anv: Rename anv_fence_state to anv_bo_fence_state
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
40 #else
41 #define VG(x)
42 #endif
43
44 #include "common/gen_clflush.h"
45 #include "common/gen_device_info.h"
46 #include "blorp/blorp.h"
47 #include "compiler/brw_compiler.h"
48 #include "util/macros.h"
49 #include "util/list.h"
50 #include "util/u_atomic.h"
51 #include "util/u_vector.h"
52 #include "vk_alloc.h"
53
54 /* Pre-declarations needed for WSI entrypoints */
55 struct wl_surface;
56 struct wl_display;
57 typedef struct xcb_connection_t xcb_connection_t;
58 typedef uint32_t xcb_visualid_t;
59 typedef uint32_t xcb_window_t;
60
61 struct anv_buffer;
62 struct anv_buffer_view;
63 struct anv_image_view;
64
65 struct gen_l3_config;
66
67 #include <vulkan/vulkan.h>
68 #include <vulkan/vulkan_intel.h>
69 #include <vulkan/vk_icd.h>
70
71 #include "anv_entrypoints.h"
72 #include "isl/isl.h"
73
74 #include "common/gen_debug.h"
75 #include "wsi_common.h"
76
77 /* Allowing different clear colors requires us to perform a depth resolve at
78 * the end of certain render passes. This is because while slow clears store
79 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
80 * See the PRMs for examples describing when additional resolves would be
81 * necessary. To enable fast clears without requiring extra resolves, we set
82 * the clear value to a globally-defined one. We could allow different values
83 * if the user doesn't expect coherent data during or after a render passes
84 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
85 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
86 * 1.0f seems to be the only value used. The only application that doesn't set
87 * this value does so through the usage of an seemingly uninitialized clear
88 * value.
89 */
90 #define ANV_HZ_FC_VAL 1.0f
91
92 #define MAX_VBS 28
93 #define MAX_SETS 8
94 #define MAX_RTS 8
95 #define MAX_VIEWPORTS 16
96 #define MAX_SCISSORS 16
97 #define MAX_PUSH_CONSTANTS_SIZE 128
98 #define MAX_DYNAMIC_BUFFERS 16
99 #define MAX_IMAGES 8
100 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
101
102 #define ANV_SVGS_VB_INDEX MAX_VBS
103 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
104
105 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
106
107 static inline uint32_t
108 align_down_npot_u32(uint32_t v, uint32_t a)
109 {
110 return v - (v % a);
111 }
112
113 static inline uint32_t
114 align_u32(uint32_t v, uint32_t a)
115 {
116 assert(a != 0 && a == (a & -a));
117 return (v + a - 1) & ~(a - 1);
118 }
119
120 static inline uint64_t
121 align_u64(uint64_t v, uint64_t a)
122 {
123 assert(a != 0 && a == (a & -a));
124 return (v + a - 1) & ~(a - 1);
125 }
126
127 static inline int32_t
128 align_i32(int32_t v, int32_t a)
129 {
130 assert(a != 0 && a == (a & -a));
131 return (v + a - 1) & ~(a - 1);
132 }
133
134 /** Alignment must be a power of 2. */
135 static inline bool
136 anv_is_aligned(uintmax_t n, uintmax_t a)
137 {
138 assert(a == (a & -a));
139 return (n & (a - 1)) == 0;
140 }
141
142 static inline uint32_t
143 anv_minify(uint32_t n, uint32_t levels)
144 {
145 if (unlikely(n == 0))
146 return 0;
147 else
148 return MAX2(n >> levels, 1);
149 }
150
151 static inline float
152 anv_clamp_f(float f, float min, float max)
153 {
154 assert(min < max);
155
156 if (f > max)
157 return max;
158 else if (f < min)
159 return min;
160 else
161 return f;
162 }
163
164 static inline bool
165 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
166 {
167 if (*inout_mask & clear_mask) {
168 *inout_mask &= ~clear_mask;
169 return true;
170 } else {
171 return false;
172 }
173 }
174
175 static inline union isl_color_value
176 vk_to_isl_color(VkClearColorValue color)
177 {
178 return (union isl_color_value) {
179 .u32 = {
180 color.uint32[0],
181 color.uint32[1],
182 color.uint32[2],
183 color.uint32[3],
184 },
185 };
186 }
187
188 #define for_each_bit(b, dword) \
189 for (uint32_t __dword = (dword); \
190 (b) = __builtin_ffs(__dword) - 1, __dword; \
191 __dword &= ~(1 << (b)))
192
193 #define typed_memcpy(dest, src, count) ({ \
194 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
195 memcpy((dest), (src), (count) * sizeof(*(src))); \
196 })
197
198 /* Whenever we generate an error, pass it through this function. Useful for
199 * debugging, where we can break on it. Only call at error site, not when
200 * propagating errors. Might be useful to plug in a stack trace here.
201 */
202
203 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
204
205 #ifdef DEBUG
206 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
207 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
208 #define anv_debug(format, ...) fprintf(stderr, "debug: " format, ##__VA_ARGS__)
209 #else
210 #define vk_error(error) error
211 #define vk_errorf(error, format, ...) error
212 #define anv_debug(format, ...)
213 #endif
214
215 /**
216 * Warn on ignored extension structs.
217 *
218 * The Vulkan spec requires us to ignore unsupported or unknown structs in
219 * a pNext chain. In debug mode, emitting warnings for ignored structs may
220 * help us discover structs that we should not have ignored.
221 *
222 *
223 * From the Vulkan 1.0.38 spec:
224 *
225 * Any component of the implementation (the loader, any enabled layers,
226 * and drivers) must skip over, without processing (other than reading the
227 * sType and pNext members) any chained structures with sType values not
228 * defined by extensions supported by that component.
229 */
230 #define anv_debug_ignored_stype(sType) \
231 anv_debug("debug: %s: ignored VkStructureType %u\n", __func__, (sType))
232
233 void __anv_finishme(const char *file, int line, const char *format, ...)
234 anv_printflike(3, 4);
235 void __anv_perf_warn(const char *file, int line, const char *format, ...)
236 anv_printflike(3, 4);
237 void anv_loge(const char *format, ...) anv_printflike(1, 2);
238 void anv_loge_v(const char *format, va_list va);
239
240 /**
241 * Print a FINISHME message, including its source location.
242 */
243 #define anv_finishme(format, ...) \
244 do { \
245 static bool reported = false; \
246 if (!reported) { \
247 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
248 reported = true; \
249 } \
250 } while (0)
251
252 /**
253 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
254 */
255 #define anv_perf_warn(format, ...) \
256 do { \
257 static bool reported = false; \
258 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
259 __anv_perf_warn(__FILE__, __LINE__, format, ##__VA_ARGS__); \
260 reported = true; \
261 } \
262 } while (0)
263
264 /* A non-fatal assert. Useful for debugging. */
265 #ifdef DEBUG
266 #define anv_assert(x) ({ \
267 if (unlikely(!(x))) \
268 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
269 })
270 #else
271 #define anv_assert(x)
272 #endif
273
274 /* A multi-pointer allocator
275 *
276 * When copying data structures from the user (such as a render pass), it's
277 * common to need to allocate data for a bunch of different things. Instead
278 * of doing several allocations and having to handle all of the error checking
279 * that entails, it can be easier to do a single allocation. This struct
280 * helps facilitate that. The intended usage looks like this:
281 *
282 * ANV_MULTIALLOC(ma)
283 * anv_multialloc_add(&ma, &main_ptr, 1);
284 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
285 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
286 *
287 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
288 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
289 */
290 struct anv_multialloc {
291 size_t size;
292 size_t align;
293
294 uint32_t ptr_count;
295 void **ptrs[8];
296 };
297
298 #define ANV_MULTIALLOC_INIT \
299 ((struct anv_multialloc) { 0, })
300
301 #define ANV_MULTIALLOC(_name) \
302 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
303
304 __attribute__((always_inline))
305 static inline void
306 _anv_multialloc_add(struct anv_multialloc *ma,
307 void **ptr, size_t size, size_t align)
308 {
309 size_t offset = align_u64(ma->size, align);
310 ma->size = offset + size;
311 ma->align = MAX2(ma->align, align);
312
313 /* Store the offset in the pointer. */
314 *ptr = (void *)(uintptr_t)offset;
315
316 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
317 ma->ptrs[ma->ptr_count++] = ptr;
318 }
319
320 #define anv_multialloc_add(_ma, _ptr, _count) \
321 _anv_multialloc_add((_ma), (void **)(_ptr), \
322 (_count) * sizeof(**(_ptr)), __alignof__(**(_ptr)))
323
324 __attribute__((always_inline))
325 static inline void *
326 anv_multialloc_alloc(struct anv_multialloc *ma,
327 const VkAllocationCallbacks *alloc,
328 VkSystemAllocationScope scope)
329 {
330 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
331 if (!ptr)
332 return NULL;
333
334 /* Fill out each of the pointers with their final value.
