anv: Add a has_a64_buffer_access to anv_physical_device
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/macros.h"
53 #include "util/hash_table.h"
54 #include "util/list.h"
55 #include "util/set.h"
56 #include "util/u_atomic.h"
57 #include "util/u_vector.h"
58 #include "util/u_math.h"
59 #include "util/vma.h"
60 #include "vk_alloc.h"
61 #include "vk_debug_report.h"
62
63 /* Pre-declarations needed for WSI entrypoints */
64 struct wl_surface;
65 struct wl_display;
66 typedef struct xcb_connection_t xcb_connection_t;
67 typedef uint32_t xcb_visualid_t;
68 typedef uint32_t xcb_window_t;
69
70 struct anv_buffer;
71 struct anv_buffer_view;
72 struct anv_image_view;
73 struct anv_instance;
74
75 struct gen_l3_config;
76
77 #include <vulkan/vulkan.h>
78 #include <vulkan/vulkan_intel.h>
79 #include <vulkan/vk_icd.h>
80
81 #include "anv_android.h"
82 #include "anv_entrypoints.h"
83 #include "anv_extensions.h"
84 #include "isl/isl.h"
85
86 #include "dev/gen_debug.h"
87 #include "common/intel_log.h"
88 #include "wsi_common.h"
89
90 /* anv Virtual Memory Layout
91 * =========================
92 *
93 * When the anv driver is determining the virtual graphics addresses of memory
94 * objects itself using the softpin mechanism, the following memory ranges
95 * will be used.
96 *
97 * Three special considerations to notice:
98 *
99 * (1) the dynamic state pool is located within the same 4 GiB as the low
100 * heap. This is to work around a VF cache issue described in a comment in
101 * anv_physical_device_init_heaps.
102 *
103 * (2) the binding table pool is located at lower addresses than the surface
104 * state pool, within a 4 GiB range. This allows surface state base addresses
105 * to cover both binding tables (16 bit offsets) and surface states (32 bit
106 * offsets).
107 *
108 * (3) the last 4 GiB of the address space is withheld from the high
109 * heap. Various hardware units will read past the end of an object for
110 * various reasons. This healthy margin prevents reads from wrapping around
111 * 48-bit addresses.
112 */
113 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
114 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
115 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
116 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
117 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
118 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
119 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
120 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
121 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
122 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
123 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
124
125 #define LOW_HEAP_SIZE \
126 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
127 #define DYNAMIC_STATE_POOL_SIZE \
128 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
129 #define BINDING_TABLE_POOL_SIZE \
130 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
131 #define SURFACE_STATE_POOL_SIZE \
132 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
133 #define INSTRUCTION_STATE_POOL_SIZE \
134 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
135
136 /* Allowing different clear colors requires us to perform a depth resolve at
137 * the end of certain render passes. This is because while slow clears store
138 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
139 * See the PRMs for examples describing when additional resolves would be
140 * necessary. To enable fast clears without requiring extra resolves, we set
141 * the clear value to a globally-defined one. We could allow different values
142 * if the user doesn't expect coherent data during or after a render passes
143 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
144 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
145 * 1.0f seems to be the only value used. The only application that doesn't set
146 * this value does so through the usage of an seemingly uninitialized clear
147 * value.
148 */
149 #define ANV_HZ_FC_VAL 1.0f
150
151 #define MAX_VBS 28
152 #define MAX_XFB_BUFFERS 4
153 #define MAX_XFB_STREAMS 4
154 #define MAX_SETS 8
155 #define MAX_RTS 8
156 #define MAX_VIEWPORTS 16
157 #define MAX_SCISSORS 16
158 #define MAX_PUSH_CONSTANTS_SIZE 128
159 #define MAX_DYNAMIC_BUFFERS 16
160 #define MAX_IMAGES 64
161 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
162 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
163 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
164
165 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
166 *
167 * "The surface state model is used when a Binding Table Index (specified
168 * in the message descriptor) of less than 240 is specified. In this model,
169 * the Binding Table Index is used to index into the binding table, and the
170 * binding table entry contains a pointer to the SURFACE_STATE."
171 *
172 * Binding table values above 240 are used for various things in the hardware
173 * such as stateless, stateless with incoherent cache, SLM, and bindless.
174 */
175 #define MAX_BINDING_TABLE_SIZE 240
176
177 /* The kernel relocation API has a limitation of a 32-bit delta value
178 * applied to the address before it is written which, in spite of it being
179 * unsigned, is treated as signed . Because of the way that this maps to
180 * the Vulkan API, we cannot handle an offset into a buffer that does not
181 * fit into a signed 32 bits. The only mechanism we have for dealing with
182 * this at the moment is to limit all VkDeviceMemory objects to a maximum
183 * of 2GB each. The Vulkan spec allows us to do this:
184 *
185 * "Some platforms may have a limit on the maximum size of a single
186 * allocation. For example, certain systems may fail to create
187 * allocations with a size greater than or equal to 4GB. Such a limit is
188 * implementation-dependent, and if such a failure occurs then the error
189 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
190 *
191 * We don't use vk_error here because it's not an error so much as an
192 * indication to the application that the allocation is too large.
193 */
194 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
195
196 #define ANV_SVGS_VB_INDEX MAX_VBS
197 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
198
199 /* We reserve this MI ALU register for the purpose of handling predication.
200 * Other code which uses the MI ALU should leave it alone.
201 */
202 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
203
204 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
205
206 static inline uint32_t
207 align_down_npot_u32(uint32_t v, uint32_t a)
208 {
209 return v - (v % a);
210 }
211
212 static inline uint32_t
213 align_u32(uint32_t v, uint32_t a)
214 {
215 assert(a != 0 && a == (a & -a));
216 return (v + a - 1) & ~(a - 1);
217 }
218
219 static inline uint64_t
220 align_u64(uint64_t v, uint64_t a)
221 {
222 assert(a != 0 && a == (a & -a));
223 return (v + a - 1) & ~(a - 1);
224 }
225
226 static inline int32_t
227 align_i32(int32_t v, int32_t a)
228 {
229 assert(a != 0 && a == (a & -a));
230 return (v + a - 1) & ~(a - 1);
231 }
232
233 /** Alignment must be a power of 2. */
234 static inline bool
235 anv_is_aligned(uintmax_t n, uintmax_t a)
236 {
237 assert(a == (a & -a));
238 return (n & (a - 1)) == 0;
239 }
240
241 static inline uint32_t
242 anv_minify(uint32_t n, uint32_t levels)
243 {
244 if (unlikely(n == 0))
245 return 0;
246 else
247 return MAX2(n >> levels, 1);
248 }
249
250 static inline float
251 anv_clamp_f(float f, float min, float max)
252 {
253 assert(min < max);
254
255 if (f > max)
256 return max;
257 else if (f < min)
258 return min;
259 else
260 return f;
261 }
262
263 static inline bool
264 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
265 {
266 if (*inout_mask & clear_mask) {
267 *inout_mask &= ~clear_mask;
268 return true;
269 } else {
270 return false;
271 }
272 }
273
274 static inline union isl_color_value
275 vk_to_isl_color(VkClearColorValue color)
276 {
277 return (union isl_color_value) {
278 .u32 = {
279 color.uint32[0],
280 color.uint32[1],
281 color.uint32[2],
282 color.uint32[3],
283 },
284 };
285 }
286
287 #define for_each_bit(b, dword) \
288 for (uint32_t __dword = (dword); \
289 (b) = __builtin_ffs(__dword) - 1, __dword; \
290 __dword &= ~(1 << (b)))
291
292 #define typed_memcpy(dest, src, count) ({ \
293 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
294 memcpy((dest), (src), (count) * sizeof(*(src))); \
295 })
296
297 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
298 * to be added here in order to utilize mapping in debug/error/perf macros.
299 */
300 #define REPORT_OBJECT_TYPE(o) \
301 __builtin_choose_expr ( \
302 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
303 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
304 __builtin_choose_expr ( \
305 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
306 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
307 __builtin_choose_expr ( \
308 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
309 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
310 __builtin_choose_expr ( \
311 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
312 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
313 __builtin_choose_expr ( \
314 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
315 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
316 __builtin_choose_expr ( \
317 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
318 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
319 __builtin_choose_expr ( \
320 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
321 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
322 __builtin_choose_expr ( \
323 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
324 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
325 __builtin_choose_expr ( \
326 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
327 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
328 __builtin_choose_expr ( \
329 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
330 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
331 __builtin_choose_expr ( \
332 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
333 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
334 __builtin_choose_expr ( \
335 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
336 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
337 __builtin_choose_expr ( \
338 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
339 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
340 __builtin_choose_expr ( \
341 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
342 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
343 __builtin_choose_expr ( \
344 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
345 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
346 __builtin_choose_expr ( \
347 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
348 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
349 __builtin_choose_expr ( \
350 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
351 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
352 __builtin_choose_expr ( \
353 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
354 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
355 __builtin_choose_expr ( \
356 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
357 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
358 __builtin_choose_expr ( \
359 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
360 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
361 __builtin_choose_expr ( \
362 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
363 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
364 __builtin_choose_expr ( \
365 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
366 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
367 __builtin_choose_expr ( \
368 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
369 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
370 __builtin_choose_expr ( \
371 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
372 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
373 __builtin_choose_expr ( \
374 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
375 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
376 __builtin_choose_expr ( \
377 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
378 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
379 __builtin_choose_expr ( \
380 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
381 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
382 __builtin_choose_expr ( \
383 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
384 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
385 __builtin_choose_expr ( \
386 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
387 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
388 __builtin_choose_expr ( \
389 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
390 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
391 __builtin_choose_expr ( \
392 __builtin_types_compatible_p (__typeof (o), void*), \
393 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
394 /* The void expression results in a compile-time error \
395 when assigning the result to something. */ \
396 (void)0)))))))))))))))))))))))))))))))
397
398 /* Whenever we generate an error, pass it through this function. Useful for
399 * debugging, where we can break on it. Only call at error site, not when
400 * propagating errors. Might be useful to plug in a stack trace here.
401 */
402
403 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
404 VkDebugReportObjectTypeEXT type, VkResult error,
405 const char *file, int line, const char *format,
406 va_list args);
407
408 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
409 VkDebugReportObjectTypeEXT type, VkResult error,
410 const char *file, int line, const char *format, ...);
411
412 #ifdef DEBUG
413 #define vk_error(error) __vk_errorf(NULL, NULL,\
414 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
415 error, __FILE__, __LINE__, NULL)
416 #define vk_errorv(instance, obj, error, format, args)\
417 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
418 __FILE__, __LINE__, format, args)
419 #define vk_errorf(instance, obj, error, format, ...)\
420 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
421 __FILE__, __LINE__, format, ## __VA_ARGS__)
422 #else
423 #define vk_error(error) error
424 #define vk_errorf(instance, obj, error, format, ...) error
425 #endif
426
427 /**
428 * Warn on ignored extension structs.
429 *
430 * The Vulkan spec requires us to ignore unsupported or unknown structs in
431 * a pNext chain. In debug mode, emitting warnings for ignored structs may
432 * help us discover structs that we should not have ignored.
433 *
434 *
435 * From the Vulkan 1.0.38 spec:
436 *
437 * Any component of the implementation (the loader, any enabled layers,
438 * and drivers) must skip over, without processing (other than reading the
439 * sType and pNext members) any chained structures with sType values not
440 * defined by extensions supported by that component.
441 */
442 #define anv_debug_ignored_stype(sType) \
443 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
444
445 void __anv_perf_warn(struct anv_instance *instance, const void *object,
446 VkDebugReportObjectTypeEXT type, const char *file,
447 int line, const char *format, ...)
448 anv_printflike(6, 7);
449 void anv_loge(const char *format, ...) anv_printflike(1, 2);
450 void anv_loge_v(const char *format, va_list va);
451
452 /**
453 * Print a FINISHME message, including its source location.
454 */
455 #define anv_finishme(format, ...) \
456 do { \
457 static bool reported = false; \
458 if (!reported) { \
459 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
460 ##__VA_ARGS__); \
461 reported = true; \
462 } \
463 } while (0)
464
465 /**
466 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
467 */
468 #define anv_perf_warn(instance, obj, format, ...) \
469 do { \
470 static bool reported = false; \
471 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
472 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
473 format, ##__VA_ARGS__); \
474 reported = true; \
475 } \
476 } while (0)
477
478 /* A non-fatal assert. Useful for debugging. */
479 #ifdef DEBUG
480 #define anv_assert(x) ({ \
481 if (unlikely(!(x))) \
482 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
483 })
484 #else
485 #define anv_assert(x)
486 #endif
487
488 /* A multi-pointer allocator
489 *
490 * When copying data structures from the user (such as a render pass), it's
491 * common to need to allocate data for a bunch of different things. Instead
492 * of doing several allocations and having to handle all of the error checking
493 * that entails, it can be easier to do a single allocation. This struct
494 * helps facilitate that. The intended usage looks like this:
495 *
496 * ANV_MULTIALLOC(ma)
497 * anv_multialloc_add(&ma, &main_ptr, 1);
498 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
499 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
500 *
501 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
502 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
503 */
504 struct anv_multialloc {
505 size_t size;
506 size_t align;
507
508 uint32_t ptr_count;
509 void **ptrs[8];
510 };
511
512 #define ANV_MULTIALLOC_INIT \
513 ((struct anv_multialloc) { 0, })
514
515 #define ANV_MULTIALLOC(_name) \
516 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
517
518 __attribute__((always_inline))
519 static inline void
520 _anv_multialloc_add(struct anv_multialloc *ma,
521 void **ptr, size_t size, size_t align)
522 {
523 size_t offset = align_u64(ma->size, align);
524 ma->size = offset + size;
525 ma->align = MAX2(ma->align, align);
526
527 /* Store the offset in the pointer. */
528 *ptr = (void *)(uintptr_t)offset;
529
530 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
531 ma->ptrs[ma->ptr_count++] = ptr;
532 }
533
534 #define anv_multialloc_add_size(_ma, _ptr, _size) \
535 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
536
537 #define anv_multialloc_add(_ma, _ptr, _count) \
538 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
539
540 __attribute__((always_inline))
541 static inline void *
542 anv_multialloc_alloc(struct anv_multialloc *ma,
543 const VkAllocationCallbacks *alloc,
544 VkSystemAllocationScope scope)
545 {
546 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
547 if (!ptr)
548 return NULL;
549
550 /* Fill out each of the pointers with their final value.
