anv/allocator: Avoid race condition in anv_block_pool_map.
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_gem.h"
48 #include "dev/gen_device_info.h"
49 #include "blorp/blorp.h"
50 #include "compiler/brw_compiler.h"
51 #include "util/macros.h"
52 #include "util/hash_table.h"
53 #include "util/list.h"
54 #include "util/set.h"
55 #include "util/u_atomic.h"
56 #include "util/u_vector.h"
57 #include "util/u_math.h"
58 #include "util/vma.h"
59 #include "vk_alloc.h"
60 #include "vk_debug_report.h"
61
62 /* Pre-declarations needed for WSI entrypoints */
63 struct wl_surface;
64 struct wl_display;
65 typedef struct xcb_connection_t xcb_connection_t;
66 typedef uint32_t xcb_visualid_t;
67 typedef uint32_t xcb_window_t;
68
69 struct anv_buffer;
70 struct anv_buffer_view;
71 struct anv_image_view;
72 struct anv_instance;
73
74 struct gen_l3_config;
75
76 #include <vulkan/vulkan.h>
77 #include <vulkan/vulkan_intel.h>
78 #include <vulkan/vk_icd.h>
79
80 #include "anv_android.h"
81 #include "anv_entrypoints.h"
82 #include "anv_extensions.h"
83 #include "isl/isl.h"
84
85 #include "common/gen_debug.h"
86 #include "common/intel_log.h"
87 #include "wsi_common.h"
88
89 /* anv Virtual Memory Layout
90 * =========================
91 *
92 * When the anv driver is determining the virtual graphics addresses of memory
93 * objects itself using the softpin mechanism, the following memory ranges
94 * will be used.
95 *
96 * Three special considerations to notice:
97 *
98 * (1) the dynamic state pool is located within the same 4 GiB as the low
99 * heap. This is to work around a VF cache issue described in a comment in
100 * anv_physical_device_init_heaps.
101 *
102 * (2) the binding table pool is located at lower addresses than the surface
103 * state pool, within a 4 GiB range. This allows surface state base addresses
104 * to cover both binding tables (16 bit offsets) and surface states (32 bit
105 * offsets).
106 *
107 * (3) the last 4 GiB of the address space is withheld from the high
108 * heap. Various hardware units will read past the end of an object for
109 * various reasons. This healthy margin prevents reads from wrapping around
110 * 48-bit addresses.
111 */
112 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
113 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
114 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
115 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
116 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
117 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
118 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
119 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
120 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
121 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
122 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
123 #define HIGH_HEAP_MAX_ADDRESS 0xfffeffffffffULL
124
125 #define LOW_HEAP_SIZE \
126 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
127 #define HIGH_HEAP_SIZE \
128 (HIGH_HEAP_MAX_ADDRESS - HIGH_HEAP_MIN_ADDRESS + 1)
129 #define DYNAMIC_STATE_POOL_SIZE \
130 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
131 #define BINDING_TABLE_POOL_SIZE \
132 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
133 #define SURFACE_STATE_POOL_SIZE \
134 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
135 #define INSTRUCTION_STATE_POOL_SIZE \
136 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
137
138 /* Allowing different clear colors requires us to perform a depth resolve at
139 * the end of certain render passes. This is because while slow clears store
140 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
141 * See the PRMs for examples describing when additional resolves would be
142 * necessary. To enable fast clears without requiring extra resolves, we set
143 * the clear value to a globally-defined one. We could allow different values
144 * if the user doesn't expect coherent data during or after a render passes
145 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
146 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
147 * 1.0f seems to be the only value used. The only application that doesn't set
148 * this value does so through the usage of an seemingly uninitialized clear
149 * value.
150 */
151 #define ANV_HZ_FC_VAL 1.0f
152
153 #define MAX_VBS 28
154 #define MAX_XFB_BUFFERS 4
155 #define MAX_XFB_STREAMS 4
156 #define MAX_SETS 8
157 #define MAX_RTS 8
158 #define MAX_VIEWPORTS 16
159 #define MAX_SCISSORS 16
160 #define MAX_PUSH_CONSTANTS_SIZE 128
161 #define MAX_DYNAMIC_BUFFERS 16
162 #define MAX_IMAGES 64
163 #define MAX_GEN8_IMAGES 8
164 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
165
166 /* The kernel relocation API has a limitation of a 32-bit delta value
167 * applied to the address before it is written which, in spite of it being
168 * unsigned, is treated as signed . Because of the way that this maps to
169 * the Vulkan API, we cannot handle an offset into a buffer that does not
170 * fit into a signed 32 bits. The only mechanism we have for dealing with
171 * this at the moment is to limit all VkDeviceMemory objects to a maximum
172 * of 2GB each. The Vulkan spec allows us to do this:
173 *
174 * "Some platforms may have a limit on the maximum size of a single
175 * allocation. For example, certain systems may fail to create
176 * allocations with a size greater than or equal to 4GB. Such a limit is
177 * implementation-dependent, and if such a failure occurs then the error
178 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
179 *
180 * We don't use vk_error here because it's not an error so much as an
181 * indication to the application that the allocation is too large.
182 */
183 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
184
185 #define ANV_SVGS_VB_INDEX MAX_VBS
186 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
187
188 /* We reserve this MI ALU register for the purpose of handling predication.
189 * Other code which uses the MI ALU should leave it alone.
190 */
191 #define ANV_PREDICATE_RESULT_REG MI_ALU_REG15
192
193 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
194
195 static inline uint32_t
196 align_down_npot_u32(uint32_t v, uint32_t a)
197 {
198 return v - (v % a);
199 }
200
201 static inline uint32_t
202 align_u32(uint32_t v, uint32_t a)
203 {
204 assert(a != 0 && a == (a & -a));
205 return (v + a - 1) & ~(a - 1);
206 }
207
208 static inline uint64_t
209 align_u64(uint64_t v, uint64_t a)
210 {
211 assert(a != 0 && a == (a & -a));
212 return (v + a - 1) & ~(a - 1);
213 }
214
215 static inline int32_t
216 align_i32(int32_t v, int32_t a)
217 {
218 assert(a != 0 && a == (a & -a));
219 return (v + a - 1) & ~(a - 1);
220 }
221
222 /** Alignment must be a power of 2. */
223 static inline bool
224 anv_is_aligned(uintmax_t n, uintmax_t a)
225 {
226 assert(a == (a & -a));
227 return (n & (a - 1)) == 0;
228 }
229
230 static inline uint32_t
231 anv_minify(uint32_t n, uint32_t levels)
232 {
233 if (unlikely(n == 0))
234 return 0;
235 else
236 return MAX2(n >> levels, 1);
237 }
238
239 static inline float
240 anv_clamp_f(float f, float min, float max)
241 {
242 assert(min < max);
243
244 if (f > max)
245 return max;
246 else if (f < min)
247 return min;
248 else
249 return f;
250 }
251
252 static inline bool
253 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
254 {
255 if (*inout_mask & clear_mask) {
256 *inout_mask &= ~clear_mask;
257 return true;
258 } else {
259 return false;
260 }
261 }
262
263 static inline union isl_color_value
264 vk_to_isl_color(VkClearColorValue color)
265 {
266 return (union isl_color_value) {
267 .u32 = {
268 color.uint32[0],
269 color.uint32[1],
270 color.uint32[2],
271 color.uint32[3],
272 },
273 };
274 }
275
276 #define for_each_bit(b, dword) \
277 for (uint32_t __dword = (dword); \
278 (b) = __builtin_ffs(__dword) - 1, __dword; \
279 __dword &= ~(1 << (b)))
280
281 #define typed_memcpy(dest, src, count) ({ \
282 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
283 memcpy((dest), (src), (count) * sizeof(*(src))); \
284 })
285
286 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
287 * to be added here in order to utilize mapping in debug/error/perf macros.
288 */
289 #define REPORT_OBJECT_TYPE(o) \
290 __builtin_choose_expr ( \
291 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
292 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
293 __builtin_choose_expr ( \
294 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
295 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
296 __builtin_choose_expr ( \
297 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
298 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
299 __builtin_choose_expr ( \
300 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
301 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
302 __builtin_choose_expr ( \
303 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
304 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
305 __builtin_choose_expr ( \
306 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
307 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
308 __builtin_choose_expr ( \
309 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
310 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
311 __builtin_choose_expr ( \
312 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
313 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
314 __builtin_choose_expr ( \
315 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
316 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
317 __builtin_choose_expr ( \
318 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
319 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
320 __builtin_choose_expr ( \
321 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
322 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
323 __builtin_choose_expr ( \
324 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
325 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
326 __builtin_choose_expr ( \
327 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
328 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
329 __builtin_choose_expr ( \
330 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
331 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
332 __builtin_choose_expr ( \
333 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
334 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), void*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
383 /* The void expression results in a compile-time error \
384 when assigning the result to something. */ \
385 (void)0)))))))))))))))))))))))))))))))
386
387 /* Whenever we generate an error, pass it through this function. Useful for
388 * debugging, where we can break on it. Only call at error site, not when
389 * propagating errors. Might be useful to plug in a stack trace here.
390 */
391
392 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
393 VkDebugReportObjectTypeEXT type, VkResult error,
394 const char *file, int line, const char *format,
395 va_list args);
396
397 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
398 VkDebugReportObjectTypeEXT type, VkResult error,
399 const char *file, int line, const char *format, ...);
400
401 #ifdef DEBUG
402 #define vk_error(error) __vk_errorf(NULL, NULL,\
403 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
404 error, __FILE__, __LINE__, NULL)
405 #define vk_errorv(instance, obj, error, format, args)\
406 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
407 __FILE__, __LINE__, format, args)
408 #define vk_errorf(instance, obj, error, format, ...)\
409 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
410 __FILE__, __LINE__, format, ## __VA_ARGS__)
411 #else
412 #define vk_error(error) error
413 #define vk_errorf(instance, obj, error, format, ...) error
414 #endif
415
416 /**
417 * Warn on ignored extension structs.
418 *
419 * The Vulkan spec requires us to ignore unsupported or unknown structs in
420 * a pNext chain. In debug mode, emitting warnings for ignored structs may
421 * help us discover structs that we should not have ignored.
422 *
423 *
424 * From the Vulkan 1.0.38 spec:
425 *
426 * Any component of the implementation (the loader, any enabled layers,
427 * and drivers) must skip over, without processing (other than reading the
428 * sType and pNext members) any chained structures with sType values not
429 * defined by extensions supported by that component.
430 */
431 #define anv_debug_ignored_stype(sType) \
432 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
433
434 void __anv_perf_warn(struct anv_instance *instance, const void *object,
435 VkDebugReportObjectTypeEXT type, const char *file,
436 int line, const char *format, ...)
437 anv_printflike(6, 7);
438 void anv_loge(const char *format, ...) anv_printflike(1, 2);
439 void anv_loge_v(const char *format, va_list va);
440
441 /**
442 * Print a FINISHME message, including its source location.
443 */
444 #define anv_finishme(format, ...) \
445 do { \
446 static bool reported = false; \
447 if (!reported) { \
448 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
449 ##__VA_ARGS__); \
450 reported = true; \
451 } \
452 } while (0)
453
454 /**
455 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
456 */
457 #define anv_perf_warn(instance, obj, format, ...) \
458 do { \
459 static bool reported = false; \
460 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
461 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
462 format, ##__VA_ARGS__); \
463 reported = true; \
464 } \
465 } while (0)
466
467 /* A non-fatal assert. Useful for debugging. */
468 #ifdef DEBUG
469 #define anv_assert(x) ({ \
470 if (unlikely(!(x))) \
471 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
472 })
473 #else
474 #define anv_assert(x)
475 #endif
476
477 /* A multi-pointer allocator
478 *
479 * When copying data structures from the user (such as a render pass), it's
480 * common to need to allocate data for a bunch of different things. Instead
481 * of doing several allocations and having to handle all of the error checking
482 * that entails, it can be easier to do a single allocation. This struct
483 * helps facilitate that. The intended usage looks like this:
484 *
485 * ANV_MULTIALLOC(ma)
486 * anv_multialloc_add(&ma, &main_ptr, 1);
487 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
488 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
489 *
490 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
491 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
492 */
493 struct anv_multialloc {
494 size_t size;
495 size_t align;
496
497 uint32_t ptr_count;
498 void **ptrs[8];
499 };
500
501 #define ANV_MULTIALLOC_INIT \
502 ((struct anv_multialloc) { 0, })
503
504 #define ANV_MULTIALLOC(_name) \
505 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
506
507 __attribute__((always_inline))
508 static inline void
509 _anv_multialloc_add(struct anv_multialloc *ma,
510 void **ptr, size_t size, size_t align)
511 {
512 size_t offset = align_u64(ma->size, align);
513 ma->size = offset + size;
514 ma->align = MAX2(ma->align, align);
515
516 /* Store the offset in the pointer. */
517 *ptr = (void *)(uintptr_t)offset;
518
519 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
520 ma->ptrs[ma->ptr_count++] = ptr;
521 }
522
523 #define anv_multialloc_add_size(_ma, _ptr, _size) \
524 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
525
526 #define anv_multialloc_add(_ma, _ptr, _count) \
527 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
528
529 __attribute__((always_inline))
530 static inline void *
531 anv_multialloc_alloc(struct anv_multialloc *ma,
532 const VkAllocationCallbacks *alloc,
533 VkSystemAllocationScope scope)
534 {
535 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
536 if (!ptr)
537 return NULL;
538
539 /* Fill out each of the pointers with their final value.
