89aeff2c9d6751163f7fd11ee0c1aa429c74d7fa
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29
30 #include "common/gen_l3_config.h"
31 #include "genxml/gen_macros.h"
32 #include "genxml/genX_pack.h"
33
34 static void
35 emit_lrm(struct anv_batch *batch,
36 uint32_t reg, struct anv_bo *bo, uint32_t offset)
37 {
38 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
39 lrm.RegisterAddress = reg;
40 lrm.MemoryAddress = (struct anv_address) { bo, offset };
41 }
42 }
43
44 static void
45 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
46 {
47 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
48 lri.RegisterOffset = reg;
49 lri.DataDWord = imm;
50 }
51 }
52
53 void
54 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
55 {
56 struct anv_device *device = cmd_buffer->device;
57
58 /* Emit a render target cache flush.
59 *
60 * This isn't documented anywhere in the PRM. However, it seems to be
61 * necessary prior to changing the surface state base adress. Without
62 * this, we get GPU hangs when using multi-level command buffers which
63 * clear depth, reset state base address, and then go render stuff.
64 */
65 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
66 pc.DCFlushEnable = true;
67 pc.RenderTargetCacheFlushEnable = true;
68 pc.CommandStreamerStallEnable = true;
69 }
70
71 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
72 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
73 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
74 sba.GeneralStateBaseAddressModifyEnable = true;
75
76 sba.SurfaceStateBaseAddress =
77 anv_cmd_buffer_surface_base_address(cmd_buffer);
78 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
79 sba.SurfaceStateBaseAddressModifyEnable = true;
80
81 sba.DynamicStateBaseAddress =
82 (struct anv_address) { &device->dynamic_state_block_pool.bo, 0 };
83 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
84 sba.DynamicStateBaseAddressModifyEnable = true;
85
86 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
87 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
88 sba.IndirectObjectBaseAddressModifyEnable = true;
89
90 sba.InstructionBaseAddress =
91 (struct anv_address) { &device->instruction_block_pool.bo, 0 };
92 sba.InstructionMemoryObjectControlState = GENX(MOCS);
93 sba.InstructionBaseAddressModifyEnable = true;
94
95 # if (GEN_GEN >= 8)
96 /* Broadwell requires that we specify a buffer size for a bunch of
97 * these fields. However, since we will be growing the BO's live, we
98 * just set them all to the maximum.
99 */
100 sba.GeneralStateBufferSize = 0xfffff;
101 sba.GeneralStateBufferSizeModifyEnable = true;
102 sba.DynamicStateBufferSize = 0xfffff;
103 sba.DynamicStateBufferSizeModifyEnable = true;
104 sba.IndirectObjectBufferSize = 0xfffff;
105 sba.IndirectObjectBufferSizeModifyEnable = true;
106 sba.InstructionBufferSize = 0xfffff;
107 sba.InstructionBuffersizeModifyEnable = true;
108 # endif
109 }
110
111 /* After re-setting the surface state base address, we have to do some
112 * cache flusing so that the sampler engine will pick up the new
113 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
114 * Shared Function > 3D Sampler > State > State Caching (page 96):
115 *
116 * Coherency with system memory in the state cache, like the texture
117 * cache is handled partially by software. It is expected that the
118 * command stream or shader will issue Cache Flush operation or
119 * Cache_Flush sampler message to ensure that the L1 cache remains
120 * coherent with system memory.
121 *
122 * [...]
123 *
124 * Whenever the value of the Dynamic_State_Base_Addr,
125 * Surface_State_Base_Addr are altered, the L1 state cache must be
126 * invalidated to ensure the new surface or sampler state is fetched
127 * from system memory.
128 *
129 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
130 * which, according the PIPE_CONTROL instruction documentation in the
131 * Broadwell PRM:
132 *
133 * Setting this bit is independent of any other bit in this packet.
134 * This bit controls the invalidation of the L1 and L2 state caches
135 * at the top of the pipe i.e. at the parsing time.
136 *
137 * Unfortunately, experimentation seems to indicate that state cache
138 * invalidation through a PIPE_CONTROL does nothing whatsoever in
139 * regards to surface state and binding tables. In stead, it seems that
140 * invalidating the texture cache is what is actually needed.
141 *
142 * XXX: As far as we have been able to determine through
143 * experimentation, shows that flush the texture cache appears to be
144 * sufficient. The theory here is that all of the sampling/rendering
145 * units cache the binding table in the texture cache. However, we have
146 * yet to be able to actually confirm this.
147 */
148 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
149 pc.TextureCacheInvalidationEnable = true;
150 pc.ConstantCacheInvalidationEnable = true;
151 pc.StateCacheInvalidationEnable = true;
152 }
153 }
154
155 static void
156 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
157 struct anv_state state,
158 struct anv_bo *bo, uint32_t offset)
159 {
160 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
161
162 VkResult result =
163 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
164 state.offset + isl_dev->ss.addr_offset, bo, offset);
165 if (result != VK_SUCCESS)
166 anv_batch_set_error(&cmd_buffer->batch, result);
167 }
168
169 static void
170 add_image_view_relocs(struct anv_cmd_buffer *cmd_buffer,
171 const struct anv_image_view *iview,
172 enum isl_aux_usage aux_usage,
173 struct anv_state state)
174 {
175 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
176
177 add_surface_state_reloc(cmd_buffer, state, iview->bo, iview->offset);
178
179 if (aux_usage != ISL_AUX_USAGE_NONE) {
180 uint32_t aux_offset = iview->offset + iview->image->aux_surface.offset;
181
182 /* On gen7 and prior, the bottom 12 bits of the MCS base address are
183 * used to store other information. This should be ok, however, because
184 * surface buffer addresses are always 4K page alinged.
185 */
186 assert((aux_offset & 0xfff) == 0);
187 uint32_t *aux_addr_dw = state.map + isl_dev->ss.aux_addr_offset;
188 aux_offset += *aux_addr_dw & 0xfff;
189
190 VkResult result =
191 anv_reloc_list_add(&cmd_buffer->surface_relocs,
192 &cmd_buffer->pool->alloc,
193 state.offset + isl_dev->ss.aux_addr_offset,
194 iview->bo, aux_offset);
195 if (result != VK_SUCCESS)
196 anv_batch_set_error(&cmd_buffer->batch, result);
197 }
198 }
199
200 static bool
201 color_is_zero_one(VkClearColorValue value, enum isl_format format)
202 {
203 if (isl_format_has_int_channel(format)) {
204 for (unsigned i = 0; i < 4; i++) {
205 if (value.int32[i] != 0 && value.int32[i] != 1)
206 return false;
207 }
208 } else {
209 for (unsigned i = 0; i < 4; i++) {
210 if (value.float32[i] != 0.0f && value.float32[i] != 1.0f)
211 return false;
212 }
213 }
214
215 return true;
216 }
217
218 static void
219 color_attachment_compute_aux_usage(struct anv_device *device,
220 struct anv_attachment_state *att_state,
221 struct anv_image_view *iview,
222 VkRect2D render_area,
223 union isl_color_value *fast_clear_color)
224 {
225 if (iview->image->aux_surface.isl.size == 0) {
226 att_state->aux_usage = ISL_AUX_USAGE_NONE;
227 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
228 att_state->fast_clear = false;
229 return;
230 } else if (iview->image->aux_usage == ISL_AUX_USAGE_MCS) {
231 att_state->aux_usage = ISL_AUX_USAGE_MCS;
232 att_state->input_aux_usage = ISL_AUX_USAGE_MCS;
233 att_state->fast_clear = false;
234 return;
235 }
236
237 assert(iview->image->aux_surface.isl.usage & ISL_SURF_USAGE_CCS_BIT);
238
239 att_state->clear_color_is_zero_one =
240 color_is_zero_one(att_state->clear_value.color, iview->isl.format);
241
242 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
243 /* Start off assuming fast clears are possible */
244 att_state->fast_clear = true;
245
246 /* Potentially, we could do partial fast-clears but doing so has crazy
247 * alignment restrictions. It's easier to just restrict to full size
248 * fast clears for now.
249 */
250 if (render_area.offset.x != 0 ||
251 render_area.offset.y != 0 ||
252 render_area.extent.width != iview->extent.width ||
253 render_area.extent.height != iview->extent.height)
254 att_state->fast_clear = false;
255
256 if (GEN_GEN <= 7) {
257 /* On gen7, we can't do multi-LOD or multi-layer fast-clears. We
258 * technically can, but it comes with crazy restrictions that we
259 * don't want to deal with now.
260 */
261 if (iview->isl.base_level > 0 ||
262 iview->isl.base_array_layer > 0 ||
263 iview->isl.array_len > 1)
264 att_state->fast_clear = false;
265 }
266
267 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
268 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
269 att_state->fast_clear = false;
270
271 if (att_state->fast_clear) {
272 memcpy(fast_clear_color->u32, att_state->clear_value.color.uint32,
273 sizeof(fast_clear_color->u32));
274 }
275 } else {
276 att_state->fast_clear = false;
277 }
278
279 /**
280 * TODO: Consider using a heuristic to determine if temporarily enabling
281 * CCS_E for this image view would be beneficial.
282 *
283 * While fast-clear resolves and partial resolves are fairly cheap in the
284 * case where you render to most of the pixels, full resolves are not
285 * because they potentially involve reading and writing the entire
286 * framebuffer. If we can't texture with CCS_E, we should leave it off and
287 * limit ourselves to fast clears.
288 */
289 if (iview->image->aux_usage == ISL_AUX_USAGE_CCS_E) {
290 att_state->aux_usage = ISL_AUX_USAGE_CCS_E;
291 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_E;
292 } else if (att_state->fast_clear) {
293 att_state->aux_usage = ISL_AUX_USAGE_CCS_D;
294 if (GEN_GEN >= 9 &&
295 !isl_format_supports_ccs_e(&device->info, iview->isl.format)) {
296 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
297 *
298 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
299 * setting is only allowed if Surface Format supported for Fast
300 * Clear. In addition, if the surface is bound to the sampling
301 * engine, Surface Format must be supported for Render Target
302 * Compression for surfaces bound to the sampling engine."
303 *
304 * In other words, we can't sample from a fast-cleared image if it
305 * doesn't also support color compression.
