anv: Remove special allocation for anv_push_constants
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/macros.h"
53 #include "util/hash_table.h"
54 #include "util/list.h"
55 #include "util/set.h"
56 #include "util/u_atomic.h"
57 #include "util/u_vector.h"
58 #include "util/u_math.h"
59 #include "util/vma.h"
60 #include "vk_alloc.h"
61 #include "vk_debug_report.h"
62
63 /* Pre-declarations needed for WSI entrypoints */
64 struct wl_surface;
65 struct wl_display;
66 typedef struct xcb_connection_t xcb_connection_t;
67 typedef uint32_t xcb_visualid_t;
68 typedef uint32_t xcb_window_t;
69
70 struct anv_buffer;
71 struct anv_buffer_view;
72 struct anv_image_view;
73 struct anv_instance;
74
75 struct gen_l3_config;
76
77 #include <vulkan/vulkan.h>
78 #include <vulkan/vulkan_intel.h>
79 #include <vulkan/vk_icd.h>
80
81 #include "anv_android.h"
82 #include "anv_entrypoints.h"
83 #include "anv_extensions.h"
84 #include "isl/isl.h"
85
86 #include "dev/gen_debug.h"
87 #include "common/intel_log.h"
88 #include "wsi_common.h"
89
90 /* anv Virtual Memory Layout
91 * =========================
92 *
93 * When the anv driver is determining the virtual graphics addresses of memory
94 * objects itself using the softpin mechanism, the following memory ranges
95 * will be used.
96 *
97 * Three special considerations to notice:
98 *
99 * (1) the dynamic state pool is located within the same 4 GiB as the low
100 * heap. This is to work around a VF cache issue described in a comment in
101 * anv_physical_device_init_heaps.
102 *
103 * (2) the binding table pool is located at lower addresses than the surface
104 * state pool, within a 4 GiB range. This allows surface state base addresses
105 * to cover both binding tables (16 bit offsets) and surface states (32 bit
106 * offsets).
107 *
108 * (3) the last 4 GiB of the address space is withheld from the high
109 * heap. Various hardware units will read past the end of an object for
110 * various reasons. This healthy margin prevents reads from wrapping around
111 * 48-bit addresses.
112 */
113 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
114 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
115 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
116 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
117 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
118 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
119 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
120 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
121 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
122 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
123 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
124
125 #define LOW_HEAP_SIZE \
126 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
127 #define DYNAMIC_STATE_POOL_SIZE \
128 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
129 #define BINDING_TABLE_POOL_SIZE \
130 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
131 #define SURFACE_STATE_POOL_SIZE \
132 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
133 #define INSTRUCTION_STATE_POOL_SIZE \
134 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
135
136 /* Allowing different clear colors requires us to perform a depth resolve at
137 * the end of certain render passes. This is because while slow clears store
138 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
139 * See the PRMs for examples describing when additional resolves would be
140 * necessary. To enable fast clears without requiring extra resolves, we set
141 * the clear value to a globally-defined one. We could allow different values
142 * if the user doesn't expect coherent data during or after a render passes
143 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
144 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
145 * 1.0f seems to be the only value used. The only application that doesn't set
146 * this value does so through the usage of an seemingly uninitialized clear
147 * value.
148 */
149 #define ANV_HZ_FC_VAL 1.0f
150
151 #define MAX_VBS 28
152 #define MAX_XFB_BUFFERS 4
153 #define MAX_XFB_STREAMS 4
154 #define MAX_SETS 8
155 #define MAX_RTS 8
156 #define MAX_VIEWPORTS 16
157 #define MAX_SCISSORS 16
158 #define MAX_PUSH_CONSTANTS_SIZE 128
159 #define MAX_DYNAMIC_BUFFERS 16
160 #define MAX_IMAGES 64
161 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
162 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
163 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
164
165 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
166 *
167 * "The surface state model is used when a Binding Table Index (specified
168 * in the message descriptor) of less than 240 is specified. In this model,
169 * the Binding Table Index is used to index into the binding table, and the
170 * binding table entry contains a pointer to the SURFACE_STATE."
171 *
172 * Binding table values above 240 are used for various things in the hardware
173 * such as stateless, stateless with incoherent cache, SLM, and bindless.
174 */
175 #define MAX_BINDING_TABLE_SIZE 240
176
177 /* The kernel relocation API has a limitation of a 32-bit delta value
178 * applied to the address before it is written which, in spite of it being
179 * unsigned, is treated as signed . Because of the way that this maps to
180 * the Vulkan API, we cannot handle an offset into a buffer that does not
181 * fit into a signed 32 bits. The only mechanism we have for dealing with
182 * this at the moment is to limit all VkDeviceMemory objects to a maximum
183 * of 2GB each. The Vulkan spec allows us to do this:
184 *
185 * "Some platforms may have a limit on the maximum size of a single
186 * allocation. For example, certain systems may fail to create
187 * allocations with a size greater than or equal to 4GB. Such a limit is
188 * implementation-dependent, and if such a failure occurs then the error
189 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
190 *
191 * We don't use vk_error here because it's not an error so much as an
192 * indication to the application that the allocation is too large.
193 */
194 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
195
196 #define ANV_SVGS_VB_INDEX MAX_VBS
197 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
198
199 /* We reserve this MI ALU register for the purpose of handling predication.
200 * Other code which uses the MI ALU should leave it alone.
201 */
202 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
203
204 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
205
206 static inline uint32_t
207 align_down_npot_u32(uint32_t v, uint32_t a)
208 {
209 return v - (v % a);
210 }
211
212 static inline uint32_t
213 align_u32(uint32_t v, uint32_t a)
214 {
215 assert(a != 0 && a == (a & -a));
216 return (v + a - 1) & ~(a - 1);
217 }
218
219 static inline uint64_t
220 align_u64(uint64_t v, uint64_t a)
221 {
222 assert(a != 0 && a == (a & -a));
223 return (v + a - 1) & ~(a - 1);
224 }
225
226 static inline int32_t
227 align_i32(int32_t v, int32_t a)
228 {
229 assert(a != 0 && a == (a & -a));
230 return (v + a - 1) & ~(a - 1);
231 }
232
233 /** Alignment must be a power of 2. */
234 static inline bool
235 anv_is_aligned(uintmax_t n, uintmax_t a)
236 {
237 assert(a == (a & -a));
238 return (n & (a - 1)) == 0;
239 }
240
241 static inline uint32_t
242 anv_minify(uint32_t n, uint32_t levels)
243 {
244 if (unlikely(n == 0))
245 return 0;
246 else
247 return MAX2(n >> levels, 1);
248 }
249
250 static inline float
251 anv_clamp_f(float f, float min, float max)
252 {
253 assert(min < max);
254
255 if (f > max)
256 return max;
257 else if (f < min)
258 return min;
259 else
260 return f;
261 }
262
263 static inline bool
264 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
265 {
266 if (*inout_mask & clear_mask) {
267 *inout_mask &= ~clear_mask;
268 return true;
269 } else {
270 return false;
271 }
272 }
273
274 static inline union isl_color_value
275 vk_to_isl_color(VkClearColorValue color)
276 {
277 return (union isl_color_value) {
278 .u32 = {
279 color.uint32[0],
280 color.uint32[1],
281 color.uint32[2],
282 color.uint32[3],
283 },
284 };
285 }
286
287 #define for_each_bit(b, dword) \
288 for (uint32_t __dword = (dword); \
289 (b) = __builtin_ffs(__dword) - 1, __dword; \
290 __dword &= ~(1 << (b)))
291
292 #define typed_memcpy(dest, src, count) ({ \
293 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
294 memcpy((dest), (src), (count) * sizeof(*(src))); \
295 })
296
297 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
298 * to be added here in order to utilize mapping in debug/error/perf macros.
299 */
300 #define REPORT_OBJECT_TYPE(o) \
301 __builtin_choose_expr ( \
302 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
303 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
304 __builtin_choose_expr ( \
305 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
306 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
307 __builtin_choose_expr ( \
308 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
309 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
310 __builtin_choose_expr ( \
311 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
312 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
313 __builtin_choose_expr ( \
314 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
315 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
316 __builtin_choose_expr ( \
317 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
318 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
319 __builtin_choose_expr ( \
320 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
321 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
322 __builtin_choose_expr ( \
323 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
324 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
325 __builtin_choose_expr ( \
326 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
327 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
328 __builtin_choose_expr ( \
329 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
330 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
331 __builtin_choose_expr ( \
332 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
333 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
334 __builtin_choose_expr ( \
335 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
336 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
337 __builtin_choose_expr ( \
338 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
339 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
340 __builtin_choose_expr ( \
341 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
342 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
343 __builtin_choose_expr ( \
344 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
345 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
346 __builtin_choose_expr ( \
347 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
348 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
349 __builtin_choose_expr ( \
350 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
351 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
352 __builtin_choose_expr ( \
353 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
354 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
355 __builtin_choose_expr ( \
356 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
357 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
358 __builtin_choose_expr ( \
359 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
360 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
361 __builtin_choose_expr ( \
362 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
363 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
364 __builtin_choose_expr ( \
365 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
366 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
367 __builtin_choose_expr ( \
368 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
369 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
370 __builtin_choose_expr ( \
371 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
372 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
373 __builtin_choose_expr ( \
374 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
375 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
376 __builtin_choose_expr ( \
377 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
378 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
379 __builtin_choose_expr ( \
380 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
381 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
382 __builtin_choose_expr ( \
383 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
384 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
385 __builtin_choose_expr ( \
386 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
387 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
388 __builtin_choose_expr ( \
389 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
390 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
391 __builtin_choose_expr ( \
392 __builtin_types_compatible_p (__typeof (o), void*), \
393 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
394 /* The void expression results in a compile-time error \
395 when assigning the result to something. */ \
396 (void)0)))))))))))))))))))))))))))))))
397
398 /* Whenever we generate an error, pass it through this function. Useful for
399 * debugging, where we can break on it. Only call at error site, not when
400 * propagating errors. Might be useful to plug in a stack trace here.
401 */
402
403 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
404 VkDebugReportObjectTypeEXT type, VkResult error,
405 const char *file, int line, const char *format,
406 va_list args);
407
408 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
409 VkDebugReportObjectTypeEXT type, VkResult error,
410 const char *file, int line, const char *format, ...);
411
412 #ifdef DEBUG
413 #define vk_error(error) __vk_errorf(NULL, NULL,\
414 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
415 error, __FILE__, __LINE__, NULL)
416 #define vk_errorv(instance, obj, error, format, args)\
417 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
418 __FILE__, __LINE__, format, args)
419 #define vk_errorf(instance, obj, error, format, ...)\
420 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
421 __FILE__, __LINE__, format, ## __VA_ARGS__)
422 #else
423 #define vk_error(error) error
424 #define vk_errorf(instance, obj, error, format, ...) error
425 #endif
426
427 /**
428 * Warn on ignored extension structs.
429 *
430 * The Vulkan spec requires us to ignore unsupported or unknown structs in
431 * a pNext chain. In debug mode, emitting warnings for ignored structs may
432 * help us discover structs that we should not have ignored.
433 *
434 *
435 * From the Vulkan 1.0.38 spec:
436 *
437 * Any component of the implementation (the loader, any enabled layers,
438 * and drivers) must skip over, without processing (other than reading the
439 * sType and pNext members) any chained structures with sType values not
440 * defined by extensions supported by that component.
441 */
442 #define anv_debug_ignored_stype(sType) \
443 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
444
445 void __anv_perf_warn(struct anv_instance *instance, const void *object,
446 VkDebugReportObjectTypeEXT type, const char *file,
447 int line, const char *format, ...)
448 anv_printflike(6, 7);
449 void anv_loge(const char *format, ...) anv_printflike(1, 2);
450 void anv_loge_v(const char *format, va_list va);
451
452 /**
453 * Print a FINISHME message, including its source location.
454 */
455 #define anv_finishme(format, ...) \
456 do { \
457 static bool reported = false; \
458 if (!reported) { \
459 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
460 ##__VA_ARGS__); \
461 reported = true; \
462 } \
463 } while (0)
464
465 /**
466 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
467 */
468 #define anv_perf_warn(instance, obj, format, ...) \
469 do { \
470 static bool reported = false; \
471 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
472 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
473 format, ##__VA_ARGS__); \
474 reported = true; \
475 } \
476 } while (0)
477
478 /* A non-fatal assert. Useful for debugging. */
479 #ifdef DEBUG
480 #define anv_assert(x) ({ \
481 if (unlikely(!(x))) \
482 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
483 })
484 #else
485 #define anv_assert(x)
486 #endif
487
488 /* A multi-pointer allocator
489 *
490 * When copying data structures from the user (such as a render pass), it's
491 * common to need to allocate data for a bunch of different things. Instead
492 * of doing several allocations and having to handle all of the error checking
493 * that entails, it can be easier to do a single allocation. This struct
494 * helps facilitate that. The intended usage looks like this:
495 *
496 * ANV_MULTIALLOC(ma)
497 * anv_multialloc_add(&ma, &main_ptr, 1);
498 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
499 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
500 *
501 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
502 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
503 */
504 struct anv_multialloc {
505 size_t size;
506 size_t align;
507
508 uint32_t ptr_count;
509 void **ptrs[8];
510 };
511
512 #define ANV_MULTIALLOC_INIT \
513 ((struct anv_multialloc) { 0, })
514
515 #define ANV_MULTIALLOC(_name) \
516 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
517
518 __attribute__((always_inline))
519 static inline void
520 _anv_multialloc_add(struct anv_multialloc *ma,
521 void **ptr, size_t size, size_t align)
522 {
523 size_t offset = align_u64(ma->size, align);
524 ma->size = offset + size;
525 ma->align = MAX2(ma->align, align);
526
527 /* Store the offset in the pointer. */
528 *ptr = (void *)(uintptr_t)offset;
529
530 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
531 ma->ptrs[ma->ptr_count++] = ptr;
532 }
533
534 #define anv_multialloc_add_size(_ma, _ptr, _size) \
535 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
536
537 #define anv_multialloc_add(_ma, _ptr, _count) \
538 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
539
540 __attribute__((always_inline))
541 static inline void *
542 anv_multialloc_alloc(struct anv_multialloc *ma,
543 const VkAllocationCallbacks *alloc,
544 VkSystemAllocationScope scope)
545 {
546 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
547 if (!ptr)
548 return NULL;
549
550 /* Fill out each of the pointers with their final value.
