anv: Fix a relocation race condition
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/macros.h"
53 #include "util/hash_table.h"
54 #include "util/list.h"
55 #include "util/set.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_buffer;
73 struct anv_buffer_view;
74 struct anv_image_view;
75 struct anv_instance;
76
77 struct gen_aux_map_context;
78 struct gen_l3_config;
79 struct gen_perf_config;
80
81 #include <vulkan/vulkan.h>
82 #include <vulkan/vulkan_intel.h>
83 #include <vulkan/vk_icd.h>
84
85 #include "anv_android.h"
86 #include "anv_entrypoints.h"
87 #include "anv_extensions.h"
88 #include "isl/isl.h"
89
90 #include "dev/gen_debug.h"
91 #include "common/intel_log.h"
92 #include "wsi_common.h"
93
94 /* anv Virtual Memory Layout
95 * =========================
96 *
97 * When the anv driver is determining the virtual graphics addresses of memory
98 * objects itself using the softpin mechanism, the following memory ranges
99 * will be used.
100 *
101 * Three special considerations to notice:
102 *
103 * (1) the dynamic state pool is located within the same 4 GiB as the low
104 * heap. This is to work around a VF cache issue described in a comment in
105 * anv_physical_device_init_heaps.
106 *
107 * (2) the binding table pool is located at lower addresses than the surface
108 * state pool, within a 4 GiB range. This allows surface state base addresses
109 * to cover both binding tables (16 bit offsets) and surface states (32 bit
110 * offsets).
111 *
112 * (3) the last 4 GiB of the address space is withheld from the high
113 * heap. Various hardware units will read past the end of an object for
114 * various reasons. This healthy margin prevents reads from wrapping around
115 * 48-bit addresses.
116 */
117 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
118 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
119 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
120 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
121 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
122 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
123 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
124 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
125 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
126 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
127 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
128
129 #define LOW_HEAP_SIZE \
130 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
131 #define DYNAMIC_STATE_POOL_SIZE \
132 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
133 #define BINDING_TABLE_POOL_SIZE \
134 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
135 #define SURFACE_STATE_POOL_SIZE \
136 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
137 #define INSTRUCTION_STATE_POOL_SIZE \
138 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
139
140 /* Allowing different clear colors requires us to perform a depth resolve at
141 * the end of certain render passes. This is because while slow clears store
142 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
143 * See the PRMs for examples describing when additional resolves would be
144 * necessary. To enable fast clears without requiring extra resolves, we set
145 * the clear value to a globally-defined one. We could allow different values
146 * if the user doesn't expect coherent data during or after a render passes
147 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
148 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
149 * 1.0f seems to be the only value used. The only application that doesn't set
150 * this value does so through the usage of an seemingly uninitialized clear
151 * value.
152 */
153 #define ANV_HZ_FC_VAL 1.0f
154
155 #define MAX_VBS 28
156 #define MAX_XFB_BUFFERS 4
157 #define MAX_XFB_STREAMS 4
158 #define MAX_SETS 8
159 #define MAX_RTS 8
160 #define MAX_VIEWPORTS 16
161 #define MAX_SCISSORS 16
162 #define MAX_PUSH_CONSTANTS_SIZE 128
163 #define MAX_DYNAMIC_BUFFERS 16
164 #define MAX_IMAGES 64
165 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
166 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
167 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
168
169 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
170 *
171 * "The surface state model is used when a Binding Table Index (specified
172 * in the message descriptor) of less than 240 is specified. In this model,
173 * the Binding Table Index is used to index into the binding table, and the
174 * binding table entry contains a pointer to the SURFACE_STATE."
175 *
176 * Binding table values above 240 are used for various things in the hardware
177 * such as stateless, stateless with incoherent cache, SLM, and bindless.
178 */
179 #define MAX_BINDING_TABLE_SIZE 240
180
181 /* The kernel relocation API has a limitation of a 32-bit delta value
182 * applied to the address before it is written which, in spite of it being
183 * unsigned, is treated as signed . Because of the way that this maps to
184 * the Vulkan API, we cannot handle an offset into a buffer that does not
185 * fit into a signed 32 bits. The only mechanism we have for dealing with
186 * this at the moment is to limit all VkDeviceMemory objects to a maximum
187 * of 2GB each. The Vulkan spec allows us to do this:
188 *
189 * "Some platforms may have a limit on the maximum size of a single
190 * allocation. For example, certain systems may fail to create
191 * allocations with a size greater than or equal to 4GB. Such a limit is
192 * implementation-dependent, and if such a failure occurs then the error
193 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
194 *
195 * We don't use vk_error here because it's not an error so much as an
196 * indication to the application that the allocation is too large.
197 */
198 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
199
200 #define ANV_SVGS_VB_INDEX MAX_VBS
201 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
202
203 /* We reserve this MI ALU register for the purpose of handling predication.
204 * Other code which uses the MI ALU should leave it alone.
205 */
206 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
207
208 /* For gen12 we set the streamout buffers using 4 separate commands
209 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
210 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
211 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
212 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
213 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
214 * 3DSTATE_SO_BUFFER_INDEX_0.
215 */
216 #define SO_BUFFER_INDEX_0_CMD 0x60
217 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
218
219 static inline uint32_t
220 align_down_npot_u32(uint32_t v, uint32_t a)
221 {
222 return v - (v % a);
223 }
224
225 static inline uint32_t
226 align_u32(uint32_t v, uint32_t a)
227 {
228 assert(a != 0 && a == (a & -a));
229 return (v + a - 1) & ~(a - 1);
230 }
231
232 static inline uint64_t
233 align_u64(uint64_t v, uint64_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline int32_t
240 align_i32(int32_t v, int32_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return (v + a - 1) & ~(a - 1);
244 }
245
246 /** Alignment must be a power of 2. */
247 static inline bool
248 anv_is_aligned(uintmax_t n, uintmax_t a)
249 {
250 assert(a == (a & -a));
251 return (n & (a - 1)) == 0;
252 }
253
254 static inline uint32_t
255 anv_minify(uint32_t n, uint32_t levels)
256 {
257 if (unlikely(n == 0))
258 return 0;
259 else
260 return MAX2(n >> levels, 1);
261 }
262
263 static inline float
264 anv_clamp_f(float f, float min, float max)
265 {
266 assert(min < max);
267
268 if (f > max)
269 return max;
270 else if (f < min)
271 return min;
272 else
273 return f;
274 }
275
276 static inline bool
277 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
278 {
279 if (*inout_mask & clear_mask) {
280 *inout_mask &= ~clear_mask;
281 return true;
282 } else {
283 return false;
284 }
285 }
286
287 static inline union isl_color_value
288 vk_to_isl_color(VkClearColorValue color)
289 {
290 return (union isl_color_value) {
291 .u32 = {
292 color.uint32[0],
293 color.uint32[1],
294 color.uint32[2],
295 color.uint32[3],
296 },
297 };
298 }
299
300 #define for_each_bit(b, dword) \
301 for (uint32_t __dword = (dword); \
302 (b) = __builtin_ffs(__dword) - 1, __dword; \
303 __dword &= ~(1 << (b)))
304
305 #define typed_memcpy(dest, src, count) ({ \
306 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
307 memcpy((dest), (src), (count) * sizeof(*(src))); \
308 })
309
310 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
311 * to be added here in order to utilize mapping in debug/error/perf macros.
312 */
313 #define REPORT_OBJECT_TYPE(o) \
314 __builtin_choose_expr ( \
315 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
316 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
317 __builtin_choose_expr ( \
318 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
319 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
320 __builtin_choose_expr ( \
321 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
322 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
323 __builtin_choose_expr ( \
324 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
325 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
326 __builtin_choose_expr ( \
327 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
328 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
329 __builtin_choose_expr ( \
330 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
331 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
332 __builtin_choose_expr ( \
333 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
334 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), void*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
407 /* The void expression results in a compile-time error \
408 when assigning the result to something. */ \
409 (void)0)))))))))))))))))))))))))))))))
410
411 /* Whenever we generate an error, pass it through this function. Useful for
412 * debugging, where we can break on it. Only call at error site, not when
413 * propagating errors. Might be useful to plug in a stack trace here.
414 */
415
416 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
417 VkDebugReportObjectTypeEXT type, VkResult error,
418 const char *file, int line, const char *format,
419 va_list args);
420
421 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
422 VkDebugReportObjectTypeEXT type, VkResult error,
423 const char *file, int line, const char *format, ...)
424 anv_printflike(7, 8);
425
426 #ifdef DEBUG
427 #define vk_error(error) __vk_errorf(NULL, NULL,\
428 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
429 error, __FILE__, __LINE__, NULL)
430 #define vk_errorv(instance, obj, error, format, args)\
431 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
432 __FILE__, __LINE__, format, args)
433 #define vk_errorf(instance, obj, error, format, ...)\
434 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
435 __FILE__, __LINE__, format, ## __VA_ARGS__)
436 #else
437 #define vk_error(error) error
438 #define vk_errorf(instance, obj, error, format, ...) error
439 #endif
440
441 /**
442 * Warn on ignored extension structs.
443 *
444 * The Vulkan spec requires us to ignore unsupported or unknown structs in
445 * a pNext chain. In debug mode, emitting warnings for ignored structs may
446 * help us discover structs that we should not have ignored.
447 *
448 *
449 * From the Vulkan 1.0.38 spec:
450 *
451 * Any component of the implementation (the loader, any enabled layers,
452 * and drivers) must skip over, without processing (other than reading the
453 * sType and pNext members) any chained structures with sType values not
454 * defined by extensions supported by that component.
455 */
456 #define anv_debug_ignored_stype(sType) \
457 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
458
459 void __anv_perf_warn(struct anv_instance *instance, const void *object,
460 VkDebugReportObjectTypeEXT type, const char *file,
461 int line, const char *format, ...)
462 anv_printflike(6, 7);
463 void anv_loge(const char *format, ...) anv_printflike(1, 2);
464 void anv_loge_v(const char *format, va_list va);
465
466 /**
467 * Print a FINISHME message, including its source location.
468 */
469 #define anv_finishme(format, ...) \
470 do { \
471 static bool reported = false; \
472 if (!reported) { \
473 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
474 ##__VA_ARGS__); \
475 reported = true; \
476 } \
477 } while (0)
478
479 /**
480 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
481 */
482 #define anv_perf_warn(instance, obj, format, ...) \
483 do { \
484 static bool reported = false; \
485 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
486 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
487 format, ##__VA_ARGS__); \
488 reported = true; \
489 } \
490 } while (0)
491
492 /* A non-fatal assert. Useful for debugging. */
493 #ifdef DEBUG
494 #define anv_assert(x) ({ \
495 if (unlikely(!(x))) \
496 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
497 })
498 #else
499 #define anv_assert(x)
500 #endif
501
502 /* A multi-pointer allocator
503 *
504 * When copying data structures from the user (such as a render pass), it's
505 * common to need to allocate data for a bunch of different things. Instead
506 * of doing several allocations and having to handle all of the error checking
507 * that entails, it can be easier to do a single allocation. This struct
508 * helps facilitate that. The intended usage looks like this:
509 *
510 * ANV_MULTIALLOC(ma)
511 * anv_multialloc_add(&ma, &main_ptr, 1);
512 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
513 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
514 *
515 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
516 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
517 */
518 struct anv_multialloc {
519 size_t size;
520 size_t align;
521
522 uint32_t ptr_count;
523 void **ptrs[8];
524 };
525
526 #define ANV_MULTIALLOC_INIT \
527 ((struct anv_multialloc) { 0, })
528
529 #define ANV_MULTIALLOC(_name) \
530 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
531
532 __attribute__((always_inline))
533 static inline void
534 _anv_multialloc_add(struct anv_multialloc *ma,
535 void **ptr, size_t size, size_t align)
536 {
537 size_t offset = align_u64(ma->size, align);
538 ma->size = offset + size;
539 ma->align = MAX2(ma->align, align);
540
541 /* Store the offset in the pointer. */
542 *ptr = (void *)(uintptr_t)offset;
543
544 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
545 ma->ptrs[ma->ptr_count++] = ptr;
546 }
547
548 #define anv_multialloc_add_size(_ma, _ptr, _size) \
549 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
550
551 #define anv_multialloc_add(_ma, _ptr, _count) \
552 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
553
554 __attribute__((always_inline))
555 static inline void *
556 anv_multialloc_alloc(struct anv_multialloc *ma,
557 const VkAllocationCallbacks *alloc,
558 VkSystemAllocationScope scope)
559 {
560 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
561 if (!ptr)
562 return NULL;
563
564 /* Fill out each of the pointers with their final value.
565 *
566 * for (uint32_t i = 0; i < ma->ptr_count; i++)
567 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
568 *
569 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
570 * constant, GCC is incapable of figuring this out and unrolling the loop
571 * so we have to give it a little help.
572 */
573 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
574 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
575 if ((_i) < ma->ptr_count) \
576 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
577 _ANV_MULTIALLOC_UPDATE_POINTER(0);
578 _ANV_MULTIALLOC_UPDATE_POINTER(1);
579 _ANV_MULTIALLOC_UPDATE_POINTER(2);
580 _ANV_MULTIALLOC_UPDATE_POINTER(3);
581 _ANV_MULTIALLOC_UPDATE_POINTER(4);
582 _ANV_MULTIALLOC_UPDATE_POINTER(5);
583 _ANV_MULTIALLOC_UPDATE_POINTER(6);
584 _ANV_MULTIALLOC_UPDATE_POINTER(7);
585 #undef _ANV_MULTIALLOC_UPDATE_POINTER
586
587 return ptr;
588 }
589
590 __attribute__((always_inline))
591 static inline void *
592 anv_multialloc_alloc2(struct anv_multialloc *ma,
593 const VkAllocationCallbacks *parent_alloc,
594 const VkAllocationCallbacks *alloc,
595 VkSystemAllocationScope scope)
596 {
597 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
598 }
599
600 /* Extra ANV-defined BO flags which won't be passed to the kernel */
601 #define ANV_BO_EXTERNAL (1ull << 31)
602 #define ANV_BO_FLAG_MASK (1ull << 31)
603
604 struct anv_bo {
605 uint32_t gem_handle;
606
607 uint32_t refcount;
608
609 /* Index into the current validation list. This is used by the
610 * validation list building alrogithm to track which buffers are already
611 * in the validation list so that we can ensure uniqueness.