306 */
307 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
308 } else if (GEN_GEN == 8) {
309 /* Broadwell can sample from fast-cleared images */
310 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
311 } else {
312 /* Ivy Bridge and Haswell cannot */
313 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
314 }
315 } else {
316 att_state->aux_usage = ISL_AUX_USAGE_NONE;
317 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
318 }
319 }
320
321 static bool
322 need_input_attachment_state(const struct anv_render_pass_attachment *att)
323 {
324 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
325 return false;
326
327 /* We only allocate input attachment states for color surfaces. Compression
328 * is not yet enabled for depth textures and stencil doesn't allow
329 * compression so we can just use the texture surface state from the view.
330 */
331 return vk_format_is_color(att->format);
332 }
333
334 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
335 * the initial layout is undefined, the HiZ buffer and depth buffer will
336 * represent the same data at the end of this operation.
337 */
338 static void
339 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
340 const struct anv_image *image,
341 VkImageLayout initial_layout,
342 VkImageLayout final_layout)
343 {
344 assert(image);
345
346 /* A transition is a no-op if HiZ is not enabled, or if the initial and
347 * final layouts are equal.
348 *
349 * The undefined layout indicates that the user doesn't care about the data
350 * that's currently in the buffer. Therefore, a data-preserving resolve
351 * operation is not needed.
352 *
353 * The pre-initialized layout is equivalent to the undefined layout for
354 * optimally-tiled images. Anv only exposes support for optimally-tiled
355 * depth buffers.
356 */
357 if (image->aux_usage != ISL_AUX_USAGE_HIZ ||
358 initial_layout == final_layout ||
359 initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
360 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)
361 return;
362
363 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
364 anv_layout_to_aux_usage(&cmd_buffer->device->info, image, image->aspects,
365 initial_layout);
366 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
367 anv_layout_to_aux_usage(&cmd_buffer->device->info, image, image->aspects,
368 final_layout);
369
370 enum blorp_hiz_op hiz_op;
371 if (hiz_enabled && !enable_hiz) {
372 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
373 } else if (!hiz_enabled && enable_hiz) {
374 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
375 } else {
376 assert(hiz_enabled == enable_hiz);
377 /* If the same buffer will be used, no resolves are necessary. */
378 hiz_op = BLORP_HIZ_OP_NONE;
379 }
380
381 if (hiz_op != BLORP_HIZ_OP_NONE)
382 anv_gen8_hiz_op_resolve(cmd_buffer, image, hiz_op);
383 }
384
385
386 /**
387 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
388 */
389 static VkResult
390 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
391 struct anv_render_pass *pass,
392 const VkRenderPassBeginInfo *begin)
393 {
394 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
395 struct anv_cmd_state *state = &cmd_buffer->state;
396
397 vk_free(&cmd_buffer->pool->alloc, state->attachments);
398
399 if (pass->attachment_count == 0) {
400 state->attachments = NULL;
401 return VK_SUCCESS;
402 }
403
404 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
405 pass->attachment_count *
406 sizeof(state->attachments[0]),
407 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
408 if (state->attachments == NULL) {
409 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
410 return anv_batch_set_error(&cmd_buffer->batch,
411 VK_ERROR_OUT_OF_HOST_MEMORY);
412 }
413
414 bool need_null_state = false;
415 unsigned num_states = 0;
416 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
417 if (vk_format_is_color(pass->attachments[i].format)) {
418 num_states++;
419 } else {
420 /* We need a null state for any depth-stencil-only subpasses.
421 * Importantly, this includes depth/stencil clears so we create one
422 * whenever we have depth or stencil
423 */
424 need_null_state = true;
425 }
426
427 if (need_input_attachment_state(&pass->attachments[i]))
428 num_states++;
429 }
430 num_states += need_null_state;
431
432 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
433 state->render_pass_states =
434 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
435 num_states * ss_stride, isl_dev->ss.align);
436
437 struct anv_state next_state = state->render_pass_states;
438 next_state.alloc_size = isl_dev->ss.size;
439
440 if (need_null_state) {
441 state->null_surface_state = next_state;
442 next_state.offset += ss_stride;
443 next_state.map += ss_stride;
444 }
445
446 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
447 if (vk_format_is_color(pass->attachments[i].format)) {
448 state->attachments[i].color_rt_state = next_state;
449 next_state.offset += ss_stride;
450 next_state.map += ss_stride;
451 }
452
453 if (need_input_attachment_state(&pass->attachments[i])) {
454 state->attachments[i].input_att_state = next_state;
455 next_state.offset += ss_stride;
456 next_state.map += ss_stride;
457 }
458 }
459 assert(next_state.offset == state->render_pass_states.offset +
460 state->render_pass_states.alloc_size);
461
462 if (begin) {
463 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
464 assert(pass->attachment_count == framebuffer->attachment_count);
465
466 if (need_null_state) {
467 struct GENX(RENDER_SURFACE_STATE) null_ss = {
468 .SurfaceType = SURFTYPE_NULL,
469 .SurfaceArray = framebuffer->layers > 0,
470 .SurfaceFormat = ISL_FORMAT_R8G8B8A8_UNORM,
471 #if GEN_GEN >= 8
472 .TileMode = YMAJOR,
473 #else
474 .TiledSurface = true,
475 #endif
476 .Width = framebuffer->width - 1,
477 .Height = framebuffer->height - 1,
478 .Depth = framebuffer->layers - 1,
479 .RenderTargetViewExtent = framebuffer->layers - 1,
480 };
481 GENX(RENDER_SURFACE_STATE_pack)(NULL, state->null_surface_state.map,
482 &null_ss);
483 }
484
485 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
486 struct anv_render_pass_attachment *att = &pass->attachments[i];
487 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
488 VkImageAspectFlags clear_aspects = 0;
489
490 if (att_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
491 /* color attachment */
492 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
493 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
494 }
495 } else {
496 /* depthstencil attachment */
497 if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
498 att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
499 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
500 }
501 if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
502 att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
503 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
504 }
505 }
506
507 state->attachments[i].current_layout = att->initial_layout;
508 state->attachments[i].pending_clear_aspects = clear_aspects;
509 if (clear_aspects)
510 state->attachments[i].clear_value = begin->pClearValues[i];
511
512 struct anv_image_view *iview = framebuffer->attachments[i];
513 anv_assert(iview->vk_format == att->format);
514
515 union isl_color_value clear_color = { .u32 = { 0, } };
516 if (att_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
517 color_attachment_compute_aux_usage(cmd_buffer->device,
518 &state->attachments[i],
519 iview, begin->renderArea,
520 &clear_color);
521
522 struct isl_view view = iview->isl;
523 view.usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
524 view.swizzle = anv_swizzle_for_render(view.swizzle);
525 isl_surf_fill_state(isl_dev,
526 state->attachments[i].color_rt_state.map,
527 .surf = &iview->image->color_surface.isl,
528 .view = &view,
529 .aux_surf = &iview->image->aux_surface.isl,
530 .aux_usage = state->attachments[i].aux_usage,
531 .clear_color = clear_color,
532 .mocs = cmd_buffer->device->default_mocs);
533
534 add_image_view_relocs(cmd_buffer, iview,
535 state->attachments[i].aux_usage,
536 state->attachments[i].color_rt_state);
537 } else {
538 /* This field will be initialized after the first subpass
539 * transition.
540 */
541 state->attachments[i].aux_usage = ISL_AUX_USAGE_NONE;
542
543 state->attachments[i].input_aux_usage = ISL_AUX_USAGE_NONE;
544 }
545
546 if (need_input_attachment_state(&pass->attachments[i])) {
547 struct isl_view view = iview->isl;
548 view.usage |= ISL_SURF_USAGE_TEXTURE_BIT;
549 isl_surf_fill_state(isl_dev,
550 state->attachments[i].input_att_state.map,
551 .surf = &iview->image->color_surface.isl,
552 .view = &view,
553 .aux_surf = &iview->image->aux_surface.isl,
554 .aux_usage = state->attachments[i].input_aux_usage,
555 .clear_color = clear_color,
556 .mocs = cmd_buffer->device->default_mocs);
557
558 add_image_view_relocs(cmd_buffer, iview,
559 state->attachments[i].input_aux_usage,
560 state->attachments[i].input_att_state);
561 }
562 }
563
564 anv_state_flush(cmd_buffer->device, state->render_pass_states);
565 }
566
567 return VK_SUCCESS;
568 }
569
570 VkResult
571 genX(BeginCommandBuffer)(
572 VkCommandBuffer commandBuffer,
573 const VkCommandBufferBeginInfo* pBeginInfo)
574 {
575 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
576
577 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
578 * command buffer's state. Otherwise, we must *reset* its state. In both
579 * cases we reset it.
580 *
581 * From the Vulkan 1.0 spec:
582 *
583 * If a command buffer is in the executable state and the command buffer
584 * was allocated from a command pool with the
585 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
586 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
587 * as if vkResetCommandBuffer had been called with
588 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
589 * the command buffer in the recording state.
590 */
591 anv_cmd_buffer_reset(cmd_buffer);
592
593 cmd_buffer->usage_flags = pBeginInfo->flags;
594
595 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
596 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
597
598 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
599
600 VkResult result = VK_SUCCESS;
601 if (cmd_buffer->usage_flags &
602 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
603 cmd_buffer->state.pass =
604 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
605 cmd_buffer->state.subpass =
606 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
607 cmd_buffer->state.framebuffer = NULL;
608
609 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
610 cmd_buffer->state.pass, NULL);
611
612 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
613 }
614
615 return result;
616 }
617
618 VkResult
619 genX(EndCommandBuffer)(
620 VkCommandBuffer commandBuffer)
621 {
622 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
623
624 if (anv_batch_has_error(&cmd_buffer->batch))
625 return cmd_buffer->batch.status;
626
627 /* We want every command buffer to start with the PMA fix in a known state,
628 * so we disable it at the end of the command buffer.
629 */
630 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
631
632 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
633
634 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
635
636 return VK_SUCCESS;
637 }
638
639 void
640 genX(CmdExecuteCommands)(
641 VkCommandBuffer commandBuffer,
642 uint32_t commandBufferCount,
643 const VkCommandBuffer* pCmdBuffers)
644 {
645 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
646
647 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
648
649 /* The secondary command buffers will assume that the PMA fix is disabled
650 * when they begin executing. Make sure this is true.
