anv: Emit cherryview SF state without including gen9_pack.h
[mesa.git] / src / intel / vulkan / gen8_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 #if GEN_GEN == 8
36 void
37 gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer)
38 {
39 uint32_t count = cmd_buffer->state.dynamic.viewport.count;
40 const VkViewport *viewports = cmd_buffer->state.dynamic.viewport.viewports;
41 struct anv_state sf_clip_state =
42 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 64, 64);
43
44 for (uint32_t i = 0; i < count; i++) {
45 const VkViewport *vp = &viewports[i];
46
47 /* The gen7 state struct has just the matrix and guardband fields, the
48 * gen8 struct adds the min/max viewport fields. */
49 struct GENX(SF_CLIP_VIEWPORT) sf_clip_viewport = {
50 .ViewportMatrixElementm00 = vp->width / 2,
51 .ViewportMatrixElementm11 = vp->height / 2,
52 .ViewportMatrixElementm22 = 1.0,
53 .ViewportMatrixElementm30 = vp->x + vp->width / 2,
54 .ViewportMatrixElementm31 = vp->y + vp->height / 2,
55 .ViewportMatrixElementm32 = 0.0,
56 .XMinClipGuardband = -1.0f,
57 .XMaxClipGuardband = 1.0f,
58 .YMinClipGuardband = -1.0f,
59 .YMaxClipGuardband = 1.0f,
60 .XMinViewPort = vp->x,
61 .XMaxViewPort = vp->x + vp->width - 1,
62 .YMinViewPort = vp->y,
63 .YMaxViewPort = vp->y + vp->height - 1,
64 };
65
66 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_state.map + i * 64,
67 &sf_clip_viewport);
68 }
69
70 if (!cmd_buffer->device->info.has_llc)
71 anv_state_clflush(sf_clip_state);
72
73 anv_batch_emit(&cmd_buffer->batch,
74 GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), clip) {
75 clip.SFClipViewportPointer = sf_clip_state.offset;
76 }
77 }
78
79 void
80 gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
81 bool depth_clamp_enable)
82 {
83 uint32_t count = cmd_buffer->state.dynamic.viewport.count;
84 const VkViewport *viewports = cmd_buffer->state.dynamic.viewport.viewports;
85 struct anv_state cc_state =
86 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32);
87
88 for (uint32_t i = 0; i < count; i++) {
89 const VkViewport *vp = &viewports[i];
90
91 struct GENX(CC_VIEWPORT) cc_viewport = {
92 .MinimumDepth = depth_clamp_enable ? vp->minDepth : 0.0f,
93 .MaximumDepth = depth_clamp_enable ? vp->maxDepth : 1.0f,
94 };
95
96 GENX(CC_VIEWPORT_pack)(NULL, cc_state.map + i * 8, &cc_viewport);
97 }
98
99 if (!cmd_buffer->device->info.has_llc)
100 anv_state_clflush(cc_state);
101
102 anv_batch_emit(&cmd_buffer->batch,
103 GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), cc) {
104 cc.CCViewportPointer = cc_state.offset;
105 }
106 }
107 #endif
108
109 static void
110 __emit_genx_sf_state(struct anv_cmd_buffer *cmd_buffer)
111 {
112 uint32_t sf_dw[GENX(3DSTATE_SF_length)];
113 struct GENX(3DSTATE_SF) sf = {
114 GENX(3DSTATE_SF_header),
115 .LineWidth = cmd_buffer->state.dynamic.line_width,
116 };
117 GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf);
118 /* FIXME: gen9.fs */
119 anv_batch_emit_merge(&cmd_buffer->batch, sf_dw,
120 cmd_buffer->state.pipeline->gen8.sf);
121 }
122
123 void
124 gen9_emit_sf_state(struct anv_cmd_buffer *cmd_buffer);
125
126 #if GEN_GEN == 9
127
128 void
129 gen9_emit_sf_state(struct anv_cmd_buffer *cmd_buffer)
130 {
131 __emit_genx_sf_state(cmd_buffer);
132 }
133
134 #endif
135
136 #if GEN_GEN == 8
137
138 static void
139 __emit_sf_state(struct anv_cmd_buffer *cmd_buffer)
140 {
141 if (cmd_buffer->device->info.is_cherryview)
142 gen9_emit_sf_state(cmd_buffer);
143 else
144 __emit_genx_sf_state(cmd_buffer);
145 }
146
147 #else
148
149 static void
150 __emit_sf_state(struct anv_cmd_buffer *cmd_buffer)
151 {
152 __emit_genx_sf_state(cmd_buffer);
153 }
154
155 #endif
156
157 void