612 */
613 uint32_t index;
614
615 /* Last known offset. This value is provided by the kernel when we
616 * execbuf and is used as the presumed offset for the next bunch of
617 * relocations.
618 */
619 uint64_t offset;
620
621 uint64_t size;
622 void *map;
623
624 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
625 uint32_t flags;
626 };
627
628 static inline void
629 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
630 {
631 bo->gem_handle = gem_handle;
632 bo->refcount = 1;
633 bo->index = 0;
634 bo->offset = -1;
635 bo->size = size;
636 bo->map = NULL;
637 bo->flags = 0;
638 }
639
640 /* Represents a lock-free linked list of "free" things. This is used by
641 * both the block pool and the state pools. Unfortunately, in order to
642 * solve the ABA problem, we can't use a single uint32_t head.
643 */
644 union anv_free_list {
645 struct {
646 uint32_t offset;
647
648 /* A simple count that is incremented every time the head changes. */
649 uint32_t count;
650 };
651 /* Make sure it's aligned to 64 bits. This will make atomic operations
652 * faster on 32 bit platforms.
653 */
654 uint64_t u64 __attribute__ ((aligned (8)));
655 };
656
657 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
658
659 struct anv_block_state {
660 union {
661 struct {
662 uint32_t next;
663 uint32_t end;
664 };
665 /* Make sure it's aligned to 64 bits. This will make atomic operations
666 * faster on 32 bit platforms.
667 */
668 uint64_t u64 __attribute__ ((aligned (8)));
669 };
670 };
671
672 #define anv_block_pool_foreach_bo(bo, pool) \
673 for (bo = (pool)->bos; bo != &(pool)->bos[(pool)->nbos]; bo++)
674
675 #define ANV_MAX_BLOCK_POOL_BOS 20
676
677 struct anv_block_pool {
678 struct anv_device *device;
679
680 uint64_t bo_flags;
681
682 struct anv_bo bos[ANV_MAX_BLOCK_POOL_BOS];
683 struct anv_bo *bo;
684 uint32_t nbos;
685
686 uint64_t size;
687
688 /* The address where the start of the pool is pinned. The various bos that
689 * are created as the pool grows will have addresses in the range
690 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
691 */
692 uint64_t start_address;
693
694 /* The offset from the start of the bo to the "center" of the block
695 * pool. Pointers to allocated blocks are given by
696 * bo.map + center_bo_offset + offsets.
697 */
698 uint32_t center_bo_offset;
699
700 /* Current memory map of the block pool. This pointer may or may not
701 * point to the actual beginning of the block pool memory. If
702 * anv_block_pool_alloc_back has ever been called, then this pointer
703 * will point to the "center" position of the buffer and all offsets
704 * (negative or positive) given out by the block pool alloc functions
705 * will be valid relative to this pointer.
706 *
707 * In particular, map == bo.map + center_offset
708 *
709 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
710 * since it will handle the softpin case as well, where this points to NULL.
711 */
712 void *map;
713 int fd;
714
715 /**
716 * Array of mmaps and gem handles owned by the block pool, reclaimed when
717 * the block pool is destroyed.
718 */
719 struct u_vector mmap_cleanups;
720
721 struct anv_block_state state;
722
723 struct anv_block_state back_state;
724 };
725
726 /* Block pools are backed by a fixed-size 1GB memfd */
727 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
728
729 /* The center of the block pool is also the middle of the memfd. This may
730 * change in the future if we decide differently for some reason.
731 */
732 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
733
734 static inline uint32_t
735 anv_block_pool_size(struct anv_block_pool *pool)
736 {
737 return pool->state.end + pool->back_state.end;
738 }
739
740 struct anv_state {
741 int32_t offset;
742 uint32_t alloc_size;
743 void *map;
744 uint32_t idx;
745 };
746
747 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
748
749 struct anv_fixed_size_state_pool {
750 union anv_free_list free_list;
751 struct anv_block_state block;
752 };
753
754 #define ANV_MIN_STATE_SIZE_LOG2 6
755 #define ANV_MAX_STATE_SIZE_LOG2 21
756
757 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
758
759 struct anv_free_entry {
760 uint32_t next;
761 struct anv_state state;
762 };
763
764 struct anv_state_table {
765 struct anv_device *device;
766 int fd;
767 struct anv_free_entry *map;
768 uint32_t size;
769 struct anv_block_state state;
770 struct u_vector cleanups;
771 };
772
773 struct anv_state_pool {
774 struct anv_block_pool block_pool;
775
776 struct anv_state_table table;
777
778 /* The size of blocks which will be allocated from the block pool */
779 uint32_t block_size;
780
781 /** Free list for "back" allocations */
782 union anv_free_list back_alloc_free_list;
783
784 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
785 };
786
787 struct anv_state_stream_block;
788
789 struct anv_state_stream {
790 struct anv_state_pool *state_pool;
791
792 /* The size of blocks to allocate from the state pool */
793 uint32_t block_size;
794
795 /* Current block we're allocating from */
796 struct anv_state block;
797
798 /* Offset into the current block at which to allocate the next state */
799 uint32_t next;
800
801 /* List of all blocks allocated from this pool */
802 struct anv_state_stream_block *block_list;
803 };
804
805 /* The block_pool functions exported for testing only. The block pool should
806 * only be used via a state pool (see below).
807 */
808 VkResult anv_block_pool_init(struct anv_block_pool *pool,
809 struct anv_device *device,
810 uint64_t start_address,
811 uint32_t initial_size,
812 uint64_t bo_flags);
813 void anv_block_pool_finish(struct anv_block_pool *pool);
814 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
815 uint32_t block_size, uint32_t *padding);
816 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
817 uint32_t block_size);
818 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
819
820 VkResult anv_state_pool_init(struct anv_state_pool *pool,
821 struct anv_device *device,
822 uint64_t start_address,
823 uint32_t block_size,
824 uint64_t bo_flags);
825 void anv_state_pool_finish(struct anv_state_pool *pool);
826 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
827 uint32_t state_size, uint32_t alignment);
828 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
829 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
830 void anv_state_stream_init(struct anv_state_stream *stream,
831 struct anv_state_pool *state_pool,
832 uint32_t block_size);
833 void anv_state_stream_finish(struct anv_state_stream *stream);
834 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
835 uint32_t size, uint32_t alignment);
836
837 VkResult anv_state_table_init(struct anv_state_table *table,
838 struct anv_device *device,
839 uint32_t initial_entries);
840 void anv_state_table_finish(struct anv_state_table *table);
841 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
842 uint32_t count);
843 void anv_free_list_push(union anv_free_list *list,
844 struct anv_state_table *table,
845 uint32_t idx, uint32_t count);
846 struct anv_state* anv_free_list_pop(union anv_free_list *list,
847 struct anv_state_table *table);
848
849
850 static inline struct anv_state *
851 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
852 {
853 return &table->map[idx].state;
854 }
855 /**
856 * Implements a pool of re-usable BOs. The interface is identical to that
857 * of block_pool except that each block is its own BO.
858 */
859 struct anv_bo_pool {
860 struct anv_device *device;
861
862 uint64_t bo_flags;
863
864 void *free_list[16];
865 };
866
867 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
868 uint64_t bo_flags);
869 void anv_bo_pool_finish(struct anv_bo_pool *pool);
870 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
871 uint32_t size);
872 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
873
874 struct anv_scratch_bo {
875 bool exists;
876 struct anv_bo bo;
877 };
878
879 struct anv_scratch_pool {
880 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
881 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
882 };
883
884 void anv_scratch_pool_init(struct anv_device *device,
885 struct anv_scratch_pool *pool);
886 void anv_scratch_pool_finish(struct anv_device *device,
887 struct anv_scratch_pool *pool);
888 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
889 struct anv_scratch_pool *pool,
890 gl_shader_stage stage,
891 unsigned per_thread_scratch);
892
893 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
894 struct anv_bo_cache {
895 struct util_sparse_array bo_map;
896 pthread_mutex_t mutex;
897 };
898
899 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
900 void anv_bo_cache_finish(struct anv_bo_cache *cache);
901 VkResult anv_bo_cache_alloc(struct anv_device *device,
902 struct anv_bo_cache *cache,
903 uint64_t size, uint64_t bo_flags,
904 struct anv_bo **bo);
905 VkResult anv_bo_cache_import_host_ptr(struct anv_device *device,
906 struct anv_bo_cache *cache,
907 void *host_ptr, uint32_t size,
908 uint64_t bo_flags, struct anv_bo **bo_out);
909 VkResult anv_bo_cache_import(struct anv_device *device,
910 struct anv_bo_cache *cache,
911 int fd, uint64_t bo_flags,
912 struct anv_bo **bo);
913 VkResult anv_bo_cache_export(struct anv_device *device,
914 struct anv_bo_cache *cache,
915 struct anv_bo *bo_in, int *fd_out);
916 void anv_bo_cache_release(struct anv_device *device,
917 struct anv_bo_cache *cache,
918 struct anv_bo *bo);
919
920 struct anv_memory_type {
921 /* Standard bits passed on to the client */
922 VkMemoryPropertyFlags propertyFlags;
923 uint32_t heapIndex;
924
925 /* Driver-internal book-keeping */
926 VkBufferUsageFlags valid_buffer_usage;
927 };
928
929 struct anv_memory_heap {
930 /* Standard bits passed on to the client */
931 VkDeviceSize size;
932 VkMemoryHeapFlags flags;
933
934 /* Driver-internal book-keeping */
935 uint64_t vma_start;
936 uint64_t vma_size;
937 bool supports_48bit_addresses;
938 VkDeviceSize used;
939 };
940
941 struct anv_physical_device {
942 VK_LOADER_DATA _loader_data;
943
944 struct anv_instance * instance;
945 uint32_t chipset_id;
946 bool no_hw;
947 char path[20];
948 const char * name;
949 struct {
950 uint16_t domain;
951 uint8_t bus;
952 uint8_t device;
953 uint8_t function;
954 } pci_info;
955 struct gen_device_info info;
956 /** Amount of "GPU memory" we want to advertise
957 *
958 * Clearly, this value is bogus since Intel is a UMA architecture. On
959 * gen7 platforms, we are limited by GTT size unless we want to implement
960 * fine-grained tracking and GTT splitting. On Broadwell and above we are
961 * practically unlimited. However, we will never report more than 3/4 of
962 * the total system ram to try and avoid running out of RAM.