651 */
652 genX(cmd_buffer_enable_pma_fix)(primary, false);
653
654 for (uint32_t i = 0; i < commandBufferCount; i++) {
655 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
656
657 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
658
659 if (secondary->usage_flags &
660 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
661 /* If we're continuing a render pass from the primary, we need to
662 * copy the surface states for the current subpass into the storage
663 * we allocated for them in BeginCommandBuffer.
664 */
665 struct anv_bo *ss_bo = &primary->device->surface_state_block_pool.bo;
666 struct anv_state src_state = primary->state.render_pass_states;
667 struct anv_state dst_state = secondary->state.render_pass_states;
668 assert(src_state.alloc_size == dst_state.alloc_size);
669
670 genX(cmd_buffer_gpu_memcpy)(primary, ss_bo, dst_state.offset,
671 ss_bo, src_state.offset,
672 src_state.alloc_size);
673 }
674
675 anv_cmd_buffer_add_secondary(primary, secondary);
676 }
677
678 /* Each of the secondary command buffers will use its own state base
679 * address. We need to re-emit state base address for the primary after
680 * all of the secondaries are done.
681 *
682 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
683 * address calls?
684 */
685 genX(cmd_buffer_emit_state_base_address)(primary);
686 }
687
688 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
689 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
690 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
691
692 /**
693 * Program the hardware to use the specified L3 configuration.
694 */
695 void
696 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
697 const struct gen_l3_config *cfg)
698 {
699 assert(cfg);
700 if (cfg == cmd_buffer->state.current_l3_config)
701 return;
702
703 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
704 fprintf(stderr, "L3 config transition: ");
705 gen_dump_l3_config(cfg, stderr);
706 }
707
708 const bool has_slm = cfg->n[GEN_L3P_SLM];
709
710 /* According to the hardware docs, the L3 partitioning can only be changed
711 * while the pipeline is completely drained and the caches are flushed,
712 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
713 */
714 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
715 pc.DCFlushEnable = true;
716 pc.PostSyncOperation = NoWrite;
717 pc.CommandStreamerStallEnable = true;
718 }
719
720 /* ...followed by a second pipelined PIPE_CONTROL that initiates
721 * invalidation of the relevant caches. Note that because RO invalidation
722 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
723 * command is processed by the CS) we cannot combine it with the previous
724 * stalling flush as the hardware documentation suggests, because that
725 * would cause the CS to stall on previous rendering *after* RO
726 * invalidation and wouldn't prevent the RO caches from being polluted by
727 * concurrent rendering before the stall completes. This intentionally
728 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
729 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
730 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
731 * already guarantee that there is no concurrent GPGPU kernel execution
732 * (see SKL HSD 2132585).
733 */
734 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
735 pc.TextureCacheInvalidationEnable = true;
736 pc.ConstantCacheInvalidationEnable = true;
737 pc.InstructionCacheInvalidateEnable = true;
738 pc.StateCacheInvalidationEnable = true;
739 pc.PostSyncOperation = NoWrite;
740 }
741
742 /* Now send a third stalling flush to make sure that invalidation is
743 * complete when the L3 configuration registers are modified.
744 */
745 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
746 pc.DCFlushEnable = true;
747 pc.PostSyncOperation = NoWrite;
748 pc.CommandStreamerStallEnable = true;
749 }
750
751 #if GEN_GEN >= 8
752
753 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
754
755 uint32_t l3cr;
756 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
757 .SLMEnable = has_slm,
758 .URBAllocation = cfg->n[GEN_L3P_URB],
759 .ROAllocation = cfg->n[GEN_L3P_RO],
760 .DCAllocation = cfg->n[GEN_L3P_DC],
761 .AllAllocation = cfg->n[GEN_L3P_ALL]);
762
763 /* Set up the L3 partitioning. */
764 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
765
766 #else
767
768 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
769 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
770 cfg->n[GEN_L3P_ALL];
771 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
772 cfg->n[GEN_L3P_ALL];
773 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
774 cfg->n[GEN_L3P_ALL];
775
776 assert(!cfg->n[GEN_L3P_ALL]);
777
778 /* When enabled SLM only uses a portion of the L3 on half of the banks,
779 * the matching space on the remaining banks has to be allocated to a
780 * client (URB for all validated configurations) set to the
781 * lower-bandwidth 2-bank address hashing mode.
782 */
783 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
784 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
785 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
786
787 /* Minimum number of ways that can be allocated to the URB. */
788 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
789 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
790
791 uint32_t l3sqcr1, l3cr2, l3cr3;
792 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
793 .ConvertDC_UC = !has_dc,
794 .ConvertIS_UC = !has_is,
795 .ConvertC_UC = !has_c,
796 .ConvertT_UC = !has_t);
797 l3sqcr1 |=
798 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
799 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
800 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
801
802 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
803 .SLMEnable = has_slm,
804 .URBLowBandwidth = urb_low_bw,
805 .URBAllocation = cfg->n[GEN_L3P_URB],
806 #if !GEN_IS_HASWELL
807 .ALLAllocation = cfg->n[GEN_L3P_ALL],
808 #endif
809 .ROAllocation = cfg->n[GEN_L3P_RO],
810 .DCAllocation = cfg->n[GEN_L3P_DC]);
811
812 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
813 .ISAllocation = cfg->n[GEN_L3P_IS],
814 .ISLowBandwidth = 0,
815 .CAllocation = cfg->n[GEN_L3P_C],
816 .CLowBandwidth = 0,
817 .TAllocation = cfg->n[GEN_L3P_T],
818 .TLowBandwidth = 0);
819
820 /* Set up the L3 partitioning. */
821 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
822 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
823 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
824
825 #if GEN_IS_HASWELL
826 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
827 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
828 * them disabled to avoid crashing the system hard.
829 */
830 uint32_t scratch1, chicken3;
831 anv_pack_struct(&scratch1, GENX(SCRATCH1),
832 .L3AtomicDisable = !has_dc);
833 anv_pack_struct(&chicken3, GENX(CHICKEN3),
834 .L3AtomicDisableMask = true,
835 .L3AtomicDisable = !has_dc);
836 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
837 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
838 }
839 #endif
840
841 #endif
842
843 cmd_buffer->state.current_l3_config = cfg;
844 }
845
846 void
847 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
848 {
849 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
850
851 /* Flushes are pipelined while invalidations are handled immediately.
852 * Therefore, if we're flushing anything then we need to schedule a stall
853 * before any invalidations can happen.
854 */
855 if (bits & ANV_PIPE_FLUSH_BITS)
856 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
857
858 /* If we're going to do an invalidate and we have a pending CS stall that
859 * has yet to be resolved, we do the CS stall now.
860 */
861 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
862 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
863 bits |= ANV_PIPE_CS_STALL_BIT;
864 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
865 }
866
867 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
868 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
869 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
870 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
871 pipe.RenderTargetCacheFlushEnable =
872 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
873
874 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
875 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
876 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
877
878 /*
879 * According to the Broadwell documentation, any PIPE_CONTROL with the
880 * "Command Streamer Stall" bit set must also have another bit set,
881 * with five different options:
882 *
883 * - Render Target Cache Flush
884 * - Depth Cache Flush
885 * - Stall at Pixel Scoreboard
886 * - Post-Sync Operation
887 * - Depth Stall
888 * - DC Flush Enable
889 *
890 * I chose "Stall at Pixel Scoreboard" since that's what we use in
891 * mesa and it seems to work fine. The choice is fairly arbitrary.
892 */
893 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
894 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
895 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
896 pipe.StallAtPixelScoreboard = true;
897 }
898
899 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
900 }
901
902 if (bits & ANV_PIPE_INVALIDATE_BITS) {
903 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
904 pipe.StateCacheInvalidationEnable =
905 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
906 pipe.ConstantCacheInvalidationEnable =
907 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
908 pipe.VFCacheInvalidationEnable =
909 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
910 pipe.TextureCacheInvalidationEnable =
911 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
912 pipe.InstructionCacheInvalidateEnable =
913 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
914 }
915
916 bits &= ~ANV_PIPE_INVALIDATE_BITS;
917 }
918
919 cmd_buffer->state.pending_pipe_bits = bits;
920 }
921
922 void genX(CmdPipelineBarrier)(
923 VkCommandBuffer commandBuffer,
924 VkPipelineStageFlags srcStageMask,
925 VkPipelineStageFlags destStageMask,
926 VkBool32 byRegion,
927 uint32_t memoryBarrierCount,
928 const VkMemoryBarrier* pMemoryBarriers,
929 uint32_t bufferMemoryBarrierCount,
930 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
931 uint32_t imageMemoryBarrierCount,
932 const VkImageMemoryBarrier* pImageMemoryBarriers)
933 {
934 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
935 uint32_t b;
936
937 /* XXX: Right now, we're really dumb and just flush whatever categories
938 * the app asks for. One of these days we may make this a bit better
939 * but right now that's all the hardware allows for in most areas.
940 */
941 VkAccessFlags src_flags = 0;
942 VkAccessFlags dst_flags = 0;
943
944 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
945 src_flags |= pMemoryBarriers[i].srcAccessMask;
946 dst_flags |= pMemoryBarriers[i].dstAccessMask;
947 }
948
949 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
950 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
951 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
952 }
953
954 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
955 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
956 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
957 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
958 if (pImageMemoryBarriers[i].subresourceRange.aspectMask &
959 VK_IMAGE_ASPECT_DEPTH_BIT) {
960 transition_depth_buffer(cmd_buffer, image,
961 pImageMemoryBarriers[i].oldLayout,
962 pImageMemoryBarriers[i].newLayout);
963 }
964 }
965
966 enum anv_pipe_bits pipe_bits = 0;
967
968 for_each_bit(b, src_flags) {
969 switch ((VkAccessFlagBits)(1 << b)) {
970 case VK_ACCESS_SHADER_WRITE_BIT:
971 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
972 break;
973 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
974 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
975 break;
976 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
977 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
978 break;
979 case VK_ACCESS_TRANSFER_WRITE_BIT:
980 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
981 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
982 break;
983 default:
984 break; /* Nothing to do */
985 }
986 }
987
988 for_each_bit(b, dst_flags) {
989 switch ((VkAccessFlagBits)(1 << b)) {
990 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
991 case VK_ACCESS_INDEX_READ_BIT:
992 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
993 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
994 break;
995 case VK_ACCESS_UNIFORM_READ_BIT:
996 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
997 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
998 break;
999 case VK_ACCESS_SHADER_READ_BIT:
1000 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
1001 case VK_ACCESS_TRANSFER_READ_BIT:
1002 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1003 break;
1004 default:
1005 break; /* Nothing to do */
1006 }
1007 }
1008
1009 cmd_buffer->state.pending_pipe_bits |= pipe_bits;
1010 }
1011
1012 static void
1013 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1014 {
1015 VkShaderStageFlags stages = cmd_buffer->state.pipeline->active_stages;
1016
1017 /* In order to avoid thrash, we assume that vertex and fragment stages
1018 * always exist. In the rare case where one is missing *and* the other
1019 * uses push concstants, this may be suboptimal. However, avoiding stalls
1020 * seems more important.