158 genX(cmd_buffer_flush_dynamic_state)(struct anv_cmd_buffer *cmd_buffer)
159 {
160 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
161
162 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
163 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH)) {
164 __emit_sf_state(cmd_buffer);
165 }
166
167 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
168 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)){
169 uint32_t raster_dw[GENX(3DSTATE_RASTER_length)];
170 struct GENX(3DSTATE_RASTER) raster = {
171 GENX(3DSTATE_RASTER_header),
172 .GlobalDepthOffsetConstant = cmd_buffer->state.dynamic.depth_bias.bias,
173 .GlobalDepthOffsetScale = cmd_buffer->state.dynamic.depth_bias.slope,
174 .GlobalDepthOffsetClamp = cmd_buffer->state.dynamic.depth_bias.clamp
175 };
176 GENX(3DSTATE_RASTER_pack)(NULL, raster_dw, &raster);
177 anv_batch_emit_merge(&cmd_buffer->batch, raster_dw,
178 pipeline->gen8.raster);
179 }
180
181 /* Stencil reference values moved from COLOR_CALC_STATE in gen8 to
182 * 3DSTATE_WM_DEPTH_STENCIL in gen9. That means the dirty bits gets split
183 * across different state packets for gen8 and gen9. We handle that by
184 * using a big old #if switch here.
185 */
186 #if GEN_GEN == 8
187 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS |
188 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
189 struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
190 struct anv_state cc_state =
191 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
192 GENX(COLOR_CALC_STATE_length) * 4,
193 64);
194 struct GENX(COLOR_CALC_STATE) cc = {
195 .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
196 .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
197 .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
198 .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
199 .StencilReferenceValue = d->stencil_reference.front & 0xff,
200 .BackFaceStencilReferenceValue = d->stencil_reference.back & 0xff,
201 };
202 GENX(COLOR_CALC_STATE_pack)(NULL, cc_state.map, &cc);
203
204 if (!cmd_buffer->device->info.has_llc)
205 anv_state_clflush(cc_state);
206
207 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), ccp) {
208 ccp.ColorCalcStatePointer = cc_state.offset;
209 ccp.ColorCalcStatePointerValid = true;
210 }
211 }
212
213 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
214 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
215 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK)) {
216 uint32_t wm_depth_stencil_dw[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
217 struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
218
219 struct GENX(3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil) = {
220 GENX(3DSTATE_WM_DEPTH_STENCIL_header),
221
222 .StencilTestMask = d->stencil_compare_mask.front & 0xff,
223 .StencilWriteMask = d->stencil_write_mask.front & 0xff,
224
225 .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff,
226 .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff,
227 };
228 GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, wm_depth_stencil_dw,
229 &wm_depth_stencil);
230
231 anv_batch_emit_merge(&cmd_buffer->batch, wm_depth_stencil_dw,
232 pipeline->gen8.wm_depth_stencil);
233 }
234 #else
235 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS) {
236 struct anv_state cc_state =
237 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
238 GEN9_COLOR_CALC_STATE_length * 4,
239 64);
240 struct GEN9_COLOR_CALC_STATE cc = {
241 .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
242 .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
243 .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
244 .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
