anv: Do end-of-pipe sync around MCS/CCS ops instead of CS stall
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30 #include "util/fast_idiv_by_const.h"
31
32 #include "common/gen_aux_map.h"
33 #include "common/gen_l3_config.h"
34 #include "genxml/gen_macros.h"
35 #include "genxml/genX_pack.h"
36
37 /* We reserve GPR 14 and 15 for conditional rendering */
38 #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
39 #define __gen_get_batch_dwords anv_batch_emit_dwords
40 #define __gen_address_offset anv_address_add
41 #include "common/gen_mi_builder.h"
42
43 static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
44 uint32_t pipeline);
45
46 static void
47 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
48 {
49 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
50 lri.RegisterOffset = reg;
51 lri.DataDWord = imm;
52 }
53 }
54
55 void
56 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
57 {
58 struct anv_device *device = cmd_buffer->device;
59 UNUSED const struct gen_device_info *devinfo = &device->info;
60 uint32_t mocs = device->isl_dev.mocs.internal;
61
62 /* If we are emitting a new state base address we probably need to re-emit
63 * binding tables.
64 */
65 cmd_buffer->state.descriptors_dirty |= ~0;
66
67 /* Emit a render target cache flush.
68 *
69 * This isn't documented anywhere in the PRM. However, it seems to be
70 * necessary prior to changing the surface state base adress. Without
71 * this, we get GPU hangs when using multi-level command buffers which
72 * clear depth, reset state base address, and then go render stuff.
73 */
74 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
75 pc.DCFlushEnable = true;
76 pc.RenderTargetCacheFlushEnable = true;
77 pc.CommandStreamerStallEnable = true;
78 #if GEN_GEN >= 12
79 pc.TileCacheFlushEnable = true;
80 #endif
81 #if GEN_GEN == 12
82 /* GEN:BUG:1606662791:
83 *
84 * Software must program PIPE_CONTROL command with "HDC Pipeline
85 * Flush" prior to programming of the below two non-pipeline state :
86 * * STATE_BASE_ADDRESS
87 * * 3DSTATE_BINDING_TABLE_POOL_ALLOC
88 */
89 if (devinfo->revision == 0 /* A0 */)
90 pc.HDCPipelineFlushEnable = true;
91 #endif
92 }
93
94 #if GEN_GEN == 12
95 /* GEN:BUG:1607854226:
96 *
97 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
98 * mode by putting the pipeline temporarily in 3D mode.
99 */
100 uint32_t gen12_wa_pipeline = cmd_buffer->state.current_pipeline;
101 genX(flush_pipeline_select_3d)(cmd_buffer);
102 #endif
103
104 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
105 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
106 sba.GeneralStateMOCS = mocs;
107 sba.GeneralStateBaseAddressModifyEnable = true;
108
109 sba.StatelessDataPortAccessMOCS = mocs;
110
111 sba.SurfaceStateBaseAddress =
112 anv_cmd_buffer_surface_base_address(cmd_buffer);
113 sba.SurfaceStateMOCS = mocs;
114 sba.SurfaceStateBaseAddressModifyEnable = true;
115
116 sba.DynamicStateBaseAddress =
117 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
118 sba.DynamicStateMOCS = mocs;
119 sba.DynamicStateBaseAddressModifyEnable = true;
120
121 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
122 sba.IndirectObjectMOCS = mocs;
123 sba.IndirectObjectBaseAddressModifyEnable = true;
124
125 sba.InstructionBaseAddress =
126 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
127 sba.InstructionMOCS = mocs;
128 sba.InstructionBaseAddressModifyEnable = true;
129
130 # if (GEN_GEN >= 8)
131 /* Broadwell requires that we specify a buffer size for a bunch of
132 * these fields. However, since we will be growing the BO's live, we
133 * just set them all to the maximum.
134 */
135 sba.GeneralStateBufferSize = 0xfffff;
136 sba.IndirectObjectBufferSize = 0xfffff;
137 if (device->physical->use_softpin) {
138 /* With softpin, we use fixed addresses so we actually know how big
139 * our base addresses are.
140 */
141 sba.DynamicStateBufferSize = DYNAMIC_STATE_POOL_SIZE / 4096;
142 sba.InstructionBufferSize = INSTRUCTION_STATE_POOL_SIZE / 4096;
143 } else {
144 sba.DynamicStateBufferSize = 0xfffff;
145 sba.InstructionBufferSize = 0xfffff;
146 }
147 sba.GeneralStateBufferSizeModifyEnable = true;
148 sba.IndirectObjectBufferSizeModifyEnable = true;
149 sba.DynamicStateBufferSizeModifyEnable = true;
150 sba.InstructionBuffersizeModifyEnable = true;
151 # else
152 /* On gen7, we have upper bounds instead. According to the docs,
153 * setting an upper bound of zero means that no bounds checking is
154 * performed so, in theory, we should be able to leave them zero.
155 * However, border color is broken and the GPU bounds-checks anyway.
156 * To avoid this and other potential problems, we may as well set it
157 * for everything.
158 */
159 sba.GeneralStateAccessUpperBound =
160 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
161 sba.GeneralStateAccessUpperBoundModifyEnable = true;
162 sba.DynamicStateAccessUpperBound =
163 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
164 sba.DynamicStateAccessUpperBoundModifyEnable = true;
165 sba.InstructionAccessUpperBound =
166 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
167 sba.InstructionAccessUpperBoundModifyEnable = true;
168 # endif
169 # if (GEN_GEN >= 9)
170 if (cmd_buffer->device->physical->use_softpin) {
171 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
172 .bo = device->surface_state_pool.block_pool.bo,
173 .offset = 0,
174 };
175 sba.BindlessSurfaceStateSize = (1 << 20) - 1;
176 } else {
177 sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
178 sba.BindlessSurfaceStateSize = 0;
179 }
180 sba.BindlessSurfaceStateMOCS = mocs;
181 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
182 # endif
183 # if (GEN_GEN >= 10)
184 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
185 sba.BindlessSamplerStateMOCS = mocs;
186 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
187 sba.BindlessSamplerStateBufferSize = 0;
188 # endif
189 }
190
191 #if GEN_GEN == 12
192 /* GEN:BUG:1607854226:
193 *
194 * Put the pipeline back into its current mode.
195 */
196 if (gen12_wa_pipeline != UINT32_MAX)
197 genX(flush_pipeline_select)(cmd_buffer, gen12_wa_pipeline);
198 #endif
199
200 /* After re-setting the surface state base address, we have to do some
201 * cache flusing so that the sampler engine will pick up the new
202 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
203 * Shared Function > 3D Sampler > State > State Caching (page 96):
204 *
205 * Coherency with system memory in the state cache, like the texture
206 * cache is handled partially by software. It is expected that the
207 * command stream or shader will issue Cache Flush operation or
208 * Cache_Flush sampler message to ensure that the L1 cache remains
209 * coherent with system memory.
210 *
211 * [...]
212 *
213 * Whenever the value of the Dynamic_State_Base_Addr,
214 * Surface_State_Base_Addr are altered, the L1 state cache must be
215 * invalidated to ensure the new surface or sampler state is fetched
216 * from system memory.
217 *
218 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
219 * which, according the PIPE_CONTROL instruction documentation in the
220 * Broadwell PRM:
221 *
222 * Setting this bit is independent of any other bit in this packet.
223 * This bit controls the invalidation of the L1 and L2 state caches
224 * at the top of the pipe i.e. at the parsing time.
225 *
226 * Unfortunately, experimentation seems to indicate that state cache
227 * invalidation through a PIPE_CONTROL does nothing whatsoever in
228 * regards to surface state and binding tables. In stead, it seems that
229 * invalidating the texture cache is what is actually needed.
230 *
231 * XXX: As far as we have been able to determine through
232 * experimentation, shows that flush the texture cache appears to be
233 * sufficient. The theory here is that all of the sampling/rendering
234 * units cache the binding table in the texture cache. However, we have
235 * yet to be able to actually confirm this.
236 */
237 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
238 pc.TextureCacheInvalidationEnable = true;
239 pc.ConstantCacheInvalidationEnable = true;
240 pc.StateCacheInvalidationEnable = true;
241 }
242 }
243
244 static void
245 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
246 struct anv_state state, struct anv_address addr)
247 {
248 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
249
250 VkResult result =
251 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
252 state.offset + isl_dev->ss.addr_offset,
253 addr.bo, addr.offset, NULL);
254 if (result != VK_SUCCESS)
255 anv_batch_set_error(&cmd_buffer->batch, result);
256 }
257
258 static void
259 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
260 struct anv_surface_state state)
261 {
262 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
263
264 assert(!anv_address_is_null(state.address));
265 add_surface_reloc(cmd_buffer, state.state, state.address);
266
267 if (!anv_address_is_null(state.aux_address)) {
268 VkResult result =
269 anv_reloc_list_add(&cmd_buffer->surface_relocs,
270 &cmd_buffer->pool->alloc,
271 state.state.offset + isl_dev->ss.aux_addr_offset,
272 state.aux_address.bo,
273 state.aux_address.offset,
274 NULL);
275 if (result != VK_SUCCESS)
276 anv_batch_set_error(&cmd_buffer->batch, result);
277 }
278
279 if (!anv_address_is_null(state.clear_address)) {
280 VkResult result =
281 anv_reloc_list_add(&cmd_buffer->surface_relocs,
282 &cmd_buffer->pool->alloc,
283 state.state.offset +
284 isl_dev->ss.clear_color_state_offset,
285 state.clear_address.bo,
286 state.clear_address.offset,
287 NULL);
288 if (result != VK_SUCCESS)
289 anv_batch_set_error(&cmd_buffer->batch, result);
290 }
291 }
292
293 static void
294 color_attachment_compute_aux_usage(struct anv_device * device,
295 struct anv_cmd_state * cmd_state,
296 uint32_t att, VkRect2D render_area,
297 union isl_color_value *fast_clear_color)
298 {
299 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
300 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
301
302 assert(iview->n_planes == 1);
303
304 if (iview->planes[0].isl.base_array_layer >=
305 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
306 iview->planes[0].isl.base_level)) {
307 /* There is no aux buffer which corresponds to the level and layer(s)
308 * being accessed.
309 */
310 att_state->aux_usage = ISL_AUX_USAGE_NONE;
311 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
312 att_state->fast_clear = false;
313 return;
314 }
315
316 att_state->aux_usage =
317 anv_layout_to_aux_usage(&device->info, iview->image,
318 VK_IMAGE_ASPECT_COLOR_BIT,
319 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
320 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
321
322 /* If we don't have aux, then we should have returned early in the layer
323 * check above. If we got here, we must have something.
324 */
325 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
326
327 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
328 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
329 att_state->input_aux_usage = att_state->aux_usage;
330 } else {
331 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
332 *
333 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
334 * setting is only allowed if Surface Format supported for Fast
335 * Clear. In addition, if the surface is bound to the sampling
336 * engine, Surface Format must be supported for Render Target
337 * Compression for surfaces bound to the sampling engine."
338 *
339 * In other words, we can only sample from a fast-cleared image if it
340 * also supports color compression.
341 */
342 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format) &&
343 isl_format_supports_ccs_d(&device->info, iview->planes[0].isl.format)) {
344 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
345
346 /* While fast-clear resolves and partial resolves are fairly cheap in the
347 * case where you render to most of the pixels, full resolves are not
348 * because they potentially involve reading and writing the entire
349 * framebuffer. If we can't texture with CCS_E, we should leave it off and
350 * limit ourselves to fast clears.
351 */
352 if (cmd_state->pass->attachments[att].first_subpass_layout ==
353 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
354 anv_perf_warn(device, iview->image,
355 "Not temporarily enabling CCS_E.");
356 }
357 } else {
358 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
359 }
360 }
361
362 assert(iview->image->planes[0].aux_surface.isl.usage &
363 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
364
365 union isl_color_value clear_color = {};
366 anv_clear_color_from_att_state(&clear_color, att_state, iview);
367
368 att_state->clear_color_is_zero_one =
369 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
370 att_state->clear_color_is_zero =
371 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
372
373 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
374 /* Start by getting the fast clear type. We use the first subpass
375 * layout here because we don't want to fast-clear if the first subpass
376 * to use the attachment can't handle fast-clears.