1021 */
1022 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1023
1024 if (stages == cmd_buffer->state.push_constant_stages)
1025 return;
1026
1027 #if GEN_GEN >= 8
1028 const unsigned push_constant_kb = 32;
1029 #elif GEN_IS_HASWELL
1030 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1031 #else
1032 const unsigned push_constant_kb = 16;
1033 #endif
1034
1035 const unsigned num_stages =
1036 _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1037 unsigned size_per_stage = push_constant_kb / num_stages;
1038
1039 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1040 * units of 2KB. Incidentally, these are the same platforms that have
1041 * 32KB worth of push constant space.
1042 */
1043 if (push_constant_kb == 32)
1044 size_per_stage &= ~1u;
1045
1046 uint32_t kb_used = 0;
1047 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1048 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1049 anv_batch_emit(&cmd_buffer->batch,
1050 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1051 alloc._3DCommandSubOpcode = 18 + i;
1052 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1053 alloc.ConstantBufferSize = push_size;
1054 }
1055 kb_used += push_size;
1056 }
1057
1058 anv_batch_emit(&cmd_buffer->batch,
1059 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1060 alloc.ConstantBufferOffset = kb_used;
1061 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1062 }
1063
1064 cmd_buffer->state.push_constant_stages = stages;
1065
1066 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1067 *
1068 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1069 * the next 3DPRIMITIVE command after programming the
1070 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1071 *
1072 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1073 * pipeline setup, we need to dirty push constants.
1074 */
1075 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1076 }
1077
1078 static VkResult
1079 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1080 gl_shader_stage stage,
1081 struct anv_state *bt_state)
1082 {
1083 struct anv_subpass *subpass = cmd_buffer->state.subpass;
1084 struct anv_pipeline *pipeline;
1085 uint32_t bias, state_offset;
1086
1087 switch (stage) {
1088 case MESA_SHADER_COMPUTE:
1089 pipeline = cmd_buffer->state.compute_pipeline;
1090 bias = 1;
1091 break;
1092 default:
1093 pipeline = cmd_buffer->state.pipeline;
1094 bias = 0;
1095 break;
1096 }
1097
1098 if (!anv_pipeline_has_stage(pipeline, stage)) {
1099 *bt_state = (struct anv_state) { 0, };
1100 return VK_SUCCESS;
1101 }
1102
1103 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1104 if (bias + map->surface_count == 0) {
1105 *bt_state = (struct anv_state) { 0, };
1106 return VK_SUCCESS;
1107 }
1108
1109 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
1110 bias + map->surface_count,
1111 &state_offset);
1112 uint32_t *bt_map = bt_state->map;
1113
1114 if (bt_state->map == NULL)
1115 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1116
1117 if (stage == MESA_SHADER_COMPUTE &&
1118 get_cs_prog_data(cmd_buffer->state.compute_pipeline)->uses_num_work_groups) {
1119 struct anv_bo *bo = cmd_buffer->state.num_workgroups_bo;
1120 uint32_t bo_offset = cmd_buffer->state.num_workgroups_offset;
1121
1122 struct anv_state surface_state;
1123 surface_state =
1124 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
1125
1126 const enum isl_format format =
1127 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
1128 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1129 format, bo_offset, 12, 1);
1130
1131 bt_map[0] = surface_state.offset + state_offset;
1132 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
1133 }
1134
1135 if (map->surface_count == 0)
1136 goto out;
1137
1138 if (map->image_count > 0) {
1139 VkResult result =
1140 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
1141 if (result != VK_SUCCESS)
1142 return result;
1143
1144 cmd_buffer->state.push_constants_dirty |= 1 << stage;
1145 }
1146
1147 uint32_t image = 0;
1148 for (uint32_t s = 0; s < map->surface_count; s++) {
1149 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
1150
1151 struct anv_state surface_state;
1152
1153 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
1154 /* Color attachment binding */
1155 assert(stage == MESA_SHADER_FRAGMENT);
1156 assert(binding->binding == 0);
1157 if (binding->index < subpass->color_count) {
1158 const unsigned att = subpass->color_attachments[binding->index].attachment;
1159 surface_state = cmd_buffer->state.attachments[att].color_rt_state;
1160 } else {
1161 surface_state = cmd_buffer->state.null_surface_state;
1162 }
1163
1164 bt_map[bias + s] = surface_state.offset + state_offset;
1165 continue;
1166 }
1167
1168 struct anv_descriptor_set *set =
1169 cmd_buffer->state.descriptors[binding->set];
1170 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
1171 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
1172
1173 switch (desc->type) {
1174 case VK_DESCRIPTOR_TYPE_SAMPLER:
1175 /* Nothing for us to do here */
1176 continue;
1177
1178 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1179 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1180 surface_state = desc->aux_usage == ISL_AUX_USAGE_NONE ?
1181 desc->image_view->no_aux_sampler_surface_state :
1182 desc->image_view->sampler_surface_state;
1183 assert(surface_state.alloc_size);
1184 add_image_view_relocs(cmd_buffer, desc->image_view,
1185 desc->aux_usage, surface_state);
1186 break;
1187 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1188 assert(stage == MESA_SHADER_FRAGMENT);
1189 if (desc->image_view->aspect_mask != VK_IMAGE_ASPECT_COLOR_BIT) {
1190 /* For depth and stencil input attachments, we treat it like any
1191 * old texture that a user may have bound.
1192 */
1193 surface_state = desc->aux_usage == ISL_AUX_USAGE_NONE ?
1194 desc->image_view->no_aux_sampler_surface_state :
1195 desc->image_view->sampler_surface_state;
1196 assert(surface_state.alloc_size);
1197 add_image_view_relocs(cmd_buffer, desc->image_view,
1198 desc->aux_usage, surface_state);
1199 } else {
1200 /* For color input attachments, we create the surface state at
1201 * vkBeginRenderPass time so that we can include aux and clear
1202 * color information.
1203 */
1204 assert(binding->input_attachment_index < subpass->input_count);
1205 const unsigned subpass_att = binding->input_attachment_index;
1206 const unsigned att = subpass->input_attachments[subpass_att].attachment;
1207 surface_state = cmd_buffer->state.attachments[att].input_att_state;
1208 }
1209 break;
1210
1211 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1212 surface_state = (binding->write_only)
1213 ? desc->image_view->writeonly_storage_surface_state
1214 : desc->image_view->storage_surface_state;
1215 assert(surface_state.alloc_size);
1216 add_image_view_relocs(cmd_buffer, desc->image_view,
1217 desc->image_view->image->aux_usage,
1218 surface_state);
1219
1220 struct brw_image_param *image_param =
1221 &cmd_buffer->state.push_constants[stage]->images[image++];
1222
1223 *image_param = desc->image_view->storage_image_param;
1224 image_param->surface_idx = bias + s;
1225 break;
1226 }
1227
1228 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1229 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1230 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1231 surface_state = desc->buffer_view->surface_state;
1232 assert(surface_state.alloc_size);
1233 add_surface_state_reloc(cmd_buffer, surface_state,
1234 desc->buffer_view->bo,
1235 desc->buffer_view->offset);
1236 break;
1237
1238 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1239 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1240 uint32_t dynamic_offset_idx =
1241 pipeline->layout->set[binding->set].dynamic_offset_start +
1242 set->layout->binding[binding->binding].dynamic_offset_index +
1243 binding->index;
1244
1245 /* Compute the offset within the buffer */
1246 uint64_t offset = desc->offset +
1247 cmd_buffer->state.dynamic_offsets[dynamic_offset_idx];
1248 /* Clamp to the buffer size */
1249 offset = MIN2(offset, desc->buffer->size);
1250 /* Clamp the range to the buffer size */
1251 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
1252
1253 surface_state =
1254 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
1255 enum isl_format format =
1256 anv_isl_format_for_descriptor_type(desc->type);
1257
1258 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1259 format, offset, range, 1);
1260 add_surface_state_reloc(cmd_buffer, surface_state,
1261 desc->buffer->bo,
1262 desc->buffer->offset + offset);
1263 break;
1264 }
1265
1266 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1267 surface_state = (binding->write_only)
1268 ? desc->buffer_view->writeonly_storage_surface_state
1269 : desc->buffer_view->storage_surface_state;
1270 assert(surface_state.alloc_size);
1271 add_surface_state_reloc(cmd_buffer, surface_state,
1272 desc->buffer_view->bo,
1273 desc->buffer_view->offset);
1274
1275 struct brw_image_param *image_param =
1276 &cmd_buffer->state.push_constants[stage]->images[image++];
1277
1278 *image_param = desc->buffer_view->storage_image_param;
1279 image_param->surface_idx = bias + s;
1280 break;
1281
1282 default:
1283 assert(!"Invalid descriptor type");
1284 continue;
1285 }
1286
1287 bt_map[bias + s] = surface_state.offset + state_offset;
1288 }
1289 assert(image == map->image_count);
1290
1291 out:
1292 anv_state_flush(cmd_buffer->device, *bt_state);
1293
1294 return VK_SUCCESS;
1295 }
1296
1297 static VkResult
1298 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1299 gl_shader_stage stage,
1300 struct anv_state *state)
1301 {
1302 struct anv_pipeline *pipeline;
1303
1304 if (stage == MESA_SHADER_COMPUTE)
1305 pipeline = cmd_buffer->state.compute_pipeline;
1306 else
1307 pipeline = cmd_buffer->state.pipeline;
1308
1309 if (!anv_pipeline_has_stage(pipeline, stage)) {
1310 *state = (struct anv_state) { 0, };
1311 return VK_SUCCESS;
1312 }
1313
1314 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1315 if (map->sampler_count == 0) {
1316 *state = (struct anv_state) { 0, };
1317 return VK_SUCCESS;
1318 }
1319
1320 uint32_t size = map->sampler_count * 16;
1321 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
1322
1323 if (state->map == NULL)
1324 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1325
1326 for (uint32_t s = 0; s < map->sampler_count; s++) {
1327 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
1328 struct anv_descriptor_set *set =
1329 cmd_buffer->state.descriptors[binding->set];
1330 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
1331 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
1332
1333 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
1334 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
1335 continue;
1336
1337 struct anv_sampler *sampler = desc->sampler;
1338
1339 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
1340 * happens to be zero.
