anv/blorp: Rework image clear/resolve helpers
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 static void
36 emit_lrm(struct anv_batch *batch,
37 uint32_t reg, struct anv_bo *bo, uint32_t offset)
38 {
39 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
40 lrm.RegisterAddress = reg;
41 lrm.MemoryAddress = (struct anv_address) { bo, offset };
42 }
43 }
44
45 static void
46 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
47 {
48 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
49 lri.RegisterOffset = reg;
50 lri.DataDWord = imm;
51 }
52 }
53
54 #if GEN_IS_HASWELL || GEN_GEN >= 8
55 static void
56 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
57 {
58 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
59 lrr.SourceRegisterAddress = src;
60 lrr.DestinationRegisterAddress = dst;
61 }
62 }
63 #endif
64
65 void
66 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
67 {
68 struct anv_device *device = cmd_buffer->device;
69
70 /* Emit a render target cache flush.
71 *
72 * This isn't documented anywhere in the PRM. However, it seems to be
73 * necessary prior to changing the surface state base adress. Without
74 * this, we get GPU hangs when using multi-level command buffers which
75 * clear depth, reset state base address, and then go render stuff.
76 */
77 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
78 pc.DCFlushEnable = true;
79 pc.RenderTargetCacheFlushEnable = true;
80 pc.CommandStreamerStallEnable = true;
81 }
82
83 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
84 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
85 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
86 sba.GeneralStateBaseAddressModifyEnable = true;
87
88 sba.SurfaceStateBaseAddress =
89 anv_cmd_buffer_surface_base_address(cmd_buffer);
90 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
91 sba.SurfaceStateBaseAddressModifyEnable = true;
92
93 sba.DynamicStateBaseAddress =
94 (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
95 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
96 sba.DynamicStateBaseAddressModifyEnable = true;
97
98 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
99 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
100 sba.IndirectObjectBaseAddressModifyEnable = true;
101
102 sba.InstructionBaseAddress =
103 (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
104 sba.InstructionMemoryObjectControlState = GENX(MOCS);
105 sba.InstructionBaseAddressModifyEnable = true;
106
107 # if (GEN_GEN >= 8)
108 /* Broadwell requires that we specify a buffer size for a bunch of
109 * these fields. However, since we will be growing the BO's live, we
110 * just set them all to the maximum.
111 */
112 sba.GeneralStateBufferSize = 0xfffff;
113 sba.GeneralStateBufferSizeModifyEnable = true;
114 sba.DynamicStateBufferSize = 0xfffff;
115 sba.DynamicStateBufferSizeModifyEnable = true;
116 sba.IndirectObjectBufferSize = 0xfffff;
117 sba.IndirectObjectBufferSizeModifyEnable = true;
118 sba.InstructionBufferSize = 0xfffff;
119 sba.InstructionBuffersizeModifyEnable = true;
120 # endif
121 }
122
123 /* After re-setting the surface state base address, we have to do some
124 * cache flusing so that the sampler engine will pick up the new
125 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
126 * Shared Function > 3D Sampler > State > State Caching (page 96):
127 *
128 * Coherency with system memory in the state cache, like the texture
129 * cache is handled partially by software. It is expected that the
130 * command stream or shader will issue Cache Flush operation or
131 * Cache_Flush sampler message to ensure that the L1 cache remains
132 * coherent with system memory.
133 *
134 * [...]
135 *
136 * Whenever the value of the Dynamic_State_Base_Addr,
137 * Surface_State_Base_Addr are altered, the L1 state cache must be
138 * invalidated to ensure the new surface or sampler state is fetched
139 * from system memory.
140 *
141 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
142 * which, according the PIPE_CONTROL instruction documentation in the
143 * Broadwell PRM:
144 *
145 * Setting this bit is independent of any other bit in this packet.
146 * This bit controls the invalidation of the L1 and L2 state caches
147 * at the top of the pipe i.e. at the parsing time.
148 *
149 * Unfortunately, experimentation seems to indicate that state cache
150 * invalidation through a PIPE_CONTROL does nothing whatsoever in
151 * regards to surface state and binding tables. In stead, it seems that
152 * invalidating the texture cache is what is actually needed.
153 *
154 * XXX: As far as we have been able to determine through
155 * experimentation, shows that flush the texture cache appears to be
156 * sufficient. The theory here is that all of the sampling/rendering
157 * units cache the binding table in the texture cache. However, we have
158 * yet to be able to actually confirm this.
159 */
160 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
161 pc.TextureCacheInvalidationEnable = true;
162 pc.ConstantCacheInvalidationEnable = true;
163 pc.StateCacheInvalidationEnable = true;
164 }
165 }
166
167 static void
168 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
169 struct anv_state state,
170 struct anv_bo *bo, uint32_t offset)
171 {
172 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
173
174 VkResult result =
175 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
176 state.offset + isl_dev->ss.addr_offset, bo, offset);
177 if (result != VK_SUCCESS)
178 anv_batch_set_error(&cmd_buffer->batch, result);
179 }
180
181 static void
182 add_image_view_relocs(struct anv_cmd_buffer *cmd_buffer,
183 const struct anv_image_view *image_view,
184 const uint32_t plane,
185 struct anv_surface_state state)
186 {
187 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
188 const struct anv_image *image = image_view->image;
189 uint32_t image_plane = image_view->planes[plane].image_plane;
190
191 add_surface_state_reloc(cmd_buffer, state.state,
192 image->planes[image_plane].bo, state.address);
193
194 if (state.aux_address) {
195 VkResult result =
196 anv_reloc_list_add(&cmd_buffer->surface_relocs,
197 &cmd_buffer->pool->alloc,
198 state.state.offset + isl_dev->ss.aux_addr_offset,
199 image->planes[image_plane].bo, state.aux_address);
200 if (result != VK_SUCCESS)
201 anv_batch_set_error(&cmd_buffer->batch, result);
202 }
203 }
204
205 static bool
206 color_is_zero_one(VkClearColorValue value, enum isl_format format)
207 {
208 if (isl_format_has_int_channel(format)) {
209 for (unsigned i = 0; i < 4; i++) {
210 if (value.int32[i] != 0 && value.int32[i] != 1)
211 return false;
212 }
213 } else {
214 for (unsigned i = 0; i < 4; i++) {
215 if (value.float32[i] != 0.0f && value.float32[i] != 1.0f)
216 return false;
217 }
218 }
219
220 return true;
221 }
222
223 static void
224 color_attachment_compute_aux_usage(struct anv_device * device,
225 struct anv_cmd_state * cmd_state,
226 uint32_t att, VkRect2D render_area,
227 union isl_color_value *fast_clear_color)
228 {
229 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
230 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
231
232 assert(iview->n_planes == 1);
233
234 if (iview->planes[0].isl.base_array_layer >=
235 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
236 iview->planes[0].isl.base_level)) {
237 /* There is no aux buffer which corresponds to the level and layer(s)
238 * being accessed.
239 */
240 att_state->aux_usage = ISL_AUX_USAGE_NONE;
241 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
242 att_state->fast_clear = false;
243 return;
244 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_MCS) {
245 att_state->aux_usage = ISL_AUX_USAGE_MCS;
246 att_state->input_aux_usage = ISL_AUX_USAGE_MCS;
247 att_state->fast_clear = false;
248 return;
249 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E) {
250 att_state->aux_usage = ISL_AUX_USAGE_CCS_E;
251 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_E;
252 } else {
253 att_state->aux_usage = ISL_AUX_USAGE_CCS_D;
254 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
255 *
256 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
257 * setting is only allowed if Surface Format supported for Fast
258 * Clear. In addition, if the surface is bound to the sampling
259 * engine, Surface Format must be supported for Render Target
260 * Compression for surfaces bound to the sampling engine."
261 *
262 * In other words, we can only sample from a fast-cleared image if it
263 * also supports color compression.
264 */
265 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
266 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
267
268 /* While fast-clear resolves and partial resolves are fairly cheap in the
269 * case where you render to most of the pixels, full resolves are not
270 * because they potentially involve reading and writing the entire
271 * framebuffer. If we can't texture with CCS_E, we should leave it off and
272 * limit ourselves to fast clears.
273 */
274 if (cmd_state->pass->attachments[att].first_subpass_layout ==
275 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
276 anv_perf_warn(device->instance, iview->image,
277 "Not temporarily enabling CCS_E.");
278 }
279 } else {
280 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
281 }
282 }
283
284 assert(iview->image->planes[0].aux_surface.isl.usage & ISL_SURF_USAGE_CCS_BIT);
285
286 att_state->clear_color_is_zero_one =
287 color_is_zero_one(att_state->clear_value.color, iview->planes[0].isl.format);
288 att_state->clear_color_is_zero =
289 att_state->clear_value.color.uint32[0] == 0 &&
290 att_state->clear_value.color.uint32[1] == 0 &&
291 att_state->clear_value.color.uint32[2] == 0 &&
292 att_state->clear_value.color.uint32[3] == 0;
293
294 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
295 /* Start off assuming fast clears are possible */
296 att_state->fast_clear = true;
297
298 /* Potentially, we could do partial fast-clears but doing so has crazy
299 * alignment restrictions. It's easier to just restrict to full size
300 * fast clears for now.
301 */
302 if (render_area.offset.x != 0 ||
303 render_area.offset.y != 0 ||
304 render_area.extent.width != iview->extent.width ||
305 render_area.extent.height != iview->extent.height)
306 att_state->fast_clear = false;
307
308 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
309 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
310 att_state->fast_clear = false;
311
312 /* We allow fast clears when all aux layers of the miplevel are targeted.
313 * See add_fast_clear_state_buffer() for more information. Also, because
314 * we only either do a fast clear or a normal clear and not both, this
315 * complies with the gen7 restriction of not fast-clearing multiple
316 * layers.
317 */
318 if (cmd_state->framebuffer->layers !=
319 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
320 iview->planes[0].isl.base_level)) {
321 att_state->fast_clear = false;
322 if (GEN_GEN == 7) {
323 anv_perf_warn(device->instance, iview->image,
324 "Not fast-clearing the first layer in "
325 "a multi-layer fast clear.");
326 }
327 }
328
329 /* We only allow fast clears in the GENERAL layout if the auxiliary
330 * buffer is always enabled and the fast-clear value is all 0's. See
331 * add_fast_clear_state_buffer() for more information.
332 */
333 if (cmd_state->pass->attachments[att].first_subpass_layout ==
334 VK_IMAGE_LAYOUT_GENERAL &&
335 (!att_state->clear_color_is_zero ||
336 iview->image->planes[0].aux_usage == ISL_AUX_USAGE_NONE)) {
337 att_state->fast_clear = false;
338 }
339
340 if (att_state->fast_clear) {
341 memcpy(fast_clear_color->u32, att_state->clear_value.color.uint32,
342 sizeof(fast_clear_color->u32));
343 }
344 } else {
345 att_state->fast_clear = false;
346 }
347 }
348
349 static bool
350 need_input_attachment_state(const struct anv_render_pass_attachment *att)
351 {
352 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
353 return false;
354
355 /* We only allocate input attachment states for color surfaces. Compression
356 * is not yet enabled for depth textures and stencil doesn't allow
357 * compression so we can just use the texture surface state from the view.
358 */
359 return vk_format_is_color(att->format);
360 }
361
362 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
363 * the initial layout is undefined, the HiZ buffer and depth buffer will
364 * represent the same data at the end of this operation.
365 */
366 static void
367 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
368 const struct anv_image *image,
369 VkImageLayout initial_layout,
370 VkImageLayout final_layout)
371 {
372 assert(image);
373
374 /* A transition is a no-op if HiZ is not enabled, or if the initial and
375 * final layouts are equal.
376 *
377 * The undefined layout indicates that the user doesn't care about the data
378 * that's currently in the buffer. Therefore, a data-preserving resolve
379 * operation is not needed.
380 */
381 if (image->planes[0].aux_usage != ISL_AUX_USAGE_HIZ || initial_layout == final_layout)
382 return;
383
384 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
385 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
386 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
387 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
388 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
389 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
390
391 enum blorp_hiz_op hiz_op;
392 if (hiz_enabled && !enable_hiz) {
393 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
394 } else if (!hiz_enabled && enable_hiz) {
395 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
396 } else {
397 assert(hiz_enabled == enable_hiz);
398 /* If the same buffer will be used, no resolves are necessary. */
399 hiz_op = BLORP_HIZ_OP_NONE;
400 }
401
402 if (hiz_op != BLORP_HIZ_OP_NONE)
403 anv_gen8_hiz_op_resolve(cmd_buffer, image, hiz_op);
404 }
405
406 #define MI_PREDICATE_SRC0 0x2400
407 #define MI_PREDICATE_SRC1 0x2408
408
409 /* Manages the state of an color image subresource to ensure resolves are
410 * performed properly.