245 };
246 GEN9_COLOR_CALC_STATE_pack(NULL, cc_state.map, &cc);
247
248 if (!cmd_buffer->device->info.has_llc)
249 anv_state_clflush(cc_state);
250
251 anv_batch_emit(&cmd_buffer->batch, GEN9_3DSTATE_CC_STATE_POINTERS, ccp) {
252 ccp.ColorCalcStatePointer = cc_state.offset;
253 ccp.ColorCalcStatePointerValid = true;
254 }
255 }
256
257 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
258 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
259 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK |
260 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
261 uint32_t dwords[GEN9_3DSTATE_WM_DEPTH_STENCIL_length];
262 struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
263 struct GEN9_3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil = {
264 GEN9_3DSTATE_WM_DEPTH_STENCIL_header,
265
266 .StencilTestMask = d->stencil_compare_mask.front & 0xff,
267 .StencilWriteMask = d->stencil_write_mask.front & 0xff,
268
269 .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff,
270 .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff,
271
272 .StencilReferenceValue = d->stencil_reference.front & 0xff,
273 .BackfaceStencilReferenceValue = d->stencil_reference.back & 0xff,
274 };
275 GEN9_3DSTATE_WM_DEPTH_STENCIL_pack(NULL, dwords, &wm_depth_stencil);
276
277 anv_batch_emit_merge(&cmd_buffer->batch, dwords,
278 pipeline->gen9.wm_depth_stencil);
279 }
280 #endif
281
282 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
283 ANV_CMD_DIRTY_INDEX_BUFFER)) {
284 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF), vf) {
285 vf.IndexedDrawCutIndexEnable = pipeline->primitive_restart;
286 vf.CutIndex = cmd_buffer->state.restart_index;
287 }
288 }
289
290 cmd_buffer->state.dirty = 0;
291 }
292
293 void genX(CmdBindIndexBuffer)(
294 VkCommandBuffer commandBuffer,
295 VkBuffer _buffer,
296 VkDeviceSize offset,
297 VkIndexType indexType)
298 {
299 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
300 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
301
302 static const uint32_t vk_to_gen_index_type[] = {
303 [VK_INDEX_TYPE_UINT16] = INDEX_WORD,
304 [VK_INDEX_TYPE_UINT32] = INDEX_DWORD,
305 };
306
307 static const uint32_t restart_index_for_type[] = {
308 [VK_INDEX_TYPE_UINT16] = UINT16_MAX,
309 [VK_INDEX_TYPE_UINT32] = UINT32_MAX,
310 };
311
312 cmd_buffer->state.restart_index = restart_index_for_type[indexType];
313
314 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
315 ib.IndexFormat = vk_to_gen_index_type[indexType];
316 ib.MemoryObjectControlState = GENX(MOCS);
317 ib.BufferStartingAddress =
318 (struct anv_address) { buffer->bo, buffer->offset + offset };
319 ib.BufferSize = buffer->size - offset;
320 }
321
322 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER;
323 }
324
325
326 /**
327 * Emit the HZ_OP packet in the sequence specified by the BDW PRM section
328 * entitled: "Optimized Depth Buffer Clear and/or Stencil Buffer Clear."
329 *
330 * \todo Enable Stencil Buffer-only clears
331 */
332 void
333 genX(cmd_buffer_emit_hz_op)(struct anv_cmd_buffer *cmd_buffer,
334 enum blorp_hiz_op op)
335 {
336 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
337 const struct anv_image_view *iview =
338 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
339
340 if (iview == NULL || !anv_image_has_hiz(iview->image))
341 return;
342
343 /* FINISHME: Implement multi-subpass HiZ */
344 if (cmd_buffer->state.pass->subpass_count > 1)
345 return;
346
347 const uint32_t ds = cmd_state->subpass->depth_stencil_attachment;
348
349 /* Section 7.4. of the Vulkan 1.0.27 spec states:
350 *
351 * "The render area must be contained within the framebuffer dimensions."