551 *
552 * for (uint32_t i = 0; i < ma->ptr_count; i++)
553 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
554 *
555 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
556 * constant, GCC is incapable of figuring this out and unrolling the loop
557 * so we have to give it a little help.
558 */
559 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
560 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
561 if ((_i) < ma->ptr_count) \
562 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
563 _ANV_MULTIALLOC_UPDATE_POINTER(0);
564 _ANV_MULTIALLOC_UPDATE_POINTER(1);
565 _ANV_MULTIALLOC_UPDATE_POINTER(2);
566 _ANV_MULTIALLOC_UPDATE_POINTER(3);
567 _ANV_MULTIALLOC_UPDATE_POINTER(4);
568 _ANV_MULTIALLOC_UPDATE_POINTER(5);
569 _ANV_MULTIALLOC_UPDATE_POINTER(6);
570 _ANV_MULTIALLOC_UPDATE_POINTER(7);
571 #undef _ANV_MULTIALLOC_UPDATE_POINTER
572
573 return ptr;
574 }
575
576 __attribute__((always_inline))
577 static inline void *
578 anv_multialloc_alloc2(struct anv_multialloc *ma,
579 const VkAllocationCallbacks *parent_alloc,
580 const VkAllocationCallbacks *alloc,
581 VkSystemAllocationScope scope)
582 {
583 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
584 }
585
586 /* Extra ANV-defined BO flags which won't be passed to the kernel */
587 #define ANV_BO_EXTERNAL (1ull << 31)
588 #define ANV_BO_FLAG_MASK (1ull << 31)
589
590 struct anv_bo {
591 uint32_t gem_handle;
592
593 /* Index into the current validation list. This is used by the
594 * validation list building alrogithm to track which buffers are already
595 * in the validation list so that we can ensure uniqueness.
596 */
597 uint32_t index;
598
599 /* Last known offset. This value is provided by the kernel when we
600 * execbuf and is used as the presumed offset for the next bunch of
601 * relocations.
602 */
603 uint64_t offset;
604
605 uint64_t size;
606 void *map;
607
608 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
609 uint32_t flags;
610 };
611
612 static inline void
613 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
614 {
615 bo->gem_handle = gem_handle;
616 bo->index = 0;
617 bo->offset = -1;
618 bo->size = size;
619 bo->map = NULL;
620 bo->flags = 0;
621 }
622
623 /* Represents a lock-free linked list of "free" things. This is used by
624 * both the block pool and the state pools. Unfortunately, in order to
625 * solve the ABA problem, we can't use a single uint32_t head.
626 */
627 union anv_free_list {
628 struct {
629 uint32_t offset;
630
631 /* A simple count that is incremented every time the head changes. */
632 uint32_t count;
633 };
634 uint64_t u64;
635 };
636
637 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
638
639 struct anv_block_state {
640 union {
641 struct {
642 uint32_t next;
643 uint32_t end;
644 };
645 uint64_t u64;
646 };
647 };
648
649 #define anv_block_pool_foreach_bo(bo, pool) \
650 for (bo = (pool)->bos; bo != &(pool)->bos[(pool)->nbos]; bo++)
651
652 #define ANV_MAX_BLOCK_POOL_BOS 20
653
654 struct anv_block_pool {
655 struct anv_device *device;
656
657 uint64_t bo_flags;
658
659 struct anv_bo bos[ANV_MAX_BLOCK_POOL_BOS];
660 struct anv_bo *bo;
661 uint32_t nbos;
662
663 uint64_t size;
664
665 /* The address where the start of the pool is pinned. The various bos that
666 * are created as the pool grows will have addresses in the range
667 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
668 */
669 uint64_t start_address;
670
671 /* The offset from the start of the bo to the "center" of the block
672 * pool. Pointers to allocated blocks are given by
673 * bo.map + center_bo_offset + offsets.
674 */
675 uint32_t center_bo_offset;
676
677 /* Current memory map of the block pool. This pointer may or may not
678 * point to the actual beginning of the block pool memory. If
679 * anv_block_pool_alloc_back has ever been called, then this pointer
680 * will point to the "center" position of the buffer and all offsets
681 * (negative or positive) given out by the block pool alloc functions
682 * will be valid relative to this pointer.
683 *
684 * In particular, map == bo.map + center_offset
685 *
686 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
687 * since it will handle the softpin case as well, where this points to NULL.
688 */
689 void *map;
690 int fd;
691
692 /**
693 * Array of mmaps and gem handles owned by the block pool, reclaimed when
694 * the block pool is destroyed.
695 */
696 struct u_vector mmap_cleanups;
697
698 struct anv_block_state state;
699
700 struct anv_block_state back_state;
701 };
702
703 /* Block pools are backed by a fixed-size 1GB memfd */
704 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
705
706 /* The center of the block pool is also the middle of the memfd. This may
707 * change in the future if we decide differently for some reason.
708 */
709 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
710
711 static inline uint32_t
712 anv_block_pool_size(struct anv_block_pool *pool)
713 {
714 return pool->state.end + pool->back_state.end;
715 }
716
717 struct anv_state {
718 int32_t offset;
719 uint32_t alloc_size;
720 void *map;
721 uint32_t idx;
722 };
723
724 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
725
726 struct anv_fixed_size_state_pool {
727 union anv_free_list free_list;
728 struct anv_block_state block;
729 };
730
731 #define ANV_MIN_STATE_SIZE_LOG2 6
732 #define ANV_MAX_STATE_SIZE_LOG2 20
733
734 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
735
736 struct anv_free_entry {
737 uint32_t next;
738 struct anv_state state;
739 };
740
741 struct anv_state_table {
742 struct anv_device *device;
743 int fd;
744 struct anv_free_entry *map;
745 uint32_t size;
746 struct anv_block_state state;
747 struct u_vector mmap_cleanups;
748 };
749
750 struct anv_state_pool {
751 struct anv_block_pool block_pool;
752
753 struct anv_state_table table;
754
755 /* The size of blocks which will be allocated from the block pool */
756 uint32_t block_size;
757
758 /** Free list for "back" allocations */
759 union anv_free_list back_alloc_free_list;
760
761 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
762 };
763
764 struct anv_state_stream_block;
765
766 struct anv_state_stream {
767 struct anv_state_pool *state_pool;
768
769 /* The size of blocks to allocate from the state pool */
770 uint32_t block_size;
771
772 /* Current block we're allocating from */
773 struct anv_state block;
774
775 /* Offset into the current block at which to allocate the next state */
776 uint32_t next;
777
778 /* List of all blocks allocated from this pool */
779 struct anv_state_stream_block *block_list;
780 };
781
782 /* The block_pool functions exported for testing only. The block pool should
783 * only be used via a state pool (see below).
784 */
785 VkResult anv_block_pool_init(struct anv_block_pool *pool,
786 struct anv_device *device,
787 uint64_t start_address,
788 uint32_t initial_size,
789 uint64_t bo_flags);
790 void anv_block_pool_finish(struct anv_block_pool *pool);
791 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
792 uint32_t block_size, uint32_t *padding);
793 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
794 uint32_t block_size);
795 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
796
797 VkResult anv_state_pool_init(struct anv_state_pool *pool,
798 struct anv_device *device,
799 uint64_t start_address,
800 uint32_t block_size,
801 uint64_t bo_flags);
802 void anv_state_pool_finish(struct anv_state_pool *pool);
803 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
804 uint32_t state_size, uint32_t alignment);
805 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
806 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
807 void anv_state_stream_init(struct anv_state_stream *stream,
808 struct anv_state_pool *state_pool,
809 uint32_t block_size);
810 void anv_state_stream_finish(struct anv_state_stream *stream);
811 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
812 uint32_t size, uint32_t alignment);
813
814 VkResult anv_state_table_init(struct anv_state_table *table,
815 struct anv_device *device,
816 uint32_t initial_entries);
817 void anv_state_table_finish(struct anv_state_table *table);
818 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
819 uint32_t count);
820 void anv_free_list_push(union anv_free_list *list,
821 struct anv_state_table *table,
822 uint32_t idx, uint32_t count);
823 struct anv_state* anv_free_list_pop(union anv_free_list *list,
824 struct anv_state_table *table);
825
826
827 static inline struct anv_state *
828 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
829 {
830 return &table->map[idx].state;
831 }
832 /**
833 * Implements a pool of re-usable BOs. The interface is identical to that
834 * of block_pool except that each block is its own BO.
835 */
836 struct anv_bo_pool {
837 struct anv_device *device;
838
839 uint64_t bo_flags;
840
841 void *free_list[16];
842 };
843
844 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
845 uint64_t bo_flags);
846 void anv_bo_pool_finish(struct anv_bo_pool *pool);
847 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
848 uint32_t size);
849 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
850
851 struct anv_scratch_bo {
852 bool exists;
853 struct anv_bo bo;
854 };
855
856 struct anv_scratch_pool {
857 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
858 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
859 };
860
861 void anv_scratch_pool_init(struct anv_device *device,
862 struct anv_scratch_pool *pool);
863 void anv_scratch_pool_finish(struct anv_device *device,
864 struct anv_scratch_pool *pool);
865 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
866 struct anv_scratch_pool *pool,
867 gl_shader_stage stage,
868 unsigned per_thread_scratch);
869
870 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
871 struct anv_bo_cache {
872 struct hash_table *bo_map;
873 pthread_mutex_t mutex;
874 };
875
876 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
877 void anv_bo_cache_finish(struct anv_bo_cache *cache);
878 VkResult anv_bo_cache_alloc(struct anv_device *device,
879 struct anv_bo_cache *cache,
880 uint64_t size, uint64_t bo_flags,
881 struct anv_bo **bo);
882 VkResult anv_bo_cache_import_host_ptr(struct anv_device *device,
883 struct anv_bo_cache *cache,
884 void *host_ptr, uint32_t size,
885 uint64_t bo_flags, struct anv_bo **bo_out);
886 VkResult anv_bo_cache_import(struct anv_device *device,
887 struct anv_bo_cache *cache,
888 int fd, uint64_t bo_flags,
889 struct anv_bo **bo);
890 VkResult anv_bo_cache_export(struct anv_device *device,
891 struct anv_bo_cache *cache,
892 struct anv_bo *bo_in, int *fd_out);
893 void anv_bo_cache_release(struct anv_device *device,
894 struct anv_bo_cache *cache,
895 struct anv_bo *bo);
896
897 struct anv_memory_type {
898 /* Standard bits passed on to the client */
899 VkMemoryPropertyFlags propertyFlags;
900 uint32_t heapIndex;
901
902 /* Driver-internal book-keeping */
903 VkBufferUsageFlags valid_buffer_usage;
904 };
905
906 struct anv_memory_heap {
907 /* Standard bits passed on to the client */
908 VkDeviceSize size;
909 VkMemoryHeapFlags flags;
910
911 /* Driver-internal book-keeping */
912 uint64_t vma_start;
913 uint64_t vma_size;
914 bool supports_48bit_addresses;
915 };
916
917 struct anv_physical_device {
918 VK_LOADER_DATA _loader_data;
919
920 struct anv_instance * instance;
921 uint32_t chipset_id;
922 bool no_hw;
923 char path[20];
924 const char * name;
925 struct {
926 uint16_t domain;
927 uint8_t bus;
928 uint8_t device;
929 uint8_t function;
930 } pci_info;
931 struct gen_device_info info;
932 /** Amount of "GPU memory" we want to advertise
933 *
934 * Clearly, this value is bogus since Intel is a UMA architecture. On
935 * gen7 platforms, we are limited by GTT size unless we want to implement
936 * fine-grained tracking and GTT splitting. On Broadwell and above we are
937 * practically unlimited. However, we will never report more than 3/4 of
938 * the total system ram to try and avoid running out of RAM.