411 */
412 static void
413 genX(set_image_needs_resolve)(struct anv_cmd_buffer *cmd_buffer,
414 const struct anv_image *image,
415 VkImageAspectFlagBits aspect,
416 unsigned level, bool needs_resolve)
417 {
418 assert(cmd_buffer && image);
419 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
420 assert(level < anv_image_aux_levels(image, aspect));
421
422 /* The HW docs say that there is no way to guarantee the completion of
423 * the following command. We use it nevertheless because it shows no
424 * issues in testing is currently being used in the GL driver.
425 */
426 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
427 sdi.Address = anv_image_get_needs_resolve_addr(cmd_buffer->device,
428 image, aspect, level);
429 sdi.ImmediateData = needs_resolve;
430 }
431 }
432
433 static void
434 genX(load_needs_resolve_predicate)(struct anv_cmd_buffer *cmd_buffer,
435 const struct anv_image *image,
436 VkImageAspectFlagBits aspect,
437 unsigned level)
438 {
439 assert(cmd_buffer && image);
440 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
441 assert(level < anv_image_aux_levels(image, aspect));
442
443 const struct anv_address resolve_flag_addr =
444 anv_image_get_needs_resolve_addr(cmd_buffer->device,
445 image, aspect, level);
446
447 /* Make the pending predicated resolve a no-op if one is not needed.
448 * predicate = do_resolve = resolve_flag != 0;
449 */
450 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
451 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
452 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 , 0);
453 emit_lrm(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4,
454 resolve_flag_addr.bo, resolve_flag_addr.offset);
455 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
456 mip.LoadOperation = LOAD_LOADINV;
457 mip.CombineOperation = COMBINE_SET;
458 mip.CompareOperation = COMPARE_SRCS_EQUAL;
459 }
460 }
461
462 static void
463 init_fast_clear_state_entry(struct anv_cmd_buffer *cmd_buffer,
464 const struct anv_image *image,
465 VkImageAspectFlagBits aspect,
466 unsigned level)
467 {
468 assert(cmd_buffer && image);
469 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
470 assert(level < anv_image_aux_levels(image, aspect));
471
472 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
473 enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
474
475 /* The resolve flag should updated to signify that fast-clear/compression
476 * data needs to be removed when leaving the undefined layout. Such data
477 * may need to be removed if it would cause accesses to the color buffer
478 * to return incorrect data. The fast clear data in CCS_D buffers should
479 * be removed because CCS_D isn't enabled all the time.
480 */
481 genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level,
482 aux_usage == ISL_AUX_USAGE_NONE);
483
484 /* The fast clear value dword(s) will be copied into a surface state object.
485 * Ensure that the restrictions of the fields in the dword(s) are followed.
486 *
487 * CCS buffers on SKL+ can have any value set for the clear colors.
488 */
489 if (image->samples == 1 && GEN_GEN >= 9)
490 return;
491
492 /* Other combinations of auxiliary buffers and platforms require specific
493 * values in the clear value dword(s).
494 */
495 struct anv_address addr =
496 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
497 unsigned i = 0;
498 for (; i < cmd_buffer->device->isl_dev.ss.clear_value_size; i += 4) {
499 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
500 sdi.Address = addr;
501
502 if (GEN_GEN >= 9) {
503 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
504 assert(aux_usage == ISL_AUX_USAGE_MCS);
505 sdi.ImmediateData = 0;
506 } else if (GEN_VERSIONx10 >= 75) {
507 /* Pre-SKL, the dword containing the clear values also contains
508 * other fields, so we need to initialize those fields to match the
509 * values that would be in a color attachment.
510 */
511 assert(i == 0);
512 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
513 ISL_CHANNEL_SELECT_GREEN << 22 |
514 ISL_CHANNEL_SELECT_BLUE << 19 |
515 ISL_CHANNEL_SELECT_ALPHA << 16;
516 } else if (GEN_VERSIONx10 == 70) {
517 /* On IVB, the dword containing the clear values also contains
518 * other fields that must be zero or can be zero.
519 */
520 assert(i == 0);
521 sdi.ImmediateData = 0;
522 }
523 }
524
525 addr.offset += 4;
526 }
527 }
528
529 /* Copy the fast-clear value dword(s) between a surface state object and an
530 * image's fast clear state buffer.
531 */
532 static void
533 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
534 struct anv_state surface_state,
535 const struct anv_image *image,
536 VkImageAspectFlagBits aspect,
537 unsigned level,
538 bool copy_from_surface_state)
539 {
540 assert(cmd_buffer && image);
541 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
542 assert(level < anv_image_aux_levels(image, aspect));
543
544 struct anv_bo *ss_bo =
545 &cmd_buffer->device->surface_state_pool.block_pool.bo;
546 uint32_t ss_clear_offset = surface_state.offset +
547 cmd_buffer->device->isl_dev.ss.clear_value_offset;
548 const struct anv_address entry_addr =
549 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
550 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
551
552 if (copy_from_surface_state) {
553 genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr.bo, entry_addr.offset,
554 ss_bo, ss_clear_offset, copy_size);
555 } else {
556 genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_bo, ss_clear_offset,
557 entry_addr.bo, entry_addr.offset, copy_size);
558
559 /* Updating a surface state object may require that the state cache be
560 * invalidated. From the SKL PRM, Shared Functions -> State -> State
561 * Caching:
562 *
563 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
564 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
565 * modified [...], the L1 state cache must be invalidated to ensure
566 * the new surface or sampler state is fetched from system memory.
567 *
568 * In testing, SKL doesn't actually seem to need this, but HSW does.
569 */
570 cmd_buffer->state.pending_pipe_bits |=
571 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
572 }
573 }
574
575 /**
576 * @brief Transitions a color buffer from one layout to another.
577 *
578 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
579 * more information.
580 *
581 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
582 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
583 * this represents the maximum layers to transition at each
584 * specified miplevel.
585 */
586 static void
587 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
588 const struct anv_image *image,
589 VkImageAspectFlagBits aspect,
590 const uint32_t base_level, uint32_t level_count,
591 uint32_t base_layer, uint32_t layer_count,
592 VkImageLayout initial_layout,
593 VkImageLayout final_layout)
594 {
595 /* Validate the inputs. */
596 assert(cmd_buffer);
597 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
598 /* These values aren't supported for simplicity's sake. */
599 assert(level_count != VK_REMAINING_MIP_LEVELS &&
600 layer_count != VK_REMAINING_ARRAY_LAYERS);
601 /* Ensure the subresource range is valid. */
602 uint64_t last_level_num = base_level + level_count;
603 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
604 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
605 assert((uint64_t)base_layer + layer_count <= image_layers);
606 assert(last_level_num <= image->levels);
607 /* The spec disallows these final layouts. */
608 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
609 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
610
611 /* No work is necessary if the layout stays the same or if this subresource
612 * range lacks auxiliary data.
613 */
614 if (initial_layout == final_layout)
615 return;
616
617 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
618
619 if (image->planes[plane].shadow_surface.isl.size > 0 &&
620 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
621 /* This surface is a linear compressed image with a tiled shadow surface
622 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
623 * we need to ensure the shadow copy is up-to-date.
624 */
625 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
626 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
627 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
628 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
629 assert(plane == 0);
630 anv_image_copy_to_shadow(cmd_buffer, image,
631 base_level, level_count,
632 base_layer, layer_count);
633 }
634
635 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
636 return;
637
638 /* A transition of a 3D subresource works on all slices at a time. */
639 if (image->type == VK_IMAGE_TYPE_3D) {
640 base_layer = 0;
641 layer_count = anv_minify(image->extent.depth, base_level);
642 }
643
644 /* We're interested in the subresource range subset that has aux data. */
645 level_count = MIN2(level_count, anv_image_aux_levels(image, aspect) - base_level);
646 layer_count = MIN2(layer_count,
647 anv_image_aux_layers(image, aspect, base_level) - base_layer);
648 last_level_num = base_level + level_count;
649
650 /* Record whether or not the layout is undefined. Pre-initialized images
651 * with auxiliary buffers have a non-linear layout and are thus undefined.
652 */
653 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
654 const bool undef_layout = initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
655 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
656
657 /* Do preparatory work before the resolve operation or return early if no
658 * resolve is actually needed.
659 */
660 if (undef_layout) {
661 /* A subresource in the undefined layout may have been aliased and
662 * populated with any arrangement of bits. Therefore, we must initialize
663 * the related aux buffer and clear buffer entry with desirable values.
664 *
665 * Initialize the relevant clear buffer entries.
666 */
667 for (unsigned level = base_level; level < last_level_num; level++)
668 init_fast_clear_state_entry(cmd_buffer, image, aspect, level);
669
670 /* Initialize the aux buffers to enable correct rendering. This operation
671 * requires up to two steps: one to rid the aux buffer of data that may
672 * cause GPU hangs, and another to ensure that writes done without aux
673 * will be visible to reads done with aux.
674 *
675 * Having an aux buffer with invalid data is possible for CCS buffers
676 * SKL+ and for MCS buffers with certain sample counts (2x and 8x). One
677 * easy way to get to a valid state is to fast-clear the specified range.
678 *
679 * Even for MCS buffers that have sample counts that don't require
680 * certain bits to be reserved (4x and 8x), we're unsure if the hardware
681 * will be okay with the sample mappings given by the undefined buffer.
682 * We don't have any data to show that this is a problem, but we want to
683 * avoid causing difficult-to-debug problems.
684 */
685 if ((GEN_GEN >= 9 && image->samples == 1) || image->samples > 1) {
686 if (image->samples == 4 || image->samples == 16) {
687 anv_perf_warn(cmd_buffer->device->instance, image,
688 "Doing a potentially unnecessary fast-clear to "
689 "define an MCS buffer.");
690 }
691
692 if (image->samples == 1) {
693 for (uint32_t l = 0; l < level_count; l++) {
694 const uint32_t level = base_level + l;
695 const uint32_t level_layer_count =
696 MIN2(layer_count, anv_image_aux_layers(image, aspect, level));
697 anv_image_ccs_op(cmd_buffer, image, aspect, level,
698 base_layer, level_layer_count,
699 ISL_AUX_OP_FAST_CLEAR, false);
700 }
701 } else {
702 assert(image->samples > 1);
703 assert(base_level == 0 && level_count == 1);
704 anv_image_mcs_op(cmd_buffer, image, aspect,
705 base_layer, layer_count,
706 ISL_AUX_OP_FAST_CLEAR, false);
707 }
708 }
709 /* At this point, some elements of the CCS buffer may have the fast-clear
710 * bit-arrangement. As the user writes to a subresource, we need to have
711 * the associated CCS elements enter the ambiguated state. This enables
712 * reads (implicit or explicit) to reflect the user-written data instead
713 * of the clear color. The only time such elements will not change their
714 * state as described above, is in a final layout that doesn't have CCS
715 * enabled. In this case, we must force the associated CCS buffers of the
716 * specified range to enter the ambiguated state in advance.
717 */
718 if (image->samples == 1 &&
719 image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E &&
720 final_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
721 /* The CCS_D buffer may not be enabled in the final layout. Continue
722 * executing this function to perform a resolve.
723 */
724 anv_perf_warn(cmd_buffer->device->instance, image,
725 "Performing an additional resolve for CCS_D layout "
726 "transition. Consider always leaving it on or "
727 "performing an ambiguation pass.");
728 } else {
729 /* Writes in the final layout will be aware of the auxiliary buffer.
730 * In addition, the clear buffer entries and the auxiliary buffers
731 * have been populated with values that will result in correct
732 * rendering.
733 */
734 return;
735 }
736 } else if (initial_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
737 /* Resolves are only necessary if the subresource may contain blocks
738 * fast-cleared to values unsupported in other layouts. This only occurs
739 * if the initial layout is COLOR_ATTACHMENT_OPTIMAL.
740 */
741 return;
742 } else if (image->samples > 1) {
743 /* MCS buffers don't need resolving. */
744 return;
745 }
746
747 /* Perform a resolve to synchronize data between the main and aux buffer.
748 * Before we begin, we must satisfy the cache flushing requirement specified
749 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
750 *
751 * Any transition from any value in {Clear, Render, Resolve} to a
752 * different value in {Clear, Render, Resolve} requires end of pipe
753 * synchronization.
754 *
755 * We perform a flush of the write cache before and after the clear and
756 * resolve operations to meet this requirement.
757 *
758 * Unlike other drawing, fast clear operations are not properly
759 * synchronized. The first PIPE_CONTROL here likely ensures that the
760 * contents of the previous render or clear hit the render target before we
761 * resolve and the second likely ensures that the resolve is complete before
762 * we do any more rendering or clearing.
763 */
764 cmd_buffer->state.pending_pipe_bits |=
765 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
766
767 for (uint32_t level = base_level; level < last_level_num; level++) {
768
769 /* The number of layers changes at each 3D miplevel. */
770 if (image->type == VK_IMAGE_TYPE_3D) {
771 layer_count = MIN2(layer_count, anv_image_aux_layers(image, aspect, level));
772 }
773
774 genX(load_needs_resolve_predicate)(cmd_buffer, image, aspect, level);
775
776 anv_image_ccs_op(cmd_buffer, image, aspect, level,
777 base_layer, layer_count,
778 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E ?