335 *
336 * for (uint32_t i = 0; i < ma->ptr_count; i++)
337 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
338 *
339 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
340 * constant, GCC is incapable of figuring this out and unrolling the loop
341 * so we have to give it a little help.
342 */
343 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
344 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
345 if ((_i) < ma->ptr_count) \
346 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
347 _ANV_MULTIALLOC_UPDATE_POINTER(0);
348 _ANV_MULTIALLOC_UPDATE_POINTER(1);
349 _ANV_MULTIALLOC_UPDATE_POINTER(2);
350 _ANV_MULTIALLOC_UPDATE_POINTER(3);
351 _ANV_MULTIALLOC_UPDATE_POINTER(4);
352 _ANV_MULTIALLOC_UPDATE_POINTER(5);
353 _ANV_MULTIALLOC_UPDATE_POINTER(6);
354 _ANV_MULTIALLOC_UPDATE_POINTER(7);
355 #undef _ANV_MULTIALLOC_UPDATE_POINTER
356
357 return ptr;
358 }
359
360 __attribute__((always_inline))
361 static inline void *
362 anv_multialloc_alloc2(struct anv_multialloc *ma,
363 const VkAllocationCallbacks *parent_alloc,
364 const VkAllocationCallbacks *alloc,
365 VkSystemAllocationScope scope)
366 {
367 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
368 }
369
370 struct anv_bo {
371 uint32_t gem_handle;
372
373 /* Index into the current validation list. This is used by the
374 * validation list building alrogithm to track which buffers are already
375 * in the validation list so that we can ensure uniqueness.
376 */
377 uint32_t index;
378
379 /* Last known offset. This value is provided by the kernel when we
380 * execbuf and is used as the presumed offset for the next bunch of
381 * relocations.
382 */
383 uint64_t offset;
384
385 uint64_t size;
386 void *map;
387
388 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
389 uint32_t flags;
390 };
391
392 static inline void
393 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
394 {
395 bo->gem_handle = gem_handle;
396 bo->index = 0;
397 bo->offset = -1;
398 bo->size = size;
399 bo->map = NULL;
400 bo->flags = 0;
401 }
402
403 /* Represents a lock-free linked list of "free" things. This is used by
404 * both the block pool and the state pools. Unfortunately, in order to
405 * solve the ABA problem, we can't use a single uint32_t head.
406 */
407 union anv_free_list {
408 struct {
409 int32_t offset;
410
411 /* A simple count that is incremented every time the head changes. */
412 uint32_t count;
413 };
414 uint64_t u64;
415 };
416
417 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
418
419 struct anv_block_state {
420 union {
421 struct {
422 uint32_t next;
423 uint32_t end;
424 };
425 uint64_t u64;
426 };
427 };
428
429 struct anv_block_pool {
430 struct anv_device *device;
431
432 struct anv_bo bo;
433
434 /* The offset from the start of the bo to the "center" of the block
435 * pool. Pointers to allocated blocks are given by
436 * bo.map + center_bo_offset + offsets.
437 */
438 uint32_t center_bo_offset;
439
440 /* Current memory map of the block pool. This pointer may or may not
441 * point to the actual beginning of the block pool memory. If
442 * anv_block_pool_alloc_back has ever been called, then this pointer
443 * will point to the "center" position of the buffer and all offsets
444 * (negative or positive) given out by the block pool alloc functions
445 * will be valid relative to this pointer.
446 *
447 * In particular, map == bo.map + center_offset
448 */
449 void *map;
450 int fd;
451
452 /**
453 * Array of mmaps and gem handles owned by the block pool, reclaimed when
454 * the block pool is destroyed.
455 */
456 struct u_vector mmap_cleanups;
457
458 struct anv_block_state state;
459
460 struct anv_block_state back_state;
461 };
462
463 /* Block pools are backed by a fixed-size 1GB memfd */
464 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
465
466 /* The center of the block pool is also the middle of the memfd. This may
467 * change in the future if we decide differently for some reason.
468 */
469 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
470
471 static inline uint32_t
472 anv_block_pool_size(struct anv_block_pool *pool)
473 {
474 return pool->state.end + pool->back_state.end;
475 }
476
477 struct anv_state {
478 int32_t offset;
479 uint32_t alloc_size;
480 void *map;
481 };
482
483 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
484
485 struct anv_fixed_size_state_pool {
486 union anv_free_list free_list;
487 struct anv_block_state block;
488 };
489
490 #define ANV_MIN_STATE_SIZE_LOG2 6
491 #define ANV_MAX_STATE_SIZE_LOG2 20
492
493 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
494
495 struct anv_state_pool {
496 struct anv_block_pool block_pool;
497
498 /* The size of blocks which will be allocated from the block pool */
499 uint32_t block_size;
500
501 /** Free list for "back" allocations */
502 union anv_free_list back_alloc_free_list;
503
504 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
505 };
506
507 struct anv_state_stream_block;
508
509 struct anv_state_stream {
510 struct anv_state_pool *state_pool;
511
512 /* The size of blocks to allocate from the state pool */
513 uint32_t block_size;
514
515 /* Current block we're allocating from */
516 struct anv_state block;
517
518 /* Offset into the current block at which to allocate the next state */
519 uint32_t next;
520
521 /* List of all blocks allocated from this pool */
522 struct anv_state_stream_block *block_list;
523 };
524
525 /* The block_pool functions exported for testing only. The block pool should
526 * only be used via a state pool (see below).
527 */
528 VkResult anv_block_pool_init(struct anv_block_pool *pool,
529 struct anv_device *device,
530 uint32_t initial_size);
531 void anv_block_pool_finish(struct anv_block_pool *pool);
532 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
533 uint32_t block_size);
534 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
535 uint32_t block_size);
536
537 VkResult anv_state_pool_init(struct anv_state_pool *pool,
538 struct anv_device *device,
539 uint32_t block_size);
540 void anv_state_pool_finish(struct anv_state_pool *pool);
541 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
542 uint32_t state_size, uint32_t alignment);
543 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
544 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
545 void anv_state_stream_init(struct anv_state_stream *stream,
546 struct anv_state_pool *state_pool,
547 uint32_t block_size);
548 void anv_state_stream_finish(struct anv_state_stream *stream);
549 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
550 uint32_t size, uint32_t alignment);
551
552 /**
553 * Implements a pool of re-usable BOs. The interface is identical to that
554 * of block_pool except that each block is its own BO.
555 */
556 struct anv_bo_pool {
557 struct anv_device *device;
558
559 void *free_list[16];
560 };
561
562 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
563 void anv_bo_pool_finish(struct anv_bo_pool *pool);
564 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
565 uint32_t size);
566 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
567
568 struct anv_scratch_bo {
569 bool exists;
570 struct anv_bo bo;
571 };
572
573 struct anv_scratch_pool {
574 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
575 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
576 };
577
578 void anv_scratch_pool_init(struct anv_device *device,
579 struct anv_scratch_pool *pool);
580 void anv_scratch_pool_finish(struct anv_device *device,
581 struct anv_scratch_pool *pool);
582 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
583 struct anv_scratch_pool *pool,
584 gl_shader_stage stage,
585 unsigned per_thread_scratch);
586
587 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
588 struct anv_bo_cache {
589 struct hash_table *bo_map;
590 pthread_mutex_t mutex;
591 };
592
593 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
594 void anv_bo_cache_finish(struct anv_bo_cache *cache);
595 VkResult anv_bo_cache_alloc(struct anv_device *device,
596 struct anv_bo_cache *cache,
597 uint64_t size, struct anv_bo **bo);
598 VkResult anv_bo_cache_import(struct anv_device *device,
599 struct anv_bo_cache *cache,
600 int fd, uint64_t size, struct anv_bo **bo);
601 VkResult anv_bo_cache_export(struct anv_device *device,
602 struct anv_bo_cache *cache,
603 struct anv_bo *bo_in, int *fd_out);
604 void anv_bo_cache_release(struct anv_device *device,
605 struct anv_bo_cache *cache,
606 struct anv_bo *bo);
607
608 struct anv_memory_type {
609 /* Standard bits passed on to the client */
610 VkMemoryPropertyFlags propertyFlags;
611 uint32_t heapIndex;
612
613 /* Driver-internal book-keeping */
614 VkBufferUsageFlags valid_buffer_usage;
615 };
616
617 struct anv_memory_heap {
618 /* Standard bits passed on to the client */
619 VkDeviceSize size;
620 VkMemoryHeapFlags flags;
621
622 /* Driver-internal book-keeping */
623 bool supports_48bit_addresses;
624 };
625
626 struct anv_physical_device {
627 VK_LOADER_DATA _loader_data;
628
629 struct anv_instance * instance;
630 uint32_t chipset_id;
631 char path[20];
632 const char * name;
633 struct gen_device_info info;
634 /** Amount of "GPU memory" we want to advertise
635 *
636 * Clearly, this value is bogus since Intel is a UMA architecture. On
637 * gen7 platforms, we are limited by GTT size unless we want to implement
638 * fine-grained tracking and GTT splitting. On Broadwell and above we are
639 * practically unlimited. However, we will never report more than 3/4 of
640 * the total system ram to try and avoid running out of RAM.