963 */
964 bool supports_48bit_addresses;
965 struct brw_compiler * compiler;
966 struct isl_device isl_dev;
967 struct gen_perf_config * perf;
968 int cmd_parser_version;
969 bool has_exec_async;
970 bool has_exec_capture;
971 bool has_exec_fence;
972 bool has_syncobj;
973 bool has_syncobj_wait;
974 bool has_context_priority;
975 bool use_softpin;
976 bool has_context_isolation;
977 bool has_mem_available;
978 bool always_use_bindless;
979
980 /** True if we can access buffers using A64 messages */
981 bool has_a64_buffer_access;
982 /** True if we can use bindless access for images */
983 bool has_bindless_images;
984 /** True if we can use bindless access for samplers */
985 bool has_bindless_samplers;
986
987 struct anv_device_extension_table supported_extensions;
988 struct anv_physical_device_dispatch_table dispatch;
989
990 uint32_t eu_total;
991 uint32_t subslice_total;
992
993 struct {
994 uint32_t type_count;
995 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
996 uint32_t heap_count;
997 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
998 } memory;
999
1000 uint8_t driver_build_sha1[20];
1001 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1002 uint8_t driver_uuid[VK_UUID_SIZE];
1003 uint8_t device_uuid[VK_UUID_SIZE];
1004
1005 struct disk_cache * disk_cache;
1006
1007 struct wsi_device wsi_device;
1008 int local_fd;
1009 int master_fd;
1010 };
1011
1012 struct anv_app_info {
1013 const char* app_name;
1014 uint32_t app_version;
1015 const char* engine_name;
1016 uint32_t engine_version;
1017 uint32_t api_version;
1018 };
1019
1020 struct anv_instance {
1021 VK_LOADER_DATA _loader_data;
1022
1023 VkAllocationCallbacks alloc;
1024
1025 struct anv_app_info app_info;
1026
1027 struct anv_instance_extension_table enabled_extensions;
1028 struct anv_instance_dispatch_table dispatch;
1029 struct anv_device_dispatch_table device_dispatch;
1030
1031 int physicalDeviceCount;
1032 struct anv_physical_device physicalDevice;
1033
1034 bool pipeline_cache_enabled;
1035
1036 struct vk_debug_report_instance debug_report_callbacks;
1037
1038 struct driOptionCache dri_options;
1039 struct driOptionCache available_dri_options;
1040 };
1041
1042 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1043 void anv_finish_wsi(struct anv_physical_device *physical_device);
1044
1045 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1046 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1047 const char *name);
1048
1049 struct anv_queue {
1050 VK_LOADER_DATA _loader_data;
1051
1052 struct anv_device * device;
1053
1054 VkDeviceQueueCreateFlags flags;
1055 };
1056
1057 struct anv_pipeline_cache {
1058 struct anv_device * device;
1059 pthread_mutex_t mutex;
1060
1061 struct hash_table * nir_cache;
1062
1063 struct hash_table * cache;
1064 };
1065
1066 struct nir_xfb_info;
1067 struct anv_pipeline_bind_map;
1068
1069 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1070 struct anv_device *device,
1071 bool cache_enabled);
1072 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1073
1074 struct anv_shader_bin *
1075 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1076 const void *key, uint32_t key_size);
1077 struct anv_shader_bin *
1078 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1079 const void *key_data, uint32_t key_size,
1080 const void *kernel_data, uint32_t kernel_size,
1081 const void *constant_data,
1082 uint32_t constant_data_size,
1083 const struct brw_stage_prog_data *prog_data,
1084 uint32_t prog_data_size,
1085 const struct brw_compile_stats *stats,
1086 uint32_t num_stats,
1087 const struct nir_xfb_info *xfb_info,
1088 const struct anv_pipeline_bind_map *bind_map);
1089
1090 struct anv_shader_bin *
1091 anv_device_search_for_kernel(struct anv_device *device,
1092 struct anv_pipeline_cache *cache,
1093 const void *key_data, uint32_t key_size,
1094 bool *user_cache_bit);
1095
1096 struct anv_shader_bin *
1097 anv_device_upload_kernel(struct anv_device *device,
1098 struct anv_pipeline_cache *cache,
1099 const void *key_data, uint32_t key_size,
1100 const void *kernel_data, uint32_t kernel_size,
1101 const void *constant_data,
1102 uint32_t constant_data_size,
1103 const struct brw_stage_prog_data *prog_data,
1104 uint32_t prog_data_size,
1105 const struct brw_compile_stats *stats,
1106 uint32_t num_stats,
1107 const struct nir_xfb_info *xfb_info,
1108 const struct anv_pipeline_bind_map *bind_map);
1109
1110 struct nir_shader;
1111 struct nir_shader_compiler_options;
1112
1113 struct nir_shader *
1114 anv_device_search_for_nir(struct anv_device *device,
1115 struct anv_pipeline_cache *cache,
1116 const struct nir_shader_compiler_options *nir_options,
1117 unsigned char sha1_key[20],
1118 void *mem_ctx);
1119
1120 void
1121 anv_device_upload_nir(struct anv_device *device,
1122 struct anv_pipeline_cache *cache,
1123 const struct nir_shader *nir,
1124 unsigned char sha1_key[20]);
1125
1126 struct anv_device {
1127 VK_LOADER_DATA _loader_data;
1128
1129 VkAllocationCallbacks alloc;
1130
1131 struct anv_instance * instance;
1132 uint32_t chipset_id;
1133 bool no_hw;
1134 struct gen_device_info info;
1135 struct isl_device isl_dev;
1136 int context_id;
1137 int fd;
1138 bool can_chain_batches;
1139 bool robust_buffer_access;
1140 struct anv_device_extension_table enabled_extensions;
1141 struct anv_device_dispatch_table dispatch;
1142
1143 pthread_mutex_t vma_mutex;
1144 struct util_vma_heap vma_lo;
1145 struct util_vma_heap vma_hi;
1146 uint64_t vma_lo_available;
1147 uint64_t vma_hi_available;
1148
1149 /** List of all anv_device_memory objects */
1150 struct list_head memory_objects;
1151
1152 struct anv_bo_pool batch_bo_pool;
1153
1154 struct anv_bo_cache bo_cache;
1155
1156 struct anv_state_pool dynamic_state_pool;
1157 struct anv_state_pool instruction_state_pool;
1158 struct anv_state_pool binding_table_pool;
1159 struct anv_state_pool surface_state_pool;
1160
1161 struct anv_bo workaround_bo;
1162 struct anv_bo trivial_batch_bo;
1163 struct anv_bo hiz_clear_bo;
1164
1165 struct anv_pipeline_cache default_pipeline_cache;
1166 struct blorp_context blorp;
1167
1168 struct anv_state border_colors;
1169
1170 struct anv_state slice_hash;
1171
1172 struct anv_queue queue;
1173
1174 struct anv_scratch_pool scratch_pool;
1175
1176 uint32_t default_mocs;
1177 uint32_t external_mocs;
1178
1179 pthread_mutex_t mutex;
1180 pthread_cond_t queue_submit;
1181 bool _lost;
1182
1183 struct gen_batch_decode_ctx decoder_ctx;
1184 /*
1185 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1186 * the cmd_buffer's list.
1187 */
1188 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1189
1190 int perf_fd; /* -1 if no opened */
1191 uint64_t perf_metric; /* 0 if unset */
1192
1193 struct gen_aux_map_context *aux_map_ctx;
1194 };
1195
1196 static inline struct anv_state_pool *
1197 anv_binding_table_pool(struct anv_device *device)
1198 {
1199 if (device->instance->physicalDevice.use_softpin)
1200 return &device->binding_table_pool;
1201 else
1202 return &device->surface_state_pool;
1203 }
1204
1205 static inline struct anv_state
1206 anv_binding_table_pool_alloc(struct anv_device *device) {
1207 if (device->instance->physicalDevice.use_softpin)
1208 return anv_state_pool_alloc(&device->binding_table_pool,
1209 device->binding_table_pool.block_size, 0);
1210 else
1211 return anv_state_pool_alloc_back(&device->surface_state_pool);
1212 }
1213
1214 static inline void
1215 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1216 anv_state_pool_free(anv_binding_table_pool(device), state);
1217 }
1218
1219 static inline uint32_t
1220 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1221 {
1222 if (bo->flags & ANV_BO_EXTERNAL)
1223 return device->external_mocs;
1224 else
1225 return device->default_mocs;
1226 }
1227
1228 void anv_device_init_blorp(struct anv_device *device);
1229 void anv_device_finish_blorp(struct anv_device *device);
1230
1231 VkResult _anv_device_set_lost(struct anv_device *device,
1232 const char *file, int line,
1233 const char *msg, ...)
1234 anv_printflike(4, 5);
1235 #define anv_device_set_lost(dev, ...) \
1236 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1237
1238 static inline bool
1239 anv_device_is_lost(struct anv_device *device)
1240 {
1241 return unlikely(device->_lost);
1242 }
1243
1244 VkResult anv_device_execbuf(struct anv_device *device,
1245 struct drm_i915_gem_execbuffer2 *execbuf,
1246 struct anv_bo **execbuf_bos);
1247 VkResult anv_device_query_status(struct anv_device *device);
1248 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1249 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1250 int64_t timeout);
1251
1252 void* anv_gem_mmap(struct anv_device *device,
1253 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1254 void anv_gem_munmap(void *p, uint64_t size);
1255 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1256 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1257 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1258 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1259 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1260 int anv_gem_execbuffer(struct anv_device *device,
1261 struct drm_i915_gem_execbuffer2 *execbuf);
1262 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1263 uint32_t stride, uint32_t tiling);
1264 int anv_gem_create_context(struct anv_device *device);
1265 bool anv_gem_has_context_priority(int fd);
1266 int anv_gem_destroy_context(struct anv_device *device, int context);
1267 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1268 uint64_t value);
1269 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1270 uint64_t *value);
1271 int anv_gem_get_param(int fd, uint32_t param);
1272 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1273 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1274 int anv_gem_get_aperture(int fd, uint64_t *size);
1275 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1276 uint32_t *active, uint32_t *pending);
1277 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1278 int anv_gem_reg_read(struct anv_device *device,
1279 uint32_t offset, uint64_t *result);
1280 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1281 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1282 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1283 uint32_t read_domains, uint32_t write_domain);
1284 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1285 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1286 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1287 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1288 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1289 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1290 uint32_t handle);
1291 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1292 uint32_t handle, int fd);
1293 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1294 bool anv_gem_supports_syncobj_wait(int fd);
1295 int anv_gem_syncobj_wait(struct anv_device *device,
1296 uint32_t *handles, uint32_t num_handles,
1297 int64_t abs_timeout_ns, bool wait_all);
1298
1299 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1300 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1301
1302 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1303
1304 struct anv_reloc_list {
1305 uint32_t num_relocs;
1306 uint32_t array_length;
1307 struct drm_i915_gem_relocation_entry * relocs;
1308 struct anv_bo ** reloc_bos;
1309 struct set * deps;
1310 };
1311
1312 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1313 const VkAllocationCallbacks *alloc);
1314 void anv_reloc_list_finish(struct anv_reloc_list *list,
1315 const VkAllocationCallbacks *alloc);
1316
1317 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1318 const VkAllocationCallbacks *alloc,
1319 uint32_t offset, struct anv_bo *target_bo,
1320 uint32_t delta, uint64_t *address_u64_out);
1321
1322 struct anv_batch_bo {
1323 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1324 struct list_head link;
1325
1326 struct anv_bo bo;
1327
1328 /* Bytes actually consumed in this batch BO */
1329 uint32_t length;
1330
1331 struct anv_reloc_list relocs;
1332 };
1333
1334 struct anv_batch {
1335 const VkAllocationCallbacks * alloc;
1336
1337 void * start;
1338 void * end;
1339 void * next;
1340
1341 struct anv_reloc_list * relocs;
1342
1343 /* This callback is called (with the associated user data) in the event
1344 * that the batch runs out of space.
1345 */
1346 VkResult (*extend_cb)(struct anv_batch *, void *);
1347 void * user_data;
1348
1349 /**
1350 * Current error status of the command buffer. Used to track inconsistent
1351 * or incomplete command buffer states that are the consequence of run-time
1352 * errors such as out of memory scenarios. We want to track this in the
1353 * batch because the command buffer object is not visible to some parts
1354 * of the driver.
1355 */
1356 VkResult status;
1357 };
1358
1359 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1360 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1361 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1362 void *location, struct anv_bo *bo, uint32_t offset);
1363 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1364 struct anv_batch *batch);
1365
1366 static inline VkResult
1367 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1368 {
1369 assert(error != VK_SUCCESS);
1370 if (batch->status == VK_SUCCESS)
1371 batch->status = error;
1372 return batch->status;
1373 }
1374
1375 static inline bool
1376 anv_batch_has_error(struct anv_batch *batch)
1377 {
1378 return batch->status != VK_SUCCESS;
1379 }
1380
1381 struct anv_address {
1382 struct anv_bo *bo;
1383 uint32_t offset;
1384 };
1385
1386 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1387
1388 static inline bool
1389 anv_address_is_null(struct anv_address addr)
1390 {
1391 return addr.bo == NULL && addr.offset == 0;
1392 }
1393
1394 static inline uint64_t
1395 anv_address_physical(struct anv_address addr)
1396 {
1397 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1398 return gen_canonical_address(addr.bo->offset + addr.offset);
1399 else
1400 return gen_canonical_address(addr.offset);
1401 }
1402
1403 static inline struct anv_address
1404 anv_address_add(struct anv_address addr, uint64_t offset)
1405 {
1406 addr.offset += offset;
1407 return addr;
1408 }
1409
1410 static inline void
1411 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1412 {
1413 unsigned reloc_size = 0;
1414 if (device->info.gen >= 8) {
1415 reloc_size = sizeof(uint64_t);
1416 *(uint64_t *)p = gen_canonical_address(v);
1417 } else {
1418 reloc_size = sizeof(uint32_t);
1419 *(uint32_t *)p = v;
1420 }
1421
1422 if (flush && !device->info.has_llc)
1423 gen_flush_range(p, reloc_size);
1424 }
1425
1426 static inline uint64_t
1427 _anv_combine_address(struct anv_batch *batch, void *location,
1428 const struct anv_address address, uint32_t delta)
1429 {
1430 if (address.bo == NULL) {
1431 return address.offset + delta;
1432 } else {
1433 assert(batch->start <= location && location < batch->end);
1434
1435 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1436 }
1437 }
1438
1439 #define __gen_address_type struct anv_address
1440 #define __gen_user_data struct anv_batch
1441 #define __gen_combine_address _anv_combine_address
1442
1443 /* Wrapper macros needed to work around preprocessor argument issues. In
1444 * particular, arguments don't get pre-evaluated if they are concatenated.
1445 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1446 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1447 * We can work around this easily enough with these helpers.
1448 */
1449 #define __anv_cmd_length(cmd) cmd ## _length
1450 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1451 #define __anv_cmd_header(cmd) cmd ## _header
1452 #define __anv_cmd_pack(cmd) cmd ## _pack
1453 #define __anv_reg_num(reg) reg ## _num
1454
1455 #define anv_pack_struct(dst, struc, ...) do { \
1456 struct struc __template = { \
1457 __VA_ARGS__ \
1458 }; \
1459 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1460 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1461 } while (0)
1462
1463 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1464 void *__dst = anv_batch_emit_dwords(batch, n); \
1465 if (__dst) { \
1466 struct cmd __template = { \
1467 __anv_cmd_header(cmd), \
1468 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1469 __VA_ARGS__ \
1470 }; \
1471 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1472 } \
1473 __dst; \
1474 })
1475
1476 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1477 do { \
1478 uint32_t *dw; \
1479 \
1480 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1481 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1482 if (!dw) \
1483 break; \
1484 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1485 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1486 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1487 } while (0)
1488
1489 #define anv_batch_emit(batch, cmd, name) \
1490 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1491 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1492 __builtin_expect(_dst != NULL, 1); \
1493 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1494 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1495 _dst = NULL; \
1496 }))
1497
1498 /* MEMORY_OBJECT_CONTROL_STATE:
1499 * .GraphicsDataTypeGFDT = 0,
1500 * .LLCCacheabilityControlLLCCC = 0,
1501 * .L3CacheabilityControlL3CC = 1,
1502 */
1503 #define GEN7_MOCS 1
1504
1505 /* MEMORY_OBJECT_CONTROL_STATE:
1506 * .LLCeLLCCacheabilityControlLLCCC = 0,
1507 * .L3CacheabilityControlL3CC = 1,
1508 */
1509 #define GEN75_MOCS 1
1510
1511 /* MEMORY_OBJECT_CONTROL_STATE:
1512 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1513 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1514 * .AgeforQUADLRU = 0
1515 */
1516 #define GEN8_MOCS 0x78
1517
1518 /* MEMORY_OBJECT_CONTROL_STATE:
1519 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1520 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1521 * .AgeforQUADLRU = 0
1522 */
1523 #define GEN8_EXTERNAL_MOCS 0x18
1524
1525 /* Skylake: MOCS is now an index into an array of 62 different caching
1526 * configurations programmed by the kernel.