779 ISL_AUX_OP_PARTIAL_RESOLVE : ISL_AUX_OP_FULL_RESOLVE,
780 true);
781
782 genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level, false);
783 }
784
785 cmd_buffer->state.pending_pipe_bits |=
786 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
787 }
788
789 /**
790 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
791 */
792 static VkResult
793 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
794 struct anv_render_pass *pass,
795 const VkRenderPassBeginInfo *begin)
796 {
797 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
798 struct anv_cmd_state *state = &cmd_buffer->state;
799
800 vk_free(&cmd_buffer->pool->alloc, state->attachments);
801
802 if (pass->attachment_count > 0) {
803 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
804 pass->attachment_count *
805 sizeof(state->attachments[0]),
806 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
807 if (state->attachments == NULL) {
808 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
809 return anv_batch_set_error(&cmd_buffer->batch,
810 VK_ERROR_OUT_OF_HOST_MEMORY);
811 }
812 } else {
813 state->attachments = NULL;
814 }
815
816 /* Reserve one for the NULL state. */
817 unsigned num_states = 1;
818 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
819 if (vk_format_is_color(pass->attachments[i].format))
820 num_states++;
821
822 if (need_input_attachment_state(&pass->attachments[i]))
823 num_states++;
824 }
825
826 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
827 state->render_pass_states =
828 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
829 num_states * ss_stride, isl_dev->ss.align);
830
831 struct anv_state next_state = state->render_pass_states;
832 next_state.alloc_size = isl_dev->ss.size;
833
834 state->null_surface_state = next_state;
835 next_state.offset += ss_stride;
836 next_state.map += ss_stride;
837
838 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
839 if (vk_format_is_color(pass->attachments[i].format)) {
840 state->attachments[i].color.state = next_state;
841 next_state.offset += ss_stride;
842 next_state.map += ss_stride;
843 }
844
845 if (need_input_attachment_state(&pass->attachments[i])) {
846 state->attachments[i].input.state = next_state;
847 next_state.offset += ss_stride;
848 next_state.map += ss_stride;
849 }
850 }
851 assert(next_state.offset == state->render_pass_states.offset +
852 state->render_pass_states.alloc_size);
853
854 if (begin) {
855 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
856 assert(pass->attachment_count == framebuffer->attachment_count);
857
858 isl_null_fill_state(isl_dev, state->null_surface_state.map,
859 isl_extent3d(framebuffer->width,
860 framebuffer->height,
861 framebuffer->layers));
862
863 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
864 struct anv_render_pass_attachment *att = &pass->attachments[i];
865 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
866 VkImageAspectFlags clear_aspects = 0;
867
868 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
869 /* color attachment */
870 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
871 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
872 }
873 } else {
874 /* depthstencil attachment */
875 if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
876 att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
877 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
878 }
879 if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
880 att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
881 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
882 }
883 }
884
885 state->attachments[i].current_layout = att->initial_layout;
886 state->attachments[i].pending_clear_aspects = clear_aspects;
887 if (clear_aspects)
888 state->attachments[i].clear_value = begin->pClearValues[i];
889
890 struct anv_image_view *iview = framebuffer->attachments[i];
891 anv_assert(iview->vk_format == att->format);
892 anv_assert(iview->n_planes == 1);
893
894 union isl_color_value clear_color = { .u32 = { 0, } };
895 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
896 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
897 color_attachment_compute_aux_usage(cmd_buffer->device,
898 state, i, begin->renderArea,
899 &clear_color);
900
901 anv_image_fill_surface_state(cmd_buffer->device,
902 iview->image,
903 VK_IMAGE_ASPECT_COLOR_BIT,
904 &iview->planes[0].isl,
905 ISL_SURF_USAGE_RENDER_TARGET_BIT,
906 state->attachments[i].aux_usage,
907 &clear_color,
908 0,
909 &state->attachments[i].color,
910 NULL);
911
912 add_image_view_relocs(cmd_buffer, iview, 0,
913 state->attachments[i].color);
914 } else {
915 /* This field will be initialized after the first subpass
916 * transition.
917 */
918 state->attachments[i].aux_usage = ISL_AUX_USAGE_NONE;
919
920 state->attachments[i].input_aux_usage = ISL_AUX_USAGE_NONE;
921 }
922
923 if (need_input_attachment_state(&pass->attachments[i])) {
924 anv_image_fill_surface_state(cmd_buffer->device,
925 iview->image,
926 VK_IMAGE_ASPECT_COLOR_BIT,
927 &iview->planes[0].isl,
928 ISL_SURF_USAGE_TEXTURE_BIT,
929 state->attachments[i].input_aux_usage,
930 &clear_color,
931 0,
932 &state->attachments[i].input,
933 NULL);
934
935 add_image_view_relocs(cmd_buffer, iview, 0,
936 state->attachments[i].input);
937 }
938 }
939 }
940
941 return VK_SUCCESS;
942 }
943
944 VkResult
945 genX(BeginCommandBuffer)(
946 VkCommandBuffer commandBuffer,
947 const VkCommandBufferBeginInfo* pBeginInfo)
948 {
949 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
950
951 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
952 * command buffer's state. Otherwise, we must *reset* its state. In both
953 * cases we reset it.
954 *
955 * From the Vulkan 1.0 spec:
956 *
957 * If a command buffer is in the executable state and the command buffer
958 * was allocated from a command pool with the
959 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
960 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
961 * as if vkResetCommandBuffer had been called with
962 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
963 * the command buffer in the recording state.
964 */
965 anv_cmd_buffer_reset(cmd_buffer);
966
967 cmd_buffer->usage_flags = pBeginInfo->flags;
968
969 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
970 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
971
972 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
973
974 /* We sometimes store vertex data in the dynamic state buffer for blorp
975 * operations and our dynamic state stream may re-use data from previous
976 * command buffers. In order to prevent stale cache data, we flush the VF
977 * cache. We could do this on every blorp call but that's not really
978 * needed as all of the data will get written by the CPU prior to the GPU
979 * executing anything. The chances are fairly high that they will use
980 * blorp at least once per primary command buffer so it shouldn't be
981 * wasted.
982 */
983 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
984 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
985
986 /* We send an "Indirect State Pointers Disable" packet at
987 * EndCommandBuffer, so all push contant packets are ignored during a
988 * context restore. Documentation says after that command, we need to
989 * emit push constants again before any rendering operation. So we
990 * flag them dirty here to make sure they get emitted.
991 */
992 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
993
994 VkResult result = VK_SUCCESS;
995 if (cmd_buffer->usage_flags &
996 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
997 assert(pBeginInfo->pInheritanceInfo);
998 cmd_buffer->state.pass =
999 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1000 cmd_buffer->state.subpass =
1001 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1002
1003 /* This is optional in the inheritance info. */
1004 cmd_buffer->state.framebuffer =
1005 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1006
1007 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1008 cmd_buffer->state.pass, NULL);
1009
1010 /* Record that HiZ is enabled if we can. */
1011 if (cmd_buffer->state.framebuffer) {
1012 const struct anv_image_view * const iview =
1013 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1014
1015 if (iview) {
1016 VkImageLayout layout =
1017 cmd_buffer->state.subpass->depth_stencil_attachment.layout;
1018
1019 enum isl_aux_usage aux_usage =
1020 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1021 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1022
1023 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1024 }
1025 }
1026
1027 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1028 }
1029
1030 return result;
1031 }
1032
1033 /* From the PRM, Volume 2a:
1034 *
1035 * "Indirect State Pointers Disable
1036 *
1037 * At the completion of the post-sync operation associated with this pipe
1038 * control packet, the indirect state pointers in the hardware are
1039 * considered invalid; the indirect pointers are not saved in the context.
1040 * If any new indirect state commands are executed in the command stream
1041 * while the pipe control is pending, the new indirect state commands are
1042 * preserved.
1043 *
1044 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1045 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1046 * commands are only considered as Indirect State Pointers. Once ISP is
1047 * issued in a context, SW must initialize by programming push constant
1048 * commands for all the shaders (at least to zero length) before attempting
1049 * any rendering operation for the same context."
1050 *
1051 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1052 * even though they point to a BO that has been already unreferenced at
1053 * the end of the previous batch buffer. This has been fine so far since
1054 * we are protected by these scratch page (every address not covered by
1055 * a BO should be pointing to the scratch page). But on CNL, it is
1056 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1057 * instruction.
1058 *
1059 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1060 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1061 * context restore, so the mentioned hang doesn't happen. However,
1062 * software must program push constant commands for all stages prior to
1063 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1064 */
1065 static void
1066 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1067 {
1068 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1069 pc.IndirectStatePointersDisable = true;
1070 pc.CommandStreamerStallEnable = true;
1071 }
1072 }
1073
1074 VkResult
1075 genX(EndCommandBuffer)(
1076 VkCommandBuffer commandBuffer)
1077 {
1078 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1079
1080 if (anv_batch_has_error(&cmd_buffer->batch))
1081 return cmd_buffer->batch.status;
1082
1083 /* We want every command buffer to start with the PMA fix in a known state,
1084 * so we disable it at the end of the command buffer.
1085 */
1086 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1087
1088 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1089
1090 emit_isp_disable(cmd_buffer);
1091
1092 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1093
1094 return VK_SUCCESS;
1095 }
1096
1097 void
1098 genX(CmdExecuteCommands)(
1099 VkCommandBuffer commandBuffer,
1100 uint32_t commandBufferCount,
1101 const VkCommandBuffer* pCmdBuffers)
1102 {
1103 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1104
1105 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1106
1107 if (anv_batch_has_error(&primary->batch))
1108 return;
1109
1110 /* The secondary command buffers will assume that the PMA fix is disabled
1111 * when they begin executing. Make sure this is true.
1112 */
1113 genX(cmd_buffer_enable_pma_fix)(primary, false);
1114
1115 /* The secondary command buffer doesn't know which textures etc. have been
1116 * flushed prior to their execution. Apply those flushes now.
1117 */
1118 genX(cmd_buffer_apply_pipe_flushes)(primary);
1119
1120 for (uint32_t i = 0; i < commandBufferCount; i++) {
1121 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1122
1123 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1124 assert(!anv_batch_has_error(&secondary->batch));
1125
1126 if (secondary->usage_flags &
1127 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1128 /* If we're continuing a render pass from the primary, we need to
1129 * copy the surface states for the current subpass into the storage
1130 * we allocated for them in BeginCommandBuffer.
1131 */
1132 struct anv_bo *ss_bo =
1133 &primary->device->surface_state_pool.block_pool.bo;
1134 struct anv_state src_state = primary->state.render_pass_states;
1135 struct anv_state dst_state = secondary->state.render_pass_states;
1136 assert(src_state.alloc_size == dst_state.alloc_size);
1137
1138 genX(cmd_buffer_so_memcpy)(primary, ss_bo, dst_state.offset,
1139 ss_bo, src_state.offset,
1140 src_state.alloc_size);
1141 }
1142
1143 anv_cmd_buffer_add_secondary(primary, secondary);
1144 }
1145
1146 /* The secondary may have selected a different pipeline (3D or compute) and
1147 * may have changed the current L3$ configuration. Reset our tracking
1148 * variables to invalid values to ensure that we re-emit these in the case
1149 * where we do any draws or compute dispatches from the primary after the
1150 * secondary has returned.
1151 */
1152 primary->state.current_pipeline = UINT32_MAX;
1153 primary->state.current_l3_config = NULL;
1154
1155 /* Each of the secondary command buffers will use its own state base
1156 * address. We need to re-emit state base address for the primary after
1157 * all of the secondaries are done.
1158 *
1159 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1160 * address calls?
1161 */
1162 genX(cmd_buffer_emit_state_base_address)(primary);
1163 }
1164
1165 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1166 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1167 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1168
1169 /**
1170 * Program the hardware to use the specified L3 configuration.
1171 */
1172 void
1173 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1174 const struct gen_l3_config *cfg)
1175 {
1176 assert(cfg);
1177 if (cfg == cmd_buffer->state.current_l3_config)
1178 return;
1179
1180 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1181 intel_logd("L3 config transition: ");
1182 gen_dump_l3_config(cfg, stderr);
1183 }
1184
1185 const bool has_slm = cfg->n[GEN_L3P_SLM];
1186
1187 /* According to the hardware docs, the L3 partitioning can only be changed
1188 * while the pipeline is completely drained and the caches are flushed,
1189 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1190 */
1191 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1192 pc.DCFlushEnable = true;
1193 pc.PostSyncOperation = NoWrite;
1194 pc.CommandStreamerStallEnable = true;
1195 }
1196
1197 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1198 * invalidation of the relevant caches. Note that because RO invalidation
1199 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1200 * command is processed by the CS) we cannot combine it with the previous
1201 * stalling flush as the hardware documentation suggests, because that
1202 * would cause the CS to stall on previous rendering *after* RO
1203 * invalidation and wouldn't prevent the RO caches from being polluted by
1204 * concurrent rendering before the stall completes. This intentionally
1205 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1206 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1207 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1208 * already guarantee that there is no concurrent GPGPU kernel execution
1209 * (see SKL HSD 2132585).
