be shifted such that the 20-bit
1710 * SURFACE_STATE table index is in the top 20 bits.
1711 */
1712 uint32_t read_write;
1713 uint32_t write_only;
1714 };
1715
1716 /** Struct representing a address/range descriptor
1717 *
1718 * The fields of this struct correspond directly to the data layout of
1719 * nir_address_format_64bit_bounded_global addresses. The last field is the
1720 * offset in the NIR address so it must be zero so that when you load the
1721 * descriptor you get a pointer to the start of the range.
1722 */
1723 struct anv_address_range_descriptor {
1724 uint64_t address;
1725 uint32_t range;
1726 uint32_t zero;
1727 };
1728
1729 enum anv_descriptor_data {
1730 /** The descriptor contains a BTI reference to a surface state */
1731 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1732 /** The descriptor contains a BTI reference to a sampler state */
1733 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1734 /** The descriptor contains an actual buffer view */
1735 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1736 /** The descriptor contains auxiliary image layout data */
1737 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1738 /** The descriptor contains auxiliary image layout data */
1739 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1740 /** anv_address_range_descriptor with a buffer address and range */
1741 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1742 /** Bindless surface handle */
1743 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1744 /** Storage image handles */
1745 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1746 /** Storage image handles */
1747 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1748 };
1749
1750 struct anv_descriptor_set_binding_layout {
1751 #ifndef NDEBUG
1752 /* The type of the descriptors in this binding */
1753 VkDescriptorType type;
1754 #endif
1755
1756 /* Flags provided when this binding was created */
1757 VkDescriptorBindingFlagsEXT flags;
1758
1759 /* Bitfield representing the type of data this descriptor contains */
1760 enum anv_descriptor_data data;
1761
1762 /* Maximum number of YCbCr texture/sampler planes */
1763 uint8_t max_plane_count;
1764
1765 /* Number of array elements in this binding (or size in bytes for inline
1766 * uniform data)
1767 */
1768 uint16_t array_size;
1769
1770 /* Index into the flattend descriptor set */
1771 uint16_t descriptor_index;
1772
1773 /* Index into the dynamic state array for a dynamic buffer */
1774 int16_t dynamic_offset_index;
1775
1776 /* Index into the descriptor set buffer views */
1777 int16_t buffer_view_index;
1778
1779 /* Offset into the descriptor buffer where this descriptor lives */
1780 uint32_t descriptor_offset;
1781
1782 /* Immutable samplers (or NULL if no immutable samplers) */
1783 struct anv_sampler **immutable_samplers;
1784 };
1785
1786 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1787
1788 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1789 VkDescriptorType type);
1790
1791 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1792 const struct anv_descriptor_set_binding_layout *binding,
1793 bool sampler);
1794
1795 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1796 const struct anv_descriptor_set_binding_layout *binding,
1797 bool sampler);
1798
1799 struct anv_descriptor_set_layout {
1800 /* Descriptor set layouts can be destroyed at almost any time */
1801 uint32_t ref_cnt;
1802
1803 /* Number of bindings in this descriptor set */
1804 uint16_t binding_count;
1805
1806 /* Total size of the descriptor set with room for all array entries */
1807 uint16_t size;
1808
1809 /* Shader stages affected by this descriptor set */
1810 uint16_t shader_stages;
1811
1812 /* Number of buffer views in this descriptor set */
1813 uint16_t buffer_view_count;
1814
1815 /* Number of dynamic offsets used by this descriptor set */
1816 uint16_t dynamic_offset_count;
1817
1818 /* For each shader stage, which offsets apply to that stage */
1819 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1820
1821 /* Size of the descriptor buffer for this descriptor set */
1822 uint32_t descriptor_buffer_size;
1823
1824 /* Bindings in this descriptor set */
1825 struct anv_descriptor_set_binding_layout binding[0];
1826 };
1827
1828 static inline void
1829 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1830 {
1831 assert(layout && layout->ref_cnt >= 1);
1832 p_atomic_inc(&layout->ref_cnt);
1833 }
1834
1835 static inline void
1836 anv_descriptor_set_layout_unref(struct anv_device *device,
1837 struct anv_descriptor_set_layout *layout)
1838 {
1839 assert(layout && layout->ref_cnt >= 1);
1840 if (p_atomic_dec_zero(&layout->ref_cnt))
1841 vk_free(&device->alloc, layout);
1842 }
1843
1844 struct anv_descriptor {
1845 VkDescriptorType type;
1846
1847 union {
1848 struct {
1849 VkImageLayout layout;
1850 struct anv_image_view *image_view;
1851 struct anv_sampler *sampler;
1852 };
1853
1854 struct {
1855 struct anv_buffer *buffer;
1856 uint64_t offset;
1857 uint64_t range;
1858 };
1859
1860 struct anv_buffer_view *buffer_view;
1861 };
1862 };
1863
1864 struct anv_descriptor_set {
1865 struct anv_descriptor_pool *pool;
1866 struct anv_descriptor_set_layout *layout;
1867 uint32_t size;
1868
1869 /* State relative to anv_descriptor_pool::bo */
1870 struct anv_state desc_mem;
1871 /* Surface state for the descriptor buffer */
1872 struct anv_state desc_surface_state;
1873
1874 uint32_t buffer_view_count;
1875 struct anv_buffer_view *buffer_views;
1876
1877 /* Link to descriptor pool's desc_sets list . */
1878 struct list_head pool_link;
1879
1880 struct anv_descriptor descriptors[0];
1881 };
1882
1883 struct anv_buffer_view {
1884 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1885 uint64_t range; /**< VkBufferViewCreateInfo::range */
1886
1887 struct anv_address address;
1888
1889 struct anv_state surface_state;
1890 struct anv_state storage_surface_state;
1891 struct anv_state writeonly_storage_surface_state;
1892
1893 struct brw_image_param storage_image_param;
1894 };
1895
1896 struct anv_push_descriptor_set {
1897 struct anv_descriptor_set set;
1898
1899 /* Put this field right behind anv_descriptor_set so it fills up the
1900 * descriptors[0] field. */
1901 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1902
1903 /** True if the descriptor set buffer has been referenced by a draw or
1904 * dispatch command.
1905 */
1906 bool set_used_on_gpu;
1907
1908 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1909 };
1910
1911 struct anv_descriptor_pool {
1912 uint32_t size;
1913 uint32_t next;
1914 uint32_t free_list;
1915
1916 struct anv_bo *bo;
1917 struct util_vma_heap bo_heap;
1918
1919 struct anv_state_stream surface_state_stream;
1920 void *surface_state_free_list;
1921
1922 struct list_head desc_sets;
1923
1924 char data[0];
1925 };
1926
1927 enum anv_descriptor_template_entry_type {
1928 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1929 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1930 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1931 };
1932
1933 struct anv_descriptor_template_entry {
1934 /* The type of descriptor in this entry */
1935 VkDescriptorType type;
1936
1937 /* Binding in the descriptor set */
1938 uint32_t binding;
1939
1940 /* Offset at which to write into the descriptor set binding */
1941 uint32_t array_element;
1942
1943 /* Number of elements to write into the descriptor set binding */
1944 uint32_t array_count;
1945
1946 /* Offset into the user provided data */
1947 size_t offset;
1948
1949 /* Stride between elements into the user provided data */
1950 size_t stride;
1951 };
1952
1953 struct anv_descriptor_update_template {
1954 VkPipelineBindPoint bind_point;
1955
1956 /* The descriptor set this template corresponds to. This value is only
1957 * valid if the template was created with the templateType
1958 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1959 */
1960 uint8_t set;
1961
1962 /* Number of entries in this template */
1963 uint32_t entry_count;
1964
1965 /* Entries of the template */
1966 struct anv_descriptor_template_entry entries[0];
1967 };
1968
1969 size_t
1970 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1971
1972 void
1973 anv_descriptor_set_write_image_view(struct anv_device *device,
1974 struct anv_descriptor_set *set,
1975 const VkDescriptorImageInfo * const info,
1976 VkDescriptorType type,
1977 uint32_t binding,
1978 uint32_t element);
1979
1980 void
1981 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1982 struct anv_descriptor_set *set,
1983 VkDescriptorType type,
1984 struct anv_buffer_view *buffer_view,
1985 uint32_t binding,
1986 uint32_t element);
1987
1988 void
1989 anv_descriptor_set_write_buffer(struct anv_device *device,
1990 struct anv_descriptor_set *set,
1991 struct anv_state_stream *alloc_stream,
1992 VkDescriptorType type,
1993 struct anv_buffer *buffer,
1994 uint32_t binding,
1995 uint32_t element,
1996 VkDeviceSize offset,
1997 VkDeviceSize range);
1998 void
1999 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2000 struct anv_descriptor_set *set,
2001 uint32_t binding,
2002 const void *data,
2003 size_t offset,
2004 size_t size);
2005
2006 void
2007 anv_descriptor_set_write_template(struct anv_device *device,
2008 struct anv_descriptor_set *set,
2009 struct anv_state_stream *alloc_stream,
2010 const struct anv_descriptor_update_template *template,
2011 const void *data);
2012
2013 VkResult
2014 anv_descriptor_set_create(struct anv_device *device,
2015 struct anv_descriptor_pool *pool,
2016 struct anv_descriptor_set_layout *layout,
2017 struct anv_descriptor_set **out_set);
2018
2019 void
2020 anv_descriptor_set_destroy(struct anv_device *device,
2021 struct anv_descriptor_pool *pool,
2022 struct anv_descriptor_set *set);
2023
2024 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2025 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2026 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2027 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2028 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2029 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2030
2031 struct anv_pipeline_binding {
2032 /** Index in the descriptor set
2033 *
2034 * This is a flattened index; the descriptor set layout is already taken
2035 * into account.