1527 */
1528
1529 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1530 #define GEN9_MOCS (2 << 1)
1531
1532 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1533 #define GEN9_EXTERNAL_MOCS (1 << 1)
1534
1535 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1536 #define GEN10_MOCS GEN9_MOCS
1537 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1538
1539 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1540 #define GEN11_MOCS GEN9_MOCS
1541 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1542
1543 /* TigerLake MOCS */
1544 #define GEN12_MOCS GEN9_MOCS
1545 /* TC=1/LLC Only, LeCC=1/Uncacheable, LRUM=0, L3CC=1/Uncacheable */
1546 #define GEN12_EXTERNAL_MOCS (3 << 1)
1547
1548 struct anv_device_memory {
1549 struct list_head link;
1550
1551 struct anv_bo * bo;
1552 struct anv_memory_type * type;
1553 VkDeviceSize map_size;
1554 void * map;
1555
1556 /* If set, we are holding reference to AHardwareBuffer
1557 * which we must release when memory is freed.
1558 */
1559 struct AHardwareBuffer * ahw;
1560
1561 /* If set, this memory comes from a host pointer. */
1562 void * host_ptr;
1563 };
1564
1565 /**
1566 * Header for Vertex URB Entry (VUE)
1567 */
1568 struct anv_vue_header {
1569 uint32_t Reserved;
1570 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1571 uint32_t ViewportIndex;
1572 float PointWidth;
1573 };
1574
1575 /** Struct representing a sampled image descriptor
1576 *
1577 * This descriptor layout is used for sampled images, bare sampler, and
1578 * combined image/sampler descriptors.
1579 */
1580 struct anv_sampled_image_descriptor {
1581 /** Bindless image handle
1582 *
1583 * This is expected to already be shifted such that the 20-bit
1584 * SURFACE_STATE table index is in the top 20 bits.
1585 */
1586 uint32_t image;
1587
1588 /** Bindless sampler handle
1589 *
1590 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1591 * to the dynamic state base address.
1592 */
1593 uint32_t sampler;
1594 };
1595
1596 struct anv_texture_swizzle_descriptor {
1597 /** Texture swizzle
1598 *
1599 * See also nir_intrinsic_channel_select_intel
1600 */
1601 uint8_t swizzle[4];
1602
1603 /** Unused padding to ensure the struct is a multiple of 64 bits */
1604 uint32_t _pad;
1605 };
1606
1607 /** Struct representing a storage image descriptor */
1608 struct anv_storage_image_descriptor {
1609 /** Bindless image handles
1610 *
1611 * These are expected to already be shifted such that the 20-bit
1612 * SURFACE_STATE table index is in the top 20 bits.
1613 */
1614 uint32_t read_write;
1615 uint32_t write_only;
1616 };
1617
1618 /** Struct representing a address/range descriptor
1619 *
1620 * The fields of this struct correspond directly to the data layout of
1621 * nir_address_format_64bit_bounded_global addresses. The last field is the
1622 * offset in the NIR address so it must be zero so that when you load the
1623 * descriptor you get a pointer to the start of the range.
1624 */
1625 struct anv_address_range_descriptor {
1626 uint64_t address;
1627 uint32_t range;
1628 uint32_t zero;
1629 };
1630
1631 enum anv_descriptor_data {
1632 /** The descriptor contains a BTI reference to a surface state */
1633 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1634 /** The descriptor contains a BTI reference to a sampler state */
1635 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1636 /** The descriptor contains an actual buffer view */
1637 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1638 /** The descriptor contains auxiliary image layout data */
1639 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1640 /** The descriptor contains auxiliary image layout data */
1641 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1642 /** anv_address_range_descriptor with a buffer address and range */
1643 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1644 /** Bindless surface handle */
1645 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1646 /** Storage image handles */
1647 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1648 /** Storage image handles */
1649 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1650 };
1651
1652 struct anv_descriptor_set_binding_layout {
1653 #ifndef NDEBUG
1654 /* The type of the descriptors in this binding */
1655 VkDescriptorType type;
1656 #endif
1657
1658 /* Flags provided when this binding was created */
1659 VkDescriptorBindingFlagsEXT flags;
1660
1661 /* Bitfield representing the type of data this descriptor contains */
1662 enum anv_descriptor_data data;
1663
1664 /* Maximum number of YCbCr texture/sampler planes */
1665 uint8_t max_plane_count;
1666
1667 /* Number of array elements in this binding (or size in bytes for inline
1668 * uniform data)
1669 */
1670 uint16_t array_size;
1671
1672 /* Index into the flattend descriptor set */
1673 uint16_t descriptor_index;
1674
1675 /* Index into the dynamic state array for a dynamic buffer */
1676 int16_t dynamic_offset_index;
1677
1678 /* Index into the descriptor set buffer views */
1679 int16_t buffer_view_index;
1680
1681 /* Offset into the descriptor buffer where this descriptor lives */
1682 uint32_t descriptor_offset;
1683
1684 /* Immutable samplers (or NULL if no immutable samplers) */
1685 struct anv_sampler **immutable_samplers;
1686 };
1687
1688 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1689
1690 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1691 VkDescriptorType type);
1692
1693 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1694 const struct anv_descriptor_set_binding_layout *binding,
1695 bool sampler);
1696
1697 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1698 const struct anv_descriptor_set_binding_layout *binding,
1699 bool sampler);
1700
1701 struct anv_descriptor_set_layout {
1702 /* Descriptor set layouts can be destroyed at almost any time */
1703 uint32_t ref_cnt;
1704
1705 /* Number of bindings in this descriptor set */
1706 uint16_t binding_count;
1707
1708 /* Total size of the descriptor set with room for all array entries */
1709 uint16_t size;
1710
1711 /* Shader stages affected by this descriptor set */
1712 uint16_t shader_stages;
1713
1714 /* Number of buffer views in this descriptor set */
1715 uint16_t buffer_view_count;
1716
1717 /* Number of dynamic offsets used by this descriptor set */
1718 uint16_t dynamic_offset_count;
1719
1720 /* Size of the descriptor buffer for this descriptor set */
1721 uint32_t descriptor_buffer_size;
1722
1723 /* Bindings in this descriptor set */
1724 struct anv_descriptor_set_binding_layout binding[0];
1725 };
1726
1727 static inline void
1728 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1729 {
1730 assert(layout && layout->ref_cnt >= 1);
1731 p_atomic_inc(&layout->ref_cnt);
1732 }
1733
1734 static inline void
1735 anv_descriptor_set_layout_unref(struct anv_device *device,
1736 struct anv_descriptor_set_layout *layout)
1737 {
1738 assert(layout && layout->ref_cnt >= 1);
1739 if (p_atomic_dec_zero(&layout->ref_cnt))
1740 vk_free(&device->alloc, layout);
1741 }
1742
1743 struct anv_descriptor {
1744 VkDescriptorType type;
1745
1746 union {
1747 struct {
1748 VkImageLayout layout;
1749 struct anv_image_view *image_view;
1750 struct anv_sampler *sampler;
1751 };
1752
1753 struct {
1754 struct anv_buffer *buffer;
1755 uint64_t offset;
1756 uint64_t range;
1757 };
1758
1759 struct anv_buffer_view *buffer_view;
1760 };
1761 };
1762
1763 struct anv_descriptor_set {
1764 struct anv_descriptor_pool *pool;
1765 struct anv_descriptor_set_layout *layout;
1766 uint32_t size;
1767
1768 /* State relative to anv_descriptor_pool::bo */
1769 struct anv_state desc_mem;
1770 /* Surface state for the descriptor buffer */
1771 struct anv_state desc_surface_state;
1772
1773 uint32_t buffer_view_count;
1774 struct anv_buffer_view *buffer_views;
1775
1776 /* Link to descriptor pool's desc_sets list . */
1777 struct list_head pool_link;
1778
1779 struct anv_descriptor descriptors[0];
1780 };
1781
1782 struct anv_buffer_view {
1783 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1784 uint64_t range; /**< VkBufferViewCreateInfo::range */
1785
1786 struct anv_address address;
1787
1788 struct anv_state surface_state;
1789 struct anv_state storage_surface_state;
1790 struct anv_state writeonly_storage_surface_state;
1791
1792 struct brw_image_param storage_image_param;
1793 };
1794
1795 struct anv_push_descriptor_set {
1796 struct anv_descriptor_set set;
1797
1798 /* Put this field right behind anv_descriptor_set so it fills up the
1799 * descriptors[0] field. */
1800 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1801
1802 /** True if the descriptor set buffer has been referenced by a draw or
1803 * dispatch command.
1804 */
1805 bool set_used_on_gpu;
1806
1807 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1808 };
1809
1810 struct anv_descriptor_pool {
1811 uint32_t size;
1812 uint32_t next;
1813 uint32_t free_list;
1814
1815 struct anv_bo bo;
1816 struct util_vma_heap bo_heap;
1817
1818 struct anv_state_stream surface_state_stream;
1819 void *surface_state_free_list;
1820
1821 struct list_head desc_sets;
1822
1823 char data[0];
1824 };
1825
1826 enum anv_descriptor_template_entry_type {
1827 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1828 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1829 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1830 };
1831
1832 struct anv_descriptor_template_entry {
1833 /* The type of descriptor in this entry */
1834 VkDescriptorType type;
1835
1836 /* Binding in the descriptor set */
1837 uint32_t binding;
1838
1839 /* Offset at which to write into the descriptor set binding */
1840 uint32_t array_element;
1841
1842 /* Number of elements to write into the descriptor set binding */
1843 uint32_t array_count;
1844
1845 /* Offset into the user provided data */
1846 size_t offset;
1847
1848 /* Stride between elements into the user provided data */
1849 size_t stride;
1850 };
1851
1852 struct anv_descriptor_update_template {
1853 VkPipelineBindPoint bind_point;
1854
1855 /* The descriptor set this template corresponds to. This value is only
1856 * valid if the template was created with the templateType
1857 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1858 */
1859 uint8_t set;
1860
1861 /* Number of entries in this template */
1862 uint32_t entry_count;
1863
1864 /* Entries of the template */
1865 struct anv_descriptor_template_entry entries[0];
1866 };
1867
1868 size_t
1869 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1870
1871 void
1872 anv_descriptor_set_write_image_view(struct anv_device *device,
1873 struct anv_descriptor_set *set,
1874 const VkDescriptorImageInfo * const info,
1875 VkDescriptorType type,
1876 uint32_t binding,
1877 uint32_t element);
1878
1879 void
1880 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1881 struct anv_descriptor_set *set,
1882 VkDescriptorType type,
1883 struct anv_buffer_view *buffer_view,
1884 uint32_t binding,
1885 uint32_t element);
1886
1887 void
1888 anv_descriptor_set_write_buffer(struct anv_device *device,
1889 struct anv_descriptor_set *set,
1890 struct anv_state_stream *alloc_stream,
1891 VkDescriptorType type,
1892 struct anv_buffer *buffer,
1893 uint32_t binding,
1894 uint32_t element,
1895 VkDeviceSize offset,
1896 VkDeviceSize range);
1897 void
1898 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1899 struct anv_descriptor_set *set,
1900 uint32_t binding,
1901 const void *data,
1902 size_t offset,
1903 size_t size);
1904
1905 void
1906 anv_descriptor_set_write_template(struct anv_device *device,
1907 struct anv_descriptor_set *set,
1908 struct anv_state_stream *alloc_stream,
1909 const struct anv_descriptor_update_template *template,
1910 const void *data);
1911
1912 VkResult
1913 anv_descriptor_set_create(struct anv_device *device,
1914 struct anv_descriptor_pool *pool,
1915 struct anv_descriptor_set_layout *layout,
1916 struct anv_descriptor_set **out_set);
1917
1918 void
1919 anv_descriptor_set_destroy(struct anv_device *device,
1920 struct anv_descriptor_pool *pool,
1921 struct anv_descriptor_set *set);
1922
1923 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
1924 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
1925 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
1926 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1927
1928 struct anv_pipeline_binding {
1929 /* The descriptor set this surface corresponds to. The special value of
1930 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1931 * to a color attachment and not a regular descriptor.