1210 */
1211 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1212 pc.TextureCacheInvalidationEnable = true;
1213 pc.ConstantCacheInvalidationEnable = true;
1214 pc.InstructionCacheInvalidateEnable = true;
1215 pc.StateCacheInvalidationEnable = true;
1216 pc.PostSyncOperation = NoWrite;
1217 }
1218
1219 /* Now send a third stalling flush to make sure that invalidation is
1220 * complete when the L3 configuration registers are modified.
1221 */
1222 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1223 pc.DCFlushEnable = true;
1224 pc.PostSyncOperation = NoWrite;
1225 pc.CommandStreamerStallEnable = true;
1226 }
1227
1228 #if GEN_GEN >= 8
1229
1230 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1231
1232 uint32_t l3cr;
1233 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1234 .SLMEnable = has_slm,
1235 .URBAllocation = cfg->n[GEN_L3P_URB],
1236 .ROAllocation = cfg->n[GEN_L3P_RO],
1237 .DCAllocation = cfg->n[GEN_L3P_DC],
1238 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1239
1240 /* Set up the L3 partitioning. */
1241 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1242
1243 #else
1244
1245 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1246 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1247 cfg->n[GEN_L3P_ALL];
1248 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1249 cfg->n[GEN_L3P_ALL];
1250 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1251 cfg->n[GEN_L3P_ALL];
1252
1253 assert(!cfg->n[GEN_L3P_ALL]);
1254
1255 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1256 * the matching space on the remaining banks has to be allocated to a
1257 * client (URB for all validated configurations) set to the
1258 * lower-bandwidth 2-bank address hashing mode.
1259 */
1260 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1261 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1262 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1263
1264 /* Minimum number of ways that can be allocated to the URB. */
1265 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1266 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1267
1268 uint32_t l3sqcr1, l3cr2, l3cr3;
1269 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1270 .ConvertDC_UC = !has_dc,
1271 .ConvertIS_UC = !has_is,
1272 .ConvertC_UC = !has_c,
1273 .ConvertT_UC = !has_t);
1274 l3sqcr1 |=
1275 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1276 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1277 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1278
1279 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1280 .SLMEnable = has_slm,
1281 .URBLowBandwidth = urb_low_bw,
1282 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1283 #if !GEN_IS_HASWELL
1284 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1285 #endif
1286 .ROAllocation = cfg->n[GEN_L3P_RO],
1287 .DCAllocation = cfg->n[GEN_L3P_DC]);
1288
1289 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1290 .ISAllocation = cfg->n[GEN_L3P_IS],
1291 .ISLowBandwidth = 0,
1292 .CAllocation = cfg->n[GEN_L3P_C],
1293 .CLowBandwidth = 0,
1294 .TAllocation = cfg->n[GEN_L3P_T],
1295 .TLowBandwidth = 0);
1296
1297 /* Set up the L3 partitioning. */
1298 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1299 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1300 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1301
1302 #if GEN_IS_HASWELL
1303 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1304 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1305 * them disabled to avoid crashing the system hard.
1306 */
1307 uint32_t scratch1, chicken3;
1308 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1309 .L3AtomicDisable = !has_dc);
1310 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1311 .L3AtomicDisableMask = true,
1312 .L3AtomicDisable = !has_dc);
1313 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1314 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1315 }
1316 #endif
1317
1318 #endif
1319
1320 cmd_buffer->state.current_l3_config = cfg;
1321 }
1322
1323 void
1324 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1325 {
1326 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1327
1328 /* Flushes are pipelined while invalidations are handled immediately.
1329 * Therefore, if we're flushing anything then we need to schedule a stall
1330 * before any invalidations can happen.
1331 */
1332 if (bits & ANV_PIPE_FLUSH_BITS)
1333 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1334
1335 /* If we're going to do an invalidate and we have a pending CS stall that
1336 * has yet to be resolved, we do the CS stall now.
1337 */
1338 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1339 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1340 bits |= ANV_PIPE_CS_STALL_BIT;
1341 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1342 }
1343
1344 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1345 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1346 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1347 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1348 pipe.RenderTargetCacheFlushEnable =
1349 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1350
1351 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1352 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1353 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1354
1355 /*
1356 * According to the Broadwell documentation, any PIPE_CONTROL with the
1357 * "Command Streamer Stall" bit set must also have another bit set,
1358 * with five different options:
1359 *
1360 * - Render Target Cache Flush
1361 * - Depth Cache Flush
1362 * - Stall at Pixel Scoreboard
1363 * - Post-Sync Operation
1364 * - Depth Stall
1365 * - DC Flush Enable
1366 *
1367 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1368 * mesa and it seems to work fine. The choice is fairly arbitrary.
1369 */
1370 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1371 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1372 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1373 pipe.StallAtPixelScoreboard = true;
1374 }
1375
1376 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1377 }
1378
1379 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1380 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1381 pipe.StateCacheInvalidationEnable =
1382 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1383 pipe.ConstantCacheInvalidationEnable =
1384 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1385 pipe.VFCacheInvalidationEnable =
1386 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1387 pipe.TextureCacheInvalidationEnable =
1388 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1389 pipe.InstructionCacheInvalidateEnable =
1390 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1391 }
1392
1393 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1394 }
1395
1396 cmd_buffer->state.pending_pipe_bits = bits;
1397 }
1398
1399 void genX(CmdPipelineBarrier)(
1400 VkCommandBuffer commandBuffer,
1401 VkPipelineStageFlags srcStageMask,
1402 VkPipelineStageFlags destStageMask,
1403 VkBool32 byRegion,
1404 uint32_t memoryBarrierCount,
1405 const VkMemoryBarrier* pMemoryBarriers,
1406 uint32_t bufferMemoryBarrierCount,
1407 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1408 uint32_t imageMemoryBarrierCount,
1409 const VkImageMemoryBarrier* pImageMemoryBarriers)
1410 {
1411 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1412
1413 /* XXX: Right now, we're really dumb and just flush whatever categories
1414 * the app asks for. One of these days we may make this a bit better
1415 * but right now that's all the hardware allows for in most areas.
1416 */
1417 VkAccessFlags src_flags = 0;
1418 VkAccessFlags dst_flags = 0;
1419
1420 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1421 src_flags |= pMemoryBarriers[i].srcAccessMask;
1422 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1423 }
1424
1425 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1426 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1427 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1428 }
1429
1430 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1431 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1432 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1433 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1434 const VkImageSubresourceRange *range =
1435 &pImageMemoryBarriers[i].subresourceRange;
1436
1437 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1438 transition_depth_buffer(cmd_buffer, image,
1439 pImageMemoryBarriers[i].oldLayout,
1440 pImageMemoryBarriers[i].newLayout);
1441 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1442 VkImageAspectFlags color_aspects =
1443 anv_image_expand_aspects(image, range->aspectMask);
1444 uint32_t aspect_bit;
1445
1446 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1447 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1448 range->baseMipLevel,
1449 anv_get_levelCount(image, range),
1450 range->baseArrayLayer,
1451 anv_get_layerCount(image, range),
1452 pImageMemoryBarriers[i].oldLayout,
1453 pImageMemoryBarriers[i].newLayout);
1454 }
1455 }
1456 }
1457
1458 cmd_buffer->state.pending_pipe_bits |=
1459 anv_pipe_flush_bits_for_access_flags(src_flags) |
1460 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1461 }
1462
1463 static void
1464 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1465 {
1466 VkShaderStageFlags stages =
1467 cmd_buffer->state.gfx.base.pipeline->active_stages;
1468
1469 /* In order to avoid thrash, we assume that vertex and fragment stages
1470 * always exist. In the rare case where one is missing *and* the other
1471 * uses push concstants, this may be suboptimal. However, avoiding stalls
1472 * seems more important.
1473 */
1474 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1475
1476 if (stages == cmd_buffer->state.push_constant_stages)
1477 return;
1478
1479 #if GEN_GEN >= 8
1480 const unsigned push_constant_kb = 32;
1481 #elif GEN_IS_HASWELL
1482 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1483 #else
1484 const unsigned push_constant_kb = 16;
1485 #endif
1486
1487 const unsigned num_stages =
1488 _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1489 unsigned size_per_stage = push_constant_kb / num_stages;
1490
1491 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1492 * units of 2KB. Incidentally, these are the same platforms that have
1493 * 32KB worth of push constant space.
1494 */
1495 if (push_constant_kb == 32)
1496 size_per_stage &= ~1u;
1497
1498 uint32_t kb_used = 0;
1499 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1500 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1501 anv_batch_emit(&cmd_buffer->batch,
1502 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1503 alloc._3DCommandSubOpcode = 18 + i;
1504 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1505 alloc.ConstantBufferSize = push_size;
1506 }
1507 kb_used += push_size;
1508 }
1509
1510 anv_batch_emit(&cmd_buffer->batch,
1511 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1512 alloc.ConstantBufferOffset = kb_used;
1513 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1514 }
1515
1516 cmd_buffer->state.push_constant_stages = stages;
1517
1518 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1519 *
1520 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1521 * the next 3DPRIMITIVE command after programming the
1522 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1523 *
1524 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1525 * pipeline setup, we need to dirty push constants.
1526 */
1527 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1528 }
1529
1530 static const struct anv_descriptor *
1531 anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1532 const struct anv_pipeline_binding *binding)
1533 {
1534 assert(binding->set < MAX_SETS);
1535 const struct anv_descriptor_set *set =
1536 pipe_state->descriptors[binding->set];
1537 const uint32_t offset =
1538 set->layout->binding[binding->binding].descriptor_index;
1539 return &set->descriptors[offset + binding->index];
1540 }
1541
1542 static uint32_t
1543 dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1544 const struct anv_pipeline_binding *binding)
1545 {
1546 assert(binding->set < MAX_SETS);
1547 const struct anv_descriptor_set *set =
1548 pipe_state->descriptors[binding->set];
1549
1550 uint32_t dynamic_offset_idx =
1551 pipe_state->layout->set[binding->set].dynamic_offset_start +
1552 set->layout->binding[binding->binding].dynamic_offset_index +
1553 binding->index;
1554
1555 return pipe_state->dynamic_offsets[dynamic_offset_idx];
1556 }
1557
1558 static VkResult
1559 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1560 gl_shader_stage stage,
1561 struct anv_state *bt_state)
1562 {
1563 struct anv_subpass *subpass = cmd_buffer->state.subpass;
1564 struct anv_cmd_pipeline_state *pipe_state;
1565 struct anv_pipeline *pipeline;
1566 uint32_t bias, state_offset;
1567
1568 switch (stage) {
1569 case MESA_SHADER_COMPUTE:
1570 pipe_state = &cmd_buffer->state.compute.base;
1571 bias = 1;
1572 break;
1573 default:
1574 pipe_state = &cmd_buffer->state.gfx.base;
1575 bias = 0;
1576 break;
1577 }
1578 pipeline = pipe_state->pipeline;
1579
1580 if (!anv_pipeline_has_stage(pipeline, stage)) {
1581 *bt_state = (struct anv_state) { 0, };
1582 return VK_SUCCESS;
1583 }
1584
1585 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1586 if (bias + map->surface_count == 0) {
1587 *bt_state = (struct anv_state) { 0, };
1588 return VK_SUCCESS;
1589 }
1590
1591 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
1592 bias + map->surface_count,
1593 &state_offset);
1594 uint32_t *bt_map = bt_state->map;
1595
1596 if (bt_state->map == NULL)
1597 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1598
1599 if (stage == MESA_SHADER_COMPUTE &&
1600 get_cs_prog_data(pipeline)->uses_num_work_groups) {
1601 struct anv_bo *bo = cmd_buffer->state.compute.num_workgroups.bo;
1602 uint32_t bo_offset = cmd_buffer->state.compute.num_workgroups.offset;
1603
1604 struct anv_state surface_state;
1605 surface_state =
1606 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
1607
1608 const enum isl_format format =
1609 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
1610 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1611 format, bo_offset, 12, 1);
1612
1613 bt_map[0] = surface_state.offset + state_offset;
1614 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
1615 }
1616
1617 if (map->surface_count == 0)
1618 goto out;
1619
1620 if (map->image_count > 0) {
1621 VkResult result =
1622 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
1623 if (result != VK_SUCCESS)
1624 return result;
1625
1626 cmd_buffer->state.push_constants_dirty |= 1 << stage;
1627 }
1628
1629 uint32_t image = 0;
1630 for (uint32_t s = 0; s < map->surface_count; s++) {
1631 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
1632
1633 struct anv_state surface_state;
1634
1635 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
1636 /* Color attachment binding */
1637 assert(stage == MESA_SHADER_FRAGMENT);
1638 assert(binding->binding == 0);
1639 if (binding->index < subpass->color_count) {
1640 const unsigned att =
1641 subpass->color_attachments[binding->index].attachment;
1642
1643 /* From the Vulkan 1.0.46 spec:
1644 *
1645 * "If any color or depth/stencil attachments are
1646 * VK_ATTACHMENT_UNUSED, then no writes occur for those
1647 * attachments."