540 *
541 * for (uint32_t i = 0; i < ma->ptr_count; i++)
542 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
543 *
544 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
545 * constant, GCC is incapable of figuring this out and unrolling the loop
546 * so we have to give it a little help.
547 */
548 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
549 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
550 if ((_i) < ma->ptr_count) \
551 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
552 _ANV_MULTIALLOC_UPDATE_POINTER(0);
553 _ANV_MULTIALLOC_UPDATE_POINTER(1);
554 _ANV_MULTIALLOC_UPDATE_POINTER(2);
555 _ANV_MULTIALLOC_UPDATE_POINTER(3);
556 _ANV_MULTIALLOC_UPDATE_POINTER(4);
557 _ANV_MULTIALLOC_UPDATE_POINTER(5);
558 _ANV_MULTIALLOC_UPDATE_POINTER(6);
559 _ANV_MULTIALLOC_UPDATE_POINTER(7);
560 #undef _ANV_MULTIALLOC_UPDATE_POINTER
561
562 return ptr;
563 }
564
565 __attribute__((always_inline))
566 static inline void *
567 anv_multialloc_alloc2(struct anv_multialloc *ma,
568 const VkAllocationCallbacks *parent_alloc,
569 const VkAllocationCallbacks *alloc,
570 VkSystemAllocationScope scope)
571 {
572 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
573 }
574
575 /* Extra ANV-defined BO flags which won't be passed to the kernel */
576 #define ANV_BO_EXTERNAL (1ull << 31)
577 #define ANV_BO_FLAG_MASK (1ull << 31)
578
579 struct anv_bo {
580 uint32_t gem_handle;
581
582 /* Index into the current validation list. This is used by the
583 * validation list building alrogithm to track which buffers are already
584 * in the validation list so that we can ensure uniqueness.
585 */
586 uint32_t index;
587
588 /* Last known offset. This value is provided by the kernel when we
589 * execbuf and is used as the presumed offset for the next bunch of
590 * relocations.
591 */
592 uint64_t offset;
593
594 uint64_t size;
595 void *map;
596
597 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
598 uint32_t flags;
599 };
600
601 static inline void
602 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
603 {
604 bo->gem_handle = gem_handle;
605 bo->index = 0;
606 bo->offset = -1;
607 bo->size = size;
608 bo->map = NULL;
609 bo->flags = 0;
610 }
611
612 /* Represents a lock-free linked list of "free" things. This is used by
613 * both the block pool and the state pools. Unfortunately, in order to
614 * solve the ABA problem, we can't use a single uint32_t head.
615 */
616 union anv_free_list {
617 struct {
618 uint32_t offset;
619
620 /* A simple count that is incremented every time the head changes. */
621 uint32_t count;
622 };
623 uint64_t u64;
624 };
625
626 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
627
628 struct anv_block_state {
629 union {
630 struct {
631 uint32_t next;
632 uint32_t end;
633 };
634 uint64_t u64;
635 };
636 };
637
638 #define anv_block_pool_foreach_bo(bo, pool) \
639 for (bo = (pool)->bos; bo != &(pool)->bos[(pool)->nbos]; bo++)
640
641 #define ANV_MAX_BLOCK_POOL_BOS 20
642
643 struct anv_block_pool {
644 struct anv_device *device;
645
646 uint64_t bo_flags;
647
648 struct anv_bo bos[ANV_MAX_BLOCK_POOL_BOS];
649 struct anv_bo *bo;
650 uint32_t nbos;
651
652 uint64_t size;
653
654 /* The address where the start of the pool is pinned. The various bos that
655 * are created as the pool grows will have addresses in the range
656 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
657 */
658 uint64_t start_address;
659
660 /* The offset from the start of the bo to the "center" of the block
661 * pool. Pointers to allocated blocks are given by
662 * bo.map + center_bo_offset + offsets.
663 */
664 uint32_t center_bo_offset;
665
666 /* Current memory map of the block pool. This pointer may or may not
667 * point to the actual beginning of the block pool memory. If
668 * anv_block_pool_alloc_back has ever been called, then this pointer
669 * will point to the "center" position of the buffer and all offsets
670 * (negative or positive) given out by the block pool alloc functions
671 * will be valid relative to this pointer.
672 *
673 * In particular, map == bo.map + center_offset
674 *
675 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
676 * since it will handle the softpin case as well, where this points to NULL.
677 */
678 void *map;
679 int fd;
680
681 /**
682 * Array of mmaps and gem handles owned by the block pool, reclaimed when
683 * the block pool is destroyed.
684 */
685 struct u_vector mmap_cleanups;
686
687 struct anv_block_state state;
688
689 struct anv_block_state back_state;
690 };
691
692 /* Block pools are backed by a fixed-size 1GB memfd */
693 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
694
695 /* The center of the block pool is also the middle of the memfd. This may
696 * change in the future if we decide differently for some reason.
697 */
698 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
699
700 static inline uint32_t
701 anv_block_pool_size(struct anv_block_pool *pool)
702 {
703 return pool->state.end + pool->back_state.end;
704 }
705
706 struct anv_state {
707 int32_t offset;
708 uint32_t alloc_size;
709 void *map;
710 uint32_t idx;
711 };
712
713 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
714
715 struct anv_fixed_size_state_pool {
716 union anv_free_list free_list;
717 struct anv_block_state block;
718 };
719
720 #define ANV_MIN_STATE_SIZE_LOG2 6
721 #define ANV_MAX_STATE_SIZE_LOG2 20
722
723 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
724
725 struct anv_free_entry {
726 uint32_t next;
727 struct anv_state state;
728 };
729
730 struct anv_state_table {
731 struct anv_device *device;
732 int fd;
733 struct anv_free_entry *map;
734 uint32_t size;
735 struct anv_block_state state;
736 struct u_vector mmap_cleanups;
737 };
738
739 struct anv_state_pool {
740 struct anv_block_pool block_pool;
741
742 struct anv_state_table table;
743
744 /* The size of blocks which will be allocated from the block pool */
745 uint32_t block_size;
746
747 /** Free list for "back" allocations */
748 union anv_free_list back_alloc_free_list;
749
750 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
751 };
752
753 struct anv_state_stream_block;
754
755 struct anv_state_stream {
756 struct anv_state_pool *state_pool;
757
758 /* The size of blocks to allocate from the state pool */
759 uint32_t block_size;
760
761 /* Current block we're allocating from */
762 struct anv_state block;
763
764 /* Offset into the current block at which to allocate the next state */
765 uint32_t next;
766
767 /* List of all blocks allocated from this pool */
768 struct anv_state_stream_block *block_list;
769 };
770
771 /* The block_pool functions exported for testing only. The block pool should
772 * only be used via a state pool (see below).
773 */
774 VkResult anv_block_pool_init(struct anv_block_pool *pool,
775 struct anv_device *device,
776 uint64_t start_address,
777 uint32_t initial_size,
778 uint64_t bo_flags);
779 void anv_block_pool_finish(struct anv_block_pool *pool);
780 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
781 uint32_t block_size, uint32_t *padding);
782 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
783 uint32_t block_size);
784 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
785
786 VkResult anv_state_pool_init(struct anv_state_pool *pool,
787 struct anv_device *device,
788 uint64_t start_address,
789 uint32_t block_size,
790 uint64_t bo_flags);
791 void anv_state_pool_finish(struct anv_state_pool *pool);
792 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
793 uint32_t state_size, uint32_t alignment);
794 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
795 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
796 void anv_state_stream_init(struct anv_state_stream *stream,
797 struct anv_state_pool *state_pool,
798 uint32_t block_size);
799 void anv_state_stream_finish(struct anv_state_stream *stream);
800 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
801 uint32_t size, uint32_t alignment);
802
803 VkResult anv_state_table_init(struct anv_state_table *table,
804 struct anv_device *device,
805 uint32_t initial_entries);
806 void anv_state_table_finish(struct anv_state_table *table);
807 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
808 uint32_t count);
809 void anv_free_list_push(union anv_free_list *list,
810 struct anv_state_table *table,
811 uint32_t idx, uint32_t count);
812 struct anv_state* anv_free_list_pop(union anv_free_list *list,
813 struct anv_state_table *table);
814
815
816 static inline struct anv_state *
817 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
818 {
819 return &table->map[idx].state;
820 }
821 /**
822 * Implements a pool of re-usable BOs. The interface is identical to that
823 * of block_pool except that each block is its own BO.
824 */
825 struct anv_bo_pool {
826 struct anv_device *device;
827
828 uint64_t bo_flags;
829
830 void *free_list[16];
831 };
832
833 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
834 uint64_t bo_flags);
835 void anv_bo_pool_finish(struct anv_bo_pool *pool);
836 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
837 uint32_t size);
838 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
839
840 struct anv_scratch_bo {
841 bool exists;
842 struct anv_bo bo;
843 };
844
845 struct anv_scratch_pool {
846 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
847 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
848 };
849
850 void anv_scratch_pool_init(struct anv_device *device,
851 struct anv_scratch_pool *pool);
852 void anv_scratch_pool_finish(struct anv_device *device,
853 struct anv_scratch_pool *pool);
854 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
855 struct anv_scratch_pool *pool,
856 gl_shader_stage stage,
857 unsigned per_thread_scratch);
858
859 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
860 struct anv_bo_cache {
861 struct hash_table *bo_map;
862 pthread_mutex_t mutex;
863 };
864
865 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
866 void anv_bo_cache_finish(struct anv_bo_cache *cache);
867 VkResult anv_bo_cache_alloc(struct anv_device *device,
868 struct anv_bo_cache *cache,
869 uint64_t size, uint64_t bo_flags,
870 struct anv_bo **bo);
871 VkResult anv_bo_cache_import(struct anv_device *device,
872 struct anv_bo_cache *cache,
873 int fd, uint64_t bo_flags,
874 struct anv_bo **bo);
875 VkResult anv_bo_cache_export(struct anv_device *device,
876 struct anv_bo_cache *cache,
877 struct anv_bo *bo_in, int *fd_out);
878 void anv_bo_cache_release(struct anv_device *device,
879 struct anv_bo_cache *cache,
880 struct anv_bo *bo);
881
882 struct anv_memory_type {
883 /* Standard bits passed on to the client */
884 VkMemoryPropertyFlags propertyFlags;
885 uint32_t heapIndex;
886
887 /* Driver-internal book-keeping */
888 VkBufferUsageFlags valid_buffer_usage;
889 };
890
891 struct anv_memory_heap {
892 /* Standard bits passed on to the client */
893 VkDeviceSize size;
894 VkMemoryHeapFlags flags;
895
896 /* Driver-internal book-keeping */
897 bool supports_48bit_addresses;
898 };
899
900 struct anv_physical_device {
901 VK_LOADER_DATA _loader_data;
902
903 struct anv_instance * instance;
904 uint32_t chipset_id;
905 bool no_hw;
906 char path[20];
907 const char * name;
908 struct {
909 uint16_t domain;
910 uint8_t bus;
911 uint8_t device;
912 uint8_t function;
913 } pci_info;
914 struct gen_device_info info;
915 /** Amount of "GPU memory" we want to advertise
916 *
917 * Clearly, this value is bogus since Intel is a UMA architecture. On
918 * gen7 platforms, we are limited by GTT size unless we want to implement
919 * fine-grained tracking and GTT splitting. On Broadwell and above we are
920 * practically unlimited. However, we will never report more than 3/4 of
921 * the total system ram to try and avoid running out of RAM.