641 */
642 bool supports_48bit_addresses;
643 struct brw_compiler * compiler;
644 struct isl_device isl_dev;
645 int cmd_parser_version;
646 bool has_exec_async;
647 bool has_exec_fence;
648 bool has_syncobj;
649
650 uint32_t eu_total;
651 uint32_t subslice_total;
652
653 struct {
654 uint32_t type_count;
655 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
656 uint32_t heap_count;
657 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
658 } memory;
659
660 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
661 uint8_t driver_uuid[VK_UUID_SIZE];
662 uint8_t device_uuid[VK_UUID_SIZE];
663
664 struct wsi_device wsi_device;
665 int local_fd;
666 };
667
668 struct anv_instance {
669 VK_LOADER_DATA _loader_data;
670
671 VkAllocationCallbacks alloc;
672
673 uint32_t apiVersion;
674 int physicalDeviceCount;
675 struct anv_physical_device physicalDevice;
676 };
677
678 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
679 void anv_finish_wsi(struct anv_physical_device *physical_device);
680
681 bool anv_instance_extension_supported(const char *name);
682 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
683 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
684 const char *name);
685
686 struct anv_queue {
687 VK_LOADER_DATA _loader_data;
688
689 struct anv_device * device;
690
691 struct anv_state_pool * pool;
692 };
693
694 struct anv_pipeline_cache {
695 struct anv_device * device;
696 pthread_mutex_t mutex;
697
698 struct hash_table * cache;
699 };
700
701 struct anv_pipeline_bind_map;
702
703 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
704 struct anv_device *device,
705 bool cache_enabled);
706 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
707
708 struct anv_shader_bin *
709 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
710 const void *key, uint32_t key_size);
711 struct anv_shader_bin *
712 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
713 const void *key_data, uint32_t key_size,
714 const void *kernel_data, uint32_t kernel_size,
715 const struct brw_stage_prog_data *prog_data,
716 uint32_t prog_data_size,
717 const struct anv_pipeline_bind_map *bind_map);
718
719 struct anv_device {
720 VK_LOADER_DATA _loader_data;
721
722 VkAllocationCallbacks alloc;
723
724 struct anv_instance * instance;
725 uint32_t chipset_id;
726 struct gen_device_info info;
727 struct isl_device isl_dev;
728 int context_id;
729 int fd;
730 bool can_chain_batches;
731 bool robust_buffer_access;
732
733 struct anv_bo_pool batch_bo_pool;
734
735 struct anv_bo_cache bo_cache;
736
737 struct anv_state_pool dynamic_state_pool;
738 struct anv_state_pool instruction_state_pool;
739 struct anv_state_pool surface_state_pool;
740
741 struct anv_bo workaround_bo;
742 struct anv_bo trivial_batch_bo;
743
744 struct anv_pipeline_cache blorp_shader_cache;
745 struct blorp_context blorp;
746
747 struct anv_state border_colors;
748
749 struct anv_queue queue;
750
751 struct anv_scratch_pool scratch_pool;
752
753 uint32_t default_mocs;
754
755 pthread_mutex_t mutex;
756 pthread_cond_t queue_submit;
757 bool lost;
758 };
759
760 static void inline
761 anv_state_flush(struct anv_device *device, struct anv_state state)
762 {
763 if (device->info.has_llc)
764 return;
765
766 gen_flush_range(state.map, state.alloc_size);
767 }
768
769 void anv_device_init_blorp(struct anv_device *device);
770 void anv_device_finish_blorp(struct anv_device *device);
771
772 VkResult anv_device_execbuf(struct anv_device *device,
773 struct drm_i915_gem_execbuffer2 *execbuf,
774 struct anv_bo **execbuf_bos);
775 VkResult anv_device_query_status(struct anv_device *device);
776 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
777 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
778 int64_t timeout);
779
780 void* anv_gem_mmap(struct anv_device *device,
781 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
782 void anv_gem_munmap(void *p, uint64_t size);
783 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
784 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
785 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
786 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
787 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
788 int anv_gem_execbuffer(struct anv_device *device,
789 struct drm_i915_gem_execbuffer2 *execbuf);
790 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
791 uint32_t stride, uint32_t tiling);
792 int anv_gem_create_context(struct anv_device *device);
793 int anv_gem_destroy_context(struct anv_device *device, int context);
794 int anv_gem_get_context_param(int fd, int context, uint32_t param,
795 uint64_t *value);
796 int anv_gem_get_param(int fd, uint32_t param);
797 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
798 int anv_gem_get_aperture(int fd, uint64_t *size);
799 bool anv_gem_supports_48b_addresses(int fd);
800 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
801 uint32_t *active, uint32_t *pending);
802 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
803 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
804 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
805 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
806 uint32_t read_domains, uint32_t write_domain);
807 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
808 uint32_t anv_gem_syncobj_create(struct anv_device *device);
809 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
810 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
811 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
812
813 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
814
815 struct anv_reloc_list {
816 uint32_t num_relocs;
817 uint32_t array_length;
818 struct drm_i915_gem_relocation_entry * relocs;
819 struct anv_bo ** reloc_bos;
820 };
821
822 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
823 const VkAllocationCallbacks *alloc);
824 void anv_reloc_list_finish(struct anv_reloc_list *list,
825 const VkAllocationCallbacks *alloc);
826
827 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
828 const VkAllocationCallbacks *alloc,
829 uint32_t offset, struct anv_bo *target_bo,
830 uint32_t delta);
831
832 struct anv_batch_bo {
833 /* Link in the anv_cmd_buffer.owned_batch_bos list */
834 struct list_head link;
835
836 struct anv_bo bo;
837
838 /* Bytes actually consumed in this batch BO */
839 uint32_t length;
840
841 struct anv_reloc_list relocs;
842 };
843
844 struct anv_batch {
845 const VkAllocationCallbacks * alloc;
846
847 void * start;
848 void * end;
849 void * next;
850
851 struct anv_reloc_list * relocs;
852
853 /* This callback is called (with the associated user data) in the event
854 * that the batch runs out of space.
855 */
856 VkResult (*extend_cb)(struct anv_batch *, void *);
857 void * user_data;
858
859 /**
860 * Current error status of the command buffer. Used to track inconsistent
861 * or incomplete command buffer states that are the consequence of run-time
862 * errors such as out of memory scenarios. We want to track this in the
863 * batch because the command buffer object is not visible to some parts
864 * of the driver.
865 */
866 VkResult status;
867 };
868
869 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
870 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
871 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
872 void *location, struct anv_bo *bo, uint32_t offset);
873 VkResult anv_device_submit_simple_batch(struct anv_device *device,
874 struct anv_batch *batch);
875
876 static inline VkResult
877 anv_batch_set_error(struct anv_batch *batch, VkResult error)
878 {
879 assert(error != VK_SUCCESS);
880 if (batch->status == VK_SUCCESS)
881 batch->status = error;
882 return batch->status;
883 }
884
885 static inline bool
886 anv_batch_has_error(struct anv_batch *batch)
887 {
888 return batch->status != VK_SUCCESS;
889 }
890
891 struct anv_address {
892 struct anv_bo *bo;
893 uint32_t offset;
894 };
895
896 static inline uint64_t
897 _anv_combine_address(struct anv_batch *batch, void *location,
898 const struct anv_address address, uint32_t delta)
899 {
900 if (address.bo == NULL) {
901 return address.offset + delta;
902 } else {
903 assert(batch->start <= location && location < batch->end);
904
905 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
906 }
907 }
908
909 #define __gen_address_type struct anv_address
910 #define __gen_user_data struct anv_batch
911 #define __gen_combine_address _anv_combine_address
912
913 /* Wrapper macros needed to work around preprocessor argument issues. In
914 * particular, arguments don't get pre-evaluated if they are concatenated.
915 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
916 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
917 * We can work around this easily enough with these helpers.
918 */
919 #define __anv_cmd_length(cmd) cmd ## _length
920 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
921 #define __anv_cmd_header(cmd) cmd ## _header
922 #define __anv_cmd_pack(cmd) cmd ## _pack
923 #define __anv_reg_num(reg) reg ## _num
924
925 #define anv_pack_struct(dst, struc, ...) do { \
926 struct struc __template = { \
927 __VA_ARGS__ \
928 }; \
929 __anv_cmd_pack(struc)(NULL, dst, &__template); \
930 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
931 } while (0)
932
933 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
934 void *__dst = anv_batch_emit_dwords(batch, n); \
935 if (__dst) { \
936 struct cmd __template = { \
937 __anv_cmd_header(cmd), \
938 .DWordLength = n - __anv_cmd_length_bias(cmd), \
939 __VA_ARGS__ \
940 }; \
941 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
942 } \
943 __dst; \
944 })
945
946 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
947 do { \
948 uint32_t *dw; \
949 \
950 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
951 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
952 if (!dw) \
953 break; \
954 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
955 dw[i] = (dwords0)[i] | (dwords1)[i]; \
956 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
957 } while (0)
958
959 #define anv_batch_emit(batch, cmd, name) \
960 for (struct cmd name = { __anv_cmd_header(cmd) }, \
961 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
962 __builtin_expect(_dst != NULL, 1); \
963 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
964 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
965 _dst = NULL; \
966 }))
967
968 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
969 .GraphicsDataTypeGFDT = 0, \
970 .LLCCacheabilityControlLLCCC = 0, \
971 .L3CacheabilityControlL3CC = 1, \
972 }
973
974 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
975 .LLCeLLCCacheabilityControlLLCCC = 0, \
976 .L3CacheabilityControlL3CC = 1, \
977 }
978
979 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
980 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
981 .TargetCache = L3DefertoPATforLLCeLLCselection, \
982 .AgeforQUADLRU = 0 \
983 }
984
985 /* Skylake: MOCS is now an index into an array of 62 different caching
986 * configurations programmed by the kernel.