939 */
940 bool supports_48bit_addresses;
941 struct brw_compiler * compiler;
942 struct isl_device isl_dev;
943 int cmd_parser_version;
944 bool has_exec_async;
945 bool has_exec_capture;
946 bool has_exec_fence;
947 bool has_syncobj;
948 bool has_syncobj_wait;
949 bool has_context_priority;
950 bool use_softpin;
951 bool has_context_isolation;
952 bool always_use_bindless;
953
954 /** True if we can access buffers using A64 messages */
955 bool has_a64_buffer_access;
956
957 struct anv_device_extension_table supported_extensions;
958
959 uint32_t eu_total;
960 uint32_t subslice_total;
961
962 struct {
963 uint32_t type_count;
964 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
965 uint32_t heap_count;
966 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
967 } memory;
968
969 uint8_t driver_build_sha1[20];
970 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
971 uint8_t driver_uuid[VK_UUID_SIZE];
972 uint8_t device_uuid[VK_UUID_SIZE];
973
974 struct disk_cache * disk_cache;
975
976 struct wsi_device wsi_device;
977 int local_fd;
978 int master_fd;
979 };
980
981 struct anv_app_info {
982 const char* app_name;
983 uint32_t app_version;
984 const char* engine_name;
985 uint32_t engine_version;
986 uint32_t api_version;
987 };
988
989 struct anv_instance {
990 VK_LOADER_DATA _loader_data;
991
992 VkAllocationCallbacks alloc;
993
994 struct anv_app_info app_info;
995
996 struct anv_instance_extension_table enabled_extensions;
997 struct anv_instance_dispatch_table dispatch;
998 struct anv_device_dispatch_table device_dispatch;
999
1000 int physicalDeviceCount;
1001 struct anv_physical_device physicalDevice;
1002
1003 bool pipeline_cache_enabled;
1004
1005 struct vk_debug_report_instance debug_report_callbacks;
1006 };
1007
1008 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1009 void anv_finish_wsi(struct anv_physical_device *physical_device);
1010
1011 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1012 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1013 const char *name);
1014
1015 struct anv_queue {
1016 VK_LOADER_DATA _loader_data;
1017
1018 struct anv_device * device;
1019
1020 VkDeviceQueueCreateFlags flags;
1021 };
1022
1023 struct anv_pipeline_cache {
1024 struct anv_device * device;
1025 pthread_mutex_t mutex;
1026
1027 struct hash_table * nir_cache;
1028
1029 struct hash_table * cache;
1030 };
1031
1032 struct nir_xfb_info;
1033 struct anv_pipeline_bind_map;
1034
1035 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1036 struct anv_device *device,
1037 bool cache_enabled);
1038 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1039
1040 struct anv_shader_bin *
1041 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1042 const void *key, uint32_t key_size);
1043 struct anv_shader_bin *
1044 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1045 const void *key_data, uint32_t key_size,
1046 const void *kernel_data, uint32_t kernel_size,
1047 const void *constant_data,
1048 uint32_t constant_data_size,
1049 const struct brw_stage_prog_data *prog_data,
1050 uint32_t prog_data_size,
1051 const struct nir_xfb_info *xfb_info,
1052 const struct anv_pipeline_bind_map *bind_map);
1053
1054 struct anv_shader_bin *
1055 anv_device_search_for_kernel(struct anv_device *device,
1056 struct anv_pipeline_cache *cache,
1057 const void *key_data, uint32_t key_size,
1058 bool *user_cache_bit);
1059
1060 struct anv_shader_bin *
1061 anv_device_upload_kernel(struct anv_device *device,
1062 struct anv_pipeline_cache *cache,
1063 const void *key_data, uint32_t key_size,
1064 const void *kernel_data, uint32_t kernel_size,
1065 const void *constant_data,
1066 uint32_t constant_data_size,
1067 const struct brw_stage_prog_data *prog_data,
1068 uint32_t prog_data_size,
1069 const struct nir_xfb_info *xfb_info,
1070 const struct anv_pipeline_bind_map *bind_map);
1071
1072 struct nir_shader;
1073 struct nir_shader_compiler_options;
1074
1075 struct nir_shader *
1076 anv_device_search_for_nir(struct anv_device *device,
1077 struct anv_pipeline_cache *cache,
1078 const struct nir_shader_compiler_options *nir_options,
1079 unsigned char sha1_key[20],
1080 void *mem_ctx);
1081
1082 void
1083 anv_device_upload_nir(struct anv_device *device,
1084 struct anv_pipeline_cache *cache,
1085 const struct nir_shader *nir,
1086 unsigned char sha1_key[20]);
1087
1088 struct anv_device {
1089 VK_LOADER_DATA _loader_data;
1090
1091 VkAllocationCallbacks alloc;
1092
1093 struct anv_instance * instance;
1094 uint32_t chipset_id;
1095 bool no_hw;
1096 struct gen_device_info info;
1097 struct isl_device isl_dev;
1098 int context_id;
1099 int fd;
1100 bool can_chain_batches;
1101 bool robust_buffer_access;
1102 struct anv_device_extension_table enabled_extensions;
1103 struct anv_device_dispatch_table dispatch;
1104
1105 pthread_mutex_t vma_mutex;
1106 struct util_vma_heap vma_lo;
1107 struct util_vma_heap vma_hi;
1108 uint64_t vma_lo_available;
1109 uint64_t vma_hi_available;
1110
1111 /** List of all anv_device_memory objects */
1112 struct list_head memory_objects;
1113
1114 struct anv_bo_pool batch_bo_pool;
1115
1116 struct anv_bo_cache bo_cache;
1117
1118 struct anv_state_pool dynamic_state_pool;
1119 struct anv_state_pool instruction_state_pool;
1120 struct anv_state_pool binding_table_pool;
1121 struct anv_state_pool surface_state_pool;
1122
1123 struct anv_bo workaround_bo;
1124 struct anv_bo trivial_batch_bo;
1125 struct anv_bo hiz_clear_bo;
1126
1127 struct anv_pipeline_cache default_pipeline_cache;
1128 struct blorp_context blorp;
1129
1130 struct anv_state border_colors;
1131
1132 struct anv_queue queue;
1133
1134 struct anv_scratch_pool scratch_pool;
1135
1136 uint32_t default_mocs;
1137 uint32_t external_mocs;
1138
1139 pthread_mutex_t mutex;
1140 pthread_cond_t queue_submit;
1141 bool _lost;
1142
1143 struct gen_batch_decode_ctx decoder_ctx;
1144 /*
1145 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1146 * the cmd_buffer's list.
1147 */
1148 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1149 };
1150
1151 static inline struct anv_state_pool *
1152 anv_binding_table_pool(struct anv_device *device)
1153 {
1154 if (device->instance->physicalDevice.use_softpin)
1155 return &device->binding_table_pool;
1156 else
1157 return &device->surface_state_pool;
1158 }
1159
1160 static inline struct anv_state
1161 anv_binding_table_pool_alloc(struct anv_device *device) {
1162 if (device->instance->physicalDevice.use_softpin)
1163 return anv_state_pool_alloc(&device->binding_table_pool,
1164 device->binding_table_pool.block_size, 0);
1165 else
1166 return anv_state_pool_alloc_back(&device->surface_state_pool);
1167 }
1168
1169 static inline void
1170 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1171 anv_state_pool_free(anv_binding_table_pool(device), state);
1172 }
1173
1174 static inline uint32_t
1175 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1176 {
1177 if (bo->flags & ANV_BO_EXTERNAL)
1178 return device->external_mocs;
1179 else
1180 return device->default_mocs;
1181 }
1182
1183 void anv_device_init_blorp(struct anv_device *device);
1184 void anv_device_finish_blorp(struct anv_device *device);
1185
1186 VkResult _anv_device_set_lost(struct anv_device *device,
1187 const char *file, int line,
1188 const char *msg, ...);
1189 #define anv_device_set_lost(dev, ...) \
1190 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1191
1192 static inline bool
1193 anv_device_is_lost(struct anv_device *device)
1194 {
1195 return unlikely(device->_lost);
1196 }
1197
1198 VkResult anv_device_execbuf(struct anv_device *device,
1199 struct drm_i915_gem_execbuffer2 *execbuf,
1200 struct anv_bo **execbuf_bos);
1201 VkResult anv_device_query_status(struct anv_device *device);
1202 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1203 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1204 int64_t timeout);
1205
1206 void* anv_gem_mmap(struct anv_device *device,
1207 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1208 void anv_gem_munmap(void *p, uint64_t size);
1209 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1210 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1211 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1212 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1213 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1214 int anv_gem_execbuffer(struct anv_device *device,
1215 struct drm_i915_gem_execbuffer2 *execbuf);
1216 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1217 uint32_t stride, uint32_t tiling);
1218 int anv_gem_create_context(struct anv_device *device);
1219 bool anv_gem_has_context_priority(int fd);
1220 int anv_gem_destroy_context(struct anv_device *device, int context);
1221 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1222 uint64_t value);
1223 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1224 uint64_t *value);
1225 int anv_gem_get_param(int fd, uint32_t param);
1226 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1227 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1228 int anv_gem_get_aperture(int fd, uint64_t *size);
1229 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1230 uint32_t *active, uint32_t *pending);
1231 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1232 int anv_gem_reg_read(struct anv_device *device,
1233 uint32_t offset, uint64_t *result);
1234 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1235 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1236 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1237 uint32_t read_domains, uint32_t write_domain);
1238 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1239 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1240 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1241 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1242 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1243 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1244 uint32_t handle);
1245 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1246 uint32_t handle, int fd);
1247 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1248 bool anv_gem_supports_syncobj_wait(int fd);
1249 int anv_gem_syncobj_wait(struct anv_device *device,
1250 uint32_t *handles, uint32_t num_handles,
1251 int64_t abs_timeout_ns, bool wait_all);
1252
1253 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1254 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1255
1256 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1257
1258 struct anv_reloc_list {
1259 uint32_t num_relocs;
1260 uint32_t array_length;
1261 struct drm_i915_gem_relocation_entry * relocs;
1262 struct anv_bo ** reloc_bos;
1263 struct set * deps;
1264 };
1265
1266 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1267 const VkAllocationCallbacks *alloc);
1268 void anv_reloc_list_finish(struct anv_reloc_list *list,
1269 const VkAllocationCallbacks *alloc);
1270
1271 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1272 const VkAllocationCallbacks *alloc,
1273 uint32_t offset, struct anv_bo *target_bo,
1274 uint32_t delta);
1275
1276 struct anv_batch_bo {
1277 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1278 struct list_head link;
1279
1280 struct anv_bo bo;
1281
1282 /* Bytes actually consumed in this batch BO */
1283 uint32_t length;
1284
1285 struct anv_reloc_list relocs;
1286 };
1287
1288 struct anv_batch {
1289 const VkAllocationCallbacks * alloc;
1290
1291 void * start;
1292 void * end;
1293 void * next;
1294
1295 struct anv_reloc_list * relocs;
1296
1297 /* This callback is called (with the associated user data) in the event
1298 * that the batch runs out of space.
1299 */
1300 VkResult (*extend_cb)(struct anv_batch *, void *);
1301 void * user_data;
1302
1303 /**
1304 * Current error status of the command buffer. Used to track inconsistent
1305 * or incomplete command buffer states that are the consequence of run-time
1306 * errors such as out of memory scenarios. We want to track this in the
1307 * batch because the command buffer object is not visible to some parts
1308 * of the driver.
1309 */
1310 VkResult status;
1311 };
1312
1313 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1314 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1315 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1316 void *location, struct anv_bo *bo, uint32_t offset);
1317 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1318 struct anv_batch *batch);
1319
1320 static inline VkResult
1321 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1322 {
1323 assert(error != VK_SUCCESS);
1324 if (batch->status == VK_SUCCESS)
1325 batch->status = error;
1326 return batch->status;
1327 }
1328
1329 static inline bool
1330 anv_batch_has_error(struct anv_batch *batch)
1331 {
1332 return batch->status != VK_SUCCESS;
1333 }
1334
1335 struct anv_address {
1336 struct anv_bo *bo;
1337 uint32_t offset;
1338 };
1339
1340 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1341
1342 static inline bool
1343 anv_address_is_null(struct anv_address addr)
1344 {
1345 return addr.bo == NULL && addr.offset == 0;
1346 }
1347
1348 static inline uint64_t
1349 anv_address_physical(struct anv_address addr)
1350 {
1351 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1352 return gen_canonical_address(addr.bo->offset + addr.offset);
1353 else
1354 return gen_canonical_address(addr.offset);
1355 }
1356
1357 static inline struct anv_address
1358 anv_address_add(struct anv_address addr, uint64_t offset)
1359 {
1360 addr.offset += offset;
1361 return addr;
1362 }
1363
1364 static inline void
1365 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1366 {
1367 unsigned reloc_size = 0;
1368 if (device->info.gen >= 8) {
1369 reloc_size = sizeof(uint64_t);
1370 *(uint64_t *)p = gen_canonical_address(v);
1371 } else {
1372 reloc_size = sizeof(uint32_t);
1373 *(uint32_t *)p = v;
1374 }
1375
1376 if (flush && !device->info.has_llc)
1377 gen_flush_range(p, reloc_size);
1378 }
1379
1380 static inline uint64_t
1381 _anv_combine_address(struct anv_batch *batch, void *location,
1382 const struct anv_address address, uint32_t delta)
1383 {
1384 if (address.bo == NULL) {
1385 return address.offset + delta;
1386 } else {
1387 assert(batch->start <= location && location < batch->end);
1388
1389 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1390 }
1391 }
1392
1393 #define __gen_address_type struct anv_address
1394 #define __gen_user_data struct anv_batch
1395 #define __gen_combine_address _anv_combine_address
1396
1397 /* Wrapper macros needed to work around preprocessor argument issues. In
1398 * particular, arguments don't get pre-evaluated if they are concatenated.