922 */
923 bool supports_48bit_addresses;
924 struct brw_compiler * compiler;
925 struct isl_device isl_dev;
926 int cmd_parser_version;
927 bool has_exec_async;
928 bool has_exec_capture;
929 bool has_exec_fence;
930 bool has_syncobj;
931 bool has_syncobj_wait;
932 bool has_context_priority;
933 bool use_softpin;
934 bool has_context_isolation;
935
936 struct anv_device_extension_table supported_extensions;
937
938 uint32_t eu_total;
939 uint32_t subslice_total;
940
941 struct {
942 uint32_t type_count;
943 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
944 uint32_t heap_count;
945 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
946 } memory;
947
948 uint8_t driver_build_sha1[20];
949 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
950 uint8_t driver_uuid[VK_UUID_SIZE];
951 uint8_t device_uuid[VK_UUID_SIZE];
952
953 struct disk_cache * disk_cache;
954
955 struct wsi_device wsi_device;
956 int local_fd;
957 int master_fd;
958 };
959
960 struct anv_app_info {
961 const char* app_name;
962 uint32_t app_version;
963 const char* engine_name;
964 uint32_t engine_version;
965 uint32_t api_version;
966 };
967
968 struct anv_instance {
969 VK_LOADER_DATA _loader_data;
970
971 VkAllocationCallbacks alloc;
972
973 struct anv_app_info app_info;
974
975 struct anv_instance_extension_table enabled_extensions;
976 struct anv_instance_dispatch_table dispatch;
977 struct anv_device_dispatch_table device_dispatch;
978
979 int physicalDeviceCount;
980 struct anv_physical_device physicalDevice;
981
982 bool pipeline_cache_enabled;
983
984 struct vk_debug_report_instance debug_report_callbacks;
985 };
986
987 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
988 void anv_finish_wsi(struct anv_physical_device *physical_device);
989
990 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
991 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
992 const char *name);
993
994 struct anv_queue {
995 VK_LOADER_DATA _loader_data;
996
997 struct anv_device * device;
998
999 VkDeviceQueueCreateFlags flags;
1000 };
1001
1002 struct anv_pipeline_cache {
1003 struct anv_device * device;
1004 pthread_mutex_t mutex;
1005
1006 struct hash_table * nir_cache;
1007
1008 struct hash_table * cache;
1009 };
1010
1011 struct nir_xfb_info;
1012 struct anv_pipeline_bind_map;
1013
1014 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1015 struct anv_device *device,
1016 bool cache_enabled);
1017 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1018
1019 struct anv_shader_bin *
1020 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1021 const void *key, uint32_t key_size);
1022 struct anv_shader_bin *
1023 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1024 const void *key_data, uint32_t key_size,
1025 const void *kernel_data, uint32_t kernel_size,
1026 const void *constant_data,
1027 uint32_t constant_data_size,
1028 const struct brw_stage_prog_data *prog_data,
1029 uint32_t prog_data_size,
1030 const struct nir_xfb_info *xfb_info,
1031 const struct anv_pipeline_bind_map *bind_map);
1032
1033 struct anv_shader_bin *
1034 anv_device_search_for_kernel(struct anv_device *device,
1035 struct anv_pipeline_cache *cache,
1036 const void *key_data, uint32_t key_size);
1037
1038 struct anv_shader_bin *
1039 anv_device_upload_kernel(struct anv_device *device,
1040 struct anv_pipeline_cache *cache,
1041 const void *key_data, uint32_t key_size,
1042 const void *kernel_data, uint32_t kernel_size,
1043 const void *constant_data,
1044 uint32_t constant_data_size,
1045 const struct brw_stage_prog_data *prog_data,
1046 uint32_t prog_data_size,
1047 const struct nir_xfb_info *xfb_info,
1048 const struct anv_pipeline_bind_map *bind_map);
1049
1050 struct nir_shader;
1051 struct nir_shader_compiler_options;
1052
1053 struct nir_shader *
1054 anv_device_search_for_nir(struct anv_device *device,
1055 struct anv_pipeline_cache *cache,
1056 const struct nir_shader_compiler_options *nir_options,
1057 unsigned char sha1_key[20],
1058 void *mem_ctx);
1059
1060 void
1061 anv_device_upload_nir(struct anv_device *device,
1062 struct anv_pipeline_cache *cache,
1063 const struct nir_shader *nir,
1064 unsigned char sha1_key[20]);
1065
1066 struct anv_device {
1067 VK_LOADER_DATA _loader_data;
1068
1069 VkAllocationCallbacks alloc;
1070
1071 struct anv_instance * instance;
1072 uint32_t chipset_id;
1073 bool no_hw;
1074 struct gen_device_info info;
1075 struct isl_device isl_dev;
1076 int context_id;
1077 int fd;
1078 bool can_chain_batches;
1079 bool robust_buffer_access;
1080 struct anv_device_extension_table enabled_extensions;
1081 struct anv_device_dispatch_table dispatch;
1082
1083 pthread_mutex_t vma_mutex;
1084 struct util_vma_heap vma_lo;
1085 struct util_vma_heap vma_hi;
1086 uint64_t vma_lo_available;
1087 uint64_t vma_hi_available;
1088
1089 struct anv_bo_pool batch_bo_pool;
1090
1091 struct anv_bo_cache bo_cache;
1092
1093 struct anv_state_pool dynamic_state_pool;
1094 struct anv_state_pool instruction_state_pool;
1095 struct anv_state_pool binding_table_pool;
1096 struct anv_state_pool surface_state_pool;
1097
1098 struct anv_bo workaround_bo;
1099 struct anv_bo trivial_batch_bo;
1100 struct anv_bo hiz_clear_bo;
1101
1102 struct anv_pipeline_cache default_pipeline_cache;
1103 struct blorp_context blorp;
1104
1105 struct anv_state border_colors;
1106
1107 struct anv_queue queue;
1108
1109 struct anv_scratch_pool scratch_pool;
1110
1111 uint32_t default_mocs;
1112 uint32_t external_mocs;
1113
1114 pthread_mutex_t mutex;
1115 pthread_cond_t queue_submit;
1116 bool _lost;
1117 };
1118
1119 static inline struct anv_state_pool *
1120 anv_binding_table_pool(struct anv_device *device)
1121 {
1122 if (device->instance->physicalDevice.use_softpin)
1123 return &device->binding_table_pool;
1124 else
1125 return &device->surface_state_pool;
1126 }
1127
1128 static inline struct anv_state
1129 anv_binding_table_pool_alloc(struct anv_device *device) {
1130 if (device->instance->physicalDevice.use_softpin)
1131 return anv_state_pool_alloc(&device->binding_table_pool,
1132 device->binding_table_pool.block_size, 0);
1133 else
1134 return anv_state_pool_alloc_back(&device->surface_state_pool);
1135 }
1136
1137 static inline void
1138 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1139 anv_state_pool_free(anv_binding_table_pool(device), state);
1140 }
1141
1142 static inline uint32_t
1143 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1144 {
1145 if (bo->flags & ANV_BO_EXTERNAL)
1146 return device->external_mocs;
1147 else
1148 return device->default_mocs;
1149 }
1150
1151 void anv_device_init_blorp(struct anv_device *device);
1152 void anv_device_finish_blorp(struct anv_device *device);
1153
1154 VkResult _anv_device_set_lost(struct anv_device *device,
1155 const char *file, int line,
1156 const char *msg, ...);
1157 #define anv_device_set_lost(dev, ...) \
1158 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1159
1160 static inline bool
1161 anv_device_is_lost(struct anv_device *device)
1162 {
1163 return unlikely(device->_lost);
1164 }
1165
1166 VkResult anv_device_execbuf(struct anv_device *device,
1167 struct drm_i915_gem_execbuffer2 *execbuf,
1168 struct anv_bo **execbuf_bos);
1169 VkResult anv_device_query_status(struct anv_device *device);
1170 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1171 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1172 int64_t timeout);
1173
1174 void* anv_gem_mmap(struct anv_device *device,
1175 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1176 void anv_gem_munmap(void *p, uint64_t size);
1177 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1178 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1179 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1180 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1181 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1182 int anv_gem_execbuffer(struct anv_device *device,
1183 struct drm_i915_gem_execbuffer2 *execbuf);
1184 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1185 uint32_t stride, uint32_t tiling);
1186 int anv_gem_create_context(struct anv_device *device);
1187 bool anv_gem_has_context_priority(int fd);
1188 int anv_gem_destroy_context(struct anv_device *device, int context);
1189 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1190 uint64_t value);
1191 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1192 uint64_t *value);
1193 int anv_gem_get_param(int fd, uint32_t param);
1194 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1195 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1196 int anv_gem_get_aperture(int fd, uint64_t *size);
1197 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1198 uint32_t *active, uint32_t *pending);
1199 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1200 int anv_gem_reg_read(struct anv_device *device,
1201 uint32_t offset, uint64_t *result);
1202 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1203 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1204 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1205 uint32_t read_domains, uint32_t write_domain);
1206 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1207 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1208 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1209 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1210 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1211 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1212 uint32_t handle);
1213 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1214 uint32_t handle, int fd);
1215 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1216 bool anv_gem_supports_syncobj_wait(int fd);
1217 int anv_gem_syncobj_wait(struct anv_device *device,
1218 uint32_t *handles, uint32_t num_handles,
1219 int64_t abs_timeout_ns, bool wait_all);
1220
1221 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1222 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1223
1224 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1225
1226 struct anv_reloc_list {
1227 uint32_t num_relocs;
1228 uint32_t array_length;
1229 struct drm_i915_gem_relocation_entry * relocs;
1230 struct anv_bo ** reloc_bos;
1231 struct set * deps;
1232 };
1233
1234 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1235 const VkAllocationCallbacks *alloc);
1236 void anv_reloc_list_finish(struct anv_reloc_list *list,
1237 const VkAllocationCallbacks *alloc);
1238
1239 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1240 const VkAllocationCallbacks *alloc,
1241 uint32_t offset, struct anv_bo *target_bo,
1242 uint32_t delta);
1243
1244 struct anv_batch_bo {
1245 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1246 struct list_head link;
1247
1248 struct anv_bo bo;
1249
1250 /* Bytes actually consumed in this batch BO */
1251 uint32_t length;
1252
1253 struct anv_reloc_list relocs;
1254 };
1255
1256 struct anv_batch {
1257 const VkAllocationCallbacks * alloc;
1258
1259 void * start;
1260 void * end;
1261 void * next;
1262
1263 struct anv_reloc_list * relocs;
1264
1265 /* This callback is called (with the associated user data) in the event
1266 * that the batch runs out of space.
1267 */
1268 VkResult (*extend_cb)(struct anv_batch *, void *);
1269 void * user_data;
1270
1271 /**
1272 * Current error status of the command buffer. Used to track inconsistent
1273 * or incomplete command buffer states that are the consequence of run-time
1274 * errors such as out of memory scenarios. We want to track this in the
1275 * batch because the command buffer object is not visible to some parts
1276 * of the driver.
1277 */
1278 VkResult status;
1279 };
1280
1281 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1282 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1283 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1284 void *location, struct anv_bo *bo, uint32_t offset);
1285 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1286 struct anv_batch *batch);
1287
1288 static inline VkResult
1289 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1290 {
1291 assert(error != VK_SUCCESS);
1292 if (batch->status == VK_SUCCESS)
1293 batch->status = error;
1294 return batch->status;
1295 }
1296
1297 static inline bool
1298 anv_batch_has_error(struct anv_batch *batch)
1299 {
1300 return batch->status != VK_SUCCESS;
1301 }
1302
1303 struct anv_address {
1304 struct anv_bo *bo;
1305 uint32_t offset;
1306 };
1307
1308 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1309
1310 static inline bool
1311 anv_address_is_null(struct anv_address addr)
1312 {
1313 return addr.bo == NULL && addr.offset == 0;
1314 }
1315
1316 static inline uint64_t
1317 anv_address_physical(struct anv_address addr)
1318 {
1319 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1320 return gen_canonical_address(addr.bo->offset + addr.offset);
1321 else
1322 return gen_canonical_address(addr.offset);
1323 }
1324
1325 static inline struct anv_address
1326 anv_address_add(struct anv_address addr, uint64_t offset)
1327 {
1328 addr.offset += offset;
1329 return addr;
1330 }
1331
1332 static inline void
1333 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1334 {
1335 unsigned reloc_size = 0;
1336 if (device->info.gen >= 8) {
1337 reloc_size = sizeof(uint64_t);
1338 *(uint64_t *)p = gen_canonical_address(v);
1339 } else {
1340 reloc_size = sizeof(uint32_t);
1341 *(uint32_t *)p = v;
1342 }
1343
1344 if (flush && !device->info.has_llc)
1345 gen_flush_range(p, reloc_size);
1346 }
1347
1348 static inline uint64_t
1349 _anv_combine_address(struct anv_batch *batch, void *location,
1350 const struct anv_address address, uint32_t delta)
1351 {
1352 if (address.bo == NULL) {
1353 return address.offset + delta;
1354 } else {
1355 assert(batch->start <= location && location < batch->end);
1356
1357 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1358 }
1359 }
1360
1361 #define __gen_address_type struct anv_address
1362 #define __gen_user_data struct anv_batch
1363 #define __gen_combine_address _anv_combine_address
1364
1365 /* Wrapper macros needed to work around preprocessor argument issues. In
1366 * particular, arguments don't get pre-evaluated if they are concatenated.
1367 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1368 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1369 * We can work around this easily enough with these helpers.