377 */
378 enum anv_fast_clear_type fast_clear_type =
379 anv_layout_to_fast_clear_type(&device->info, iview->image,
380 VK_IMAGE_ASPECT_COLOR_BIT,
381 cmd_state->pass->attachments[att].first_subpass_layout);
382 switch (fast_clear_type) {
383 case ANV_FAST_CLEAR_NONE:
384 att_state->fast_clear = false;
385 break;
386 case ANV_FAST_CLEAR_DEFAULT_VALUE:
387 att_state->fast_clear = att_state->clear_color_is_zero;
388 break;
389 case ANV_FAST_CLEAR_ANY:
390 att_state->fast_clear = true;
391 break;
392 }
393
394 /* Potentially, we could do partial fast-clears but doing so has crazy
395 * alignment restrictions. It's easier to just restrict to full size
396 * fast clears for now.
397 */
398 if (render_area.offset.x != 0 ||
399 render_area.offset.y != 0 ||
400 render_area.extent.width != iview->extent.width ||
401 render_area.extent.height != iview->extent.height)
402 att_state->fast_clear = false;
403
404 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
405 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
406 att_state->fast_clear = false;
407
408 /* We only allow fast clears to the first slice of an image (level 0,
409 * layer 0) and only for the entire slice. This guarantees us that, at
410 * any given time, there is only one clear color on any given image at
411 * any given time. At the time of our testing (Jan 17, 2018), there
412 * were no known applications which would benefit from fast-clearing
413 * more than just the first slice.
414 */
415 if (att_state->fast_clear &&
416 (iview->planes[0].isl.base_level > 0 ||
417 iview->planes[0].isl.base_array_layer > 0)) {
418 anv_perf_warn(device, iview->image,
419 "Rendering with multi-lod or multi-layer framebuffer "
420 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
421 "baseArrayLayer > 0. Not fast clearing.");
422 att_state->fast_clear = false;
423 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
424 anv_perf_warn(device, iview->image,
425 "Rendering to a multi-layer framebuffer with "
426 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
427 }
428
429 if (att_state->fast_clear)
430 *fast_clear_color = clear_color;
431 } else {
432 att_state->fast_clear = false;
433 }
434 }
435
436 static void
437 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
438 struct anv_cmd_state *cmd_state,
439 uint32_t att, VkRect2D render_area)
440 {
441 struct anv_render_pass_attachment *pass_att =
442 &cmd_state->pass->attachments[att];
443 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
444 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
445
446 /* These will be initialized after the first subpass transition. */
447 att_state->aux_usage = ISL_AUX_USAGE_NONE;
448 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
449
450 /* This is unused for depth/stencil but valgrind complains if it
451 * isn't initialized
452 */
453 att_state->clear_color_is_zero_one = false;
454
455 if (GEN_GEN == 7) {
456 /* We don't do any HiZ or depth fast-clears on gen7 yet */
457 att_state->fast_clear = false;
458 return;
459 }
460
461 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
462 /* If we're just clearing stencil, we can always HiZ clear */
463 att_state->fast_clear = true;
464 return;
465 }
466
467 /* Default to false for now */
468 att_state->fast_clear = false;
469
470 /* We must have depth in order to have HiZ */
471 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
472 return;
473
474 const enum isl_aux_usage first_subpass_aux_usage =
475 anv_layout_to_aux_usage(&device->info, iview->image,
476 VK_IMAGE_ASPECT_DEPTH_BIT,
477 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
478 pass_att->first_subpass_layout);
479 if (!blorp_can_hiz_clear_depth(&device->info,
480 &iview->image->planes[0].surface.isl,
481 first_subpass_aux_usage,
482 iview->planes[0].isl.base_level,
483 iview->planes[0].isl.base_array_layer,
484 render_area.offset.x,
485 render_area.offset.y,
486 render_area.offset.x +
487 render_area.extent.width,
488 render_area.offset.y +
489 render_area.extent.height))
490 return;
491
492 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
493 return;
494
495 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
496 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
497 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
498 * only supports returning 0.0f. Gens prior to gen8 do not support this
499 * feature at all.
500 */
501 return;
502 }
503
504 /* If we got here, then we can fast clear */
505 att_state->fast_clear = true;
506 }
507
508 static bool
509 need_input_attachment_state(const struct anv_render_pass_attachment *att)
510 {
511 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
512 return false;
513
514 /* We only allocate input attachment states for color surfaces. Compression
515 * is not yet enabled for depth textures and stencil doesn't allow
516 * compression so we can just use the texture surface state from the view.
517 */
518 return vk_format_is_color(att->format);
519 }
520
521 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
522 * the initial layout is undefined, the HiZ buffer and depth buffer will
523 * represent the same data at the end of this operation.
524 */
525 static void
526 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
527 const struct anv_image *image,
528 VkImageLayout initial_layout,
529 VkImageLayout final_layout)
530 {
531 uint32_t depth_plane =
532 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
533 if (image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_NONE)
534 return;
535
536 const enum isl_aux_state initial_state =
537 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
538 VK_IMAGE_ASPECT_DEPTH_BIT,
539 initial_layout);
540 const enum isl_aux_state final_state =
541 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
542 VK_IMAGE_ASPECT_DEPTH_BIT,
543 final_layout);
544
545 const bool initial_depth_valid =
546 isl_aux_state_has_valid_primary(initial_state);
547 const bool initial_hiz_valid =
548 isl_aux_state_has_valid_aux(initial_state);
549 const bool final_needs_depth =
550 isl_aux_state_has_valid_primary(final_state);
551 const bool final_needs_hiz =
552 isl_aux_state_has_valid_aux(final_state);
553
554 /* Getting into the pass-through state for Depth is tricky and involves
555 * both a resolve and an ambiguate. We don't handle that state right now
556 * as anv_layout_to_aux_state never returns it.
557 */
558 assert(final_state != ISL_AUX_STATE_PASS_THROUGH);
559
560 if (final_needs_depth && !initial_depth_valid) {
561 assert(initial_hiz_valid);
562 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
563 0, 0, 1, ISL_AUX_OP_FULL_RESOLVE);
564 } else if (final_needs_hiz && !initial_hiz_valid) {
565 assert(initial_depth_valid);
566 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
567 0, 0, 1, ISL_AUX_OP_AMBIGUATE);
568 }
569 }
570
571 static inline bool
572 vk_image_layout_stencil_write_optimal(VkImageLayout layout)
573 {
574 return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
575 layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
576 layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
577 }
578
579 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
580 * the initial layout is undefined, the HiZ buffer and depth buffer will
581 * represent the same data at the end of this operation.
582 */
583 static void
584 transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
585 const struct anv_image *image,
586 uint32_t base_level, uint32_t level_count,
587 uint32_t base_layer, uint32_t layer_count,
588 VkImageLayout initial_layout,
589 VkImageLayout final_layout)
590 {
591 #if GEN_GEN == 7
592 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
593 VK_IMAGE_ASPECT_STENCIL_BIT);
594
595 /* On gen7, we have to store a texturable version of the stencil buffer in
596 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
597 * forth at strategic points. Stencil writes are only allowed in following
598 * layouts:
599 *
600 * - VK_IMAGE_LAYOUT_GENERAL
601 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
602 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
603 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
604 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
605 *
606 * For general, we have no nice opportunity to transition so we do the copy
607 * to the shadow unconditionally at the end of the subpass. For transfer
608 * destinations, we can update it as part of the transfer op. For the other
609 * layouts, we delay the copy until a transition into some other layout.
610 */
611 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
612 vk_image_layout_stencil_write_optimal(initial_layout) &&
613 !vk_image_layout_stencil_write_optimal(final_layout)) {
614 anv_image_copy_to_shadow(cmd_buffer, image,
615 VK_IMAGE_ASPECT_STENCIL_BIT,
616 base_level, level_count,
617 base_layer, layer_count);
618 }
619 #endif /* GEN_GEN == 7 */
620 }
621
622 #define MI_PREDICATE_SRC0 0x2400
623 #define MI_PREDICATE_SRC1 0x2408
624 #define MI_PREDICATE_RESULT 0x2418
625
626 static void
627 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
628 const struct anv_image *image,
629 VkImageAspectFlagBits aspect,
630 uint32_t level,
631 uint32_t base_layer, uint32_t layer_count,
632 bool compressed)
633 {
634 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
635
636 /* We only have compression tracking for CCS_E */
637 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
638 return;
639
640 for (uint32_t a = 0; a < layer_count; a++) {
641 uint32_t layer = base_layer + a;
642 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
643 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
644 image, aspect,
645 level, layer);
646 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
647 }
648 }
649 }
650
651 static void
652 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
653 const struct anv_image *image,
654 VkImageAspectFlagBits aspect,
655 enum anv_fast_clear_type fast_clear)
656 {
657 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
658 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
659 image, aspect);
660 sdi.ImmediateData = fast_clear;
661 }
662
663 /* Whenever we have fast-clear, we consider that slice to be compressed.
664 * This makes building predicates much easier.
665 */
666 if (fast_clear != ANV_FAST_CLEAR_NONE)
667 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
668 }
669
670 /* This is only really practical on haswell and above because it requires
671 * MI math in order to get it correct.
672 */
673 #if GEN_GEN >= 8 || GEN_IS_HASWELL
674 static void
675 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
676 const struct anv_image *image,
677 VkImageAspectFlagBits aspect,
678 uint32_t level, uint32_t array_layer,
679 enum isl_aux_op resolve_op,
680 enum anv_fast_clear_type fast_clear_supported)
681 {
682 struct gen_mi_builder b;
683 gen_mi_builder_init(&b, &cmd_buffer->batch);
684
685 const struct gen_mi_value fast_clear_type =
686 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
687 image, aspect));
688
689 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
690 /* In this case, we're doing a full resolve which means we want the
691 * resolve to happen if any compression (including fast-clears) is
692 * present.
693 *
694 * In order to simplify the logic a bit, we make the assumption that,
695 * if the first slice has been fast-cleared, it is also marked as
696 * compressed. See also set_image_fast_clear_state.
697 */
698 const struct gen_mi_value compression_state =
699 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
700 image, aspect,
701 level, array_layer));
702 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
703 compression_state);
704 gen_mi_store(&b, compression_state, gen_mi_imm(0));
705
706 if (level == 0 && array_layer == 0) {
707 /* If the predicate is true, we want to write 0 to the fast clear type
708 * and, if it's false, leave it alone. We can do this by writing
709 *
710 * clear_type = clear_type & ~predicate;
711 */
712 struct gen_mi_value new_fast_clear_type =
713 gen_mi_iand(&b, fast_clear_type,
714 gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0)));
715 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
716 }
717 } else if (level == 0 && array_layer == 0) {
718 /* In this case, we are doing a partial resolve to get rid of fast-clear
719 * colors. We don't care about the compression state but we do care
720 * about how much fast clear is allowed by the final layout.
721 */
722 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
723 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
724
725 /* We need to compute (fast_clear_supported < image->fast_clear) */
726 struct gen_mi_value pred =
727 gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type);
728 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
729 gen_mi_value_ref(&b, pred));
730
731 /* If the predicate is true, we want to write 0 to the fast clear type
732 * and, if it's false, leave it alone. We can do this by writing
733 *
734 * clear_type = clear_type & ~predicate;
735 */
736 struct gen_mi_value new_fast_clear_type =
737 gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred));
738 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
739 } else {
740 /* In this case, we're trying to do a partial resolve on a slice that
741 * doesn't have clear color. There's nothing to do.