551 *
552 * for (uint32_t i = 0; i < ma->ptr_count; i++)
553 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
554 *
555 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
556 * constant, GCC is incapable of figuring this out and unrolling the loop
557 * so we have to give it a little help.
558 */
559 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
560 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
561 if ((_i) < ma->ptr_count) \
562 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
563 _ANV_MULTIALLOC_UPDATE_POINTER(0);
564 _ANV_MULTIALLOC_UPDATE_POINTER(1);
565 _ANV_MULTIALLOC_UPDATE_POINTER(2);
566 _ANV_MULTIALLOC_UPDATE_POINTER(3);
567 _ANV_MULTIALLOC_UPDATE_POINTER(4);
568 _ANV_MULTIALLOC_UPDATE_POINTER(5);
569 _ANV_MULTIALLOC_UPDATE_POINTER(6);
570 _ANV_MULTIALLOC_UPDATE_POINTER(7);
571 #undef _ANV_MULTIALLOC_UPDATE_POINTER
572
573 return ptr;
574 }
575
576 __attribute__((always_inline))
577 static inline void *
578 anv_multialloc_alloc2(struct anv_multialloc *ma,
579 const VkAllocationCallbacks *parent_alloc,
580 const VkAllocationCallbacks *alloc,
581 VkSystemAllocationScope scope)
582 {
583 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
584 }
585
586 /* Extra ANV-defined BO flags which won't be passed to the kernel */
587 #define ANV_BO_EXTERNAL (1ull << 31)
588 #define ANV_BO_FLAG_MASK (1ull << 31)
589
590 struct anv_bo {
591 uint32_t gem_handle;
592
593 /* Index into the current validation list. This is used by the
594 * validation list building alrogithm to track which buffers are already
595 * in the validation list so that we can ensure uniqueness.
596 */
597 uint32_t index;
598
599 /* Last known offset. This value is provided by the kernel when we
600 * execbuf and is used as the presumed offset for the next bunch of
601 * relocations.
602 */
603 uint64_t offset;
604
605 uint64_t size;
606 void *map;
607
608 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
609 uint32_t flags;
610 };
611
612 static inline void
613 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
614 {
615 bo->gem_handle = gem_handle;
616 bo->index = 0;
617 bo->offset = -1;
618 bo->size = size;
619 bo->map = NULL;
620 bo->flags = 0;
621 }
622
623 /* Represents a lock-free linked list of "free" things. This is used by
624 * both the block pool and the state pools. Unfortunately, in order to
625 * solve the ABA problem, we can't use a single uint32_t head.
626 */
627 union anv_free_list {
628 struct {
629 uint32_t offset;
630
631 /* A simple count that is incremented every time the head changes. */
632 uint32_t count;
633 };
634 uint64_t u64;
635 };
636
637 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
638
639 struct anv_block_state {
640 union {
641 struct {
642 uint32_t next;
643 uint32_t end;
644 };
645 uint64_t u64;
646 };
647 };
648
649 #define anv_block_pool_foreach_bo(bo, pool) \
650 for (bo = (pool)->bos; bo != &(pool)->bos[(pool)->nbos]; bo++)
651
652 #define ANV_MAX_BLOCK_POOL_BOS 20
653
654 struct anv_block_pool {
655 struct anv_device *device;
656
657 uint64_t bo_flags;
658
659 struct anv_bo bos[ANV_MAX_BLOCK_POOL_BOS];
660 struct anv_bo *bo;
661 uint32_t nbos;
662
663 uint64_t size;
664
665 /* The address where the start of the pool is pinned. The various bos that
666 * are created as the pool grows will have addresses in the range
667 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
668 */
669 uint64_t start_address;
670
671 /* The offset from the start of the bo to the "center" of the block
672 * pool. Pointers to allocated blocks are given by
673 * bo.map + center_bo_offset + offsets.
674 */
675 uint32_t center_bo_offset;
676
677 /* Current memory map of the block pool. This pointer may or may not
678 * point to the actual beginning of the block pool memory. If
679 * anv_block_pool_alloc_back has ever been called, then this pointer
680 * will point to the "center" position of the buffer and all offsets
681 * (negative or positive) given out by the block pool alloc functions
682 * will be valid relative to this pointer.
683 *
684 * In particular, map == bo.map + center_offset
685 *
686 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
687 * since it will handle the softpin case as well, where this points to NULL.
688 */
689 void *map;
690 int fd;
691
692 /**
693 * Array of mmaps and gem handles owned by the block pool, reclaimed when
694 * the block pool is destroyed.
695 */
696 struct u_vector mmap_cleanups;
697
698 struct anv_block_state state;
699
700 struct anv_block_state back_state;
701 };
702
703 /* Block pools are backed by a fixed-size 1GB memfd */
704 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
705
706 /* The center of the block pool is also the middle of the memfd. This may
707 * change in the future if we decide differently for some reason.
708 */
709 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
710
711 static inline uint32_t
712 anv_block_pool_size(struct anv_block_pool *pool)
713 {
714 return pool->state.end + pool->back_state.end;
715 }
716
717 struct anv_state {
718 int32_t offset;
719 uint32_t alloc_size;
720 void *map;
721 uint32_t idx;
722 };
723
724 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
725
726 struct anv_fixed_size_state_pool {
727 union anv_free_list free_list;
728 struct anv_block_state block;
729 };
730
731 #define ANV_MIN_STATE_SIZE_LOG2 6
732 #define ANV_MAX_STATE_SIZE_LOG2 20
733
734 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
735
736 struct anv_free_entry {
737 uint32_t next;
738 struct anv_state state;
739 };
740
741 struct anv_state_table {
742 struct anv_device *device;
743 int fd;
744 struct anv_free_entry *map;
745 uint32_t size;
746 struct anv_block_state state;
747 struct u_vector cleanups;
748 };
749
750 struct anv_state_pool {
751 struct anv_block_pool block_pool;
752
753 struct anv_state_table table;
754
755 /* The size of blocks which will be allocated from the block pool */
756 uint32_t block_size;
757
758 /** Free list for "back" allocations */
759 union anv_free_list back_alloc_free_list;
760
761 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
762 };
763
764 struct anv_state_stream_block;
765
766 struct anv_state_stream {
767 struct anv_state_pool *state_pool;
768
769 /* The size of blocks to allocate from the state pool */
770 uint32_t block_size;
771
772 /* Current block we're allocating from */
773 struct anv_state block;
774
775 /* Offset into the current block at which to allocate the next state */
776 uint32_t next;
777
778 /* List of all blocks allocated from this pool */
779 struct anv_state_stream_block *block_list;
780 };
781
782 /* The block_pool functions exported for testing only. The block pool should
783 * only be used via a state pool (see below).
784 */
785 VkResult anv_block_pool_init(struct anv_block_pool *pool,
786 struct anv_device *device,
787 uint64_t start_address,
788 uint32_t initial_size,
789 uint64_t bo_flags);
790 void anv_block_pool_finish(struct anv_block_pool *pool);
791 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
792 uint32_t block_size, uint32_t *padding);
793 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
794 uint32_t block_size);
795 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
796
797 VkResult anv_state_pool_init(struct anv_state_pool *pool,
798 struct anv_device *device,
799 uint64_t start_address,
800 uint32_t block_size,
801 uint64_t bo_flags);
802 void anv_state_pool_finish(struct anv_state_pool *pool);
803 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
804 uint32_t state_size, uint32_t alignment);
805 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
806 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
807 void anv_state_stream_init(struct anv_state_stream *stream,
808 struct anv_state_pool *state_pool,
809 uint32_t block_size);
810 void anv_state_stream_finish(struct anv_state_stream *stream);
811 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
812 uint32_t size, uint32_t alignment);
813
814 VkResult anv_state_table_init(struct anv_state_table *table,
815 struct anv_device *device,
816 uint32_t initial_entries);
817 void anv_state_table_finish(struct anv_state_table *table);
818 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
819 uint32_t count);
820 void anv_free_list_push(union anv_free_list *list,
821 struct anv_state_table *table,
822 uint32_t idx, uint32_t count);
823 struct anv_state* anv_free_list_pop(union anv_free_list *list,
824 struct anv_state_table *table);
825
826
827 static inline struct anv_state *
828 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
829 {
830 return &table->map[idx].state;
831 }
832 /**
833 * Implements a pool of re-usable BOs. The interface is identical to that
834 * of block_pool except that each block is its own BO.
835 */
836 struct anv_bo_pool {
837 struct anv_device *device;
838
839 uint64_t bo_flags;
840
841 void *free_list[16];
842 };
843
844 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
845 uint64_t bo_flags);
846 void anv_bo_pool_finish(struct anv_bo_pool *pool);
847 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
848 uint32_t size);
849 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
850
851 struct anv_scratch_bo {
852 bool exists;
853 struct anv_bo bo;
854 };
855
856 struct anv_scratch_pool {
857 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
858 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
859 };
860
861 void anv_scratch_pool_init(struct anv_device *device,
862 struct anv_scratch_pool *pool);
863 void anv_scratch_pool_finish(struct anv_device *device,
864 struct anv_scratch_pool *pool);
865 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
866 struct anv_scratch_pool *pool,
867 gl_shader_stage stage,
868 unsigned per_thread_scratch);
869
870 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
871 struct anv_bo_cache {
872 struct hash_table *bo_map;
873 pthread_mutex_t mutex;
874 };
875
876 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
877 void anv_bo_cache_finish(struct anv_bo_cache *cache);
878 VkResult anv_bo_cache_alloc(struct anv_device *device,
879 struct anv_bo_cache *cache,
880 uint64_t size, uint64_t bo_flags,
881 struct anv_bo **bo);
882 VkResult anv_bo_cache_import_host_ptr(struct anv_device *device,
883 struct anv_bo_cache *cache,
884 void *host_ptr, uint32_t size,
885 uint64_t bo_flags, struct anv_bo **bo_out);
886 VkResult anv_bo_cache_import(struct anv_device *device,
887 struct anv_bo_cache *cache,
888 int fd, uint64_t bo_flags,
889 struct anv_bo **bo);
890 VkResult anv_bo_cache_export(struct anv_device *device,
891 struct anv_bo_cache *cache,
892 struct anv_bo *bo_in, int *fd_out);
893 void anv_bo_cache_release(struct anv_device *device,
894 struct anv_bo_cache *cache,
895 struct anv_bo *bo);
896
897 struct anv_memory_type {
898 /* Standard bits passed on to the client */
899 VkMemoryPropertyFlags propertyFlags;
900 uint32_t heapIndex;
901
902 /* Driver-internal book-keeping */
903 VkBufferUsageFlags valid_buffer_usage;
904 };
905
906 struct anv_memory_heap {
907 /* Standard bits passed on to the client */
908 VkDeviceSize size;
909 VkMemoryHeapFlags flags;
910
911 /* Driver-internal book-keeping */
912 uint64_t vma_start;
913 uint64_t vma_size;
914 bool supports_48bit_addresses;
915 VkDeviceSize used;
916 };
917
918 struct anv_physical_device {
919 VK_LOADER_DATA _loader_data;
920
921 struct anv_instance * instance;
922 uint32_t chipset_id;
923 bool no_hw;
924 char path[20];
925 const char * name;
926 struct {
927 uint16_t domain;
928 uint8_t bus;
929 uint8_t device;
930 uint8_t function;
931 } pci_info;
932 struct gen_device_info info;
933 /** Amount of "GPU memory" we want to advertise
934 *
935 * Clearly, this value is bogus since Intel is a UMA architecture. On
936 * gen7 platforms, we are limited by GTT size unless we want to implement
937 * fine-grained tracking and GTT splitting. On Broadwell and above we are
938 * practically unlimited. However, we will never report more than 3/4 of
939 * the total system ram to try and avoid running out of RAM.