987 */
988
989 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
990 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
991 .IndextoMOCSTables = 2 \
992 }
993
994 #define GEN9_MOCS_PTE { \
995 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
996 .IndextoMOCSTables = 1 \
997 }
998
999 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1000 #define GEN10_MOCS (struct GEN10_MEMORY_OBJECT_CONTROL_STATE) { \
1001 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1002 .IndextoMOCSTables = 2 \
1003 }
1004
1005 #define GEN10_MOCS_PTE { \
1006 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1007 .IndextoMOCSTables = 1 \
1008 }
1009
1010 struct anv_device_memory {
1011 struct anv_bo * bo;
1012 struct anv_memory_type * type;
1013 VkDeviceSize map_size;
1014 void * map;
1015 };
1016
1017 /**
1018 * Header for Vertex URB Entry (VUE)
1019 */
1020 struct anv_vue_header {
1021 uint32_t Reserved;
1022 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1023 uint32_t ViewportIndex;
1024 float PointWidth;
1025 };
1026
1027 struct anv_descriptor_set_binding_layout {
1028 #ifndef NDEBUG
1029 /* The type of the descriptors in this binding */
1030 VkDescriptorType type;
1031 #endif
1032
1033 /* Number of array elements in this binding */
1034 uint16_t array_size;
1035
1036 /* Index into the flattend descriptor set */
1037 uint16_t descriptor_index;
1038
1039 /* Index into the dynamic state array for a dynamic buffer */
1040 int16_t dynamic_offset_index;
1041
1042 /* Index into the descriptor set buffer views */
1043 int16_t buffer_index;
1044
1045 struct {
1046 /* Index into the binding table for the associated surface */
1047 int16_t surface_index;
1048
1049 /* Index into the sampler table for the associated sampler */
1050 int16_t sampler_index;
1051
1052 /* Index into the image table for the associated image */
1053 int16_t image_index;
1054 } stage[MESA_SHADER_STAGES];
1055
1056 /* Immutable samplers (or NULL if no immutable samplers) */
1057 struct anv_sampler **immutable_samplers;
1058 };
1059
1060 struct anv_descriptor_set_layout {
1061 /* Number of bindings in this descriptor set */
1062 uint16_t binding_count;
1063
1064 /* Total size of the descriptor set with room for all array entries */
1065 uint16_t size;
1066
1067 /* Shader stages affected by this descriptor set */
1068 uint16_t shader_stages;
1069
1070 /* Number of buffers in this descriptor set */
1071 uint16_t buffer_count;
1072
1073 /* Number of dynamic offsets used by this descriptor set */
1074 uint16_t dynamic_offset_count;
1075
1076 /* Bindings in this descriptor set */
1077 struct anv_descriptor_set_binding_layout binding[0];
1078 };
1079
1080 struct anv_descriptor {
1081 VkDescriptorType type;
1082
1083 union {
1084 struct {
1085 VkImageLayout layout;
1086 struct anv_image_view *image_view;
1087 struct anv_sampler *sampler;
1088 };
1089
1090 struct {
1091 struct anv_buffer *buffer;
1092 uint64_t offset;
1093 uint64_t range;
1094 };
1095
1096 struct anv_buffer_view *buffer_view;
1097 };
1098 };
1099
1100 struct anv_descriptor_set {
1101 const struct anv_descriptor_set_layout *layout;
1102 uint32_t size;
1103 uint32_t buffer_count;
1104 struct anv_buffer_view *buffer_views;
1105 struct anv_descriptor descriptors[0];
1106 };
1107
1108 struct anv_buffer_view {
1109 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1110 struct anv_bo *bo;
1111 uint32_t offset; /**< Offset into bo. */
1112 uint64_t range; /**< VkBufferViewCreateInfo::range */
1113
1114 struct anv_state surface_state;
1115 struct anv_state storage_surface_state;
1116 struct anv_state writeonly_storage_surface_state;
1117
1118 struct brw_image_param storage_image_param;
1119 };
1120
1121 struct anv_push_descriptor_set {
1122 struct anv_descriptor_set set;
1123
1124 /* Put this field right behind anv_descriptor_set so it fills up the
1125 * descriptors[0] field. */
1126 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1127
1128 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1129 };
1130
1131 struct anv_descriptor_pool {
1132 uint32_t size;
1133 uint32_t next;
1134 uint32_t free_list;
1135
1136 struct anv_state_stream surface_state_stream;
1137 void *surface_state_free_list;
1138
1139 char data[0];
1140 };
1141
1142 enum anv_descriptor_template_entry_type {
1143 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1144 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1145 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1146 };
1147
1148 struct anv_descriptor_template_entry {
1149 /* The type of descriptor in this entry */
1150 VkDescriptorType type;
1151
1152 /* Binding in the descriptor set */
1153 uint32_t binding;
1154
1155 /* Offset at which to write into the descriptor set binding */
1156 uint32_t array_element;
1157
1158 /* Number of elements to write into the descriptor set binding */
1159 uint32_t array_count;
1160
1161 /* Offset into the user provided data */
1162 size_t offset;
1163
1164 /* Stride between elements into the user provided data */
1165 size_t stride;
1166 };
1167
1168 struct anv_descriptor_update_template {
1169 /* The descriptor set this template corresponds to. This value is only
1170 * valid if the template was created with the templateType
1171 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR.
1172 */
1173 uint8_t set;
1174
1175 /* Number of entries in this template */
1176 uint32_t entry_count;
1177
1178 /* Entries of the template */
1179 struct anv_descriptor_template_entry entries[0];
1180 };
1181
1182 size_t
1183 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1184
1185 void
1186 anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
1187 const struct gen_device_info * const devinfo,
1188 const VkDescriptorImageInfo * const info,
1189 VkDescriptorType type,
1190 uint32_t binding,
1191 uint32_t element);
1192
1193 void
1194 anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
1195 VkDescriptorType type,
1196 struct anv_buffer_view *buffer_view,
1197 uint32_t binding,
1198 uint32_t element);
1199
1200 void
1201 anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
1202 struct anv_device *device,
1203 struct anv_state_stream *alloc_stream,
1204 VkDescriptorType type,
1205 struct anv_buffer *buffer,
1206 uint32_t binding,
1207 uint32_t element,
1208 VkDeviceSize offset,
1209 VkDeviceSize range);
1210
1211 void
1212 anv_descriptor_set_write_template(struct anv_descriptor_set *set,
1213 struct anv_device *device,
1214 struct anv_state_stream *alloc_stream,
1215 const struct anv_descriptor_update_template *template,
1216 const void *data);
1217
1218 VkResult
1219 anv_descriptor_set_create(struct anv_device *device,
1220 struct anv_descriptor_pool *pool,
1221 const struct anv_descriptor_set_layout *layout,
1222 struct anv_descriptor_set **out_set);
1223
1224 void
1225 anv_descriptor_set_destroy(struct anv_device *device,
1226 struct anv_descriptor_pool *pool,
1227 struct anv_descriptor_set *set);
1228
1229 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1230
1231 struct anv_pipeline_binding {
1232 /* The descriptor set this surface corresponds to. The special value of
1233 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1234 * to a color attachment and not a regular descriptor.
1235 */
1236 uint8_t set;
1237
1238 /* Binding in the descriptor set */
1239 uint8_t binding;
1240
1241 /* Index in the binding */
1242 uint8_t index;
1243
1244 /* Input attachment index (relative to the subpass) */
1245 uint8_t input_attachment_index;
1246
1247 /* For a storage image, whether it is write-only */
1248 bool write_only;
1249 };
1250
1251 struct anv_pipeline_layout {
1252 struct {
1253 struct anv_descriptor_set_layout *layout;
1254 uint32_t dynamic_offset_start;
1255 } set[MAX_SETS];
1256
1257 uint32_t num_sets;
1258
1259 struct {
1260 bool has_dynamic_offsets;
1261 } stage[MESA_SHADER_STAGES];
1262
1263 unsigned char sha1[20];
1264 };
1265
1266 struct anv_buffer {
1267 struct anv_device * device;
1268 VkDeviceSize size;
1269
1270 VkBufferUsageFlags usage;
1271
1272 /* Set when bound */
1273 struct anv_bo * bo;
1274 VkDeviceSize offset;
1275 };
1276
1277 static inline uint64_t
1278 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1279 {
1280 assert(offset <= buffer->size);
1281 if (range == VK_WHOLE_SIZE) {
1282 return buffer->size - offset;
1283 } else {
1284 assert(range <= buffer->size);
1285 return range;
1286 }
1287 }
1288
1289 enum anv_cmd_dirty_bits {
1290 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1291 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1292 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1293 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1294 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1295 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1296 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1297 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1298 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1299 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1300 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1301 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1302 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1303 };
1304 typedef uint32_t anv_cmd_dirty_mask_t;
1305
1306 enum anv_pipe_bits {
1307 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1308 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1309 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1310 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1311 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1312 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1313 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1314 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1315 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1316 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1317 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1318
1319 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1320 * a flush has happened but not a CS stall. The next time we do any sort
1321 * of invalidation we need to insert a CS stall at that time. Otherwise,
1322 * we would have to CS stall on every flush which could be bad.