1399 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1400 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1401 * We can work around this easily enough with these helpers.
1402 */
1403 #define __anv_cmd_length(cmd) cmd ## _length
1404 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1405 #define __anv_cmd_header(cmd) cmd ## _header
1406 #define __anv_cmd_pack(cmd) cmd ## _pack
1407 #define __anv_reg_num(reg) reg ## _num
1408
1409 #define anv_pack_struct(dst, struc, ...) do { \
1410 struct struc __template = { \
1411 __VA_ARGS__ \
1412 }; \
1413 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1414 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1415 } while (0)
1416
1417 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1418 void *__dst = anv_batch_emit_dwords(batch, n); \
1419 if (__dst) { \
1420 struct cmd __template = { \
1421 __anv_cmd_header(cmd), \
1422 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1423 __VA_ARGS__ \
1424 }; \
1425 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1426 } \
1427 __dst; \
1428 })
1429
1430 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1431 do { \
1432 uint32_t *dw; \
1433 \
1434 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1435 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1436 if (!dw) \
1437 break; \
1438 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1439 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1440 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1441 } while (0)
1442
1443 #define anv_batch_emit(batch, cmd, name) \
1444 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1445 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1446 __builtin_expect(_dst != NULL, 1); \
1447 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1448 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1449 _dst = NULL; \
1450 }))
1451
1452 /* MEMORY_OBJECT_CONTROL_STATE:
1453 * .GraphicsDataTypeGFDT = 0,
1454 * .LLCCacheabilityControlLLCCC = 0,
1455 * .L3CacheabilityControlL3CC = 1,
1456 */
1457 #define GEN7_MOCS 1
1458
1459 /* MEMORY_OBJECT_CONTROL_STATE:
1460 * .LLCeLLCCacheabilityControlLLCCC = 0,
1461 * .L3CacheabilityControlL3CC = 1,
1462 */
1463 #define GEN75_MOCS 1
1464
1465 /* MEMORY_OBJECT_CONTROL_STATE:
1466 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1467 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1468 * .AgeforQUADLRU = 0
1469 */
1470 #define GEN8_MOCS 0x78
1471
1472 /* MEMORY_OBJECT_CONTROL_STATE:
1473 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1474 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1475 * .AgeforQUADLRU = 0
1476 */
1477 #define GEN8_EXTERNAL_MOCS 0x18
1478
1479 /* Skylake: MOCS is now an index into an array of 62 different caching
1480 * configurations programmed by the kernel.
1481 */
1482
1483 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1484 #define GEN9_MOCS (2 << 1)
1485
1486 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1487 #define GEN9_EXTERNAL_MOCS (1 << 1)
1488
1489 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1490 #define GEN10_MOCS GEN9_MOCS
1491 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1492
1493 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1494 #define GEN11_MOCS GEN9_MOCS
1495 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1496
1497 struct anv_device_memory {
1498 struct list_head link;
1499
1500 struct anv_bo * bo;
1501 struct anv_memory_type * type;
1502 VkDeviceSize map_size;
1503 void * map;
1504
1505 /* If set, we are holding reference to AHardwareBuffer
1506 * which we must release when memory is freed.
1507 */
1508 struct AHardwareBuffer * ahw;
1509
1510 /* If set, this memory comes from a host pointer. */
1511 void * host_ptr;
1512 };
1513
1514 /**
1515 * Header for Vertex URB Entry (VUE)
1516 */
1517 struct anv_vue_header {
1518 uint32_t Reserved;
1519 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1520 uint32_t ViewportIndex;
1521 float PointWidth;
1522 };
1523
1524 enum anv_descriptor_data {
1525 /** The descriptor contains a BTI reference to a surface state */
1526 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1527 /** The descriptor contains a BTI reference to a sampler state */
1528 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1529 /** The descriptor contains an actual buffer view */
1530 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1531 /** The descriptor contains auxiliary image layout data */
1532 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1533 /** The descriptor contains auxiliary image layout data */
1534 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1535 };
1536
1537 struct anv_descriptor_set_binding_layout {
1538 #ifndef NDEBUG
1539 /* The type of the descriptors in this binding */
1540 VkDescriptorType type;
1541 #endif
1542
1543 /* Bitfield representing the type of data this descriptor contains */
1544 enum anv_descriptor_data data;
1545
1546 /* Number of array elements in this binding (or size in bytes for inline
1547 * uniform data)
1548 */
1549 uint16_t array_size;
1550
1551 /* Index into the flattend descriptor set */
1552 uint16_t descriptor_index;
1553
1554 /* Index into the dynamic state array for a dynamic buffer */
1555 int16_t dynamic_offset_index;
1556
1557 /* Index into the descriptor set buffer views */
1558 int16_t buffer_view_index;
1559
1560 /* Offset into the descriptor buffer where this descriptor lives */
1561 uint32_t descriptor_offset;
1562
1563 /* Immutable samplers (or NULL if no immutable samplers) */
1564 struct anv_sampler **immutable_samplers;
1565 };
1566
1567 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1568
1569 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1570 VkDescriptorType type);
1571
1572 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1573 const struct anv_descriptor_set_binding_layout *binding,
1574 bool sampler);
1575
1576 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1577 const struct anv_descriptor_set_binding_layout *binding,
1578 bool sampler);
1579
1580 struct anv_descriptor_set_layout {
1581 /* Descriptor set layouts can be destroyed at almost any time */
1582 uint32_t ref_cnt;
1583
1584 /* Number of bindings in this descriptor set */
1585 uint16_t binding_count;
1586
1587 /* Total size of the descriptor set with room for all array entries */
1588 uint16_t size;
1589
1590 /* Shader stages affected by this descriptor set */
1591 uint16_t shader_stages;
1592
1593 /* Number of buffer views in this descriptor set */
1594 uint16_t buffer_view_count;
1595
1596 /* Number of dynamic offsets used by this descriptor set */
1597 uint16_t dynamic_offset_count;
1598
1599 /* Size of the descriptor buffer for this descriptor set */
1600 uint32_t descriptor_buffer_size;
1601
1602 /* Bindings in this descriptor set */
1603 struct anv_descriptor_set_binding_layout binding[0];
1604 };
1605
1606 static inline void
1607 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1608 {
1609 assert(layout && layout->ref_cnt >= 1);
1610 p_atomic_inc(&layout->ref_cnt);
1611 }
1612
1613 static inline void
1614 anv_descriptor_set_layout_unref(struct anv_device *device,
1615 struct anv_descriptor_set_layout *layout)
1616 {
1617 assert(layout && layout->ref_cnt >= 1);
1618 if (p_atomic_dec_zero(&layout->ref_cnt))
1619 vk_free(&device->alloc, layout);
1620 }
1621
1622 struct anv_descriptor {
1623 VkDescriptorType type;
1624
1625 union {
1626 struct {
1627 VkImageLayout layout;
1628 struct anv_image_view *image_view;
1629 struct anv_sampler *sampler;
1630 };
1631
1632 struct {
1633 struct anv_buffer *buffer;
1634 uint64_t offset;
1635 uint64_t range;
1636 };
1637
1638 struct anv_buffer_view *buffer_view;
1639 };
1640 };
1641
1642 struct anv_descriptor_set {
1643 struct anv_descriptor_pool *pool;
1644 struct anv_descriptor_set_layout *layout;
1645 uint32_t size;
1646
1647 /* State relative to anv_descriptor_pool::bo */
1648 struct anv_state desc_mem;
1649 /* Surface state for the descriptor buffer */
1650 struct anv_state desc_surface_state;
1651
1652 uint32_t buffer_view_count;
1653 struct anv_buffer_view *buffer_views;
1654
1655 /* Link to descriptor pool's desc_sets list . */
1656 struct list_head pool_link;
1657
1658 struct anv_descriptor descriptors[0];
1659 };
1660
1661 struct anv_buffer_view {
1662 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1663 uint64_t range; /**< VkBufferViewCreateInfo::range */
1664
1665 struct anv_address address;
1666
1667 struct anv_state surface_state;
1668 struct anv_state storage_surface_state;
1669 struct anv_state writeonly_storage_surface_state;
1670
1671 struct brw_image_param storage_image_param;
1672 };
1673
1674 struct anv_push_descriptor_set {
1675 struct anv_descriptor_set set;
1676
1677 /* Put this field right behind anv_descriptor_set so it fills up the
1678 * descriptors[0] field. */
1679 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1680
1681 /** True if the descriptor set buffer has been referenced by a draw or
1682 * dispatch command.
1683 */
1684 bool set_used_on_gpu;
1685
1686 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1687 };
1688
1689 struct anv_descriptor_pool {
1690 uint32_t size;
1691 uint32_t next;
1692 uint32_t free_list;
1693
1694 struct anv_bo bo;
1695 struct util_vma_heap bo_heap;
1696
1697 struct anv_state_stream surface_state_stream;
1698 void *surface_state_free_list;
1699
1700 struct list_head desc_sets;
1701
1702 char data[0];
1703 };
1704
1705 enum anv_descriptor_template_entry_type {
1706 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1707 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1708 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1709 };
1710
1711 struct anv_descriptor_template_entry {
1712 /* The type of descriptor in this entry */
1713 VkDescriptorType type;
1714
1715 /* Binding in the descriptor set */
1716 uint32_t binding;
1717
1718 /* Offset at which to write into the descriptor set binding */
1719 uint32_t array_element;
1720
1721 /* Number of elements to write into the descriptor set binding */
1722 uint32_t array_count;
1723
1724 /* Offset into the user provided data */
1725 size_t offset;
1726
1727 /* Stride between elements into the user provided data */
1728 size_t stride;
1729 };
1730
1731 struct anv_descriptor_update_template {
1732 VkPipelineBindPoint bind_point;
1733
1734 /* The descriptor set this template corresponds to. This value is only
1735 * valid if the template was created with the templateType
1736 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1737 */
1738 uint8_t set;
1739
1740 /* Number of entries in this template */
1741 uint32_t entry_count;
1742
1743 /* Entries of the template */
1744 struct anv_descriptor_template_entry entries[0];
1745 };
1746
1747 size_t
1748 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1749
1750 void
1751 anv_descriptor_set_write_image_view(struct anv_device *device,
1752 struct anv_descriptor_set *set,
1753 const VkDescriptorImageInfo * const info,
1754 VkDescriptorType type,
1755 uint32_t binding,
1756 uint32_t element);
1757
1758 void
1759 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1760 struct anv_descriptor_set *set,
1761 VkDescriptorType type,
1762 struct anv_buffer_view *buffer_view,
1763 uint32_t binding,
1764 uint32_t element);
1765
1766 void
1767 anv_descriptor_set_write_buffer(struct anv_device *device,
1768 struct anv_descriptor_set *set,
1769 struct anv_state_stream *alloc_stream,
1770 VkDescriptorType type,
1771 struct anv_buffer *buffer,
1772 uint32_t binding,
1773 uint32_t element,
1774 VkDeviceSize offset,
1775 VkDeviceSize range);
1776 void
1777 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1778 struct anv_descriptor_set *set,
1779 uint32_t binding,
1780 const void *data,
1781 size_t offset,
1782 size_t size);
1783
1784 void
1785 anv_descriptor_set_write_template(struct anv_device *device,
1786 struct anv_descriptor_set *set,
1787 struct anv_state_stream *alloc_stream,
1788 const struct anv_descriptor_update_template *template,
1789 const void *data);
1790
1791 VkResult
1792 anv_descriptor_set_create(struct anv_device *device,
1793 struct anv_descriptor_pool *pool,
1794 struct anv_descriptor_set_layout *layout,
1795 struct anv_descriptor_set **out_set);
1796
1797 void
1798 anv_descriptor_set_destroy(struct anv_device *device,
1799 struct anv_descriptor_pool *pool,
1800 struct anv_descriptor_set *set);
1801
1802 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
1803 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
1804 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
1805 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1806
1807 struct anv_pipeline_binding {
1808 /* The descriptor set this surface corresponds to. The special value of
1809 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1810 * to a color attachment and not a regular descriptor.