940 */
941 bool supports_48bit_addresses;
942 struct brw_compiler * compiler;
943 struct isl_device isl_dev;
944 int cmd_parser_version;
945 bool has_exec_async;
946 bool has_exec_capture;
947 bool has_exec_fence;
948 bool has_syncobj;
949 bool has_syncobj_wait;
950 bool has_context_priority;
951 bool use_softpin;
952 bool has_context_isolation;
953 bool has_mem_available;
954 bool always_use_bindless;
955
956 /** True if we can access buffers using A64 messages */
957 bool has_a64_buffer_access;
958 /** True if we can use bindless access for images */
959 bool has_bindless_images;
960 /** True if we can use bindless access for samplers */
961 bool has_bindless_samplers;
962
963 struct anv_device_extension_table supported_extensions;
964
965 uint32_t eu_total;
966 uint32_t subslice_total;
967
968 struct {
969 uint32_t type_count;
970 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
971 uint32_t heap_count;
972 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
973 } memory;
974
975 uint8_t driver_build_sha1[20];
976 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
977 uint8_t driver_uuid[VK_UUID_SIZE];
978 uint8_t device_uuid[VK_UUID_SIZE];
979
980 struct disk_cache * disk_cache;
981
982 struct wsi_device wsi_device;
983 int local_fd;
984 int master_fd;
985 };
986
987 struct anv_app_info {
988 const char* app_name;
989 uint32_t app_version;
990 const char* engine_name;
991 uint32_t engine_version;
992 uint32_t api_version;
993 };
994
995 struct anv_instance {
996 VK_LOADER_DATA _loader_data;
997
998 VkAllocationCallbacks alloc;
999
1000 struct anv_app_info app_info;
1001
1002 struct anv_instance_extension_table enabled_extensions;
1003 struct anv_instance_dispatch_table dispatch;
1004 struct anv_device_dispatch_table device_dispatch;
1005
1006 int physicalDeviceCount;
1007 struct anv_physical_device physicalDevice;
1008
1009 bool pipeline_cache_enabled;
1010
1011 struct vk_debug_report_instance debug_report_callbacks;
1012 };
1013
1014 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1015 void anv_finish_wsi(struct anv_physical_device *physical_device);
1016
1017 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1018 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1019 const char *name);
1020
1021 struct anv_queue {
1022 VK_LOADER_DATA _loader_data;
1023
1024 struct anv_device * device;
1025
1026 VkDeviceQueueCreateFlags flags;
1027 };
1028
1029 struct anv_pipeline_cache {
1030 struct anv_device * device;
1031 pthread_mutex_t mutex;
1032
1033 struct hash_table * nir_cache;
1034
1035 struct hash_table * cache;
1036 };
1037
1038 struct nir_xfb_info;
1039 struct anv_pipeline_bind_map;
1040
1041 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1042 struct anv_device *device,
1043 bool cache_enabled);
1044 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1045
1046 struct anv_shader_bin *
1047 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1048 const void *key, uint32_t key_size);
1049 struct anv_shader_bin *
1050 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1051 const void *key_data, uint32_t key_size,
1052 const void *kernel_data, uint32_t kernel_size,
1053 const void *constant_data,
1054 uint32_t constant_data_size,
1055 const struct brw_stage_prog_data *prog_data,
1056 uint32_t prog_data_size,
1057 const struct nir_xfb_info *xfb_info,
1058 const struct anv_pipeline_bind_map *bind_map);
1059
1060 struct anv_shader_bin *
1061 anv_device_search_for_kernel(struct anv_device *device,
1062 struct anv_pipeline_cache *cache,
1063 const void *key_data, uint32_t key_size,
1064 bool *user_cache_bit);
1065
1066 struct anv_shader_bin *
1067 anv_device_upload_kernel(struct anv_device *device,
1068 struct anv_pipeline_cache *cache,
1069 const void *key_data, uint32_t key_size,
1070 const void *kernel_data, uint32_t kernel_size,
1071 const void *constant_data,
1072 uint32_t constant_data_size,
1073 const struct brw_stage_prog_data *prog_data,
1074 uint32_t prog_data_size,
1075 const struct nir_xfb_info *xfb_info,
1076 const struct anv_pipeline_bind_map *bind_map);
1077
1078 struct nir_shader;
1079 struct nir_shader_compiler_options;
1080
1081 struct nir_shader *
1082 anv_device_search_for_nir(struct anv_device *device,
1083 struct anv_pipeline_cache *cache,
1084 const struct nir_shader_compiler_options *nir_options,
1085 unsigned char sha1_key[20],
1086 void *mem_ctx);
1087
1088 void
1089 anv_device_upload_nir(struct anv_device *device,
1090 struct anv_pipeline_cache *cache,
1091 const struct nir_shader *nir,
1092 unsigned char sha1_key[20]);
1093
1094 struct anv_device {
1095 VK_LOADER_DATA _loader_data;
1096
1097 VkAllocationCallbacks alloc;
1098
1099 struct anv_instance * instance;
1100 uint32_t chipset_id;
1101 bool no_hw;
1102 struct gen_device_info info;
1103 struct isl_device isl_dev;
1104 int context_id;
1105 int fd;
1106 bool can_chain_batches;
1107 bool robust_buffer_access;
1108 struct anv_device_extension_table enabled_extensions;
1109 struct anv_device_dispatch_table dispatch;
1110
1111 pthread_mutex_t vma_mutex;
1112 struct util_vma_heap vma_lo;
1113 struct util_vma_heap vma_hi;
1114 uint64_t vma_lo_available;
1115 uint64_t vma_hi_available;
1116
1117 /** List of all anv_device_memory objects */
1118 struct list_head memory_objects;
1119
1120 struct anv_bo_pool batch_bo_pool;
1121
1122 struct anv_bo_cache bo_cache;
1123
1124 struct anv_state_pool dynamic_state_pool;
1125 struct anv_state_pool instruction_state_pool;
1126 struct anv_state_pool binding_table_pool;
1127 struct anv_state_pool surface_state_pool;
1128
1129 struct anv_bo workaround_bo;
1130 struct anv_bo trivial_batch_bo;
1131 struct anv_bo hiz_clear_bo;
1132
1133 struct anv_pipeline_cache default_pipeline_cache;
1134 struct blorp_context blorp;
1135
1136 struct anv_state border_colors;
1137
1138 struct anv_queue queue;
1139
1140 struct anv_scratch_pool scratch_pool;
1141
1142 uint32_t default_mocs;
1143 uint32_t external_mocs;
1144
1145 pthread_mutex_t mutex;
1146 pthread_cond_t queue_submit;
1147 bool _lost;
1148
1149 struct gen_batch_decode_ctx decoder_ctx;
1150 /*
1151 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1152 * the cmd_buffer's list.
1153 */
1154 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1155 };
1156
1157 static inline struct anv_state_pool *
1158 anv_binding_table_pool(struct anv_device *device)
1159 {
1160 if (device->instance->physicalDevice.use_softpin)
1161 return &device->binding_table_pool;
1162 else
1163 return &device->surface_state_pool;
1164 }
1165
1166 static inline struct anv_state
1167 anv_binding_table_pool_alloc(struct anv_device *device) {
1168 if (device->instance->physicalDevice.use_softpin)
1169 return anv_state_pool_alloc(&device->binding_table_pool,
1170 device->binding_table_pool.block_size, 0);
1171 else
1172 return anv_state_pool_alloc_back(&device->surface_state_pool);
1173 }
1174
1175 static inline void
1176 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1177 anv_state_pool_free(anv_binding_table_pool(device), state);
1178 }
1179
1180 static inline uint32_t
1181 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1182 {
1183 if (bo->flags & ANV_BO_EXTERNAL)
1184 return device->external_mocs;
1185 else
1186 return device->default_mocs;
1187 }
1188
1189 void anv_device_init_blorp(struct anv_device *device);
1190 void anv_device_finish_blorp(struct anv_device *device);
1191
1192 VkResult _anv_device_set_lost(struct anv_device *device,
1193 const char *file, int line,
1194 const char *msg, ...);
1195 #define anv_device_set_lost(dev, ...) \
1196 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1197
1198 static inline bool
1199 anv_device_is_lost(struct anv_device *device)
1200 {
1201 return unlikely(device->_lost);
1202 }
1203
1204 VkResult anv_device_execbuf(struct anv_device *device,
1205 struct drm_i915_gem_execbuffer2 *execbuf,
1206 struct anv_bo **execbuf_bos);
1207 VkResult anv_device_query_status(struct anv_device *device);
1208 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1209 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1210 int64_t timeout);
1211
1212 void* anv_gem_mmap(struct anv_device *device,
1213 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1214 void anv_gem_munmap(void *p, uint64_t size);
1215 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1216 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1217 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1218 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1219 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1220 int anv_gem_execbuffer(struct anv_device *device,
1221 struct drm_i915_gem_execbuffer2 *execbuf);
1222 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1223 uint32_t stride, uint32_t tiling);
1224 int anv_gem_create_context(struct anv_device *device);
1225 bool anv_gem_has_context_priority(int fd);
1226 int anv_gem_destroy_context(struct anv_device *device, int context);
1227 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1228 uint64_t value);
1229 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1230 uint64_t *value);
1231 int anv_gem_get_param(int fd, uint32_t param);
1232 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1233 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1234 int anv_gem_get_aperture(int fd, uint64_t *size);
1235 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1236 uint32_t *active, uint32_t *pending);
1237 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1238 int anv_gem_reg_read(struct anv_device *device,
1239 uint32_t offset, uint64_t *result);
1240 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1241 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1242 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1243 uint32_t read_domains, uint32_t write_domain);
1244 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1245 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1246 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1247 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1248 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1249 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1250 uint32_t handle);
1251 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1252 uint32_t handle, int fd);
1253 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1254 bool anv_gem_supports_syncobj_wait(int fd);
1255 int anv_gem_syncobj_wait(struct anv_device *device,
1256 uint32_t *handles, uint32_t num_handles,
1257 int64_t abs_timeout_ns, bool wait_all);
1258
1259 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1260 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1261
1262 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1263
1264 struct anv_reloc_list {
1265 uint32_t num_relocs;
1266 uint32_t array_length;
1267 struct drm_i915_gem_relocation_entry * relocs;
1268 struct anv_bo ** reloc_bos;
1269 struct set * deps;
1270 };
1271
1272 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1273 const VkAllocationCallbacks *alloc);
1274 void anv_reloc_list_finish(struct anv_reloc_list *list,
1275 const VkAllocationCallbacks *alloc);
1276
1277 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1278 const VkAllocationCallbacks *alloc,
1279 uint32_t offset, struct anv_bo *target_bo,
1280 uint32_t delta);
1281
1282 struct anv_batch_bo {
1283 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1284 struct list_head link;
1285
1286 struct anv_bo bo;
1287
1288 /* Bytes actually consumed in this batch BO */
1289 uint32_t length;
1290
1291 struct anv_reloc_list relocs;
1292 };
1293
1294 struct anv_batch {
1295 const VkAllocationCallbacks * alloc;
1296
1297 void * start;
1298 void * end;
1299 void * next;
1300
1301 struct anv_reloc_list * relocs;
1302
1303 /* This callback is called (with the associated user data) in the event
1304 * that the batch runs out of space.
1305 */
1306 VkResult (*extend_cb)(struct anv_batch *, void *);
1307 void * user_data;
1308
1309 /**
1310 * Current error status of the command buffer. Used to track inconsistent
1311 * or incomplete command buffer states that are the consequence of run-time
1312 * errors such as out of memory scenarios. We want to track this in the
1313 * batch because the command buffer object is not visible to some parts
1314 * of the driver.
1315 */
1316 VkResult status;
1317 };
1318
1319 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1320 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1321 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1322 void *location, struct anv_bo *bo, uint32_t offset);
1323 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1324 struct anv_batch *batch);
1325
1326 static inline VkResult
1327 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1328 {
1329 assert(error != VK_SUCCESS);
1330 if (batch->status == VK_SUCCESS)
1331 batch->status = error;
1332 return batch->status;
1333 }
1334
1335 static inline bool
1336 anv_batch_has_error(struct anv_batch *batch)
1337 {
1338 return batch->status != VK_SUCCESS;
1339 }
1340
1341 struct anv_address {
1342 struct anv_bo *bo;
1343 uint32_t offset;
1344 };
1345
1346 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1347
1348 static inline bool
1349 anv_address_is_null(struct anv_address addr)
1350 {
1351 return addr.bo == NULL && addr.offset == 0;
1352 }
1353
1354 static inline uint64_t
1355 anv_address_physical(struct anv_address addr)
1356 {
1357 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1358 return gen_canonical_address(addr.bo->offset + addr.offset);
1359 else
1360 return gen_canonical_address(addr.offset);
1361 }
1362
1363 static inline struct anv_address
1364 anv_address_add(struct anv_address addr, uint64_t offset)
1365 {
1366 addr.offset += offset;
1367 return addr;
1368 }
1369
1370 static inline void
1371 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1372 {
1373 unsigned reloc_size = 0;
1374 if (device->info.gen >= 8) {
1375 reloc_size = sizeof(uint64_t);
1376 *(uint64_t *)p = gen_canonical_address(v);
1377 } else {
1378 reloc_size = sizeof(uint32_t);
1379 *(uint32_t *)p = v;
1380 }
1381
1382 if (flush && !device->info.has_llc)
1383 gen_flush_range(p, reloc_size);
1384 }
1385
1386 static inline uint64_t
1387 _anv_combine_address(struct anv_batch *batch, void *location,
1388 const struct anv_address address, uint32_t delta)
1389 {
1390 if (address.bo == NULL) {
1391 return address.offset + delta;
1392 } else {
1393 assert(batch->start <= location && location < batch->end);
1394
1395 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1396 }
1397 }
1398
1399 #define __gen_address_type struct anv_address
1400 #define __gen_user_data struct anv_batch
1401 #define __gen_combine_address _anv_combine_address
1402
1403 /* Wrapper macros needed to work around preprocessor argument issues. In
1404 * particular, arguments don't get pre-evaluated if they are concatenated.