2036 */
2037 uint32_t index;
2038
2039 /** The descriptor set this surface corresponds to.
2040 *
2041 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2042 * binding is not a normal descriptor set but something else.
2043 */
2044 uint8_t set;
2045
2046 union {
2047 /** Plane in the binding index for images */
2048 uint8_t plane;
2049
2050 /** Input attachment index (relative to the subpass) */
2051 uint8_t input_attachment_index;
2052
2053 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2054 uint8_t dynamic_offset_index;
2055 };
2056
2057 /** For a storage image, whether it is write-only */
2058 uint8_t write_only;
2059
2060 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2061 * assuming POD zero-initialization.
2062 */
2063 uint8_t pad;
2064 };
2065
2066 struct anv_push_range {
2067 /** Index in the descriptor set */
2068 uint32_t index;
2069
2070 /** Descriptor set index */
2071 uint8_t set;
2072
2073 /** Dynamic offset index (for dynamic UBOs) */
2074 uint8_t dynamic_offset_index;
2075
2076 /** Start offset in units of 32B */
2077 uint8_t start;
2078
2079 /** Range in units of 32B */
2080 uint8_t length;
2081 };
2082
2083 struct anv_pipeline_layout {
2084 struct {
2085 struct anv_descriptor_set_layout *layout;
2086 uint32_t dynamic_offset_start;
2087 } set[MAX_SETS];
2088
2089 uint32_t num_sets;
2090
2091 unsigned char sha1[20];
2092 };
2093
2094 struct anv_buffer {
2095 struct anv_device * device;
2096 VkDeviceSize size;
2097
2098 VkBufferUsageFlags usage;
2099
2100 /* Set when bound */
2101 struct anv_address address;
2102 };
2103
2104 static inline uint64_t
2105 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2106 {
2107 assert(offset <= buffer->size);
2108 if (range == VK_WHOLE_SIZE) {
2109 return buffer->size - offset;
2110 } else {
2111 assert(range + offset >= range);
2112 assert(range + offset <= buffer->size);
2113 return range;
2114 }
2115 }
2116
2117 enum anv_cmd_dirty_bits {
2118 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2119 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2120 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2121 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2122 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2123 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2124 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2125 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2126 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2127 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2128 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2129 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2130 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2131 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2132 };
2133 typedef uint32_t anv_cmd_dirty_mask_t;
2134
2135 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2136 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2137 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2138 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2139 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2140 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2141 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2142 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2143 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2144 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2145 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2146
2147 static inline enum anv_cmd_dirty_bits
2148 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2149 {
2150 switch (vk_state) {
2151 case VK_DYNAMIC_STATE_VIEWPORT:
2152 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2153 case VK_DYNAMIC_STATE_SCISSOR:
2154 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2155 case VK_DYNAMIC_STATE_LINE_WIDTH:
2156 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2157 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2158 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2159 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2160 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2161 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2162 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2163 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2164 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2165 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2166 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2167 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2168 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2169 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2170 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2171 default:
2172 assert(!"Unsupported dynamic state");
2173 return 0;
2174 }
2175 }
2176
2177
2178 enum anv_pipe_bits {
2179 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2180 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2181 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2182 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2183 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2184 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2185 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2186 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2187 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2188 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2189 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2190 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2191
2192 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2193 * a flush has happened but not a CS stall. The next time we do any sort
2194 * of invalidation we need to insert a CS stall at that time. Otherwise,
2195 * we would have to CS stall on every flush which could be bad.
2196 */
2197 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2198
2199 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2200 * target operations related to transfer commands with VkBuffer as
2201 * destination are ongoing. Some operations like copies on the command
2202 * streamer might need to be aware of this to trigger the appropriate stall
2203 * before they can proceed with the copy.
2204 */
2205 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2206 };
2207
2208 #define ANV_PIPE_FLUSH_BITS ( \
2209 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2210 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2211 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2212 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2213
2214 #define ANV_PIPE_STALL_BITS ( \
2215 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2216 ANV_PIPE_DEPTH_STALL_BIT | \
2217 ANV_PIPE_CS_STALL_BIT)
2218
2219 #define ANV_PIPE_INVALIDATE_BITS ( \
2220 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2221 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2222 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2223 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2224 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2225 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2226
2227 static inline enum anv_pipe_bits
2228 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2229 {
2230 enum anv_pipe_bits pipe_bits = 0;
2231
2232 unsigned b;
2233 for_each_bit(b, flags) {
2234 switch ((VkAccessFlagBits)(1 << b)) {
2235 case VK_ACCESS_SHADER_WRITE_BIT:
2236 /* We're transitioning a buffer that was previously used as write
2237 * destination through the data port. To make its content available
2238 * to future operations, flush the data cache.
2239 */
2240 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2241 break;
2242 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2243 /* We're transitioning a buffer that was previously used as render
2244 * target. To make its content available to future operations, flush
2245 * the render target cache.
2246 */
2247 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2248 break;
2249 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2250 /* We're transitioning a buffer that was previously used as depth
2251 * buffer. To make its content available to future operations, flush
2252 * the depth cache.
2253 */
2254 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2255 break;
2256 case VK_ACCESS_TRANSFER_WRITE_BIT:
2257 /* We're transitioning a buffer that was previously used as a
2258 * transfer write destination. Generic write operations include color
2259 * & depth operations as well as buffer operations like :
2260 * - vkCmdClearColorImage()
2261 * - vkCmdClearDepthStencilImage()
2262 * - vkCmdBlitImage()
2263 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2264 *
2265 * Most of these operations are implemented using Blorp which writes
2266 * through the render target, so flush that cache to make it visible
2267 * to future operations. And for depth related operations we also
2268 * need to flush the depth cache.
2269 */
2270 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2271 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2272 break;
2273 case VK_ACCESS_MEMORY_WRITE_BIT:
2274 /* We're transitioning a buffer for generic write operations. Flush
2275 * all the caches.
2276 */
2277 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2278 break;
2279 default:
2280 break; /* Nothing to do */
2281 }
2282 }
2283
2284 return pipe_bits;
2285 }
2286
2287 static inline enum anv_pipe_bits
2288 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2289 {
2290 enum anv_pipe_bits pipe_bits = 0;
2291
2292 unsigned b;
2293 for_each_bit(b, flags) {
2294 switch ((VkAccessFlagBits)(1 << b)) {
2295 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2296 /* Indirect draw commands take a buffer as input that we're going to
2297 * read from the command streamer to load some of the HW registers
2298 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2299 * command streamer stall so that all the cache flushes have
2300 * completed before the command streamer loads from memory.
2301 */
2302 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2303 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2304 * through a vertex buffer, so invalidate that cache.
2305 */
2306 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2307 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2308 * UBO from the buffer, so we need to invalidate constant cache.
2309 */
2310 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2311 break;
2312 case VK_ACCESS_INDEX_READ_BIT:
2313 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2314 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2315 * commands, so we invalidate the VF cache to make sure there is no
2316 * stale data when we start rendering.
2317 */
2318 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2319 break;
2320 case VK_ACCESS_UNIFORM_READ_BIT:
2321 /* We transitioning a buffer to be used as uniform data. Because
2322 * uniform is accessed through the data port & sampler, we need to
2323 * invalidate the texture cache (sampler) & constant cache (data
2324 * port) to avoid stale data.
2325 */
2326 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2327 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2328 break;
2329 case VK_ACCESS_SHADER_READ_BIT:
2330 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2331 case VK_ACCESS_TRANSFER_READ_BIT:
2332 /* Transitioning a buffer to be read through the sampler, so
2333 * invalidate the texture cache, we don't want any stale data.