742 */
743 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
744 return;
745 }
746
747 /* Set src1 to 0 and use a != condition */
748 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
749
750 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
751 mip.LoadOperation = LOAD_LOADINV;
752 mip.CombineOperation = COMBINE_SET;
753 mip.CompareOperation = COMPARE_SRCS_EQUAL;
754 }
755 }
756 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
757
758 #if GEN_GEN <= 8
759 static void
760 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
761 const struct anv_image *image,
762 VkImageAspectFlagBits aspect,
763 uint32_t level, uint32_t array_layer,
764 enum isl_aux_op resolve_op,
765 enum anv_fast_clear_type fast_clear_supported)
766 {
767 struct gen_mi_builder b;
768 gen_mi_builder_init(&b, &cmd_buffer->batch);
769
770 struct gen_mi_value fast_clear_type_mem =
771 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
772 image, aspect));
773
774 /* This only works for partial resolves and only when the clear color is
775 * all or nothing. On the upside, this emits less command streamer code
776 * and works on Ivybridge and Bay Trail.
777 */
778 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
779 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
780
781 /* We don't support fast clears on anything other than the first slice. */
782 if (level > 0 || array_layer > 0)
783 return;
784
785 /* On gen8, we don't have a concept of default clear colors because we
786 * can't sample from CCS surfaces. It's enough to just load the fast clear
787 * state into the predicate register.
788 */
789 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
790 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
791 gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0));
792
793 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
794 mip.LoadOperation = LOAD_LOADINV;
795 mip.CombineOperation = COMBINE_SET;
796 mip.CompareOperation = COMPARE_SRCS_EQUAL;
797 }
798 }
799 #endif /* GEN_GEN <= 8 */
800
801 static void
802 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
803 const struct anv_image *image,
804 enum isl_format format,
805 VkImageAspectFlagBits aspect,
806 uint32_t level, uint32_t array_layer,
807 enum isl_aux_op resolve_op,
808 enum anv_fast_clear_type fast_clear_supported)
809 {
810 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
811
812 #if GEN_GEN >= 9
813 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
814 aspect, level, array_layer,
815 resolve_op, fast_clear_supported);
816 #else /* GEN_GEN <= 8 */
817 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
818 aspect, level, array_layer,
819 resolve_op, fast_clear_supported);
820 #endif
821
822 /* CCS_D only supports full resolves and BLORP will assert on us if we try
823 * to do a partial resolve on a CCS_D surface.
824 */
825 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
826 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D)
827 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
828
829 anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
830 array_layer, 1, resolve_op, NULL, true);
831 }
832
833 static void
834 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
835 const struct anv_image *image,
836 enum isl_format format,
837 VkImageAspectFlagBits aspect,
838 uint32_t array_layer,
839 enum isl_aux_op resolve_op,
840 enum anv_fast_clear_type fast_clear_supported)
841 {
842 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
843 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
844
845 #if GEN_GEN >= 8 || GEN_IS_HASWELL
846 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
847 aspect, 0, array_layer,
848 resolve_op, fast_clear_supported);
849
850 anv_image_mcs_op(cmd_buffer, image, format, aspect,
851 array_layer, 1, resolve_op, NULL, true);
852 #else
853 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
854 #endif
855 }
856
857 void
858 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
859 const struct anv_image *image,
860 VkImageAspectFlagBits aspect,
861 enum isl_aux_usage aux_usage,
862 uint32_t level,
863 uint32_t base_layer,
864 uint32_t layer_count)
865 {
866 /* The aspect must be exactly one of the image aspects. */
867 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
868
869 /* The only compression types with more than just fast-clears are MCS,
870 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
871 * track the current fast-clear and compression state. This leaves us
872 * with just MCS and CCS_E.
873 */
874 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
875 aux_usage != ISL_AUX_USAGE_MCS)
876 return;
877
878 set_image_compressed_bit(cmd_buffer, image, aspect,
879 level, base_layer, layer_count, true);
880 }
881
882 static void
883 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
884 const struct anv_image *image,
885 VkImageAspectFlagBits aspect)
886 {
887 assert(cmd_buffer && image);
888 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
889
890 set_image_fast_clear_state(cmd_buffer, image, aspect,
891 ANV_FAST_CLEAR_NONE);
892
893 /* Initialize the struct fields that are accessed for fast-clears so that
894 * the HW restrictions on the field values are satisfied.
895 */
896 struct anv_address addr =
897 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
898
899 if (GEN_GEN >= 9) {
900 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
901 const unsigned num_dwords = GEN_GEN >= 10 ?
902 isl_dev->ss.clear_color_state_size / 4 :
903 isl_dev->ss.clear_value_size / 4;
904 for (unsigned i = 0; i < num_dwords; i++) {
905 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
906 sdi.Address = addr;
907 sdi.Address.offset += i * 4;
908 sdi.ImmediateData = 0;
909 }
910 }
911 } else {
912 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
913 sdi.Address = addr;
914 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
915 /* Pre-SKL, the dword containing the clear values also contains
916 * other fields, so we need to initialize those fields to match the
917 * values that would be in a color attachment.
918 */
919 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
920 ISL_CHANNEL_SELECT_GREEN << 22 |
921 ISL_CHANNEL_SELECT_BLUE << 19 |
922 ISL_CHANNEL_SELECT_ALPHA << 16;
923 } else if (GEN_GEN == 7) {
924 /* On IVB, the dword containing the clear values also contains
925 * other fields that must be zero or can be zero.
926 */
927 sdi.ImmediateData = 0;
928 }
929 }
930 }
931 }
932
933 /* Copy the fast-clear value dword(s) between a surface state object and an
934 * image's fast clear state buffer.
935 */
936 static void
937 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
938 struct anv_state surface_state,
939 const struct anv_image *image,
940 VkImageAspectFlagBits aspect,
941 bool copy_from_surface_state)
942 {
943 assert(cmd_buffer && image);
944 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
945
946 struct anv_address ss_clear_addr = {
947 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
948 .offset = surface_state.offset +
949 cmd_buffer->device->isl_dev.ss.clear_value_offset,
950 };
951 const struct anv_address entry_addr =
952 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
953 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
954
955 #if GEN_GEN == 7
956 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
957 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
958 * in-flight when they are issued even if the memory touched is not
959 * currently active for rendering. The weird bit is that it is not the
960 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
961 * rendering hangs such that the next stalling command after the
962 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
963 *
964 * It is unclear exactly why this hang occurs. Both MI commands come with
965 * warnings about the 3D pipeline but that doesn't seem to fully explain
966 * it. My (Jason's) best theory is that it has something to do with the
967 * fact that we're using a GPU state register as our temporary and that
968 * something with reading/writing it is causing problems.
969 *
970 * In order to work around this issue, we emit a PIPE_CONTROL with the
971 * command streamer stall bit set.
972 */
973 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
974 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
975 #endif
976
977 struct gen_mi_builder b;
978 gen_mi_builder_init(&b, &cmd_buffer->batch);
979
980 if (copy_from_surface_state) {
981 gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
982 } else {
983 gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
984
985 /* Updating a surface state object may require that the state cache be
986 * invalidated. From the SKL PRM, Shared Functions -> State -> State
987 * Caching:
988 *
989 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
990 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
991 * modified [...], the L1 state cache must be invalidated to ensure
992 * the new surface or sampler state is fetched from system memory.
993 *
994 * In testing, SKL doesn't actually seem to need this, but HSW does.
995 */
996 cmd_buffer->state.pending_pipe_bits |=
997 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
998 }
999 }
1000
1001 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
1002
1003 #if GEN_GEN == 12
1004 static void
1005 anv_image_init_aux_tt(struct anv_cmd_buffer *cmd_buffer,
1006 const struct anv_image *image,
1007 VkImageAspectFlagBits aspect,
1008 uint32_t base_level, uint32_t level_count,
1009 uint32_t base_layer, uint32_t layer_count)
1010 {
1011 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1012
1013 uint64_t base_address =
1014 anv_address_physical(image->planes[plane].address);
1015
1016 const struct isl_surf *isl_surf = &image->planes[plane].surface.isl;
1017 uint64_t format_bits = gen_aux_map_format_bits_for_isl_surf(isl_surf);
1018
1019 /* We're about to live-update the AUX-TT. We really don't want anyone else
1020 * trying to read it while we're doing this. We could probably get away
1021 * with not having this stall in some cases if we were really careful but
1022 * it's better to play it safe. Full stall the GPU.
1023 */
1024 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1025 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1026
1027 struct gen_mi_builder b;
1028 gen_mi_builder_init(&b, &cmd_buffer->batch);
1029
1030 for (uint32_t a = 0; a < layer_count; a++) {
1031 const uint32_t layer = base_layer + a;
1032
1033 uint64_t start_offset_B = UINT64_MAX, end_offset_B = 0;
1034 for (uint32_t l = 0; l < level_count; l++) {
1035 const uint32_t level = base_level + l;
1036
1037 uint32_t logical_array_layer, logical_z_offset_px;
1038 if (image->type == VK_IMAGE_TYPE_3D) {
1039 logical_array_layer = 0;
1040
1041 /* If the given miplevel does not have this layer, then any higher
1042 * miplevels won't either because miplevels only get smaller the
1043 * higher the LOD.
1044 */
1045 assert(layer < image->extent.depth);
1046 if (layer >= anv_minify(image->extent.depth, level))
1047 break;
1048 logical_z_offset_px = layer;
1049 } else {
1050 assert(layer < image->array_size);
1051 logical_array_layer = layer;
1052 logical_z_offset_px = 0;
1053 }
1054
1055 uint32_t slice_start_offset_B, slice_end_offset_B;
1056 isl_surf_get_image_range_B_tile(isl_surf, level,
1057 logical_array_layer,
1058 logical_z_offset_px,
1059 &slice_start_offset_B,
1060 &slice_end_offset_B);
1061
1062 start_offset_B = MIN2(start_offset_B, slice_start_offset_B);
1063 end_offset_B = MAX2(end_offset_B, slice_end_offset_B);
1064 }
1065
1066 /* Aux operates 64K at a time */
1067 start_offset_B = align_down_u64(start_offset_B, 64 * 1024);
1068 end_offset_B = align_u64(end_offset_B, 64 * 1024);
1069
1070 for (uint64_t offset = start_offset_B;
1071 offset < end_offset_B; offset += 64 * 1024) {
1072 uint64_t address = base_address + offset;
1073
1074 uint64_t aux_entry_addr64, *aux_entry_map;
1075 aux_entry_map = gen_aux_map_get_entry(cmd_buffer->device->aux_map_ctx,
1076 address, &aux_entry_addr64);
1077
1078 assert(cmd_buffer->device->physical->use_softpin);
1079 struct anv_address aux_entry_address = {
1080 .bo = NULL,
1081 .offset = aux_entry_addr64,
1082 };
1083
1084 const uint64_t old_aux_entry = READ_ONCE(*aux_entry_map);
1085 uint64_t new_aux_entry =
1086 (old_aux_entry & GEN_AUX_MAP_ADDRESS_MASK) | format_bits;
1087
1088 if (isl_aux_usage_has_ccs(image->planes[plane].aux_usage))
1089 new_aux_entry |= GEN_AUX_MAP_ENTRY_VALID_BIT;
1090
1091 gen_mi_store(&b, gen_mi_mem64(aux_entry_address),
1092 gen_mi_imm(new_aux_entry));
1093 }
1094 }
1095
1096 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1097 }
1098 #endif /* GEN_GEN == 12 */
1099
1100 /**
1101 * @brief Transitions a color buffer from one layout to another.
1102 *
1103 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
1104 * more information.
1105 *
1106 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
1107 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
1108 * this represents the maximum layers to transition at each
1109 * specified miplevel.