1405 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1406 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1407 * We can work around this easily enough with these helpers.
1408 */
1409 #define __anv_cmd_length(cmd) cmd ## _length
1410 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1411 #define __anv_cmd_header(cmd) cmd ## _header
1412 #define __anv_cmd_pack(cmd) cmd ## _pack
1413 #define __anv_reg_num(reg) reg ## _num
1414
1415 #define anv_pack_struct(dst, struc, ...) do { \
1416 struct struc __template = { \
1417 __VA_ARGS__ \
1418 }; \
1419 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1420 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1421 } while (0)
1422
1423 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1424 void *__dst = anv_batch_emit_dwords(batch, n); \
1425 if (__dst) { \
1426 struct cmd __template = { \
1427 __anv_cmd_header(cmd), \
1428 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1429 __VA_ARGS__ \
1430 }; \
1431 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1432 } \
1433 __dst; \
1434 })
1435
1436 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1437 do { \
1438 uint32_t *dw; \
1439 \
1440 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1441 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1442 if (!dw) \
1443 break; \
1444 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1445 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1446 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1447 } while (0)
1448
1449 #define anv_batch_emit(batch, cmd, name) \
1450 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1451 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1452 __builtin_expect(_dst != NULL, 1); \
1453 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1454 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1455 _dst = NULL; \
1456 }))
1457
1458 /* MEMORY_OBJECT_CONTROL_STATE:
1459 * .GraphicsDataTypeGFDT = 0,
1460 * .LLCCacheabilityControlLLCCC = 0,
1461 * .L3CacheabilityControlL3CC = 1,
1462 */
1463 #define GEN7_MOCS 1
1464
1465 /* MEMORY_OBJECT_CONTROL_STATE:
1466 * .LLCeLLCCacheabilityControlLLCCC = 0,
1467 * .L3CacheabilityControlL3CC = 1,
1468 */
1469 #define GEN75_MOCS 1
1470
1471 /* MEMORY_OBJECT_CONTROL_STATE:
1472 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1473 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1474 * .AgeforQUADLRU = 0
1475 */
1476 #define GEN8_MOCS 0x78
1477
1478 /* MEMORY_OBJECT_CONTROL_STATE:
1479 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1480 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1481 * .AgeforQUADLRU = 0
1482 */
1483 #define GEN8_EXTERNAL_MOCS 0x18
1484
1485 /* Skylake: MOCS is now an index into an array of 62 different caching
1486 * configurations programmed by the kernel.
1487 */
1488
1489 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1490 #define GEN9_MOCS (2 << 1)
1491
1492 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1493 #define GEN9_EXTERNAL_MOCS (1 << 1)
1494
1495 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1496 #define GEN10_MOCS GEN9_MOCS
1497 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1498
1499 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1500 #define GEN11_MOCS GEN9_MOCS
1501 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1502
1503 struct anv_device_memory {
1504 struct list_head link;
1505
1506 struct anv_bo * bo;
1507 struct anv_memory_type * type;
1508 VkDeviceSize map_size;
1509 void * map;
1510
1511 /* If set, we are holding reference to AHardwareBuffer
1512 * which we must release when memory is freed.
1513 */
1514 struct AHardwareBuffer * ahw;
1515
1516 /* If set, this memory comes from a host pointer. */
1517 void * host_ptr;
1518 };
1519
1520 /**
1521 * Header for Vertex URB Entry (VUE)
1522 */
1523 struct anv_vue_header {
1524 uint32_t Reserved;
1525 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1526 uint32_t ViewportIndex;
1527 float PointWidth;
1528 };
1529
1530 /** Struct representing a sampled image descriptor
1531 *
1532 * This descriptor layout is used for sampled images, bare sampler, and
1533 * combined image/sampler descriptors.
1534 */
1535 struct anv_sampled_image_descriptor {
1536 /** Bindless image handle
1537 *
1538 * This is expected to already be shifted such that the 20-bit
1539 * SURFACE_STATE table index is in the top 20 bits.
1540 */
1541 uint32_t image;
1542
1543 /** Bindless sampler handle
1544 *
1545 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1546 * to the dynamic state base address.
1547 */
1548 uint32_t sampler;
1549 };
1550
1551 /** Struct representing a storage image descriptor */
1552 struct anv_storage_image_descriptor {
1553 /** Bindless image handles
1554 *
1555 * These are expected to already be shifted such that the 20-bit
1556 * SURFACE_STATE table index is in the top 20 bits.
1557 */
1558 uint32_t read_write;
1559 uint32_t write_only;
1560 };
1561
1562 /** Struct representing a address/range descriptor
1563 *
1564 * The fields of this struct correspond directly to the data layout of
1565 * nir_address_format_64bit_bounded_global addresses. The last field is the
1566 * offset in the NIR address so it must be zero so that when you load the
1567 * descriptor you get a pointer to the start of the range.
1568 */
1569 struct anv_address_range_descriptor {
1570 uint64_t address;
1571 uint32_t range;
1572 uint32_t zero;
1573 };
1574
1575 enum anv_descriptor_data {
1576 /** The descriptor contains a BTI reference to a surface state */
1577 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1578 /** The descriptor contains a BTI reference to a sampler state */
1579 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1580 /** The descriptor contains an actual buffer view */
1581 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1582 /** The descriptor contains auxiliary image layout data */
1583 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1584 /** The descriptor contains auxiliary image layout data */
1585 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1586 /** anv_address_range_descriptor with a buffer address and range */
1587 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1588 /** Bindless surface handle */
1589 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1590 /** Storage image handles */
1591 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1592 };
1593
1594 struct anv_descriptor_set_binding_layout {
1595 #ifndef NDEBUG
1596 /* The type of the descriptors in this binding */
1597 VkDescriptorType type;
1598 #endif
1599
1600 /* Flags provided when this binding was created */
1601 VkDescriptorBindingFlagsEXT flags;
1602
1603 /* Bitfield representing the type of data this descriptor contains */
1604 enum anv_descriptor_data data;
1605
1606 /* Maximum number of YCbCr texture/sampler planes */
1607 uint8_t max_plane_count;
1608
1609 /* Number of array elements in this binding (or size in bytes for inline
1610 * uniform data)
1611 */
1612 uint16_t array_size;
1613
1614 /* Index into the flattend descriptor set */
1615 uint16_t descriptor_index;
1616
1617 /* Index into the dynamic state array for a dynamic buffer */
1618 int16_t dynamic_offset_index;
1619
1620 /* Index into the descriptor set buffer views */
1621 int16_t buffer_view_index;
1622
1623 /* Offset into the descriptor buffer where this descriptor lives */
1624 uint32_t descriptor_offset;
1625
1626 /* Immutable samplers (or NULL if no immutable samplers) */
1627 struct anv_sampler **immutable_samplers;
1628 };
1629
1630 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1631
1632 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1633 VkDescriptorType type);
1634
1635 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1636 const struct anv_descriptor_set_binding_layout *binding,
1637 bool sampler);
1638
1639 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1640 const struct anv_descriptor_set_binding_layout *binding,
1641 bool sampler);
1642
1643 struct anv_descriptor_set_layout {
1644 /* Descriptor set layouts can be destroyed at almost any time */
1645 uint32_t ref_cnt;
1646
1647 /* Number of bindings in this descriptor set */
1648 uint16_t binding_count;
1649
1650 /* Total size of the descriptor set with room for all array entries */
1651 uint16_t size;
1652
1653 /* Shader stages affected by this descriptor set */
1654 uint16_t shader_stages;
1655
1656 /* Number of buffer views in this descriptor set */
1657 uint16_t buffer_view_count;
1658
1659 /* Number of dynamic offsets used by this descriptor set */
1660 uint16_t dynamic_offset_count;
1661
1662 /* Size of the descriptor buffer for this descriptor set */
1663 uint32_t descriptor_buffer_size;
1664
1665 /* Bindings in this descriptor set */
1666 struct anv_descriptor_set_binding_layout binding[0];
1667 };
1668
1669 static inline void
1670 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1671 {
1672 assert(layout && layout->ref_cnt >= 1);
1673 p_atomic_inc(&layout->ref_cnt);
1674 }
1675
1676 static inline void
1677 anv_descriptor_set_layout_unref(struct anv_device *device,
1678 struct anv_descriptor_set_layout *layout)
1679 {
1680 assert(layout && layout->ref_cnt >= 1);
1681 if (p_atomic_dec_zero(&layout->ref_cnt))
1682 vk_free(&device->alloc, layout);
1683 }
1684
1685 struct anv_descriptor {
1686 VkDescriptorType type;
1687
1688 union {
1689 struct {
1690 VkImageLayout layout;
1691 struct anv_image_view *image_view;
1692 struct anv_sampler *sampler;
1693 };
1694
1695 struct {
1696 struct anv_buffer *buffer;
1697 uint64_t offset;
1698 uint64_t range;
1699 };
1700
1701 struct anv_buffer_view *buffer_view;
1702 };
1703 };
1704
1705 struct anv_descriptor_set {
1706 struct anv_descriptor_pool *pool;
1707 struct anv_descriptor_set_layout *layout;
1708 uint32_t size;
1709
1710 /* State relative to anv_descriptor_pool::bo */
1711 struct anv_state desc_mem;
1712 /* Surface state for the descriptor buffer */
1713 struct anv_state desc_surface_state;
1714
1715 uint32_t buffer_view_count;
1716 struct anv_buffer_view *buffer_views;
1717
1718 /* Link to descriptor pool's desc_sets list . */
1719 struct list_head pool_link;
1720
1721 struct anv_descriptor descriptors[0];
1722 };
1723
1724 struct anv_buffer_view {
1725 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1726 uint64_t range; /**< VkBufferViewCreateInfo::range */
1727
1728 struct anv_address address;
1729
1730 struct anv_state surface_state;
1731 struct anv_state storage_surface_state;
1732 struct anv_state writeonly_storage_surface_state;
1733
1734 struct brw_image_param storage_image_param;
1735 };
1736
1737 struct anv_push_descriptor_set {
1738 struct anv_descriptor_set set;
1739
1740 /* Put this field right behind anv_descriptor_set so it fills up the
1741 * descriptors[0] field. */
1742 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1743
1744 /** True if the descriptor set buffer has been referenced by a draw or
1745 * dispatch command.
1746 */
1747 bool set_used_on_gpu;
1748
1749 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1750 };
1751
1752 struct anv_descriptor_pool {
1753 uint32_t size;
1754 uint32_t next;
1755 uint32_t free_list;
1756
1757 struct anv_bo bo;
1758 struct util_vma_heap bo_heap;
1759
1760 struct anv_state_stream surface_state_stream;
1761 void *surface_state_free_list;
1762
1763 struct list_head desc_sets;
1764
1765 char data[0];
1766 };
1767
1768 enum anv_descriptor_template_entry_type {
1769 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1770 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1771 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1772 };
1773
1774 struct anv_descriptor_template_entry {
1775 /* The type of descriptor in this entry */
1776 VkDescriptorType type;
1777
1778 /* Binding in the descriptor set */
1779 uint32_t binding;
1780
1781 /* Offset at which to write into the descriptor set binding */
1782 uint32_t array_element;
1783
1784 /* Number of elements to write into the descriptor set binding */
1785 uint32_t array_count;
1786
1787 /* Offset into the user provided data */
1788 size_t offset;
1789
1790 /* Stride between elements into the user provided data */
1791 size_t stride;
1792 };
1793
1794 struct anv_descriptor_update_template {
1795 VkPipelineBindPoint bind_point;
1796
1797 /* The descriptor set this template corresponds to. This value is only
1798 * valid if the template was created with the templateType
1799 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1800 */
1801 uint8_t set;
1802
1803 /* Number of entries in this template */
1804 uint32_t entry_count;
1805
1806 /* Entries of the template */
1807 struct anv_descriptor_template_entry entries[0];
1808 };
1809
1810 size_t
1811 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1812
1813 void
1814 anv_descriptor_set_write_image_view(struct anv_device *device,
1815 struct anv_descriptor_set *set,
1816 const VkDescriptorImageInfo * const info,
1817 VkDescriptorType type,
1818 uint32_t binding,
1819 uint32_t element);
1820
1821 void
1822 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1823 struct anv_descriptor_set *set,
1824 VkDescriptorType type,
1825 struct anv_buffer_view *buffer_view,
1826 uint32_t binding,
1827 uint32_t element);
1828
1829 void
1830 anv_descriptor_set_write_buffer(struct anv_device *device,
1831 struct anv_descriptor_set *set,
1832 struct anv_state_stream *alloc_stream,
1833 VkDescriptorType type,
1834 struct anv_buffer *buffer,
1835 uint32_t binding,
1836 uint32_t element,
1837 VkDeviceSize offset,
1838 VkDeviceSize range);
1839 void
1840 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1841 struct anv_descriptor_set *set,
1842 uint32_t binding,
1843 const void *data,
1844 size_t offset,
1845 size_t size);
1846
1847 void
1848 anv_descriptor_set_write_template(struct anv_device *device,
1849 struct anv_descriptor_set *set,
1850 struct anv_state_stream *alloc_stream,
1851 const struct anv_descriptor_update_template *template,
1852 const void *data);
1853
1854 VkResult
1855 anv_descriptor_set_create(struct anv_device *device,
1856 struct anv_descriptor_pool *pool,
1857 struct anv_descriptor_set_layout *layout,
1858 struct anv_descriptor_set **out_set);
1859
1860 void
1861 anv_descriptor_set_destroy(struct anv_device *device,
1862 struct anv_descriptor_pool *pool,
1863 struct anv_descriptor_set *set);
1864
1865 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
1866 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
1867 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
1868 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1869
1870 struct anv_pipeline_binding {
1871 /* The descriptor set this surface corresponds to. The special value of
1872 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1873 * to a color attachment and not a regular descriptor.