2334 */
2335 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2336 break;
2337 case VK_ACCESS_MEMORY_READ_BIT:
2338 /* Transitioning a buffer for generic read, invalidate all the
2339 * caches.
2340 */
2341 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2342 break;
2343 case VK_ACCESS_MEMORY_WRITE_BIT:
2344 /* Generic write, make sure all previously written things land in
2345 * memory.
2346 */
2347 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2348 break;
2349 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2350 /* Transitioning a buffer for conditional rendering. We'll load the
2351 * content of this buffer into HW registers using the command
2352 * streamer, so we need to stall the command streamer to make sure
2353 * any in-flight flush operations have completed.
2354 */
2355 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2356 break;
2357 default:
2358 break; /* Nothing to do */
2359 }
2360 }
2361
2362 return pipe_bits;
2363 }
2364
2365 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2366 VK_IMAGE_ASPECT_COLOR_BIT | \
2367 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2368 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2369 VK_IMAGE_ASPECT_PLANE_2_BIT)
2370 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2371 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2372 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2373 VK_IMAGE_ASPECT_PLANE_2_BIT)
2374
2375 struct anv_vertex_binding {
2376 struct anv_buffer * buffer;
2377 VkDeviceSize offset;
2378 };
2379
2380 struct anv_xfb_binding {
2381 struct anv_buffer * buffer;
2382 VkDeviceSize offset;
2383 VkDeviceSize size;
2384 };
2385
2386 struct anv_push_constants {
2387 /** Push constant data provided by the client through vkPushConstants */
2388 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2389
2390 /** Dynamic offsets for dynamic UBOs and SSBOs */
2391 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2392
2393 struct {
2394 /** Base workgroup ID
2395 *
2396 * Used for vkCmdDispatchBase.
2397 */
2398 uint32_t base_work_group_id[3];
2399
2400 /** Subgroup ID
2401 *
2402 * This is never set by software but is implicitly filled out when
2403 * uploading the push constants for compute shaders.
2404 */
2405 uint32_t subgroup_id;
2406
2407 /** Pad out to a multiple of 32 bytes */
2408 uint32_t pad[4];
2409 } cs;
2410 };
2411
2412 struct anv_dynamic_state {
2413 struct {
2414 uint32_t count;
2415 VkViewport viewports[MAX_VIEWPORTS];
2416 } viewport;
2417
2418 struct {
2419 uint32_t count;
2420 VkRect2D scissors[MAX_SCISSORS];
2421 } scissor;
2422
2423 float line_width;
2424
2425 struct {
2426 float bias;
2427 float clamp;
2428 float slope;
2429 } depth_bias;
2430
2431 float blend_constants[4];
2432
2433 struct {
2434 float min;
2435 float max;
2436 } depth_bounds;
2437
2438 struct {
2439 uint32_t front;
2440 uint32_t back;
2441 } stencil_compare_mask;
2442
2443 struct {
2444 uint32_t front;
2445 uint32_t back;
2446 } stencil_write_mask;
2447
2448 struct {
2449 uint32_t front;
2450 uint32_t back;
2451 } stencil_reference;
2452
2453 struct {
2454 uint32_t factor;
2455 uint16_t pattern;
2456 } line_stipple;
2457 };
2458
2459 extern const struct anv_dynamic_state default_dynamic_state;
2460
2461 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2462 const struct anv_dynamic_state *src,
2463 uint32_t copy_mask);
2464
2465 struct anv_surface_state {
2466 struct anv_state state;
2467 /** Address of the surface referred to by this state
2468 *
2469 * This address is relative to the start of the BO.
2470 */
2471 struct anv_address address;
2472 /* Address of the aux surface, if any
2473 *
2474 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2475 *
2476 * With the exception of gen8, the bottom 12 bits of this address' offset
2477 * include extra aux information.
2478 */
2479 struct anv_address aux_address;
2480 /* Address of the clear color, if any
2481 *
2482 * This address is relative to the start of the BO.
2483 */
2484 struct anv_address clear_address;
2485 };
2486
2487 /**
2488 * Attachment state when recording a renderpass instance.
2489 *
2490 * The clear value is valid only if there exists a pending clear.
2491 */
2492 struct anv_attachment_state {
2493 enum isl_aux_usage aux_usage;
2494 enum isl_aux_usage input_aux_usage;
2495 struct anv_surface_state color;
2496 struct anv_surface_state input;
2497
2498 VkImageLayout current_layout;
2499 VkImageLayout current_stencil_layout;
2500 VkImageAspectFlags pending_clear_aspects;
2501 VkImageAspectFlags pending_load_aspects;
2502 bool fast_clear;
2503 VkClearValue clear_value;
2504 bool clear_color_is_zero_one;
2505 bool clear_color_is_zero;
2506
2507 /* When multiview is active, attachments with a renderpass clear
2508 * operation have their respective layers cleared on the first
2509 * subpass that uses them, and only in that subpass. We keep track
2510 * of this using a bitfield to indicate which layers of an attachment
2511 * have not been cleared yet when multiview is active.
2512 */
2513 uint32_t pending_clear_views;
2514 struct anv_image_view * image_view;
2515 };
2516
2517 /** State tracking for vertex buffer flushes
2518 *
2519 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2520 * addresses. If you happen to have two vertex buffers which get placed
2521 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2522 * collisions. In order to solve this problem, we track vertex address ranges
2523 * which are live in the cache and invalidate the cache if one ever exceeds 32
2524 * bits.
2525 */
2526 struct anv_vb_cache_range {
2527 /* Virtual address at which the live vertex buffer cache range starts for
2528 * this vertex buffer index.
2529 */
2530 uint64_t start;
2531
2532 /* Virtual address of the byte after where vertex buffer cache range ends.
2533 * This is exclusive such that end - start is the size of the range.
2534 */
2535 uint64_t end;
2536 };
2537
2538 /** State tracking for particular pipeline bind point
2539 *
2540 * This struct is the base struct for anv_cmd_graphics_state and
2541 * anv_cmd_compute_state. These are used to track state which is bound to a
2542 * particular type of pipeline. Generic state that applies per-stage such as
2543 * binding table offsets and push constants is tracked generically with a
2544 * per-stage array in anv_cmd_state.
2545 */
2546 struct anv_cmd_pipeline_state {
2547 struct anv_pipeline *pipeline;
2548
2549 struct anv_descriptor_set *descriptors[MAX_SETS];
2550 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2551 };
2552
2553 /** State tracking for graphics pipeline
2554 *
2555 * This has anv_cmd_pipeline_state as a base struct to track things which get
2556 * bound to a graphics pipeline. Along with general pipeline bind point state
2557 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2558 * state which is graphics-specific.
2559 */
2560 struct anv_cmd_graphics_state {
2561 struct anv_cmd_pipeline_state base;
2562
2563 anv_cmd_dirty_mask_t dirty;
2564 uint32_t vb_dirty;
2565
2566 struct anv_vb_cache_range ib_bound_range;
2567 struct anv_vb_cache_range ib_dirty_range;
2568 struct anv_vb_cache_range vb_bound_ranges[33];
2569 struct anv_vb_cache_range vb_dirty_ranges[33];
2570
2571 struct anv_dynamic_state dynamic;
2572
2573 struct {
2574 struct anv_buffer *index_buffer;
2575 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2576 uint32_t index_offset;
2577 } gen7;
2578 };
2579
2580 /** State tracking for compute pipeline
2581 *
2582 * This has anv_cmd_pipeline_state as a base struct to track things which get
2583 * bound to a compute pipeline. Along with general pipeline bind point state
2584 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2585 * state which is compute-specific.
2586 */
2587 struct anv_cmd_compute_state {
2588 struct anv_cmd_pipeline_state base;
2589
2590 bool pipeline_dirty;
2591
2592 struct anv_address num_workgroups;
2593 };
2594
2595 /** State required while building cmd buffer */
2596 struct anv_cmd_state {
2597 /* PIPELINE_SELECT.PipelineSelection */
2598 uint32_t current_pipeline;
2599 const struct gen_l3_config * current_l3_config;
2600 uint32_t last_aux_map_state;
2601
2602 struct anv_cmd_graphics_state gfx;
2603 struct anv_cmd_compute_state compute;
2604
2605 enum anv_pipe_bits pending_pipe_bits;
2606 VkShaderStageFlags descriptors_dirty;
2607 VkShaderStageFlags push_constants_dirty;
2608
2609 struct anv_framebuffer * framebuffer;
2610 struct anv_render_pass * pass;
2611 struct anv_subpass * subpass;
2612 VkRect2D render_area;
2613 uint32_t restart_index;
2614 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2615 bool xfb_enabled;
2616 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2617 VkShaderStageFlags push_constant_stages;
2618 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2619 struct anv_state binding_tables[MESA_SHADER_STAGES];
2620 struct anv_state samplers[MESA_SHADER_STAGES];
2621
2622 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2623 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2624 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2625
2626 /**
2627 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2628 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2629 * and before invoking the secondary in ExecuteCommands.