1932 */
1933 uint8_t set;
1934
1935 /* Binding in the descriptor set */
1936 uint32_t binding;
1937
1938 /* Index in the binding */
1939 uint32_t index;
1940
1941 /* Plane in the binding index */
1942 uint8_t plane;
1943
1944 /* Input attachment index (relative to the subpass) */
1945 uint8_t input_attachment_index;
1946
1947 /* For a storage image, whether it is write-only */
1948 bool write_only;
1949 };
1950
1951 struct anv_pipeline_layout {
1952 struct {
1953 struct anv_descriptor_set_layout *layout;
1954 uint32_t dynamic_offset_start;
1955 } set[MAX_SETS];
1956
1957 uint32_t num_sets;
1958
1959 unsigned char sha1[20];
1960 };
1961
1962 struct anv_buffer {
1963 struct anv_device * device;
1964 VkDeviceSize size;
1965
1966 VkBufferUsageFlags usage;
1967
1968 /* Set when bound */
1969 struct anv_address address;
1970 };
1971
1972 static inline uint64_t
1973 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1974 {
1975 assert(offset <= buffer->size);
1976 if (range == VK_WHOLE_SIZE) {
1977 return buffer->size - offset;
1978 } else {
1979 assert(range + offset >= range);
1980 assert(range + offset <= buffer->size);
1981 return range;
1982 }
1983 }
1984
1985 enum anv_cmd_dirty_bits {
1986 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1987 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1988 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1989 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1990 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1991 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1992 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1993 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1994 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1995 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1996 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1997 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1998 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
1999 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2000 };
2001 typedef uint32_t anv_cmd_dirty_mask_t;
2002
2003 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2004 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2005 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2006 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2007 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2008 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2009 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2010 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2011 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2012 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2013 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2014
2015 static inline enum anv_cmd_dirty_bits
2016 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2017 {
2018 switch (vk_state) {
2019 case VK_DYNAMIC_STATE_VIEWPORT:
2020 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2021 case VK_DYNAMIC_STATE_SCISSOR:
2022 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2023 case VK_DYNAMIC_STATE_LINE_WIDTH:
2024 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2025 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2026 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2027 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2028 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2029 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2030 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2031 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2032 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2033 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2034 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2035 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2036 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2037 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2038 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2039 default:
2040 assert(!"Unsupported dynamic state");
2041 return 0;
2042 }
2043 }
2044
2045
2046 enum anv_pipe_bits {
2047 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2048 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2049 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2050 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2051 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2052 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2053 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2054 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2055 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2056 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2057 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2058 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2059
2060 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2061 * a flush has happened but not a CS stall. The next time we do any sort
2062 * of invalidation we need to insert a CS stall at that time. Otherwise,
2063 * we would have to CS stall on every flush which could be bad.
2064 */
2065 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2066
2067 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2068 * target operations related to transfer commands with VkBuffer as
2069 * destination are ongoing. Some operations like copies on the command
2070 * streamer might need to be aware of this to trigger the appropriate stall
2071 * before they can proceed with the copy.
2072 */
2073 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2074 };
2075
2076 #define ANV_PIPE_FLUSH_BITS ( \
2077 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2078 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2079 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2080 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2081
2082 #define ANV_PIPE_STALL_BITS ( \
2083 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2084 ANV_PIPE_DEPTH_STALL_BIT | \
2085 ANV_PIPE_CS_STALL_BIT)
2086
2087 #define ANV_PIPE_INVALIDATE_BITS ( \
2088 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2089 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2090 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2091 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2092 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2093 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2094
2095 static inline enum anv_pipe_bits
2096 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2097 {
2098 enum anv_pipe_bits pipe_bits = 0;
2099
2100 unsigned b;
2101 for_each_bit(b, flags) {
2102 switch ((VkAccessFlagBits)(1 << b)) {
2103 case VK_ACCESS_SHADER_WRITE_BIT:
2104 /* We're transitioning a buffer that was previously used as write
2105 * destination through the data port. To make its content available
2106 * to future operations, flush the data cache.
2107 */
2108 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2109 break;
2110 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2111 /* We're transitioning a buffer that was previously used as render
2112 * target. To make its content available to future operations, flush
2113 * the render target cache.
2114 */
2115 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2116 break;
2117 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2118 /* We're transitioning a buffer that was previously used as depth
2119 * buffer. To make its content available to future operations, flush
2120 * the depth cache.
2121 */
2122 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2123 break;
2124 case VK_ACCESS_TRANSFER_WRITE_BIT:
2125 /* We're transitioning a buffer that was previously used as a
2126 * transfer write destination. Generic write operations include color
2127 * & depth operations as well as buffer operations like :
2128 * - vkCmdClearColorImage()
2129 * - vkCmdClearDepthStencilImage()
2130 * - vkCmdBlitImage()
2131 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2132 *
2133 * Most of these operations are implemented using Blorp which writes
2134 * through the render target, so flush that cache to make it visible
2135 * to future operations. And for depth related operations we also
2136 * need to flush the depth cache.
2137 */
2138 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2139 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2140 break;
2141 case VK_ACCESS_MEMORY_WRITE_BIT:
2142 /* We're transitioning a buffer for generic write operations. Flush
2143 * all the caches.
2144 */
2145 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2146 break;
2147 default:
2148 break; /* Nothing to do */
2149 }
2150 }
2151
2152 return pipe_bits;
2153 }
2154
2155 static inline enum anv_pipe_bits
2156 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2157 {
2158 enum anv_pipe_bits pipe_bits = 0;
2159
2160 unsigned b;
2161 for_each_bit(b, flags) {
2162 switch ((VkAccessFlagBits)(1 << b)) {
2163 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2164 /* Indirect draw commands take a buffer as input that we're going to
2165 * read from the command streamer to load some of the HW registers
2166 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2167 * command streamer stall so that all the cache flushes have
2168 * completed before the command streamer loads from memory.
2169 */
2170 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2171 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2172 * through a vertex buffer, so invalidate that cache.
2173 */
2174 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2175 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2176 * UBO from the buffer, so we need to invalidate constant cache.
2177 */
2178 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2179 break;
2180 case VK_ACCESS_INDEX_READ_BIT:
2181 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2182 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2183 * commands, so we invalidate the VF cache to make sure there is no
2184 * stale data when we start rendering.
2185 */
2186 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2187 break;
2188 case VK_ACCESS_UNIFORM_READ_BIT:
2189 /* We transitioning a buffer to be used as uniform data. Because
2190 * uniform is accessed through the data port & sampler, we need to
2191 * invalidate the texture cache (sampler) & constant cache (data
2192 * port) to avoid stale data.
2193 */
2194 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2195 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2196 break;
2197 case VK_ACCESS_SHADER_READ_BIT:
2198 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2199 case VK_ACCESS_TRANSFER_READ_BIT:
2200 /* Transitioning a buffer to be read through the sampler, so
2201 * invalidate the texture cache, we don't want any stale data.
2202 */
2203 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2204 break;
2205 case VK_ACCESS_MEMORY_READ_BIT:
2206 /* Transitioning a buffer for generic read, invalidate all the
2207 * caches.
2208 */
2209 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2210 break;
2211 case VK_ACCESS_MEMORY_WRITE_BIT:
2212 /* Generic write, make sure all previously written things land in
2213 * memory.
2214 */
2215 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2216 break;
2217 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2218 /* Transitioning a buffer for conditional rendering. We'll load the
2219 * content of this buffer into HW registers using the command
2220 * streamer, so we need to stall the command streamer to make sure
2221 * any in-flight flush operations have completed.
2222 */
2223 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2224 break;
2225 default:
2226 break; /* Nothing to do */
2227 }
2228 }
2229
2230 return pipe_bits;
2231 }
2232
2233 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2234 VK_IMAGE_ASPECT_COLOR_BIT | \
2235 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2236 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2237 VK_IMAGE_ASPECT_PLANE_2_BIT)
2238 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2239 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2240 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2241 VK_IMAGE_ASPECT_PLANE_2_BIT)
2242
2243 struct anv_vertex_binding {
2244 struct anv_buffer * buffer;
2245 VkDeviceSize offset;
2246 };
2247
2248 struct anv_xfb_binding {
2249 struct anv_buffer * buffer;
2250 VkDeviceSize offset;
2251 VkDeviceSize size;
2252 };
2253
2254 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2255 #define ANV_PARAM_IS_PUSH(param) ((uint32_t)(param) >> 16 == 1)
2256 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2257
2258 #define ANV_PARAM_DYN_OFFSET(offset) ((2 << 16) | (uint32_t)(offset))
2259 #define ANV_PARAM_IS_DYN_OFFSET(param) ((uint32_t)(param) >> 16 == 2)
2260 #define ANV_PARAM_DYN_OFFSET_IDX(param) ((param) & 0xffff)
2261
2262 struct anv_push_constants {
2263 /* Push constant data provided by the client through vkPushConstants */
2264 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2265
2266 /* Used for vkCmdDispatchBase */
2267 uint32_t base_work_group_id[3];
2268 };
2269
2270 struct anv_dynamic_state {
2271 struct {
2272 uint32_t count;
2273 VkViewport viewports[MAX_VIEWPORTS];
2274 } viewport;
2275
2276 struct {
2277 uint32_t count;
2278 VkRect2D scissors[MAX_SCISSORS];
2279 } scissor;
2280
2281 float line_width;
2282
2283 struct {
2284 float bias;
2285 float clamp;
2286 float slope;
2287 } depth_bias;
2288
2289 float blend_constants[4];
2290
2291 struct {
2292 float min;
2293 float max;
2294 } depth_bounds;
2295
2296 struct {
2297 uint32_t front;
2298 uint32_t back;
2299 } stencil_compare_mask;
2300
2301 struct {
2302 uint32_t front;
2303 uint32_t back;
2304 } stencil_write_mask;
2305
2306 struct {
2307 uint32_t front;
2308 uint32_t back;
2309 } stencil_reference;
2310
2311 struct {
2312 uint32_t factor;
2313 uint16_t pattern;
2314 } line_stipple;
2315 };
2316
2317 extern const struct anv_dynamic_state default_dynamic_state;
2318
2319 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2320 const struct anv_dynamic_state *src,
2321 uint32_t copy_mask);
2322
2323 struct anv_surface_state {
2324 struct anv_state state;
2325 /** Address of the surface referred to by this state
2326 *
2327 * This address is relative to the start of the BO.
2328 */
2329 struct anv_address address;
2330 /* Address of the aux surface, if any
2331 *
2332 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2333 *
2334 * With the exception of gen8, the bottom 12 bits of this address' offset
2335 * include extra aux information.
2336 */
2337 struct anv_address aux_address;
2338 /* Address of the clear color, if any
2339 *
2340 * This address is relative to the start of the BO.
2341 */
2342 struct anv_address clear_address;
2343 };
2344
2345 /**
2346 * Attachment state when recording a renderpass instance.
2347 *
2348 * The clear value is valid only if there exists a pending clear.
2349 */
2350 struct anv_attachment_state {
2351 enum isl_aux_usage aux_usage;
2352 enum isl_aux_usage input_aux_usage;
2353 struct anv_surface_state color;
2354 struct anv_surface_state input;
2355
2356 VkImageLayout current_layout;
2357 VkImageAspectFlags pending_clear_aspects;
2358 VkImageAspectFlags pending_load_aspects;
2359 bool fast_clear;
2360 VkClearValue clear_value;
2361 bool clear_color_is_zero_one;
2362 bool clear_color_is_zero;
2363
2364 /* When multiview is active, attachments with a renderpass clear
2365 * operation have their respective layers cleared on the first
2366 * subpass that uses them, and only in that subpass. We keep track
2367 * of this using a bitfield to indicate which layers of an attachment
2368 * have not been cleared yet when multiview is active.
2369 */
2370 uint32_t pending_clear_views;
2371 struct anv_image_view * image_view;
2372 };
2373
2374 /** State tracking for particular pipeline bind point
2375 *
2376 * This struct is the base struct for anv_cmd_graphics_state and
2377 * anv_cmd_compute_state. These are used to track state which is bound to a
2378 * particular type of pipeline. Generic state that applies per-stage such as
2379 * binding table offsets and push constants is tracked generically with a
2380 * per-stage array in anv_cmd_state.
2381 */
2382 struct anv_cmd_pipeline_state {
2383 struct anv_pipeline *pipeline;
2384 struct anv_pipeline_layout *layout;
2385
2386 struct anv_descriptor_set *descriptors[MAX_SETS];
2387 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2388
2389 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2390 };
2391
2392 /** State tracking for graphics pipeline
2393 *
2394 * This has anv_cmd_pipeline_state as a base struct to track things which get
2395 * bound to a graphics pipeline. Along with general pipeline bind point state
2396 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2397 * state which is graphics-specific.
2398 */
2399 struct anv_cmd_graphics_state {
2400 struct anv_cmd_pipeline_state base;
2401
2402 anv_cmd_dirty_mask_t dirty;
2403 uint32_t vb_dirty;
2404
2405 struct anv_dynamic_state dynamic;
2406
2407 struct {
2408 struct anv_buffer *index_buffer;
2409 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2410 uint32_t index_offset;
2411 } gen7;
2412 };
2413
2414 /** State tracking for compute pipeline
2415 *
2416 * This has anv_cmd_pipeline_state as a base struct to track things which get
2417 * bound to a compute pipeline. Along with general pipeline bind point state
2418 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2419 * state which is compute-specific.
2420 */
2421 struct anv_cmd_compute_state {
2422 struct anv_cmd_pipeline_state base;
2423
2424 bool pipeline_dirty;
2425
2426 struct anv_address num_workgroups;
2427 };
2428
2429 /** State required while building cmd buffer */
2430 struct anv_cmd_state {
2431 /* PIPELINE_SELECT.PipelineSelection */
2432 uint32_t current_pipeline;
2433 const struct gen_l3_config * current_l3_config;
2434 uint32_t last_aux_map_state;
2435
2436 struct anv_cmd_graphics_state gfx;
2437 struct anv_cmd_compute_state compute;
2438
2439 enum anv_pipe_bits pending_pipe_bits;
2440 VkShaderStageFlags descriptors_dirty;
2441 VkShaderStageFlags push_constants_dirty;
2442
2443 struct anv_framebuffer * framebuffer;
2444 struct anv_render_pass * pass;
2445 struct anv_subpass * subpass;
2446 VkRect2D render_area;
2447 uint32_t restart_index;
2448 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2449 bool xfb_enabled;
2450 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2451 VkShaderStageFlags push_constant_stages;
2452 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2453 struct anv_state binding_tables[MESA_SHADER_STAGES];
2454 struct anv_state samplers[MESA_SHADER_STAGES];
2455
2456 /**
2457 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2458 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2459 * and before invoking the secondary in ExecuteCommands.
2460 */
2461 bool pma_fix_enabled;
2462
2463 /**
2464 * Whether or not we know for certain that HiZ is enabled for the current
2465 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2466 * enabled or not, this will be false.