1323 */
1324 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1325 };
1326
1327 #define ANV_PIPE_FLUSH_BITS ( \
1328 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1329 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1330 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1331
1332 #define ANV_PIPE_STALL_BITS ( \
1333 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1334 ANV_PIPE_DEPTH_STALL_BIT | \
1335 ANV_PIPE_CS_STALL_BIT)
1336
1337 #define ANV_PIPE_INVALIDATE_BITS ( \
1338 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1339 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1340 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1341 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1342 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1343 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1344
1345 static inline enum anv_pipe_bits
1346 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1347 {
1348 enum anv_pipe_bits pipe_bits = 0;
1349
1350 unsigned b;
1351 for_each_bit(b, flags) {
1352 switch ((VkAccessFlagBits)(1 << b)) {
1353 case VK_ACCESS_SHADER_WRITE_BIT:
1354 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1355 break;
1356 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1357 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1358 break;
1359 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1360 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1361 break;
1362 case VK_ACCESS_TRANSFER_WRITE_BIT:
1363 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1364 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1365 break;
1366 default:
1367 break; /* Nothing to do */
1368 }
1369 }
1370
1371 return pipe_bits;
1372 }
1373
1374 static inline enum anv_pipe_bits
1375 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1376 {
1377 enum anv_pipe_bits pipe_bits = 0;
1378
1379 unsigned b;
1380 for_each_bit(b, flags) {
1381 switch ((VkAccessFlagBits)(1 << b)) {
1382 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1383 case VK_ACCESS_INDEX_READ_BIT:
1384 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
1385 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1386 break;
1387 case VK_ACCESS_UNIFORM_READ_BIT:
1388 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1389 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1390 break;
1391 case VK_ACCESS_SHADER_READ_BIT:
1392 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
1393 case VK_ACCESS_TRANSFER_READ_BIT:
1394 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1395 break;
1396 default:
1397 break; /* Nothing to do */
1398 }
1399 }
1400
1401 return pipe_bits;
1402 }
1403
1404 struct anv_vertex_binding {
1405 struct anv_buffer * buffer;
1406 VkDeviceSize offset;
1407 };
1408
1409 struct anv_push_constants {
1410 /* Current allocated size of this push constants data structure.
1411 * Because a decent chunk of it may not be used (images on SKL, for
1412 * instance), we won't actually allocate the entire structure up-front.
1413 */
1414 uint32_t size;
1415
1416 /* Push constant data provided by the client through vkPushConstants */
1417 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1418
1419 /* Our hardware only provides zero-based vertex and instance id so, in
1420 * order to satisfy the vulkan requirements, we may have to push one or
1421 * both of these into the shader.
1422 */
1423 uint32_t base_vertex;
1424 uint32_t base_instance;
1425
1426 /* Image data for image_load_store on pre-SKL */
1427 struct brw_image_param images[MAX_IMAGES];
1428 };
1429
1430 struct anv_dynamic_state {
1431 struct {
1432 uint32_t count;
1433 VkViewport viewports[MAX_VIEWPORTS];
1434 } viewport;
1435
1436 struct {
1437 uint32_t count;
1438 VkRect2D scissors[MAX_SCISSORS];
1439 } scissor;
1440
1441 float line_width;
1442
1443 struct {
1444 float bias;
1445 float clamp;
1446 float slope;
1447 } depth_bias;
1448
1449 float blend_constants[4];
1450
1451 struct {
1452 float min;
1453 float max;
1454 } depth_bounds;
1455
1456 struct {
1457 uint32_t front;
1458 uint32_t back;
1459 } stencil_compare_mask;
1460
1461 struct {
1462 uint32_t front;
1463 uint32_t back;
1464 } stencil_write_mask;
1465
1466 struct {
1467 uint32_t front;
1468 uint32_t back;
1469 } stencil_reference;
1470 };
1471
1472 extern const struct anv_dynamic_state default_dynamic_state;
1473
1474 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1475 const struct anv_dynamic_state *src,
1476 uint32_t copy_mask);
1477
1478 /**
1479 * Attachment state when recording a renderpass instance.
1480 *
1481 * The clear value is valid only if there exists a pending clear.
1482 */
1483 struct anv_attachment_state {
1484 enum isl_aux_usage aux_usage;
1485 enum isl_aux_usage input_aux_usage;
1486 struct anv_state color_rt_state;
1487 struct anv_state input_att_state;
1488
1489 VkImageLayout current_layout;
1490 VkImageAspectFlags pending_clear_aspects;
1491 bool fast_clear;
1492 VkClearValue clear_value;
1493 bool clear_color_is_zero_one;
1494 bool clear_color_is_zero;
1495 };
1496
1497 /** State required while building cmd buffer */
1498 struct anv_cmd_state {
1499 /* PIPELINE_SELECT.PipelineSelection */
1500 uint32_t current_pipeline;
1501 const struct gen_l3_config * current_l3_config;
1502 uint32_t vb_dirty;
1503 anv_cmd_dirty_mask_t dirty;
1504 anv_cmd_dirty_mask_t compute_dirty;
1505 enum anv_pipe_bits pending_pipe_bits;
1506 uint32_t num_workgroups_offset;
1507 struct anv_bo *num_workgroups_bo;
1508 VkShaderStageFlags descriptors_dirty;
1509 VkShaderStageFlags push_constants_dirty;
1510 uint32_t scratch_size;
1511 struct anv_pipeline * pipeline;
1512 struct anv_pipeline * compute_pipeline;
1513 struct anv_framebuffer * framebuffer;
1514 struct anv_render_pass * pass;
1515 struct anv_subpass * subpass;
1516 VkRect2D render_area;
1517 uint32_t restart_index;
1518 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1519 struct anv_descriptor_set * descriptors[MAX_SETS];
1520 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
1521 VkShaderStageFlags push_constant_stages;
1522 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1523 struct anv_state binding_tables[MESA_SHADER_STAGES];
1524 struct anv_state samplers[MESA_SHADER_STAGES];
1525 struct anv_dynamic_state dynamic;
1526 bool need_query_wa;
1527
1528 struct anv_push_descriptor_set push_descriptor;
1529
1530 /**
1531 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
1532 * of any command buffer it is disabled by disabling it in EndCommandBuffer
1533 * and before invoking the secondary in ExecuteCommands.
1534 */
1535 bool pma_fix_enabled;
1536
1537 /**
1538 * Whether or not we know for certain that HiZ is enabled for the current
1539 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
1540 * enabled or not, this will be false.
1541 */
1542 bool hiz_enabled;
1543
1544 /**
1545 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1546 * valid only when recording a render pass instance.
1547 */
1548 struct anv_attachment_state * attachments;
1549
1550 /**
1551 * Surface states for color render targets. These are stored in a single
1552 * flat array. For depth-stencil attachments, the surface state is simply
1553 * left blank.
1554 */
1555 struct anv_state render_pass_states;
1556
1557 /**
1558 * A null surface state of the right size to match the framebuffer. This
1559 * is one of the states in render_pass_states.
1560 */
1561 struct anv_state null_surface_state;
1562
1563 struct {
1564 struct anv_buffer * index_buffer;
1565 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1566 uint32_t index_offset;
1567 } gen7;
1568 };
1569
1570 struct anv_cmd_pool {
1571 VkAllocationCallbacks alloc;
1572 struct list_head cmd_buffers;
1573 };
1574
1575 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1576
1577 enum anv_cmd_buffer_exec_mode {
1578 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1579 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1580 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1581 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1582 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1583 };
1584
1585 struct anv_cmd_buffer {
1586 VK_LOADER_DATA _loader_data;
1587
1588 struct anv_device * device;
1589
1590 struct anv_cmd_pool * pool;
1591 struct list_head pool_link;
1592
1593 struct anv_batch batch;
1594
1595 /* Fields required for the actual chain of anv_batch_bo's.
1596 *
1597 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1598 */
1599 struct list_head batch_bos;
1600 enum anv_cmd_buffer_exec_mode exec_mode;
1601
1602 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1603 * referenced by this command buffer
1604 *
1605 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1606 */
1607 struct u_vector seen_bbos;
1608
1609 /* A vector of int32_t's for every block of binding tables.