2630 */
2631 bool pma_fix_enabled;
2632
2633 /**
2634 * Whether or not we know for certain that HiZ is enabled for the current
2635 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2636 * enabled or not, this will be false.
2637 */
2638 bool hiz_enabled;
2639
2640 bool conditional_render_enabled;
2641
2642 /**
2643 * Last rendering scale argument provided to
2644 * genX(cmd_buffer_emit_hashing_mode)().
2645 */
2646 unsigned current_hash_scale;
2647
2648 /**
2649 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2650 * valid only when recording a render pass instance.
2651 */
2652 struct anv_attachment_state * attachments;
2653
2654 /**
2655 * Surface states for color render targets. These are stored in a single
2656 * flat array. For depth-stencil attachments, the surface state is simply
2657 * left blank.
2658 */
2659 struct anv_state render_pass_states;
2660
2661 /**
2662 * A null surface state of the right size to match the framebuffer. This
2663 * is one of the states in render_pass_states.
2664 */
2665 struct anv_state null_surface_state;
2666 };
2667
2668 struct anv_cmd_pool {
2669 VkAllocationCallbacks alloc;
2670 struct list_head cmd_buffers;
2671 };
2672
2673 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2674
2675 enum anv_cmd_buffer_exec_mode {
2676 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2677 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2678 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2679 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2680 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2681 };
2682
2683 struct anv_cmd_buffer {
2684 VK_LOADER_DATA _loader_data;
2685
2686 struct anv_device * device;
2687
2688 struct anv_cmd_pool * pool;
2689 struct list_head pool_link;
2690
2691 struct anv_batch batch;
2692
2693 /* Fields required for the actual chain of anv_batch_bo's.
2694 *
2695 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2696 */
2697 struct list_head batch_bos;
2698 enum anv_cmd_buffer_exec_mode exec_mode;
2699
2700 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2701 * referenced by this command buffer
2702 *
2703 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2704 */
2705 struct u_vector seen_bbos;
2706
2707 /* A vector of int32_t's for every block of binding tables.
2708 *
2709 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2710 */
2711 struct u_vector bt_block_states;
2712 struct anv_state bt_next;
2713
2714 struct anv_reloc_list surface_relocs;
2715 /** Last seen surface state block pool center bo offset */
2716 uint32_t last_ss_pool_center;
2717
2718 /* Serial for tracking buffer completion */
2719 uint32_t serial;
2720
2721 /* Stream objects for storing temporary data */
2722 struct anv_state_stream surface_state_stream;
2723 struct anv_state_stream dynamic_state_stream;
2724
2725 VkCommandBufferUsageFlags usage_flags;
2726 VkCommandBufferLevel level;
2727
2728 struct anv_cmd_state state;
2729
2730 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2731 uint64_t intel_perf_marker;
2732 };
2733
2734 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2735 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2736 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2737 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2738 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2739 struct anv_cmd_buffer *secondary);
2740 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2741 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2742 struct anv_cmd_buffer *cmd_buffer,
2743 const VkSemaphore *in_semaphores,
2744 const uint64_t *in_wait_values,
2745 uint32_t num_in_semaphores,
2746 const VkSemaphore *out_semaphores,
2747 const uint64_t *out_signal_values,
2748 uint32_t num_out_semaphores,
2749 VkFence fence);
2750
2751 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2752
2753 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2754 const void *data, uint32_t size, uint32_t alignment);
2755 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2756 uint32_t *a, uint32_t *b,
2757 uint32_t dwords, uint32_t alignment);
2758
2759 struct anv_address
2760 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2761 struct anv_state
2762 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2763 uint32_t entries, uint32_t *state_offset);
2764 struct anv_state
2765 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2766 struct anv_state
2767 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2768 uint32_t size, uint32_t alignment);
2769
2770 VkResult
2771 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2772
2773 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2774 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2775 bool depth_clamp_enable);
2776 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2777
2778 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2779 struct anv_render_pass *pass,
2780 struct anv_framebuffer *framebuffer,
2781 const VkClearValue *clear_values);
2782
2783 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2784
2785 struct anv_state
2786 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2787 gl_shader_stage stage);
2788 struct anv_state
2789 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2790
2791 const struct anv_image_view *
2792 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2793
2794 VkResult
2795 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2796 uint32_t num_entries,
2797 uint32_t *state_offset,
2798 struct anv_state *bt_state);
2799
2800 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2801
2802 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2803
2804 enum anv_fence_type {
2805 ANV_FENCE_TYPE_NONE = 0,
2806 ANV_FENCE_TYPE_BO,
2807 ANV_FENCE_TYPE_SYNCOBJ,
2808 ANV_FENCE_TYPE_WSI,
2809 };
2810
2811 enum anv_bo_fence_state {
2812 /** Indicates that this is a new (or newly reset fence) */
2813 ANV_BO_FENCE_STATE_RESET,
2814
2815 /** Indicates that this fence has been submitted to the GPU but is still
2816 * (as far as we know) in use by the GPU.
2817 */
2818 ANV_BO_FENCE_STATE_SUBMITTED,
2819
2820 ANV_BO_FENCE_STATE_SIGNALED,
2821 };
2822
2823 struct anv_fence_impl {
2824 enum anv_fence_type type;
2825
2826 union {
2827 /** Fence implementation for BO fences
2828 *
2829 * These fences use a BO and a set of CPU-tracked state flags. The BO
2830 * is added to the object list of the last execbuf call in a QueueSubmit
2831 * and is marked EXEC_WRITE. The state flags track when the BO has been
2832 * submitted to the kernel. We need to do this because Vulkan lets you
2833 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2834 * will say it's idle in this case.
2835 */
2836 struct {
2837 struct anv_bo *bo;
2838 enum anv_bo_fence_state state;
2839 } bo;
2840
2841 /** DRM syncobj handle for syncobj-based fences */
2842 uint32_t syncobj;
2843
2844 /** WSI fence */
2845 struct wsi_fence *fence_wsi;
2846 };
2847 };
2848
2849 struct anv_fence {
2850 /* Permanent fence state. Every fence has some form of permanent state
2851 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2852 * cross-process fences) or it could just be a dummy for use internally.
2853 */
2854 struct anv_fence_impl permanent;
2855
2856 /* Temporary fence state. A fence *may* have temporary state. That state
2857 * is added to the fence by an import operation and is reset back to
2858 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2859 * state cannot be signaled because the fence must already be signaled
2860 * before the temporary state can be exported from the fence in the other
2861 * process and imported here.
2862 */
2863 struct anv_fence_impl temporary;
2864 };
2865
2866 struct anv_event {
2867 uint64_t semaphore;
2868 struct anv_state state;
2869 };
2870
2871 enum anv_semaphore_type {
2872 ANV_SEMAPHORE_TYPE_NONE = 0,
2873 ANV_SEMAPHORE_TYPE_DUMMY,
2874 ANV_SEMAPHORE_TYPE_BO,
2875 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2876 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2877 ANV_SEMAPHORE_TYPE_TIMELINE,
2878 };
2879
2880 struct anv_timeline_point {
2881 struct list_head link;
2882
2883 uint64_t serial;
2884
2885 /* Number of waiter on this point, when > 0 the point should not be garbage
2886 * collected.
2887 */
2888 int waiting;
2889
2890 /* BO used for synchronization. */
2891 struct anv_bo *bo;
2892 };
2893
2894 struct anv_timeline {
2895 pthread_mutex_t mutex;
2896 pthread_cond_t cond;
2897
2898 uint64_t highest_past;
2899 uint64_t highest_pending;
2900
2901 struct list_head points;
2902 struct list_head free_points;
2903 };
2904
2905 struct anv_semaphore_impl {
2906 enum anv_semaphore_type type;
2907
2908 union {
2909 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2910 * This BO will be added to the object list on any execbuf2 calls for
2911 * which this semaphore is used as a wait or signal fence. When used as
2912 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2913 */
2914 struct anv_bo *bo;
2915
2916 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2917 * If the semaphore is in the unsignaled state due to either just being
2918 * created or because it has been used for a wait, fd will be -1.
2919 */
2920 int fd;
2921
2922 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2923 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2924 * import so we don't need to bother with a userspace cache.
2925 */
2926 uint32_t syncobj;
2927
2928 /* Non shareable timeline semaphore
2929 *
2930 * Used when kernel don't have support for timeline semaphores.