2467 */
2468 bool hiz_enabled;
2469
2470 bool conditional_render_enabled;
2471
2472 /**
2473 * Last rendering scale argument provided to
2474 * genX(cmd_buffer_emit_hashing_mode)().
2475 */
2476 unsigned current_hash_scale;
2477
2478 /**
2479 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2480 * valid only when recording a render pass instance.
2481 */
2482 struct anv_attachment_state * attachments;
2483
2484 /**
2485 * Surface states for color render targets. These are stored in a single
2486 * flat array. For depth-stencil attachments, the surface state is simply
2487 * left blank.
2488 */
2489 struct anv_state render_pass_states;
2490
2491 /**
2492 * A null surface state of the right size to match the framebuffer. This
2493 * is one of the states in render_pass_states.
2494 */
2495 struct anv_state null_surface_state;
2496 };
2497
2498 struct anv_cmd_pool {
2499 VkAllocationCallbacks alloc;
2500 struct list_head cmd_buffers;
2501 };
2502
2503 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2504
2505 enum anv_cmd_buffer_exec_mode {
2506 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2507 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2508 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2509 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2510 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2511 };
2512
2513 struct anv_cmd_buffer {
2514 VK_LOADER_DATA _loader_data;
2515
2516 struct anv_device * device;
2517
2518 struct anv_cmd_pool * pool;
2519 struct list_head pool_link;
2520
2521 struct anv_batch batch;
2522
2523 /* Fields required for the actual chain of anv_batch_bo's.
2524 *
2525 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2526 */
2527 struct list_head batch_bos;
2528 enum anv_cmd_buffer_exec_mode exec_mode;
2529
2530 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2531 * referenced by this command buffer
2532 *
2533 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2534 */
2535 struct u_vector seen_bbos;
2536
2537 /* A vector of int32_t's for every block of binding tables.
2538 *
2539 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2540 */
2541 struct u_vector bt_block_states;
2542 uint32_t bt_next;
2543
2544 struct anv_reloc_list surface_relocs;
2545 /** Last seen surface state block pool center bo offset */
2546 uint32_t last_ss_pool_center;
2547
2548 /* Serial for tracking buffer completion */
2549 uint32_t serial;
2550
2551 /* Stream objects for storing temporary data */
2552 struct anv_state_stream surface_state_stream;
2553 struct anv_state_stream dynamic_state_stream;
2554
2555 VkCommandBufferUsageFlags usage_flags;
2556 VkCommandBufferLevel level;
2557
2558 struct anv_cmd_state state;
2559
2560 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2561 uint64_t intel_perf_marker;
2562 };
2563
2564 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2565 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2566 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2567 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2568 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2569 struct anv_cmd_buffer *secondary);
2570 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2571 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2572 struct anv_cmd_buffer *cmd_buffer,
2573 const VkSemaphore *in_semaphores,
2574 uint32_t num_in_semaphores,
2575 const VkSemaphore *out_semaphores,
2576 uint32_t num_out_semaphores,
2577 VkFence fence);
2578
2579 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2580
2581 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2582 const void *data, uint32_t size, uint32_t alignment);
2583 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2584 uint32_t *a, uint32_t *b,
2585 uint32_t dwords, uint32_t alignment);
2586
2587 struct anv_address
2588 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2589 struct anv_state
2590 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2591 uint32_t entries, uint32_t *state_offset);
2592 struct anv_state
2593 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2594 struct anv_state
2595 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2596 uint32_t size, uint32_t alignment);
2597
2598 VkResult
2599 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2600
2601 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2602 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2603 bool depth_clamp_enable);
2604 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2605
2606 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2607 struct anv_render_pass *pass,
2608 struct anv_framebuffer *framebuffer,
2609 const VkClearValue *clear_values);
2610
2611 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2612
2613 struct anv_state
2614 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2615 gl_shader_stage stage);
2616 struct anv_state
2617 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2618
2619 const struct anv_image_view *
2620 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2621
2622 VkResult
2623 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2624 uint32_t num_entries,
2625 uint32_t *state_offset,
2626 struct anv_state *bt_state);
2627
2628 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2629
2630 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2631
2632 enum anv_fence_type {
2633 ANV_FENCE_TYPE_NONE = 0,
2634 ANV_FENCE_TYPE_BO,
2635 ANV_FENCE_TYPE_SYNCOBJ,
2636 ANV_FENCE_TYPE_WSI,
2637 };
2638
2639 enum anv_bo_fence_state {
2640 /** Indicates that this is a new (or newly reset fence) */
2641 ANV_BO_FENCE_STATE_RESET,
2642
2643 /** Indicates that this fence has been submitted to the GPU but is still
2644 * (as far as we know) in use by the GPU.
2645 */
2646 ANV_BO_FENCE_STATE_SUBMITTED,
2647
2648 ANV_BO_FENCE_STATE_SIGNALED,
2649 };
2650
2651 struct anv_fence_impl {
2652 enum anv_fence_type type;
2653
2654 union {
2655 /** Fence implementation for BO fences
2656 *
2657 * These fences use a BO and a set of CPU-tracked state flags. The BO
2658 * is added to the object list of the last execbuf call in a QueueSubmit
2659 * and is marked EXEC_WRITE. The state flags track when the BO has been
2660 * submitted to the kernel. We need to do this because Vulkan lets you
2661 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2662 * will say it's idle in this case.
2663 */
2664 struct {
2665 struct anv_bo bo;
2666 enum anv_bo_fence_state state;
2667 } bo;
2668
2669 /** DRM syncobj handle for syncobj-based fences */
2670 uint32_t syncobj;
2671
2672 /** WSI fence */
2673 struct wsi_fence *fence_wsi;
2674 };
2675 };
2676
2677 struct anv_fence {
2678 /* Permanent fence state. Every fence has some form of permanent state
2679 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2680 * cross-process fences) or it could just be a dummy for use internally.
2681 */
2682 struct anv_fence_impl permanent;
2683
2684 /* Temporary fence state. A fence *may* have temporary state. That state
2685 * is added to the fence by an import operation and is reset back to
2686 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2687 * state cannot be signaled because the fence must already be signaled
2688 * before the temporary state can be exported from the fence in the other
2689 * process and imported here.
2690 */
2691 struct anv_fence_impl temporary;
2692 };
2693
2694 struct anv_event {
2695 uint64_t semaphore;
2696 struct anv_state state;
2697 };
2698
2699 enum anv_semaphore_type {
2700 ANV_SEMAPHORE_TYPE_NONE = 0,
2701 ANV_SEMAPHORE_TYPE_DUMMY,
2702 ANV_SEMAPHORE_TYPE_BO,
2703 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2704 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2705 };
2706
2707 struct anv_semaphore_impl {
2708 enum anv_semaphore_type type;
2709
2710 union {
2711 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2712 * This BO will be added to the object list on any execbuf2 calls for
2713 * which this semaphore is used as a wait or signal fence. When used as
2714 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2715 */
2716 struct anv_bo *bo;
2717
2718 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2719 * If the semaphore is in the unsignaled state due to either just being
2720 * created or because it has been used for a wait, fd will be -1.
2721 */
2722 int fd;
2723
2724 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2725 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2726 * import so we don't need to bother with a userspace cache.
2727 */
2728 uint32_t syncobj;
2729 };
2730 };
2731
2732 struct anv_semaphore {
2733 /* Permanent semaphore state. Every semaphore has some form of permanent
2734 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2735 * (for cross-process semaphores0 or it could just be a dummy for use
2736 * internally.
2737 */
2738 struct anv_semaphore_impl permanent;
2739
2740 /* Temporary semaphore state. A semaphore *may* have temporary state.
2741 * That state is added to the semaphore by an import operation and is reset
2742 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2743 * semaphore with temporary state cannot be signaled because the semaphore
2744 * must already be signaled before the temporary state can be exported from
2745 * the semaphore in the other process and imported here.
2746 */
2747 struct anv_semaphore_impl temporary;
2748 };
2749
2750 void anv_semaphore_reset_temporary(struct anv_device *device,
2751 struct anv_semaphore *semaphore);
2752
2753 struct anv_shader_module {
2754 unsigned char sha1[20];
2755 uint32_t size;
2756 char data[0];
2757 };
2758
2759 static inline gl_shader_stage
2760 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2761 {
2762 assert(__builtin_popcount(vk_stage) == 1);
2763 return ffs(vk_stage) - 1;
2764 }
2765
2766 static inline VkShaderStageFlagBits
2767 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2768 {
2769 return (1 << mesa_stage);
2770 }
2771
2772 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2773
2774 #define anv_foreach_stage(stage, stage_bits) \
2775 for (gl_shader_stage stage, \
2776 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2777 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2778 __tmp &= ~(1 << (stage)))
2779
2780 struct anv_pipeline_bind_map {
2781 uint32_t surface_count;
2782 uint32_t sampler_count;
2783
2784 struct anv_pipeline_binding * surface_to_descriptor;
2785 struct anv_pipeline_binding * sampler_to_descriptor;
2786 };
2787
2788 struct anv_shader_bin_key {
2789 uint32_t size;
2790 uint8_t data[0];
2791 };
2792
2793 struct anv_shader_bin {
2794 uint32_t ref_cnt;
2795
2796 const struct anv_shader_bin_key *key;
2797
2798 struct anv_state kernel;
2799 uint32_t kernel_size;
2800
2801 struct anv_state constant_data;
2802 uint32_t constant_data_size;
2803
2804 const struct brw_stage_prog_data *prog_data;
2805 uint32_t prog_data_size;
2806
2807 struct brw_compile_stats stats[3];
2808 uint32_t num_stats;
2809
2810 struct nir_xfb_info *xfb_info;
2811
2812 struct anv_pipeline_bind_map bind_map;
2813 };
2814
2815 struct anv_shader_bin *
2816 anv_shader_bin_create(struct anv_device *device,
2817 const void *key, uint32_t key_size,
2818 const void *kernel, uint32_t kernel_size,
2819 const void *constant_data, uint32_t constant_data_size,
2820 const struct brw_stage_prog_data *prog_data,
2821 uint32_t prog_data_size, const void *prog_data_param,
2822 const struct brw_compile_stats *stats, uint32_t num_stats,
2823 const struct nir_xfb_info *xfb_info,
2824 const struct anv_pipeline_bind_map *bind_map);
2825
2826 void
2827 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2828
2829 static inline void
2830 anv_shader_bin_ref(struct anv_shader_bin *shader)
2831 {
2832 assert(shader && shader->ref_cnt >= 1);
2833 p_atomic_inc(&shader->ref_cnt);
2834 }
2835
2836 static inline void
2837 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2838 {
2839 assert(shader && shader->ref_cnt >= 1);
2840 if (p_atomic_dec_zero(&shader->ref_cnt))
2841 anv_shader_bin_destroy(device, shader);
2842 }
2843
2844 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
2845 #define MAX_PIPELINE_EXECUTABLES 7
2846
2847 struct anv_pipeline_executable {
2848 gl_shader_stage stage;
2849
2850 struct brw_compile_stats stats;
2851
2852 char *nir;
2853 char *disasm;
2854 };
2855
2856 struct anv_pipeline {
2857 struct anv_device * device;
2858 struct anv_batch batch;
2859 uint32_t batch_data[512];
2860 struct anv_reloc_list batch_relocs;
2861 anv_cmd_dirty_mask_t dynamic_state_mask;
2862 struct anv_dynamic_state dynamic_state;
2863
2864 void * mem_ctx;
2865
2866 VkPipelineCreateFlags flags;
2867 struct anv_subpass * subpass;
2868
2869 bool needs_data_cache;
2870
2871 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2872
2873 uint32_t num_executables;
2874 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
2875
2876 struct {
2877 const struct gen_l3_config * l3_config;
2878 uint32_t total_size;
2879 } urb;
2880
2881 VkShaderStageFlags active_stages;
2882 struct anv_state blend_state;
2883
2884 uint32_t vb_used;
2885 struct anv_pipeline_vertex_binding {
2886 uint32_t stride;
2887 bool instanced;
2888 uint32_t instance_divisor;
2889 } vb[MAX_VBS];
2890
2891 uint8_t xfb_used;
2892
2893 bool primitive_restart;
2894 uint32_t topology;
2895
2896 uint32_t cs_right_mask;
2897
2898 bool writes_depth;
2899 bool depth_test_enable;
2900 bool writes_stencil;
2901 bool stencil_test_enable;
2902 bool depth_clamp_enable;
2903 bool depth_clip_enable;
2904 bool sample_shading_enable;
2905 bool kill_pixel;
2906 bool depth_bounds_test_enable;
2907
2908 struct {
2909 uint32_t sf[7];
2910 uint32_t depth_stencil_state[3];
2911 } gen7;
2912
2913 struct {
2914 uint32_t sf[4];
2915 uint32_t raster[5];
2916 uint32_t wm_depth_stencil[3];
2917 } gen8;
2918
2919 struct {
2920 uint32_t wm_depth_stencil[4];
2921 } gen9;
2922
2923 uint32_t interface_descriptor_data[8];
2924 };
2925
2926 static inline bool
2927 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2928 gl_shader_stage stage)
2929 {
2930 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2931 }
2932
2933 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2934 static inline const struct brw_##prefix##_prog_data * \
2935 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2936 { \
2937 if (anv_pipeline_has_stage(pipeline, stage)) { \
2938 return (const struct brw_##prefix##_prog_data *) \
2939 pipeline->shaders[stage]->prog_data; \
2940 } else { \
2941 return NULL; \
2942 } \
2943 }
2944
2945 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2946 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2947 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2948 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2949 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2950 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2951
2952 static inline const struct brw_vue_prog_data *
2953 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2954 {
2955 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2956 return &get_gs_prog_data(pipeline)->base;
2957 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2958 return &get_tes_prog_data(pipeline)->base;
2959 else
2960 return &get_vs_prog_data(pipeline)->base;
2961 }
2962
2963 VkResult
2964 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2965 struct anv_pipeline_cache *cache,
2966 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2967 const VkAllocationCallbacks *alloc);
2968
2969 VkResult
2970 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2971 struct anv_pipeline_cache *cache,
2972 const VkComputePipelineCreateInfo *info,
2973 const struct anv_shader_module *module,
2974 const char *entrypoint,
2975 const VkSpecializationInfo *spec_info);
2976
2977 struct anv_format_plane {
2978 enum isl_format isl_format:16;
2979 struct isl_swizzle swizzle;
2980
2981 /* Whether this plane contains chroma channels */
2982 bool has_chroma;
2983
2984 /* For downscaling of YUV planes */
2985 uint8_t denominator_scales[2];
2986
2987 /* How to map sampled ycbcr planes to a single 4 component element. */
2988 struct isl_swizzle ycbcr_swizzle;
2989
2990 /* What aspect is associated to this plane */
2991 VkImageAspectFlags aspect;
2992 };
2993
2994
2995 struct anv_format {
2996 struct anv_format_plane planes[3];
2997 VkFormat vk_format;
2998 uint8_t n_planes;
2999 bool can_ycbcr;
3000 };
3001
3002 static inline uint32_t
3003 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3004 VkImageAspectFlags aspect_mask)
3005 {
3006 switch (aspect_mask) {
3007 case VK_IMAGE_ASPECT_COLOR_BIT:
3008 case VK_IMAGE_ASPECT_DEPTH_BIT:
3009 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3010 return 0;
3011 case VK_IMAGE_ASPECT_STENCIL_BIT:
3012 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3013 return 0;
3014 /* Fall-through */
3015 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3016 return 1;
3017 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3018 return 2;
3019 default:
3020 /* Purposefully assert with depth/stencil aspects. */
3021 unreachable("invalid image aspect");
3022 }
3023 }
3024
3025 static inline VkImageAspectFlags
3026 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3027 uint32_t plane)
3028 {
3029 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3030 if (util_bitcount(image_aspects) > 1)
3031 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3032 return VK_IMAGE_ASPECT_COLOR_BIT;
3033 }
3034 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3035 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3036 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3037 return VK_IMAGE_ASPECT_STENCIL_BIT;
3038 }
3039
3040 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3041 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3042
3043 const struct anv_format *
3044 anv_get_format(VkFormat format);
3045
3046 static inline uint32_t
3047 anv_get_format_planes(VkFormat vk_format)
3048 {
3049 const struct anv_format *format = anv_get_format(vk_format);
3050
3051 return format != NULL ? format->n_planes : 0;
3052 }
3053
3054 struct anv_format_plane
3055 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3056 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3057
3058 static inline enum isl_format
3059 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3060 VkImageAspectFlags aspect, VkImageTiling tiling)
3061 {
3062 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3063 }
3064
3065 static inline struct isl_swizzle
3066 anv_swizzle_for_render(struct isl_swizzle swizzle)
3067 {
3068 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3069 * RGB as RGBA for texturing
3070 */
3071 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3072 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3073
3074 /* But it doesn't matter what we render to that channel */
3075 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3076
3077 return swizzle;
3078 }
3079
3080 void
3081 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3082
3083 /**
3084 * Subsurface of an anv_image.