1874 */
1875 uint8_t set;
1876
1877 /* Binding in the descriptor set */
1878 uint32_t binding;
1879
1880 /* Index in the binding */
1881 uint32_t index;
1882
1883 /* Plane in the binding index */
1884 uint8_t plane;
1885
1886 /* Input attachment index (relative to the subpass) */
1887 uint8_t input_attachment_index;
1888
1889 /* For a storage image, whether it is write-only */
1890 bool write_only;
1891 };
1892
1893 struct anv_pipeline_layout {
1894 struct {
1895 struct anv_descriptor_set_layout *layout;
1896 uint32_t dynamic_offset_start;
1897 } set[MAX_SETS];
1898
1899 uint32_t num_sets;
1900
1901 unsigned char sha1[20];
1902 };
1903
1904 struct anv_buffer {
1905 struct anv_device * device;
1906 VkDeviceSize size;
1907
1908 VkBufferUsageFlags usage;
1909
1910 /* Set when bound */
1911 struct anv_address address;
1912 };
1913
1914 static inline uint64_t
1915 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1916 {
1917 assert(offset <= buffer->size);
1918 if (range == VK_WHOLE_SIZE) {
1919 return buffer->size - offset;
1920 } else {
1921 assert(range + offset >= range);
1922 assert(range + offset <= buffer->size);
1923 return range;
1924 }
1925 }
1926
1927 enum anv_cmd_dirty_bits {
1928 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1929 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1930 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1931 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1932 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1933 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1934 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1935 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1936 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1937 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1938 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1939 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1940 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1941 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
1942 };
1943 typedef uint32_t anv_cmd_dirty_mask_t;
1944
1945 enum anv_pipe_bits {
1946 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1947 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1948 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1949 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1950 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1951 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1952 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1953 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1954 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1955 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1956 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1957
1958 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1959 * a flush has happened but not a CS stall. The next time we do any sort
1960 * of invalidation we need to insert a CS stall at that time. Otherwise,
1961 * we would have to CS stall on every flush which could be bad.
1962 */
1963 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1964
1965 /* This bit does not exist directly in PIPE_CONTROL. It means that render
1966 * target operations related to transfer commands with VkBuffer as
1967 * destination are ongoing. Some operations like copies on the command
1968 * streamer might need to be aware of this to trigger the appropriate stall
1969 * before they can proceed with the copy.
1970 */
1971 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
1972 };
1973
1974 #define ANV_PIPE_FLUSH_BITS ( \
1975 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1976 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1977 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1978
1979 #define ANV_PIPE_STALL_BITS ( \
1980 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1981 ANV_PIPE_DEPTH_STALL_BIT | \
1982 ANV_PIPE_CS_STALL_BIT)
1983
1984 #define ANV_PIPE_INVALIDATE_BITS ( \
1985 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1986 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1987 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1988 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1989 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1990 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1991
1992 static inline enum anv_pipe_bits
1993 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1994 {
1995 enum anv_pipe_bits pipe_bits = 0;
1996
1997 unsigned b;
1998 for_each_bit(b, flags) {
1999 switch ((VkAccessFlagBits)(1 << b)) {
2000 case VK_ACCESS_SHADER_WRITE_BIT:
2001 /* We're transitioning a buffer that was previously used as write
2002 * destination through the data port. To make its content available
2003 * to future operations, flush the data cache.
2004 */
2005 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2006 break;
2007 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2008 /* We're transitioning a buffer that was previously used as render
2009 * target. To make its content available to future operations, flush
2010 * the render target cache.
2011 */
2012 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2013 break;
2014 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2015 /* We're transitioning a buffer that was previously used as depth
2016 * buffer. To make its content available to future operations, flush
2017 * the depth cache.
2018 */
2019 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2020 break;
2021 case VK_ACCESS_TRANSFER_WRITE_BIT:
2022 /* We're transitioning a buffer that was previously used as a
2023 * transfer write destination. Generic write operations include color
2024 * & depth operations as well as buffer operations like :
2025 * - vkCmdClearColorImage()
2026 * - vkCmdClearDepthStencilImage()
2027 * - vkCmdBlitImage()
2028 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2029 *
2030 * Most of these operations are implemented using Blorp which writes
2031 * through the render target, so flush that cache to make it visible
2032 * to future operations. And for depth related operations we also
2033 * need to flush the depth cache.
2034 */
2035 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2036 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2037 break;
2038 case VK_ACCESS_MEMORY_WRITE_BIT:
2039 /* We're transitioning a buffer for generic write operations. Flush
2040 * all the caches.
2041 */
2042 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2043 break;
2044 default:
2045 break; /* Nothing to do */
2046 }
2047 }
2048
2049 return pipe_bits;
2050 }
2051
2052 static inline enum anv_pipe_bits
2053 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2054 {
2055 enum anv_pipe_bits pipe_bits = 0;
2056
2057 unsigned b;
2058 for_each_bit(b, flags) {
2059 switch ((VkAccessFlagBits)(1 << b)) {
2060 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2061 /* Indirect draw commands take a buffer as input that we're going to
2062 * read from the command streamer to load some of the HW registers
2063 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2064 * command streamer stall so that all the cache flushes have
2065 * completed before the command streamer loads from memory.
2066 */
2067 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2068 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2069 * through a vertex buffer, so invalidate that cache.
2070 */
2071 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2072 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2073 * UBO from the buffer, so we need to invalidate constant cache.
2074 */
2075 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2076 break;
2077 case VK_ACCESS_INDEX_READ_BIT:
2078 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2079 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2080 * commands, so we invalidate the VF cache to make sure there is no
2081 * stale data when we start rendering.
2082 */
2083 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2084 break;
2085 case VK_ACCESS_UNIFORM_READ_BIT:
2086 /* We transitioning a buffer to be used as uniform data. Because
2087 * uniform is accessed through the data port & sampler, we need to
2088 * invalidate the texture cache (sampler) & constant cache (data
2089 * port) to avoid stale data.
2090 */
2091 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2092 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2093 break;
2094 case VK_ACCESS_SHADER_READ_BIT:
2095 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2096 case VK_ACCESS_TRANSFER_READ_BIT:
2097 /* Transitioning a buffer to be read through the sampler, so
2098 * invalidate the texture cache, we don't want any stale data.
2099 */
2100 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2101 break;
2102 case VK_ACCESS_MEMORY_READ_BIT:
2103 /* Transitioning a buffer for generic read, invalidate all the
2104 * caches.
2105 */
2106 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2107 break;
2108 case VK_ACCESS_MEMORY_WRITE_BIT:
2109 /* Generic write, make sure all previously written things land in
2110 * memory.
2111 */
2112 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2113 break;
2114 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2115 /* Transitioning a buffer for conditional rendering. We'll load the
2116 * content of this buffer into HW registers using the command
2117 * streamer, so we need to stall the command streamer to make sure
2118 * any in-flight flush operations have completed.
2119 */
2120 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2121 break;
2122 default:
2123 break; /* Nothing to do */
2124 }
2125 }
2126
2127 return pipe_bits;
2128 }
2129
2130 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2131 VK_IMAGE_ASPECT_COLOR_BIT | \
2132 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2133 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2134 VK_IMAGE_ASPECT_PLANE_2_BIT)
2135 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2136 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2137 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2138 VK_IMAGE_ASPECT_PLANE_2_BIT)
2139
2140 struct anv_vertex_binding {
2141 struct anv_buffer * buffer;
2142 VkDeviceSize offset;
2143 };
2144
2145 struct anv_xfb_binding {
2146 struct anv_buffer * buffer;
2147 VkDeviceSize offset;
2148 VkDeviceSize size;
2149 };
2150
2151 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2152 #define ANV_PARAM_IS_PUSH(param) ((uint32_t)(param) >> 16 == 1)
2153 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2154
2155 #define ANV_PARAM_DYN_OFFSET(offset) ((2 << 16) | (uint32_t)(offset))
2156 #define ANV_PARAM_IS_DYN_OFFSET(param) ((uint32_t)(param) >> 16 == 2)
2157 #define ANV_PARAM_DYN_OFFSET_IDX(param) ((param) & 0xffff)
2158
2159 struct anv_push_constants {
2160 /* Push constant data provided by the client through vkPushConstants */
2161 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2162
2163 /* Used for vkCmdDispatchBase */
2164 uint32_t base_work_group_id[3];
2165 };
2166
2167 struct anv_dynamic_state {
2168 struct {
2169 uint32_t count;
2170 VkViewport viewports[MAX_VIEWPORTS];
2171 } viewport;
2172
2173 struct {
2174 uint32_t count;
2175 VkRect2D scissors[MAX_SCISSORS];
2176 } scissor;
2177
2178 float line_width;
2179
2180 struct {
2181 float bias;
2182 float clamp;
2183 float slope;
2184 } depth_bias;
2185
2186 float blend_constants[4];
2187
2188 struct {
2189 float min;
2190 float max;
2191 } depth_bounds;
2192
2193 struct {
2194 uint32_t front;
2195 uint32_t back;
2196 } stencil_compare_mask;
2197
2198 struct {
2199 uint32_t front;
2200 uint32_t back;
2201 } stencil_write_mask;
2202
2203 struct {
2204 uint32_t front;
2205 uint32_t back;
2206 } stencil_reference;
2207 };
2208
2209 extern const struct anv_dynamic_state default_dynamic_state;
2210
2211 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2212 const struct anv_dynamic_state *src,
2213 uint32_t copy_mask);
2214
2215 struct anv_surface_state {
2216 struct anv_state state;
2217 /** Address of the surface referred to by this state
2218 *
2219 * This address is relative to the start of the BO.
2220 */
2221 struct anv_address address;
2222 /* Address of the aux surface, if any
2223 *
2224 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2225 *
2226 * With the exception of gen8, the bottom 12 bits of this address' offset
2227 * include extra aux information.
2228 */
2229 struct anv_address aux_address;
2230 /* Address of the clear color, if any
2231 *
2232 * This address is relative to the start of the BO.
2233 */
2234 struct anv_address clear_address;
2235 };
2236
2237 /**
2238 * Attachment state when recording a renderpass instance.
2239 *
2240 * The clear value is valid only if there exists a pending clear.
2241 */
2242 struct anv_attachment_state {
2243 enum isl_aux_usage aux_usage;
2244 enum isl_aux_usage input_aux_usage;
2245 struct anv_surface_state color;
2246 struct anv_surface_state input;
2247
2248 VkImageLayout current_layout;
2249 VkImageAspectFlags pending_clear_aspects;
2250 VkImageAspectFlags pending_load_aspects;
2251 bool fast_clear;
2252 VkClearValue clear_value;
2253 bool clear_color_is_zero_one;
2254 bool clear_color_is_zero;
2255
2256 /* When multiview is active, attachments with a renderpass clear
2257 * operation have their respective layers cleared on the first
2258 * subpass that uses them, and only in that subpass. We keep track
2259 * of this using a bitfield to indicate which layers of an attachment
2260 * have not been cleared yet when multiview is active.
2261 */
2262 uint32_t pending_clear_views;
2263 };
2264
2265 /** State tracking for particular pipeline bind point
2266 *
2267 * This struct is the base struct for anv_cmd_graphics_state and
2268 * anv_cmd_compute_state. These are used to track state which is bound to a
2269 * particular type of pipeline. Generic state that applies per-stage such as
2270 * binding table offsets and push constants is tracked generically with a
2271 * per-stage array in anv_cmd_state.
2272 */
2273 struct anv_cmd_pipeline_state {
2274 struct anv_pipeline *pipeline;
2275 struct anv_pipeline_layout *layout;
2276
2277 struct anv_descriptor_set *descriptors[MAX_SETS];
2278 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2279
2280 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2281 };
2282
2283 /** State tracking for graphics pipeline
2284 *
2285 * This has anv_cmd_pipeline_state as a base struct to track things which get
2286 * bound to a graphics pipeline. Along with general pipeline bind point state
2287 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2288 * state which is graphics-specific.
2289 */
2290 struct anv_cmd_graphics_state {
2291 struct anv_cmd_pipeline_state base;
2292
2293 anv_cmd_dirty_mask_t dirty;
2294 uint32_t vb_dirty;
2295
2296 struct anv_dynamic_state dynamic;
2297
2298 struct {
2299 struct anv_buffer *index_buffer;
2300 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2301 uint32_t index_offset;
2302 } gen7;
2303 };
2304
2305 /** State tracking for compute pipeline
2306 *
2307 * This has anv_cmd_pipeline_state as a base struct to track things which get
2308 * bound to a compute pipeline. Along with general pipeline bind point state
2309 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2310 * state which is compute-specific.