1610 *
1611 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1612 */
1613 struct u_vector bt_block_states;
1614 uint32_t bt_next;
1615
1616 struct anv_reloc_list surface_relocs;
1617 /** Last seen surface state block pool center bo offset */
1618 uint32_t last_ss_pool_center;
1619
1620 /* Serial for tracking buffer completion */
1621 uint32_t serial;
1622
1623 /* Stream objects for storing temporary data */
1624 struct anv_state_stream surface_state_stream;
1625 struct anv_state_stream dynamic_state_stream;
1626
1627 VkCommandBufferUsageFlags usage_flags;
1628 VkCommandBufferLevel level;
1629
1630 struct anv_cmd_state state;
1631 };
1632
1633 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1634 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1635 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1636 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1637 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1638 struct anv_cmd_buffer *secondary);
1639 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1640 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
1641 struct anv_cmd_buffer *cmd_buffer,
1642 const VkSemaphore *in_semaphores,
1643 uint32_t num_in_semaphores,
1644 const VkSemaphore *out_semaphores,
1645 uint32_t num_out_semaphores,
1646 VkFence fence);
1647
1648 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
1649
1650 VkResult
1651 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
1652 gl_shader_stage stage, uint32_t size);
1653 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
1654 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
1655 (offsetof(struct anv_push_constants, field) + \
1656 sizeof(cmd_buffer->state.push_constants[0]->field)))
1657
1658 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1659 const void *data, uint32_t size, uint32_t alignment);
1660 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1661 uint32_t *a, uint32_t *b,
1662 uint32_t dwords, uint32_t alignment);
1663
1664 struct anv_address
1665 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1666 struct anv_state
1667 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1668 uint32_t entries, uint32_t *state_offset);
1669 struct anv_state
1670 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1671 struct anv_state
1672 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1673 uint32_t size, uint32_t alignment);
1674
1675 VkResult
1676 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1677
1678 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1679 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
1680 bool depth_clamp_enable);
1681 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1682
1683 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1684 struct anv_render_pass *pass,
1685 struct anv_framebuffer *framebuffer,
1686 const VkClearValue *clear_values);
1687
1688 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1689
1690 struct anv_state
1691 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1692 gl_shader_stage stage);
1693 struct anv_state
1694 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1695
1696 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1697 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1698
1699 const struct anv_image_view *
1700 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1701
1702 VkResult
1703 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
1704 uint32_t num_entries,
1705 uint32_t *state_offset,
1706 struct anv_state *bt_state);
1707
1708 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1709
1710 enum anv_fence_type {
1711 ANV_FENCE_TYPE_NONE = 0,
1712 ANV_FENCE_TYPE_BO,
1713 ANV_FENCE_TYPE_SYNCOBJ,
1714 };
1715
1716 enum anv_bo_fence_state {
1717 /** Indicates that this is a new (or newly reset fence) */
1718 ANV_BO_FENCE_STATE_RESET,
1719
1720 /** Indicates that this fence has been submitted to the GPU but is still
1721 * (as far as we know) in use by the GPU.
1722 */
1723 ANV_BO_FENCE_STATE_SUBMITTED,
1724
1725 ANV_BO_FENCE_STATE_SIGNALED,
1726 };
1727
1728 struct anv_fence_impl {
1729 enum anv_fence_type type;
1730
1731 union {
1732 /** Fence implementation for BO fences
1733 *
1734 * These fences use a BO and a set of CPU-tracked state flags. The BO
1735 * is added to the object list of the last execbuf call in a QueueSubmit
1736 * and is marked EXEC_WRITE. The state flags track when the BO has been
1737 * submitted to the kernel. We need to do this because Vulkan lets you
1738 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
1739 * will say it's idle in this case.
1740 */
1741 struct {
1742 struct anv_bo bo;
1743 enum anv_bo_fence_state state;
1744 } bo;
1745 };
1746 };
1747
1748 struct anv_fence {
1749 /* Permanent fence state. Every fence has some form of permanent state
1750 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
1751 * cross-process fences0 or it could just be a dummy for use internally.
1752 */
1753 struct anv_fence_impl permanent;
1754
1755 /* Temporary fence state. A fence *may* have temporary state. That state
1756 * is added to the fence by an import operation and is reset back to
1757 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
1758 * state cannot be signaled because the fence must already be signaled
1759 * before the temporary state can be exported from the fence in the other
1760 * process and imported here.
1761 */
1762 struct anv_fence_impl temporary;
1763 };
1764
1765 struct anv_event {
1766 uint64_t semaphore;
1767 struct anv_state state;
1768 };
1769
1770 enum anv_semaphore_type {
1771 ANV_SEMAPHORE_TYPE_NONE = 0,
1772 ANV_SEMAPHORE_TYPE_DUMMY,
1773 ANV_SEMAPHORE_TYPE_BO,
1774 ANV_SEMAPHORE_TYPE_SYNC_FILE,
1775 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
1776 };
1777
1778 struct anv_semaphore_impl {
1779 enum anv_semaphore_type type;
1780
1781 union {
1782 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
1783 * This BO will be added to the object list on any execbuf2 calls for
1784 * which this semaphore is used as a wait or signal fence. When used as
1785 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
1786 */
1787 struct anv_bo *bo;
1788
1789 /* The sync file descriptor when type == AKV_SEMAPHORE_TYPE_SYNC_FILE.
1790 * If the semaphore is in the unsignaled state due to either just being
1791 * created or because it has been used for a wait, fd will be -1.
1792 */
1793 int fd;
1794
1795 /* Sync object handle when type == AKV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
1796 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
1797 * import so we don't need to bother with a userspace cache.
1798 */
1799 uint32_t syncobj;
1800 };
1801 };
1802
1803 struct anv_semaphore {
1804 /* Permanent semaphore state. Every semaphore has some form of permanent
1805 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
1806 * (for cross-process semaphores0 or it could just be a dummy for use
1807 * internally.
1808 */
1809 struct anv_semaphore_impl permanent;
1810
1811 /* Temporary semaphore state. A semaphore *may* have temporary state.
1812 * That state is added to the semaphore by an import operation and is reset
1813 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
1814 * semaphore with temporary state cannot be signaled because the semaphore
1815 * must already be signaled before the temporary state can be exported from
1816 * the semaphore in the other process and imported here.
1817 */
1818 struct anv_semaphore_impl temporary;
1819 };
1820
1821 void anv_semaphore_reset_temporary(struct anv_device *device,
1822 struct anv_semaphore *semaphore);
1823
1824 struct anv_shader_module {
1825 unsigned char sha1[20];
1826 uint32_t size;
1827 char data[0];
1828 };
1829
1830 static inline gl_shader_stage
1831 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1832 {
1833 assert(__builtin_popcount(vk_stage) == 1);
1834 return ffs(vk_stage) - 1;
1835 }
1836
1837 static inline VkShaderStageFlagBits
1838 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1839 {
1840 return (1 << mesa_stage);
1841 }
1842
1843 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
1844
1845 #define anv_foreach_stage(stage, stage_bits) \
1846 for (gl_shader_stage stage, \
1847 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
1848 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1849 __tmp &= ~(1 << (stage)))
1850
1851 struct anv_pipeline_bind_map {
1852 uint32_t surface_count;
1853 uint32_t sampler_count;
1854 uint32_t image_count;
1855
1856 struct anv_pipeline_binding * surface_to_descriptor;
1857 struct anv_pipeline_binding * sampler_to_descriptor;
1858 };
1859
1860 struct anv_shader_bin_key {
1861 uint32_t size;
1862 uint8_t data[0];
1863 };
1864
1865 struct anv_shader_bin {
1866 uint32_t ref_cnt;
1867
1868 const struct anv_shader_bin_key *key;
1869
1870 struct anv_state kernel;
1871 uint32_t kernel_size;
1872
1873 const struct brw_stage_prog_data *prog_data;
1874 uint32_t prog_data_size;
1875
1876 struct anv_pipeline_bind_map bind_map;
1877
1878 /* Prog data follows, then params, then the key, all aligned to 8-bytes */
1879 };
1880
1881 struct anv_shader_bin *
1882 anv_shader_bin_create(struct anv_device *device,
1883 const void *key, uint32_t key_size,
1884 const void *kernel, uint32_t kernel_size,
1885 const struct brw_stage_prog_data *prog_data,
1886 uint32_t prog_data_size, const void *prog_data_param,
1887 const struct anv_pipeline_bind_map *bind_map);
1888
1889 void
1890 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
1891
1892 static inline void
1893 anv_shader_bin_ref(struct anv_shader_bin *shader)
1894 {
1895 assert(shader && shader->ref_cnt >= 1);
1896 p_atomic_inc(&shader->ref_cnt);
1897 }
1898
1899 static inline void
1900 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
1901 {
1902 assert(shader && shader->ref_cnt >= 1);
1903 if (p_atomic_dec_zero(&shader->ref_cnt))
1904 anv_shader_bin_destroy(device, shader);
1905 }
1906
1907 struct anv_pipeline {