1341 */
1342 if (sampler == NULL)
1343 continue;
1344
1345 memcpy(state->map + (s * 16),
1346 sampler->state, sizeof(sampler->state));
1347 }
1348
1349 anv_state_flush(cmd_buffer->device, *state);
1350
1351 return VK_SUCCESS;
1352 }
1353
1354 static uint32_t
1355 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
1356 {
1357 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
1358 cmd_buffer->state.pipeline->active_stages;
1359
1360 VkResult result = VK_SUCCESS;
1361 anv_foreach_stage(s, dirty) {
1362 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1363 if (result != VK_SUCCESS)
1364 break;
1365 result = emit_binding_table(cmd_buffer, s,
1366 &cmd_buffer->state.binding_tables[s]);
1367 if (result != VK_SUCCESS)
1368 break;
1369 }
1370
1371 if (result != VK_SUCCESS) {
1372 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
1373
1374 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
1375 assert(result == VK_SUCCESS);
1376
1377 /* Re-emit state base addresses so we get the new surface state base
1378 * address before we start emitting binding tables etc.
1379 */
1380 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1381
1382 /* Re-emit all active binding tables */
1383 dirty |= cmd_buffer->state.pipeline->active_stages;
1384 anv_foreach_stage(s, dirty) {
1385 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1386 if (result != VK_SUCCESS)
1387 return result;
1388 result = emit_binding_table(cmd_buffer, s,
1389 &cmd_buffer->state.binding_tables[s]);
1390 if (result != VK_SUCCESS)
1391 return result;
1392 }
1393 }
1394
1395 cmd_buffer->state.descriptors_dirty &= ~dirty;
1396
1397 return dirty;
1398 }
1399
1400 static void
1401 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
1402 uint32_t stages)
1403 {
1404 static const uint32_t sampler_state_opcodes[] = {
1405 [MESA_SHADER_VERTEX] = 43,
1406 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
1407 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
1408 [MESA_SHADER_GEOMETRY] = 46,
1409 [MESA_SHADER_FRAGMENT] = 47,
1410 [MESA_SHADER_COMPUTE] = 0,
1411 };
1412
1413 static const uint32_t binding_table_opcodes[] = {
1414 [MESA_SHADER_VERTEX] = 38,
1415 [MESA_SHADER_TESS_CTRL] = 39,
1416 [MESA_SHADER_TESS_EVAL] = 40,
1417 [MESA_SHADER_GEOMETRY] = 41,
1418 [MESA_SHADER_FRAGMENT] = 42,
1419 [MESA_SHADER_COMPUTE] = 0,
1420 };
1421
1422 anv_foreach_stage(s, stages) {
1423 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
1424 anv_batch_emit(&cmd_buffer->batch,
1425 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
1426 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
1427 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
1428 }
1429 }
1430
1431 /* Always emit binding table pointers if we're asked to, since on SKL
1432 * this is what flushes push constants. */
1433 anv_batch_emit(&cmd_buffer->batch,
1434 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
1435 btp._3DCommandSubOpcode = binding_table_opcodes[s];
1436 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
1437 }
1438 }
1439 }
1440
1441 static uint32_t
1442 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer)
1443 {
1444 static const uint32_t push_constant_opcodes[] = {
1445 [MESA_SHADER_VERTEX] = 21,
1446 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
1447 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
1448 [MESA_SHADER_GEOMETRY] = 22,
1449 [MESA_SHADER_FRAGMENT] = 23,
1450 [MESA_SHADER_COMPUTE] = 0,
1451 };
1452
1453 VkShaderStageFlags flushed = 0;
1454
1455 anv_foreach_stage(stage, cmd_buffer->state.push_constants_dirty) {
1456 if (stage == MESA_SHADER_COMPUTE)
1457 continue;
1458
1459 struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage);
1460
1461 if (state.offset == 0) {
1462 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c)
1463 c._3DCommandSubOpcode = push_constant_opcodes[stage];
1464 } else {
1465 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
1466 c._3DCommandSubOpcode = push_constant_opcodes[stage],
1467 c.ConstantBody = (struct GENX(3DSTATE_CONSTANT_BODY)) {
1468 #if GEN_GEN >= 9
1469 .PointerToConstantBuffer2 = { &cmd_buffer->device->dynamic_state_block_pool.bo, state.offset },
1470 .ConstantBuffer2ReadLength = DIV_ROUND_UP(state.alloc_size, 32),
1471 #else
1472 .PointerToConstantBuffer0 = { .offset = state.offset },
1473 .ConstantBuffer0ReadLength = DIV_ROUND_UP(state.alloc_size, 32),
1474 #endif
1475 };
1476 }
1477 }
1478
1479 flushed |= mesa_to_vk_shader_stage(stage);
1480 }
1481
1482 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_ALL_GRAPHICS;
1483
1484 return flushed;
1485 }
1486
1487 void
1488 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
1489 {
1490 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1491 uint32_t *p;
1492
1493 uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used;
1494
1495 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
1496
1497 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
1498
1499 genX(flush_pipeline_select_3d)(cmd_buffer);
1500
1501 if (vb_emit) {
1502 const uint32_t num_buffers = __builtin_popcount(vb_emit);
1503 const uint32_t num_dwords = 1 + num_buffers * 4;
1504
1505 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
1506 GENX(3DSTATE_VERTEX_BUFFERS));
1507 uint32_t vb, i = 0;
1508 for_each_bit(vb, vb_emit) {
1509 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
1510 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
1511
1512 struct GENX(VERTEX_BUFFER_STATE) state = {
1513 .VertexBufferIndex = vb,
1514
1515 #if GEN_GEN >= 8
1516 .MemoryObjectControlState = GENX(MOCS),
1517 #else
1518 .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
1519 .InstanceDataStepRate = 1,
1520 .VertexBufferMemoryObjectControlState = GENX(MOCS),
1521 #endif
1522
1523 .AddressModifyEnable = true,
1524 .BufferPitch = pipeline->binding_stride[vb],
1525 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
1526
1527 #if GEN_GEN >= 8
1528 .BufferSize = buffer->size - offset
1529 #else
1530 .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
1531 #endif
1532 };
1533
1534 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
1535 i++;
1536 }
1537 }
1538
1539 cmd_buffer->state.vb_dirty &= ~vb_emit;
1540
1541 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_PIPELINE) {
1542 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
1543
1544 /* The exact descriptor layout is pulled from the pipeline, so we need
1545 * to re-emit binding tables on every pipeline change.
1546 */
1547 cmd_buffer->state.descriptors_dirty |=
1548 cmd_buffer->state.pipeline->active_stages;
1549
1550 /* If the pipeline changed, we may need to re-allocate push constant
1551 * space in the URB.
1552 */
1553 cmd_buffer_alloc_push_constants(cmd_buffer);
1554 }
1555
1556 #if GEN_GEN <= 7
1557 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
1558 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
1559 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
1560 *
1561 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
1562 * stall needs to be sent just prior to any 3DSTATE_VS,
1563 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
1564 * 3DSTATE_BINDING_TABLE_POINTER_VS,
1565 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
1566 * PIPE_CONTROL needs to be sent before any combination of VS
1567 * associated 3DSTATE."
1568 */
1569 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1570 pc.DepthStallEnable = true;
1571 pc.PostSyncOperation = WriteImmediateData;
1572 pc.Address =
1573 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
1574 }
1575 }
1576 #endif
1577
1578 /* Render targets live in the same binding table as fragment descriptors */
1579 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
1580 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
1581
1582 /* We emit the binding tables and sampler tables first, then emit push
1583 * constants and then finally emit binding table and sampler table
1584 * pointers. It has to happen in this order, since emitting the binding
1585 * tables may change the push constants (in case of storage images). After
1586 * emitting push constants, on SKL+ we have to emit the corresponding
1587 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
1588 */
1589 uint32_t dirty = 0;
1590 if (cmd_buffer->state.descriptors_dirty)
1591 dirty = flush_descriptor_sets(cmd_buffer);
1592
1593 if (cmd_buffer->state.push_constants_dirty) {
1594 #if GEN_GEN >= 9
1595 /* On Sky Lake and later, the binding table pointers commands are
1596 * what actually flush the changes to push constant state so we need
1597 * to dirty them so they get re-emitted below.