1811 */
1812 uint8_t set;
1813
1814 /* Binding in the descriptor set */
1815 uint32_t binding;
1816
1817 /* Index in the binding */
1818 uint32_t index;
1819
1820 /* Plane in the binding index */
1821 uint8_t plane;
1822
1823 /* Input attachment index (relative to the subpass) */
1824 uint8_t input_attachment_index;
1825
1826 /* For a storage image, whether it is write-only */
1827 bool write_only;
1828 };
1829
1830 struct anv_pipeline_layout {
1831 struct {
1832 struct anv_descriptor_set_layout *layout;
1833 uint32_t dynamic_offset_start;
1834 } set[MAX_SETS];
1835
1836 uint32_t num_sets;
1837
1838 unsigned char sha1[20];
1839 };
1840
1841 struct anv_buffer {
1842 struct anv_device * device;
1843 VkDeviceSize size;
1844
1845 VkBufferUsageFlags usage;
1846
1847 /* Set when bound */
1848 struct anv_address address;
1849 };
1850
1851 static inline uint64_t
1852 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1853 {
1854 assert(offset <= buffer->size);
1855 if (range == VK_WHOLE_SIZE) {
1856 return buffer->size - offset;
1857 } else {
1858 assert(range + offset >= range);
1859 assert(range + offset <= buffer->size);
1860 return range;
1861 }
1862 }
1863
1864 enum anv_cmd_dirty_bits {
1865 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1866 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1867 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1868 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1869 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1870 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1871 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1872 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1873 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1874 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1875 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1876 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1877 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1878 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
1879 };
1880 typedef uint32_t anv_cmd_dirty_mask_t;
1881
1882 enum anv_pipe_bits {
1883 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1884 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1885 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1886 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1887 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1888 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1889 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1890 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1891 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1892 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1893 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1894
1895 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1896 * a flush has happened but not a CS stall. The next time we do any sort
1897 * of invalidation we need to insert a CS stall at that time. Otherwise,
1898 * we would have to CS stall on every flush which could be bad.
1899 */
1900 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1901
1902 /* This bit does not exist directly in PIPE_CONTROL. It means that render
1903 * target operations related to transfer commands with VkBuffer as
1904 * destination are ongoing. Some operations like copies on the command
1905 * streamer might need to be aware of this to trigger the appropriate stall
1906 * before they can proceed with the copy.
1907 */
1908 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
1909 };
1910
1911 #define ANV_PIPE_FLUSH_BITS ( \
1912 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1913 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1914 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1915
1916 #define ANV_PIPE_STALL_BITS ( \
1917 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1918 ANV_PIPE_DEPTH_STALL_BIT | \
1919 ANV_PIPE_CS_STALL_BIT)
1920
1921 #define ANV_PIPE_INVALIDATE_BITS ( \
1922 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1923 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1924 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1925 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1926 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1927 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1928
1929 static inline enum anv_pipe_bits
1930 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1931 {
1932 enum anv_pipe_bits pipe_bits = 0;
1933
1934 unsigned b;
1935 for_each_bit(b, flags) {
1936 switch ((VkAccessFlagBits)(1 << b)) {
1937 case VK_ACCESS_SHADER_WRITE_BIT:
1938 /* We're transitioning a buffer that was previously used as write
1939 * destination through the data port. To make its content available
1940 * to future operations, flush the data cache.
1941 */
1942 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1943 break;
1944 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1945 /* We're transitioning a buffer that was previously used as render
1946 * target. To make its content available to future operations, flush
1947 * the render target cache.
1948 */
1949 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1950 break;
1951 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1952 /* We're transitioning a buffer that was previously used as depth
1953 * buffer. To make its content available to future operations, flush
1954 * the depth cache.
1955 */
1956 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1957 break;
1958 case VK_ACCESS_TRANSFER_WRITE_BIT:
1959 /* We're transitioning a buffer that was previously used as a
1960 * transfer write destination. Generic write operations include color
1961 * & depth operations as well as buffer operations like :
1962 * - vkCmdClearColorImage()
1963 * - vkCmdClearDepthStencilImage()
1964 * - vkCmdBlitImage()
1965 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
1966 *
1967 * Most of these operations are implemented using Blorp which writes
1968 * through the render target, so flush that cache to make it visible
1969 * to future operations. And for depth related operations we also
1970 * need to flush the depth cache.
1971 */
1972 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1973 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1974 break;
1975 case VK_ACCESS_MEMORY_WRITE_BIT:
1976 /* We're transitioning a buffer for generic write operations. Flush
1977 * all the caches.
1978 */
1979 pipe_bits |= ANV_PIPE_FLUSH_BITS;
1980 break;
1981 default:
1982 break; /* Nothing to do */
1983 }
1984 }
1985
1986 return pipe_bits;
1987 }
1988
1989 static inline enum anv_pipe_bits
1990 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1991 {
1992 enum anv_pipe_bits pipe_bits = 0;
1993
1994 unsigned b;
1995 for_each_bit(b, flags) {
1996 switch ((VkAccessFlagBits)(1 << b)) {
1997 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1998 /* Indirect draw commands take a buffer as input that we're going to
1999 * read from the command streamer to load some of the HW registers
2000 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2001 * command streamer stall so that all the cache flushes have
2002 * completed before the command streamer loads from memory.
2003 */
2004 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2005 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2006 * through a vertex buffer, so invalidate that cache.
2007 */
2008 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2009 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2010 * UBO from the buffer, so we need to invalidate constant cache.
2011 */
2012 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2013 break;
2014 case VK_ACCESS_INDEX_READ_BIT:
2015 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2016 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2017 * commands, so we invalidate the VF cache to make sure there is no
2018 * stale data when we start rendering.
2019 */
2020 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2021 break;
2022 case VK_ACCESS_UNIFORM_READ_BIT:
2023 /* We transitioning a buffer to be used as uniform data. Because
2024 * uniform is accessed through the data port & sampler, we need to
2025 * invalidate the texture cache (sampler) & constant cache (data
2026 * port) to avoid stale data.
2027 */
2028 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2029 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2030 break;
2031 case VK_ACCESS_SHADER_READ_BIT:
2032 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2033 case VK_ACCESS_TRANSFER_READ_BIT:
2034 /* Transitioning a buffer to be read through the sampler, so
2035 * invalidate the texture cache, we don't want any stale data.
2036 */
2037 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2038 break;
2039 case VK_ACCESS_MEMORY_READ_BIT:
2040 /* Transitioning a buffer for generic read, invalidate all the
2041 * caches.
2042 */
2043 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2044 break;
2045 case VK_ACCESS_MEMORY_WRITE_BIT:
2046 /* Generic write, make sure all previously written things land in
2047 * memory.
2048 */
2049 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2050 break;
2051 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2052 /* Transitioning a buffer for conditional rendering. We'll load the
2053 * content of this buffer into HW registers using the command
2054 * streamer, so we need to stall the command streamer to make sure
2055 * any in-flight flush operations have completed.
2056 */
2057 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2058 break;
2059 default:
2060 break; /* Nothing to do */
2061 }
2062 }
2063
2064 return pipe_bits;
2065 }
2066
2067 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2068 VK_IMAGE_ASPECT_COLOR_BIT | \
2069 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2070 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2071 VK_IMAGE_ASPECT_PLANE_2_BIT)
2072 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2073 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2074 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2075 VK_IMAGE_ASPECT_PLANE_2_BIT)
2076
2077 struct anv_vertex_binding {
2078 struct anv_buffer * buffer;
2079 VkDeviceSize offset;
2080 };
2081
2082 struct anv_xfb_binding {
2083 struct anv_buffer * buffer;
2084 VkDeviceSize offset;
2085 VkDeviceSize size;
2086 };
2087
2088 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2089 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2090
2091 struct anv_push_constants {
2092 /* Current allocated size of this push constants data structure.
2093 * Because a decent chunk of it may not be used (images on SKL, for
2094 * instance), we won't actually allocate the entire structure up-front.
2095 */
2096 uint32_t size;
2097
2098 /* Push constant data provided by the client through vkPushConstants */
2099 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2100
2101 /* Used for vkCmdDispatchBase */
2102 uint32_t base_work_group_id[3];
2103 };
2104
2105 struct anv_dynamic_state {
2106 struct {
2107 uint32_t count;
2108 VkViewport viewports[MAX_VIEWPORTS];
2109 } viewport;
2110
2111 struct {
2112 uint32_t count;
2113 VkRect2D scissors[MAX_SCISSORS];
2114 } scissor;
2115
2116 float line_width;
2117
2118 struct {
2119 float bias;
2120 float clamp;
2121 float slope;
2122 } depth_bias;
2123
2124 float blend_constants[4];
2125
2126 struct {
2127 float min;
2128 float max;
2129 } depth_bounds;
2130
2131 struct {
2132 uint32_t front;
2133 uint32_t back;
2134 } stencil_compare_mask;
2135
2136 struct {
2137 uint32_t front;
2138 uint32_t back;
2139 } stencil_write_mask;
2140
2141 struct {
2142 uint32_t front;
2143 uint32_t back;
2144 } stencil_reference;
2145 };
2146
2147 extern const struct anv_dynamic_state default_dynamic_state;
2148
2149 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2150 const struct anv_dynamic_state *src,
2151 uint32_t copy_mask);
2152
2153 struct anv_surface_state {
2154 struct anv_state state;
2155 /** Address of the surface referred to by this state
2156 *
2157 * This address is relative to the start of the BO.
2158 */
2159 struct anv_address address;
2160 /* Address of the aux surface, if any
2161 *
2162 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2163 *
2164 * With the exception of gen8, the bottom 12 bits of this address' offset
2165 * include extra aux information.
2166 */
2167 struct anv_address aux_address;
2168 /* Address of the clear color, if any
2169 *
2170 * This address is relative to the start of the BO.
2171 */
2172 struct anv_address clear_address;
2173 };
2174
2175 /**
2176 * Attachment state when recording a renderpass instance.
2177 *
2178 * The clear value is valid only if there exists a pending clear.
2179 */
2180 struct anv_attachment_state {
2181 enum isl_aux_usage aux_usage;
2182 enum isl_aux_usage input_aux_usage;
2183 struct anv_surface_state color;
2184 struct anv_surface_state input;
2185
2186 VkImageLayout current_layout;
2187 VkImageAspectFlags pending_clear_aspects;
2188 VkImageAspectFlags pending_load_aspects;
2189 bool fast_clear;
2190 VkClearValue clear_value;
2191 bool clear_color_is_zero_one;
2192 bool clear_color_is_zero;
2193
2194 /* When multiview is active, attachments with a renderpass clear
2195 * operation have their respective layers cleared on the first
2196 * subpass that uses them, and only in that subpass. We keep track
2197 * of this using a bitfield to indicate which layers of an attachment
2198 * have not been cleared yet when multiview is active.
2199 */
2200 uint32_t pending_clear_views;
2201 };
2202
2203 /** State tracking for particular pipeline bind point
2204 *
2205 * This struct is the base struct for anv_cmd_graphics_state and
2206 * anv_cmd_compute_state. These are used to track state which is bound to a
2207 * particular type of pipeline. Generic state that applies per-stage such as
2208 * binding table offsets and push constants is tracked generically with a
2209 * per-stage array in anv_cmd_state.
2210 */
2211 struct anv_cmd_pipeline_state {
2212 struct anv_pipeline *pipeline;
2213 struct anv_pipeline_layout *layout;
2214
2215 struct anv_descriptor_set *descriptors[MAX_SETS];
2216 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2217
2218 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2219 };
2220
2221 /** State tracking for graphics pipeline
2222 *
2223 * This has anv_cmd_pipeline_state as a base struct to track things which get
2224 * bound to a graphics pipeline. Along with general pipeline bind point state
2225 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2226 * state which is graphics-specific.
2227 */
2228 struct anv_cmd_graphics_state {
2229 struct anv_cmd_pipeline_state base;
2230
2231 anv_cmd_dirty_mask_t dirty;
2232 uint32_t vb_dirty;
2233
2234 struct anv_dynamic_state dynamic;
2235
2236 struct {
2237 struct anv_buffer *index_buffer;
2238 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2239 uint32_t index_offset;
2240 } gen7;
2241 };
2242
2243 /** State tracking for compute pipeline
2244 *
2245 * This has anv_cmd_pipeline_state as a base struct to track things which get
2246 * bound to a compute pipeline. Along with general pipeline bind point state
2247 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2248 * state which is compute-specific.
2249 */
2250 struct anv_cmd_compute_state {
2251 struct anv_cmd_pipeline_state base;
2252
2253 bool pipeline_dirty;
2254
2255 struct anv_address num_workgroups;
2256 };
2257
2258 /** State required while building cmd buffer */
2259 struct anv_cmd_state {
2260 /* PIPELINE_SELECT.PipelineSelection */
2261 uint32_t current_pipeline;
2262 const struct gen_l3_config * current_l3_config;
2263
2264 struct anv_cmd_graphics_state gfx;
2265 struct anv_cmd_compute_state compute;
2266
2267 enum anv_pipe_bits pending_pipe_bits;
2268 VkShaderStageFlags descriptors_dirty;
2269 VkShaderStageFlags push_constants_dirty;
2270
2271 struct anv_framebuffer * framebuffer;
2272 struct anv_render_pass * pass;
2273 struct anv_subpass * subpass;
2274 VkRect2D render_area;
2275 uint32_t restart_index;
2276 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2277 bool xfb_enabled;
2278 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2279 VkShaderStageFlags push_constant_stages;
2280 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
2281 struct anv_state binding_tables[MESA_SHADER_STAGES];
2282 struct anv_state samplers[MESA_SHADER_STAGES];
2283
2284 /**
2285 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2286 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2287 * and before invoking the secondary in ExecuteCommands.
2288 */
2289 bool pma_fix_enabled;
2290
2291 /**
2292 * Whether or not we know for certain that HiZ is enabled for the current
2293 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2294 * enabled or not, this will be false.