1648 */
1649 if (att == VK_ATTACHMENT_UNUSED) {
1650 surface_state = cmd_buffer->state.null_surface_state;
1651 } else {
1652 surface_state = cmd_buffer->state.attachments[att].color.state;
1653 }
1654 } else {
1655 surface_state = cmd_buffer->state.null_surface_state;
1656 }
1657
1658 bt_map[bias + s] = surface_state.offset + state_offset;
1659 continue;
1660 }
1661
1662 const struct anv_descriptor *desc =
1663 anv_descriptor_for_binding(pipe_state, binding);
1664
1665 switch (desc->type) {
1666 case VK_DESCRIPTOR_TYPE_SAMPLER:
1667 /* Nothing for us to do here */
1668 continue;
1669
1670 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1671 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
1672 struct anv_surface_state sstate =
1673 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1674 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1675 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1676 surface_state = sstate.state;
1677 assert(surface_state.alloc_size);
1678 add_image_view_relocs(cmd_buffer, desc->image_view,
1679 binding->plane, sstate);
1680 break;
1681 }
1682 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1683 assert(stage == MESA_SHADER_FRAGMENT);
1684 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
1685 /* For depth and stencil input attachments, we treat it like any
1686 * old texture that a user may have bound.
1687 */
1688 struct anv_surface_state sstate =
1689 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1690 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1691 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1692 surface_state = sstate.state;
1693 assert(surface_state.alloc_size);
1694 add_image_view_relocs(cmd_buffer, desc->image_view,
1695 binding->plane, sstate);
1696 } else {
1697 /* For color input attachments, we create the surface state at
1698 * vkBeginRenderPass time so that we can include aux and clear
1699 * color information.
1700 */
1701 assert(binding->input_attachment_index < subpass->input_count);
1702 const unsigned subpass_att = binding->input_attachment_index;
1703 const unsigned att = subpass->input_attachments[subpass_att].attachment;
1704 surface_state = cmd_buffer->state.attachments[att].input.state;
1705 }
1706 break;
1707
1708 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1709 struct anv_surface_state sstate = (binding->write_only)
1710 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
1711 : desc->image_view->planes[binding->plane].storage_surface_state;
1712 surface_state = sstate.state;
1713 assert(surface_state.alloc_size);
1714 add_image_view_relocs(cmd_buffer, desc->image_view,
1715 binding->plane, sstate);
1716
1717 struct brw_image_param *image_param =
1718 &cmd_buffer->state.push_constants[stage]->images[image++];
1719
1720 *image_param = desc->image_view->planes[binding->plane].storage_image_param;
1721 image_param->surface_idx = bias + s;
1722 break;
1723 }
1724
1725 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1726 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1727 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1728 surface_state = desc->buffer_view->surface_state;
1729 assert(surface_state.alloc_size);
1730 add_surface_state_reloc(cmd_buffer, surface_state,
1731 desc->buffer_view->bo,
1732 desc->buffer_view->offset);
1733 break;
1734
1735 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1736 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1737 /* Compute the offset within the buffer */
1738 uint32_t dynamic_offset =
1739 dynamic_offset_for_binding(pipe_state, binding);
1740 uint64_t offset = desc->offset + dynamic_offset;
1741 /* Clamp to the buffer size */
1742 offset = MIN2(offset, desc->buffer->size);
1743 /* Clamp the range to the buffer size */
1744 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
1745
1746 surface_state =
1747 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
1748 enum isl_format format =
1749 anv_isl_format_for_descriptor_type(desc->type);
1750
1751 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1752 format, offset, range, 1);
1753 add_surface_state_reloc(cmd_buffer, surface_state,
1754 desc->buffer->bo,
1755 desc->buffer->offset + offset);
1756 break;
1757 }
1758
1759 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1760 surface_state = (binding->write_only)
1761 ? desc->buffer_view->writeonly_storage_surface_state
1762 : desc->buffer_view->storage_surface_state;
1763 assert(surface_state.alloc_size);
1764 add_surface_state_reloc(cmd_buffer, surface_state,
1765 desc->buffer_view->bo,
1766 desc->buffer_view->offset);
1767
1768 struct brw_image_param *image_param =
1769 &cmd_buffer->state.push_constants[stage]->images[image++];
1770
1771 *image_param = desc->buffer_view->storage_image_param;
1772 image_param->surface_idx = bias + s;
1773 break;
1774
1775 default:
1776 assert(!"Invalid descriptor type");
1777 continue;
1778 }
1779
1780 bt_map[bias + s] = surface_state.offset + state_offset;
1781 }
1782 assert(image == map->image_count);
1783
1784 out:
1785 anv_state_flush(cmd_buffer->device, *bt_state);
1786
1787 return VK_SUCCESS;
1788 }
1789
1790 static VkResult
1791 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1792 gl_shader_stage stage,
1793 struct anv_state *state)
1794 {
1795 struct anv_cmd_pipeline_state *pipe_state =
1796 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
1797 &cmd_buffer->state.gfx.base;
1798 struct anv_pipeline *pipeline = pipe_state->pipeline;
1799
1800 if (!anv_pipeline_has_stage(pipeline, stage)) {
1801 *state = (struct anv_state) { 0, };
1802 return VK_SUCCESS;
1803 }
1804
1805 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1806 if (map->sampler_count == 0) {
1807 *state = (struct anv_state) { 0, };
1808 return VK_SUCCESS;
1809 }
1810
1811 uint32_t size = map->sampler_count * 16;
1812 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
1813
1814 if (state->map == NULL)
1815 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1816
1817 for (uint32_t s = 0; s < map->sampler_count; s++) {
1818 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
1819 const struct anv_descriptor *desc =
1820 anv_descriptor_for_binding(pipe_state, binding);
1821
1822 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
1823 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
1824 continue;
1825
1826 struct anv_sampler *sampler = desc->sampler;
1827
1828 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
1829 * happens to be zero.
1830 */
1831 if (sampler == NULL)
1832 continue;
1833
1834 memcpy(state->map + (s * 16),
1835 sampler->state[binding->plane], sizeof(sampler->state[0]));
1836 }
1837
1838 anv_state_flush(cmd_buffer->device, *state);
1839
1840 return VK_SUCCESS;
1841 }
1842
1843 static uint32_t
1844 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
1845 {
1846 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
1847
1848 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
1849 pipeline->active_stages;
1850
1851 VkResult result = VK_SUCCESS;
1852 anv_foreach_stage(s, dirty) {
1853 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1854 if (result != VK_SUCCESS)
1855 break;
1856 result = emit_binding_table(cmd_buffer, s,
1857 &cmd_buffer->state.binding_tables[s]);
1858 if (result != VK_SUCCESS)
1859 break;
1860 }
1861
1862 if (result != VK_SUCCESS) {
1863 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
1864
1865 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
1866 if (result != VK_SUCCESS)
1867 return 0;
1868
1869 /* Re-emit state base addresses so we get the new surface state base
1870 * address before we start emitting binding tables etc.
1871 */
1872 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1873
1874 /* Re-emit all active binding tables */
1875 dirty |= pipeline->active_stages;
1876 anv_foreach_stage(s, dirty) {
1877 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1878 if (result != VK_SUCCESS) {
1879 anv_batch_set_error(&cmd_buffer->batch, result);
1880 return 0;
1881 }
1882 result = emit_binding_table(cmd_buffer, s,
1883 &cmd_buffer->state.binding_tables[s]);
1884 if (result != VK_SUCCESS) {
1885 anv_batch_set_error(&cmd_buffer->batch, result);
1886 return 0;
1887 }
1888 }
1889 }
1890
1891 cmd_buffer->state.descriptors_dirty &= ~dirty;
1892
1893 return dirty;
1894 }
1895
1896 static void
1897 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
1898 uint32_t stages)
1899 {
1900 static const uint32_t sampler_state_opcodes[] = {
1901 [MESA_SHADER_VERTEX] = 43,
1902 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
1903 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
1904 [MESA_SHADER_GEOMETRY] = 46,
1905 [MESA_SHADER_FRAGMENT] = 47,
1906 [MESA_SHADER_COMPUTE] = 0,
1907 };
1908
1909 static const uint32_t binding_table_opcodes[] = {
1910 [MESA_SHADER_VERTEX] = 38,
1911 [MESA_SHADER_TESS_CTRL] = 39,
1912 [MESA_SHADER_TESS_EVAL] = 40,
1913 [MESA_SHADER_GEOMETRY] = 41,
1914 [MESA_SHADER_FRAGMENT] = 42,
1915 [MESA_SHADER_COMPUTE] = 0,
1916 };
1917
1918 anv_foreach_stage(s, stages) {
1919 assert(s < ARRAY_SIZE(binding_table_opcodes));
1920 assert(binding_table_opcodes[s] > 0);
1921
1922 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
1923 anv_batch_emit(&cmd_buffer->batch,
1924 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
1925 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
1926 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
1927 }
1928 }
1929
1930 /* Always emit binding table pointers if we're asked to, since on SKL
1931 * this is what flushes push constants. */
1932 anv_batch_emit(&cmd_buffer->batch,
1933 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
1934 btp._3DCommandSubOpcode = binding_table_opcodes[s];
1935 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
1936 }
1937 }
1938 }
1939
1940 static void
1941 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
1942 VkShaderStageFlags dirty_stages)
1943 {
1944 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
1945 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
1946
1947 static const uint32_t push_constant_opcodes[] = {
1948 [MESA_SHADER_VERTEX] = 21,
1949 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
1950 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
1951 [MESA_SHADER_GEOMETRY] = 22,
1952 [MESA_SHADER_FRAGMENT] = 23,
1953 [MESA_SHADER_COMPUTE] = 0,
1954 };
1955
1956 VkShaderStageFlags flushed = 0;
1957
1958 anv_foreach_stage(stage, dirty_stages) {
1959 assert(stage < ARRAY_SIZE(push_constant_opcodes));
1960 assert(push_constant_opcodes[stage] > 0);
1961
1962 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
1963 c._3DCommandSubOpcode = push_constant_opcodes[stage];
1964
1965 if (anv_pipeline_has_stage(pipeline, stage)) {
1966 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1967 const struct brw_stage_prog_data *prog_data =
1968 pipeline->shaders[stage]->prog_data;
1969 const struct anv_pipeline_bind_map *bind_map =
1970 &pipeline->shaders[stage]->bind_map;
1971
1972 /* The Skylake PRM contains the following restriction:
1973 *
1974 * "The driver must ensure The following case does not occur
1975 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
1976 * buffer 3 read length equal to zero committed followed by a
1977 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
1978 * zero committed."
1979 *
1980 * To avoid this, we program the buffers in the highest slots.
1981 * This way, slot 0 is only used if slot 3 is also used.
1982 */
1983 int n = 3;
1984
1985 for (int i = 3; i >= 0; i--) {
1986 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
1987 if (range->length == 0)
1988 continue;
1989
1990 const unsigned surface =
1991 prog_data->binding_table.ubo_start + range->block;
1992
1993 assert(surface <= bind_map->surface_count);
1994 const struct anv_pipeline_binding *binding =
1995 &bind_map->surface_to_descriptor[surface];
1996
1997 const struct anv_descriptor *desc =
1998 anv_descriptor_for_binding(&gfx_state->base, binding);
1999
2000 struct anv_address read_addr;
2001 uint32_t read_len;
2002 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2003 read_len = MIN2(range->length,
2004 DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
2005 read_addr = (struct anv_address) {
2006 .bo = desc->buffer_view->bo,
2007 .offset = desc->buffer_view->offset +
2008 range->start * 32,
2009 };
2010 } else {
2011 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2012
2013 uint32_t dynamic_offset =
2014 dynamic_offset_for_binding(&gfx_state->base, binding);
2015 uint32_t buf_offset =
2016 MIN2(desc->offset + dynamic_offset, desc->buffer->size);
2017 uint32_t buf_range =
2018 MIN2(desc->range, desc->buffer->size - buf_offset);
2019
2020 read_len = MIN2(range->length,
2021 DIV_ROUND_UP(buf_range, 32) - range->start);
2022 read_addr = (struct anv_address) {
2023 .bo = desc->buffer->bo,
2024 .offset = desc->buffer->offset + buf_offset +
2025 range->start * 32,
2026 };
2027 }
2028
2029 if (read_len > 0) {
2030 c.ConstantBody.Buffer[n] = read_addr;
2031 c.ConstantBody.ReadLength[n] = read_len;
2032 n--;
2033 }
2034 }
2035
2036 struct anv_state state =
2037 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2038
2039 if (state.alloc_size > 0) {
2040 c.ConstantBody.Buffer[n] = (struct anv_address) {
2041 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2042 .offset = state.offset,
2043 };
2044 c.ConstantBody.ReadLength[n] =
2045 DIV_ROUND_UP(state.alloc_size, 32);
2046 }
2047 #else
2048 /* For Ivy Bridge, the push constants packets have a different
2049 * rule that would require us to iterate in the other direction
2050 * and possibly mess around with dynamic state base address.