1908 struct anv_device * device;
1909 struct anv_batch batch;
1910 uint32_t batch_data[512];
1911 struct anv_reloc_list batch_relocs;
1912 uint32_t dynamic_state_mask;
1913 struct anv_dynamic_state dynamic_state;
1914
1915 struct anv_subpass * subpass;
1916 struct anv_pipeline_layout * layout;
1917
1918 bool needs_data_cache;
1919
1920 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
1921
1922 struct {
1923 const struct gen_l3_config * l3_config;
1924 uint32_t total_size;
1925 } urb;
1926
1927 VkShaderStageFlags active_stages;
1928 struct anv_state blend_state;
1929
1930 uint32_t vb_used;
1931 uint32_t binding_stride[MAX_VBS];
1932 bool instancing_enable[MAX_VBS];
1933 bool primitive_restart;
1934 uint32_t topology;
1935
1936 uint32_t cs_right_mask;
1937
1938 bool writes_depth;
1939 bool depth_test_enable;
1940 bool writes_stencil;
1941 bool stencil_test_enable;
1942 bool depth_clamp_enable;
1943 bool sample_shading_enable;
1944 bool kill_pixel;
1945
1946 struct {
1947 uint32_t sf[7];
1948 uint32_t depth_stencil_state[3];
1949 } gen7;
1950
1951 struct {
1952 uint32_t sf[4];
1953 uint32_t raster[5];
1954 uint32_t wm_depth_stencil[3];
1955 } gen8;
1956
1957 struct {
1958 uint32_t wm_depth_stencil[4];
1959 } gen9;
1960
1961 uint32_t interface_descriptor_data[8];
1962 };
1963
1964 static inline bool
1965 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
1966 gl_shader_stage stage)
1967 {
1968 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
1969 }
1970
1971 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
1972 static inline const struct brw_##prefix##_prog_data * \
1973 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
1974 { \
1975 if (anv_pipeline_has_stage(pipeline, stage)) { \
1976 return (const struct brw_##prefix##_prog_data *) \
1977 pipeline->shaders[stage]->prog_data; \
1978 } else { \
1979 return NULL; \
1980 } \
1981 }
1982
1983 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
1984 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
1985 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
1986 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
1987 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
1988 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
1989
1990 static inline const struct brw_vue_prog_data *
1991 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
1992 {
1993 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
1994 return &get_gs_prog_data(pipeline)->base;
1995 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1996 return &get_tes_prog_data(pipeline)->base;
1997 else
1998 return &get_vs_prog_data(pipeline)->base;
1999 }
2000
2001 VkResult
2002 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2003 struct anv_pipeline_cache *cache,
2004 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2005 const VkAllocationCallbacks *alloc);
2006
2007 VkResult
2008 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2009 struct anv_pipeline_cache *cache,
2010 const VkComputePipelineCreateInfo *info,
2011 struct anv_shader_module *module,
2012 const char *entrypoint,
2013 const VkSpecializationInfo *spec_info);
2014
2015 struct anv_format {
2016 enum isl_format isl_format:16;
2017 struct isl_swizzle swizzle;
2018 };
2019
2020 struct anv_format
2021 anv_get_format(const struct gen_device_info *devinfo, VkFormat format,
2022 VkImageAspectFlags aspect, VkImageTiling tiling);
2023
2024 static inline enum isl_format
2025 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
2026 VkImageAspectFlags aspect, VkImageTiling tiling)
2027 {
2028 return anv_get_format(devinfo, vk_format, aspect, tiling).isl_format;
2029 }
2030
2031 static inline struct isl_swizzle
2032 anv_swizzle_for_render(struct isl_swizzle swizzle)
2033 {
2034 /* Sometimes the swizzle will have alpha map to one. We do this to fake
2035 * RGB as RGBA for texturing
2036 */
2037 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
2038 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
2039
2040 /* But it doesn't matter what we render to that channel */
2041 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
2042
2043 return swizzle;
2044 }
2045
2046 void
2047 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
2048
2049 /**
2050 * Subsurface of an anv_image.
2051 */
2052 struct anv_surface {
2053 /** Valid only if isl_surf::size > 0. */
2054 struct isl_surf isl;
2055
2056 /**
2057 * Offset from VkImage's base address, as bound by vkBindImageMemory().
2058 */
2059 uint32_t offset;
2060 };
2061
2062 struct anv_image {
2063 VkImageType type;
2064 /* The original VkFormat provided by the client. This may not match any
2065 * of the actual surface formats.
2066 */
2067 VkFormat vk_format;
2068 VkImageAspectFlags aspects;
2069 VkExtent3D extent;
2070 uint32_t levels;
2071 uint32_t array_size;
2072 uint32_t samples; /**< VkImageCreateInfo::samples */
2073 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
2074 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
2075
2076 VkDeviceSize size;
2077 uint32_t alignment;
2078
2079 /* Set when bound */
2080 struct anv_bo *bo;
2081 VkDeviceSize offset;
2082
2083 /**
2084 * Image subsurfaces
2085 *
2086 * For each foo, anv_image::foo_surface is valid if and only if
2087 * anv_image::aspects has a foo aspect.
2088 *
2089 * The hardware requires that the depth buffer and stencil buffer be
2090 * separate surfaces. From Vulkan's perspective, though, depth and stencil
2091 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
2092 * allocate the depth and stencil buffers as separate surfaces in the same
2093 * bo.
2094 */
2095 union {
2096 struct anv_surface color_surface;
2097
2098 struct {
2099 struct anv_surface depth_surface;
2100 struct anv_surface stencil_surface;
2101 };
2102 };
2103
2104 /**
2105 * For color images, this is the aux usage for this image when not used as a
2106 * color attachment.
2107 *
2108 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the image
2109 * has a HiZ buffer.
2110 */
2111 enum isl_aux_usage aux_usage;
2112
2113 struct anv_surface aux_surface;
2114 };
2115
2116 /* Returns the number of auxiliary buffer levels attached to an image. */
2117 static inline uint8_t
2118 anv_image_aux_levels(const struct anv_image * const image)
2119 {
2120 assert(image);
2121 return image->aux_surface.isl.size > 0 ? image->aux_surface.isl.levels : 0;
2122 }
2123
2124 /* Returns the number of auxiliary buffer layers attached to an image. */
2125 static inline uint32_t
2126 anv_image_aux_layers(const struct anv_image * const image,
2127 const uint8_t miplevel)
2128 {
2129 assert(image);
2130
2131 /* The miplevel must exist in the main buffer. */
2132 assert(miplevel < image->levels);
2133
2134 if (miplevel >= anv_image_aux_levels(image)) {
2135 /* There are no layers with auxiliary data because the miplevel has no
2136 * auxiliary data.
2137 */
2138 return 0;
2139 } else {
2140 return MAX2(image->aux_surface.isl.logical_level0_px.array_len,
2141 image->aux_surface.isl.logical_level0_px.depth >> miplevel);
2142 }
2143 }
2144
2145 static inline unsigned
2146 anv_fast_clear_state_entry_size(const struct anv_device *device)
2147 {
2148 assert(device);
2149 /* Entry contents:
2150 * +--------------------------------------------+
2151 * | clear value dword(s) | needs resolve dword |
2152 * +--------------------------------------------+
2153 */
2154
2155 /* Ensure that the needs resolve dword is in fact dword-aligned to enable
2156 * GPU memcpy operations.
2157 */
2158 assert(device->isl_dev.ss.clear_value_size % 4 == 0);
2159 return device->isl_dev.ss.clear_value_size + 4;
2160 }
2161
2162 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
2163 static inline bool
2164 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
2165 const VkImageAspectFlags aspect_mask,
2166 const uint32_t samples)
2167 {
2168 /* Validate the inputs. */
2169 assert(devinfo && aspect_mask && samples);
2170 return devinfo->gen >= 8 && (aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) &&
2171 samples == 1;
2172 }
2173
2174 void
2175 anv_gen8_hiz_op_resolve(struct anv_cmd_buffer *cmd_buffer,
2176 const struct anv_image *image,
2177 enum blorp_hiz_op op);
2178 void
2179 anv_ccs_resolve(struct anv_cmd_buffer * const cmd_buffer,
2180 const struct anv_state surface_state,
2181 const struct anv_image * const image,
2182 const uint8_t level, const uint32_t layer_count,
2183 const enum blorp_fast_clear_op op);
2184
2185 void
2186 anv_image_fast_clear(struct anv_cmd_buffer *cmd_buffer,
2187 const struct anv_image *image,
2188 const uint32_t base_level, const uint32_t level_count,
2189 const uint32_t base_layer, uint32_t layer_count);
2190
2191 enum isl_aux_usage
2192 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
2193 const struct anv_image *image,
2194 const VkImageAspectFlags aspects,
2195 const VkImageLayout layout);
2196
2197 /* This is defined as a macro so that it works for both
2198 * VkImageSubresourceRange and VkImageSubresourceLayers
2199 */
2200 #define anv_get_layerCount(_image, _range) \
2201 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
2202 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
2203
2204 static inline uint32_t
2205 anv_get_levelCount(const struct anv_image *image,
2206 const VkImageSubresourceRange *range)
2207 {
2208 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
2209 image->levels - range->baseMipLevel : range->levelCount;
2210 }
2211
2212
2213 struct anv_image_view {
2214 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
2215 struct anv_bo *bo;
2216 uint32_t offset; /**< Offset into bo. */
2217
2218 struct isl_view isl;
2219
2220 VkImageAspectFlags aspect_mask;
2221 VkFormat vk_format;
2222 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
2223
2224 /**
2225 * RENDER_SURFACE_STATE when using image as a sampler surface with an image
2226 * layout of SHADER_READ_ONLY_OPTIMAL or DEPTH_STENCIL_READ_ONLY_OPTIMAL.