2295 */
2296 bool hiz_enabled;
2297
2298 bool conditional_render_enabled;
2299
2300 /**
2301 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2302 * valid only when recording a render pass instance.
2303 */
2304 struct anv_attachment_state * attachments;
2305
2306 /**
2307 * Surface states for color render targets. These are stored in a single
2308 * flat array. For depth-stencil attachments, the surface state is simply
2309 * left blank.
2310 */
2311 struct anv_state render_pass_states;
2312
2313 /**
2314 * A null surface state of the right size to match the framebuffer. This
2315 * is one of the states in render_pass_states.
2316 */
2317 struct anv_state null_surface_state;
2318 };
2319
2320 struct anv_cmd_pool {
2321 VkAllocationCallbacks alloc;
2322 struct list_head cmd_buffers;
2323 };
2324
2325 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2326
2327 enum anv_cmd_buffer_exec_mode {
2328 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2329 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2330 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2331 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2332 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2333 };
2334
2335 struct anv_cmd_buffer {
2336 VK_LOADER_DATA _loader_data;
2337
2338 struct anv_device * device;
2339
2340 struct anv_cmd_pool * pool;
2341 struct list_head pool_link;
2342
2343 struct anv_batch batch;
2344
2345 /* Fields required for the actual chain of anv_batch_bo's.
2346 *
2347 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2348 */
2349 struct list_head batch_bos;
2350 enum anv_cmd_buffer_exec_mode exec_mode;
2351
2352 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2353 * referenced by this command buffer
2354 *
2355 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2356 */
2357 struct u_vector seen_bbos;
2358
2359 /* A vector of int32_t's for every block of binding tables.
2360 *
2361 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2362 */
2363 struct u_vector bt_block_states;
2364 uint32_t bt_next;
2365
2366 struct anv_reloc_list surface_relocs;
2367 /** Last seen surface state block pool center bo offset */
2368 uint32_t last_ss_pool_center;
2369
2370 /* Serial for tracking buffer completion */
2371 uint32_t serial;
2372
2373 /* Stream objects for storing temporary data */
2374 struct anv_state_stream surface_state_stream;
2375 struct anv_state_stream dynamic_state_stream;
2376
2377 VkCommandBufferUsageFlags usage_flags;
2378 VkCommandBufferLevel level;
2379
2380 struct anv_cmd_state state;
2381 };
2382
2383 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2384 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2385 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2386 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2387 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2388 struct anv_cmd_buffer *secondary);
2389 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2390 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2391 struct anv_cmd_buffer *cmd_buffer,
2392 const VkSemaphore *in_semaphores,
2393 uint32_t num_in_semaphores,
2394 const VkSemaphore *out_semaphores,
2395 uint32_t num_out_semaphores,
2396 VkFence fence);
2397
2398 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2399
2400 VkResult
2401 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
2402 gl_shader_stage stage, uint32_t size);
2403 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
2404 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
2405 (offsetof(struct anv_push_constants, field) + \
2406 sizeof(cmd_buffer->state.push_constants[0]->field)))
2407
2408 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2409 const void *data, uint32_t size, uint32_t alignment);
2410 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2411 uint32_t *a, uint32_t *b,
2412 uint32_t dwords, uint32_t alignment);
2413
2414 struct anv_address
2415 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2416 struct anv_state
2417 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2418 uint32_t entries, uint32_t *state_offset);
2419 struct anv_state
2420 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2421 struct anv_state
2422 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2423 uint32_t size, uint32_t alignment);
2424
2425 VkResult
2426 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2427
2428 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2429 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2430 bool depth_clamp_enable);
2431 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2432
2433 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2434 struct anv_render_pass *pass,
2435 struct anv_framebuffer *framebuffer,
2436 const VkClearValue *clear_values);
2437
2438 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2439
2440 struct anv_state
2441 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2442 gl_shader_stage stage);
2443 struct anv_state
2444 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2445
2446 const struct anv_image_view *
2447 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2448
2449 VkResult
2450 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2451 uint32_t num_entries,
2452 uint32_t *state_offset,
2453 struct anv_state *bt_state);
2454
2455 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2456
2457 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2458
2459 enum anv_fence_type {
2460 ANV_FENCE_TYPE_NONE = 0,
2461 ANV_FENCE_TYPE_BO,
2462 ANV_FENCE_TYPE_SYNCOBJ,
2463 ANV_FENCE_TYPE_WSI,
2464 };
2465
2466 enum anv_bo_fence_state {
2467 /** Indicates that this is a new (or newly reset fence) */
2468 ANV_BO_FENCE_STATE_RESET,
2469
2470 /** Indicates that this fence has been submitted to the GPU but is still
2471 * (as far as we know) in use by the GPU.
2472 */
2473 ANV_BO_FENCE_STATE_SUBMITTED,
2474
2475 ANV_BO_FENCE_STATE_SIGNALED,
2476 };
2477
2478 struct anv_fence_impl {
2479 enum anv_fence_type type;
2480
2481 union {
2482 /** Fence implementation for BO fences
2483 *
2484 * These fences use a BO and a set of CPU-tracked state flags. The BO
2485 * is added to the object list of the last execbuf call in a QueueSubmit
2486 * and is marked EXEC_WRITE. The state flags track when the BO has been
2487 * submitted to the kernel. We need to do this because Vulkan lets you
2488 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2489 * will say it's idle in this case.
2490 */
2491 struct {
2492 struct anv_bo bo;
2493 enum anv_bo_fence_state state;
2494 } bo;
2495
2496 /** DRM syncobj handle for syncobj-based fences */
2497 uint32_t syncobj;
2498
2499 /** WSI fence */
2500 struct wsi_fence *fence_wsi;
2501 };
2502 };
2503
2504 struct anv_fence {
2505 /* Permanent fence state. Every fence has some form of permanent state
2506 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2507 * cross-process fences) or it could just be a dummy for use internally.
2508 */
2509 struct anv_fence_impl permanent;
2510
2511 /* Temporary fence state. A fence *may* have temporary state. That state
2512 * is added to the fence by an import operation and is reset back to
2513 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2514 * state cannot be signaled because the fence must already be signaled
2515 * before the temporary state can be exported from the fence in the other
2516 * process and imported here.
2517 */
2518 struct anv_fence_impl temporary;
2519 };
2520
2521 struct anv_event {
2522 uint64_t semaphore;
2523 struct anv_state state;
2524 };
2525
2526 enum anv_semaphore_type {
2527 ANV_SEMAPHORE_TYPE_NONE = 0,
2528 ANV_SEMAPHORE_TYPE_DUMMY,
2529 ANV_SEMAPHORE_TYPE_BO,
2530 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2531 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2532 };
2533
2534 struct anv_semaphore_impl {
2535 enum anv_semaphore_type type;
2536
2537 union {
2538 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2539 * This BO will be added to the object list on any execbuf2 calls for
2540 * which this semaphore is used as a wait or signal fence. When used as
2541 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2542 */
2543 struct anv_bo *bo;
2544
2545 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2546 * If the semaphore is in the unsignaled state due to either just being
2547 * created or because it has been used for a wait, fd will be -1.
2548 */
2549 int fd;
2550
2551 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2552 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2553 * import so we don't need to bother with a userspace cache.
2554 */
2555 uint32_t syncobj;
2556 };
2557 };
2558
2559 struct anv_semaphore {
2560 /* Permanent semaphore state. Every semaphore has some form of permanent
2561 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2562 * (for cross-process semaphores0 or it could just be a dummy for use
2563 * internally.
2564 */
2565 struct anv_semaphore_impl permanent;
2566
2567 /* Temporary semaphore state. A semaphore *may* have temporary state.
2568 * That state is added to the semaphore by an import operation and is reset
2569 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2570 * semaphore with temporary state cannot be signaled because the semaphore
2571 * must already be signaled before the temporary state can be exported from
2572 * the semaphore in the other process and imported here.
2573 */
2574 struct anv_semaphore_impl temporary;
2575 };
2576
2577 void anv_semaphore_reset_temporary(struct anv_device *device,
2578 struct anv_semaphore *semaphore);
2579
2580 struct anv_shader_module {
2581 unsigned char sha1[20];
2582 uint32_t size;
2583 char data[0];
2584 };
2585
2586 static inline gl_shader_stage
2587 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2588 {
2589 assert(__builtin_popcount(vk_stage) == 1);
2590 return ffs(vk_stage) - 1;
2591 }
2592
2593 static inline VkShaderStageFlagBits
2594 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2595 {
2596 return (1 << mesa_stage);
2597 }
2598
2599 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2600
2601 #define anv_foreach_stage(stage, stage_bits) \
2602 for (gl_shader_stage stage, \
2603 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2604 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2605 __tmp &= ~(1 << (stage)))
2606
2607 struct anv_pipeline_bind_map {
2608 uint32_t surface_count;
2609 uint32_t sampler_count;
2610
2611 struct anv_pipeline_binding * surface_to_descriptor;
2612 struct anv_pipeline_binding * sampler_to_descriptor;
2613 };
2614
2615 struct anv_shader_bin_key {
2616 uint32_t size;
2617 uint8_t data[0];
2618 };
2619
2620 struct anv_shader_bin {
2621 uint32_t ref_cnt;
2622
2623 const struct anv_shader_bin_key *key;
2624
2625 struct anv_state kernel;
2626 uint32_t kernel_size;
2627
2628 struct anv_state constant_data;
2629 uint32_t constant_data_size;
2630
2631 const struct brw_stage_prog_data *prog_data;
2632 uint32_t prog_data_size;
2633
2634 struct nir_xfb_info *xfb_info;
2635
2636 struct anv_pipeline_bind_map bind_map;
2637 };
2638
2639 struct anv_shader_bin *
2640 anv_shader_bin_create(struct anv_device *device,
2641 const void *key, uint32_t key_size,
2642 const void *kernel, uint32_t kernel_size,
2643 const void *constant_data, uint32_t constant_data_size,
2644 const struct brw_stage_prog_data *prog_data,
2645 uint32_t prog_data_size, const void *prog_data_param,
2646 const struct nir_xfb_info *xfb_info,
2647 const struct anv_pipeline_bind_map *bind_map);
2648
2649 void
2650 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2651
2652 static inline void
2653 anv_shader_bin_ref(struct anv_shader_bin *shader)
2654 {
2655 assert(shader && shader->ref_cnt >= 1);
2656 p_atomic_inc(&shader->ref_cnt);
2657 }
2658
2659 static inline void
2660 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2661 {
2662 assert(shader && shader->ref_cnt >= 1);
2663 if (p_atomic_dec_zero(&shader->ref_cnt))
2664 anv_shader_bin_destroy(device, shader);
2665 }
2666
2667 struct anv_pipeline {
2668 struct anv_device * device;
2669 struct anv_batch batch;
2670 uint32_t batch_data[512];
2671 struct anv_reloc_list batch_relocs;
2672 uint32_t dynamic_state_mask;
2673 struct anv_dynamic_state dynamic_state;
2674
2675 struct anv_subpass * subpass;
2676
2677 bool needs_data_cache;
2678
2679 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2680
2681 struct {
2682 const struct gen_l3_config * l3_config;
2683 uint32_t total_size;
2684 unsigned entry_size[4];
2685 } urb;
2686
2687 VkShaderStageFlags active_stages;
2688 struct anv_state blend_state;
2689
2690 uint32_t vb_used;
2691 struct anv_pipeline_vertex_binding {
2692 uint32_t stride;
2693 bool instanced;
2694 uint32_t instance_divisor;
2695 } vb[MAX_VBS];
2696
2697 uint8_t xfb_used;
2698
2699 bool primitive_restart;
2700 uint32_t topology;
2701
2702 uint32_t cs_right_mask;
2703
2704 bool writes_depth;
2705 bool depth_test_enable;
2706 bool writes_stencil;
2707 bool stencil_test_enable;
2708 bool depth_clamp_enable;
2709 bool depth_clip_enable;
2710 bool sample_shading_enable;
2711 bool kill_pixel;
2712
2713 struct {
2714 uint32_t sf[7];
2715 uint32_t depth_stencil_state[3];
2716 } gen7;
2717
2718 struct {
2719 uint32_t sf[4];
2720 uint32_t raster[5];
2721 uint32_t wm_depth_stencil[3];
2722 } gen8;
2723
2724 struct {
2725 uint32_t wm_depth_stencil[4];
2726 } gen9;
2727
2728 uint32_t interface_descriptor_data[8];
2729 };
2730
2731 static inline bool
2732 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2733 gl_shader_stage stage)
2734 {
2735 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2736 }
2737
2738 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2739 static inline const struct brw_##prefix##_prog_data * \
2740 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2741 { \
2742 if (anv_pipeline_has_stage(pipeline, stage)) { \
2743 return (const struct brw_##prefix##_prog_data *) \
2744 pipeline->shaders[stage]->prog_data; \
2745 } else { \
2746 return NULL; \
2747 } \
2748 }
2749
2750 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2751 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2752 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2753 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2754 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2755 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2756
2757 static inline const struct brw_vue_prog_data *
2758 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2759 {
2760 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2761 return &get_gs_prog_data(pipeline)->base;
2762 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2763 return &get_tes_prog_data(pipeline)->base;
2764 else
2765 return &get_vs_prog_data(pipeline)->base;
2766 }
2767
2768 VkResult
2769 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2770 struct anv_pipeline_cache *cache,
2771 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2772 const VkAllocationCallbacks *alloc);
2773
2774 VkResult
2775 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2776 struct anv_pipeline_cache *cache,
2777 const VkComputePipelineCreateInfo *info,
2778 const struct anv_shader_module *module,
2779 const char *entrypoint,
2780 const VkSpecializationInfo *spec_info);
2781
2782 struct anv_format_plane {
2783 enum isl_format isl_format:16;
2784 struct isl_swizzle swizzle;
2785
2786 /* Whether this plane contains chroma channels */
2787 bool has_chroma;
2788
2789 /* For downscaling of YUV planes */
2790 uint8_t denominator_scales[2];
2791
2792 /* How to map sampled ycbcr planes to a single 4 component element. */
2793 struct isl_swizzle ycbcr_swizzle;
2794
2795 /* What aspect is associated to this plane */
2796 VkImageAspectFlags aspect;
2797 };
2798
2799
2800 struct anv_format {
2801 struct anv_format_plane planes[3];
2802 VkFormat vk_format;
2803 uint8_t n_planes;
2804 bool can_ycbcr;
2805 };
2806
2807 static inline uint32_t
2808 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
2809 VkImageAspectFlags aspect_mask)
2810 {
2811 switch (aspect_mask) {
2812 case VK_IMAGE_ASPECT_COLOR_BIT:
2813 case VK_IMAGE_ASPECT_DEPTH_BIT:
2814 case VK_IMAGE_ASPECT_PLANE_0_BIT:
2815 return 0;
2816 case VK_IMAGE_ASPECT_STENCIL_BIT:
2817 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
2818 return 0;
2819 /* Fall-through */
2820 case VK_IMAGE_ASPECT_PLANE_1_BIT:
2821 return 1;
2822 case VK_IMAGE_ASPECT_PLANE_2_BIT:
2823 return 2;
2824 default:
2825 /* Purposefully assert with depth/stencil aspects. */
2826 unreachable("invalid image aspect");
2827 }
2828 }
2829
2830 static inline VkImageAspectFlags
2831 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
2832 uint32_t plane)
2833 {
2834 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2835 if (util_bitcount(image_aspects) > 1)
2836 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
2837 return VK_IMAGE_ASPECT_COLOR_BIT;
2838 }
2839 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
2840 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
2841 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
2842 return VK_IMAGE_ASPECT_STENCIL_BIT;
2843 }
2844
2845 #define anv_foreach_image_aspect_bit(b, image, aspects) \
2846 for_each_bit(b, anv_image_expand_aspects(image, aspects))
2847
2848 const struct anv_format *
2849 anv_get_format(VkFormat format);
2850
2851 static inline uint32_t
2852 anv_get_format_planes(VkFormat vk_format)
2853 {
2854 const struct anv_format *format = anv_get_format(vk_format);
2855
2856 return format != NULL ? format->n_planes : 0;
2857 }
2858
2859 struct anv_format_plane
2860 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
2861 VkImageAspectFlagBits aspect, VkImageTiling tiling);
2862
2863 static inline enum isl_format
2864 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
2865 VkImageAspectFlags aspect, VkImageTiling tiling)
2866 {
2867 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
2868 }
2869
2870 static inline struct isl_swizzle
2871 anv_swizzle_for_render(struct isl_swizzle swizzle)
2872 {
2873 /* Sometimes the swizzle will have alpha map to one. We do this to fake
2874 * RGB as RGBA for texturing
2875 */
2876 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
2877 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
2878
2879 /* But it doesn't matter what we render to that channel */
2880 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
2881
2882 return swizzle;
2883 }
2884
2885 void
2886 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
2887
2888 /**
2889 * Subsurface of an anv_image.