3085 */
3086 struct anv_surface {
3087 /** Valid only if isl_surf::size_B > 0. */
3088 struct isl_surf isl;
3089
3090 /**
3091 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3092 */
3093 uint32_t offset;
3094 };
3095
3096 struct anv_image {
3097 VkImageType type; /**< VkImageCreateInfo::imageType */
3098 /* The original VkFormat provided by the client. This may not match any
3099 * of the actual surface formats.
3100 */
3101 VkFormat vk_format;
3102 const struct anv_format *format;
3103
3104 VkImageAspectFlags aspects;
3105 VkExtent3D extent;
3106 uint32_t levels;
3107 uint32_t array_size;
3108 uint32_t samples; /**< VkImageCreateInfo::samples */
3109 uint32_t n_planes;
3110 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3111 VkImageUsageFlags stencil_usage;
3112 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3113 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3114
3115 /** True if this is needs to be bound to an appropriately tiled BO.
3116 *
3117 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3118 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3119 * we require a dedicated allocation so that we can know to allocate a
3120 * tiled buffer.
3121 */
3122 bool needs_set_tiling;
3123
3124 /**
3125 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3126 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3127 */
3128 uint64_t drm_format_mod;
3129
3130 VkDeviceSize size;
3131 uint32_t alignment;
3132
3133 /* Whether the image is made of several underlying buffer objects rather a
3134 * single one with different offsets.
3135 */
3136 bool disjoint;
3137
3138 /* All the formats that can be used when creating views of this image
3139 * are CCS_E compatible.
3140 */
3141 bool ccs_e_compatible;
3142
3143 /* Image was created with external format. */
3144 bool external_format;
3145
3146 /**
3147 * Image subsurfaces
3148 *
3149 * For each foo, anv_image::planes[x].surface is valid if and only if
3150 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3151 * to figure the number associated with a given aspect.
3152 *
3153 * The hardware requires that the depth buffer and stencil buffer be
3154 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3155 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3156 * allocate the depth and stencil buffers as separate surfaces in the same
3157 * bo.
3158 *
3159 * Memory layout :
3160 *
3161 * -----------------------
3162 * | surface0 | /|\
3163 * ----------------------- |
3164 * | shadow surface0 | |
3165 * ----------------------- | Plane 0
3166 * | aux surface0 | |
3167 * ----------------------- |
3168 * | fast clear colors0 | \|/
3169 * -----------------------
3170 * | surface1 | /|\
3171 * ----------------------- |
3172 * | shadow surface1 | |
3173 * ----------------------- | Plane 1
3174 * | aux surface1 | |
3175 * ----------------------- |
3176 * | fast clear colors1 | \|/
3177 * -----------------------
3178 * | ... |
3179 * | |
3180 * -----------------------
3181 */
3182 struct {
3183 /**
3184 * Offset of the entire plane (whenever the image is disjoint this is
3185 * set to 0).
3186 */
3187 uint32_t offset;
3188
3189 VkDeviceSize size;
3190 uint32_t alignment;
3191
3192 struct anv_surface surface;
3193
3194 /**
3195 * A surface which shadows the main surface and may have different
3196 * tiling. This is used for sampling using a tiling that isn't supported
3197 * for other operations.
3198 */
3199 struct anv_surface shadow_surface;
3200
3201 /**
3202 * For color images, this is the aux usage for this image when not used
3203 * as a color attachment.
3204 *
3205 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3206 * image has a HiZ buffer.
3207 */
3208 enum isl_aux_usage aux_usage;
3209
3210 struct anv_surface aux_surface;
3211
3212 /**
3213 * Offset of the fast clear state (used to compute the
3214 * fast_clear_state_offset of the following planes).
3215 */
3216 uint32_t fast_clear_state_offset;
3217
3218 /**
3219 * BO associated with this plane, set when bound.
3220 */
3221 struct anv_address address;
3222
3223 /**
3224 * Address of the main surface used to fill the aux map table. This is
3225 * used at destruction of the image since the Vulkan spec does not
3226 * guarantee that the address.bo field we still be valid at destruction.
3227 */
3228 uint64_t aux_map_surface_address;
3229
3230 /**
3231 * When destroying the image, also free the bo.
3232 * */
3233 bool bo_is_owned;
3234 } planes[3];
3235 };
3236
3237 /* The ordering of this enum is important */
3238 enum anv_fast_clear_type {
3239 /** Image does not have/support any fast-clear blocks */
3240 ANV_FAST_CLEAR_NONE = 0,
3241 /** Image has/supports fast-clear but only to the default value */
3242 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3243 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3244 ANV_FAST_CLEAR_ANY = 2,
3245 };
3246
3247 /* Returns the number of auxiliary buffer levels attached to an image. */
3248 static inline uint8_t
3249 anv_image_aux_levels(const struct anv_image * const image,
3250 VkImageAspectFlagBits aspect)
3251 {
3252 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3253
3254 /* The Gen12 CCS aux surface is represented with only one level. */
3255 const uint8_t aux_logical_levels =
3256 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3257 image->planes[plane].surface.isl.levels :
3258 image->planes[plane].aux_surface.isl.levels;
3259
3260 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3261 aux_logical_levels : 0;
3262 }
3263
3264 /* Returns the number of auxiliary buffer layers attached to an image. */
3265 static inline uint32_t
3266 anv_image_aux_layers(const struct anv_image * const image,
3267 VkImageAspectFlagBits aspect,
3268 const uint8_t miplevel)
3269 {
3270 assert(image);
3271
3272 /* The miplevel must exist in the main buffer. */
3273 assert(miplevel < image->levels);
3274
3275 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3276 /* There are no layers with auxiliary data because the miplevel has no
3277 * auxiliary data.
3278 */
3279 return 0;
3280 } else {
3281 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3282
3283 /* The Gen12 CCS aux surface is represented with only one layer. */
3284 const struct isl_extent4d *aux_logical_level0_px =
3285 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3286 &image->planes[plane].surface.isl.logical_level0_px :
3287 &image->planes[plane].aux_surface.isl.logical_level0_px;
3288
3289 return MAX2(aux_logical_level0_px->array_len,
3290 aux_logical_level0_px->depth >> miplevel);
3291 }
3292 }
3293
3294 static inline struct anv_address
3295 anv_image_get_clear_color_addr(const struct anv_device *device,
3296 const struct anv_image *image,
3297 VkImageAspectFlagBits aspect)
3298 {
3299 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3300
3301 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3302 return anv_address_add(image->planes[plane].address,
3303 image->planes[plane].fast_clear_state_offset);
3304 }
3305
3306 static inline struct anv_address
3307 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3308 const struct anv_image *image,
3309 VkImageAspectFlagBits aspect)
3310 {
3311 struct anv_address addr =
3312 anv_image_get_clear_color_addr(device, image, aspect);
3313
3314 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3315 device->isl_dev.ss.clear_color_state_size :
3316 device->isl_dev.ss.clear_value_size;
3317 return anv_address_add(addr, clear_color_state_size);
3318 }
3319
3320 static inline struct anv_address
3321 anv_image_get_compression_state_addr(const struct anv_device *device,
3322 const struct anv_image *image,
3323 VkImageAspectFlagBits aspect,
3324 uint32_t level, uint32_t array_layer)
3325 {
3326 assert(level < anv_image_aux_levels(image, aspect));
3327 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3328 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3329 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3330
3331 struct anv_address addr =
3332 anv_image_get_fast_clear_type_addr(device, image, aspect);
3333 addr.offset += 4; /* Go past the fast clear type */
3334
3335 if (image->type == VK_IMAGE_TYPE_3D) {
3336 for (uint32_t l = 0; l < level; l++)
3337 addr.offset += anv_minify(image->extent.depth, l) * 4;
3338 } else {
3339 addr.offset += level * image->array_size * 4;
3340 }
3341 addr.offset += array_layer * 4;
3342
3343 assert(addr.offset <
3344 image->planes[plane].address.offset + image->planes[plane].size);
3345 return addr;
3346 }
3347
3348 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3349 static inline bool
3350 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3351 const struct anv_image *image)
3352 {
3353 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3354 return false;
3355
3356 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3357 * struct. There's documentation which suggests that this feature actually
3358 * reduces performance on BDW, but it has only been observed to help so
3359 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3360 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3361 */
3362 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3363 return false;
3364
3365 return image->samples == 1;
3366 }
3367
3368 static inline bool
3369 anv_image_plane_uses_aux_map(const struct anv_device *device,
3370 const struct anv_image *image,
3371 uint32_t plane)
3372 {
3373 return device->info.has_aux_map &&
3374 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3375 }
3376
3377 void
3378 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3379 const struct anv_image *image,
3380 VkImageAspectFlagBits aspect,
3381 enum isl_aux_usage aux_usage,
3382 uint32_t level,
3383 uint32_t base_layer,
3384 uint32_t layer_count);
3385
3386 void
3387 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3388 const struct anv_image *image,
3389 VkImageAspectFlagBits aspect,
3390 enum isl_aux_usage aux_usage,
3391 enum isl_format format, struct isl_swizzle swizzle,
3392 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3393 VkRect2D area, union isl_color_value clear_color);
3394 void
3395 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3396 const struct anv_image *image,
3397 VkImageAspectFlags aspects,
3398 enum isl_aux_usage depth_aux_usage,
3399 uint32_t level,
3400 uint32_t base_layer, uint32_t layer_count,
3401 VkRect2D area,
3402 float depth_value, uint8_t stencil_value);
3403 void
3404 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3405 const struct anv_image *src_image,
3406 enum isl_aux_usage src_aux_usage,
3407 uint32_t src_level, uint32_t src_base_layer,
3408 const struct anv_image *dst_image,
3409 enum isl_aux_usage dst_aux_usage,
3410 uint32_t dst_level, uint32_t dst_base_layer,
3411 VkImageAspectFlagBits aspect,
3412 uint32_t src_x, uint32_t src_y,
3413 uint32_t dst_x, uint32_t dst_y,
3414 uint32_t width, uint32_t height,
3415 uint32_t layer_count,
3416 enum blorp_filter filter);
3417 void
3418 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3419 const struct anv_image *image,
3420 VkImageAspectFlagBits aspect, uint32_t level,
3421 uint32_t base_layer, uint32_t layer_count,
3422 enum isl_aux_op hiz_op);
3423 void
3424 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3425 const struct anv_image *image,
3426 VkImageAspectFlags aspects,
3427 uint32_t level,
3428 uint32_t base_layer, uint32_t layer_count,
3429 VkRect2D area, uint8_t stencil_value);
3430 void
3431 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3432 const struct anv_image *image,
3433 enum isl_format format,
3434 VkImageAspectFlagBits aspect,
3435 uint32_t base_layer, uint32_t layer_count,
3436 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3437 bool predicate);
3438 void
3439 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3440 const struct anv_image *image,
3441 enum isl_format format,
3442 VkImageAspectFlagBits aspect, uint32_t level,
3443 uint32_t base_layer, uint32_t layer_count,
3444 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3445 bool predicate);
3446
3447 void
3448 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3449 const struct anv_image *image,
3450 VkImageAspectFlagBits aspect,
3451 uint32_t base_level, uint32_t level_count,
3452 uint32_t base_layer, uint32_t layer_count);
3453
3454 enum isl_aux_usage
3455 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3456 const struct anv_image *image,
3457 const VkImageAspectFlagBits aspect,
3458 const VkImageLayout layout);
3459
3460 enum anv_fast_clear_type
3461 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3462 const struct anv_image * const image,
3463 const VkImageAspectFlagBits aspect,
3464 const VkImageLayout layout);
3465
3466 /* This is defined as a macro so that it works for both
3467 * VkImageSubresourceRange and VkImageSubresourceLayers
3468 */
3469 #define anv_get_layerCount(_image, _range) \
3470 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3471 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3472
3473 static inline uint32_t
3474 anv_get_levelCount(const struct anv_image *image,
3475 const VkImageSubresourceRange *range)
3476 {
3477 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3478 image->levels - range->baseMipLevel : range->levelCount;
3479 }
3480
3481 static inline VkImageAspectFlags
3482 anv_image_expand_aspects(const struct anv_image *image,
3483 VkImageAspectFlags aspects)
3484 {
3485 /* If the underlying image has color plane aspects and
3486 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3487 * the underlying image. */
3488 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3489 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3490 return image->aspects;
3491
3492 return aspects;
3493 }
3494
3495 static inline bool
3496 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3497 VkImageAspectFlags aspects2)
3498 {
3499 if (aspects1 == aspects2)
3500 return true;
3501
3502 /* Only 1 color aspects are compatibles. */
3503 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3504 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3505 util_bitcount(aspects1) == util_bitcount(aspects2))
3506 return true;
3507
3508 return false;
3509 }
3510
3511 struct anv_image_view {
3512 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3513
3514 VkImageAspectFlags aspect_mask;
3515 VkFormat vk_format;
3516 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3517
3518 unsigned n_planes;
3519 struct {
3520 uint32_t image_plane;
3521
3522 struct isl_view isl;
3523
3524 /**
3525 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3526 * image layout of SHADER_READ_ONLY_OPTIMAL or
3527 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3528 */
3529 struct anv_surface_state optimal_sampler_surface_state;
3530
3531 /**
3532 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3533 * image layout of GENERAL.