2311 */
2312 struct anv_cmd_compute_state {
2313 struct anv_cmd_pipeline_state base;
2314
2315 bool pipeline_dirty;
2316
2317 struct anv_address num_workgroups;
2318 };
2319
2320 /** State required while building cmd buffer */
2321 struct anv_cmd_state {
2322 /* PIPELINE_SELECT.PipelineSelection */
2323 uint32_t current_pipeline;
2324 const struct gen_l3_config * current_l3_config;
2325
2326 struct anv_cmd_graphics_state gfx;
2327 struct anv_cmd_compute_state compute;
2328
2329 enum anv_pipe_bits pending_pipe_bits;
2330 VkShaderStageFlags descriptors_dirty;
2331 VkShaderStageFlags push_constants_dirty;
2332
2333 struct anv_framebuffer * framebuffer;
2334 struct anv_render_pass * pass;
2335 struct anv_subpass * subpass;
2336 VkRect2D render_area;
2337 uint32_t restart_index;
2338 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2339 bool xfb_enabled;
2340 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2341 VkShaderStageFlags push_constant_stages;
2342 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2343 struct anv_state binding_tables[MESA_SHADER_STAGES];
2344 struct anv_state samplers[MESA_SHADER_STAGES];
2345
2346 /**
2347 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2348 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2349 * and before invoking the secondary in ExecuteCommands.
2350 */
2351 bool pma_fix_enabled;
2352
2353 /**
2354 * Whether or not we know for certain that HiZ is enabled for the current
2355 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2356 * enabled or not, this will be false.
2357 */
2358 bool hiz_enabled;
2359
2360 bool conditional_render_enabled;
2361
2362 /**
2363 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2364 * valid only when recording a render pass instance.
2365 */
2366 struct anv_attachment_state * attachments;
2367
2368 /**
2369 * Surface states for color render targets. These are stored in a single
2370 * flat array. For depth-stencil attachments, the surface state is simply
2371 * left blank.
2372 */
2373 struct anv_state render_pass_states;
2374
2375 /**
2376 * A null surface state of the right size to match the framebuffer. This
2377 * is one of the states in render_pass_states.
2378 */
2379 struct anv_state null_surface_state;
2380 };
2381
2382 struct anv_cmd_pool {
2383 VkAllocationCallbacks alloc;
2384 struct list_head cmd_buffers;
2385 };
2386
2387 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2388
2389 enum anv_cmd_buffer_exec_mode {
2390 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2391 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2392 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2393 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2394 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2395 };
2396
2397 struct anv_cmd_buffer {
2398 VK_LOADER_DATA _loader_data;
2399
2400 struct anv_device * device;
2401
2402 struct anv_cmd_pool * pool;
2403 struct list_head pool_link;
2404
2405 struct anv_batch batch;
2406
2407 /* Fields required for the actual chain of anv_batch_bo's.
2408 *
2409 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2410 */
2411 struct list_head batch_bos;
2412 enum anv_cmd_buffer_exec_mode exec_mode;
2413
2414 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2415 * referenced by this command buffer
2416 *
2417 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2418 */
2419 struct u_vector seen_bbos;
2420
2421 /* A vector of int32_t's for every block of binding tables.
2422 *
2423 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2424 */
2425 struct u_vector bt_block_states;
2426 uint32_t bt_next;
2427
2428 struct anv_reloc_list surface_relocs;
2429 /** Last seen surface state block pool center bo offset */
2430 uint32_t last_ss_pool_center;
2431
2432 /* Serial for tracking buffer completion */
2433 uint32_t serial;
2434
2435 /* Stream objects for storing temporary data */
2436 struct anv_state_stream surface_state_stream;
2437 struct anv_state_stream dynamic_state_stream;
2438
2439 VkCommandBufferUsageFlags usage_flags;
2440 VkCommandBufferLevel level;
2441
2442 struct anv_cmd_state state;
2443 };
2444
2445 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2446 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2447 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2448 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2449 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2450 struct anv_cmd_buffer *secondary);
2451 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2452 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2453 struct anv_cmd_buffer *cmd_buffer,
2454 const VkSemaphore *in_semaphores,
2455 uint32_t num_in_semaphores,
2456 const VkSemaphore *out_semaphores,
2457 uint32_t num_out_semaphores,
2458 VkFence fence);
2459
2460 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2461
2462 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2463 const void *data, uint32_t size, uint32_t alignment);
2464 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2465 uint32_t *a, uint32_t *b,
2466 uint32_t dwords, uint32_t alignment);
2467
2468 struct anv_address
2469 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2470 struct anv_state
2471 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2472 uint32_t entries, uint32_t *state_offset);
2473 struct anv_state
2474 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2475 struct anv_state
2476 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2477 uint32_t size, uint32_t alignment);
2478
2479 VkResult
2480 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2481
2482 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2483 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2484 bool depth_clamp_enable);
2485 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2486
2487 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2488 struct anv_render_pass *pass,
2489 struct anv_framebuffer *framebuffer,
2490 const VkClearValue *clear_values);
2491
2492 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2493
2494 struct anv_state
2495 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2496 gl_shader_stage stage);
2497 struct anv_state
2498 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2499
2500 const struct anv_image_view *
2501 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2502
2503 VkResult
2504 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2505 uint32_t num_entries,
2506 uint32_t *state_offset,
2507 struct anv_state *bt_state);
2508
2509 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2510
2511 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2512
2513 enum anv_fence_type {
2514 ANV_FENCE_TYPE_NONE = 0,
2515 ANV_FENCE_TYPE_BO,
2516 ANV_FENCE_TYPE_SYNCOBJ,
2517 ANV_FENCE_TYPE_WSI,
2518 };
2519
2520 enum anv_bo_fence_state {
2521 /** Indicates that this is a new (or newly reset fence) */
2522 ANV_BO_FENCE_STATE_RESET,
2523
2524 /** Indicates that this fence has been submitted to the GPU but is still
2525 * (as far as we know) in use by the GPU.
2526 */
2527 ANV_BO_FENCE_STATE_SUBMITTED,
2528
2529 ANV_BO_FENCE_STATE_SIGNALED,
2530 };
2531
2532 struct anv_fence_impl {
2533 enum anv_fence_type type;
2534
2535 union {
2536 /** Fence implementation for BO fences
2537 *
2538 * These fences use a BO and a set of CPU-tracked state flags. The BO
2539 * is added to the object list of the last execbuf call in a QueueSubmit
2540 * and is marked EXEC_WRITE. The state flags track when the BO has been
2541 * submitted to the kernel. We need to do this because Vulkan lets you
2542 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2543 * will say it's idle in this case.
2544 */
2545 struct {
2546 struct anv_bo bo;
2547 enum anv_bo_fence_state state;
2548 } bo;
2549
2550 /** DRM syncobj handle for syncobj-based fences */
2551 uint32_t syncobj;
2552
2553 /** WSI fence */
2554 struct wsi_fence *fence_wsi;
2555 };
2556 };
2557
2558 struct anv_fence {
2559 /* Permanent fence state. Every fence has some form of permanent state
2560 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2561 * cross-process fences) or it could just be a dummy for use internally.
2562 */
2563 struct anv_fence_impl permanent;
2564
2565 /* Temporary fence state. A fence *may* have temporary state. That state
2566 * is added to the fence by an import operation and is reset back to
2567 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2568 * state cannot be signaled because the fence must already be signaled
2569 * before the temporary state can be exported from the fence in the other
2570 * process and imported here.
2571 */
2572 struct anv_fence_impl temporary;
2573 };
2574
2575 struct anv_event {
2576 uint64_t semaphore;
2577 struct anv_state state;
2578 };
2579
2580 enum anv_semaphore_type {
2581 ANV_SEMAPHORE_TYPE_NONE = 0,
2582 ANV_SEMAPHORE_TYPE_DUMMY,
2583 ANV_SEMAPHORE_TYPE_BO,
2584 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2585 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2586 };
2587
2588 struct anv_semaphore_impl {
2589 enum anv_semaphore_type type;
2590
2591 union {
2592 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2593 * This BO will be added to the object list on any execbuf2 calls for
2594 * which this semaphore is used as a wait or signal fence. When used as
2595 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2596 */
2597 struct anv_bo *bo;
2598
2599 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2600 * If the semaphore is in the unsignaled state due to either just being
2601 * created or because it has been used for a wait, fd will be -1.
2602 */
2603 int fd;
2604
2605 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2606 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2607 * import so we don't need to bother with a userspace cache.
2608 */
2609 uint32_t syncobj;
2610 };
2611 };
2612
2613 struct anv_semaphore {
2614 /* Permanent semaphore state. Every semaphore has some form of permanent
2615 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2616 * (for cross-process semaphores0 or it could just be a dummy for use
2617 * internally.
2618 */
2619 struct anv_semaphore_impl permanent;
2620
2621 /* Temporary semaphore state. A semaphore *may* have temporary state.
2622 * That state is added to the semaphore by an import operation and is reset
2623 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2624 * semaphore with temporary state cannot be signaled because the semaphore
2625 * must already be signaled before the temporary state can be exported from
2626 * the semaphore in the other process and imported here.
2627 */
2628 struct anv_semaphore_impl temporary;
2629 };
2630
2631 void anv_semaphore_reset_temporary(struct anv_device *device,
2632 struct anv_semaphore *semaphore);
2633
2634 struct anv_shader_module {
2635 unsigned char sha1[20];
2636 uint32_t size;
2637 char data[0];
2638 };
2639
2640 static inline gl_shader_stage
2641 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2642 {
2643 assert(__builtin_popcount(vk_stage) == 1);
2644 return ffs(vk_stage) - 1;
2645 }
2646
2647 static inline VkShaderStageFlagBits
2648 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2649 {
2650 return (1 << mesa_stage);
2651 }
2652
2653 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2654
2655 #define anv_foreach_stage(stage, stage_bits) \
2656 for (gl_shader_stage stage, \
2657 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2658 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2659 __tmp &= ~(1 << (stage)))
2660
2661 struct anv_pipeline_bind_map {
2662 uint32_t surface_count;
2663 uint32_t sampler_count;
2664
2665 struct anv_pipeline_binding * surface_to_descriptor;
2666 struct anv_pipeline_binding * sampler_to_descriptor;
2667 };
2668
2669 struct anv_shader_bin_key {
2670 uint32_t size;
2671 uint8_t data[0];
2672 };
2673
2674 struct anv_shader_bin {
2675 uint32_t ref_cnt;
2676
2677 const struct anv_shader_bin_key *key;
2678
2679 struct anv_state kernel;
2680 uint32_t kernel_size;
2681
2682 struct anv_state constant_data;
2683 uint32_t constant_data_size;
2684
2685 const struct brw_stage_prog_data *prog_data;
2686 uint32_t prog_data_size;
2687
2688 struct nir_xfb_info *xfb_info;
2689
2690 struct anv_pipeline_bind_map bind_map;
2691 };
2692
2693 struct anv_shader_bin *
2694 anv_shader_bin_create(struct anv_device *device,
2695 const void *key, uint32_t key_size,
2696 const void *kernel, uint32_t kernel_size,
2697 const void *constant_data, uint32_t constant_data_size,
2698 const struct brw_stage_prog_data *prog_data,
2699 uint32_t prog_data_size, const void *prog_data_param,
2700 const struct nir_xfb_info *xfb_info,
2701 const struct anv_pipeline_bind_map *bind_map);
2702
2703 void
2704 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2705
2706 static inline void
2707 anv_shader_bin_ref(struct anv_shader_bin *shader)
2708 {
2709 assert(shader && shader->ref_cnt >= 1);
2710 p_atomic_inc(&shader->ref_cnt);
2711 }
2712
2713 static inline void
2714 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2715 {
2716 assert(shader && shader->ref_cnt >= 1);
2717 if (p_atomic_dec_zero(&shader->ref_cnt))
2718 anv_shader_bin_destroy(device, shader);
2719 }
2720
2721 struct anv_pipeline {
2722 struct anv_device * device;
2723 struct anv_batch batch;
2724 uint32_t batch_data[512];
2725 struct anv_reloc_list batch_relocs;
2726 uint32_t dynamic_state_mask;
2727 struct anv_dynamic_state dynamic_state;
2728
2729 struct anv_subpass * subpass;
2730
2731 bool needs_data_cache;
2732
2733 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2734
2735 struct {
2736 const struct gen_l3_config * l3_config;
2737 uint32_t total_size;
2738 } urb;
2739
2740 VkShaderStageFlags active_stages;
2741 struct anv_state blend_state;
2742
2743 uint32_t vb_used;
2744 struct anv_pipeline_vertex_binding {
2745 uint32_t stride;
2746 bool instanced;
2747 uint32_t instance_divisor;
2748 } vb[MAX_VBS];
2749
2750 uint8_t xfb_used;
2751
2752 bool primitive_restart;
2753 uint32_t topology;
2754
2755 uint32_t cs_right_mask;
2756
2757 bool writes_depth;
2758 bool depth_test_enable;
2759 bool writes_stencil;
2760 bool stencil_test_enable;
2761 bool depth_clamp_enable;
2762 bool depth_clip_enable;
2763 bool sample_shading_enable;
2764 bool kill_pixel;
2765
2766 struct {
2767 uint32_t sf[7];
2768 uint32_t depth_stencil_state[3];
2769 } gen7;
2770
2771 struct {
2772 uint32_t sf[4];
2773 uint32_t raster[5];
2774 uint32_t wm_depth_stencil[3];
2775 } gen8;
2776
2777 struct {
2778 uint32_t wm_depth_stencil[4];
2779 } gen9;
2780
2781 uint32_t interface_descriptor_data[8];
2782 };
2783
2784 static inline bool
2785 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2786 gl_shader_stage stage)
2787 {
2788 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2789 }
2790
2791 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2792 static inline const struct brw_##prefix##_prog_data * \
2793 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2794 { \
2795 if (anv_pipeline_has_stage(pipeline, stage)) { \
2796 return (const struct brw_##prefix##_prog_data *) \
2797 pipeline->shaders[stage]->prog_data; \
2798 } else { \
2799 return NULL; \
2800 } \
2801 }
2802
2803 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2804 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2805 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2806 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2807 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2808 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2809
2810 static inline const struct brw_vue_prog_data *
2811 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2812 {
2813 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2814 return &get_gs_prog_data(pipeline)->base;
2815 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2816 return &get_tes_prog_data(pipeline)->base;
2817 else
2818 return &get_vs_prog_data(pipeline)->base;
2819 }
2820
2821 VkResult
2822 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2823 struct anv_pipeline_cache *cache,
2824 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2825 const VkAllocationCallbacks *alloc);
2826
2827 VkResult
2828 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2829 struct anv_pipeline_cache *cache,
2830 const VkComputePipelineCreateInfo *info,
2831 const struct anv_shader_module *module,
2832 const char *entrypoint,
2833 const VkSpecializationInfo *spec_info);
2834
2835 struct anv_format_plane {
2836 enum isl_format isl_format:16;