2890 */
2891 struct anv_surface {
2892 /** Valid only if isl_surf::size_B > 0. */
2893 struct isl_surf isl;
2894
2895 /**
2896 * Offset from VkImage's base address, as bound by vkBindImageMemory().
2897 */
2898 uint32_t offset;
2899 };
2900
2901 struct anv_image {
2902 VkImageType type; /**< VkImageCreateInfo::imageType */
2903 /* The original VkFormat provided by the client. This may not match any
2904 * of the actual surface formats.
2905 */
2906 VkFormat vk_format;
2907 const struct anv_format *format;
2908
2909 VkImageAspectFlags aspects;
2910 VkExtent3D extent;
2911 uint32_t levels;
2912 uint32_t array_size;
2913 uint32_t samples; /**< VkImageCreateInfo::samples */
2914 uint32_t n_planes;
2915 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
2916 VkImageCreateFlags create_flags; /* Flags used when creating image. */
2917 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
2918
2919 /** True if this is needs to be bound to an appropriately tiled BO.
2920 *
2921 * When not using modifiers, consumers such as X11, Wayland, and KMS need
2922 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
2923 * we require a dedicated allocation so that we can know to allocate a
2924 * tiled buffer.
2925 */
2926 bool needs_set_tiling;
2927
2928 /**
2929 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
2930 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
2931 */
2932 uint64_t drm_format_mod;
2933
2934 VkDeviceSize size;
2935 uint32_t alignment;
2936
2937 /* Whether the image is made of several underlying buffer objects rather a
2938 * single one with different offsets.
2939 */
2940 bool disjoint;
2941
2942 /* All the formats that can be used when creating views of this image
2943 * are CCS_E compatible.
2944 */
2945 bool ccs_e_compatible;
2946
2947 /* Image was created with external format. */
2948 bool external_format;
2949
2950 /**
2951 * Image subsurfaces
2952 *
2953 * For each foo, anv_image::planes[x].surface is valid if and only if
2954 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
2955 * to figure the number associated with a given aspect.
2956 *
2957 * The hardware requires that the depth buffer and stencil buffer be
2958 * separate surfaces. From Vulkan's perspective, though, depth and stencil
2959 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
2960 * allocate the depth and stencil buffers as separate surfaces in the same
2961 * bo.
2962 *
2963 * Memory layout :
2964 *
2965 * -----------------------
2966 * | surface0 | /|\
2967 * ----------------------- |
2968 * | shadow surface0 | |
2969 * ----------------------- | Plane 0
2970 * | aux surface0 | |
2971 * ----------------------- |
2972 * | fast clear colors0 | \|/
2973 * -----------------------
2974 * | surface1 | /|\
2975 * ----------------------- |
2976 * | shadow surface1 | |
2977 * ----------------------- | Plane 1
2978 * | aux surface1 | |
2979 * ----------------------- |
2980 * | fast clear colors1 | \|/
2981 * -----------------------
2982 * | ... |
2983 * | |
2984 * -----------------------
2985 */
2986 struct {
2987 /**
2988 * Offset of the entire plane (whenever the image is disjoint this is
2989 * set to 0).
2990 */
2991 uint32_t offset;
2992
2993 VkDeviceSize size;
2994 uint32_t alignment;
2995
2996 struct anv_surface surface;
2997
2998 /**
2999 * A surface which shadows the main surface and may have different
3000 * tiling. This is used for sampling using a tiling that isn't supported
3001 * for other operations.
3002 */
3003 struct anv_surface shadow_surface;
3004
3005 /**
3006 * For color images, this is the aux usage for this image when not used
3007 * as a color attachment.
3008 *
3009 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3010 * image has a HiZ buffer.
3011 */
3012 enum isl_aux_usage aux_usage;
3013
3014 struct anv_surface aux_surface;
3015
3016 /**
3017 * Offset of the fast clear state (used to compute the
3018 * fast_clear_state_offset of the following planes).
3019 */
3020 uint32_t fast_clear_state_offset;
3021
3022 /**
3023 * BO associated with this plane, set when bound.
3024 */
3025 struct anv_address address;
3026
3027 /**
3028 * When destroying the image, also free the bo.
3029 * */
3030 bool bo_is_owned;
3031 } planes[3];
3032 };
3033
3034 /* The ordering of this enum is important */
3035 enum anv_fast_clear_type {
3036 /** Image does not have/support any fast-clear blocks */
3037 ANV_FAST_CLEAR_NONE = 0,
3038 /** Image has/supports fast-clear but only to the default value */
3039 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3040 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3041 ANV_FAST_CLEAR_ANY = 2,
3042 };
3043
3044 /* Returns the number of auxiliary buffer levels attached to an image. */
3045 static inline uint8_t
3046 anv_image_aux_levels(const struct anv_image * const image,
3047 VkImageAspectFlagBits aspect)
3048 {
3049 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3050 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3051 image->planes[plane].aux_surface.isl.levels : 0;
3052 }
3053
3054 /* Returns the number of auxiliary buffer layers attached to an image. */
3055 static inline uint32_t
3056 anv_image_aux_layers(const struct anv_image * const image,
3057 VkImageAspectFlagBits aspect,
3058 const uint8_t miplevel)
3059 {
3060 assert(image);
3061
3062 /* The miplevel must exist in the main buffer. */
3063 assert(miplevel < image->levels);
3064
3065 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3066 /* There are no layers with auxiliary data because the miplevel has no
3067 * auxiliary data.
3068 */
3069 return 0;
3070 } else {
3071 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3072 return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
3073 image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
3074 }
3075 }
3076
3077 static inline struct anv_address
3078 anv_image_get_clear_color_addr(const struct anv_device *device,
3079 const struct anv_image *image,
3080 VkImageAspectFlagBits aspect)
3081 {
3082 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3083
3084 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3085 return anv_address_add(image->planes[plane].address,
3086 image->planes[plane].fast_clear_state_offset);
3087 }
3088
3089 static inline struct anv_address
3090 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3091 const struct anv_image *image,
3092 VkImageAspectFlagBits aspect)
3093 {
3094 struct anv_address addr =
3095 anv_image_get_clear_color_addr(device, image, aspect);
3096
3097 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3098 device->isl_dev.ss.clear_color_state_size :
3099 device->isl_dev.ss.clear_value_size;
3100 return anv_address_add(addr, clear_color_state_size);
3101 }
3102
3103 static inline struct anv_address
3104 anv_image_get_compression_state_addr(const struct anv_device *device,
3105 const struct anv_image *image,
3106 VkImageAspectFlagBits aspect,
3107 uint32_t level, uint32_t array_layer)
3108 {
3109 assert(level < anv_image_aux_levels(image, aspect));
3110 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3111 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3112 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3113
3114 struct anv_address addr =
3115 anv_image_get_fast_clear_type_addr(device, image, aspect);
3116 addr.offset += 4; /* Go past the fast clear type */
3117
3118 if (image->type == VK_IMAGE_TYPE_3D) {
3119 for (uint32_t l = 0; l < level; l++)
3120 addr.offset += anv_minify(image->extent.depth, l) * 4;
3121 } else {
3122 addr.offset += level * image->array_size * 4;
3123 }
3124 addr.offset += array_layer * 4;
3125
3126 return addr;
3127 }
3128
3129 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3130 static inline bool
3131 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3132 const struct anv_image *image)
3133 {
3134 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3135 return false;
3136
3137 if (devinfo->gen < 8)
3138 return false;
3139
3140 return image->samples == 1;
3141 }
3142
3143 void
3144 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3145 const struct anv_image *image,
3146 VkImageAspectFlagBits aspect,
3147 enum isl_aux_usage aux_usage,
3148 uint32_t level,
3149 uint32_t base_layer,
3150 uint32_t layer_count);
3151
3152 void
3153 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3154 const struct anv_image *image,
3155 VkImageAspectFlagBits aspect,
3156 enum isl_aux_usage aux_usage,
3157 enum isl_format format, struct isl_swizzle swizzle,
3158 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3159 VkRect2D area, union isl_color_value clear_color);
3160 void
3161 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3162 const struct anv_image *image,
3163 VkImageAspectFlags aspects,
3164 enum isl_aux_usage depth_aux_usage,
3165 uint32_t level,
3166 uint32_t base_layer, uint32_t layer_count,
3167 VkRect2D area,
3168 float depth_value, uint8_t stencil_value);
3169 void
3170 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3171 const struct anv_image *src_image,
3172 enum isl_aux_usage src_aux_usage,
3173 uint32_t src_level, uint32_t src_base_layer,
3174 const struct anv_image *dst_image,
3175 enum isl_aux_usage dst_aux_usage,
3176 uint32_t dst_level, uint32_t dst_base_layer,
3177 VkImageAspectFlagBits aspect,
3178 uint32_t src_x, uint32_t src_y,
3179 uint32_t dst_x, uint32_t dst_y,
3180 uint32_t width, uint32_t height,
3181 uint32_t layer_count,
3182 enum blorp_filter filter);
3183 void
3184 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3185 const struct anv_image *image,
3186 VkImageAspectFlagBits aspect, uint32_t level,
3187 uint32_t base_layer, uint32_t layer_count,
3188 enum isl_aux_op hiz_op);
3189 void
3190 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3191 const struct anv_image *image,
3192 VkImageAspectFlags aspects,
3193 uint32_t level,
3194 uint32_t base_layer, uint32_t layer_count,
3195 VkRect2D area, uint8_t stencil_value);
3196 void
3197 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3198 const struct anv_image *image,
3199 enum isl_format format,
3200 VkImageAspectFlagBits aspect,
3201 uint32_t base_layer, uint32_t layer_count,
3202 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3203 bool predicate);
3204 void
3205 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3206 const struct anv_image *image,
3207 enum isl_format format,
3208 VkImageAspectFlagBits aspect, uint32_t level,
3209 uint32_t base_layer, uint32_t layer_count,
3210 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3211 bool predicate);
3212
3213 void
3214 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3215 const struct anv_image *image,
3216 uint32_t base_level, uint32_t level_count,
3217 uint32_t base_layer, uint32_t layer_count);
3218
3219 enum isl_aux_usage
3220 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3221 const struct anv_image *image,
3222 const VkImageAspectFlagBits aspect,
3223 const VkImageLayout layout);
3224
3225 enum anv_fast_clear_type
3226 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3227 const struct anv_image * const image,
3228 const VkImageAspectFlagBits aspect,
3229 const VkImageLayout layout);
3230
3231 /* This is defined as a macro so that it works for both
3232 * VkImageSubresourceRange and VkImageSubresourceLayers
3233 */
3234 #define anv_get_layerCount(_image, _range) \
3235 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3236 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3237
3238 static inline uint32_t
3239 anv_get_levelCount(const struct anv_image *image,
3240 const VkImageSubresourceRange *range)
3241 {
3242 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3243 image->levels - range->baseMipLevel : range->levelCount;
3244 }
3245
3246 static inline VkImageAspectFlags
3247 anv_image_expand_aspects(const struct anv_image *image,
3248 VkImageAspectFlags aspects)
3249 {
3250 /* If the underlying image has color plane aspects and
3251 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3252 * the underlying image. */
3253 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3254 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3255 return image->aspects;
3256
3257 return aspects;
3258 }
3259
3260 static inline bool
3261 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3262 VkImageAspectFlags aspects2)
3263 {
3264 if (aspects1 == aspects2)
3265 return true;
3266
3267 /* Only 1 color aspects are compatibles. */
3268 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3269 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3270 util_bitcount(aspects1) == util_bitcount(aspects2))
3271 return true;
3272
3273 return false;
3274 }
3275
3276 struct anv_image_view {
3277 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3278
3279 VkImageAspectFlags aspect_mask;
3280 VkFormat vk_format;
3281 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3282
3283 unsigned n_planes;
3284 struct {
3285 uint32_t image_plane;
3286
3287 struct isl_view isl;
3288
3289 /**
3290 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3291 * image layout of SHADER_READ_ONLY_OPTIMAL or
3292 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3293 */
3294 struct anv_surface_state optimal_sampler_surface_state;
3295
3296 /**
3297 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3298 * image layout of GENERAL.