1110 */
1111 static void
1112 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
1113 const struct anv_image *image,
1114 VkImageAspectFlagBits aspect,
1115 const uint32_t base_level, uint32_t level_count,
1116 uint32_t base_layer, uint32_t layer_count,
1117 VkImageLayout initial_layout,
1118 VkImageLayout final_layout)
1119 {
1120 struct anv_device *device = cmd_buffer->device;
1121 const struct gen_device_info *devinfo = &device->info;
1122 /* Validate the inputs. */
1123 assert(cmd_buffer);
1124 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1125 /* These values aren't supported for simplicity's sake. */
1126 assert(level_count != VK_REMAINING_MIP_LEVELS &&
1127 layer_count != VK_REMAINING_ARRAY_LAYERS);
1128 /* Ensure the subresource range is valid. */
1129 UNUSED uint64_t last_level_num = base_level + level_count;
1130 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
1131 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
1132 assert((uint64_t)base_layer + layer_count <= image_layers);
1133 assert(last_level_num <= image->levels);
1134 /* The spec disallows these final layouts. */
1135 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
1136 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
1137
1138 /* No work is necessary if the layout stays the same or if this subresource
1139 * range lacks auxiliary data.
1140 */
1141 if (initial_layout == final_layout)
1142 return;
1143
1144 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1145
1146 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1147 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
1148 /* This surface is a linear compressed image with a tiled shadow surface
1149 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
1150 * we need to ensure the shadow copy is up-to-date.
1151 */
1152 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1153 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
1154 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1155 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
1156 assert(plane == 0);
1157 anv_image_copy_to_shadow(cmd_buffer, image,
1158 VK_IMAGE_ASPECT_COLOR_BIT,
1159 base_level, level_count,
1160 base_layer, layer_count);
1161 }
1162
1163 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
1164 return;
1165
1166 assert(image->planes[plane].surface.isl.tiling != ISL_TILING_LINEAR);
1167
1168 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
1169 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
1170 #if GEN_GEN == 12
1171 if (device->physical->has_implicit_ccs && devinfo->has_aux_map) {
1172 anv_image_init_aux_tt(cmd_buffer, image, aspect,
1173 base_level, level_count,
1174 base_layer, layer_count);
1175 }
1176 #else
1177 assert(!(device->physical->has_implicit_ccs && devinfo->has_aux_map));
1178 #endif
1179
1180 /* A subresource in the undefined layout may have been aliased and
1181 * populated with any arrangement of bits. Therefore, we must initialize
1182 * the related aux buffer and clear buffer entry with desirable values.
1183 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
1184 * images with VK_IMAGE_TILING_OPTIMAL.
1185 *
1186 * Initialize the relevant clear buffer entries.
1187 */
1188 if (base_level == 0 && base_layer == 0)
1189 init_fast_clear_color(cmd_buffer, image, aspect);
1190
1191 /* Initialize the aux buffers to enable correct rendering. In order to
1192 * ensure that things such as storage images work correctly, aux buffers
1193 * need to be initialized to valid data.
1194 *
1195 * Having an aux buffer with invalid data is a problem for two reasons:
1196 *
1197 * 1) Having an invalid value in the buffer can confuse the hardware.
1198 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1199 * invalid and leads to the hardware doing strange things. It
1200 * doesn't hang as far as we can tell but rendering corruption can
1201 * occur.
1202 *
1203 * 2) If this transition is into the GENERAL layout and we then use the
1204 * image as a storage image, then we must have the aux buffer in the
1205 * pass-through state so that, if we then go to texture from the
1206 * image, we get the results of our storage image writes and not the
1207 * fast clear color or other random data.
1208 *
1209 * For CCS both of the problems above are real demonstrable issues. In
1210 * that case, the only thing we can do is to perform an ambiguate to
1211 * transition the aux surface into the pass-through state.
1212 *
1213 * For MCS, (2) is never an issue because we don't support multisampled
1214 * storage images. In theory, issue (1) is a problem with MCS but we've
1215 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1216 * theory, be interpreted as something but we don't know that all bit
1217 * patterns are actually valid. For 2x and 8x, you could easily end up
1218 * with the MCS referring to an invalid plane because not all bits of
1219 * the MCS value are actually used. Even though we've never seen issues
1220 * in the wild, it's best to play it safe and initialize the MCS. We
1221 * can use a fast-clear for MCS because we only ever touch from render
1222 * and texture (no image load store).
1223 */
1224 if (image->samples == 1) {
1225 for (uint32_t l = 0; l < level_count; l++) {
1226 const uint32_t level = base_level + l;
1227
1228 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1229 if (base_layer >= aux_layers)
1230 break; /* We will only get fewer layers as level increases */
1231 uint32_t level_layer_count =
1232 MIN2(layer_count, aux_layers - base_layer);
1233
1234 anv_image_ccs_op(cmd_buffer, image,
1235 image->planes[plane].surface.isl.format,
1236 aspect, level, base_layer, level_layer_count,
1237 ISL_AUX_OP_AMBIGUATE, NULL, false);
1238
1239 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1240 set_image_compressed_bit(cmd_buffer, image, aspect,
1241 level, base_layer, level_layer_count,
1242 false);
1243 }
1244 }
1245 } else {
1246 if (image->samples == 4 || image->samples == 16) {
1247 anv_perf_warn(cmd_buffer->device, image,
1248 "Doing a potentially unnecessary fast-clear to "
1249 "define an MCS buffer.");
1250 }
1251
1252 assert(base_level == 0 && level_count == 1);
1253 anv_image_mcs_op(cmd_buffer, image,
1254 image->planes[plane].surface.isl.format,
1255 aspect, base_layer, layer_count,
1256 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1257 }
1258 return;
1259 }
1260
1261 const enum isl_aux_usage initial_aux_usage =
1262 anv_layout_to_aux_usage(devinfo, image, aspect, 0, initial_layout);
1263 const enum isl_aux_usage final_aux_usage =
1264 anv_layout_to_aux_usage(devinfo, image, aspect, 0, final_layout);
1265
1266 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1267 * We can handle transitions between CCS_D/E to and from NONE. What we
1268 * don't yet handle is switching between CCS_E and CCS_D within a given
1269 * image. Doing so in a performant way requires more detailed aux state
1270 * tracking such as what is done in i965. For now, just assume that we
1271 * only have one type of compression.
1272 */
1273 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1274 final_aux_usage == ISL_AUX_USAGE_NONE ||
1275 initial_aux_usage == final_aux_usage);
1276
1277 /* If initial aux usage is NONE, there is nothing to resolve */
1278 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1279 return;
1280
1281 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1282
1283 /* If the initial layout supports more fast clear than the final layout
1284 * then we need at least a partial resolve.
1285 */
1286 const enum anv_fast_clear_type initial_fast_clear =
1287 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1288 const enum anv_fast_clear_type final_fast_clear =
1289 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1290 if (final_fast_clear < initial_fast_clear)
1291 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1292
1293 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1294 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1295 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1296
1297 if (resolve_op == ISL_AUX_OP_NONE)
1298 return;
1299
1300 /* Perform a resolve to synchronize data between the main and aux buffer.
1301 * Before we begin, we must satisfy the cache flushing requirement specified
1302 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1303 *
1304 * Any transition from any value in {Clear, Render, Resolve} to a
1305 * different value in {Clear, Render, Resolve} requires end of pipe
1306 * synchronization.
1307 *
1308 * We perform a flush of the write cache before and after the clear and
1309 * resolve operations to meet this requirement.
1310 *
1311 * Unlike other drawing, fast clear operations are not properly
1312 * synchronized. The first PIPE_CONTROL here likely ensures that the
1313 * contents of the previous render or clear hit the render target before we
1314 * resolve and the second likely ensures that the resolve is complete before
1315 * we do any more rendering or clearing.
1316 */
1317 cmd_buffer->state.pending_pipe_bits |=
1318 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT;
1319
1320 for (uint32_t l = 0; l < level_count; l++) {
1321 uint32_t level = base_level + l;
1322
1323 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1324 if (base_layer >= aux_layers)
1325 break; /* We will only get fewer layers as level increases */
1326 uint32_t level_layer_count =
1327 MIN2(layer_count, aux_layers - base_layer);
1328
1329 for (uint32_t a = 0; a < level_layer_count; a++) {
1330 uint32_t array_layer = base_layer + a;
1331 if (image->samples == 1) {
1332 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1333 image->planes[plane].surface.isl.format,
1334 aspect, level, array_layer, resolve_op,
1335 final_fast_clear);
1336 } else {
1337 /* We only support fast-clear on the first layer so partial
1338 * resolves should not be used on other layers as they will use
1339 * the clear color stored in memory that is only valid for layer0.
1340 */
1341 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1342 array_layer != 0)
1343 continue;
1344
1345 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1346 image->planes[plane].surface.isl.format,
1347 aspect, array_layer, resolve_op,
1348 final_fast_clear);
1349 }
1350 }
1351 }
1352
1353 cmd_buffer->state.pending_pipe_bits |=
1354 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT;
1355 }
1356
1357 /**
1358 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1359 */
1360 static VkResult
1361 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1362 struct anv_render_pass *pass,
1363 const VkRenderPassBeginInfo *begin)
1364 {
1365 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1366 struct anv_cmd_state *state = &cmd_buffer->state;
1367 struct anv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
1368
1369 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1370
1371 if (pass->attachment_count > 0) {
1372 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1373 pass->attachment_count *
1374 sizeof(state->attachments[0]),
1375 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1376 if (state->attachments == NULL) {
1377 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1378 return anv_batch_set_error(&cmd_buffer->batch,
1379 VK_ERROR_OUT_OF_HOST_MEMORY);
1380 }
1381 } else {
1382 state->attachments = NULL;
1383 }
1384
1385 /* Reserve one for the NULL state. */
1386 unsigned num_states = 1;
1387 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1388 if (vk_format_is_color(pass->attachments[i].format))
1389 num_states++;
1390
1391 if (need_input_attachment_state(&pass->attachments[i]))
1392 num_states++;
1393 }
1394
1395 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1396 state->render_pass_states =
1397 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1398 num_states * ss_stride, isl_dev->ss.align);
1399
1400 struct anv_state next_state = state->render_pass_states;
1401 next_state.alloc_size = isl_dev->ss.size;
1402
1403 state->null_surface_state = next_state;
1404 next_state.offset += ss_stride;
1405 next_state.map += ss_stride;
1406
1407 const VkRenderPassAttachmentBeginInfoKHR *begin_attachment =
1408 vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR);
1409
1410 if (begin && !begin_attachment)
1411 assert(pass->attachment_count == framebuffer->attachment_count);
1412
1413 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1414 if (vk_format_is_color(pass->attachments[i].format)) {
1415 state->attachments[i].color.state = next_state;
1416 next_state.offset += ss_stride;
1417 next_state.map += ss_stride;
1418 }
1419
1420 if (need_input_attachment_state(&pass->attachments[i])) {
1421 state->attachments[i].input.state = next_state;
1422 next_state.offset += ss_stride;
1423 next_state.map += ss_stride;
1424 }
1425
1426 if (begin_attachment && begin_attachment->attachmentCount != 0) {
1427 assert(begin_attachment->attachmentCount == pass->attachment_count);
1428 ANV_FROM_HANDLE(anv_image_view, iview, begin_attachment->pAttachments[i]);
1429 cmd_buffer->state.attachments[i].image_view = iview;
1430 } else if (framebuffer && i < framebuffer->attachment_count) {
1431 cmd_buffer->state.attachments[i].image_view = framebuffer->attachments[i];
1432 }
1433 }
1434 assert(next_state.offset == state->render_pass_states.offset +
1435 state->render_pass_states.alloc_size);
1436
1437 if (begin) {
1438 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1439 isl_extent3d(framebuffer->width,
1440 framebuffer->height,
1441 framebuffer->layers));
1442
1443 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1444 struct anv_render_pass_attachment *att = &pass->attachments[i];
1445 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1446 VkImageAspectFlags clear_aspects = 0;
1447 VkImageAspectFlags load_aspects = 0;
1448
1449 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1450 /* color attachment */
1451 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1452 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1453 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1454 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1455 }
1456 } else {
1457 /* depthstencil attachment */
1458 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1459 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1460 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1461 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1462 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1463 }
1464 }
1465 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1466 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1467 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1468 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1469 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1470 }
1471 }
1472 }
1473
1474 state->attachments[i].current_layout = att->initial_layout;
1475 state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
1476 state->attachments[i].pending_clear_aspects = clear_aspects;
1477 state->attachments[i].pending_load_aspects = load_aspects;
1478 if (clear_aspects)
1479 state->attachments[i].clear_value = begin->pClearValues[i];
1480
1481 struct anv_image_view *iview = cmd_buffer->state.attachments[i].image_view;
1482 anv_assert(iview->vk_format == att->format);
1483
1484 const uint32_t num_layers = iview->planes[0].isl.array_len;
1485 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1486
1487 union isl_color_value clear_color = { .u32 = { 0, } };
1488 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1489 anv_assert(iview->n_planes == 1);
1490 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1491 color_attachment_compute_aux_usage(cmd_buffer->device,
1492 state, i, begin->renderArea,
1493 &clear_color);
1494
1495 anv_image_fill_surface_state(cmd_buffer->device,
1496 iview->image,
1497 VK_IMAGE_ASPECT_COLOR_BIT,
1498 &iview->planes[0].isl,
1499 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1500 state->attachments[i].aux_usage,
1501 &clear_color,
1502 0,
1503 &state->attachments[i].color,
1504 NULL);
1505
1506 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1507 } else {
1508 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1509 state, i,
1510 begin->renderArea);
1511 }
1512
1513 if (need_input_attachment_state(&pass->attachments[i])) {
1514 anv_image_fill_surface_state(cmd_buffer->device,
1515 iview->image,
1516 VK_IMAGE_ASPECT_COLOR_BIT,
1517 &iview->planes[0].isl,
1518 ISL_SURF_USAGE_TEXTURE_BIT,
1519 state->attachments[i].input_aux_usage,
1520 &clear_color,
1521 0,
1522 &state->attachments[i].input,
1523 NULL);
1524
1525 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1526 }
1527 }
1528 }
1529
1530 return VK_SUCCESS;
1531 }
1532
1533 VkResult
1534 genX(BeginCommandBuffer)(
1535 VkCommandBuffer commandBuffer,
1536 const VkCommandBufferBeginInfo* pBeginInfo)
1537 {
1538 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1539
1540 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1541 * command buffer's state. Otherwise, we must *reset* its state. In both
1542 * cases we reset it.