1598 */
1599 dirty |= cmd_buffer_flush_push_constants(cmd_buffer);
1600 #else
1601 cmd_buffer_flush_push_constants(cmd_buffer);
1602 #endif
1603 }
1604
1605 if (dirty)
1606 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
1607
1608 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
1609 gen8_cmd_buffer_emit_viewport(cmd_buffer);
1610
1611 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
1612 ANV_CMD_DIRTY_PIPELINE)) {
1613 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
1614 pipeline->depth_clamp_enable);
1615 }
1616
1617 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
1618 gen7_cmd_buffer_emit_scissor(cmd_buffer);
1619
1620 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
1621
1622 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1623 }
1624
1625 static void
1626 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
1627 struct anv_bo *bo, uint32_t offset,
1628 uint32_t size, uint32_t index)
1629 {
1630 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
1631 GENX(3DSTATE_VERTEX_BUFFERS));
1632
1633 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
1634 &(struct GENX(VERTEX_BUFFER_STATE)) {
1635 .VertexBufferIndex = index,
1636 .AddressModifyEnable = true,
1637 .BufferPitch = 0,
1638 #if (GEN_GEN >= 8)
1639 .MemoryObjectControlState = GENX(MOCS),
1640 .BufferStartingAddress = { bo, offset },
1641 .BufferSize = size
1642 #else
1643 .VertexBufferMemoryObjectControlState = GENX(MOCS),
1644 .BufferStartingAddress = { bo, offset },
1645 .EndAddress = { bo, offset + size },
1646 #endif
1647 });
1648 }
1649
1650 static void
1651 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
1652 struct anv_bo *bo, uint32_t offset)
1653 {
1654 emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
1655 }
1656
1657 static void
1658 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
1659 uint32_t base_vertex, uint32_t base_instance)
1660 {
1661 struct anv_state id_state =
1662 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
1663
1664 ((uint32_t *)id_state.map)[0] = base_vertex;
1665 ((uint32_t *)id_state.map)[1] = base_instance;
1666
1667 anv_state_flush(cmd_buffer->device, id_state);
1668
1669 emit_base_vertex_instance_bo(cmd_buffer,
1670 &cmd_buffer->device->dynamic_state_block_pool.bo, id_state.offset);
1671 }
1672
1673 static void
1674 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
1675 {
1676 struct anv_state state =
1677 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
1678
1679 ((uint32_t *)state.map)[0] = draw_index;
1680
1681 anv_state_flush(cmd_buffer->device, state);
1682
1683 emit_vertex_bo(cmd_buffer,
1684 &cmd_buffer->device->dynamic_state_block_pool.bo,
1685 state.offset, 4, ANV_DRAWID_VB_INDEX);
1686 }
1687
1688 void genX(CmdDraw)(
1689 VkCommandBuffer commandBuffer,
1690 uint32_t vertexCount,
1691 uint32_t instanceCount,
1692 uint32_t firstVertex,
1693 uint32_t firstInstance)
1694 {
1695 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1696 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1697 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1698
1699 if (anv_batch_has_error(&cmd_buffer->batch))
1700 return;
1701
1702 genX(cmd_buffer_flush_state)(cmd_buffer);
1703
1704 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1705 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
1706 if (vs_prog_data->uses_drawid)
1707 emit_draw_index(cmd_buffer, 0);
1708
1709 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1710 prim.VertexAccessType = SEQUENTIAL;
1711 prim.PrimitiveTopologyType = pipeline->topology;
1712 prim.VertexCountPerInstance = vertexCount;
1713 prim.StartVertexLocation = firstVertex;
1714 prim.InstanceCount = instanceCount;
1715 prim.StartInstanceLocation = firstInstance;
1716 prim.BaseVertexLocation = 0;
1717 }
1718 }
1719
1720 void genX(CmdDrawIndexed)(
1721 VkCommandBuffer commandBuffer,
1722 uint32_t indexCount,
1723 uint32_t instanceCount,
1724 uint32_t firstIndex,
1725 int32_t vertexOffset,
1726 uint32_t firstInstance)
1727 {
1728 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1729 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1730 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1731
1732 if (anv_batch_has_error(&cmd_buffer->batch))
1733 return;
1734
1735 genX(cmd_buffer_flush_state)(cmd_buffer);
1736
1737 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1738 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
1739 if (vs_prog_data->uses_drawid)
1740 emit_draw_index(cmd_buffer, 0);
1741
1742 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1743 prim.VertexAccessType = RANDOM;
1744 prim.PrimitiveTopologyType = pipeline->topology;
1745 prim.VertexCountPerInstance = indexCount;
1746 prim.StartVertexLocation = firstIndex;
1747 prim.InstanceCount = instanceCount;
1748 prim.StartInstanceLocation = firstInstance;
1749 prim.BaseVertexLocation = vertexOffset;
1750 }
1751 }
1752
1753 /* Auto-Draw / Indirect Registers */
1754 #define GEN7_3DPRIM_END_OFFSET 0x2420
1755 #define GEN7_3DPRIM_START_VERTEX 0x2430
1756 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
1757 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
1758 #define GEN7_3DPRIM_START_INSTANCE 0x243C
1759 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
1760
1761 void genX(CmdDrawIndirect)(
1762 VkCommandBuffer commandBuffer,
1763 VkBuffer _buffer,
1764 VkDeviceSize offset,
1765 uint32_t drawCount,
1766 uint32_t stride)
1767 {
1768 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1769 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1770 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1771 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1772 struct anv_bo *bo = buffer->bo;
1773 uint32_t bo_offset = buffer->offset + offset;
1774
1775 if (anv_batch_has_error(&cmd_buffer->batch))
1776 return;
1777
1778 genX(cmd_buffer_flush_state)(cmd_buffer);
1779
1780 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1781 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
1782 if (vs_prog_data->uses_drawid)
1783 emit_draw_index(cmd_buffer, 0);
1784
1785 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
1786 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
1787 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
1788 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
1789 emit_lri(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, 0);
1790
1791 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1792 prim.IndirectParameterEnable = true;
1793 prim.VertexAccessType = SEQUENTIAL;
1794 prim.PrimitiveTopologyType = pipeline->topology;
1795 }
1796 }
1797
1798 void genX(CmdDrawIndexedIndirect)(
1799 VkCommandBuffer commandBuffer,
1800 VkBuffer _buffer,
1801 VkDeviceSize offset,
1802 uint32_t drawCount,
1803 uint32_t stride)
1804 {
1805 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1806 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1807 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1808 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1809 struct anv_bo *bo = buffer->bo;
1810 uint32_t bo_offset = buffer->offset + offset;
1811
1812 if (anv_batch_has_error(&cmd_buffer->batch))
1813 return;
1814
1815 genX(cmd_buffer_flush_state)(cmd_buffer);
1816
1817 /* TODO: We need to stomp base vertex to 0 somehow */
1818 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1819 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
1820 if (vs_prog_data->uses_drawid)
1821 emit_draw_index(cmd_buffer, 0);
1822
1823 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
1824 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
1825 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
1826 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
1827 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
1828
1829 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1830 prim.IndirectParameterEnable = true;
1831 prim.VertexAccessType = RANDOM;
1832 prim.PrimitiveTopologyType = pipeline->topology;
1833 }
1834 }
1835
1836 static VkResult
1837 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
1838 {
1839 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1840 struct anv_state surfaces = { 0, }, samplers = { 0, };
1841 VkResult result;
1842
1843 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
1844 if (result != VK_SUCCESS) {
1845 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
1846 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
1847 assert(result == VK_SUCCESS);
1848
1849 /* Re-emit state base addresses so we get the new surface state base
1850 * address before we start emitting binding tables etc.
1851 */
1852 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1853
1854 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
1855 assert(result == VK_SUCCESS);
1856 }
1857
1858 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
1859 assert(result == VK_SUCCESS);
1860
1861 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
1862 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
1863 .BindingTablePointer = surfaces.offset,
1864 .SamplerStatePointer = samplers.offset,
1865 };
1866 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
1867
1868 struct anv_state state =
1869 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
1870 pipeline->interface_descriptor_data,
1871 GENX(INTERFACE_DESCRIPTOR_DATA_length),
1872 64);
1873
1874 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
1875 anv_batch_emit(&cmd_buffer->batch,
1876 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
1877 mid.InterfaceDescriptorTotalLength = size;
1878 mid.InterfaceDescriptorDataStartAddress = state.offset;
1879 }
1880
1881 return VK_SUCCESS;
1882 }
1883
1884 void
1885 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
1886 {
1887 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1888 MAYBE_UNUSED VkResult result;
1889
1890 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
1891
1892 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
1893
1894 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
1895
1896 if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE) {
1897 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
1898 *
1899 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
1900 * the only bits that are changed are scoreboard related: Scoreboard
1901 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
1902 * these scoreboard related states, a MEDIA_STATE_FLUSH is
1903 * sufficient."
1904 */
1905 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1906 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1907
1908 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
1909 }
1910
1911 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
1912 (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
1913 /* FIXME: figure out descriptors for gen7 */
1914 result = flush_compute_descriptor_set(cmd_buffer);
1915 assert(result == VK_SUCCESS);
1916 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
1917 }
1918
1919 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
1920 struct anv_state push_state =
1921 anv_cmd_buffer_cs_push_constants(cmd_buffer);
1922
1923 if (push_state.alloc_size) {
1924 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
1925 curbe.CURBETotalDataLength = push_state.alloc_size;
1926 curbe.CURBEDataStartAddress = push_state.offset;
1927 }
1928 }
1929 }
1930
1931 cmd_buffer->state.compute_dirty = 0;
1932
1933 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1934 }
1935
1936 #if GEN_GEN == 7
1937
1938 static VkResult
1939 verify_cmd_parser(const struct anv_device *device,
1940 int required_version,
1941 const char *function)
1942 {
1943 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
1944 return vk_errorf(VK_ERROR_FEATURE_NOT_PRESENT,
1945 "cmd parser version %d is required for %s",
1946 required_version, function);
1947 } else {
1948 return VK_SUCCESS;
1949 }
1950 }
1951
1952 #endif
1953
1954 void genX(CmdDispatch)(
1955 VkCommandBuffer commandBuffer,
1956 uint32_t x,
1957 uint32_t y,
1958 uint32_t z)
1959 {
1960 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1961 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1962 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
1963
1964 if (anv_batch_has_error(&cmd_buffer->batch))
1965 return;
1966
1967 if (prog_data->uses_num_work_groups) {
1968 struct anv_state state =
1969 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
1970 uint32_t *sizes = state.map;
1971 sizes[0] = x;
1972 sizes[1] = y;
1973 sizes[2] = z;
1974 anv_state_flush(cmd_buffer->device, state);
1975 cmd_buffer->state.num_workgroups_offset = state.offset;
1976 cmd_buffer->state.num_workgroups_bo =
1977 &cmd_buffer->device->dynamic_state_block_pool.bo;
1978 }
1979
1980 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
1981
1982 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
1983 ggw.SIMDSize = prog_data->simd_size / 16;
1984 ggw.ThreadDepthCounterMaximum = 0;
1985 ggw.ThreadHeightCounterMaximum = 0;
1986 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
1987 ggw.ThreadGroupIDXDimension = x;
1988 ggw.ThreadGroupIDYDimension = y;
1989 ggw.ThreadGroupIDZDimension = z;
1990 ggw.RightExecutionMask = pipeline->cs_right_mask;
1991 ggw.BottomExecutionMask = 0xffffffff;
1992 }
1993
1994 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
1995 }
1996
1997 #define GPGPU_DISPATCHDIMX 0x2500
1998 #define GPGPU_DISPATCHDIMY 0x2504
1999 #define GPGPU_DISPATCHDIMZ 0x2508
2000
2001 #define MI_PREDICATE_SRC0 0x2400
2002 #define MI_PREDICATE_SRC1 0x2408
2003
2004 void genX(CmdDispatchIndirect)(
2005 VkCommandBuffer commandBuffer,
2006 VkBuffer _buffer,
2007 VkDeviceSize offset)
2008 {
2009 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2010 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2011 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
2012 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2013 struct anv_bo *bo = buffer->bo;
2014 uint32_t bo_offset = buffer->offset + offset;
2015 struct anv_batch *batch = &cmd_buffer->batch;
2016
2017 #if GEN_GEN == 7
2018 /* Linux 4.4 added command parser version 5 which allows the GPGPU
2019 * indirect dispatch registers to be written.