3299 */
3300 struct anv_surface_state general_sampler_surface_state;
3301
3302 /**
3303 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3304 * states for write-only and readable, using the real format for
3305 * write-only and the lowered format for readable.
3306 */
3307 struct anv_surface_state storage_surface_state;
3308 struct anv_surface_state writeonly_storage_surface_state;
3309
3310 struct brw_image_param storage_image_param;
3311 } planes[3];
3312 };
3313
3314 enum anv_image_view_state_flags {
3315 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3316 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3317 };
3318
3319 void anv_image_fill_surface_state(struct anv_device *device,
3320 const struct anv_image *image,
3321 VkImageAspectFlagBits aspect,
3322 const struct isl_view *view,
3323 isl_surf_usage_flags_t view_usage,
3324 enum isl_aux_usage aux_usage,
3325 const union isl_color_value *clear_color,
3326 enum anv_image_view_state_flags flags,
3327 struct anv_surface_state *state_inout,
3328 struct brw_image_param *image_param_out);
3329
3330 struct anv_image_create_info {
3331 const VkImageCreateInfo *vk_info;
3332
3333 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3334 isl_tiling_flags_t isl_tiling_flags;
3335
3336 /** These flags will be added to any derived from VkImageCreateInfo. */
3337 isl_surf_usage_flags_t isl_extra_usage_flags;
3338
3339 uint32_t stride;
3340 bool external_format;
3341 };
3342
3343 VkResult anv_image_create(VkDevice _device,
3344 const struct anv_image_create_info *info,
3345 const VkAllocationCallbacks* alloc,
3346 VkImage *pImage);
3347
3348 const struct anv_surface *
3349 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3350 VkImageAspectFlags aspect_mask);
3351
3352 enum isl_format
3353 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3354
3355 static inline struct VkExtent3D
3356 anv_sanitize_image_extent(const VkImageType imageType,
3357 const struct VkExtent3D imageExtent)
3358 {
3359 switch (imageType) {
3360 case VK_IMAGE_TYPE_1D:
3361 return (VkExtent3D) { imageExtent.width, 1, 1 };
3362 case VK_IMAGE_TYPE_2D:
3363 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3364 case VK_IMAGE_TYPE_3D:
3365 return imageExtent;
3366 default:
3367 unreachable("invalid image type");
3368 }
3369 }
3370
3371 static inline struct VkOffset3D
3372 anv_sanitize_image_offset(const VkImageType imageType,
3373 const struct VkOffset3D imageOffset)
3374 {
3375 switch (imageType) {
3376 case VK_IMAGE_TYPE_1D:
3377 return (VkOffset3D) { imageOffset.x, 0, 0 };
3378 case VK_IMAGE_TYPE_2D:
3379 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3380 case VK_IMAGE_TYPE_3D:
3381 return imageOffset;
3382 default:
3383 unreachable("invalid image type");
3384 }
3385 }
3386
3387 VkFormatFeatureFlags
3388 anv_get_image_format_features(const struct gen_device_info *devinfo,
3389 VkFormat vk_format,
3390 const struct anv_format *anv_format,
3391 VkImageTiling vk_tiling);
3392
3393 void anv_fill_buffer_surface_state(struct anv_device *device,
3394 struct anv_state state,
3395 enum isl_format format,
3396 struct anv_address address,
3397 uint32_t range, uint32_t stride);
3398
3399 static inline void
3400 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3401 const struct anv_attachment_state *att_state,
3402 const struct anv_image_view *iview)
3403 {
3404 const struct isl_format_layout *view_fmtl =
3405 isl_format_get_layout(iview->planes[0].isl.format);
3406
3407 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3408 if (view_fmtl->channels.c.bits) \
3409 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3410
3411 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3412 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3413 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3414 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3415
3416 #undef COPY_CLEAR_COLOR_CHANNEL
3417 }
3418
3419
3420 struct anv_ycbcr_conversion {
3421 const struct anv_format * format;
3422 VkSamplerYcbcrModelConversion ycbcr_model;
3423 VkSamplerYcbcrRange ycbcr_range;
3424 VkComponentSwizzle mapping[4];
3425 VkChromaLocation chroma_offsets[2];
3426 VkFilter chroma_filter;
3427 bool chroma_reconstruction;
3428 };
3429
3430 struct anv_sampler {
3431 uint32_t state[3][4];
3432 uint32_t n_planes;
3433 struct anv_ycbcr_conversion *conversion;
3434 };
3435
3436 struct anv_framebuffer {
3437 uint32_t width;
3438 uint32_t height;
3439 uint32_t layers;
3440
3441 uint32_t attachment_count;
3442 struct anv_image_view * attachments[0];
3443 };
3444
3445 struct anv_subpass_attachment {
3446 VkImageUsageFlagBits usage;
3447 uint32_t attachment;
3448 VkImageLayout layout;
3449 };
3450
3451 struct anv_subpass {
3452 uint32_t attachment_count;
3453
3454 /**
3455 * A pointer to all attachment references used in this subpass.
3456 * Only valid if ::attachment_count > 0.
3457 */
3458 struct anv_subpass_attachment * attachments;
3459 uint32_t input_count;
3460 struct anv_subpass_attachment * input_attachments;
3461 uint32_t color_count;
3462 struct anv_subpass_attachment * color_attachments;
3463 struct anv_subpass_attachment * resolve_attachments;
3464
3465 struct anv_subpass_attachment * depth_stencil_attachment;
3466 struct anv_subpass_attachment * ds_resolve_attachment;
3467 VkResolveModeFlagBitsKHR depth_resolve_mode;
3468 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3469
3470 uint32_t view_mask;
3471
3472 /** Subpass has a depth/stencil self-dependency */
3473 bool has_ds_self_dep;
3474
3475 /** Subpass has at least one color resolve attachment */
3476 bool has_color_resolve;
3477 };
3478
3479 static inline unsigned
3480 anv_subpass_view_count(const struct anv_subpass *subpass)
3481 {
3482 return MAX2(1, util_bitcount(subpass->view_mask));
3483 }
3484
3485 struct anv_render_pass_attachment {
3486 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3487 * its members individually.
3488 */
3489 VkFormat format;
3490 uint32_t samples;
3491 VkImageUsageFlags usage;
3492 VkAttachmentLoadOp load_op;
3493 VkAttachmentStoreOp store_op;
3494 VkAttachmentLoadOp stencil_load_op;
3495 VkImageLayout initial_layout;
3496 VkImageLayout final_layout;
3497 VkImageLayout first_subpass_layout;
3498
3499 /* The subpass id in which the attachment will be used last. */
3500 uint32_t last_subpass_idx;
3501 };
3502
3503 struct anv_render_pass {
3504 uint32_t attachment_count;
3505 uint32_t subpass_count;
3506 /* An array of subpass_count+1 flushes, one per subpass boundary */
3507 enum anv_pipe_bits * subpass_flushes;
3508 struct anv_render_pass_attachment * attachments;
3509 struct anv_subpass subpasses[0];
3510 };
3511
3512 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3513
3514 struct anv_query_pool {
3515 VkQueryType type;
3516 VkQueryPipelineStatisticFlags pipeline_statistics;
3517 /** Stride between slots, in bytes */
3518 uint32_t stride;
3519 /** Number of slots in this query pool */
3520 uint32_t slots;
3521 struct anv_bo bo;
3522 };
3523
3524 int anv_get_instance_entrypoint_index(const char *name);
3525 int anv_get_device_entrypoint_index(const char *name);
3526
3527 bool
3528 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3529 const struct anv_instance_extension_table *instance);
3530
3531 bool
3532 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3533 const struct anv_instance_extension_table *instance,
3534 const struct anv_device_extension_table *device);
3535
3536 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3537 const char *name);
3538
3539 void anv_dump_image_to_ppm(struct anv_device *device,
3540 struct anv_image *image, unsigned miplevel,
3541 unsigned array_layer, VkImageAspectFlagBits aspect,
3542 const char *filename);
3543
3544 enum anv_dump_action {
3545 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3546 };
3547
3548 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3549 void anv_dump_finish(void);
3550
3551 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
3552 struct anv_framebuffer *fb);
3553
3554 static inline uint32_t
3555 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3556 {
3557 /* This function must be called from within a subpass. */
3558 assert(cmd_state->pass && cmd_state->subpass);
3559
3560 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3561
3562 /* The id of this subpass shouldn't exceed the number of subpasses in this
3563 * render pass minus 1.
3564 */
3565 assert(subpass_id < cmd_state->pass->subpass_count);
3566 return subpass_id;
3567 }
3568
3569 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3570 \
3571 static inline struct __anv_type * \
3572 __anv_type ## _from_handle(__VkType _handle) \
3573 { \
3574 return (struct __anv_type *) _handle; \
3575 } \
3576 \
3577 static inline __VkType \
3578 __anv_type ## _to_handle(struct __anv_type *_obj) \
3579 { \
3580 return (__VkType) _obj; \
3581 }
3582
3583 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3584 \
3585 static inline struct __anv_type * \
3586 __anv_type ## _from_handle(__VkType _handle) \
3587 { \
3588 return (struct __anv_type *)(uintptr_t) _handle; \
3589 } \
3590 \
3591 static inline __VkType \
3592 __anv_type ## _to_handle(struct __anv_type *_obj) \
3593 { \
3594 return (__VkType)(uintptr_t) _obj; \
3595 }
3596
3597 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3598 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3599
3600 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3601 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3602 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3603 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3604 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3605
3606 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3607 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3608 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3609 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3610 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3611 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3612 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3613 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3614 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3615 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3616 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3617 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3618 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3619 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3620 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3621 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3622 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3623 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3624 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3625 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3626 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3627 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3628 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3629
3630 /* Gen-specific function declarations */
3631 #ifdef genX
3632 # include "anv_genX.h"
3633 #else
3634 # define genX(x) gen7_##x
3635 # include "anv_genX.h"
3636 # undef genX
3637 # define genX(x) gen75_##x
3638 # include "anv_genX.h"
3639 # undef genX
3640 # define genX(x) gen8_##x
3641 # include "anv_genX.h"
3642 # undef genX
3643 # define genX(x) gen9_##x
3644 # include "anv_genX.h"
3645 # undef genX
3646 # define genX(x) gen10_##x
3647 # include "anv_genX.h"
3648 # undef genX
3649 # define genX(x) gen11_##x
3650 # include "anv_genX.h"
3651 # undef genX
3652 #endif
3653
3654 #endif /* ANV_PRIVATE_H */