1543 *
1544 * From the Vulkan 1.0 spec:
1545 *
1546 * If a command buffer is in the executable state and the command buffer
1547 * was allocated from a command pool with the
1548 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1549 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1550 * as if vkResetCommandBuffer had been called with
1551 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1552 * the command buffer in the recording state.
1553 */
1554 anv_cmd_buffer_reset(cmd_buffer);
1555
1556 cmd_buffer->usage_flags = pBeginInfo->flags;
1557
1558 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1559 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1560
1561 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1562
1563 /* We sometimes store vertex data in the dynamic state buffer for blorp
1564 * operations and our dynamic state stream may re-use data from previous
1565 * command buffers. In order to prevent stale cache data, we flush the VF
1566 * cache. We could do this on every blorp call but that's not really
1567 * needed as all of the data will get written by the CPU prior to the GPU
1568 * executing anything. The chances are fairly high that they will use
1569 * blorp at least once per primary command buffer so it shouldn't be
1570 * wasted.
1571 *
1572 * There is also a workaround on gen8 which requires us to invalidate the
1573 * VF cache occasionally. It's easier if we can assume we start with a
1574 * fresh cache (See also genX(cmd_buffer_set_binding_for_gen8_vb_flush).)
1575 */
1576 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1577
1578 /* Re-emit the aux table register in every command buffer. This way we're
1579 * ensured that we have the table even if this command buffer doesn't
1580 * initialize any images.
1581 */
1582 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1583
1584 /* We send an "Indirect State Pointers Disable" packet at
1585 * EndCommandBuffer, so all push contant packets are ignored during a
1586 * context restore. Documentation says after that command, we need to
1587 * emit push constants again before any rendering operation. So we
1588 * flag them dirty here to make sure they get emitted.
1589 */
1590 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1591
1592 VkResult result = VK_SUCCESS;
1593 if (cmd_buffer->usage_flags &
1594 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1595 assert(pBeginInfo->pInheritanceInfo);
1596 cmd_buffer->state.pass =
1597 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1598 cmd_buffer->state.subpass =
1599 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1600
1601 /* This is optional in the inheritance info. */
1602 cmd_buffer->state.framebuffer =
1603 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1604
1605 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1606 cmd_buffer->state.pass, NULL);
1607
1608 /* Record that HiZ is enabled if we can. */
1609 if (cmd_buffer->state.framebuffer) {
1610 const struct anv_image_view * const iview =
1611 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1612
1613 if (iview) {
1614 VkImageLayout layout =
1615 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1616
1617 enum isl_aux_usage aux_usage =
1618 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1619 VK_IMAGE_ASPECT_DEPTH_BIT,
1620 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
1621 layout);
1622
1623 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1624 }
1625 }
1626
1627 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1628 }
1629
1630 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1631 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1632 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1633 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1634
1635 /* If secondary buffer supports conditional rendering
1636 * we should emit commands as if conditional rendering is enabled.
1637 */
1638 cmd_buffer->state.conditional_render_enabled =
1639 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1640 }
1641 #endif
1642
1643 return result;
1644 }
1645
1646 /* From the PRM, Volume 2a:
1647 *
1648 * "Indirect State Pointers Disable
1649 *
1650 * At the completion of the post-sync operation associated with this pipe
1651 * control packet, the indirect state pointers in the hardware are
1652 * considered invalid; the indirect pointers are not saved in the context.
1653 * If any new indirect state commands are executed in the command stream
1654 * while the pipe control is pending, the new indirect state commands are
1655 * preserved.
1656 *
1657 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1658 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1659 * commands are only considered as Indirect State Pointers. Once ISP is
1660 * issued in a context, SW must initialize by programming push constant
1661 * commands for all the shaders (at least to zero length) before attempting
1662 * any rendering operation for the same context."
1663 *
1664 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1665 * even though they point to a BO that has been already unreferenced at
1666 * the end of the previous batch buffer. This has been fine so far since
1667 * we are protected by these scratch page (every address not covered by
1668 * a BO should be pointing to the scratch page). But on CNL, it is
1669 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1670 * instruction.
1671 *
1672 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1673 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1674 * context restore, so the mentioned hang doesn't happen. However,
1675 * software must program push constant commands for all stages prior to
1676 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1677 *
1678 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1679 * constants have been loaded into the EUs prior to disable the push constants
1680 * so that it doesn't hang a previous 3DPRIMITIVE.
1681 */
1682 static void
1683 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1684 {
1685 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1686 pc.StallAtPixelScoreboard = true;
1687 pc.CommandStreamerStallEnable = true;
1688 }
1689 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1690 pc.IndirectStatePointersDisable = true;
1691 pc.CommandStreamerStallEnable = true;
1692 }
1693 }
1694
1695 VkResult
1696 genX(EndCommandBuffer)(
1697 VkCommandBuffer commandBuffer)
1698 {
1699 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1700
1701 if (anv_batch_has_error(&cmd_buffer->batch))
1702 return cmd_buffer->batch.status;
1703
1704 /* We want every command buffer to start with the PMA fix in a known state,
1705 * so we disable it at the end of the command buffer.
1706 */
1707 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1708
1709 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1710
1711 emit_isp_disable(cmd_buffer);
1712
1713 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1714
1715 return VK_SUCCESS;
1716 }
1717
1718 void
1719 genX(CmdExecuteCommands)(
1720 VkCommandBuffer commandBuffer,
1721 uint32_t commandBufferCount,
1722 const VkCommandBuffer* pCmdBuffers)
1723 {
1724 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1725
1726 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1727
1728 if (anv_batch_has_error(&primary->batch))
1729 return;
1730
1731 /* The secondary command buffers will assume that the PMA fix is disabled
1732 * when they begin executing. Make sure this is true.
1733 */
1734 genX(cmd_buffer_enable_pma_fix)(primary, false);
1735
1736 /* The secondary command buffer doesn't know which textures etc. have been
1737 * flushed prior to their execution. Apply those flushes now.
1738 */
1739 genX(cmd_buffer_apply_pipe_flushes)(primary);
1740
1741 for (uint32_t i = 0; i < commandBufferCount; i++) {
1742 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1743
1744 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1745 assert(!anv_batch_has_error(&secondary->batch));
1746
1747 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1748 if (secondary->state.conditional_render_enabled) {
1749 if (!primary->state.conditional_render_enabled) {
1750 /* Secondary buffer is constructed as if it will be executed
1751 * with conditional rendering, we should satisfy this dependency
1752 * regardless of conditional rendering being enabled in primary.
1753 */
1754 struct gen_mi_builder b;
1755 gen_mi_builder_init(&b, &primary->batch);
1756 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
1757 gen_mi_imm(UINT64_MAX));
1758 }
1759 }
1760 #endif
1761
1762 if (secondary->usage_flags &
1763 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1764 /* If we're continuing a render pass from the primary, we need to
1765 * copy the surface states for the current subpass into the storage
1766 * we allocated for them in BeginCommandBuffer.
1767 */
1768 struct anv_bo *ss_bo =
1769 primary->device->surface_state_pool.block_pool.bo;
1770 struct anv_state src_state = primary->state.render_pass_states;
1771 struct anv_state dst_state = secondary->state.render_pass_states;
1772 assert(src_state.alloc_size == dst_state.alloc_size);
1773
1774 genX(cmd_buffer_so_memcpy)(primary,
1775 (struct anv_address) {
1776 .bo = ss_bo,
1777 .offset = dst_state.offset,
1778 },
1779 (struct anv_address) {
1780 .bo = ss_bo,
1781 .offset = src_state.offset,
1782 },
1783 src_state.alloc_size);
1784 }
1785
1786 anv_cmd_buffer_add_secondary(primary, secondary);
1787 }
1788
1789 /* The secondary isn't counted in our VF cache tracking so we need to
1790 * invalidate the whole thing.
1791 */
1792 if (GEN_GEN >= 8 && GEN_GEN <= 9) {
1793 primary->state.pending_pipe_bits |=
1794 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1795 }
1796
1797 /* The secondary may have selected a different pipeline (3D or compute) and
1798 * may have changed the current L3$ configuration. Reset our tracking
1799 * variables to invalid values to ensure that we re-emit these in the case
1800 * where we do any draws or compute dispatches from the primary after the
1801 * secondary has returned.
1802 */
1803 primary->state.current_pipeline = UINT32_MAX;
1804 primary->state.current_l3_config = NULL;
1805 primary->state.current_hash_scale = 0;
1806
1807 /* Each of the secondary command buffers will use its own state base
1808 * address. We need to re-emit state base address for the primary after
1809 * all of the secondaries are done.
1810 *
1811 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1812 * address calls?
1813 */
1814 genX(cmd_buffer_emit_state_base_address)(primary);
1815 }
1816
1817 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1818 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1819 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1820
1821 /**
1822 * Program the hardware to use the specified L3 configuration.
1823 */
1824 void
1825 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1826 const struct gen_l3_config *cfg)
1827 {
1828 assert(cfg);
1829 if (cfg == cmd_buffer->state.current_l3_config)
1830 return;
1831
1832 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1833 intel_logd("L3 config transition: ");
1834 gen_dump_l3_config(cfg, stderr);
1835 }
1836
1837 UNUSED const bool has_slm = cfg->n[GEN_L3P_SLM];
1838
1839 /* According to the hardware docs, the L3 partitioning can only be changed
1840 * while the pipeline is completely drained and the caches are flushed,
1841 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1842 */
1843 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1844 pc.DCFlushEnable = true;
1845 pc.PostSyncOperation = NoWrite;
1846 pc.CommandStreamerStallEnable = true;
1847 }
1848
1849 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1850 * invalidation of the relevant caches. Note that because RO invalidation
1851 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1852 * command is processed by the CS) we cannot combine it with the previous
1853 * stalling flush as the hardware documentation suggests, because that
1854 * would cause the CS to stall on previous rendering *after* RO
1855 * invalidation and wouldn't prevent the RO caches from being polluted by
1856 * concurrent rendering before the stall completes. This intentionally
1857 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1858 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1859 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1860 * already guarantee that there is no concurrent GPGPU kernel execution
1861 * (see SKL HSD 2132585).