1370 */
1371 #define __anv_cmd_length(cmd) cmd ## _length
1372 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1373 #define __anv_cmd_header(cmd) cmd ## _header
1374 #define __anv_cmd_pack(cmd) cmd ## _pack
1375 #define __anv_reg_num(reg) reg ## _num
1376
1377 #define anv_pack_struct(dst, struc, ...) do { \
1378 struct struc __template = { \
1379 __VA_ARGS__ \
1380 }; \
1381 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1382 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1383 } while (0)
1384
1385 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1386 void *__dst = anv_batch_emit_dwords(batch, n); \
1387 if (__dst) { \
1388 struct cmd __template = { \
1389 __anv_cmd_header(cmd), \
1390 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1391 __VA_ARGS__ \
1392 }; \
1393 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1394 } \
1395 __dst; \
1396 })
1397
1398 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1399 do { \
1400 uint32_t *dw; \
1401 \
1402 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1403 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1404 if (!dw) \
1405 break; \
1406 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1407 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1408 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1409 } while (0)
1410
1411 #define anv_batch_emit(batch, cmd, name) \
1412 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1413 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1414 __builtin_expect(_dst != NULL, 1); \
1415 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1416 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1417 _dst = NULL; \
1418 }))
1419
1420 /* MEMORY_OBJECT_CONTROL_STATE:
1421 * .GraphicsDataTypeGFDT = 0,
1422 * .LLCCacheabilityControlLLCCC = 0,
1423 * .L3CacheabilityControlL3CC = 1,
1424 */
1425 #define GEN7_MOCS 1
1426
1427 /* MEMORY_OBJECT_CONTROL_STATE:
1428 * .LLCeLLCCacheabilityControlLLCCC = 0,
1429 * .L3CacheabilityControlL3CC = 1,
1430 */
1431 #define GEN75_MOCS 1
1432
1433 /* MEMORY_OBJECT_CONTROL_STATE:
1434 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1435 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1436 * .AgeforQUADLRU = 0
1437 */
1438 #define GEN8_MOCS 0x78
1439
1440 /* MEMORY_OBJECT_CONTROL_STATE:
1441 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1442 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1443 * .AgeforQUADLRU = 0
1444 */
1445 #define GEN8_EXTERNAL_MOCS 0x18
1446
1447 /* Skylake: MOCS is now an index into an array of 62 different caching
1448 * configurations programmed by the kernel.
1449 */
1450
1451 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1452 #define GEN9_MOCS 2
1453
1454 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1455 #define GEN9_EXTERNAL_MOCS 1
1456
1457 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1458 #define GEN10_MOCS GEN9_MOCS
1459 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1460
1461 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1462 #define GEN11_MOCS GEN9_MOCS
1463 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1464
1465 struct anv_device_memory {
1466 struct anv_bo * bo;
1467 struct anv_memory_type * type;
1468 VkDeviceSize map_size;
1469 void * map;
1470
1471 /* If set, we are holding reference to AHardwareBuffer
1472 * which we must release when memory is freed.
1473 */
1474 struct AHardwareBuffer * ahw;
1475 };
1476
1477 /**
1478 * Header for Vertex URB Entry (VUE)
1479 */
1480 struct anv_vue_header {
1481 uint32_t Reserved;
1482 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1483 uint32_t ViewportIndex;
1484 float PointWidth;
1485 };
1486
1487 struct anv_descriptor_set_binding_layout {
1488 #ifndef NDEBUG
1489 /* The type of the descriptors in this binding */
1490 VkDescriptorType type;
1491 #endif
1492
1493 /* Number of array elements in this binding */
1494 uint16_t array_size;
1495
1496 /* Index into the flattend descriptor set */
1497 uint16_t descriptor_index;
1498
1499 /* Index into the dynamic state array for a dynamic buffer */
1500 int16_t dynamic_offset_index;
1501
1502 /* Index into the descriptor set buffer views */
1503 int16_t buffer_index;
1504
1505 struct {
1506 /* Index into the binding table for the associated surface */
1507 int16_t surface_index;
1508
1509 /* Index into the sampler table for the associated sampler */
1510 int16_t sampler_index;
1511
1512 /* Index into the image table for the associated image */
1513 int16_t image_index;
1514 } stage[MESA_SHADER_STAGES];
1515
1516 /* Immutable samplers (or NULL if no immutable samplers) */
1517 struct anv_sampler **immutable_samplers;
1518 };
1519
1520 struct anv_descriptor_set_layout {
1521 /* Descriptor set layouts can be destroyed at almost any time */
1522 uint32_t ref_cnt;
1523
1524 /* Number of bindings in this descriptor set */
1525 uint16_t binding_count;
1526
1527 /* Total size of the descriptor set with room for all array entries */
1528 uint16_t size;
1529
1530 /* Shader stages affected by this descriptor set */
1531 uint16_t shader_stages;
1532
1533 /* Number of buffers in this descriptor set */
1534 uint16_t buffer_count;
1535
1536 /* Number of dynamic offsets used by this descriptor set */
1537 uint16_t dynamic_offset_count;
1538
1539 /* Bindings in this descriptor set */
1540 struct anv_descriptor_set_binding_layout binding[0];
1541 };
1542
1543 static inline void
1544 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1545 {
1546 assert(layout && layout->ref_cnt >= 1);
1547 p_atomic_inc(&layout->ref_cnt);
1548 }
1549
1550 static inline void
1551 anv_descriptor_set_layout_unref(struct anv_device *device,
1552 struct anv_descriptor_set_layout *layout)
1553 {
1554 assert(layout && layout->ref_cnt >= 1);
1555 if (p_atomic_dec_zero(&layout->ref_cnt))
1556 vk_free(&device->alloc, layout);
1557 }
1558
1559 struct anv_descriptor {
1560 VkDescriptorType type;
1561
1562 union {
1563 struct {
1564 VkImageLayout layout;
1565 struct anv_image_view *image_view;
1566 struct anv_sampler *sampler;
1567 };
1568
1569 struct {
1570 struct anv_buffer *buffer;
1571 uint64_t offset;
1572 uint64_t range;
1573 };
1574
1575 struct anv_buffer_view *buffer_view;
1576 };
1577 };
1578
1579 struct anv_descriptor_set {
1580 struct anv_descriptor_set_layout *layout;
1581 uint32_t size;
1582 uint32_t buffer_count;
1583 struct anv_buffer_view *buffer_views;
1584 struct anv_descriptor descriptors[0];
1585 };
1586
1587 struct anv_buffer_view {
1588 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1589 uint64_t range; /**< VkBufferViewCreateInfo::range */
1590
1591 struct anv_address address;
1592
1593 struct anv_state surface_state;
1594 struct anv_state storage_surface_state;
1595 struct anv_state writeonly_storage_surface_state;
1596
1597 struct brw_image_param storage_image_param;
1598 };
1599
1600 struct anv_push_descriptor_set {
1601 struct anv_descriptor_set set;
1602
1603 /* Put this field right behind anv_descriptor_set so it fills up the
1604 * descriptors[0] field. */
1605 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1606 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1607 };
1608
1609 struct anv_descriptor_pool {
1610 uint32_t size;
1611 uint32_t next;
1612 uint32_t free_list;
1613
1614 struct anv_state_stream surface_state_stream;
1615 void *surface_state_free_list;
1616
1617 char data[0];
1618 };
1619
1620 enum anv_descriptor_template_entry_type {
1621 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1622 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1623 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1624 };
1625
1626 struct anv_descriptor_template_entry {
1627 /* The type of descriptor in this entry */
1628 VkDescriptorType type;
1629
1630 /* Binding in the descriptor set */
1631 uint32_t binding;
1632
1633 /* Offset at which to write into the descriptor set binding */
1634 uint32_t array_element;
1635
1636 /* Number of elements to write into the descriptor set binding */
1637 uint32_t array_count;
1638
1639 /* Offset into the user provided data */
1640 size_t offset;
1641
1642 /* Stride between elements into the user provided data */
1643 size_t stride;
1644 };
1645
1646 struct anv_descriptor_update_template {
1647 VkPipelineBindPoint bind_point;
1648
1649 /* The descriptor set this template corresponds to. This value is only
1650 * valid if the template was created with the templateType
1651 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1652 */
1653 uint8_t set;
1654
1655 /* Number of entries in this template */
1656 uint32_t entry_count;
1657
1658 /* Entries of the template */
1659 struct anv_descriptor_template_entry entries[0];
1660 };
1661
1662 size_t
1663 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1664
1665 void
1666 anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
1667 const struct gen_device_info * const devinfo,
1668 const VkDescriptorImageInfo * const info,
1669 VkDescriptorType type,
1670 uint32_t binding,
1671 uint32_t element);
1672
1673 void
1674 anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
1675 VkDescriptorType type,
1676 struct anv_buffer_view *buffer_view,
1677 uint32_t binding,
1678 uint32_t element);
1679
1680 void
1681 anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
1682 struct anv_device *device,
1683 struct anv_state_stream *alloc_stream,
1684 VkDescriptorType type,
1685 struct anv_buffer *buffer,
1686 uint32_t binding,
1687 uint32_t element,
1688 VkDeviceSize offset,
1689 VkDeviceSize range);
1690
1691 void
1692 anv_descriptor_set_write_template(struct anv_descriptor_set *set,
1693 struct anv_device *device,
1694 struct anv_state_stream *alloc_stream,
1695 const struct anv_descriptor_update_template *template,
1696 const void *data);
1697
1698 VkResult
1699 anv_descriptor_set_create(struct anv_device *device,
1700 struct anv_descriptor_pool *pool,
1701 struct anv_descriptor_set_layout *layout,
1702 struct anv_descriptor_set **out_set);
1703
1704 void
1705 anv_descriptor_set_destroy(struct anv_device *device,
1706 struct anv_descriptor_pool *pool,
1707 struct anv_descriptor_set *set);
1708
1709 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
1710 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1711
1712 struct anv_pipeline_binding {
1713 /* The descriptor set this surface corresponds to. The special value of
1714 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1715 * to a color attachment and not a regular descriptor.
1716 */
1717 uint8_t set;
1718
1719 /* Binding in the descriptor set */
1720 uint32_t binding;
1721
1722 /* Index in the binding */
1723 uint32_t index;
1724
1725 /* Plane in the binding index */
1726 uint8_t plane;
1727
1728 /* Input attachment index (relative to the subpass) */
1729 uint8_t input_attachment_index;
1730
1731 /* For a storage image, whether it is write-only */
1732 bool write_only;
1733 };
1734
1735 struct anv_pipeline_layout {
1736 struct {
1737 struct anv_descriptor_set_layout *layout;
1738 uint32_t dynamic_offset_start;
1739 } set[MAX_SETS];
1740
1741 uint32_t num_sets;
1742
1743 struct {
1744 bool has_dynamic_offsets;
1745 } stage[MESA_SHADER_STAGES];
1746
1747 unsigned char sha1[20];
1748 };
1749
1750 struct anv_buffer {
1751 struct anv_device * device;
1752 VkDeviceSize size;
1753
1754 VkBufferUsageFlags usage;
1755
1756 /* Set when bound */
1757 struct anv_address address;
1758 };
1759
1760 static inline uint64_t
1761 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1762 {
1763 assert(offset <= buffer->size);
1764 if (range == VK_WHOLE_SIZE) {
1765 return buffer->size - offset;
1766 } else {
1767 assert(range + offset >= range);
1768 assert(range + offset <= buffer->size);
1769 return range;
1770 }
1771 }
1772
1773 enum anv_cmd_dirty_bits {
1774 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1775 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1776 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1777 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1778 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1779 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1780 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1781 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1782 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1783 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1784 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1785 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1786 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1787 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
1788 };
1789 typedef uint32_t anv_cmd_dirty_mask_t;
1790
1791 enum anv_pipe_bits {
1792 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1793 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1794 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1795 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1796 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1797 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1798 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1799 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1800 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1801 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1802 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1803
1804 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1805 * a flush has happened but not a CS stall. The next time we do any sort
1806 * of invalidation we need to insert a CS stall at that time. Otherwise,
1807 * we would have to CS stall on every flush which could be bad.
1808 */
1809 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1810
1811 /* This bit does not exist directly in PIPE_CONTROL. It means that render
1812 * target operations related to transfer commands with VkBuffer as
1813 * destination are ongoing. Some operations like copies on the command
1814 * streamer might need to be aware of this to trigger the appropriate stall
1815 * before they can proceed with the copy.