2837 struct isl_swizzle swizzle;
2838
2839 /* Whether this plane contains chroma channels */
2840 bool has_chroma;
2841
2842 /* For downscaling of YUV planes */
2843 uint8_t denominator_scales[2];
2844
2845 /* How to map sampled ycbcr planes to a single 4 component element. */
2846 struct isl_swizzle ycbcr_swizzle;
2847
2848 /* What aspect is associated to this plane */
2849 VkImageAspectFlags aspect;
2850 };
2851
2852
2853 struct anv_format {
2854 struct anv_format_plane planes[3];
2855 VkFormat vk_format;
2856 uint8_t n_planes;
2857 bool can_ycbcr;
2858 };
2859
2860 static inline uint32_t
2861 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
2862 VkImageAspectFlags aspect_mask)
2863 {
2864 switch (aspect_mask) {
2865 case VK_IMAGE_ASPECT_COLOR_BIT:
2866 case VK_IMAGE_ASPECT_DEPTH_BIT:
2867 case VK_IMAGE_ASPECT_PLANE_0_BIT:
2868 return 0;
2869 case VK_IMAGE_ASPECT_STENCIL_BIT:
2870 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
2871 return 0;
2872 /* Fall-through */
2873 case VK_IMAGE_ASPECT_PLANE_1_BIT:
2874 return 1;
2875 case VK_IMAGE_ASPECT_PLANE_2_BIT:
2876 return 2;
2877 default:
2878 /* Purposefully assert with depth/stencil aspects. */
2879 unreachable("invalid image aspect");
2880 }
2881 }
2882
2883 static inline VkImageAspectFlags
2884 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
2885 uint32_t plane)
2886 {
2887 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2888 if (util_bitcount(image_aspects) > 1)
2889 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
2890 return VK_IMAGE_ASPECT_COLOR_BIT;
2891 }
2892 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
2893 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
2894 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
2895 return VK_IMAGE_ASPECT_STENCIL_BIT;
2896 }
2897
2898 #define anv_foreach_image_aspect_bit(b, image, aspects) \
2899 for_each_bit(b, anv_image_expand_aspects(image, aspects))
2900
2901 const struct anv_format *
2902 anv_get_format(VkFormat format);
2903
2904 static inline uint32_t
2905 anv_get_format_planes(VkFormat vk_format)
2906 {
2907 const struct anv_format *format = anv_get_format(vk_format);
2908
2909 return format != NULL ? format->n_planes : 0;
2910 }
2911
2912 struct anv_format_plane
2913 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
2914 VkImageAspectFlagBits aspect, VkImageTiling tiling);
2915
2916 static inline enum isl_format
2917 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
2918 VkImageAspectFlags aspect, VkImageTiling tiling)
2919 {
2920 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
2921 }
2922
2923 static inline struct isl_swizzle
2924 anv_swizzle_for_render(struct isl_swizzle swizzle)
2925 {
2926 /* Sometimes the swizzle will have alpha map to one. We do this to fake
2927 * RGB as RGBA for texturing
2928 */
2929 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
2930 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
2931
2932 /* But it doesn't matter what we render to that channel */
2933 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
2934
2935 return swizzle;
2936 }
2937
2938 void
2939 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
2940
2941 /**
2942 * Subsurface of an anv_image.
2943 */
2944 struct anv_surface {
2945 /** Valid only if isl_surf::size_B > 0. */
2946 struct isl_surf isl;
2947
2948 /**
2949 * Offset from VkImage's base address, as bound by vkBindImageMemory().
2950 */
2951 uint32_t offset;
2952 };
2953
2954 struct anv_image {
2955 VkImageType type; /**< VkImageCreateInfo::imageType */
2956 /* The original VkFormat provided by the client. This may not match any
2957 * of the actual surface formats.
2958 */
2959 VkFormat vk_format;
2960 const struct anv_format *format;
2961
2962 VkImageAspectFlags aspects;
2963 VkExtent3D extent;
2964 uint32_t levels;
2965 uint32_t array_size;
2966 uint32_t samples; /**< VkImageCreateInfo::samples */
2967 uint32_t n_planes;
2968 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
2969 VkImageCreateFlags create_flags; /* Flags used when creating image. */
2970 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
2971
2972 /** True if this is needs to be bound to an appropriately tiled BO.
2973 *
2974 * When not using modifiers, consumers such as X11, Wayland, and KMS need
2975 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
2976 * we require a dedicated allocation so that we can know to allocate a
2977 * tiled buffer.
2978 */
2979 bool needs_set_tiling;
2980
2981 /**
2982 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
2983 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
2984 */
2985 uint64_t drm_format_mod;
2986
2987 VkDeviceSize size;
2988 uint32_t alignment;
2989
2990 /* Whether the image is made of several underlying buffer objects rather a
2991 * single one with different offsets.
2992 */
2993 bool disjoint;
2994
2995 /* All the formats that can be used when creating views of this image
2996 * are CCS_E compatible.
2997 */
2998 bool ccs_e_compatible;
2999
3000 /* Image was created with external format. */
3001 bool external_format;
3002
3003 /**
3004 * Image subsurfaces
3005 *
3006 * For each foo, anv_image::planes[x].surface is valid if and only if
3007 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3008 * to figure the number associated with a given aspect.
3009 *
3010 * The hardware requires that the depth buffer and stencil buffer be
3011 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3012 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3013 * allocate the depth and stencil buffers as separate surfaces in the same
3014 * bo.
3015 *
3016 * Memory layout :
3017 *
3018 * -----------------------
3019 * | surface0 | /|\
3020 * ----------------------- |
3021 * | shadow surface0 | |
3022 * ----------------------- | Plane 0
3023 * | aux surface0 | |
3024 * ----------------------- |
3025 * | fast clear colors0 | \|/
3026 * -----------------------
3027 * | surface1 | /|\
3028 * ----------------------- |
3029 * | shadow surface1 | |
3030 * ----------------------- | Plane 1
3031 * | aux surface1 | |
3032 * ----------------------- |
3033 * | fast clear colors1 | \|/
3034 * -----------------------
3035 * | ... |
3036 * | |
3037 * -----------------------
3038 */
3039 struct {
3040 /**
3041 * Offset of the entire plane (whenever the image is disjoint this is
3042 * set to 0).
3043 */
3044 uint32_t offset;
3045
3046 VkDeviceSize size;
3047 uint32_t alignment;
3048
3049 struct anv_surface surface;
3050
3051 /**
3052 * A surface which shadows the main surface and may have different
3053 * tiling. This is used for sampling using a tiling that isn't supported
3054 * for other operations.
3055 */
3056 struct anv_surface shadow_surface;
3057
3058 /**
3059 * For color images, this is the aux usage for this image when not used
3060 * as a color attachment.
3061 *
3062 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3063 * image has a HiZ buffer.
3064 */
3065 enum isl_aux_usage aux_usage;
3066
3067 struct anv_surface aux_surface;
3068
3069 /**
3070 * Offset of the fast clear state (used to compute the
3071 * fast_clear_state_offset of the following planes).
3072 */
3073 uint32_t fast_clear_state_offset;
3074
3075 /**
3076 * BO associated with this plane, set when bound.
3077 */
3078 struct anv_address address;
3079
3080 /**
3081 * When destroying the image, also free the bo.
3082 * */
3083 bool bo_is_owned;
3084 } planes[3];
3085 };
3086
3087 /* The ordering of this enum is important */
3088 enum anv_fast_clear_type {
3089 /** Image does not have/support any fast-clear blocks */
3090 ANV_FAST_CLEAR_NONE = 0,
3091 /** Image has/supports fast-clear but only to the default value */
3092 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3093 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3094 ANV_FAST_CLEAR_ANY = 2,
3095 };
3096
3097 /* Returns the number of auxiliary buffer levels attached to an image. */
3098 static inline uint8_t
3099 anv_image_aux_levels(const struct anv_image * const image,
3100 VkImageAspectFlagBits aspect)
3101 {
3102 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3103 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3104 image->planes[plane].aux_surface.isl.levels : 0;
3105 }
3106
3107 /* Returns the number of auxiliary buffer layers attached to an image. */
3108 static inline uint32_t
3109 anv_image_aux_layers(const struct anv_image * const image,
3110 VkImageAspectFlagBits aspect,
3111 const uint8_t miplevel)
3112 {
3113 assert(image);
3114
3115 /* The miplevel must exist in the main buffer. */
3116 assert(miplevel < image->levels);
3117
3118 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3119 /* There are no layers with auxiliary data because the miplevel has no
3120 * auxiliary data.
3121 */
3122 return 0;
3123 } else {
3124 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3125 return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
3126 image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
3127 }
3128 }
3129
3130 static inline struct anv_address
3131 anv_image_get_clear_color_addr(const struct anv_device *device,
3132 const struct anv_image *image,
3133 VkImageAspectFlagBits aspect)
3134 {
3135 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3136
3137 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3138 return anv_address_add(image->planes[plane].address,
3139 image->planes[plane].fast_clear_state_offset);
3140 }
3141
3142 static inline struct anv_address
3143 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3144 const struct anv_image *image,
3145 VkImageAspectFlagBits aspect)
3146 {
3147 struct anv_address addr =
3148 anv_image_get_clear_color_addr(device, image, aspect);
3149
3150 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3151 device->isl_dev.ss.clear_color_state_size :
3152 device->isl_dev.ss.clear_value_size;
3153 return anv_address_add(addr, clear_color_state_size);
3154 }
3155
3156 static inline struct anv_address
3157 anv_image_get_compression_state_addr(const struct anv_device *device,
3158 const struct anv_image *image,
3159 VkImageAspectFlagBits aspect,
3160 uint32_t level, uint32_t array_layer)
3161 {
3162 assert(level < anv_image_aux_levels(image, aspect));
3163 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3164 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3165 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3166
3167 struct anv_address addr =
3168 anv_image_get_fast_clear_type_addr(device, image, aspect);
3169 addr.offset += 4; /* Go past the fast clear type */
3170
3171 if (image->type == VK_IMAGE_TYPE_3D) {
3172 for (uint32_t l = 0; l < level; l++)
3173 addr.offset += anv_minify(image->extent.depth, l) * 4;
3174 } else {
3175 addr.offset += level * image->array_size * 4;
3176 }
3177 addr.offset += array_layer * 4;
3178
3179 return addr;
3180 }
3181
3182 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3183 static inline bool
3184 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3185 const struct anv_image *image)
3186 {
3187 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3188 return false;
3189
3190 if (devinfo->gen < 8)
3191 return false;
3192
3193 return image->samples == 1;
3194 }
3195
3196 void
3197 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3198 const struct anv_image *image,
3199 VkImageAspectFlagBits aspect,
3200 enum isl_aux_usage aux_usage,
3201 uint32_t level,
3202 uint32_t base_layer,
3203 uint32_t layer_count);
3204
3205 void
3206 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3207 const struct anv_image *image,
3208 VkImageAspectFlagBits aspect,
3209 enum isl_aux_usage aux_usage,
3210 enum isl_format format, struct isl_swizzle swizzle,
3211 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3212 VkRect2D area, union isl_color_value clear_color);
3213 void
3214 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3215 const struct anv_image *image,
3216 VkImageAspectFlags aspects,
3217 enum isl_aux_usage depth_aux_usage,
3218 uint32_t level,
3219 uint32_t base_layer, uint32_t layer_count,
3220 VkRect2D area,
3221 float depth_value, uint8_t stencil_value);
3222 void
3223 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3224 const struct anv_image *src_image,
3225 enum isl_aux_usage src_aux_usage,
3226 uint32_t src_level, uint32_t src_base_layer,
3227 const struct anv_image *dst_image,
3228 enum isl_aux_usage dst_aux_usage,
3229 uint32_t dst_level, uint32_t dst_base_layer,
3230 VkImageAspectFlagBits aspect,
3231 uint32_t src_x, uint32_t src_y,
3232 uint32_t dst_x, uint32_t dst_y,
3233 uint32_t width, uint32_t height,
3234 uint32_t layer_count,
3235 enum blorp_filter filter);
3236 void
3237 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3238 const struct anv_image *image,
3239 VkImageAspectFlagBits aspect, uint32_t level,
3240 uint32_t base_layer, uint32_t layer_count,
3241 enum isl_aux_op hiz_op);
3242 void
3243 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3244 const struct anv_image *image,
3245 VkImageAspectFlags aspects,
3246 uint32_t level,
3247 uint32_t base_layer, uint32_t layer_count,
3248 VkRect2D area, uint8_t stencil_value);
3249 void
3250 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3251 const struct anv_image *image,
3252 enum isl_format format,
3253 VkImageAspectFlagBits aspect,
3254 uint32_t base_layer, uint32_t layer_count,
3255 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3256 bool predicate);
3257 void
3258 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3259 const struct anv_image *image,
3260 enum isl_format format,
3261 VkImageAspectFlagBits aspect, uint32_t level,
3262 uint32_t base_layer, uint32_t layer_count,
3263 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3264 bool predicate);
3265
3266 void
3267 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3268 const struct anv_image *image,
3269 uint32_t base_level, uint32_t level_count,
3270 uint32_t base_layer, uint32_t layer_count);
3271
3272 enum isl_aux_usage
3273 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3274 const struct anv_image *image,
3275 const VkImageAspectFlagBits aspect,
3276 const VkImageLayout layout);
3277
3278 enum anv_fast_clear_type
3279 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3280 const struct anv_image * const image,
3281 const VkImageAspectFlagBits aspect,
3282 const VkImageLayout layout);
3283
3284 /* This is defined as a macro so that it works for both
3285 * VkImageSubresourceRange and VkImageSubresourceLayers
3286 */
3287 #define anv_get_layerCount(_image, _range) \
3288 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3289 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3290
3291 static inline uint32_t
3292 anv_get_levelCount(const struct anv_image *image,
3293 const VkImageSubresourceRange *range)
3294 {
3295 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3296 image->levels - range->baseMipLevel : range->levelCount;
3297 }
3298
3299 static inline VkImageAspectFlags
3300 anv_image_expand_aspects(const struct anv_image *image,
3301 VkImageAspectFlags aspects)
3302 {
3303 /* If the underlying image has color plane aspects and
3304 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3305 * the underlying image. */
3306 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3307 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3308 return image->aspects;
3309
3310 return aspects;
3311 }
3312
3313 static inline bool
3314 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3315 VkImageAspectFlags aspects2)
3316 {
3317 if (aspects1 == aspects2)
3318 return true;
3319
3320 /* Only 1 color aspects are compatibles. */
3321 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3322 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3323 util_bitcount(aspects1) == util_bitcount(aspects2))
3324 return true;
3325
3326 return false;
3327 }
3328
3329 struct anv_image_view {
3330 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3331
3332 VkImageAspectFlags aspect_mask;
3333 VkFormat vk_format;
3334 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3335
3336 unsigned n_planes;
3337 struct {
3338 uint32_t image_plane;
3339
3340 struct isl_view isl;
3341
3342 /**
3343 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3344 * image layout of SHADER_READ_ONLY_OPTIMAL or
3345 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3346 */
3347 struct anv_surface_state optimal_sampler_surface_state;
3348
3349 /**
3350 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3351 * image layout of GENERAL.