2051 * Don't bother; just emit regular push constants at n = 0.
2052 */
2053 struct anv_state state =
2054 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2055
2056 if (state.alloc_size > 0) {
2057 c.ConstantBody.Buffer[0].offset = state.offset,
2058 c.ConstantBody.ReadLength[0] =
2059 DIV_ROUND_UP(state.alloc_size, 32);
2060 }
2061 #endif
2062 }
2063 }
2064
2065 flushed |= mesa_to_vk_shader_stage(stage);
2066 }
2067
2068 cmd_buffer->state.push_constants_dirty &= ~flushed;
2069 }
2070
2071 void
2072 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2073 {
2074 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2075 uint32_t *p;
2076
2077 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2078
2079 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2080
2081 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2082
2083 genX(flush_pipeline_select_3d)(cmd_buffer);
2084
2085 if (vb_emit) {
2086 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2087 const uint32_t num_dwords = 1 + num_buffers * 4;
2088
2089 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2090 GENX(3DSTATE_VERTEX_BUFFERS));
2091 uint32_t vb, i = 0;
2092 for_each_bit(vb, vb_emit) {
2093 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2094 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2095
2096 struct GENX(VERTEX_BUFFER_STATE) state = {
2097 .VertexBufferIndex = vb,
2098
2099 #if GEN_GEN >= 8
2100 .MemoryObjectControlState = GENX(MOCS),
2101 #else
2102 .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
2103 /* Our implementation of VK_KHR_multiview uses instancing to draw
2104 * the different views. If the client asks for instancing, we
2105 * need to use the Instance Data Step Rate to ensure that we
2106 * repeat the client's per-instance data once for each view.
2107 */
2108 .InstanceDataStepRate = anv_subpass_view_count(pipeline->subpass),
2109 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2110 #endif
2111
2112 .AddressModifyEnable = true,
2113 .BufferPitch = pipeline->binding_stride[vb],
2114 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
2115
2116 #if GEN_GEN >= 8
2117 .BufferSize = buffer->size - offset
2118 #else
2119 .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
2120 #endif
2121 };
2122
2123 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2124 i++;
2125 }
2126 }
2127
2128 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2129
2130 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2131 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2132
2133 /* The exact descriptor layout is pulled from the pipeline, so we need
2134 * to re-emit binding tables on every pipeline change.
2135 */
2136 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2137
2138 /* If the pipeline changed, we may need to re-allocate push constant
2139 * space in the URB.
2140 */
2141 cmd_buffer_alloc_push_constants(cmd_buffer);
2142 }
2143
2144 #if GEN_GEN <= 7
2145 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2146 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2147 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2148 *
2149 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2150 * stall needs to be sent just prior to any 3DSTATE_VS,
2151 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2152 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2153 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2154 * PIPE_CONTROL needs to be sent before any combination of VS
2155 * associated 3DSTATE."
2156 */
2157 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2158 pc.DepthStallEnable = true;
2159 pc.PostSyncOperation = WriteImmediateData;
2160 pc.Address =
2161 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2162 }
2163 }
2164 #endif
2165
2166 /* Render targets live in the same binding table as fragment descriptors */
2167 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2168 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2169
2170 /* We emit the binding tables and sampler tables first, then emit push
2171 * constants and then finally emit binding table and sampler table
2172 * pointers. It has to happen in this order, since emitting the binding
2173 * tables may change the push constants (in case of storage images). After
2174 * emitting push constants, on SKL+ we have to emit the corresponding
2175 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2176 */
2177 uint32_t dirty = 0;
2178 if (cmd_buffer->state.descriptors_dirty)
2179 dirty = flush_descriptor_sets(cmd_buffer);
2180
2181 if (dirty || cmd_buffer->state.push_constants_dirty) {
2182 /* Because we're pushing UBOs, we have to push whenever either
2183 * descriptors or push constants is dirty.
2184 */
2185 dirty |= cmd_buffer->state.push_constants_dirty;
2186 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2187 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2188 }
2189
2190 if (dirty)
2191 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2192
2193 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2194 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2195
2196 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2197 ANV_CMD_DIRTY_PIPELINE)) {
2198 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2199 pipeline->depth_clamp_enable);
2200 }
2201
2202 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
2203 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2204
2205 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2206
2207 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2208 }
2209
2210 static void
2211 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2212 struct anv_bo *bo, uint32_t offset,
2213 uint32_t size, uint32_t index)
2214 {
2215 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2216 GENX(3DSTATE_VERTEX_BUFFERS));
2217
2218 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2219 &(struct GENX(VERTEX_BUFFER_STATE)) {
2220 .VertexBufferIndex = index,
2221 .AddressModifyEnable = true,
2222 .BufferPitch = 0,
2223 #if (GEN_GEN >= 8)
2224 .MemoryObjectControlState = GENX(MOCS),
2225 .BufferStartingAddress = { bo, offset },
2226 .BufferSize = size
2227 #else
2228 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2229 .BufferStartingAddress = { bo, offset },
2230 .EndAddress = { bo, offset + size },
2231 #endif
2232 });
2233 }
2234
2235 static void
2236 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2237 struct anv_bo *bo, uint32_t offset)
2238 {
2239 emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
2240 }
2241
2242 static void
2243 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2244 uint32_t base_vertex, uint32_t base_instance)
2245 {
2246 struct anv_state id_state =
2247 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2248
2249 ((uint32_t *)id_state.map)[0] = base_vertex;
2250 ((uint32_t *)id_state.map)[1] = base_instance;
2251
2252 anv_state_flush(cmd_buffer->device, id_state);
2253
2254 emit_base_vertex_instance_bo(cmd_buffer,
2255 &cmd_buffer->device->dynamic_state_pool.block_pool.bo, id_state.offset);
2256 }
2257
2258 static void
2259 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2260 {
2261 struct anv_state state =
2262 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2263
2264 ((uint32_t *)state.map)[0] = draw_index;
2265
2266 anv_state_flush(cmd_buffer->device, state);
2267
2268 emit_vertex_bo(cmd_buffer,
2269 &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2270 state.offset, 4, ANV_DRAWID_VB_INDEX);
2271 }
2272
2273 void genX(CmdDraw)(
2274 VkCommandBuffer commandBuffer,
2275 uint32_t vertexCount,
2276 uint32_t instanceCount,
2277 uint32_t firstVertex,
2278 uint32_t firstInstance)
2279 {
2280 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2281 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2282 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2283
2284 if (anv_batch_has_error(&cmd_buffer->batch))
2285 return;
2286
2287 genX(cmd_buffer_flush_state)(cmd_buffer);
2288
2289 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2290 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2291 if (vs_prog_data->uses_drawid)
2292 emit_draw_index(cmd_buffer, 0);
2293
2294 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2295 * different views. We need to multiply instanceCount by the view count.
2296 */
2297 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2298
2299 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2300 prim.VertexAccessType = SEQUENTIAL;
2301 prim.PrimitiveTopologyType = pipeline->topology;
2302 prim.VertexCountPerInstance = vertexCount;
2303 prim.StartVertexLocation = firstVertex;
2304 prim.InstanceCount = instanceCount;
2305 prim.StartInstanceLocation = firstInstance;
2306 prim.BaseVertexLocation = 0;
2307 }
2308 }
2309
2310 void genX(CmdDrawIndexed)(
2311 VkCommandBuffer commandBuffer,
2312 uint32_t indexCount,
2313 uint32_t instanceCount,
2314 uint32_t firstIndex,
2315 int32_t vertexOffset,
2316 uint32_t firstInstance)
2317 {
2318 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2319 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2320 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2321
2322 if (anv_batch_has_error(&cmd_buffer->batch))
2323 return;
2324
2325 genX(cmd_buffer_flush_state)(cmd_buffer);
2326
2327 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2328 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2329 if (vs_prog_data->uses_drawid)
2330 emit_draw_index(cmd_buffer, 0);
2331
2332 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2333 * different views. We need to multiply instanceCount by the view count.
2334 */
2335 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2336
2337 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2338 prim.VertexAccessType = RANDOM;
2339 prim.PrimitiveTopologyType = pipeline->topology;
2340 prim.VertexCountPerInstance = indexCount;
2341 prim.StartVertexLocation = firstIndex;
2342 prim.InstanceCount = instanceCount;
2343 prim.StartInstanceLocation = firstInstance;
2344 prim.BaseVertexLocation = vertexOffset;
2345 }
2346 }
2347
2348 /* Auto-Draw / Indirect Registers */
2349 #define GEN7_3DPRIM_END_OFFSET 0x2420
2350 #define GEN7_3DPRIM_START_VERTEX 0x2430
2351 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2352 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2353 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2354 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2355
2356 /* MI_MATH only exists on Haswell+ */
2357 #if GEN_IS_HASWELL || GEN_GEN >= 8
2358
2359 static uint32_t
2360 mi_alu(uint32_t opcode, uint32_t op1, uint32_t op2)
2361 {
2362 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
2363 .ALUOpcode = opcode,
2364 .Operand1 = op1,
2365 .Operand2 = op2,
2366 };
2367
2368 uint32_t dw;
2369 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
2370
2371 return dw;
2372 }
2373
2374 #define CS_GPR(n) (0x2600 + (n) * 8)
2375
2376 /* Emit dwords to multiply GPR0 by N */
2377 static void
2378 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2379 {
2380 VK_OUTARRAY_MAKE(out, dw, dw_count);
2381
2382 #define append_alu(opcode, operand1, operand2) \
2383 vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2384
2385 assert(N > 0);
2386 unsigned top_bit = 31 - __builtin_clz(N);
2387 for (int i = top_bit - 1; i >= 0; i--) {
2388 /* We get our initial data in GPR0 and we write the final data out to
2389 * GPR0 but we use GPR1 as our scratch register.
2390 */
2391 unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2392 unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2393
2394 /* Shift the current value left by 1 */
2395 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2396 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2397 append_alu(MI_ALU_ADD, 0, 0);
2398
2399 if (N & (1 << i)) {
2400 /* Store ACCU to R1 and add R0 to R1 */
2401 append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2402 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2403 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2404 append_alu(MI_ALU_ADD, 0, 0);
2405 }
2406
2407 append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2408 }
2409
2410 #undef append_alu
2411 }
2412
2413 static void
2414 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2415 {
2416 uint32_t num_dwords;
2417 build_alu_multiply_gpr0(NULL, &num_dwords, N);
2418
2419 uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2420 build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2421 }
2422
2423 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2424
2425 static void
2426 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2427 struct anv_buffer *buffer, uint64_t offset,
2428 bool indexed)
2429 {
2430 struct anv_batch *batch = &cmd_buffer->batch;
2431 struct anv_bo *bo = buffer->bo;
2432 uint32_t bo_offset = buffer->offset + offset;
2433
2434 emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2435
2436 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2437 if (view_count > 1) {
2438 #if GEN_IS_HASWELL || GEN_GEN >= 8
2439 emit_lrm(batch, CS_GPR(0), bo, bo_offset + 4);
2440 emit_mul_gpr0(batch, view_count);
2441 emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2442 #else
2443 anv_finishme("Multiview + indirect draw requires MI_MATH; "
2444 "MI_MATH is not supported on Ivy Bridge");
2445 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2446 #endif
2447 } else {
2448 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2449 }
2450
2451 emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2452
2453 if (indexed) {
2454 emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
2455 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
2456 } else {
2457 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
2458 emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2459 }
2460 }
2461
2462 void genX(CmdDrawIndirect)(
2463 VkCommandBuffer commandBuffer,
2464 VkBuffer _buffer,
2465 VkDeviceSize offset,
2466 uint32_t drawCount,
2467 uint32_t stride)
2468 {
2469 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2470 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2471 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2472 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2473
2474 if (anv_batch_has_error(&cmd_buffer->batch))
2475 return;
2476
2477 genX(cmd_buffer_flush_state)(cmd_buffer);
2478
2479 for (uint32_t i = 0; i < drawCount; i++) {
2480 struct anv_bo *bo = buffer->bo;
2481 uint32_t bo_offset = buffer->offset + offset;
2482
2483 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2484 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
2485 if (vs_prog_data->uses_drawid)
2486 emit_draw_index(cmd_buffer, i);
2487
2488 load_indirect_parameters(cmd_buffer, buffer, offset, false);
2489
2490 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2491 prim.IndirectParameterEnable = true;
2492 prim.VertexAccessType = SEQUENTIAL;
2493 prim.PrimitiveTopologyType = pipeline->topology;
2494 }
2495
2496 offset += stride;
2497 }
2498 }
2499
2500 void genX(CmdDrawIndexedIndirect)(
2501 VkCommandBuffer commandBuffer,
2502 VkBuffer _buffer,
2503 VkDeviceSize offset,
2504 uint32_t drawCount,
2505 uint32_t stride)
2506 {
2507 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2508 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2509 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2510 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2511
2512 if (anv_batch_has_error(&cmd_buffer->batch))
2513 return;
2514
2515 genX(cmd_buffer_flush_state)(cmd_buffer);
2516
2517 for (uint32_t i = 0; i < drawCount; i++) {
2518 struct anv_bo *bo = buffer->bo;
2519 uint32_t bo_offset = buffer->offset + offset;
2520
2521 /* TODO: We need to stomp base vertex to 0 somehow */
2522 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2523 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
2524 if (vs_prog_data->uses_drawid)
2525 emit_draw_index(cmd_buffer, i);
2526
2527 load_indirect_parameters(cmd_buffer, buffer, offset, true);
2528
2529 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2530 prim.IndirectParameterEnable = true;
2531 prim.VertexAccessType = RANDOM;
2532 prim.PrimitiveTopologyType = pipeline->topology;
2533 }
2534
2535 offset += stride;
2536 }
2537 }
2538
2539 static VkResult
2540 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
2541 {
2542 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2543 struct anv_state surfaces = { 0, }, samplers = { 0, };
2544 VkResult result;
2545
2546 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2547 if (result != VK_SUCCESS) {
2548 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2549
2550 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2551 if (result != VK_SUCCESS)
2552 return result;
2553
2554 /* Re-emit state base addresses so we get the new surface state base
2555 * address before we start emitting binding tables etc.