1816 */
1817 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
1818 };
1819
1820 #define ANV_PIPE_FLUSH_BITS ( \
1821 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1822 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1823 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1824
1825 #define ANV_PIPE_STALL_BITS ( \
1826 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1827 ANV_PIPE_DEPTH_STALL_BIT | \
1828 ANV_PIPE_CS_STALL_BIT)
1829
1830 #define ANV_PIPE_INVALIDATE_BITS ( \
1831 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1832 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1833 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1834 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1835 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1836 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1837
1838 static inline enum anv_pipe_bits
1839 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1840 {
1841 enum anv_pipe_bits pipe_bits = 0;
1842
1843 unsigned b;
1844 for_each_bit(b, flags) {
1845 switch ((VkAccessFlagBits)(1 << b)) {
1846 case VK_ACCESS_SHADER_WRITE_BIT:
1847 /* We're transitioning a buffer that was previously used as write
1848 * destination through the data port. To make its content available
1849 * to future operations, flush the data cache.
1850 */
1851 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1852 break;
1853 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1854 /* We're transitioning a buffer that was previously used as render
1855 * target. To make its content available to future operations, flush
1856 * the render target cache.
1857 */
1858 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1859 break;
1860 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1861 /* We're transitioning a buffer that was previously used as depth
1862 * buffer. To make its content available to future operations, flush
1863 * the depth cache.
1864 */
1865 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1866 break;
1867 case VK_ACCESS_TRANSFER_WRITE_BIT:
1868 /* We're transitioning a buffer that was previously used as a
1869 * transfer write destination. Generic write operations include color
1870 * & depth operations as well as buffer operations like :
1871 * - vkCmdClearColorImage()
1872 * - vkCmdClearDepthStencilImage()
1873 * - vkCmdBlitImage()
1874 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
1875 *
1876 * Most of these operations are implemented using Blorp which writes
1877 * through the render target, so flush that cache to make it visible
1878 * to future operations. And for depth related operations we also
1879 * need to flush the depth cache.
1880 */
1881 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1882 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1883 break;
1884 case VK_ACCESS_MEMORY_WRITE_BIT:
1885 /* We're transitioning a buffer for generic write operations. Flush
1886 * all the caches.
1887 */
1888 pipe_bits |= ANV_PIPE_FLUSH_BITS;
1889 break;
1890 default:
1891 break; /* Nothing to do */
1892 }
1893 }
1894
1895 return pipe_bits;
1896 }
1897
1898 static inline enum anv_pipe_bits
1899 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1900 {
1901 enum anv_pipe_bits pipe_bits = 0;
1902
1903 unsigned b;
1904 for_each_bit(b, flags) {
1905 switch ((VkAccessFlagBits)(1 << b)) {
1906 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1907 /* Indirect draw commands take a buffer as input that we're going to
1908 * read from the command streamer to load some of the HW registers
1909 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
1910 * command streamer stall so that all the cache flushes have
1911 * completed before the command streamer loads from memory.
1912 */
1913 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1914 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
1915 * through a vertex buffer, so invalidate that cache.
1916 */
1917 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1918 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
1919 * UBO from the buffer, so we need to invalidate constant cache.
1920 */
1921 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1922 break;
1923 case VK_ACCESS_INDEX_READ_BIT:
1924 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
1925 /* We transitioning a buffer to be used for as input for vkCmdDraw*
1926 * commands, so we invalidate the VF cache to make sure there is no
1927 * stale data when we start rendering.
1928 */
1929 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1930 break;
1931 case VK_ACCESS_UNIFORM_READ_BIT:
1932 /* We transitioning a buffer to be used as uniform data. Because
1933 * uniform is accessed through the data port & sampler, we need to
1934 * invalidate the texture cache (sampler) & constant cache (data
1935 * port) to avoid stale data.
1936 */
1937 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1938 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1939 break;
1940 case VK_ACCESS_SHADER_READ_BIT:
1941 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
1942 case VK_ACCESS_TRANSFER_READ_BIT:
1943 /* Transitioning a buffer to be read through the sampler, so
1944 * invalidate the texture cache, we don't want any stale data.
1945 */
1946 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1947 break;
1948 case VK_ACCESS_MEMORY_READ_BIT:
1949 /* Transitioning a buffer for generic read, invalidate all the
1950 * caches.
1951 */
1952 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
1953 break;
1954 case VK_ACCESS_MEMORY_WRITE_BIT:
1955 /* Generic write, make sure all previously written things land in
1956 * memory.
1957 */
1958 pipe_bits |= ANV_PIPE_FLUSH_BITS;
1959 break;
1960 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
1961 /* Transitioning a buffer for conditional rendering. We'll load the
1962 * content of this buffer into HW registers using the command
1963 * streamer, so we need to stall the command streamer to make sure
1964 * any in-flight flush operations have completed.
1965 */
1966 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1967 break;
1968 default:
1969 break; /* Nothing to do */
1970 }
1971 }
1972
1973 return pipe_bits;
1974 }
1975
1976 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
1977 VK_IMAGE_ASPECT_COLOR_BIT | \
1978 VK_IMAGE_ASPECT_PLANE_0_BIT | \
1979 VK_IMAGE_ASPECT_PLANE_1_BIT | \
1980 VK_IMAGE_ASPECT_PLANE_2_BIT)
1981 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
1982 VK_IMAGE_ASPECT_PLANE_0_BIT | \
1983 VK_IMAGE_ASPECT_PLANE_1_BIT | \
1984 VK_IMAGE_ASPECT_PLANE_2_BIT)
1985
1986 struct anv_vertex_binding {
1987 struct anv_buffer * buffer;
1988 VkDeviceSize offset;
1989 };
1990
1991 struct anv_xfb_binding {
1992 struct anv_buffer * buffer;
1993 VkDeviceSize offset;
1994 VkDeviceSize size;
1995 };
1996
1997 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
1998 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
1999
2000 struct anv_push_constants {
2001 /* Current allocated size of this push constants data structure.
2002 * Because a decent chunk of it may not be used (images on SKL, for
2003 * instance), we won't actually allocate the entire structure up-front.
2004 */
2005 uint32_t size;
2006
2007 /* Push constant data provided by the client through vkPushConstants */
2008 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2009
2010 /* Used for vkCmdDispatchBase */
2011 uint32_t base_work_group_id[3];
2012
2013 /* Image data for image_load_store on pre-SKL */
2014 struct brw_image_param images[MAX_GEN8_IMAGES];
2015 };
2016
2017 struct anv_dynamic_state {
2018 struct {
2019 uint32_t count;
2020 VkViewport viewports[MAX_VIEWPORTS];
2021 } viewport;
2022
2023 struct {
2024 uint32_t count;
2025 VkRect2D scissors[MAX_SCISSORS];
2026 } scissor;
2027
2028 float line_width;
2029
2030 struct {
2031 float bias;
2032 float clamp;
2033 float slope;
2034 } depth_bias;
2035
2036 float blend_constants[4];
2037
2038 struct {
2039 float min;
2040 float max;
2041 } depth_bounds;
2042
2043 struct {
2044 uint32_t front;
2045 uint32_t back;
2046 } stencil_compare_mask;
2047
2048 struct {
2049 uint32_t front;
2050 uint32_t back;
2051 } stencil_write_mask;
2052
2053 struct {
2054 uint32_t front;
2055 uint32_t back;
2056 } stencil_reference;
2057 };
2058
2059 extern const struct anv_dynamic_state default_dynamic_state;
2060
2061 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2062 const struct anv_dynamic_state *src,
2063 uint32_t copy_mask);
2064
2065 struct anv_surface_state {
2066 struct anv_state state;
2067 /** Address of the surface referred to by this state
2068 *
2069 * This address is relative to the start of the BO.
2070 */
2071 struct anv_address address;
2072 /* Address of the aux surface, if any
2073 *
2074 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2075 *
2076 * With the exception of gen8, the bottom 12 bits of this address' offset
2077 * include extra aux information.
2078 */
2079 struct anv_address aux_address;
2080 /* Address of the clear color, if any
2081 *
2082 * This address is relative to the start of the BO.
2083 */
2084 struct anv_address clear_address;
2085 };
2086
2087 /**
2088 * Attachment state when recording a renderpass instance.
2089 *
2090 * The clear value is valid only if there exists a pending clear.
2091 */
2092 struct anv_attachment_state {
2093 enum isl_aux_usage aux_usage;
2094 enum isl_aux_usage input_aux_usage;
2095 struct anv_surface_state color;
2096 struct anv_surface_state input;
2097
2098 VkImageLayout current_layout;
2099 VkImageAspectFlags pending_clear_aspects;
2100 VkImageAspectFlags pending_load_aspects;
2101 bool fast_clear;
2102 VkClearValue clear_value;
2103 bool clear_color_is_zero_one;
2104 bool clear_color_is_zero;
2105
2106 /* When multiview is active, attachments with a renderpass clear
2107 * operation have their respective layers cleared on the first
2108 * subpass that uses them, and only in that subpass. We keep track
2109 * of this using a bitfield to indicate which layers of an attachment
2110 * have not been cleared yet when multiview is active.
2111 */
2112 uint32_t pending_clear_views;
2113 };
2114
2115 /** State tracking for particular pipeline bind point
2116 *
2117 * This struct is the base struct for anv_cmd_graphics_state and
2118 * anv_cmd_compute_state. These are used to track state which is bound to a
2119 * particular type of pipeline. Generic state that applies per-stage such as
2120 * binding table offsets and push constants is tracked generically with a
2121 * per-stage array in anv_cmd_state.
2122 */
2123 struct anv_cmd_pipeline_state {
2124 struct anv_pipeline *pipeline;
2125 struct anv_pipeline_layout *layout;
2126
2127 struct anv_descriptor_set *descriptors[MAX_SETS];
2128 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2129
2130 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2131 };
2132
2133 /** State tracking for graphics pipeline
2134 *
2135 * This has anv_cmd_pipeline_state as a base struct to track things which get
2136 * bound to a graphics pipeline. Along with general pipeline bind point state
2137 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2138 * state which is graphics-specific.
2139 */
2140 struct anv_cmd_graphics_state {
2141 struct anv_cmd_pipeline_state base;
2142
2143 anv_cmd_dirty_mask_t dirty;
2144 uint32_t vb_dirty;
2145
2146 struct anv_dynamic_state dynamic;
2147
2148 struct {
2149 struct anv_buffer *index_buffer;
2150 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2151 uint32_t index_offset;
2152 } gen7;
2153 };
2154
2155 /** State tracking for compute pipeline
2156 *
2157 * This has anv_cmd_pipeline_state as a base struct to track things which get
2158 * bound to a compute pipeline. Along with general pipeline bind point state
2159 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2160 * state which is compute-specific.
2161 */
2162 struct anv_cmd_compute_state {
2163 struct anv_cmd_pipeline_state base;
2164
2165 bool pipeline_dirty;
2166
2167 struct anv_address num_workgroups;
2168 };
2169
2170 /** State required while building cmd buffer */
2171 struct anv_cmd_state {
2172 /* PIPELINE_SELECT.PipelineSelection */
2173 uint32_t current_pipeline;
2174 const struct gen_l3_config * current_l3_config;
2175
2176 struct anv_cmd_graphics_state gfx;
2177 struct anv_cmd_compute_state compute;
2178
2179 enum anv_pipe_bits pending_pipe_bits;
2180 VkShaderStageFlags descriptors_dirty;
2181 VkShaderStageFlags push_constants_dirty;
2182
2183 struct anv_framebuffer * framebuffer;
2184 struct anv_render_pass * pass;
2185 struct anv_subpass * subpass;
2186 VkRect2D render_area;
2187 uint32_t restart_index;
2188 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2189 bool xfb_enabled;
2190 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2191 VkShaderStageFlags push_constant_stages;
2192 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
2193 struct anv_state binding_tables[MESA_SHADER_STAGES];
2194 struct anv_state samplers[MESA_SHADER_STAGES];
2195
2196 /**
2197 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2198 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2199 * and before invoking the secondary in ExecuteCommands.
2200 */
2201 bool pma_fix_enabled;
2202
2203 /**
2204 * Whether or not we know for certain that HiZ is enabled for the current
2205 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2206 * enabled or not, this will be false.
2207 */
2208 bool hiz_enabled;
2209
2210 bool conditional_render_enabled;
2211
2212 /**
2213 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2214 * valid only when recording a render pass instance.
2215 */
2216 struct anv_attachment_state * attachments;
2217
2218 /**
2219 * Surface states for color render targets. These are stored in a single
2220 * flat array. For depth-stencil attachments, the surface state is simply
2221 * left blank.
2222 */
2223 struct anv_state render_pass_states;
2224
2225 /**
2226 * A null surface state of the right size to match the framebuffer. This
2227 * is one of the states in render_pass_states.
2228 */
2229 struct anv_state null_surface_state;
2230 };
2231
2232 struct anv_cmd_pool {
2233 VkAllocationCallbacks alloc;
2234 struct list_head cmd_buffers;
2235 };
2236
2237 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2238
2239 enum anv_cmd_buffer_exec_mode {
2240 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2241 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2242 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2243 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2244 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2245 };
2246
2247 struct anv_cmd_buffer {
2248 VK_LOADER_DATA _loader_data;
2249
2250 struct anv_device * device;
2251
2252 struct anv_cmd_pool * pool;
2253 struct list_head pool_link;
2254
2255 struct anv_batch batch;
2256
2257 /* Fields required for the actual chain of anv_batch_bo's.