3534 */
3535 struct anv_surface_state general_sampler_surface_state;
3536
3537 /**
3538 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3539 * states for write-only and readable, using the real format for
3540 * write-only and the lowered format for readable.
3541 */
3542 struct anv_surface_state storage_surface_state;
3543 struct anv_surface_state writeonly_storage_surface_state;
3544
3545 struct brw_image_param storage_image_param;
3546 } planes[3];
3547 };
3548
3549 enum anv_image_view_state_flags {
3550 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3551 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3552 };
3553
3554 void anv_image_fill_surface_state(struct anv_device *device,
3555 const struct anv_image *image,
3556 VkImageAspectFlagBits aspect,
3557 const struct isl_view *view,
3558 isl_surf_usage_flags_t view_usage,
3559 enum isl_aux_usage aux_usage,
3560 const union isl_color_value *clear_color,
3561 enum anv_image_view_state_flags flags,
3562 struct anv_surface_state *state_inout,
3563 struct brw_image_param *image_param_out);
3564
3565 struct anv_image_create_info {
3566 const VkImageCreateInfo *vk_info;
3567
3568 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3569 isl_tiling_flags_t isl_tiling_flags;
3570
3571 /** These flags will be added to any derived from VkImageCreateInfo. */
3572 isl_surf_usage_flags_t isl_extra_usage_flags;
3573
3574 uint32_t stride;
3575 bool external_format;
3576 };
3577
3578 VkResult anv_image_create(VkDevice _device,
3579 const struct anv_image_create_info *info,
3580 const VkAllocationCallbacks* alloc,
3581 VkImage *pImage);
3582
3583 const struct anv_surface *
3584 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3585 VkImageAspectFlags aspect_mask);
3586
3587 enum isl_format
3588 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3589
3590 static inline struct VkExtent3D
3591 anv_sanitize_image_extent(const VkImageType imageType,
3592 const struct VkExtent3D imageExtent)
3593 {
3594 switch (imageType) {
3595 case VK_IMAGE_TYPE_1D:
3596 return (VkExtent3D) { imageExtent.width, 1, 1 };
3597 case VK_IMAGE_TYPE_2D:
3598 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3599 case VK_IMAGE_TYPE_3D:
3600 return imageExtent;
3601 default:
3602 unreachable("invalid image type");
3603 }
3604 }
3605
3606 static inline struct VkOffset3D
3607 anv_sanitize_image_offset(const VkImageType imageType,
3608 const struct VkOffset3D imageOffset)
3609 {
3610 switch (imageType) {
3611 case VK_IMAGE_TYPE_1D:
3612 return (VkOffset3D) { imageOffset.x, 0, 0 };
3613 case VK_IMAGE_TYPE_2D:
3614 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3615 case VK_IMAGE_TYPE_3D:
3616 return imageOffset;
3617 default:
3618 unreachable("invalid image type");
3619 }
3620 }
3621
3622 VkFormatFeatureFlags
3623 anv_get_image_format_features(const struct gen_device_info *devinfo,
3624 VkFormat vk_format,
3625 const struct anv_format *anv_format,
3626 VkImageTiling vk_tiling);
3627
3628 void anv_fill_buffer_surface_state(struct anv_device *device,
3629 struct anv_state state,
3630 enum isl_format format,
3631 struct anv_address address,
3632 uint32_t range, uint32_t stride);
3633
3634 static inline void
3635 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3636 const struct anv_attachment_state *att_state,
3637 const struct anv_image_view *iview)
3638 {
3639 const struct isl_format_layout *view_fmtl =
3640 isl_format_get_layout(iview->planes[0].isl.format);
3641
3642 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3643 if (view_fmtl->channels.c.bits) \
3644 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3645
3646 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3647 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3648 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3649 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3650
3651 #undef COPY_CLEAR_COLOR_CHANNEL
3652 }
3653
3654
3655 struct anv_ycbcr_conversion {
3656 const struct anv_format * format;
3657 VkSamplerYcbcrModelConversion ycbcr_model;
3658 VkSamplerYcbcrRange ycbcr_range;
3659 VkComponentSwizzle mapping[4];
3660 VkChromaLocation chroma_offsets[2];
3661 VkFilter chroma_filter;
3662 bool chroma_reconstruction;
3663 };
3664
3665 struct anv_sampler {
3666 uint32_t state[3][4];
3667 uint32_t n_planes;
3668 struct anv_ycbcr_conversion *conversion;
3669
3670 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3671 * and with a 32-byte stride for use as bindless samplers.
3672 */
3673 struct anv_state bindless_state;
3674 };
3675
3676 struct anv_framebuffer {
3677 uint32_t width;
3678 uint32_t height;
3679 uint32_t layers;
3680
3681 uint32_t attachment_count;
3682 struct anv_image_view * attachments[0];
3683 };
3684
3685 struct anv_subpass_attachment {
3686 VkImageUsageFlagBits usage;
3687 uint32_t attachment;
3688 VkImageLayout layout;
3689 };
3690
3691 struct anv_subpass {
3692 uint32_t attachment_count;
3693
3694 /**
3695 * A pointer to all attachment references used in this subpass.
3696 * Only valid if ::attachment_count > 0.
3697 */
3698 struct anv_subpass_attachment * attachments;
3699 uint32_t input_count;
3700 struct anv_subpass_attachment * input_attachments;
3701 uint32_t color_count;
3702 struct anv_subpass_attachment * color_attachments;
3703 struct anv_subpass_attachment * resolve_attachments;
3704
3705 struct anv_subpass_attachment * depth_stencil_attachment;
3706 struct anv_subpass_attachment * ds_resolve_attachment;
3707 VkResolveModeFlagBitsKHR depth_resolve_mode;
3708 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3709
3710 uint32_t view_mask;
3711
3712 /** Subpass has a depth/stencil self-dependency */
3713 bool has_ds_self_dep;
3714
3715 /** Subpass has at least one color resolve attachment */
3716 bool has_color_resolve;
3717 };
3718
3719 static inline unsigned
3720 anv_subpass_view_count(const struct anv_subpass *subpass)
3721 {
3722 return MAX2(1, util_bitcount(subpass->view_mask));
3723 }
3724
3725 struct anv_render_pass_attachment {
3726 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3727 * its members individually.
3728 */
3729 VkFormat format;
3730 uint32_t samples;
3731 VkImageUsageFlags usage;
3732 VkAttachmentLoadOp load_op;
3733 VkAttachmentStoreOp store_op;
3734 VkAttachmentLoadOp stencil_load_op;
3735 VkImageLayout initial_layout;
3736 VkImageLayout final_layout;
3737 VkImageLayout first_subpass_layout;
3738
3739 /* The subpass id in which the attachment will be used last. */
3740 uint32_t last_subpass_idx;
3741 };
3742
3743 struct anv_render_pass {
3744 uint32_t attachment_count;
3745 uint32_t subpass_count;
3746 /* An array of subpass_count+1 flushes, one per subpass boundary */
3747 enum anv_pipe_bits * subpass_flushes;
3748 struct anv_render_pass_attachment * attachments;
3749 struct anv_subpass subpasses[0];
3750 };
3751
3752 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3753
3754 struct anv_query_pool {
3755 VkQueryType type;
3756 VkQueryPipelineStatisticFlags pipeline_statistics;
3757 /** Stride between slots, in bytes */
3758 uint32_t stride;
3759 /** Number of slots in this query pool */
3760 uint32_t slots;
3761 struct anv_bo bo;
3762 };
3763
3764 int anv_get_instance_entrypoint_index(const char *name);
3765 int anv_get_device_entrypoint_index(const char *name);
3766 int anv_get_physical_device_entrypoint_index(const char *name);
3767
3768 const char *anv_get_instance_entry_name(int index);
3769 const char *anv_get_physical_device_entry_name(int index);
3770 const char *anv_get_device_entry_name(int index);
3771
3772 bool
3773 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3774 const struct anv_instance_extension_table *instance);
3775 bool
3776 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
3777 const struct anv_instance_extension_table *instance);
3778 bool
3779 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3780 const struct anv_instance_extension_table *instance,
3781 const struct anv_device_extension_table *device);
3782
3783 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3784 const char *name);
3785
3786 void anv_dump_image_to_ppm(struct anv_device *device,
3787 struct anv_image *image, unsigned miplevel,
3788 unsigned array_layer, VkImageAspectFlagBits aspect,
3789 const char *filename);
3790
3791 enum anv_dump_action {
3792 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3793 };
3794
3795 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3796 void anv_dump_finish(void);
3797
3798 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
3799
3800 static inline uint32_t
3801 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3802 {
3803 /* This function must be called from within a subpass. */
3804 assert(cmd_state->pass && cmd_state->subpass);
3805
3806 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3807
3808 /* The id of this subpass shouldn't exceed the number of subpasses in this
3809 * render pass minus 1.
3810 */
3811 assert(subpass_id < cmd_state->pass->subpass_count);
3812 return subpass_id;
3813 }
3814
3815 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
3816 void anv_device_perf_init(struct anv_device *device);
3817
3818 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3819 \
3820 static inline struct __anv_type * \
3821 __anv_type ## _from_handle(__VkType _handle) \
3822 { \
3823 return (struct __anv_type *) _handle; \
3824 } \
3825 \
3826 static inline __VkType \
3827 __anv_type ## _to_handle(struct __anv_type *_obj) \
3828 { \
3829 return (__VkType) _obj; \
3830 }
3831
3832 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3833 \
3834 static inline struct __anv_type * \
3835 __anv_type ## _from_handle(__VkType _handle) \
3836 { \
3837 return (struct __anv_type *)(uintptr_t) _handle; \
3838 } \
3839 \
3840 static inline __VkType \
3841 __anv_type ## _to_handle(struct __anv_type *_obj) \
3842 { \
3843 return (__VkType)(uintptr_t) _obj; \
3844 }
3845
3846 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3847 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3848
3849 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3850 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3851 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3852 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3853 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3854
3855 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3856 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3857 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3858 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3859 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3860 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3861 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3862 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3863 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3864 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3865 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3866 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3867 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3868 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3869 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3870 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3871 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3872 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3873 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3874 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3875 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3876 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3877 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3878
3879 /* Gen-specific function declarations */
3880 #ifdef genX
3881 # include "anv_genX.h"
3882 #else
3883 # define genX(x) gen7_##x
3884 # include "anv_genX.h"
3885 # undef genX
3886 # define genX(x) gen75_##x
3887 # include "anv_genX.h"
3888 # undef genX
3889 # define genX(x) gen8_##x
3890 # include "anv_genX.h"
3891 # undef genX
3892 # define genX(x) gen9_##x
3893 # include "anv_genX.h"
3894 # undef genX
3895 # define genX(x) gen10_##x
3896 # include "anv_genX.h"
3897 # undef genX
3898 # define genX(x) gen11_##x
3899 # include "anv_genX.h"
3900 # undef genX
3901 # define genX(x) gen12_##x
3902 # include "anv_genX.h"
3903 # undef genX
3904 #endif
3905
3906 #endif /* ANV_PRIVATE_H */