352 *
353 * Therefore, the only way the extent of the render area can match that of
354 * the image view is if the render area offset equals (0, 0).
355 */
356 const bool full_surface_op =
357 cmd_state->render_area.extent.width == iview->extent.width &&
358 cmd_state->render_area.extent.height == iview->extent.height;
359 if (full_surface_op)
360 assert(cmd_state->render_area.offset.x == 0 &&
361 cmd_state->render_area.offset.y == 0);
362
363 bool depth_clear;
364 bool stencil_clear;
365
366 /* This variable corresponds to the Pixel Dim column in the table below */
367 struct isl_extent2d px_dim;
368
369 /* Validate that we can perform the HZ operation and that it's necessary. */
370 switch (op) {
371 case BLORP_HIZ_OP_DEPTH_CLEAR:
372 stencil_clear = VK_IMAGE_ASPECT_STENCIL_BIT &
373 cmd_state->attachments[ds].pending_clear_aspects;
374 depth_clear = VK_IMAGE_ASPECT_DEPTH_BIT &
375 cmd_state->attachments[ds].pending_clear_aspects;
376
377 /* Apply alignment restrictions. Despite the BDW PRM mentioning this is
378 * only needed for a depth buffer surface type of D16_UNORM, testing
379 * showed it to be necessary for other depth formats as well
380 * (e.g., D32_FLOAT).
381 */
382 #if GEN_GEN == 8
383 /* Pre-SKL, HiZ has an 8x4 sample block. As the number of samples
384 * increases, the number of pixels representable by this block
385 * decreases by a factor of the sample dimensions. Sample dimensions
386 * scale following the MSAA interleaved pattern.
387 *
388 * Sample|Sample|Pixel
389 * Count |Dim |Dim
390 * ===================
391 * 1 | 1x1 | 8x4
392 * 2 | 2x1 | 4x4
393 * 4 | 2x2 | 4x2
394 * 8 | 4x2 | 2x2
395 * 16 | 4x4 | 2x1
396 *
397 * Table: Pixel Dimensions in a HiZ Sample Block Pre-SKL
398 */
399 /* This variable corresponds to the Sample Dim column in the table
400 * above.
401 */
402 const struct isl_extent2d sa_dim =
403 isl_get_interleaved_msaa_px_size_sa(iview->image->samples);
404 px_dim.w = 8 / sa_dim.w;
405 px_dim.h = 4 / sa_dim.h;
406 #elif GEN_GEN >= 9
407 /* SKL+, the sample block becomes a "pixel block" so the expected
408 * pixel dimension is a constant 8x4 px for all sample counts.
409 */
410 px_dim = (struct isl_extent2d) { .w = 8, .h = 4};
411 #endif
412
413 if (depth_clear && !full_surface_op) {
414 /* Fast depth clears clear an entire sample block at a time. As a
415 * result, the rectangle must be aligned to the pixel dimensions of
416 * a sample block for a successful operation.
417 *
418 * Fast clears can still work if the offset is aligned and the render
419 * area offset + extent touches the edge of a depth buffer whose extent
420 * is unaligned. This is because each physical HiZ miplevel is padded
421 * by the px_dim. In this case, the size of the clear rectangle will be
422 * padded later on in this function.