2020 */
2021 if (verify_cmd_parser(cmd_buffer->device, 5,
2022 "vkCmdDispatchIndirect") != VK_SUCCESS)
2023 return;
2024 #endif
2025
2026 if (prog_data->uses_num_work_groups) {
2027 cmd_buffer->state.num_workgroups_offset = bo_offset;
2028 cmd_buffer->state.num_workgroups_bo = bo;
2029 }
2030
2031 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2032
2033 emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
2034 emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
2035 emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
2036
2037 #if GEN_GEN <= 7
2038 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
2039 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
2040 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
2041 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
2042
2043 /* Load compute_dispatch_indirect_x_size into SRC0 */
2044 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
2045
2046 /* predicate = (compute_dispatch_indirect_x_size == 0); */
2047 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2048 mip.LoadOperation = LOAD_LOAD;
2049 mip.CombineOperation = COMBINE_SET;
2050 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2051 }
2052
2053 /* Load compute_dispatch_indirect_y_size into SRC0 */
2054 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
2055
2056 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
2057 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2058 mip.LoadOperation = LOAD_LOAD;
2059 mip.CombineOperation = COMBINE_OR;
2060 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2061 }
2062
2063 /* Load compute_dispatch_indirect_z_size into SRC0 */
2064 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
2065
2066 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
2067 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2068 mip.LoadOperation = LOAD_LOAD;
2069 mip.CombineOperation = COMBINE_OR;
2070 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2071 }
2072
2073 /* predicate = !predicate; */
2074 #define COMPARE_FALSE 1
2075 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2076 mip.LoadOperation = LOAD_LOADINV;
2077 mip.CombineOperation = COMBINE_OR;
2078 mip.CompareOperation = COMPARE_FALSE;
2079 }
2080 #endif
2081
2082 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
2083 ggw.IndirectParameterEnable = true;
2084 ggw.PredicateEnable = GEN_GEN <= 7;
2085 ggw.SIMDSize = prog_data->simd_size / 16;
2086 ggw.ThreadDepthCounterMaximum = 0;
2087 ggw.ThreadHeightCounterMaximum = 0;
2088 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2089 ggw.RightExecutionMask = pipeline->cs_right_mask;
2090 ggw.BottomExecutionMask = 0xffffffff;
2091 }
2092
2093 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
2094 }
2095
2096 static void
2097 flush_pipeline_before_pipeline_select(struct anv_cmd_buffer *cmd_buffer,
2098 uint32_t pipeline)
2099 {
2100 #if GEN_GEN >= 8 && GEN_GEN < 10
2101 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
2102 *
2103 * Software must clear the COLOR_CALC_STATE Valid field in
2104 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
2105 * with Pipeline Select set to GPGPU.
2106 *
2107 * The internal hardware docs recommend the same workaround for Gen9
2108 * hardware too.
2109 */
2110 if (pipeline == GPGPU)
2111 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
2112 #elif GEN_GEN <= 7
2113 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
2114 * PIPELINE_SELECT [DevBWR+]":
2115 *
2116 * Project: DEVSNB+
2117 *
2118 * Software must ensure all the write caches are flushed through a
2119 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
2120 * command to invalidate read only caches prior to programming
2121 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
2122 */
2123 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2124 pc.RenderTargetCacheFlushEnable = true;
2125 pc.DepthCacheFlushEnable = true;
2126 pc.DCFlushEnable = true;
2127 pc.PostSyncOperation = NoWrite;
2128 pc.CommandStreamerStallEnable = true;
2129 }
2130
2131 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2132 pc.TextureCacheInvalidationEnable = true;
2133 pc.ConstantCacheInvalidationEnable = true;
2134 pc.StateCacheInvalidationEnable = true;
2135 pc.InstructionCacheInvalidateEnable = true;
2136 pc.PostSyncOperation = NoWrite;
2137 }
2138 #endif
2139 }
2140
2141 void
2142 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
2143 {
2144 if (cmd_buffer->state.current_pipeline != _3D) {
2145 flush_pipeline_before_pipeline_select(cmd_buffer, _3D);
2146
2147 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
2148 #if GEN_GEN >= 9
2149 ps.MaskBits = 3;
2150 #endif
2151 ps.PipelineSelection = _3D;
2152 }
2153
2154 cmd_buffer->state.current_pipeline = _3D;
2155 }
2156 }
2157
2158 void
2159 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
2160 {
2161 if (cmd_buffer->state.current_pipeline != GPGPU) {
2162 flush_pipeline_before_pipeline_select(cmd_buffer, GPGPU);
2163
2164 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
2165 #if GEN_GEN >= 9
2166 ps.MaskBits = 3;
2167 #endif
2168 ps.PipelineSelection = GPGPU;
2169 }
2170
2171 cmd_buffer->state.current_pipeline = GPGPU;
2172 }
2173 }
2174
2175 void
2176 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
2177 {
2178 if (GEN_GEN >= 8)
2179 return;
2180
2181 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
2182 *
2183 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
2184 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
2185 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
2186 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
2187 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
2188 * Depth Flush Bit set, followed by another pipelined depth stall
2189 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
2190 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
2191 * via a preceding MI_FLUSH)."
2192 */
2193 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2194 pipe.DepthStallEnable = true;
2195 }
2196 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2197 pipe.DepthCacheFlushEnable = true;
2198 }
2199 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2200 pipe.DepthStallEnable = true;
2201 }
2202 }
2203
2204 static uint32_t
2205 depth_stencil_surface_type(enum isl_surf_dim dim)
2206 {
2207 switch (dim) {
2208 case ISL_SURF_DIM_1D:
2209 if (GEN_GEN >= 9) {
2210 /* From the Sky Lake PRM, 3DSTATAE_DEPTH_BUFFER::SurfaceType
2211 *
2212 * Programming Notes:
2213 * The Surface Type of the depth buffer must be the same as the
2214 * Surface Type of the render target(s) (defined in
2215 * SURFACE_STATE), unless either the depth buffer or render
2216 * targets are SURFTYPE_NULL (see exception below for SKL). 1D
2217 * surface type not allowed for depth surface and stencil surface.
2218 *
2219 * Workaround:
2220 * If depth/stencil is enabled with 1D render target,
2221 * depth/stencil surface type needs to be set to 2D surface type
2222 * and height set to 1. Depth will use (legacy) TileY and stencil
2223 * will use TileW. For this case only, the Surface Type of the
2224 * depth buffer can be 2D while the Surface Type of the render
2225 * target(s) are 1D, representing an exception to a programming
2226 * note above.
2227 */
2228 return SURFTYPE_2D;
2229 } else {
2230 return SURFTYPE_1D;
2231 }
2232 case ISL_SURF_DIM_2D:
2233 return SURFTYPE_2D;
2234 case ISL_SURF_DIM_3D:
2235 if (GEN_GEN >= 9) {
2236 /* The Sky Lake docs list the value for 3D as "Reserved". However,
2237 * they have the exact same layout as 2D arrays on gen9+, so we can
2238 * just use 2D here.
2239 */
2240 return SURFTYPE_2D;
2241 } else {
2242 return SURFTYPE_3D;
2243 }
2244 default:
2245 unreachable("Invalid surface dimension");
2246 }
2247 }
2248
2249 static void
2250 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
2251 {
2252 struct anv_device *device = cmd_buffer->device;
2253 const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
2254 const struct anv_image_view *iview =
2255 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
2256 const struct anv_image *image = iview ? iview->image : NULL;
2257 const bool has_depth = image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT);
2258 const uint32_t ds = cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
2259 const bool has_hiz = image != NULL &&
2260 cmd_buffer->state.attachments[ds].aux_usage == ISL_AUX_USAGE_HIZ;
2261 const bool has_stencil =
2262 image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
2263
2264 cmd_buffer->state.hiz_enabled = has_hiz;
2265
2266 /* FIXME: Width and Height are wrong */
2267
2268 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
2269
2270 /* Emit 3DSTATE_DEPTH_BUFFER */
2271 if (has_depth) {
2272 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER), db) {
2273 db.SurfaceType =
2274 depth_stencil_surface_type(image->depth_surface.isl.dim);
2275 db.DepthWriteEnable = true;
2276 db.StencilWriteEnable = has_stencil;
2277 db.HierarchicalDepthBufferEnable = has_hiz;
2278
2279 db.SurfaceFormat = isl_surf_get_depth_format(&device->isl_dev,
2280 &image->depth_surface.isl);
2281
2282 db.SurfaceBaseAddress = (struct anv_address) {
2283 .bo = image->bo,
2284 .offset = image->offset + image->depth_surface.offset,
2285 };
2286 db.DepthBufferObjectControlState = GENX(MOCS);
2287
2288 db.SurfacePitch = image->depth_surface.isl.row_pitch - 1;
2289 db.Height = image->extent.height - 1;
2290 db.Width = image->extent.width - 1;
2291 db.LOD = iview->isl.base_level;
2292 db.MinimumArrayElement = iview->isl.base_array_layer;
2293
2294 assert(image->depth_surface.isl.dim != ISL_SURF_DIM_3D);
2295 db.Depth =
2296 db.RenderTargetViewExtent = iview->isl.array_len - 1;
2297
2298 #if GEN_GEN >= 8
2299 db.SurfaceQPitch =
2300 isl_surf_get_array_pitch_el_rows(&image->depth_surface.isl) >> 2;
2301 #endif
2302 }
2303 } else {
2304 /* Even when no depth buffer is present, the hardware requires that
2305 * 3DSTATE_DEPTH_BUFFER be programmed correctly. The Broadwell PRM says:
2306 *
2307 * If a null depth buffer is bound, the driver must instead bind depth as:
2308 * 3DSTATE_DEPTH.SurfaceType = SURFTYPE_2D
2309 * 3DSTATE_DEPTH.Width = 1
2310 * 3DSTATE_DEPTH.Height = 1
2311 * 3DSTATE_DEPTH.SuraceFormat = D16_UNORM
2312 * 3DSTATE_DEPTH.SurfaceBaseAddress = 0
2313 * 3DSTATE_DEPTH.HierarchicalDepthBufferEnable = 0
2314 * 3DSTATE_WM_DEPTH_STENCIL.DepthTestEnable = 0
2315 * 3DSTATE_WM_DEPTH_STENCIL.DepthBufferWriteEnable = 0
2316 *
2317 * The PRM is wrong, though. The width and height must be programmed to
2318 * actual framebuffer's width and height, even when neither depth buffer
2319 * nor stencil buffer is present. Also, D16_UNORM is not allowed to
2320 * be combined with a stencil buffer so we use D32_FLOAT instead.