1862 */
1863 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1864 pc.TextureCacheInvalidationEnable = true;
1865 pc.ConstantCacheInvalidationEnable = true;
1866 pc.InstructionCacheInvalidateEnable = true;
1867 pc.StateCacheInvalidationEnable = true;
1868 pc.PostSyncOperation = NoWrite;
1869 }
1870
1871 /* Now send a third stalling flush to make sure that invalidation is
1872 * complete when the L3 configuration registers are modified.
1873 */
1874 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1875 pc.DCFlushEnable = true;
1876 pc.PostSyncOperation = NoWrite;
1877 pc.CommandStreamerStallEnable = true;
1878 }
1879
1880 #if GEN_GEN >= 8
1881
1882 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1883
1884 #if GEN_GEN >= 12
1885 #define L3_ALLOCATION_REG GENX(L3ALLOC)
1886 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
1887 #else
1888 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
1889 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
1890 #endif
1891
1892 uint32_t l3cr;
1893 anv_pack_struct(&l3cr, L3_ALLOCATION_REG,
1894 #if GEN_GEN < 11
1895 .SLMEnable = has_slm,
1896 #endif
1897 #if GEN_GEN == 11
1898 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1899 * in L3CNTLREG register. The default setting of the bit is not the
1900 * desirable behavior.
1901 */
1902 .ErrorDetectionBehaviorControl = true,
1903 .UseFullWays = true,
1904 #endif
1905 .URBAllocation = cfg->n[GEN_L3P_URB],
1906 .ROAllocation = cfg->n[GEN_L3P_RO],
1907 .DCAllocation = cfg->n[GEN_L3P_DC],
1908 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1909
1910 /* Set up the L3 partitioning. */
1911 emit_lri(&cmd_buffer->batch, L3_ALLOCATION_REG_num, l3cr);
1912
1913 #else
1914
1915 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1916 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1917 cfg->n[GEN_L3P_ALL];
1918 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1919 cfg->n[GEN_L3P_ALL];
1920 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1921 cfg->n[GEN_L3P_ALL];
1922
1923 assert(!cfg->n[GEN_L3P_ALL]);
1924
1925 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1926 * the matching space on the remaining banks has to be allocated to a
1927 * client (URB for all validated configurations) set to the
1928 * lower-bandwidth 2-bank address hashing mode.
1929 */
1930 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1931 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1932 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1933
1934 /* Minimum number of ways that can be allocated to the URB. */
1935 const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1936 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1937
1938 uint32_t l3sqcr1, l3cr2, l3cr3;
1939 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1940 .ConvertDC_UC = !has_dc,
1941 .ConvertIS_UC = !has_is,
1942 .ConvertC_UC = !has_c,
1943 .ConvertT_UC = !has_t);
1944 l3sqcr1 |=
1945 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1946 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1947 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1948
1949 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1950 .SLMEnable = has_slm,
1951 .URBLowBandwidth = urb_low_bw,
1952 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1953 #if !GEN_IS_HASWELL
1954 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1955 #endif
1956 .ROAllocation = cfg->n[GEN_L3P_RO],
1957 .DCAllocation = cfg->n[GEN_L3P_DC]);
1958
1959 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1960 .ISAllocation = cfg->n[GEN_L3P_IS],
1961 .ISLowBandwidth = 0,
1962 .CAllocation = cfg->n[GEN_L3P_C],
1963 .CLowBandwidth = 0,
1964 .TAllocation = cfg->n[GEN_L3P_T],
1965 .TLowBandwidth = 0);
1966
1967 /* Set up the L3 partitioning. */
1968 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1969 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1970 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1971
1972 #if GEN_IS_HASWELL
1973 if (cmd_buffer->device->physical->cmd_parser_version >= 4) {
1974 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1975 * them disabled to avoid crashing the system hard.
1976 */
1977 uint32_t scratch1, chicken3;
1978 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1979 .L3AtomicDisable = !has_dc);
1980 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1981 .L3AtomicDisableMask = true,
1982 .L3AtomicDisable = !has_dc);
1983 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1984 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1985 }
1986 #endif
1987
1988 #endif
1989
1990 cmd_buffer->state.current_l3_config = cfg;
1991 }
1992
1993 void
1994 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1995 {
1996 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1997 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1998
1999 if (cmd_buffer->device->physical->always_flush_cache)
2000 bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
2001
2002 /*
2003 * From Sandybridge PRM, volume 2, "1.7.2 End-of-Pipe Synchronization":
2004 *
2005 * Write synchronization is a special case of end-of-pipe
2006 * synchronization that requires that the render cache and/or depth
2007 * related caches are flushed to memory, where the data will become
2008 * globally visible. This type of synchronization is required prior to
2009 * SW (CPU) actually reading the result data from memory, or initiating
2010 * an operation that will use as a read surface (such as a texture
2011 * surface) a previous render target and/or depth/stencil buffer
2012 *
2013 *
2014 * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
2015 *
2016 * Exercising the write cache flush bits (Render Target Cache Flush
2017 * Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only
2018 * ensures the write caches are flushed and doesn't guarantee the data
2019 * is globally visible.
2020 *
2021 * SW can track the completion of the end-of-pipe-synchronization by
2022 * using "Notify Enable" and "PostSync Operation - Write Immediate
2023 * Data" in the PIPE_CONTROL command.
2024 *
2025 * In other words, flushes are pipelined while invalidations are handled
2026 * immediately. Therefore, if we're flushing anything then we need to
2027 * schedule an end-of-pipe sync before any invalidations can happen.
2028 */
2029 if (bits & ANV_PIPE_FLUSH_BITS)
2030 bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2031
2032 /* If we're going to do an invalidate and we have a pending end-of-pipe
2033 * sync that has yet to be resolved, we do the end-of-pipe sync now.
2034 */
2035 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
2036 (bits & ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT)) {
2037 bits |= ANV_PIPE_END_OF_PIPE_SYNC_BIT;
2038 bits &= ~ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2039 }
2040
2041 if (GEN_GEN >= 12 &&
2042 ((bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT) ||
2043 (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT))) {
2044 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
2045 * Enable):
2046 *
2047 * Unified Cache (Tile Cache Disabled):
2048 *
2049 * When the Color and Depth (Z) streams are enabled to be cached in
2050 * the DC space of L2, Software must use "Render Target Cache Flush
2051 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
2052 * Flush" for getting the color and depth (Z) write data to be
2053 * globally observable. In this mode of operation it is not required
2054 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
2055 */
2056 bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2057 }
2058
2059 /* GEN:BUG:1409226450, Wait for EU to be idle before pipe control which
2060 * invalidates the instruction cache
2061 */
2062 if (GEN_GEN == 12 && (bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT))
2063 bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2064
2065 if ((GEN_GEN >= 8 && GEN_GEN <= 9) &&
2066 (bits & ANV_PIPE_CS_STALL_BIT) &&
2067 (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
2068 /* If we are doing a VF cache invalidate AND a CS stall (it must be
2069 * both) then we can reset our vertex cache tracking.
2070 */
2071 memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
2072 sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
2073 memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
2074 sizeof(cmd_buffer->state.gfx.ib_dirty_range));
2075 }
2076
2077 /* Project: SKL / Argument: LRI Post Sync Operation [23]
2078 *
2079 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
2080 * programmed prior to programming a PIPECONTROL command with "LRI
2081 * Post Sync Operation" in GPGPU mode of operation (i.e when
2082 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
2083 *
2084 * The same text exists a few rows below for Post Sync Op.
2085 *
2086 * On Gen12 this is GEN:BUG:1607156449.
2087 */
2088 if (bits & ANV_PIPE_POST_SYNC_BIT) {
2089 if ((GEN_GEN == 9 || (GEN_GEN == 12 && devinfo->revision == 0 /* A0 */)) &&
2090 cmd_buffer->state.current_pipeline == GPGPU)
2091 bits |= ANV_PIPE_CS_STALL_BIT;
2092 bits &= ~ANV_PIPE_POST_SYNC_BIT;
2093 }
2094
2095 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT |
2096 ANV_PIPE_END_OF_PIPE_SYNC_BIT)) {
2097 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2098 #if GEN_GEN >= 12
2099 pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2100 #endif
2101 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2102 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2103 pipe.RenderTargetCacheFlushEnable =
2104 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2105
2106 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must
2107 * be set with any PIPE_CONTROL with Depth Flush Enable bit set.
2108 */
2109 #if GEN_GEN >= 12
2110 pipe.DepthStallEnable =
2111 pipe.DepthCacheFlushEnable || (bits & ANV_PIPE_DEPTH_STALL_BIT);
2112 #else
2113 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
2114 #endif
2115
2116 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
2117 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2118
2119 /* From Sandybridge PRM, volume 2, "1.7.3.1 Writing a Value to Memory":
2120 *
2121 * "The most common action to perform upon reaching a
2122 * synchronization point is to write a value out to memory. An
2123 * immediate value (included with the synchronization command) may
2124 * be written."
2125 *
2126 *
2127 * From Broadwell PRM, volume 7, "End-of-Pipe Synchronization":
2128 *
2129 * "In case the data flushed out by the render engine is to be
2130 * read back in to the render engine in coherent manner, then the
2131 * render engine has to wait for the fence completion before
2132 * accessing the flushed data. This can be achieved by following
2133 * means on various products: PIPE_CONTROL command with CS Stall
2134 * and the required write caches flushed with Post-Sync-Operation
2135 * as Write Immediate Data.
2136 *
2137 * Example:
2138 * - Workload-1 (3D/GPGPU/MEDIA)
2139 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
2140 * Immediate Data, Required Write Cache Flush bits set)
2141 * - Workload-2 (Can use the data produce or output by
2142 * Workload-1)
2143 */
2144 if (bits & ANV_PIPE_END_OF_PIPE_SYNC_BIT) {
2145 pipe.CommandStreamerStallEnable = true;
2146 pipe.PostSyncOperation = WriteImmediateData;
2147 pipe.Address = (struct anv_address) {
2148 .bo = cmd_buffer->device->workaround_bo,
2149 .offset = 0
2150 };
2151 }
2152
2153 /*
2154 * According to the Broadwell documentation, any PIPE_CONTROL with the
2155 * "Command Streamer Stall" bit set must also have another bit set,
2156 * with five different options:
2157 *
2158 * - Render Target Cache Flush
2159 * - Depth Cache Flush
2160 * - Stall at Pixel Scoreboard
2161 * - Post-Sync Operation
2162 * - Depth Stall
2163 * - DC Flush Enable
2164 *
2165 * I chose "Stall at Pixel Scoreboard" since that's what we use in
2166 * mesa and it seems to work fine. The choice is fairly arbitrary.
2167 */
2168 if (pipe.CommandStreamerStallEnable &&
2169 !pipe.RenderTargetCacheFlushEnable &&
2170 !pipe.DepthCacheFlushEnable &&
2171 !pipe.StallAtPixelScoreboard &&
2172 !pipe.PostSyncOperation &&
2173 !pipe.DepthStallEnable &&
2174 !pipe.DCFlushEnable)
2175 pipe.StallAtPixelScoreboard = true;
2176 }
2177
2178 /* If a render target flush was emitted, then we can toggle off the bit
2179 * saying that render target writes are ongoing.
2180 */
2181 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
2182 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
2183
2184 if (GEN_IS_HASWELL) {
2185 /* Haswell needs addition work-arounds:
2186 *
2187 * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
2188 *
2189 * Option 1:
2190 * PIPE_CONTROL command with the CS Stall and the required write
2191 * caches flushed with Post-SyncOperation as Write Immediate Data
2192 * followed by eight dummy MI_STORE_DATA_IMM (write to scratch
2193 * spce) commands.