2227 */
2228 enum isl_aux_usage optimal_sampler_aux_usage;
2229 struct anv_state optimal_sampler_surface_state;
2230
2231 /**
2232 * RENDER_SURFACE_STATE when using image as a sampler surface with an image
2233 * layout of GENERAL.
2234 */
2235 enum isl_aux_usage general_sampler_aux_usage;
2236 struct anv_state general_sampler_surface_state;
2237
2238 /**
2239 * RENDER_SURFACE_STATE when using image as a storage image. Separate states
2240 * for write-only and readable, using the real format for write-only and the
2241 * lowered format for readable.
2242 */
2243 struct anv_state storage_surface_state;
2244 struct anv_state writeonly_storage_surface_state;
2245
2246 struct brw_image_param storage_image_param;
2247 };
2248
2249 struct anv_image_create_info {
2250 const VkImageCreateInfo *vk_info;
2251
2252 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
2253 isl_tiling_flags_t isl_tiling_flags;
2254
2255 uint32_t stride;
2256 };
2257
2258 VkResult anv_image_create(VkDevice _device,
2259 const struct anv_image_create_info *info,
2260 const VkAllocationCallbacks* alloc,
2261 VkImage *pImage);
2262
2263 const struct anv_surface *
2264 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
2265 VkImageAspectFlags aspect_mask);
2266
2267 enum isl_format
2268 anv_isl_format_for_descriptor_type(VkDescriptorType type);
2269
2270 static inline struct VkExtent3D
2271 anv_sanitize_image_extent(const VkImageType imageType,
2272 const struct VkExtent3D imageExtent)
2273 {
2274 switch (imageType) {
2275 case VK_IMAGE_TYPE_1D:
2276 return (VkExtent3D) { imageExtent.width, 1, 1 };
2277 case VK_IMAGE_TYPE_2D:
2278 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
2279 case VK_IMAGE_TYPE_3D:
2280 return imageExtent;
2281 default:
2282 unreachable("invalid image type");
2283 }
2284 }
2285
2286 static inline struct VkOffset3D
2287 anv_sanitize_image_offset(const VkImageType imageType,
2288 const struct VkOffset3D imageOffset)
2289 {
2290 switch (imageType) {
2291 case VK_IMAGE_TYPE_1D:
2292 return (VkOffset3D) { imageOffset.x, 0, 0 };
2293 case VK_IMAGE_TYPE_2D:
2294 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
2295 case VK_IMAGE_TYPE_3D:
2296 return imageOffset;
2297 default:
2298 unreachable("invalid image type");
2299 }
2300 }
2301
2302
2303 void anv_fill_buffer_surface_state(struct anv_device *device,
2304 struct anv_state state,
2305 enum isl_format format,
2306 uint32_t offset, uint32_t range,
2307 uint32_t stride);
2308
2309 struct anv_sampler {
2310 uint32_t state[4];
2311 };
2312
2313 struct anv_framebuffer {
2314 uint32_t width;
2315 uint32_t height;
2316 uint32_t layers;
2317
2318 uint32_t attachment_count;
2319 struct anv_image_view * attachments[0];
2320 };
2321
2322 struct anv_subpass {
2323 uint32_t attachment_count;
2324
2325 /**
2326 * A pointer to all attachment references used in this subpass.
2327 * Only valid if ::attachment_count > 0.
2328 */
2329 VkAttachmentReference * attachments;
2330 uint32_t input_count;
2331 VkAttachmentReference * input_attachments;
2332 uint32_t color_count;
2333 VkAttachmentReference * color_attachments;
2334 VkAttachmentReference * resolve_attachments;
2335
2336 VkAttachmentReference depth_stencil_attachment;
2337
2338 uint32_t view_mask;
2339
2340 /** Subpass has a depth/stencil self-dependency */
2341 bool has_ds_self_dep;
2342
2343 /** Subpass has at least one resolve attachment */
2344 bool has_resolve;
2345 };
2346
2347 static inline unsigned
2348 anv_subpass_view_count(const struct anv_subpass *subpass)
2349 {
2350 return MAX2(1, _mesa_bitcount(subpass->view_mask));
2351 }
2352
2353 struct anv_render_pass_attachment {
2354 /* TODO: Consider using VkAttachmentDescription instead of storing each of
2355 * its members individually.
2356 */
2357 VkFormat format;
2358 uint32_t samples;
2359 VkImageUsageFlags usage;
2360 VkAttachmentLoadOp load_op;
2361 VkAttachmentStoreOp store_op;
2362 VkAttachmentLoadOp stencil_load_op;
2363 VkImageLayout initial_layout;
2364 VkImageLayout final_layout;
2365 VkImageLayout first_subpass_layout;
2366
2367 /* The subpass id in which the attachment will be used last. */
2368 uint32_t last_subpass_idx;
2369 };
2370
2371 struct anv_render_pass {
2372 uint32_t attachment_count;
2373 uint32_t subpass_count;
2374 /* An array of subpass_count+1 flushes, one per subpass boundary */
2375 enum anv_pipe_bits * subpass_flushes;
2376 struct anv_render_pass_attachment * attachments;
2377 struct anv_subpass subpasses[0];
2378 };
2379
2380 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
2381
2382 struct anv_query_pool {
2383 VkQueryType type;
2384 VkQueryPipelineStatisticFlags pipeline_statistics;
2385 /** Stride between slots, in bytes */
2386 uint32_t stride;
2387 /** Number of slots in this query pool */
2388 uint32_t slots;
2389 struct anv_bo bo;
2390 };
2391
2392 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
2393 const char *name);
2394
2395 void anv_dump_image_to_ppm(struct anv_device *device,
2396 struct anv_image *image, unsigned miplevel,
2397 unsigned array_layer, VkImageAspectFlagBits aspect,
2398 const char *filename);
2399
2400 enum anv_dump_action {
2401 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
2402 };
2403
2404 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
2405 void anv_dump_finish(void);
2406
2407 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
2408 struct anv_framebuffer *fb);
2409
2410 static inline uint32_t
2411 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
2412 {
2413 /* This function must be called from within a subpass. */
2414 assert(cmd_state->pass && cmd_state->subpass);
2415
2416 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
2417
2418 /* The id of this subpass shouldn't exceed the number of subpasses in this
2419 * render pass minus 1.
2420 */
2421 assert(subpass_id < cmd_state->pass->subpass_count);
2422 return subpass_id;
2423 }
2424
2425 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
2426 \
2427 static inline struct __anv_type * \
2428 __anv_type ## _from_handle(__VkType _handle) \
2429 { \
2430 return (struct __anv_type *) _handle; \
2431 } \
2432 \
2433 static inline __VkType \
2434 __anv_type ## _to_handle(struct __anv_type *_obj) \
2435 { \
2436 return (__VkType) _obj; \
2437 }
2438
2439 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
2440 \
2441 static inline struct __anv_type * \
2442 __anv_type ## _from_handle(__VkType _handle) \
2443 { \
2444 return (struct __anv_type *)(uintptr_t) _handle; \
2445 } \
2446 \
2447 static inline __VkType \
2448 __anv_type ## _to_handle(struct __anv_type *_obj) \
2449 { \
2450 return (__VkType)(uintptr_t) _obj; \
2451 }
2452
2453 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
2454 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
2455
2456 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
2457 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
2458 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
2459 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
2460 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
2461
2462 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
2463 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
2464 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
2465 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
2466 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
2467 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
2468 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplateKHR)
2469 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
2470 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
2471 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
2472 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
2473 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
2474 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
2475 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
2476 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
2477 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
2478 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
2479 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
2480 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
2481 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
2482 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
2483
2484 /* Gen-specific function declarations */
2485 #ifdef genX
2486 # include "anv_genX.h"
2487 #else
2488 # define genX(x) gen7_##x
2489 # include "anv_genX.h"
2490 # undef genX
2491 # define genX(x) gen75_##x
2492 # include "anv_genX.h"
2493 # undef genX
2494 # define genX(x) gen8_##x
2495 # include "anv_genX.h"
2496 # undef genX
2497 # define genX(x) gen9_##x
2498 # include "anv_genX.h"
2499 # undef genX
2500 # define genX(x) gen10_##x
2501 # include "anv_genX.h"
2502 # undef genX
2503 #endif
2504
2505 #endif /* ANV_PRIVATE_H */