2931 */
2932 struct anv_timeline timeline;
2933 };
2934 };
2935
2936 struct anv_semaphore {
2937 uint32_t refcount;
2938
2939 /* Permanent semaphore state. Every semaphore has some form of permanent
2940 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2941 * (for cross-process semaphores0 or it could just be a dummy for use
2942 * internally.
2943 */
2944 struct anv_semaphore_impl permanent;
2945
2946 /* Temporary semaphore state. A semaphore *may* have temporary state.
2947 * That state is added to the semaphore by an import operation and is reset
2948 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2949 * semaphore with temporary state cannot be signaled because the semaphore
2950 * must already be signaled before the temporary state can be exported from
2951 * the semaphore in the other process and imported here.
2952 */
2953 struct anv_semaphore_impl temporary;
2954 };
2955
2956 void anv_semaphore_reset_temporary(struct anv_device *device,
2957 struct anv_semaphore *semaphore);
2958
2959 struct anv_shader_module {
2960 unsigned char sha1[20];
2961 uint32_t size;
2962 char data[0];
2963 };
2964
2965 static inline gl_shader_stage
2966 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2967 {
2968 assert(__builtin_popcount(vk_stage) == 1);
2969 return ffs(vk_stage) - 1;
2970 }
2971
2972 static inline VkShaderStageFlagBits
2973 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2974 {
2975 return (1 << mesa_stage);
2976 }
2977
2978 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2979
2980 #define anv_foreach_stage(stage, stage_bits) \
2981 for (gl_shader_stage stage, \
2982 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2983 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2984 __tmp &= ~(1 << (stage)))
2985
2986 struct anv_pipeline_bind_map {
2987 unsigned char surface_sha1[20];
2988 unsigned char sampler_sha1[20];
2989 unsigned char push_sha1[20];
2990
2991 uint32_t surface_count;
2992 uint32_t sampler_count;
2993
2994 struct anv_pipeline_binding * surface_to_descriptor;
2995 struct anv_pipeline_binding * sampler_to_descriptor;
2996
2997 struct anv_push_range push_ranges[4];
2998 };
2999
3000 struct anv_shader_bin_key {
3001 uint32_t size;
3002 uint8_t data[0];
3003 };
3004
3005 struct anv_shader_bin {
3006 uint32_t ref_cnt;
3007
3008 const struct anv_shader_bin_key *key;
3009
3010 struct anv_state kernel;
3011 uint32_t kernel_size;
3012
3013 struct anv_state constant_data;
3014 uint32_t constant_data_size;
3015
3016 const struct brw_stage_prog_data *prog_data;
3017 uint32_t prog_data_size;
3018
3019 struct brw_compile_stats stats[3];
3020 uint32_t num_stats;
3021
3022 struct nir_xfb_info *xfb_info;
3023
3024 struct anv_pipeline_bind_map bind_map;
3025 };
3026
3027 struct anv_shader_bin *
3028 anv_shader_bin_create(struct anv_device *device,
3029 const void *key, uint32_t key_size,
3030 const void *kernel, uint32_t kernel_size,
3031 const void *constant_data, uint32_t constant_data_size,
3032 const struct brw_stage_prog_data *prog_data,
3033 uint32_t prog_data_size, const void *prog_data_param,
3034 const struct brw_compile_stats *stats, uint32_t num_stats,
3035 const struct nir_xfb_info *xfb_info,
3036 const struct anv_pipeline_bind_map *bind_map);
3037
3038 void
3039 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3040
3041 static inline void
3042 anv_shader_bin_ref(struct anv_shader_bin *shader)
3043 {
3044 assert(shader && shader->ref_cnt >= 1);
3045 p_atomic_inc(&shader->ref_cnt);
3046 }
3047
3048 static inline void
3049 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3050 {
3051 assert(shader && shader->ref_cnt >= 1);
3052 if (p_atomic_dec_zero(&shader->ref_cnt))
3053 anv_shader_bin_destroy(device, shader);
3054 }
3055
3056 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
3057 #define MAX_PIPELINE_EXECUTABLES 7
3058
3059 struct anv_pipeline_executable {
3060 gl_shader_stage stage;
3061
3062 struct brw_compile_stats stats;
3063
3064 char *nir;
3065 char *disasm;
3066 };
3067
3068 struct anv_pipeline {
3069 struct anv_device * device;
3070 struct anv_batch batch;
3071 uint32_t batch_data[512];
3072 struct anv_reloc_list batch_relocs;
3073 anv_cmd_dirty_mask_t dynamic_state_mask;
3074 struct anv_dynamic_state dynamic_state;
3075
3076 void * mem_ctx;
3077
3078 VkPipelineCreateFlags flags;
3079 struct anv_subpass * subpass;
3080
3081 bool needs_data_cache;
3082
3083 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3084
3085 uint32_t num_executables;
3086 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
3087
3088 struct {
3089 const struct gen_l3_config * l3_config;
3090 uint32_t total_size;
3091 } urb;
3092
3093 VkShaderStageFlags active_stages;
3094 struct anv_state blend_state;
3095
3096 uint32_t vb_used;
3097 struct anv_pipeline_vertex_binding {
3098 uint32_t stride;
3099 bool instanced;
3100 uint32_t instance_divisor;
3101 } vb[MAX_VBS];
3102
3103 uint8_t xfb_used;
3104
3105 bool primitive_restart;
3106 uint32_t topology;
3107
3108 uint32_t cs_right_mask;
3109
3110 bool writes_depth;
3111 bool depth_test_enable;
3112 bool writes_stencil;
3113 bool stencil_test_enable;
3114 bool depth_clamp_enable;
3115 bool depth_clip_enable;
3116 bool sample_shading_enable;
3117 bool kill_pixel;
3118 bool depth_bounds_test_enable;
3119
3120 struct {
3121 uint32_t sf[7];
3122 uint32_t depth_stencil_state[3];
3123 } gen7;
3124
3125 struct {
3126 uint32_t sf[4];
3127 uint32_t raster[5];
3128 uint32_t wm_depth_stencil[3];
3129 } gen8;
3130
3131 struct {
3132 uint32_t wm_depth_stencil[4];
3133 } gen9;
3134
3135 uint32_t interface_descriptor_data[8];
3136 };
3137
3138 static inline bool
3139 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3140 gl_shader_stage stage)
3141 {
3142 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3143 }
3144
3145 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3146 static inline const struct brw_##prefix##_prog_data * \
3147 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3148 { \
3149 if (anv_pipeline_has_stage(pipeline, stage)) { \
3150 return (const struct brw_##prefix##_prog_data *) \
3151 pipeline->shaders[stage]->prog_data; \
3152 } else { \
3153 return NULL; \
3154 } \
3155 }
3156
3157 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3158 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3159 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3160 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3161 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3162 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3163
3164 static inline const struct brw_vue_prog_data *
3165 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3166 {
3167 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3168 return &get_gs_prog_data(pipeline)->base;
3169 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3170 return &get_tes_prog_data(pipeline)->base;
3171 else
3172 return &get_vs_prog_data(pipeline)->base;
3173 }
3174
3175 VkResult
3176 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3177 struct anv_pipeline_cache *cache,
3178 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3179 const VkAllocationCallbacks *alloc);
3180
3181 VkResult
3182 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3183 struct anv_pipeline_cache *cache,
3184 const VkComputePipelineCreateInfo *info,
3185 const struct anv_shader_module *module,
3186 const char *entrypoint,
3187 const VkSpecializationInfo *spec_info);
3188
3189 struct anv_format_plane {
3190 enum isl_format isl_format:16;
3191 struct isl_swizzle swizzle;
3192
3193 /* Whether this plane contains chroma channels */
3194 bool has_chroma;
3195
3196 /* For downscaling of YUV planes */
3197 uint8_t denominator_scales[2];
3198
3199 /* How to map sampled ycbcr planes to a single 4 component element. */
3200 struct isl_swizzle ycbcr_swizzle;
3201
3202 /* What aspect is associated to this plane */
3203 VkImageAspectFlags aspect;
3204 };
3205
3206
3207 struct anv_format {
3208 struct anv_format_plane planes[3];
3209 VkFormat vk_format;
3210 uint8_t n_planes;
3211 bool can_ycbcr;
3212 };
3213
3214 static inline uint32_t
3215 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3216 VkImageAspectFlags aspect_mask)
3217 {
3218 switch (aspect_mask) {
3219 case VK_IMAGE_ASPECT_COLOR_BIT:
3220 case VK_IMAGE_ASPECT_DEPTH_BIT:
3221 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3222 return 0;
3223 case VK_IMAGE_ASPECT_STENCIL_BIT:
3224 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3225 return 0;
3226 /* Fall-through */
3227 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3228 return 1;
3229 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3230 return 2;
3231 default:
3232 /* Purposefully assert with depth/stencil aspects. */
3233 unreachable("invalid image aspect");
3234 }
3235 }
3236
3237 static inline VkImageAspectFlags
3238 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3239 uint32_t plane)
3240 {
3241 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3242 if (util_bitcount(image_aspects) > 1)
3243 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3244 return VK_IMAGE_ASPECT_COLOR_BIT;
3245 }
3246 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3247 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3248 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3249 return VK_IMAGE_ASPECT_STENCIL_BIT;
3250 }
3251
3252 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3253 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3254
3255 const struct anv_format *
3256 anv_get_format(VkFormat format);
3257
3258 static inline uint32_t
3259 anv_get_format_planes(VkFormat vk_format)
3260 {
3261 const struct anv_format *format = anv_get_format(vk_format);
3262
3263 return format != NULL ? format->n_planes : 0;
3264 }
3265
3266 struct anv_format_plane
3267 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3268 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3269
3270 static inline enum isl_format
3271 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3272 VkImageAspectFlags aspect, VkImageTiling tiling)
3273 {
3274 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3275 }
3276
3277 static inline struct isl_swizzle
3278 anv_swizzle_for_render(struct isl_swizzle swizzle)
3279 {
3280 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3281 * RGB as RGBA for texturing
3282 */
3283 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3284 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3285
3286 /* But it doesn't matter what we render to that channel */
3287 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3288
3289 return swizzle;
3290 }
3291
3292 void
3293 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3294
3295 /**
3296 * Subsurface of an anv_image.