2194 *
2195 * Example:
2196 * - Workload-1
2197 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
2198 * Immediate Data, Required Write Cache Flush bits set)
2199 * - MI_STORE_DATA_IMM (8 times) (Dummy data, Scratch Address)
2200 * - Workload-2 (Can use the data produce or output by
2201 * Workload-1)
2202 *
2203 * Unfortunately, both the PRMs and the internal docs are a bit
2204 * out-of-date in this regard. What the windows driver does (and
2205 * this appears to actually work) is to emit a register read from the
2206 * memory address written by the pipe control above.
2207 *
2208 * What register we load into doesn't matter. We choose an indirect
2209 * rendering register because we know it always exists and it's one
2210 * of the first registers the command parser allows us to write. If
2211 * you don't have command parser support in your kernel (pre-4.2),
2212 * this will get turned into MI_NOOP and you won't get the
2213 * workaround. Unfortunately, there's just not much we can do in
2214 * that case. This register is perfectly safe to write since we
2215 * always re-load all of the indirect draw registers right before
2216 * 3DPRIMITIVE when needed anyway.
2217 */
2218 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
2219 lrm.RegisterAddress = 0x243C; /* GEN7_3DPRIM_START_INSTANCE */
2220 lrm.MemoryAddress = (struct anv_address) {
2221 .bo = cmd_buffer->device->workaround_bo,
2222 .offset = 0
2223 };
2224 }
2225 }
2226
2227 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT |
2228 ANV_PIPE_END_OF_PIPE_SYNC_BIT);
2229 }
2230
2231 if (bits & ANV_PIPE_INVALIDATE_BITS) {
2232 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2233 *
2234 * "If the VF Cache Invalidation Enable is set to a 1 in a
2235 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
2236 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
2237 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
2238 * a 1."
2239 *
2240 * This appears to hang Broadwell, so we restrict it to just gen9.
2241 */
2242 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
2243 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
2244
2245 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2246 pipe.StateCacheInvalidationEnable =
2247 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
2248 pipe.ConstantCacheInvalidationEnable =
2249 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2250 pipe.VFCacheInvalidationEnable =
2251 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2252 pipe.TextureCacheInvalidationEnable =
2253 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2254 pipe.InstructionCacheInvalidateEnable =
2255 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
2256
2257 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2258 *
2259 * "When VF Cache Invalidate is set “Post Sync Operation” must be
2260 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
2261 * “Write Timestamp”.
2262 */
2263 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
2264 pipe.PostSyncOperation = WriteImmediateData;
2265 pipe.Address =
2266 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
2267 }
2268 }
2269
2270 #if GEN_GEN == 12
2271 if ((bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT) &&
2272 cmd_buffer->device->info.has_aux_map) {
2273 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2274 lri.RegisterOffset = GENX(GFX_CCS_AUX_INV_num);
2275 lri.DataDWord = 1;
2276 }
2277 }
2278 #endif
2279
2280 bits &= ~ANV_PIPE_INVALIDATE_BITS;
2281 }
2282
2283 cmd_buffer->state.pending_pipe_bits = bits;
2284 }
2285
2286 void genX(CmdPipelineBarrier)(
2287 VkCommandBuffer commandBuffer,
2288 VkPipelineStageFlags srcStageMask,
2289 VkPipelineStageFlags destStageMask,
2290 VkBool32 byRegion,
2291 uint32_t memoryBarrierCount,
2292 const VkMemoryBarrier* pMemoryBarriers,
2293 uint32_t bufferMemoryBarrierCount,
2294 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
2295 uint32_t imageMemoryBarrierCount,
2296 const VkImageMemoryBarrier* pImageMemoryBarriers)
2297 {
2298 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2299
2300 /* XXX: Right now, we're really dumb and just flush whatever categories
2301 * the app asks for. One of these days we may make this a bit better
2302 * but right now that's all the hardware allows for in most areas.
2303 */
2304 VkAccessFlags src_flags = 0;
2305 VkAccessFlags dst_flags = 0;
2306
2307 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
2308 src_flags |= pMemoryBarriers[i].srcAccessMask;
2309 dst_flags |= pMemoryBarriers[i].dstAccessMask;
2310 }
2311
2312 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
2313 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
2314 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
2315 }
2316
2317 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
2318 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
2319 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
2320 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
2321 const VkImageSubresourceRange *range =
2322 &pImageMemoryBarriers[i].subresourceRange;
2323
2324 uint32_t base_layer, layer_count;
2325 if (image->type == VK_IMAGE_TYPE_3D) {
2326 base_layer = 0;
2327 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
2328 } else {
2329 base_layer = range->baseArrayLayer;
2330 layer_count = anv_get_layerCount(image, range);
2331 }
2332
2333 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
2334 transition_depth_buffer(cmd_buffer, image,
2335 pImageMemoryBarriers[i].oldLayout,
2336 pImageMemoryBarriers[i].newLayout);
2337 }
2338
2339 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
2340 transition_stencil_buffer(cmd_buffer, image,
2341 range->baseMipLevel,
2342 anv_get_levelCount(image, range),
2343 base_layer, layer_count,
2344 pImageMemoryBarriers[i].oldLayout,
2345 pImageMemoryBarriers[i].newLayout);
2346 }
2347
2348 if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2349 VkImageAspectFlags color_aspects =
2350 anv_image_expand_aspects(image, range->aspectMask);
2351 uint32_t aspect_bit;
2352 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
2353 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
2354 range->baseMipLevel,
2355 anv_get_levelCount(image, range),
2356 base_layer, layer_count,
2357 pImageMemoryBarriers[i].oldLayout,
2358 pImageMemoryBarriers[i].newLayout);
2359 }
2360 }
2361 }
2362
2363 cmd_buffer->state.pending_pipe_bits |=
2364 anv_pipe_flush_bits_for_access_flags(src_flags) |
2365 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
2366 }
2367
2368 static void
2369 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
2370 {
2371 VkShaderStageFlags stages =
2372 cmd_buffer->state.gfx.base.pipeline->active_stages;
2373
2374 /* In order to avoid thrash, we assume that vertex and fragment stages
2375 * always exist. In the rare case where one is missing *and* the other
2376 * uses push concstants, this may be suboptimal. However, avoiding stalls
2377 * seems more important.
2378 */
2379 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
2380
2381 if (stages == cmd_buffer->state.push_constant_stages)
2382 return;
2383
2384 #if GEN_GEN >= 8
2385 const unsigned push_constant_kb = 32;
2386 #elif GEN_IS_HASWELL
2387 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
2388 #else
2389 const unsigned push_constant_kb = 16;
2390 #endif
2391
2392 const unsigned num_stages =
2393 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
2394 unsigned size_per_stage = push_constant_kb / num_stages;
2395
2396 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2397 * units of 2KB. Incidentally, these are the same platforms that have
2398 * 32KB worth of push constant space.
2399 */
2400 if (push_constant_kb == 32)
2401 size_per_stage &= ~1u;
2402
2403 uint32_t kb_used = 0;
2404 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
2405 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
2406 anv_batch_emit(&cmd_buffer->batch,
2407 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
2408 alloc._3DCommandSubOpcode = 18 + i;
2409 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
2410 alloc.ConstantBufferSize = push_size;
2411 }
2412 kb_used += push_size;
2413 }
2414
2415 anv_batch_emit(&cmd_buffer->batch,
2416 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
2417 alloc.ConstantBufferOffset = kb_used;
2418 alloc.ConstantBufferSize = push_constant_kb - kb_used;
2419 }
2420
2421 cmd_buffer->state.push_constant_stages = stages;
2422
2423 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2424 *
2425 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2426 * the next 3DPRIMITIVE command after programming the
2427 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2428 *
2429 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2430 * pipeline setup, we need to dirty push constants.
2431 */
2432 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
2433 }
2434
2435 static struct anv_address
2436 anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer,
2437 struct anv_descriptor_set *set)
2438 {
2439 if (set->pool) {
2440 /* This is a normal descriptor set */
2441 return (struct anv_address) {
2442 .bo = set->pool->bo,
2443 .offset = set->desc_mem.offset,
2444 };
2445 } else {
2446 /* This is a push descriptor set. We have to flag it as used on the GPU
2447 * so that the next time we push descriptors, we grab a new memory.
2448 */
2449 struct anv_push_descriptor_set *push_set =
2450 (struct anv_push_descriptor_set *)set;
2451 push_set->set_used_on_gpu = true;
2452
2453 return (struct anv_address) {
2454 .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo,
2455 .offset = set->desc_mem.offset,
2456 };
2457 }
2458 }
2459
2460 static struct anv_cmd_pipeline_state *
2461 pipe_state_for_stage(struct anv_cmd_buffer *cmd_buffer,
2462 gl_shader_stage stage)
2463 {
2464 switch (stage) {
2465 case MESA_SHADER_COMPUTE:
2466 return &cmd_buffer->state.compute.base;
2467
2468 case MESA_SHADER_VERTEX:
2469 case MESA_SHADER_TESS_CTRL:
2470 case MESA_SHADER_TESS_EVAL:
2471 case MESA_SHADER_GEOMETRY:
2472 case MESA_SHADER_FRAGMENT:
2473 return &cmd_buffer->state.gfx.base;
2474
2475 default:
2476 unreachable("invalid stage");
2477 }
2478 }
2479
2480 static VkResult
2481 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2482 gl_shader_stage stage,
2483 struct anv_state *bt_state)
2484 {
2485 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2486 uint32_t state_offset;
2487
2488 struct anv_cmd_pipeline_state *pipe_state =
2489 pipe_state_for_stage(cmd_buffer, stage);
2490 struct anv_pipeline *pipeline = pipe_state->pipeline;
2491
2492 if (!anv_pipeline_has_stage(pipeline, stage)) {
2493 *bt_state = (struct anv_state) { 0, };
2494 return VK_SUCCESS;
2495 }
2496
2497 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2498 if (map->surface_count == 0) {
2499 *bt_state = (struct anv_state) { 0, };
2500 return VK_SUCCESS;
2501 }
2502
2503 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2504 map->surface_count,
2505 &state_offset);
2506 uint32_t *bt_map = bt_state->map;
2507
2508 if (bt_state->map == NULL)
2509 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2510
2511 /* We only need to emit relocs if we're not using softpin. If we are using
2512 * softpin then we always keep all user-allocated memory objects resident.
2513 */
2514 const bool need_client_mem_relocs =
2515 !cmd_buffer->device->physical->use_softpin;
2516
2517 for (uint32_t s = 0; s < map->surface_count; s++) {
2518 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2519
2520 struct anv_state surface_state;
2521
2522 switch (binding->set) {
2523 case ANV_DESCRIPTOR_SET_NULL:
2524 bt_map[s] = 0;
2525 break;
2526
2527 case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
2528 /* Color attachment binding */
2529 assert(stage == MESA_SHADER_FRAGMENT);
2530 if (binding->index < subpass->color_count) {
2531 const unsigned att =
2532 subpass->color_attachments[binding->index].attachment;
2533
2534 /* From the Vulkan 1.0.46 spec:
2535 *
2536 * "If any color or depth/stencil attachments are
2537 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2538 * attachments."