2258 *
2259 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2260 */
2261 struct list_head batch_bos;
2262 enum anv_cmd_buffer_exec_mode exec_mode;
2263
2264 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2265 * referenced by this command buffer
2266 *
2267 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2268 */
2269 struct u_vector seen_bbos;
2270
2271 /* A vector of int32_t's for every block of binding tables.
2272 *
2273 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2274 */
2275 struct u_vector bt_block_states;
2276 uint32_t bt_next;
2277
2278 struct anv_reloc_list surface_relocs;
2279 /** Last seen surface state block pool center bo offset */
2280 uint32_t last_ss_pool_center;
2281
2282 /* Serial for tracking buffer completion */
2283 uint32_t serial;
2284
2285 /* Stream objects for storing temporary data */
2286 struct anv_state_stream surface_state_stream;
2287 struct anv_state_stream dynamic_state_stream;
2288
2289 VkCommandBufferUsageFlags usage_flags;
2290 VkCommandBufferLevel level;
2291
2292 struct anv_cmd_state state;
2293 };
2294
2295 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2296 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2297 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2298 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2299 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2300 struct anv_cmd_buffer *secondary);
2301 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2302 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2303 struct anv_cmd_buffer *cmd_buffer,
2304 const VkSemaphore *in_semaphores,
2305 uint32_t num_in_semaphores,
2306 const VkSemaphore *out_semaphores,
2307 uint32_t num_out_semaphores,
2308 VkFence fence);
2309
2310 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2311
2312 VkResult
2313 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
2314 gl_shader_stage stage, uint32_t size);
2315 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
2316 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
2317 (offsetof(struct anv_push_constants, field) + \
2318 sizeof(cmd_buffer->state.push_constants[0]->field)))
2319
2320 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2321 const void *data, uint32_t size, uint32_t alignment);
2322 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2323 uint32_t *a, uint32_t *b,
2324 uint32_t dwords, uint32_t alignment);
2325
2326 struct anv_address
2327 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2328 struct anv_state
2329 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2330 uint32_t entries, uint32_t *state_offset);
2331 struct anv_state
2332 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2333 struct anv_state
2334 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2335 uint32_t size, uint32_t alignment);
2336
2337 VkResult
2338 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2339
2340 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2341 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2342 bool depth_clamp_enable);
2343 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2344
2345 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2346 struct anv_render_pass *pass,
2347 struct anv_framebuffer *framebuffer,
2348 const VkClearValue *clear_values);
2349
2350 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2351
2352 struct anv_state
2353 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2354 gl_shader_stage stage);
2355 struct anv_state
2356 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2357
2358 const struct anv_image_view *
2359 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2360
2361 VkResult
2362 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2363 uint32_t num_entries,
2364 uint32_t *state_offset,
2365 struct anv_state *bt_state);
2366
2367 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2368
2369 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2370
2371 enum anv_fence_type {
2372 ANV_FENCE_TYPE_NONE = 0,
2373 ANV_FENCE_TYPE_BO,
2374 ANV_FENCE_TYPE_SYNCOBJ,
2375 ANV_FENCE_TYPE_WSI,
2376 };
2377
2378 enum anv_bo_fence_state {
2379 /** Indicates that this is a new (or newly reset fence) */
2380 ANV_BO_FENCE_STATE_RESET,
2381
2382 /** Indicates that this fence has been submitted to the GPU but is still
2383 * (as far as we know) in use by the GPU.
2384 */
2385 ANV_BO_FENCE_STATE_SUBMITTED,
2386
2387 ANV_BO_FENCE_STATE_SIGNALED,
2388 };
2389
2390 struct anv_fence_impl {
2391 enum anv_fence_type type;
2392
2393 union {
2394 /** Fence implementation for BO fences
2395 *
2396 * These fences use a BO and a set of CPU-tracked state flags. The BO
2397 * is added to the object list of the last execbuf call in a QueueSubmit
2398 * and is marked EXEC_WRITE. The state flags track when the BO has been
2399 * submitted to the kernel. We need to do this because Vulkan lets you
2400 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2401 * will say it's idle in this case.
2402 */
2403 struct {
2404 struct anv_bo bo;
2405 enum anv_bo_fence_state state;
2406 } bo;
2407
2408 /** DRM syncobj handle for syncobj-based fences */
2409 uint32_t syncobj;
2410
2411 /** WSI fence */
2412 struct wsi_fence *fence_wsi;
2413 };
2414 };
2415
2416 struct anv_fence {
2417 /* Permanent fence state. Every fence has some form of permanent state
2418 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2419 * cross-process fences) or it could just be a dummy for use internally.
2420 */
2421 struct anv_fence_impl permanent;
2422
2423 /* Temporary fence state. A fence *may* have temporary state. That state
2424 * is added to the fence by an import operation and is reset back to
2425 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2426 * state cannot be signaled because the fence must already be signaled
2427 * before the temporary state can be exported from the fence in the other
2428 * process and imported here.
2429 */
2430 struct anv_fence_impl temporary;
2431 };
2432
2433 struct anv_event {
2434 uint64_t semaphore;
2435 struct anv_state state;
2436 };
2437
2438 enum anv_semaphore_type {
2439 ANV_SEMAPHORE_TYPE_NONE = 0,
2440 ANV_SEMAPHORE_TYPE_DUMMY,
2441 ANV_SEMAPHORE_TYPE_BO,
2442 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2443 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2444 };
2445
2446 struct anv_semaphore_impl {
2447 enum anv_semaphore_type type;
2448
2449 union {
2450 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2451 * This BO will be added to the object list on any execbuf2 calls for
2452 * which this semaphore is used as a wait or signal fence. When used as
2453 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2454 */
2455 struct anv_bo *bo;
2456
2457 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2458 * If the semaphore is in the unsignaled state due to either just being
2459 * created or because it has been used for a wait, fd will be -1.
2460 */
2461 int fd;
2462
2463 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2464 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2465 * import so we don't need to bother with a userspace cache.
2466 */
2467 uint32_t syncobj;
2468 };
2469 };
2470
2471 struct anv_semaphore {
2472 /* Permanent semaphore state. Every semaphore has some form of permanent
2473 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2474 * (for cross-process semaphores0 or it could just be a dummy for use
2475 * internally.
2476 */
2477 struct anv_semaphore_impl permanent;
2478
2479 /* Temporary semaphore state. A semaphore *may* have temporary state.
2480 * That state is added to the semaphore by an import operation and is reset
2481 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2482 * semaphore with temporary state cannot be signaled because the semaphore
2483 * must already be signaled before the temporary state can be exported from
2484 * the semaphore in the other process and imported here.
2485 */
2486 struct anv_semaphore_impl temporary;
2487 };
2488
2489 void anv_semaphore_reset_temporary(struct anv_device *device,
2490 struct anv_semaphore *semaphore);
2491
2492 struct anv_shader_module {
2493 unsigned char sha1[20];
2494 uint32_t size;
2495 char data[0];
2496 };
2497
2498 static inline gl_shader_stage
2499 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2500 {
2501 assert(__builtin_popcount(vk_stage) == 1);
2502 return ffs(vk_stage) - 1;
2503 }
2504
2505 static inline VkShaderStageFlagBits
2506 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2507 {
2508 return (1 << mesa_stage);
2509 }
2510
2511 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2512
2513 #define anv_foreach_stage(stage, stage_bits) \
2514 for (gl_shader_stage stage, \
2515 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2516 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2517 __tmp &= ~(1 << (stage)))
2518
2519 struct anv_pipeline_bind_map {
2520 uint32_t surface_count;
2521 uint32_t sampler_count;
2522 uint32_t image_count;
2523
2524 struct anv_pipeline_binding * surface_to_descriptor;
2525 struct anv_pipeline_binding * sampler_to_descriptor;
2526 };
2527
2528 struct anv_shader_bin_key {
2529 uint32_t size;
2530 uint8_t data[0];
2531 };
2532
2533 struct anv_shader_bin {
2534 uint32_t ref_cnt;
2535
2536 const struct anv_shader_bin_key *key;
2537
2538 struct anv_state kernel;
2539 uint32_t kernel_size;
2540
2541 struct anv_state constant_data;
2542 uint32_t constant_data_size;
2543
2544 const struct brw_stage_prog_data *prog_data;
2545 uint32_t prog_data_size;
2546
2547 struct nir_xfb_info *xfb_info;
2548
2549 struct anv_pipeline_bind_map bind_map;
2550 };
2551
2552 struct anv_shader_bin *
2553 anv_shader_bin_create(struct anv_device *device,
2554 const void *key, uint32_t key_size,
2555 const void *kernel, uint32_t kernel_size,
2556 const void *constant_data, uint32_t constant_data_size,
2557 const struct brw_stage_prog_data *prog_data,
2558 uint32_t prog_data_size, const void *prog_data_param,
2559 const struct nir_xfb_info *xfb_info,
2560 const struct anv_pipeline_bind_map *bind_map);
2561
2562 void
2563 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2564
2565 static inline void
2566 anv_shader_bin_ref(struct anv_shader_bin *shader)
2567 {
2568 assert(shader && shader->ref_cnt >= 1);
2569 p_atomic_inc(&shader->ref_cnt);
2570 }
2571
2572 static inline void
2573 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2574 {
2575 assert(shader && shader->ref_cnt >= 1);
2576 if (p_atomic_dec_zero(&shader->ref_cnt))
2577 anv_shader_bin_destroy(device, shader);
2578 }
2579
2580 struct anv_pipeline {
2581 struct anv_device * device;
2582 struct anv_batch batch;
2583 uint32_t batch_data[512];
2584 struct anv_reloc_list batch_relocs;
2585 uint32_t dynamic_state_mask;
2586 struct anv_dynamic_state dynamic_state;
2587
2588 struct anv_subpass * subpass;
2589
2590 bool needs_data_cache;
2591
2592 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2593
2594 struct {
2595 const struct gen_l3_config * l3_config;
2596 uint32_t total_size;
2597 } urb;
2598
2599 VkShaderStageFlags active_stages;
2600 struct anv_state blend_state;
2601
2602 uint32_t vb_used;
2603 struct anv_pipeline_vertex_binding {
2604 uint32_t stride;
2605 bool instanced;
2606 uint32_t instance_divisor;
2607 } vb[MAX_VBS];
2608
2609 uint8_t xfb_used;
2610
2611 bool primitive_restart;
2612 uint32_t topology;
2613
2614 uint32_t cs_right_mask;
2615
2616 bool writes_depth;
2617 bool depth_test_enable;
2618 bool writes_stencil;
2619 bool stencil_test_enable;
2620 bool depth_clamp_enable;
2621 bool sample_shading_enable;
2622 bool kill_pixel;
2623
2624 struct {
2625 uint32_t sf[7];
2626 uint32_t depth_stencil_state[3];
2627 } gen7;
2628
2629 struct {
2630 uint32_t sf[4];
2631 uint32_t raster[5];
2632 uint32_t wm_depth_stencil[3];
2633 } gen8;
2634
2635 struct {
2636 uint32_t wm_depth_stencil[4];
2637 } gen9;
2638
2639 uint32_t interface_descriptor_data[8];
2640 };
2641
2642 static inline bool
2643 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2644 gl_shader_stage stage)
2645 {
2646 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2647 }
2648
2649 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2650 static inline const struct brw_##prefix##_prog_data * \
2651 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2652 { \
2653 if (anv_pipeline_has_stage(pipeline, stage)) { \
2654 return (const struct brw_##prefix##_prog_data *) \
2655 pipeline->shaders[stage]->prog_data; \
2656 } else { \
2657 return NULL; \
2658 } \
2659 }
2660
2661 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2662 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2663 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2664 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2665 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2666 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2667
2668 static inline const struct brw_vue_prog_data *
2669 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2670 {
2671 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2672 return &get_gs_prog_data(pipeline)->base;
2673 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2674 return &get_tes_prog_data(pipeline)->base;
2675 else
2676 return &get_vs_prog_data(pipeline)->base;
2677 }
2678
2679 VkResult
2680 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2681 struct anv_pipeline_cache *cache,
2682 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2683 const VkAllocationCallbacks *alloc);
2684
2685 VkResult
2686 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2687 struct anv_pipeline_cache *cache,
2688 const VkComputePipelineCreateInfo *info,
2689 const struct anv_shader_module *module,
2690 const char *entrypoint,
2691 const VkSpecializationInfo *spec_info);
2692
2693 struct anv_format_plane {
2694 enum isl_format isl_format:16;
2695 struct isl_swizzle swizzle;
2696
2697 /* Whether this plane contains chroma channels */
2698 bool has_chroma;
2699
2700 /* For downscaling of YUV planes */
2701 uint8_t denominator_scales[2];
2702
2703 /* How to map sampled ycbcr planes to a single 4 component element. */
2704 struct isl_swizzle ycbcr_swizzle;
2705
2706 /* What aspect is associated to this plane */
2707 VkImageAspectFlags aspect;
2708 };
2709
2710
2711 struct anv_format {
2712 struct anv_format_plane planes[3];
2713 VkFormat vk_format;
2714 uint8_t n_planes;
2715 bool can_ycbcr;
2716 };
2717
2718 static inline uint32_t
2719 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
2720 VkImageAspectFlags aspect_mask)
2721 {
2722 switch (aspect_mask) {
2723 case VK_IMAGE_ASPECT_COLOR_BIT:
2724 case VK_IMAGE_ASPECT_DEPTH_BIT:
2725 case VK_IMAGE_ASPECT_PLANE_0_BIT:
2726 return 0;
2727 case VK_IMAGE_ASPECT_STENCIL_BIT:
2728 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
2729 return 0;
2730 /* Fall-through */
2731 case VK_IMAGE_ASPECT_PLANE_1_BIT:
2732 return 1;
2733 case VK_IMAGE_ASPECT_PLANE_2_BIT:
2734 return 2;
2735 default:
2736 /* Purposefully assert with depth/stencil aspects. */
2737 unreachable("invalid image aspect");
2738 }
2739 }
2740
2741 static inline VkImageAspectFlags
2742 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
2743 uint32_t plane)
2744 {
2745 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2746 if (util_bitcount(image_aspects) > 1)
2747 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
2748 return VK_IMAGE_ASPECT_COLOR_BIT;
2749 }
2750 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
2751 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
2752 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
2753 return VK_IMAGE_ASPECT_STENCIL_BIT;
2754 }
2755
2756 #define anv_foreach_image_aspect_bit(b, image, aspects) \
2757 for_each_bit(b, anv_image_expand_aspects(image, aspects))
2758
2759 const struct anv_format *
2760 anv_get_format(VkFormat format);
2761
2762 static inline uint32_t
2763 anv_get_format_planes(VkFormat vk_format)
2764 {
2765 const struct anv_format *format = anv_get_format(vk_format);
2766
2767 return format != NULL ? format->n_planes : 0;
2768 }
2769
2770 struct anv_format_plane
2771 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
2772 VkImageAspectFlagBits aspect, VkImageTiling tiling);
2773
2774 static inline enum isl_format
2775 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
2776 VkImageAspectFlags aspect, VkImageTiling tiling)
2777 {
2778 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
2779 }
2780
2781 static inline struct isl_swizzle
2782 anv_swizzle_for_render(struct isl_swizzle swizzle)
2783 {
2784 /* Sometimes the swizzle will have alpha map to one. We do this to fake
2785 * RGB as RGBA for texturing
2786 */
2787 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
2788 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
2789
2790 /* But it doesn't matter what we render to that channel */
2791 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
2792
2793 return swizzle;
2794 }
2795
2796 void
2797 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
2798
2799 /**
2800 * Subsurface of an anv_image.