3297 */
3298 struct anv_surface {
3299 /** Valid only if isl_surf::size_B > 0. */
3300 struct isl_surf isl;
3301
3302 /**
3303 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3304 */
3305 uint32_t offset;
3306 };
3307
3308 struct anv_image {
3309 VkImageType type; /**< VkImageCreateInfo::imageType */
3310 /* The original VkFormat provided by the client. This may not match any
3311 * of the actual surface formats.
3312 */
3313 VkFormat vk_format;
3314 const struct anv_format *format;
3315
3316 VkImageAspectFlags aspects;
3317 VkExtent3D extent;
3318 uint32_t levels;
3319 uint32_t array_size;
3320 uint32_t samples; /**< VkImageCreateInfo::samples */
3321 uint32_t n_planes;
3322 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3323 VkImageUsageFlags stencil_usage;
3324 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3325 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3326
3327 /** True if this is needs to be bound to an appropriately tiled BO.
3328 *
3329 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3330 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3331 * we require a dedicated allocation so that we can know to allocate a
3332 * tiled buffer.
3333 */
3334 bool needs_set_tiling;
3335
3336 /**
3337 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3338 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3339 */
3340 uint64_t drm_format_mod;
3341
3342 VkDeviceSize size;
3343 uint32_t alignment;
3344
3345 /* Whether the image is made of several underlying buffer objects rather a
3346 * single one with different offsets.
3347 */
3348 bool disjoint;
3349
3350 /* All the formats that can be used when creating views of this image
3351 * are CCS_E compatible.
3352 */
3353 bool ccs_e_compatible;
3354
3355 /* Image was created with external format. */
3356 bool external_format;
3357
3358 /**
3359 * Image subsurfaces
3360 *
3361 * For each foo, anv_image::planes[x].surface is valid if and only if
3362 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3363 * to figure the number associated with a given aspect.
3364 *
3365 * The hardware requires that the depth buffer and stencil buffer be
3366 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3367 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3368 * allocate the depth and stencil buffers as separate surfaces in the same
3369 * bo.
3370 *
3371 * Memory layout :
3372 *
3373 * -----------------------
3374 * | surface0 | /|\
3375 * ----------------------- |
3376 * | shadow surface0 | |
3377 * ----------------------- | Plane 0
3378 * | aux surface0 | |
3379 * ----------------------- |
3380 * | fast clear colors0 | \|/
3381 * -----------------------
3382 * | surface1 | /|\
3383 * ----------------------- |
3384 * | shadow surface1 | |
3385 * ----------------------- | Plane 1
3386 * | aux surface1 | |
3387 * ----------------------- |
3388 * | fast clear colors1 | \|/
3389 * -----------------------
3390 * | ... |
3391 * | |
3392 * -----------------------
3393 */
3394 struct {
3395 /**
3396 * Offset of the entire plane (whenever the image is disjoint this is
3397 * set to 0).
3398 */
3399 uint32_t offset;
3400
3401 VkDeviceSize size;
3402 uint32_t alignment;
3403
3404 struct anv_surface surface;
3405
3406 /**
3407 * A surface which shadows the main surface and may have different
3408 * tiling. This is used for sampling using a tiling that isn't supported
3409 * for other operations.
3410 */
3411 struct anv_surface shadow_surface;
3412
3413 /**
3414 * For color images, this is the aux usage for this image when not used
3415 * as a color attachment.
3416 *
3417 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3418 * image has a HiZ buffer.
3419 */
3420 enum isl_aux_usage aux_usage;
3421
3422 struct anv_surface aux_surface;
3423
3424 /**
3425 * Offset of the fast clear state (used to compute the
3426 * fast_clear_state_offset of the following planes).
3427 */
3428 uint32_t fast_clear_state_offset;
3429
3430 /**
3431 * BO associated with this plane, set when bound.
3432 */
3433 struct anv_address address;
3434
3435 /**
3436 * Address of the main surface used to fill the aux map table. This is
3437 * used at destruction of the image since the Vulkan spec does not
3438 * guarantee that the address.bo field we still be valid at destruction.
3439 */
3440 uint64_t aux_map_surface_address;
3441
3442 /**
3443 * When destroying the image, also free the bo.
3444 * */
3445 bool bo_is_owned;
3446 } planes[3];
3447 };
3448
3449 /* The ordering of this enum is important */
3450 enum anv_fast_clear_type {
3451 /** Image does not have/support any fast-clear blocks */
3452 ANV_FAST_CLEAR_NONE = 0,
3453 /** Image has/supports fast-clear but only to the default value */
3454 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3455 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3456 ANV_FAST_CLEAR_ANY = 2,
3457 };
3458
3459 /* Returns the number of auxiliary buffer levels attached to an image. */
3460 static inline uint8_t
3461 anv_image_aux_levels(const struct anv_image * const image,
3462 VkImageAspectFlagBits aspect)
3463 {
3464 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3465
3466 /* The Gen12 CCS aux surface is represented with only one level. */
3467 const uint8_t aux_logical_levels =
3468 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3469 image->planes[plane].surface.isl.levels :
3470 image->planes[plane].aux_surface.isl.levels;
3471
3472 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3473 aux_logical_levels : 0;
3474 }
3475
3476 /* Returns the number of auxiliary buffer layers attached to an image. */
3477 static inline uint32_t
3478 anv_image_aux_layers(const struct anv_image * const image,
3479 VkImageAspectFlagBits aspect,
3480 const uint8_t miplevel)
3481 {
3482 assert(image);
3483
3484 /* The miplevel must exist in the main buffer. */
3485 assert(miplevel < image->levels);
3486
3487 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3488 /* There are no layers with auxiliary data because the miplevel has no
3489 * auxiliary data.