2556 */
2557 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2558
2559 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2560 if (result != VK_SUCCESS) {
2561 anv_batch_set_error(&cmd_buffer->batch, result);
2562 return result;
2563 }
2564 }
2565
2566 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
2567 if (result != VK_SUCCESS) {
2568 anv_batch_set_error(&cmd_buffer->batch, result);
2569 return result;
2570 }
2571
2572 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
2573 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2574 .BindingTablePointer = surfaces.offset,
2575 .SamplerStatePointer = samplers.offset,
2576 };
2577 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
2578
2579 struct anv_state state =
2580 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
2581 pipeline->interface_descriptor_data,
2582 GENX(INTERFACE_DESCRIPTOR_DATA_length),
2583 64);
2584
2585 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
2586 anv_batch_emit(&cmd_buffer->batch,
2587 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
2588 mid.InterfaceDescriptorTotalLength = size;
2589 mid.InterfaceDescriptorDataStartAddress = state.offset;
2590 }
2591
2592 return VK_SUCCESS;
2593 }
2594
2595 void
2596 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
2597 {
2598 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2599 MAYBE_UNUSED VkResult result;
2600
2601 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
2602
2603 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2604
2605 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
2606
2607 if (cmd_buffer->state.compute.pipeline_dirty) {
2608 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
2609 *
2610 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
2611 * the only bits that are changed are scoreboard related: Scoreboard
2612 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
2613 * these scoreboard related states, a MEDIA_STATE_FLUSH is
2614 * sufficient."
2615 */
2616 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2617 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2618
2619 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2620 }
2621
2622 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
2623 cmd_buffer->state.compute.pipeline_dirty) {
2624 /* FIXME: figure out descriptors for gen7 */
2625 result = flush_compute_descriptor_set(cmd_buffer);
2626 if (result != VK_SUCCESS)
2627 return;
2628
2629 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
2630 }
2631
2632 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
2633 struct anv_state push_state =
2634 anv_cmd_buffer_cs_push_constants(cmd_buffer);
2635
2636 if (push_state.alloc_size) {
2637 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
2638 curbe.CURBETotalDataLength = push_state.alloc_size;
2639 curbe.CURBEDataStartAddress = push_state.offset;
2640 }
2641 }
2642 }
2643
2644 cmd_buffer->state.compute.pipeline_dirty = false;
2645
2646 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2647 }
2648
2649 #if GEN_GEN == 7
2650
2651 static VkResult
2652 verify_cmd_parser(const struct anv_device *device,
2653 int required_version,
2654 const char *function)
2655 {
2656 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
2657 return vk_errorf(device->instance, device->instance,
2658 VK_ERROR_FEATURE_NOT_PRESENT,
2659 "cmd parser version %d is required for %s",
2660 required_version, function);
2661 } else {
2662 return VK_SUCCESS;
2663 }
2664 }
2665
2666 #endif
2667
2668 void genX(CmdDispatch)(
2669 VkCommandBuffer commandBuffer,
2670 uint32_t x,
2671 uint32_t y,
2672 uint32_t z)
2673 {
2674 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2675 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2676 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2677
2678 if (anv_batch_has_error(&cmd_buffer->batch))
2679 return;
2680
2681 if (prog_data->uses_num_work_groups) {
2682 struct anv_state state =
2683 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
2684 uint32_t *sizes = state.map;
2685 sizes[0] = x;
2686 sizes[1] = y;
2687 sizes[2] = z;
2688 anv_state_flush(cmd_buffer->device, state);
2689 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
2690 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2691 .offset = state.offset,
2692 };
2693 }
2694
2695 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2696
2697 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
2698 ggw.SIMDSize = prog_data->simd_size / 16;
2699 ggw.ThreadDepthCounterMaximum = 0;
2700 ggw.ThreadHeightCounterMaximum = 0;
2701 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2702 ggw.ThreadGroupIDXDimension = x;
2703 ggw.ThreadGroupIDYDimension = y;
2704 ggw.ThreadGroupIDZDimension = z;
2705 ggw.RightExecutionMask = pipeline->cs_right_mask;
2706 ggw.BottomExecutionMask = 0xffffffff;
2707 }
2708
2709 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
2710 }
2711
2712 #define GPGPU_DISPATCHDIMX 0x2500
2713 #define GPGPU_DISPATCHDIMY 0x2504
2714 #define GPGPU_DISPATCHDIMZ 0x2508
2715
2716 void genX(CmdDispatchIndirect)(
2717 VkCommandBuffer commandBuffer,
2718 VkBuffer _buffer,
2719 VkDeviceSize offset)
2720 {
2721 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2722 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2723 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2724 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2725 struct anv_bo *bo = buffer->bo;
2726 uint32_t bo_offset = buffer->offset + offset;
2727 struct anv_batch *batch = &cmd_buffer->batch;
2728
2729 #if GEN_GEN == 7
2730 /* Linux 4.4 added command parser version 5 which allows the GPGPU
2731 * indirect dispatch registers to be written.
2732 */
2733 if (verify_cmd_parser(cmd_buffer->device, 5,
2734 "vkCmdDispatchIndirect") != VK_SUCCESS)
2735 return;
2736 #endif
2737
2738 if (prog_data->uses_num_work_groups) {
2739 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
2740 .bo = bo,
2741 .offset = bo_offset,
2742 };
2743 }
2744
2745 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2746
2747 emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
2748 emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
2749 emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
2750
2751 #if GEN_GEN <= 7
2752 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
2753 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
2754 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
2755 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
2756
2757 /* Load compute_dispatch_indirect_x_size into SRC0 */
2758 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
2759
2760 /* predicate = (compute_dispatch_indirect_x_size == 0); */
2761 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2762 mip.LoadOperation = LOAD_LOAD;
2763 mip.CombineOperation = COMBINE_SET;
2764 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2765 }
2766
2767 /* Load compute_dispatch_indirect_y_size into SRC0 */
2768 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
2769
2770 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
2771 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2772 mip.LoadOperation = LOAD_LOAD;
2773 mip.CombineOperation = COMBINE_OR;
2774 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2775 }
2776
2777 /* Load compute_dispatch_indirect_z_size into SRC0 */
2778 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
2779
2780 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
2781 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2782 mip.LoadOperation = LOAD_LOAD;
2783 mip.CombineOperation = COMBINE_OR;
2784 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2785 }
2786
2787 /* predicate = !predicate; */
2788 #define COMPARE_FALSE 1
2789 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2790 mip.LoadOperation = LOAD_LOADINV;
2791 mip.CombineOperation = COMBINE_OR;
2792 mip.CompareOperation = COMPARE_FALSE;
2793 }
2794 #endif
2795
2796 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
2797 ggw.IndirectParameterEnable = true;
2798 ggw.PredicateEnable = GEN_GEN <= 7;
2799 ggw.SIMDSize = prog_data->simd_size / 16;
2800 ggw.ThreadDepthCounterMaximum = 0;
2801 ggw.ThreadHeightCounterMaximum = 0;
2802 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2803 ggw.RightExecutionMask = pipeline->cs_right_mask;
2804 ggw.BottomExecutionMask = 0xffffffff;
2805 }
2806
2807 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
2808 }
2809
2810 static void
2811 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
2812 uint32_t pipeline)
2813 {
2814 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
2815
2816 if (cmd_buffer->state.current_pipeline == pipeline)
2817 return;
2818
2819 #if GEN_GEN >= 8 && GEN_GEN < 10
2820 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
2821 *
2822 * Software must clear the COLOR_CALC_STATE Valid field in
2823 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
2824 * with Pipeline Select set to GPGPU.
2825 *
2826 * The internal hardware docs recommend the same workaround for Gen9
2827 * hardware too.
2828 */
2829 if (pipeline == GPGPU)
2830 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
2831 #endif
2832
2833 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
2834 * PIPELINE_SELECT [DevBWR+]":
2835 *
2836 * Project: DEVSNB+
2837 *
2838 * Software must ensure all the write caches are flushed through a
2839 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
2840 * command to invalidate read only caches prior to programming
2841 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
2842 */
2843 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2844 pc.RenderTargetCacheFlushEnable = true;
2845 pc.DepthCacheFlushEnable = true;
2846 pc.DCFlushEnable = true;
2847 pc.PostSyncOperation = NoWrite;
2848 pc.CommandStreamerStallEnable = true;
2849 }
2850
2851 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2852 pc.TextureCacheInvalidationEnable = true;
2853 pc.ConstantCacheInvalidationEnable = true;
2854 pc.StateCacheInvalidationEnable = true;
2855 pc.InstructionCacheInvalidateEnable = true;
2856 pc.PostSyncOperation = NoWrite;
2857 }
2858
2859 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
2860 #if GEN_GEN >= 9
2861 ps.MaskBits = 3;
2862 #endif
2863 ps.PipelineSelection = pipeline;
2864 }
2865
2866 #if GEN_GEN == 9
2867 if (devinfo->is_geminilake) {
2868 /* Project: DevGLK
2869 *
2870 * "This chicken bit works around a hardware issue with barrier logic
2871 * encountered when switching between GPGPU and 3D pipelines. To
2872 * workaround the issue, this mode bit should be set after a pipeline
2873 * is selected."
2874 */
2875 uint32_t scec;
2876 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
2877 .GLKBarrierMode =
2878 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
2879 : GLK_BARRIER_MODE_3D_HULL,
2880 .GLKBarrierModeMask = 1);
2881 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
2882 }
2883 #endif
2884
2885 cmd_buffer->state.current_pipeline = pipeline;
2886 }
2887
2888 void
2889 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
2890 {
2891 genX(flush_pipeline_select)(cmd_buffer, _3D);
2892 }
2893
2894 void
2895 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
2896 {
2897 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
2898 }
2899
2900 void
2901 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
2902 {
2903 if (GEN_GEN >= 8)
2904 return;
2905
2906 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
2907 *
2908 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
2909 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
2910 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
2911 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
2912 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
2913 * Depth Flush Bit set, followed by another pipelined depth stall
2914 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
2915 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
2916 * via a preceding MI_FLUSH)."