2801 */
2802 struct anv_surface {
2803 /** Valid only if isl_surf::size_B > 0. */
2804 struct isl_surf isl;
2805
2806 /**
2807 * Offset from VkImage's base address, as bound by vkBindImageMemory().
2808 */
2809 uint32_t offset;
2810 };
2811
2812 struct anv_image {
2813 VkImageType type;
2814 /* The original VkFormat provided by the client. This may not match any
2815 * of the actual surface formats.
2816 */
2817 VkFormat vk_format;
2818 const struct anv_format *format;
2819
2820 VkImageAspectFlags aspects;
2821 VkExtent3D extent;
2822 uint32_t levels;
2823 uint32_t array_size;
2824 uint32_t samples; /**< VkImageCreateInfo::samples */
2825 uint32_t n_planes;
2826 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
2827 VkImageCreateFlags create_flags; /* Flags used when creating image. */
2828 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
2829
2830 /** True if this is needs to be bound to an appropriately tiled BO.
2831 *
2832 * When not using modifiers, consumers such as X11, Wayland, and KMS need
2833 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
2834 * we require a dedicated allocation so that we can know to allocate a
2835 * tiled buffer.
2836 */
2837 bool needs_set_tiling;
2838
2839 /**
2840 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
2841 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
2842 */
2843 uint64_t drm_format_mod;
2844
2845 VkDeviceSize size;
2846 uint32_t alignment;
2847
2848 /* Whether the image is made of several underlying buffer objects rather a
2849 * single one with different offsets.
2850 */
2851 bool disjoint;
2852
2853 /* All the formats that can be used when creating views of this image
2854 * are CCS_E compatible.
2855 */
2856 bool ccs_e_compatible;
2857
2858 /* Image was created with external format. */
2859 bool external_format;
2860
2861 /**
2862 * Image subsurfaces
2863 *
2864 * For each foo, anv_image::planes[x].surface is valid if and only if
2865 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
2866 * to figure the number associated with a given aspect.
2867 *
2868 * The hardware requires that the depth buffer and stencil buffer be
2869 * separate surfaces. From Vulkan's perspective, though, depth and stencil
2870 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
2871 * allocate the depth and stencil buffers as separate surfaces in the same
2872 * bo.
2873 *
2874 * Memory layout :
2875 *
2876 * -----------------------
2877 * | surface0 | /|\
2878 * ----------------------- |
2879 * | shadow surface0 | |
2880 * ----------------------- | Plane 0
2881 * | aux surface0 | |
2882 * ----------------------- |
2883 * | fast clear colors0 | \|/
2884 * -----------------------
2885 * | surface1 | /|\
2886 * ----------------------- |
2887 * | shadow surface1 | |
2888 * ----------------------- | Plane 1
2889 * | aux surface1 | |
2890 * ----------------------- |
2891 * | fast clear colors1 | \|/
2892 * -----------------------
2893 * | ... |
2894 * | |
2895 * -----------------------
2896 */
2897 struct {
2898 /**
2899 * Offset of the entire plane (whenever the image is disjoint this is
2900 * set to 0).
2901 */
2902 uint32_t offset;
2903
2904 VkDeviceSize size;
2905 uint32_t alignment;
2906
2907 struct anv_surface surface;
2908
2909 /**
2910 * A surface which shadows the main surface and may have different
2911 * tiling. This is used for sampling using a tiling that isn't supported
2912 * for other operations.
2913 */
2914 struct anv_surface shadow_surface;
2915
2916 /**
2917 * For color images, this is the aux usage for this image when not used
2918 * as a color attachment.
2919 *
2920 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
2921 * image has a HiZ buffer.
2922 */
2923 enum isl_aux_usage aux_usage;
2924
2925 struct anv_surface aux_surface;
2926
2927 /**
2928 * Offset of the fast clear state (used to compute the
2929 * fast_clear_state_offset of the following planes).
2930 */
2931 uint32_t fast_clear_state_offset;
2932
2933 /**
2934 * BO associated with this plane, set when bound.
2935 */
2936 struct anv_address address;
2937
2938 /**
2939 * When destroying the image, also free the bo.
2940 * */
2941 bool bo_is_owned;
2942 } planes[3];
2943 };
2944
2945 /* The ordering of this enum is important */
2946 enum anv_fast_clear_type {
2947 /** Image does not have/support any fast-clear blocks */
2948 ANV_FAST_CLEAR_NONE = 0,
2949 /** Image has/supports fast-clear but only to the default value */
2950 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
2951 /** Image has/supports fast-clear with an arbitrary fast-clear value */
2952 ANV_FAST_CLEAR_ANY = 2,
2953 };
2954
2955 /* Returns the number of auxiliary buffer levels attached to an image. */
2956 static inline uint8_t
2957 anv_image_aux_levels(const struct anv_image * const image,
2958 VkImageAspectFlagBits aspect)
2959 {
2960 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2961 return image->planes[plane].aux_surface.isl.size_B > 0 ?
2962 image->planes[plane].aux_surface.isl.levels : 0;
2963 }
2964
2965 /* Returns the number of auxiliary buffer layers attached to an image. */
2966 static inline uint32_t
2967 anv_image_aux_layers(const struct anv_image * const image,
2968 VkImageAspectFlagBits aspect,
2969 const uint8_t miplevel)
2970 {
2971 assert(image);
2972
2973 /* The miplevel must exist in the main buffer. */
2974 assert(miplevel < image->levels);
2975
2976 if (miplevel >= anv_image_aux_levels(image, aspect)) {
2977 /* There are no layers with auxiliary data because the miplevel has no
2978 * auxiliary data.
2979 */
2980 return 0;
2981 } else {
2982 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2983 return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
2984 image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
2985 }
2986 }
2987
2988 static inline struct anv_address
2989 anv_image_get_clear_color_addr(const struct anv_device *device,
2990 const struct anv_image *image,
2991 VkImageAspectFlagBits aspect)
2992 {
2993 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
2994
2995 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2996 return anv_address_add(image->planes[plane].address,
2997 image->planes[plane].fast_clear_state_offset);
2998 }
2999
3000 static inline struct anv_address
3001 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3002 const struct anv_image *image,
3003 VkImageAspectFlagBits aspect)
3004 {
3005 struct anv_address addr =
3006 anv_image_get_clear_color_addr(device, image, aspect);
3007
3008 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3009 device->isl_dev.ss.clear_color_state_size :
3010 device->isl_dev.ss.clear_value_size;
3011 return anv_address_add(addr, clear_color_state_size);
3012 }
3013
3014 static inline struct anv_address
3015 anv_image_get_compression_state_addr(const struct anv_device *device,
3016 const struct anv_image *image,
3017 VkImageAspectFlagBits aspect,
3018 uint32_t level, uint32_t array_layer)
3019 {
3020 assert(level < anv_image_aux_levels(image, aspect));
3021 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3022 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3023 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3024
3025 struct anv_address addr =
3026 anv_image_get_fast_clear_type_addr(device, image, aspect);
3027 addr.offset += 4; /* Go past the fast clear type */
3028
3029 if (image->type == VK_IMAGE_TYPE_3D) {
3030 for (uint32_t l = 0; l < level; l++)
3031 addr.offset += anv_minify(image->extent.depth, l) * 4;
3032 } else {
3033 addr.offset += level * image->array_size * 4;
3034 }
3035 addr.offset += array_layer * 4;
3036
3037 return addr;
3038 }
3039
3040 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3041 static inline bool
3042 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3043 const struct anv_image *image)
3044 {
3045 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3046 return false;
3047
3048 if (devinfo->gen < 8)
3049 return false;
3050
3051 return image->samples == 1;
3052 }
3053
3054 void
3055 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3056 const struct anv_image *image,
3057 VkImageAspectFlagBits aspect,
3058 enum isl_aux_usage aux_usage,
3059 uint32_t level,
3060 uint32_t base_layer,
3061 uint32_t layer_count);
3062
3063 void
3064 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3065 const struct anv_image *image,
3066 VkImageAspectFlagBits aspect,
3067 enum isl_aux_usage aux_usage,
3068 enum isl_format format, struct isl_swizzle swizzle,
3069 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3070 VkRect2D area, union isl_color_value clear_color);
3071 void
3072 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3073 const struct anv_image *image,
3074 VkImageAspectFlags aspects,
3075 enum isl_aux_usage depth_aux_usage,
3076 uint32_t level,
3077 uint32_t base_layer, uint32_t layer_count,
3078 VkRect2D area,
3079 float depth_value, uint8_t stencil_value);
3080 void
3081 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3082 const struct anv_image *src_image,
3083 enum isl_aux_usage src_aux_usage,
3084 uint32_t src_level, uint32_t src_base_layer,
3085 const struct anv_image *dst_image,
3086 enum isl_aux_usage dst_aux_usage,
3087 uint32_t dst_level, uint32_t dst_base_layer,
3088 VkImageAspectFlagBits aspect,
3089 uint32_t src_x, uint32_t src_y,
3090 uint32_t dst_x, uint32_t dst_y,
3091 uint32_t width, uint32_t height,
3092 uint32_t layer_count,
3093 enum blorp_filter filter);
3094 void
3095 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3096 const struct anv_image *image,
3097 VkImageAspectFlagBits aspect, uint32_t level,
3098 uint32_t base_layer, uint32_t layer_count,
3099 enum isl_aux_op hiz_op);
3100 void
3101 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3102 const struct anv_image *image,
3103 VkImageAspectFlags aspects,
3104 uint32_t level,
3105 uint32_t base_layer, uint32_t layer_count,
3106 VkRect2D area, uint8_t stencil_value);
3107 void
3108 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3109 const struct anv_image *image,
3110 enum isl_format format,
3111 VkImageAspectFlagBits aspect,
3112 uint32_t base_layer, uint32_t layer_count,
3113 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3114 bool predicate);
3115 void
3116 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3117 const struct anv_image *image,
3118 enum isl_format format,
3119 VkImageAspectFlagBits aspect, uint32_t level,
3120 uint32_t base_layer, uint32_t layer_count,
3121 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3122 bool predicate);
3123
3124 void
3125 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3126 const struct anv_image *image,
3127 uint32_t base_level, uint32_t level_count,
3128 uint32_t base_layer, uint32_t layer_count);
3129
3130 enum isl_aux_usage
3131 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3132 const struct anv_image *image,
3133 const VkImageAspectFlagBits aspect,
3134 const VkImageLayout layout);
3135
3136 enum anv_fast_clear_type
3137 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3138 const struct anv_image * const image,
3139 const VkImageAspectFlagBits aspect,
3140 const VkImageLayout layout);
3141
3142 /* This is defined as a macro so that it works for both
3143 * VkImageSubresourceRange and VkImageSubresourceLayers
3144 */
3145 #define anv_get_layerCount(_image, _range) \
3146 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3147 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3148
3149 static inline uint32_t
3150 anv_get_levelCount(const struct anv_image *image,
3151 const VkImageSubresourceRange *range)
3152 {
3153 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3154 image->levels - range->baseMipLevel : range->levelCount;
3155 }
3156
3157 static inline VkImageAspectFlags
3158 anv_image_expand_aspects(const struct anv_image *image,
3159 VkImageAspectFlags aspects)
3160 {
3161 /* If the underlying image has color plane aspects and
3162 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3163 * the underlying image. */
3164 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3165 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3166 return image->aspects;
3167
3168 return aspects;
3169 }
3170
3171 static inline bool
3172 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3173 VkImageAspectFlags aspects2)
3174 {
3175 if (aspects1 == aspects2)
3176 return true;
3177
3178 /* Only 1 color aspects are compatibles. */
3179 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3180 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3181 util_bitcount(aspects1) == util_bitcount(aspects2))
3182 return true;
3183
3184 return false;
3185 }
3186
3187 struct anv_image_view {
3188 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3189
3190 VkImageAspectFlags aspect_mask;
3191 VkFormat vk_format;
3192 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3193
3194 unsigned n_planes;
3195 struct {
3196 uint32_t image_plane;
3197
3198 struct isl_view isl;
3199
3200 /**
3201 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3202 * image layout of SHADER_READ_ONLY_OPTIMAL or
3203 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3204 */
3205 struct anv_surface_state optimal_sampler_surface_state;
3206
3207 /**
3208 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3209 * image layout of GENERAL.