3490 */
3491 return 0;
3492 } else {
3493 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3494
3495 /* The Gen12 CCS aux surface is represented with only one layer. */
3496 const struct isl_extent4d *aux_logical_level0_px =
3497 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3498 &image->planes[plane].surface.isl.logical_level0_px :
3499 &image->planes[plane].aux_surface.isl.logical_level0_px;
3500
3501 return MAX2(aux_logical_level0_px->array_len,
3502 aux_logical_level0_px->depth >> miplevel);
3503 }
3504 }
3505
3506 static inline struct anv_address
3507 anv_image_get_clear_color_addr(const struct anv_device *device,
3508 const struct anv_image *image,
3509 VkImageAspectFlagBits aspect)
3510 {
3511 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3512
3513 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3514 return anv_address_add(image->planes[plane].address,
3515 image->planes[plane].fast_clear_state_offset);
3516 }
3517
3518 static inline struct anv_address
3519 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3520 const struct anv_image *image,
3521 VkImageAspectFlagBits aspect)
3522 {
3523 struct anv_address addr =
3524 anv_image_get_clear_color_addr(device, image, aspect);
3525
3526 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3527 device->isl_dev.ss.clear_color_state_size :
3528 device->isl_dev.ss.clear_value_size;
3529 return anv_address_add(addr, clear_color_state_size);
3530 }
3531
3532 static inline struct anv_address
3533 anv_image_get_compression_state_addr(const struct anv_device *device,
3534 const struct anv_image *image,
3535 VkImageAspectFlagBits aspect,
3536 uint32_t level, uint32_t array_layer)
3537 {
3538 assert(level < anv_image_aux_levels(image, aspect));
3539 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3540 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3541 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3542
3543 struct anv_address addr =
3544 anv_image_get_fast_clear_type_addr(device, image, aspect);
3545 addr.offset += 4; /* Go past the fast clear type */
3546
3547 if (image->type == VK_IMAGE_TYPE_3D) {
3548 for (uint32_t l = 0; l < level; l++)
3549 addr.offset += anv_minify(image->extent.depth, l) * 4;
3550 } else {
3551 addr.offset += level * image->array_size * 4;
3552 }
3553 addr.offset += array_layer * 4;
3554
3555 assert(addr.offset <
3556 image->planes[plane].address.offset + image->planes[plane].size);
3557 return addr;
3558 }
3559
3560 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3561 static inline bool
3562 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3563 const struct anv_image *image)
3564 {
3565 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3566 return false;
3567
3568 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3569 * struct. There's documentation which suggests that this feature actually
3570 * reduces performance on BDW, but it has only been observed to help so
3571 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3572 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3573 */
3574 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3575 return false;
3576
3577 return image->samples == 1;
3578 }
3579
3580 static inline bool
3581 anv_image_plane_uses_aux_map(const struct anv_device *device,
3582 const struct anv_image *image,
3583 uint32_t plane)
3584 {
3585 return device->info.has_aux_map &&
3586 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3587 }
3588
3589 void
3590 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3591 const struct anv_image *image,
3592 VkImageAspectFlagBits aspect,
3593 enum isl_aux_usage aux_usage,
3594 uint32_t level,
3595 uint32_t base_layer,
3596 uint32_t layer_count);
3597
3598 void
3599 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3600 const struct anv_image *image,
3601 VkImageAspectFlagBits aspect,
3602 enum isl_aux_usage aux_usage,
3603 enum isl_format format, struct isl_swizzle swizzle,
3604 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3605 VkRect2D area, union isl_color_value clear_color);
3606 void
3607 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3608 const struct anv_image *image,
3609 VkImageAspectFlags aspects,
3610 enum isl_aux_usage depth_aux_usage,
3611 uint32_t level,
3612 uint32_t base_layer, uint32_t layer_count,
3613 VkRect2D area,
3614 float depth_value, uint8_t stencil_value);
3615 void
3616 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3617 const struct anv_image *src_image,
3618 enum isl_aux_usage src_aux_usage,
3619 uint32_t src_level, uint32_t src_base_layer,
3620 const struct anv_image *dst_image,
3621 enum isl_aux_usage dst_aux_usage,
3622 uint32_t dst_level, uint32_t dst_base_layer,
3623 VkImageAspectFlagBits aspect,
3624 uint32_t src_x, uint32_t src_y,
3625 uint32_t dst_x, uint32_t dst_y,
3626 uint32_t width, uint32_t height,
3627 uint32_t layer_count,
3628 enum blorp_filter filter);
3629 void
3630 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3631 const struct anv_image *image,
3632 VkImageAspectFlagBits aspect, uint32_t level,
3633 uint32_t base_layer, uint32_t layer_count,
3634 enum isl_aux_op hiz_op);
3635 void
3636 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3637 const struct anv_image *image,
3638 VkImageAspectFlags aspects,
3639 uint32_t level,
3640 uint32_t base_layer, uint32_t layer_count,
3641 VkRect2D area, uint8_t stencil_value);
3642 void
3643 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3644 const struct anv_image *image,
3645 enum isl_format format,
3646 VkImageAspectFlagBits aspect,
3647 uint32_t base_layer, uint32_t layer_count,
3648 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3649 bool predicate);
3650 void
3651 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3652 const struct anv_image *image,
3653 enum isl_format format,
3654 VkImageAspectFlagBits aspect, uint32_t level,
3655 uint32_t base_layer, uint32_t layer_count,
3656 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3657 bool predicate);
3658
3659 void
3660 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3661 const struct anv_image *image,
3662 VkImageAspectFlagBits aspect,
3663 uint32_t base_level, uint32_t level_count,
3664 uint32_t base_layer, uint32_t layer_count);
3665
3666 enum isl_aux_usage
3667 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3668 const struct anv_image *image,
3669 const VkImageAspectFlagBits aspect,
3670 const VkImageLayout layout);
3671
3672 enum anv_fast_clear_type
3673 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3674 const struct anv_image * const image,
3675 const VkImageAspectFlagBits aspect,
3676 const VkImageLayout layout);
3677
3678 /* This is defined as a macro so that it works for both
3679 * VkImageSubresourceRange and VkImageSubresourceLayers
3680 */
3681 #define anv_get_layerCount(_image, _range) \
3682 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3683 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3684
3685 static inline uint32_t
3686 anv_get_levelCount(const struct anv_image *image,
3687 const VkImageSubresourceRange *range)
3688 {
3689 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3690 image->levels - range->baseMipLevel : range->levelCount;
3691 }
3692
3693 static inline VkImageAspectFlags
3694 anv_image_expand_aspects(const struct anv_image *image,
3695 VkImageAspectFlags aspects)
3696 {
3697 /* If the underlying image has color plane aspects and
3698 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3699 * the underlying image. */
3700 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3701 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3702 return image->aspects;
3703
3704 return aspects;
3705 }
3706
3707 static inline bool
3708 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3709 VkImageAspectFlags aspects2)
3710 {
3711 if (aspects1 == aspects2)
3712 return true;
3713
3714 /* Only 1 color aspects are compatibles. */
3715 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3716 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3717 util_bitcount(aspects1) == util_bitcount(aspects2))
3718 return true;
3719
3720 return false;
3721 }
3722
3723 struct anv_image_view {
3724 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3725
3726 VkImageAspectFlags aspect_mask;
3727 VkFormat vk_format;
3728 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3729
3730 unsigned n_planes;
3731 struct {
3732 uint32_t image_plane;
3733
3734 struct isl_view isl;
3735
3736 /**
3737 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3738 * image layout of SHADER_READ_ONLY_OPTIMAL or
3739 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3740 */
3741 struct anv_surface_state optimal_sampler_surface_state;
3742
3743 /**
3744 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3745 * image layout of GENERAL.
3746 */
3747 struct anv_surface_state general_sampler_surface_state;
3748
3749 /**
3750 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3751 * states for write-only and readable, using the real format for
3752 * write-only and the lowered format for readable.
3753 */
3754 struct anv_surface_state storage_surface_state;
3755 struct anv_surface_state writeonly_storage_surface_state;
3756
3757 struct brw_image_param storage_image_param;
3758 } planes[3];
3759 };
3760
3761 enum anv_image_view_state_flags {
3762 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3763 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3764 };
3765
3766 void anv_image_fill_surface_state(struct anv_device *device,
3767 const struct anv_image *image,
3768 VkImageAspectFlagBits aspect,
3769 const struct isl_view *view,
3770 isl_surf_usage_flags_t view_usage,
3771 enum isl_aux_usage aux_usage,
3772 const union isl_color_value *clear_color,
3773 enum anv_image_view_state_flags flags,
3774 struct anv_surface_state *state_inout,
3775 struct brw_image_param *image_param_out);
3776
3777 struct anv_image_create_info {
3778 const VkImageCreateInfo *vk_info;
3779
3780 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3781 isl_tiling_flags_t isl_tiling_flags;
3782
3783 /** These flags will be added to any derived from VkImageCreateInfo. */
3784 isl_surf_usage_flags_t isl_extra_usage_flags;
3785
3786 uint32_t stride;
3787 bool external_format;
3788 };
3789
3790 VkResult anv_image_create(VkDevice _device,
3791 const struct anv_image_create_info *info,
3792 const VkAllocationCallbacks* alloc,
3793 VkImage *pImage);
3794
3795 const struct anv_surface *
3796 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3797 VkImageAspectFlags aspect_mask);
3798
3799 enum isl_format
3800 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3801
3802 static inline struct VkExtent3D
3803 anv_sanitize_image_extent(const VkImageType imageType,
3804 const struct VkExtent3D imageExtent)
3805 {
3806 switch (imageType) {
3807 case VK_IMAGE_TYPE_1D:
3808 return (VkExtent3D) { imageExtent.width, 1, 1 };
3809 case VK_IMAGE_TYPE_2D:
3810 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3811 case VK_IMAGE_TYPE_3D:
3812 return imageExtent;
3813 default:
3814 unreachable("invalid image type");
3815 }
3816 }
3817
3818 static inline struct VkOffset3D
3819 anv_sanitize_image_offset(const VkImageType imageType,
3820 const struct VkOffset3D imageOffset)
3821 {
3822 switch (imageType) {
3823 case VK_IMAGE_TYPE_1D:
3824 return (VkOffset3D) { imageOffset.x, 0, 0 };
3825 case VK_IMAGE_TYPE_2D:
3826 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3827 case VK_IMAGE_TYPE_3D:
3828 return imageOffset;
3829 default:
3830 unreachable("invalid image type");
3831 }
3832 }
3833
3834 VkFormatFeatureFlags
3835 anv_get_image_format_features(const struct gen_device_info *devinfo,
3836 VkFormat vk_format,
3837 const struct anv_format *anv_format,
3838 VkImageTiling vk_tiling);
3839
3840 void anv_fill_buffer_surface_state(struct anv_device *device,
3841 struct anv_state state,
3842 enum isl_format format,
3843 struct anv_address address,
3844 uint32_t range, uint32_t stride);
3845
3846 static inline void
3847 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3848 const struct anv_attachment_state *att_state,
3849 const struct anv_image_view *iview)
3850 {
3851 const struct isl_format_layout *view_fmtl =
3852 isl_format_get_layout(iview->planes[0].isl.format);
3853
3854 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3855 if (view_fmtl->channels.c.bits) \
3856 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3857
3858 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3859 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3860 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3861 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3862
3863 #undef COPY_CLEAR_COLOR_CHANNEL
3864 }
3865
3866
3867 struct anv_ycbcr_conversion {
3868 const struct anv_format * format;
3869 VkSamplerYcbcrModelConversion ycbcr_model;
3870 VkSamplerYcbcrRange ycbcr_range;
3871 VkComponentSwizzle mapping[4];
3872 VkChromaLocation chroma_offsets[2];
3873 VkFilter chroma_filter;
3874 bool chroma_reconstruction;
3875 };
3876
3877 struct anv_sampler {
3878 uint32_t state[3][4];
3879 uint32_t n_planes;
3880 struct anv_ycbcr_conversion *conversion;
3881
3882 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3883 * and with a 32-byte stride for use as bindless samplers.