2321 */
2322 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER), db) {
2323 if (has_stencil) {
2324 db.SurfaceType =
2325 depth_stencil_surface_type(image->stencil_surface.isl.dim);
2326 } else {
2327 db.SurfaceType = SURFTYPE_2D;
2328 }
2329 db.SurfaceFormat = D32_FLOAT;
2330 db.Width = MAX2(fb->width, 1) - 1;
2331 db.Height = MAX2(fb->height, 1) - 1;
2332 db.StencilWriteEnable = has_stencil;
2333 }
2334 }
2335
2336 if (has_hiz) {
2337 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HIER_DEPTH_BUFFER), hdb) {
2338 hdb.HierarchicalDepthBufferObjectControlState = GENX(MOCS);
2339 hdb.SurfacePitch = image->aux_surface.isl.row_pitch - 1;
2340 hdb.SurfaceBaseAddress = (struct anv_address) {
2341 .bo = image->bo,
2342 .offset = image->offset + image->aux_surface.offset,
2343 };
2344 #if GEN_GEN >= 8
2345 /* From the SKL PRM Vol2a:
2346 *
2347 * The interpretation of this field is dependent on Surface Type
2348 * as follows:
2349 * - SURFTYPE_1D: distance in pixels between array slices
2350 * - SURFTYPE_2D/CUBE: distance in rows between array slices
2351 * - SURFTYPE_3D: distance in rows between R - slices
2352 *
2353 * Unfortunately, the docs aren't 100% accurate here. They fail to
2354 * mention that the 1-D rule only applies to linear 1-D images.
2355 * Since depth and HiZ buffers are always tiled, they are treated as
2356 * 2-D images. Prior to Sky Lake, this field is always in rows.
2357 */
2358 hdb.SurfaceQPitch =
2359 isl_surf_get_array_pitch_sa_rows(&image->aux_surface.isl) >> 2;
2360 #endif
2361 }
2362 } else {
2363 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HIER_DEPTH_BUFFER), hdb);
2364 }
2365
2366 /* Emit 3DSTATE_STENCIL_BUFFER */
2367 if (has_stencil) {
2368 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER), sb) {
2369 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2370 sb.StencilBufferEnable = true;
2371 #endif
2372 sb.StencilBufferObjectControlState = GENX(MOCS);
2373
2374 sb.SurfacePitch = image->stencil_surface.isl.row_pitch - 1;
2375
2376 #if GEN_GEN >= 8
2377 sb.SurfaceQPitch = isl_surf_get_array_pitch_el_rows(&image->stencil_surface.isl) >> 2;
2378 #endif
2379 sb.SurfaceBaseAddress = (struct anv_address) {
2380 .bo = image->bo,
2381 .offset = image->offset + image->stencil_surface.offset,
2382 };
2383 }
2384 } else {
2385 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER), sb);
2386 }
2387
2388 /* From the IVB PRM Vol2P1, 11.5.5.4 3DSTATE_CLEAR_PARAMS:
2389 *
2390 * 3DSTATE_CLEAR_PARAMS must always be programmed in the along with
2391 * the other Depth/Stencil state commands(i.e. 3DSTATE_DEPTH_BUFFER,
2392 * 3DSTATE_STENCIL_BUFFER, or 3DSTATE_HIER_DEPTH_BUFFER)
2393 *
2394 * Testing also shows that some variant of this restriction may exist HSW+.
2395 * On BDW+, it is not possible to emit 2 of these packets consecutively when
2396 * both have DepthClearValueValid set. An analysis of such state programming
2397 * on SKL showed that the GPU doesn't register the latter packet's clear
2398 * value.
2399 */
2400 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CLEAR_PARAMS), cp) {
2401 if (has_hiz) {
2402 cp.DepthClearValueValid = true;
2403 cp.DepthClearValue = ANV_HZ_FC_VAL;
2404 }
2405 }
2406 }
2407
2408
2409 /**
2410 * @brief Perform any layout transitions required at the beginning and/or end
2411 * of the current subpass for depth buffers.
2412 *
2413 * TODO: Consider preprocessing the attachment reference array at render pass
2414 * create time to determine if no layout transition is needed at the
2415 * beginning and/or end of each subpass.
2416 *
2417 * @param cmd_buffer The command buffer the transition is happening within.
2418 * @param subpass_end If true, marks that the transition is happening at the
2419 * end of the subpass.
2420 */
2421 static void
2422 cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,
2423 const bool subpass_end)
2424 {
2425 /* We need a non-NULL command buffer. */
2426 assert(cmd_buffer);
2427
2428 const struct anv_cmd_state * const cmd_state = &cmd_buffer->state;
2429 const struct anv_subpass * const subpass = cmd_state->subpass;
2430
2431 /* This function must be called within a subpass. */
2432 assert(subpass);
2433
2434 /* If there are attachment references, the array shouldn't be NULL.
2435 */
2436 if (subpass->attachment_count > 0)
2437 assert(subpass->attachments);
2438
2439 /* Iterate over the array of attachment references. */
2440 for (const VkAttachmentReference *att_ref = subpass->attachments;
2441 att_ref < subpass->attachments + subpass->attachment_count; att_ref++) {
2442
2443 /* If the attachment is unused, we can't perform a layout transition. */
2444 if (att_ref->attachment == VK_ATTACHMENT_UNUSED)
2445 continue;
2446
2447 /* This attachment index shouldn't go out of bounds. */
2448 assert(att_ref->attachment < cmd_state->pass->attachment_count);
2449
2450 const struct anv_render_pass_attachment * const att_desc =
2451 &cmd_state->pass->attachments[att_ref->attachment];
2452 struct anv_attachment_state * const att_state =
2453 &cmd_buffer->state.attachments[att_ref->attachment];
2454
2455 /* The attachment should not be used in a subpass after its last. */
2456 assert(att_desc->last_subpass_idx >= anv_get_subpass_id(cmd_state));
2457
2458 if (subpass_end && anv_get_subpass_id(cmd_state) <
2459 att_desc->last_subpass_idx) {
2460 /* We're calling this function on a buffer twice in one subpass and
2461 * this is not the last use of the buffer. The layout should not have
2462 * changed from the first call and no transition is necessary.
2463 */
2464 assert(att_ref->layout == att_state->current_layout);
2465 continue;
2466 }
2467
2468 /* Get the appropriate target layout for this attachment. */
2469 const VkImageLayout target_layout = subpass_end ?
2470 att_desc->final_layout : att_ref->layout;
2471
2472 /* The attachment index must be less than the number of attachments
2473 * within the framebuffer.
2474 */
2475 assert(att_ref->attachment < cmd_state->framebuffer->attachment_count);
2476
2477 const struct anv_image * const image =
2478 cmd_state->framebuffer->attachments[att_ref->attachment]->image;
2479
2480 /* Perform the layout transition. */
2481 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
2482 transition_depth_buffer(cmd_buffer, image,
2483 att_state->current_layout, target_layout);
2484 att_state->aux_usage =
2485 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
2486 image->aspects, target_layout);
2487 }
2488
2489 att_state->current_layout = target_layout;
2490 }
2491 }
2492
2493 static void
2494 genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
2495 struct anv_subpass *subpass)
2496 {
2497 cmd_buffer->state.subpass = subpass;
2498
2499 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
2500
2501 /* Perform transitions to the subpass layout before any writes have
2502 * occurred.
2503 */
2504 cmd_buffer_subpass_transition_layouts(cmd_buffer, false);
2505
2506 cmd_buffer_emit_depth_stencil(cmd_buffer);
2507
2508 anv_cmd_buffer_clear_subpass(cmd_buffer);
2509 }
2510
2511 void genX(CmdBeginRenderPass)(
2512 VkCommandBuffer commandBuffer,
2513 const VkRenderPassBeginInfo* pRenderPassBegin,
2514 VkSubpassContents contents)
2515 {
2516 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2517 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
2518 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
2519
2520 cmd_buffer->state.framebuffer = framebuffer;
2521 cmd_buffer->state.pass = pass;
2522 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
2523 VkResult result =
2524 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
2525
2526 /* If we failed to setup the attachments we should not try to go further */
2527 if (result != VK_SUCCESS) {
2528 assert(anv_batch_has_error(&cmd_buffer->batch));
2529 return;
2530 }
2531
2532 genX(flush_pipeline_select_3d)(cmd_buffer);
2533
2534 genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
2535 }
2536
2537 void genX(CmdNextSubpass)(
2538 VkCommandBuffer commandBuffer,
2539 VkSubpassContents contents)
2540 {
2541 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2542
2543 if (anv_batch_has_error(&cmd_buffer->batch))
2544 return;
2545
2546 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
2547
2548 anv_cmd_buffer_resolve_subpass(cmd_buffer);
2549
2550 /* Perform transitions to the final layout after all writes have occurred.
2551 */
2552 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
2553
2554 genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
2555 }
2556
2557 void genX(CmdEndRenderPass)(
2558 VkCommandBuffer commandBuffer)
2559 {
2560 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2561
2562 if (anv_batch_has_error(&cmd_buffer->batch))
2563 return;
2564
2565 anv_cmd_buffer_resolve_subpass(cmd_buffer);
2566
2567 /* Perform transitions to the final layout after all writes have occurred.
2568 */
2569 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
2570
2571 cmd_buffer->state.hiz_enabled = false;
2572
2573 #ifndef NDEBUG
2574 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
2575 #endif
2576
2577 /* Remove references to render pass specific state. This enables us to
2578 * detect whether or not we're in a renderpass.
2579 */
2580 cmd_buffer->state.framebuffer = NULL;
2581 cmd_buffer->state.pass = NULL;
2582 cmd_buffer->state.subpass = NULL;
2583 }