423 */
424 if (cmd_state->render_area.offset.x % px_dim.w ||
425 cmd_state->render_area.offset.y % px_dim.h)
426 depth_clear = false;
427 if (cmd_state->render_area.offset.x +
428 cmd_state->render_area.extent.width != iview->extent.width &&
429 cmd_state->render_area.extent.width % px_dim.w)
430 depth_clear = false;
431 if (cmd_state->render_area.offset.y +
432 cmd_state->render_area.extent.height != iview->extent.height &&
433 cmd_state->render_area.extent.height % px_dim.h)
434 depth_clear = false;
435 }
436
437 if (!depth_clear) {
438 if (stencil_clear) {
439 /* Stencil has no alignment requirements */
440 px_dim = (struct isl_extent2d) { .w = 1, .h = 1};
441 } else {
442 /* Nothing to clear */
443 return;
444 }
445 }
446 break;
447 case BLORP_HIZ_OP_DEPTH_RESOLVE:
448 if (cmd_buffer->state.pass->attachments[ds].store_op !=
449 VK_ATTACHMENT_STORE_OP_STORE)
450 return;
451 break;
452 case BLORP_HIZ_OP_HIZ_RESOLVE:
453 /* If the render area covers the entire surface *and* load_op is either
454 * CLEAR or DONT_CARE then the previous contents of the depth buffer
455 * will be entirely discarded. In this case, we can skip the HiZ
456 * resolve.
457 *
458 * If the render area is not the full surface, we need to do
459 * the resolve because otherwise data outside the render area may get
460 * garbled by the resolve at the end of the render pass.
461 */
462 if (full_surface_op &&
463 cmd_buffer->state.pass->attachments[ds].load_op !=
464 VK_ATTACHMENT_LOAD_OP_LOAD)
465 return;
466 break;
467 case BLORP_HIZ_OP_NONE:
468 unreachable("Invalid HiZ OP");
469 break;
470 }
471
472 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_WM_HZ_OP), hzp) {
473 switch (op) {
474 case BLORP_HIZ_OP_DEPTH_CLEAR:
475 hzp.StencilBufferClearEnable = stencil_clear;
476 hzp.DepthBufferClearEnable = depth_clear;
477 hzp.FullSurfaceDepthandStencilClear = full_surface_op;
478 hzp.StencilClearValue =
479 cmd_state->attachments[ds].clear_value.depthStencil.stencil & 0xff;
480 break;
481 case BLORP_HIZ_OP_DEPTH_RESOLVE:
482 hzp.DepthBufferResolveEnable = true;
483 break;
484 case BLORP_HIZ_OP_HIZ_RESOLVE:
485 hzp.HierarchicalDepthBufferResolveEnable = true;
486 break;
487 case BLORP_HIZ_OP_NONE:
488 unreachable("Invalid HiZ OP");
489 break;
490 }
491
492 if (op != BLORP_HIZ_OP_DEPTH_CLEAR) {
493 /* The Optimized HiZ resolve rectangle must be the size of the full RT
494 * and aligned to 8x4. The non-optimized Depth resolve rectangle must
495 * be the size of the full RT. The same alignment is assumed to be
496 * required.
497 */
498 hzp.ClearRectangleXMin = 0;
499 hzp.ClearRectangleYMin = 0;
500 hzp.ClearRectangleXMax = align_u32(iview->extent.width, 8);
501 hzp.ClearRectangleYMax = align_u32(iview->extent.height, 4);
502 } else {
503 /* Contrary to the HW docs both fields are inclusive */
504 hzp.ClearRectangleXMin = cmd_state->render_area.offset.x;
505 hzp.ClearRectangleYMin = cmd_state->render_area.offset.y;
506 /* Contrary to the HW docs both fields are exclusive */
507 hzp.ClearRectangleXMax = cmd_state->render_area.offset.x +
508 align_u32(cmd_state->render_area.extent.width, px_dim.width);
509 hzp.ClearRectangleYMax = cmd_state->render_area.offset.y +
510 align_u32(cmd_state->render_area.extent.height, px_dim.height);
511 }
512
513
514 /* Due to a hardware issue, this bit MBZ */
515 hzp.ScissorRectangleEnable = false;
516 hzp.NumberofMultisamples = ffs(iview->image->samples) - 1;
517 hzp.SampleMask = 0xFFFF;
518 }
519
520 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
521 pc.PostSyncOperation = WriteImmediateData;
522 pc.Address =
523 (struct anv_address){ &cmd_buffer->device->workaround_bo, 0 };
524 }
525
526 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_WM_HZ_OP), hzp);
527
528 /* Perform clear specific flushing and state updates */
529 if (op == BLORP_HIZ_OP_DEPTH_CLEAR) {
530 if (depth_clear && !full_surface_op) {
531 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
532 pc.DepthStallEnable = true;
533 pc.DepthCacheFlushEnable = true;
534 }
535 }
536
537 /* Remove cleared aspects from the pending mask */
538 if (stencil_clear) {
539 cmd_state->attachments[ds].pending_clear_aspects &=
540 ~VK_IMAGE_ASPECT_STENCIL_BIT;
541 }
542 if (depth_clear) {
543 cmd_state->attachments[ds].pending_clear_aspects &=
544 ~VK_IMAGE_ASPECT_DEPTH_BIT;
545 }
546 }
547 }
548
549 /* Set of stage bits for which are pipelined, i.e. they get queued by the
550 * command streamer for later execution.