2917 */
2918 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2919 pipe.DepthStallEnable = true;
2920 }
2921 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2922 pipe.DepthCacheFlushEnable = true;
2923 }
2924 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2925 pipe.DepthStallEnable = true;
2926 }
2927 }
2928
2929 static void
2930 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
2931 {
2932 struct anv_device *device = cmd_buffer->device;
2933 const struct anv_image_view *iview =
2934 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
2935 const struct anv_image *image = iview ? iview->image : NULL;
2936
2937 /* FIXME: Width and Height are wrong */
2938
2939 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
2940
2941 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
2942 device->isl_dev.ds.size / 4);
2943 if (dw == NULL)
2944 return;
2945
2946 struct isl_depth_stencil_hiz_emit_info info = {
2947 .mocs = device->default_mocs,
2948 };
2949
2950 if (iview)
2951 info.view = &iview->planes[0].isl;
2952
2953 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
2954 uint32_t depth_plane =
2955 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
2956 const struct anv_surface *surface = &image->planes[depth_plane].surface;
2957
2958 info.depth_surf = &surface->isl;
2959
2960 info.depth_address =
2961 anv_batch_emit_reloc(&cmd_buffer->batch,
2962 dw + device->isl_dev.ds.depth_offset / 4,
2963 image->planes[depth_plane].bo,
2964 image->planes[depth_plane].bo_offset +
2965 surface->offset);
2966
2967 const uint32_t ds =
2968 cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
2969 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
2970 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
2971 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
2972
2973 info.hiz_address =
2974 anv_batch_emit_reloc(&cmd_buffer->batch,
2975 dw + device->isl_dev.ds.hiz_offset / 4,
2976 image->planes[depth_plane].bo,
2977 image->planes[depth_plane].bo_offset +
2978 image->planes[depth_plane].aux_surface.offset);
2979
2980 info.depth_clear_value = ANV_HZ_FC_VAL;
2981 }
2982 }
2983
2984 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
2985 uint32_t stencil_plane =
2986 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
2987 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
2988
2989 info.stencil_surf = &surface->isl;
2990
2991 info.stencil_address =
2992 anv_batch_emit_reloc(&cmd_buffer->batch,
2993 dw + device->isl_dev.ds.stencil_offset / 4,
2994 image->planes[stencil_plane].bo,
2995 image->planes[stencil_plane].bo_offset + surface->offset);
2996 }
2997
2998 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
2999
3000 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
3001 }
3002
3003
3004 /**
3005 * @brief Perform any layout transitions required at the beginning and/or end
3006 * of the current subpass for depth buffers.
3007 *
3008 * TODO: Consider preprocessing the attachment reference array at render pass
3009 * create time to determine if no layout transition is needed at the
3010 * beginning and/or end of each subpass.
3011 *
3012 * @param cmd_buffer The command buffer the transition is happening within.
3013 * @param subpass_end If true, marks that the transition is happening at the
3014 * end of the subpass.
3015 */
3016 static void
3017 cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,
3018 const bool subpass_end)
3019 {
3020 /* We need a non-NULL command buffer. */
3021 assert(cmd_buffer);
3022
3023 const struct anv_cmd_state * const cmd_state = &cmd_buffer->state;
3024 const struct anv_subpass * const subpass = cmd_state->subpass;
3025
3026 /* This function must be called within a subpass. */
3027 assert(subpass);
3028
3029 /* If there are attachment references, the array shouldn't be NULL.
3030 */
3031 if (subpass->attachment_count > 0)
3032 assert(subpass->attachments);
3033
3034 /* Iterate over the array of attachment references. */
3035 for (const VkAttachmentReference *att_ref = subpass->attachments;
3036 att_ref < subpass->attachments + subpass->attachment_count; att_ref++) {
3037
3038 /* If the attachment is unused, we can't perform a layout transition. */
3039 if (att_ref->attachment == VK_ATTACHMENT_UNUSED)
3040 continue;
3041
3042 /* This attachment index shouldn't go out of bounds. */
3043 assert(att_ref->attachment < cmd_state->pass->attachment_count);
3044
3045 const struct anv_render_pass_attachment * const att_desc =
3046 &cmd_state->pass->attachments[att_ref->attachment];
3047 struct anv_attachment_state * const att_state =
3048 &cmd_buffer->state.attachments[att_ref->attachment];
3049
3050 /* The attachment should not be used in a subpass after its last. */
3051 assert(att_desc->last_subpass_idx >= anv_get_subpass_id(cmd_state));
3052
3053 if (subpass_end && anv_get_subpass_id(cmd_state) <
3054 att_desc->last_subpass_idx) {
3055 /* We're calling this function on a buffer twice in one subpass and
3056 * this is not the last use of the buffer. The layout should not have
3057 * changed from the first call and no transition is necessary.
3058 */
3059 assert(att_state->current_layout == att_ref->layout ||
3060 att_state->current_layout ==
3061 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
3062 continue;
3063 }
3064
3065 /* The attachment index must be less than the number of attachments
3066 * within the framebuffer.
3067 */
3068 assert(att_ref->attachment < cmd_state->framebuffer->attachment_count);
3069
3070 const struct anv_image_view * const iview =
3071 cmd_state->framebuffer->attachments[att_ref->attachment];
3072 const struct anv_image * const image = iview->image;
3073
3074 /* Get the appropriate target layout for this attachment. */
3075 VkImageLayout target_layout;
3076
3077 /* A resolve is necessary before use as an input attachment if the clear
3078 * color or auxiliary buffer usage isn't supported by the sampler.
3079 */
3080 const bool input_needs_resolve =
3081 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
3082 att_state->input_aux_usage != att_state->aux_usage;
3083 if (subpass_end) {
3084 target_layout = att_desc->final_layout;
3085 } else if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
3086 !input_needs_resolve) {
3087 /* Layout transitions before the final only help to enable sampling as
3088 * an input attachment. If the input attachment supports sampling
3089 * using the auxiliary surface, we can skip such transitions by making
3090 * the target layout one that is CCS-aware.
3091 */
3092 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
3093 } else {
3094 target_layout = att_ref->layout;
3095 }
3096
3097 /* Perform the layout transition. */
3098 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3099 transition_depth_buffer(cmd_buffer, image,
3100 att_state->current_layout, target_layout);
3101 att_state->aux_usage =
3102 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
3103 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
3104 } else if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3105 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3106 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3107 iview->planes[0].isl.base_level, 1,
3108 iview->planes[0].isl.base_array_layer,
3109 iview->planes[0].isl.array_len,
3110 att_state->current_layout, target_layout);
3111 }
3112
3113 att_state->current_layout = target_layout;
3114 }
3115 }
3116
3117 /* Update the clear value dword(s) in surface state objects or the fast clear
3118 * state buffer entry for the color attachments used in this subpass.
3119 */
3120 static void
3121 cmd_buffer_subpass_sync_fast_clear_values(struct anv_cmd_buffer *cmd_buffer)
3122 {
3123 assert(cmd_buffer && cmd_buffer->state.subpass);
3124
3125 const struct anv_cmd_state *state = &cmd_buffer->state;
3126
3127 /* Iterate through every color attachment used in this subpass. */
3128 for (uint32_t i = 0; i < state->subpass->color_count; ++i) {
3129
3130 /* The attachment should be one of the attachments described in the
3131 * render pass and used in the subpass.
3132 */
3133 const uint32_t a = state->subpass->color_attachments[i].attachment;
3134 if (a == VK_ATTACHMENT_UNUSED)
3135 continue;
3136
3137 assert(a < state->pass->attachment_count);
3138
3139 /* Store some information regarding this attachment. */
3140 const struct anv_attachment_state *att_state = &state->attachments[a];
3141 const struct anv_image_view *iview = state->framebuffer->attachments[a];
3142 const struct anv_render_pass_attachment *rp_att =
3143 &state->pass->attachments[a];
3144
3145 if (att_state->aux_usage == ISL_AUX_USAGE_NONE)
3146 continue;
3147
3148 /* The fast clear state entry must be updated if a fast clear is going to
3149 * happen. The surface state must be updated if the clear value from a
3150 * prior fast clear may be needed.
3151 */
3152 if (att_state->pending_clear_aspects && att_state->fast_clear) {
3153 /* Update the fast clear state entry. */
3154 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3155 iview->image,
3156 VK_IMAGE_ASPECT_COLOR_BIT,
3157 iview->planes[0].isl.base_level,
3158 true /* copy from ss */);
3159
3160 /* Fast-clears impact whether or not a resolve will be necessary. */
3161 if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E &&
3162 att_state->clear_color_is_zero) {
3163 /* This image always has the auxiliary buffer enabled. We can mark
3164 * the subresource as not needing a resolve because the clear color
3165 * will match what's in every RENDER_SURFACE_STATE object when it's
3166 * being used for sampling.
3167 */
3168 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
3169 VK_IMAGE_ASPECT_COLOR_BIT,
3170 iview->planes[0].isl.base_level,
3171 false);
3172 } else {
3173 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
3174 VK_IMAGE_ASPECT_COLOR_BIT,
3175 iview->planes[0].isl.base_level,
3176 true);
3177 }
3178 } else if (rp_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
3179 /* The attachment may have been fast-cleared in a previous render
3180 * pass and the value is needed now. Update the surface state(s).
3181 *
3182 * TODO: Do this only once per render pass instead of every subpass.
3183 */
3184 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3185 iview->image,
3186 VK_IMAGE_ASPECT_COLOR_BIT,
3187 iview->planes[0].isl.base_level,
3188 false /* copy to ss */);
3189
3190 if (need_input_attachment_state(rp_att) &&
3191 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
3192 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
3193 iview->image,
3194 VK_IMAGE_ASPECT_COLOR_BIT,
3195 iview->planes[0].isl.base_level,
3196 false /* copy to ss */);
3197 }
3198 }
3199 }
3200 }
3201
3202
3203 static void
3204 genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
3205 struct anv_subpass *subpass)
3206 {
3207 cmd_buffer->state.subpass = subpass;
3208
3209 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3210
3211 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3212 * different views. If the client asks for instancing, we need to use the
3213 * Instance Data Step Rate to ensure that we repeat the client's
3214 * per-instance data once for each view. Since this bit is in
3215 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3216 * of each subpass.
3217 */
3218 if (GEN_GEN == 7)
3219 cmd_buffer->state.gfx.vb_dirty |= ~0;
3220
3221 /* It is possible to start a render pass with an old pipeline. Because the
3222 * render pass and subpass index are both baked into the pipeline, this is
3223 * highly unlikely. In order to do so, it requires that you have a render
3224 * pass with a single subpass and that you use that render pass twice
3225 * back-to-back and use the same pipeline at the start of the second render
3226 * pass as at the end of the first. In order to avoid unpredictable issues
3227 * with this edge case, we just dirty the pipeline at the start of every
3228 * subpass.
3229 */
3230 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
3231
3232 /* Perform transitions to the subpass layout before any writes have
3233 * occurred.
3234 */
3235 cmd_buffer_subpass_transition_layouts(cmd_buffer, false);
3236
3237 /* Update clear values *after* performing automatic layout transitions.
3238 * This ensures that transitions from the UNDEFINED layout have had a chance
3239 * to populate the clear value buffer with the correct values for the
3240 * LOAD_OP_LOAD loadOp and that the fast-clears will update the buffer
3241 * without the aforementioned layout transition overwriting the fast-clear
3242 * value.
3243 */
3244 cmd_buffer_subpass_sync_fast_clear_values(cmd_buffer);
3245
3246 cmd_buffer_emit_depth_stencil(cmd_buffer);
3247
3248 anv_cmd_buffer_clear_subpass(cmd_buffer);
3249 }
3250
3251 void genX(CmdBeginRenderPass)(
3252 VkCommandBuffer commandBuffer,
3253 const VkRenderPassBeginInfo* pRenderPassBegin,
3254 VkSubpassContents contents)
3255 {
3256 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3257 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
3258 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
3259
3260 cmd_buffer->state.framebuffer = framebuffer;
3261 cmd_buffer->state.pass = pass;
3262 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
3263 VkResult result =
3264 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
3265
3266 /* If we failed to setup the attachments we should not try to go further */
3267 if (result != VK_SUCCESS) {
3268 assert(anv_batch_has_error(&cmd_buffer->batch));
3269 return;
3270 }
3271
3272 genX(flush_pipeline_select_3d)(cmd_buffer);
3273
3274 genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
3275
3276 cmd_buffer->state.pending_pipe_bits |=
3277 cmd_buffer->state.pass->subpass_flushes[0];
3278 }
3279
3280 void genX(CmdNextSubpass)(
3281 VkCommandBuffer commandBuffer,
3282 VkSubpassContents contents)
3283 {
3284 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3285
3286 if (anv_batch_has_error(&cmd_buffer->batch))
3287 return;
3288
3289 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3290
3291 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3292
3293 /* Perform transitions to the final layout after all writes have occurred.
3294 */
3295 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3296
3297 genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
3298
3299 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3300 cmd_buffer->state.pending_pipe_bits |=
3301 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3302 }
3303
3304 void genX(CmdEndRenderPass)(
3305 VkCommandBuffer commandBuffer)
3306 {
3307 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3308
3309 if (anv_batch_has_error(&cmd_buffer->batch))
3310 return;
3311
3312 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3313
3314 /* Perform transitions to the final layout after all writes have occurred.
3315 */
3316 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3317
3318 cmd_buffer->state.pending_pipe_bits |=
3319 cmd_buffer->state.pass->subpass_flushes[cmd_buffer->state.pass->subpass_count];
3320
3321 cmd_buffer->state.hiz_enabled = false;
3322
3323 #ifndef NDEBUG
3324 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
3325 #endif
3326
3327 /* Remove references to render pass specific state. This enables us to
3328 * detect whether or not we're in a renderpass.
3329 */
3330 cmd_buffer->state.framebuffer = NULL;
3331 cmd_buffer->state.pass = NULL;
3332 cmd_buffer->state.subpass = NULL;
3333 }