3210 */
3211 struct anv_surface_state general_sampler_surface_state;
3212
3213 /**
3214 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3215 * states for write-only and readable, using the real format for
3216 * write-only and the lowered format for readable.
3217 */
3218 struct anv_surface_state storage_surface_state;
3219 struct anv_surface_state writeonly_storage_surface_state;
3220
3221 struct brw_image_param storage_image_param;
3222 } planes[3];
3223 };
3224
3225 enum anv_image_view_state_flags {
3226 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3227 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3228 };
3229
3230 void anv_image_fill_surface_state(struct anv_device *device,
3231 const struct anv_image *image,
3232 VkImageAspectFlagBits aspect,
3233 const struct isl_view *view,
3234 isl_surf_usage_flags_t view_usage,
3235 enum isl_aux_usage aux_usage,
3236 const union isl_color_value *clear_color,
3237 enum anv_image_view_state_flags flags,
3238 struct anv_surface_state *state_inout,
3239 struct brw_image_param *image_param_out);
3240
3241 struct anv_image_create_info {
3242 const VkImageCreateInfo *vk_info;
3243
3244 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3245 isl_tiling_flags_t isl_tiling_flags;
3246
3247 /** These flags will be added to any derived from VkImageCreateInfo. */
3248 isl_surf_usage_flags_t isl_extra_usage_flags;
3249
3250 uint32_t stride;
3251 bool external_format;
3252 };
3253
3254 VkResult anv_image_create(VkDevice _device,
3255 const struct anv_image_create_info *info,
3256 const VkAllocationCallbacks* alloc,
3257 VkImage *pImage);
3258
3259 const struct anv_surface *
3260 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3261 VkImageAspectFlags aspect_mask);
3262
3263 enum isl_format
3264 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3265
3266 static inline struct VkExtent3D
3267 anv_sanitize_image_extent(const VkImageType imageType,
3268 const struct VkExtent3D imageExtent)
3269 {
3270 switch (imageType) {
3271 case VK_IMAGE_TYPE_1D:
3272 return (VkExtent3D) { imageExtent.width, 1, 1 };
3273 case VK_IMAGE_TYPE_2D:
3274 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3275 case VK_IMAGE_TYPE_3D:
3276 return imageExtent;
3277 default:
3278 unreachable("invalid image type");
3279 }
3280 }
3281
3282 static inline struct VkOffset3D
3283 anv_sanitize_image_offset(const VkImageType imageType,
3284 const struct VkOffset3D imageOffset)
3285 {
3286 switch (imageType) {
3287 case VK_IMAGE_TYPE_1D:
3288 return (VkOffset3D) { imageOffset.x, 0, 0 };
3289 case VK_IMAGE_TYPE_2D:
3290 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3291 case VK_IMAGE_TYPE_3D:
3292 return imageOffset;
3293 default:
3294 unreachable("invalid image type");
3295 }
3296 }
3297
3298 VkFormatFeatureFlags
3299 anv_get_image_format_features(const struct gen_device_info *devinfo,
3300 VkFormat vk_format,
3301 const struct anv_format *anv_format,
3302 VkImageTiling vk_tiling);
3303
3304 void anv_fill_buffer_surface_state(struct anv_device *device,
3305 struct anv_state state,
3306 enum isl_format format,
3307 struct anv_address address,
3308 uint32_t range, uint32_t stride);
3309
3310 static inline void
3311 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3312 const struct anv_attachment_state *att_state,
3313 const struct anv_image_view *iview)
3314 {
3315 const struct isl_format_layout *view_fmtl =
3316 isl_format_get_layout(iview->planes[0].isl.format);
3317
3318 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3319 if (view_fmtl->channels.c.bits) \
3320 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3321
3322 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3323 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3324 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3325 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3326
3327 #undef COPY_CLEAR_COLOR_CHANNEL
3328 }
3329
3330
3331 struct anv_ycbcr_conversion {
3332 const struct anv_format * format;
3333 VkSamplerYcbcrModelConversion ycbcr_model;
3334 VkSamplerYcbcrRange ycbcr_range;
3335 VkComponentSwizzle mapping[4];
3336 VkChromaLocation chroma_offsets[2];
3337 VkFilter chroma_filter;
3338 bool chroma_reconstruction;
3339 };
3340
3341 struct anv_sampler {
3342 uint32_t state[3][4];
3343 uint32_t n_planes;
3344 struct anv_ycbcr_conversion *conversion;
3345 };
3346
3347 struct anv_framebuffer {
3348 uint32_t width;
3349 uint32_t height;
3350 uint32_t layers;
3351
3352 uint32_t attachment_count;
3353 struct anv_image_view * attachments[0];
3354 };
3355
3356 struct anv_subpass_attachment {
3357 VkImageUsageFlagBits usage;
3358 uint32_t attachment;
3359 VkImageLayout layout;
3360 };
3361
3362 struct anv_subpass {
3363 uint32_t attachment_count;
3364
3365 /**
3366 * A pointer to all attachment references used in this subpass.
3367 * Only valid if ::attachment_count > 0.
3368 */
3369 struct anv_subpass_attachment * attachments;
3370 uint32_t input_count;
3371 struct anv_subpass_attachment * input_attachments;
3372 uint32_t color_count;
3373 struct anv_subpass_attachment * color_attachments;
3374 struct anv_subpass_attachment * resolve_attachments;
3375
3376 struct anv_subpass_attachment * depth_stencil_attachment;
3377 struct anv_subpass_attachment * ds_resolve_attachment;
3378 VkResolveModeFlagBitsKHR depth_resolve_mode;
3379 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3380
3381 uint32_t view_mask;
3382
3383 /** Subpass has a depth/stencil self-dependency */
3384 bool has_ds_self_dep;
3385
3386 /** Subpass has at least one color resolve attachment */
3387 bool has_color_resolve;
3388 };
3389
3390 static inline unsigned
3391 anv_subpass_view_count(const struct anv_subpass *subpass)
3392 {
3393 return MAX2(1, util_bitcount(subpass->view_mask));
3394 }
3395
3396 struct anv_render_pass_attachment {
3397 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3398 * its members individually.
3399 */
3400 VkFormat format;
3401 uint32_t samples;
3402 VkImageUsageFlags usage;
3403 VkAttachmentLoadOp load_op;
3404 VkAttachmentStoreOp store_op;
3405 VkAttachmentLoadOp stencil_load_op;
3406 VkImageLayout initial_layout;
3407 VkImageLayout final_layout;
3408 VkImageLayout first_subpass_layout;
3409
3410 /* The subpass id in which the attachment will be used last. */
3411 uint32_t last_subpass_idx;
3412 };
3413
3414 struct anv_render_pass {
3415 uint32_t attachment_count;
3416 uint32_t subpass_count;
3417 /* An array of subpass_count+1 flushes, one per subpass boundary */
3418 enum anv_pipe_bits * subpass_flushes;
3419 struct anv_render_pass_attachment * attachments;
3420 struct anv_subpass subpasses[0];
3421 };
3422
3423 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3424
3425 struct anv_query_pool {
3426 VkQueryType type;
3427 VkQueryPipelineStatisticFlags pipeline_statistics;
3428 /** Stride between slots, in bytes */
3429 uint32_t stride;
3430 /** Number of slots in this query pool */
3431 uint32_t slots;
3432 struct anv_bo bo;
3433 };
3434
3435 int anv_get_instance_entrypoint_index(const char *name);
3436 int anv_get_device_entrypoint_index(const char *name);
3437
3438 bool
3439 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3440 const struct anv_instance_extension_table *instance);
3441
3442 bool
3443 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3444 const struct anv_instance_extension_table *instance,
3445 const struct anv_device_extension_table *device);
3446
3447 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3448 const char *name);
3449
3450 void anv_dump_image_to_ppm(struct anv_device *device,
3451 struct anv_image *image, unsigned miplevel,
3452 unsigned array_layer, VkImageAspectFlagBits aspect,
3453 const char *filename);
3454
3455 enum anv_dump_action {
3456 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3457 };
3458
3459 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3460 void anv_dump_finish(void);
3461
3462 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
3463 struct anv_framebuffer *fb);
3464
3465 static inline uint32_t
3466 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3467 {
3468 /* This function must be called from within a subpass. */
3469 assert(cmd_state->pass && cmd_state->subpass);
3470
3471 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3472
3473 /* The id of this subpass shouldn't exceed the number of subpasses in this
3474 * render pass minus 1.
3475 */
3476 assert(subpass_id < cmd_state->pass->subpass_count);
3477 return subpass_id;
3478 }
3479
3480 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3481 \
3482 static inline struct __anv_type * \
3483 __anv_type ## _from_handle(__VkType _handle) \
3484 { \
3485 return (struct __anv_type *) _handle; \
3486 } \
3487 \
3488 static inline __VkType \
3489 __anv_type ## _to_handle(struct __anv_type *_obj) \
3490 { \
3491 return (__VkType) _obj; \
3492 }
3493
3494 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3495 \
3496 static inline struct __anv_type * \
3497 __anv_type ## _from_handle(__VkType _handle) \
3498 { \
3499 return (struct __anv_type *)(uintptr_t) _handle; \
3500 } \
3501 \
3502 static inline __VkType \
3503 __anv_type ## _to_handle(struct __anv_type *_obj) \
3504 { \
3505 return (__VkType)(uintptr_t) _obj; \
3506 }
3507
3508 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3509 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3510
3511 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3512 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3513 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3514 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3515 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3516
3517 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3518 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3519 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3520 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3521 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3522 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3523 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3524 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3525 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3526 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3527 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3528 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3529 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3530 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3531 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3532 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3533 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3534 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3535 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3536 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3537 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3538 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3539 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3540
3541 /* Gen-specific function declarations */
3542 #ifdef genX
3543 # include "anv_genX.h"
3544 #else
3545 # define genX(x) gen7_##x
3546 # include "anv_genX.h"
3547 # undef genX
3548 # define genX(x) gen75_##x
3549 # include "anv_genX.h"
3550 # undef genX
3551 # define genX(x) gen8_##x
3552 # include "anv_genX.h"
3553 # undef genX
3554 # define genX(x) gen9_##x
3555 # include "anv_genX.h"
3556 # undef genX
3557 # define genX(x) gen10_##x
3558 # include "anv_genX.h"
3559 # undef genX
3560 # define genX(x) gen11_##x
3561 # include "anv_genX.h"
3562 # undef genX
3563 #endif
3564
3565 #endif /* ANV_PRIVATE_H */