551 */
552 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
553 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
554 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
555 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
556 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
557 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
558 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
559 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
560 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
561 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
562 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
563 VK_PIPELINE_STAGE_TRANSFER_BIT | \
564 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
565 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
566 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
567
568 void genX(CmdSetEvent)(
569 VkCommandBuffer commandBuffer,
570 VkEvent _event,
571 VkPipelineStageFlags stageMask)
572 {
573 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
574 ANV_FROM_HANDLE(anv_event, event, _event);
575
576 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
577 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
578 pc.StallAtPixelScoreboard = true;
579 pc.CommandStreamerStallEnable = true;
580 }
581
582 pc.DestinationAddressType = DAT_PPGTT,
583 pc.PostSyncOperation = WriteImmediateData,
584 pc.Address = (struct anv_address) {
585 &cmd_buffer->device->dynamic_state_block_pool.bo,
586 event->state.offset
587 };
588 pc.ImmediateData = VK_EVENT_SET;
589 }
590 }
591
592 void genX(CmdResetEvent)(
593 VkCommandBuffer commandBuffer,
594 VkEvent _event,
595 VkPipelineStageFlags stageMask)
596 {
597 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
598 ANV_FROM_HANDLE(anv_event, event, _event);
599
600 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
601 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
602 pc.StallAtPixelScoreboard = true;
603 pc.CommandStreamerStallEnable = true;
604 }
605
606 pc.DestinationAddressType = DAT_PPGTT;
607 pc.PostSyncOperation = WriteImmediateData;
608 pc.Address = (struct anv_address) {
609 &cmd_buffer->device->dynamic_state_block_pool.bo,
610 event->state.offset
611 };
612 pc.ImmediateData = VK_EVENT_RESET;
613 }
614 }
615
616 void genX(CmdWaitEvents)(
617 VkCommandBuffer commandBuffer,
618 uint32_t eventCount,
619 const VkEvent* pEvents,
620 VkPipelineStageFlags srcStageMask,
621 VkPipelineStageFlags destStageMask,
622 uint32_t memoryBarrierCount,
623 const VkMemoryBarrier* pMemoryBarriers,
624 uint32_t bufferMemoryBarrierCount,
625 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
626 uint32_t imageMemoryBarrierCount,
627 const VkImageMemoryBarrier* pImageMemoryBarriers)
628 {
629 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
630 for (uint32_t i = 0; i < eventCount; i++) {
631 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
632
633 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
634 sem.WaitMode = PollingMode,
635 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
636 sem.SemaphoreDataDword = VK_EVENT_SET,
637 sem.SemaphoreAddress = (struct anv_address) {
638 &cmd_buffer->device->dynamic_state_block_pool.bo,
639 event->state.offset
640 };
641 }
642 }
643
644 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
645 false, /* byRegion */
646 memoryBarrierCount, pMemoryBarriers,
647 bufferMemoryBarrierCount, pBufferMemoryBarriers,
648 imageMemoryBarrierCount, pImageMemoryBarriers);
649 }