3352 */
3353 struct anv_surface_state general_sampler_surface_state;
3354
3355 /**
3356 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3357 * states for write-only and readable, using the real format for
3358 * write-only and the lowered format for readable.
3359 */
3360 struct anv_surface_state storage_surface_state;
3361 struct anv_surface_state writeonly_storage_surface_state;
3362
3363 struct brw_image_param storage_image_param;
3364 } planes[3];
3365 };
3366
3367 enum anv_image_view_state_flags {
3368 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3369 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3370 };
3371
3372 void anv_image_fill_surface_state(struct anv_device *device,
3373 const struct anv_image *image,
3374 VkImageAspectFlagBits aspect,
3375 const struct isl_view *view,
3376 isl_surf_usage_flags_t view_usage,
3377 enum isl_aux_usage aux_usage,
3378 const union isl_color_value *clear_color,
3379 enum anv_image_view_state_flags flags,
3380 struct anv_surface_state *state_inout,
3381 struct brw_image_param *image_param_out);
3382
3383 struct anv_image_create_info {
3384 const VkImageCreateInfo *vk_info;
3385
3386 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3387 isl_tiling_flags_t isl_tiling_flags;
3388
3389 /** These flags will be added to any derived from VkImageCreateInfo. */
3390 isl_surf_usage_flags_t isl_extra_usage_flags;
3391
3392 uint32_t stride;
3393 bool external_format;
3394 };
3395
3396 VkResult anv_image_create(VkDevice _device,
3397 const struct anv_image_create_info *info,
3398 const VkAllocationCallbacks* alloc,
3399 VkImage *pImage);
3400
3401 const struct anv_surface *
3402 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3403 VkImageAspectFlags aspect_mask);
3404
3405 enum isl_format
3406 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3407
3408 static inline struct VkExtent3D
3409 anv_sanitize_image_extent(const VkImageType imageType,
3410 const struct VkExtent3D imageExtent)
3411 {
3412 switch (imageType) {
3413 case VK_IMAGE_TYPE_1D:
3414 return (VkExtent3D) { imageExtent.width, 1, 1 };
3415 case VK_IMAGE_TYPE_2D:
3416 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3417 case VK_IMAGE_TYPE_3D:
3418 return imageExtent;
3419 default:
3420 unreachable("invalid image type");
3421 }
3422 }
3423
3424 static inline struct VkOffset3D
3425 anv_sanitize_image_offset(const VkImageType imageType,
3426 const struct VkOffset3D imageOffset)
3427 {
3428 switch (imageType) {
3429 case VK_IMAGE_TYPE_1D:
3430 return (VkOffset3D) { imageOffset.x, 0, 0 };
3431 case VK_IMAGE_TYPE_2D:
3432 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3433 case VK_IMAGE_TYPE_3D:
3434 return imageOffset;
3435 default:
3436 unreachable("invalid image type");
3437 }
3438 }
3439
3440 VkFormatFeatureFlags
3441 anv_get_image_format_features(const struct gen_device_info *devinfo,
3442 VkFormat vk_format,
3443 const struct anv_format *anv_format,
3444 VkImageTiling vk_tiling);
3445
3446 void anv_fill_buffer_surface_state(struct anv_device *device,
3447 struct anv_state state,
3448 enum isl_format format,
3449 struct anv_address address,
3450 uint32_t range, uint32_t stride);
3451
3452 static inline void
3453 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3454 const struct anv_attachment_state *att_state,
3455 const struct anv_image_view *iview)
3456 {
3457 const struct isl_format_layout *view_fmtl =
3458 isl_format_get_layout(iview->planes[0].isl.format);
3459
3460 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3461 if (view_fmtl->channels.c.bits) \
3462 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3463
3464 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3465 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3466 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3467 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3468
3469 #undef COPY_CLEAR_COLOR_CHANNEL
3470 }
3471
3472
3473 struct anv_ycbcr_conversion {
3474 const struct anv_format * format;
3475 VkSamplerYcbcrModelConversion ycbcr_model;
3476 VkSamplerYcbcrRange ycbcr_range;
3477 VkComponentSwizzle mapping[4];
3478 VkChromaLocation chroma_offsets[2];
3479 VkFilter chroma_filter;
3480 bool chroma_reconstruction;
3481 };
3482
3483 struct anv_sampler {
3484 uint32_t state[3][4];
3485 uint32_t n_planes;
3486 struct anv_ycbcr_conversion *conversion;
3487
3488 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3489 * and with a 32-byte stride for use as bindless samplers.
3490 */
3491 struct anv_state bindless_state;
3492 };
3493
3494 struct anv_framebuffer {
3495 uint32_t width;
3496 uint32_t height;
3497 uint32_t layers;
3498
3499 uint32_t attachment_count;
3500 struct anv_image_view * attachments[0];
3501 };
3502
3503 struct anv_subpass_attachment {
3504 VkImageUsageFlagBits usage;
3505 uint32_t attachment;
3506 VkImageLayout layout;
3507 };
3508
3509 struct anv_subpass {
3510 uint32_t attachment_count;
3511
3512 /**
3513 * A pointer to all attachment references used in this subpass.
3514 * Only valid if ::attachment_count > 0.
3515 */
3516 struct anv_subpass_attachment * attachments;
3517 uint32_t input_count;
3518 struct anv_subpass_attachment * input_attachments;
3519 uint32_t color_count;
3520 struct anv_subpass_attachment * color_attachments;
3521 struct anv_subpass_attachment * resolve_attachments;
3522
3523 struct anv_subpass_attachment * depth_stencil_attachment;
3524 struct anv_subpass_attachment * ds_resolve_attachment;
3525 VkResolveModeFlagBitsKHR depth_resolve_mode;
3526 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3527
3528 uint32_t view_mask;
3529
3530 /** Subpass has a depth/stencil self-dependency */
3531 bool has_ds_self_dep;
3532
3533 /** Subpass has at least one color resolve attachment */
3534 bool has_color_resolve;
3535 };
3536
3537 static inline unsigned
3538 anv_subpass_view_count(const struct anv_subpass *subpass)
3539 {
3540 return MAX2(1, util_bitcount(subpass->view_mask));
3541 }
3542
3543 struct anv_render_pass_attachment {
3544 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3545 * its members individually.
3546 */
3547 VkFormat format;
3548 uint32_t samples;
3549 VkImageUsageFlags usage;
3550 VkAttachmentLoadOp load_op;
3551 VkAttachmentStoreOp store_op;
3552 VkAttachmentLoadOp stencil_load_op;
3553 VkImageLayout initial_layout;
3554 VkImageLayout final_layout;
3555 VkImageLayout first_subpass_layout;
3556
3557 /* The subpass id in which the attachment will be used last. */
3558 uint32_t last_subpass_idx;
3559 };
3560
3561 struct anv_render_pass {
3562 uint32_t attachment_count;
3563 uint32_t subpass_count;
3564 /* An array of subpass_count+1 flushes, one per subpass boundary */
3565 enum anv_pipe_bits * subpass_flushes;
3566 struct anv_render_pass_attachment * attachments;
3567 struct anv_subpass subpasses[0];
3568 };
3569
3570 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3571
3572 struct anv_query_pool {
3573 VkQueryType type;
3574 VkQueryPipelineStatisticFlags pipeline_statistics;
3575 /** Stride between slots, in bytes */
3576 uint32_t stride;
3577 /** Number of slots in this query pool */
3578 uint32_t slots;
3579 struct anv_bo bo;
3580 };
3581
3582 int anv_get_instance_entrypoint_index(const char *name);
3583 int anv_get_device_entrypoint_index(const char *name);
3584
3585 bool
3586 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3587 const struct anv_instance_extension_table *instance);
3588
3589 bool
3590 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3591 const struct anv_instance_extension_table *instance,
3592 const struct anv_device_extension_table *device);
3593
3594 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3595 const char *name);
3596
3597 void anv_dump_image_to_ppm(struct anv_device *device,
3598 struct anv_image *image, unsigned miplevel,
3599 unsigned array_layer, VkImageAspectFlagBits aspect,
3600 const char *filename);
3601
3602 enum anv_dump_action {
3603 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3604 };
3605
3606 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3607 void anv_dump_finish(void);
3608
3609 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
3610 struct anv_framebuffer *fb);
3611
3612 static inline uint32_t
3613 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3614 {
3615 /* This function must be called from within a subpass. */
3616 assert(cmd_state->pass && cmd_state->subpass);
3617
3618 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3619
3620 /* The id of this subpass shouldn't exceed the number of subpasses in this
3621 * render pass minus 1.
3622 */
3623 assert(subpass_id < cmd_state->pass->subpass_count);
3624 return subpass_id;
3625 }
3626
3627 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3628 \
3629 static inline struct __anv_type * \
3630 __anv_type ## _from_handle(__VkType _handle) \
3631 { \
3632 return (struct __anv_type *) _handle; \
3633 } \
3634 \
3635 static inline __VkType \
3636 __anv_type ## _to_handle(struct __anv_type *_obj) \
3637 { \
3638 return (__VkType) _obj; \
3639 }
3640
3641 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3642 \
3643 static inline struct __anv_type * \
3644 __anv_type ## _from_handle(__VkType _handle) \
3645 { \
3646 return (struct __anv_type *)(uintptr_t) _handle; \
3647 } \
3648 \
3649 static inline __VkType \
3650 __anv_type ## _to_handle(struct __anv_type *_obj) \
3651 { \
3652 return (__VkType)(uintptr_t) _obj; \
3653 }
3654
3655 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3656 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3657
3658 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3659 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3660 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3661 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3662 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3663
3664 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3665 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3666 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3667 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3668 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3669 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3670 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3671 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3672 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3673 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3674 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3675 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3676 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3677 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3678 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3679 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3680 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3681 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3682 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3683 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3684 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3685 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3686 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3687
3688 /* Gen-specific function declarations */
3689 #ifdef genX
3690 # include "anv_genX.h"
3691 #else
3692 # define genX(x) gen7_##x
3693 # include "anv_genX.h"
3694 # undef genX
3695 # define genX(x) gen75_##x
3696 # include "anv_genX.h"
3697 # undef genX
3698 # define genX(x) gen8_##x
3699 # include "anv_genX.h"
3700 # undef genX
3701 # define genX(x) gen9_##x
3702 # include "anv_genX.h"
3703 # undef genX
3704 # define genX(x) gen10_##x
3705 # include "anv_genX.h"
3706 # undef genX
3707 # define genX(x) gen11_##x
3708 # include "anv_genX.h"
3709 # undef genX
3710 #endif
3711
3712 #endif /* ANV_PRIVATE_H */