3884 */
3885 struct anv_state bindless_state;
3886 };
3887
3888 struct anv_framebuffer {
3889 uint32_t width;
3890 uint32_t height;
3891 uint32_t layers;
3892
3893 uint32_t attachment_count;
3894 struct anv_image_view * attachments[0];
3895 };
3896
3897 struct anv_subpass_attachment {
3898 VkImageUsageFlagBits usage;
3899 uint32_t attachment;
3900 VkImageLayout layout;
3901
3902 /* Used only with attachment containing stencil data. */
3903 VkImageLayout stencil_layout;
3904 };
3905
3906 struct anv_subpass {
3907 uint32_t attachment_count;
3908
3909 /**
3910 * A pointer to all attachment references used in this subpass.
3911 * Only valid if ::attachment_count > 0.
3912 */
3913 struct anv_subpass_attachment * attachments;
3914 uint32_t input_count;
3915 struct anv_subpass_attachment * input_attachments;
3916 uint32_t color_count;
3917 struct anv_subpass_attachment * color_attachments;
3918 struct anv_subpass_attachment * resolve_attachments;
3919
3920 struct anv_subpass_attachment * depth_stencil_attachment;
3921 struct anv_subpass_attachment * ds_resolve_attachment;
3922 VkResolveModeFlagBitsKHR depth_resolve_mode;
3923 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3924
3925 uint32_t view_mask;
3926
3927 /** Subpass has a depth/stencil self-dependency */
3928 bool has_ds_self_dep;
3929
3930 /** Subpass has at least one color resolve attachment */
3931 bool has_color_resolve;
3932 };
3933
3934 static inline unsigned
3935 anv_subpass_view_count(const struct anv_subpass *subpass)
3936 {
3937 return MAX2(1, util_bitcount(subpass->view_mask));
3938 }
3939
3940 struct anv_render_pass_attachment {
3941 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3942 * its members individually.
3943 */
3944 VkFormat format;
3945 uint32_t samples;
3946 VkImageUsageFlags usage;
3947 VkAttachmentLoadOp load_op;
3948 VkAttachmentStoreOp store_op;
3949 VkAttachmentLoadOp stencil_load_op;
3950 VkImageLayout initial_layout;
3951 VkImageLayout final_layout;
3952 VkImageLayout first_subpass_layout;
3953
3954 VkImageLayout stencil_initial_layout;
3955 VkImageLayout stencil_final_layout;
3956
3957 /* The subpass id in which the attachment will be used last. */
3958 uint32_t last_subpass_idx;
3959 };
3960
3961 struct anv_render_pass {
3962 uint32_t attachment_count;
3963 uint32_t subpass_count;
3964 /* An array of subpass_count+1 flushes, one per subpass boundary */
3965 enum anv_pipe_bits * subpass_flushes;
3966 struct anv_render_pass_attachment * attachments;
3967 struct anv_subpass subpasses[0];
3968 };
3969
3970 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3971
3972 struct anv_query_pool {
3973 VkQueryType type;
3974 VkQueryPipelineStatisticFlags pipeline_statistics;
3975 /** Stride between slots, in bytes */
3976 uint32_t stride;
3977 /** Number of slots in this query pool */
3978 uint32_t slots;
3979 struct anv_bo * bo;
3980 };
3981
3982 int anv_get_instance_entrypoint_index(const char *name);
3983 int anv_get_device_entrypoint_index(const char *name);
3984 int anv_get_physical_device_entrypoint_index(const char *name);
3985
3986 const char *anv_get_instance_entry_name(int index);
3987 const char *anv_get_physical_device_entry_name(int index);
3988 const char *anv_get_device_entry_name(int index);
3989
3990 bool
3991 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3992 const struct anv_instance_extension_table *instance);
3993 bool
3994 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
3995 const struct anv_instance_extension_table *instance);
3996 bool
3997 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3998 const struct anv_instance_extension_table *instance,
3999 const struct anv_device_extension_table *device);
4000
4001 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4002 const char *name);
4003
4004 void anv_dump_image_to_ppm(struct anv_device *device,
4005 struct anv_image *image, unsigned miplevel,
4006 unsigned array_layer, VkImageAspectFlagBits aspect,
4007 const char *filename);
4008
4009 enum anv_dump_action {
4010 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4011 };
4012
4013 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4014 void anv_dump_finish(void);
4015
4016 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4017
4018 static inline uint32_t
4019 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4020 {
4021 /* This function must be called from within a subpass. */
4022 assert(cmd_state->pass && cmd_state->subpass);
4023
4024 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4025
4026 /* The id of this subpass shouldn't exceed the number of subpasses in this
4027 * render pass minus 1.
4028 */
4029 assert(subpass_id < cmd_state->pass->subpass_count);
4030 return subpass_id;
4031 }
4032
4033 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4034 void anv_device_perf_init(struct anv_device *device);
4035
4036 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4037 \
4038 static inline struct __anv_type * \
4039 __anv_type ## _from_handle(__VkType _handle) \
4040 { \
4041 return (struct __anv_type *) _handle; \
4042 } \
4043 \
4044 static inline __VkType \
4045 __anv_type ## _to_handle(struct __anv_type *_obj) \
4046 { \
4047 return (__VkType) _obj; \
4048 }
4049
4050 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4051 \
4052 static inline struct __anv_type * \
4053 __anv_type ## _from_handle(__VkType _handle) \
4054 { \
4055 return (struct __anv_type *)(uintptr_t) _handle; \
4056 } \
4057 \
4058 static inline __VkType \
4059 __anv_type ## _to_handle(struct __anv_type *_obj) \
4060 { \
4061 return (__VkType)(uintptr_t) _obj; \
4062 }
4063
4064 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4065 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4066
4067 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4068 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4069 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4070 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4071 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4072
4073 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4074 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4075 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4076 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4077 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4078 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4079 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4080 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4081 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4082 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4083 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4084 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4085 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4086 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4087 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4088 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4089 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4090 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4091 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4092 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4093 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4094 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4095 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4096
4097 /* Gen-specific function declarations */
4098 #ifdef genX
4099 # include "anv_genX.h"
4100 #else
4101 # define genX(x) gen7_##x
4102 # include "anv_genX.h"
4103 # undef genX
4104 # define genX(x) gen75_##x
4105 # include "anv_genX.h"
4106 # undef genX
4107 # define genX(x) gen8_##x
4108 # include "anv_genX.h"
4109 # undef genX
4110 # define genX(x) gen9_##x
4111 # include "anv_genX.h"
4112 # undef genX
4113 # define genX(x) gen10_##x
4114 # include "anv_genX.h"
4115 # undef genX
4116 # define genX(x) gen11_##x
4117 # include "anv_genX.h"
4118 # undef genX
4119 # define genX(x) gen12_##x
4120 # include "anv_genX.h"
4121 # undef genX
4122 #endif
4123
4124 #endif /* ANV_PRIVATE_H */