2539 */
2540 if (att == VK_ATTACHMENT_UNUSED) {
2541 surface_state = cmd_buffer->state.null_surface_state;
2542 } else {
2543 surface_state = cmd_buffer->state.attachments[att].color.state;
2544 }
2545 } else {
2546 surface_state = cmd_buffer->state.null_surface_state;
2547 }
2548
2549 bt_map[s] = surface_state.offset + state_offset;
2550 break;
2551
2552 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
2553 struct anv_state surface_state =
2554 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2555
2556 struct anv_address constant_data = {
2557 .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
2558 .offset = pipeline->shaders[stage]->constant_data.offset,
2559 };
2560 unsigned constant_data_size =
2561 pipeline->shaders[stage]->constant_data_size;
2562
2563 const enum isl_format format =
2564 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2565 anv_fill_buffer_surface_state(cmd_buffer->device,
2566 surface_state, format,
2567 constant_data, constant_data_size, 1);
2568
2569 bt_map[s] = surface_state.offset + state_offset;
2570 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2571 break;
2572 }
2573
2574 case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
2575 /* This is always the first binding for compute shaders */
2576 assert(stage == MESA_SHADER_COMPUTE && s == 0);
2577
2578 struct anv_state surface_state =
2579 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2580
2581 const enum isl_format format =
2582 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2583 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2584 format,
2585 cmd_buffer->state.compute.num_workgroups,
2586 12, 1);
2587 bt_map[s] = surface_state.offset + state_offset;
2588 if (need_client_mem_relocs) {
2589 add_surface_reloc(cmd_buffer, surface_state,
2590 cmd_buffer->state.compute.num_workgroups);
2591 }
2592 break;
2593 }
2594
2595 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2596 /* This is a descriptor set buffer so the set index is actually
2597 * given by binding->binding. (Yes, that's confusing.)
2598 */
2599 struct anv_descriptor_set *set =
2600 pipe_state->descriptors[binding->index];
2601 assert(set->desc_mem.alloc_size);
2602 assert(set->desc_surface_state.alloc_size);
2603 bt_map[s] = set->desc_surface_state.offset + state_offset;
2604 add_surface_reloc(cmd_buffer, set->desc_surface_state,
2605 anv_descriptor_set_address(cmd_buffer, set));
2606 break;
2607 }
2608
2609 default: {
2610 assert(binding->set < MAX_SETS);
2611 const struct anv_descriptor *desc =
2612 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2613
2614 switch (desc->type) {
2615 case VK_DESCRIPTOR_TYPE_SAMPLER:
2616 /* Nothing for us to do here */
2617 continue;
2618
2619 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2620 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2621 struct anv_surface_state sstate =
2622 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2623 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2624 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2625 surface_state = sstate.state;
2626 assert(surface_state.alloc_size);
2627 if (need_client_mem_relocs)
2628 add_surface_state_relocs(cmd_buffer, sstate);
2629 break;
2630 }
2631 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2632 assert(stage == MESA_SHADER_FRAGMENT);
2633 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2634 /* For depth and stencil input attachments, we treat it like any
2635 * old texture that a user may have bound.
2636 */
2637 assert(desc->image_view->n_planes == 1);
2638 struct anv_surface_state sstate =
2639 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2640 desc->image_view->planes[0].general_sampler_surface_state :
2641 desc->image_view->planes[0].optimal_sampler_surface_state;
2642 surface_state = sstate.state;
2643 assert(surface_state.alloc_size);
2644 if (need_client_mem_relocs)
2645 add_surface_state_relocs(cmd_buffer, sstate);
2646 } else {
2647 /* For color input attachments, we create the surface state at
2648 * vkBeginRenderPass time so that we can include aux and clear
2649 * color information.
2650 */
2651 assert(binding->input_attachment_index < subpass->input_count);
2652 const unsigned subpass_att = binding->input_attachment_index;
2653 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2654 surface_state = cmd_buffer->state.attachments[att].input.state;
2655 }
2656 break;
2657
2658 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2659 struct anv_surface_state sstate = (binding->write_only)
2660 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2661 : desc->image_view->planes[binding->plane].storage_surface_state;
2662 surface_state = sstate.state;
2663 assert(surface_state.alloc_size);
2664 if (need_client_mem_relocs)
2665 add_surface_state_relocs(cmd_buffer, sstate);
2666 break;
2667 }
2668
2669 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2670 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2671 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2672 surface_state = desc->buffer_view->surface_state;
2673 assert(surface_state.alloc_size);
2674 if (need_client_mem_relocs) {
2675 add_surface_reloc(cmd_buffer, surface_state,
2676 desc->buffer_view->address);
2677 }
2678 break;
2679
2680 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2681 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2682 /* Compute the offset within the buffer */
2683 struct anv_push_constants *push =
2684 &cmd_buffer->state.push_constants[stage];
2685
2686 uint32_t dynamic_offset =
2687 push->dynamic_offsets[binding->dynamic_offset_index];
2688 uint64_t offset = desc->offset + dynamic_offset;
2689 /* Clamp to the buffer size */
2690 offset = MIN2(offset, desc->buffer->size);
2691 /* Clamp the range to the buffer size */
2692 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2693
2694 struct anv_address address =
2695 anv_address_add(desc->buffer->address, offset);
2696
2697 surface_state =
2698 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2699 enum isl_format format =
2700 anv_isl_format_for_descriptor_type(desc->type);
2701
2702 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2703 format, address, range, 1);
2704 if (need_client_mem_relocs)
2705 add_surface_reloc(cmd_buffer, surface_state, address);
2706 break;
2707 }
2708
2709 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2710 surface_state = (binding->write_only)
2711 ? desc->buffer_view->writeonly_storage_surface_state
2712 : desc->buffer_view->storage_surface_state;
2713 assert(surface_state.alloc_size);
2714 if (need_client_mem_relocs) {
2715 add_surface_reloc(cmd_buffer, surface_state,
2716 desc->buffer_view->address);
2717 }
2718 break;
2719
2720 default:
2721 assert(!"Invalid descriptor type");
2722 continue;
2723 }
2724 bt_map[s] = surface_state.offset + state_offset;
2725 break;
2726 }
2727 }
2728 }
2729
2730 return VK_SUCCESS;
2731 }
2732
2733 static VkResult
2734 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2735 gl_shader_stage stage,
2736 struct anv_state *state)
2737 {
2738 struct anv_cmd_pipeline_state *pipe_state =
2739 pipe_state_for_stage(cmd_buffer, stage);
2740 struct anv_pipeline *pipeline = pipe_state->pipeline;
2741
2742 if (!anv_pipeline_has_stage(pipeline, stage)) {
2743 *state = (struct anv_state) { 0, };
2744 return VK_SUCCESS;
2745 }
2746
2747 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2748 if (map->sampler_count == 0) {
2749 *state = (struct anv_state) { 0, };
2750 return VK_SUCCESS;
2751 }
2752
2753 uint32_t size = map->sampler_count * 16;
2754 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2755
2756 if (state->map == NULL)
2757 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2758
2759 for (uint32_t s = 0; s < map->sampler_count; s++) {
2760 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2761 const struct anv_descriptor *desc =
2762 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2763
2764 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2765 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2766 continue;
2767
2768 struct anv_sampler *sampler = desc->sampler;
2769
2770 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2771 * happens to be zero.
2772 */
2773 if (sampler == NULL)
2774 continue;
2775
2776 memcpy(state->map + (s * 16),
2777 sampler->state[binding->plane], sizeof(sampler->state[0]));
2778 }
2779
2780 return VK_SUCCESS;
2781 }
2782
2783 static uint32_t
2784 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer,
2785 struct anv_pipeline *pipeline)
2786 {
2787 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2788 pipeline->active_stages;
2789
2790 VkResult result = VK_SUCCESS;
2791 anv_foreach_stage(s, dirty) {
2792 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2793 if (result != VK_SUCCESS)
2794 break;
2795 result = emit_binding_table(cmd_buffer, s,
2796 &cmd_buffer->state.binding_tables[s]);
2797 if (result != VK_SUCCESS)
2798 break;
2799 }
2800
2801 if (result != VK_SUCCESS) {
2802 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2803
2804 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2805 if (result != VK_SUCCESS)
2806 return 0;
2807
2808 /* Re-emit state base addresses so we get the new surface state base
2809 * address before we start emitting binding tables etc.
2810 */
2811 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2812
2813 /* Re-emit all active binding tables */
2814 dirty |= pipeline->active_stages;
2815 anv_foreach_stage(s, dirty) {
2816 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2817 if (result != VK_SUCCESS) {
2818 anv_batch_set_error(&cmd_buffer->batch, result);
2819 return 0;
2820 }
2821 result = emit_binding_table(cmd_buffer, s,
2822 &cmd_buffer->state.binding_tables[s]);
2823 if (result != VK_SUCCESS) {
2824 anv_batch_set_error(&cmd_buffer->batch, result);
2825 return 0;
2826 }
2827 }
2828 }
2829
2830 cmd_buffer->state.descriptors_dirty &= ~dirty;
2831
2832 return dirty;
2833 }
2834
2835 static void
2836 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2837 uint32_t stages)
2838 {
2839 static const uint32_t sampler_state_opcodes[] = {
2840 [MESA_SHADER_VERTEX] = 43,
2841 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2842 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2843 [MESA_SHADER_GEOMETRY] = 46,
2844 [MESA_SHADER_FRAGMENT] = 47,
2845 [MESA_SHADER_COMPUTE] = 0,
2846 };
2847
2848 static const uint32_t binding_table_opcodes[] = {
2849 [MESA_SHADER_VERTEX] = 38,
2850 [MESA_SHADER_TESS_CTRL] = 39,
2851 [MESA_SHADER_TESS_EVAL] = 40,
2852 [MESA_SHADER_GEOMETRY] = 41,
2853 [MESA_SHADER_FRAGMENT] = 42,
2854 [MESA_SHADER_COMPUTE] = 0,
2855 };
2856
2857 anv_foreach_stage(s, stages) {
2858 assert(s < ARRAY_SIZE(binding_table_opcodes));
2859 assert(binding_table_opcodes[s] > 0);
2860
2861 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2862 anv_batch_emit(&cmd_buffer->batch,
2863 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2864 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2865 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2866 }
2867 }
2868
2869 /* Always emit binding table pointers if we're asked to, since on SKL
2870 * this is what flushes push constants. */
2871 anv_batch_emit(&cmd_buffer->batch,
2872 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2873 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2874 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2875 }
2876 }
2877 }
2878
2879 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2880 static struct anv_address
2881 get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
2882 gl_shader_stage stage,
2883 const struct anv_push_range *range)
2884 {
2885 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2886 switch (range->set) {
2887 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2888 /* This is a descriptor set buffer so the set index is
2889 * actually given by binding->binding. (Yes, that's
2890 * confusing.)
2891 */
2892 struct anv_descriptor_set *set =
2893 gfx_state->base.descriptors[range->index];
2894 return anv_descriptor_set_address(cmd_buffer, set);
2895 break;
2896 }
2897
2898 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
2899 struct anv_state state =
2900 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2901 return (struct anv_address) {
2902 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2903 .offset = state.offset,
2904 };
2905 break;
2906 }
2907
2908 default: {
2909 assert(range->set < MAX_SETS);
2910 struct anv_descriptor_set *set =
2911 gfx_state->base.descriptors[range->set];
2912 const struct anv_descriptor *desc =
2913 &set->descriptors[range->index];
2914
2915 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2916 return desc->buffer_view->address;
2917 } else {
2918 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2919 struct anv_push_constants *push =
2920 &cmd_buffer->state.push_constants[stage];
2921 uint32_t dynamic_offset =
2922 push->dynamic_offsets[range->dynamic_offset_index];
2923 return anv_address_add(desc->buffer->address,
2924 desc->offset + dynamic_offset);
2925 }
2926 }
2927 }
2928 }
2929 #endif
2930
2931 static void
2932 cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
2933 gl_shader_stage stage, unsigned buffer_count)
2934 {
2935 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2936 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2937
2938 static const uint32_t push_constant_opcodes[] = {
2939 [MESA_SHADER_VERTEX] = 21,
2940 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2941 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2942 [MESA_SHADER_GEOMETRY] = 22,
2943 [MESA_SHADER_FRAGMENT] = 23,
2944 [MESA_SHADER_COMPUTE] = 0,
2945 };
2946
2947 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2948 assert(push_constant_opcodes[stage] > 0);
2949
2950 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2951 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2952
2953 if (anv_pipeline_has_stage(pipeline, stage)) {
2954 const struct anv_pipeline_bind_map *bind_map =
2955 &pipeline->shaders[stage]->bind_map;
2956
2957 #if GEN_GEN >= 12
2958 c.MOCS = cmd_buffer->device->isl_dev.mocs.internal;
2959 #endif
2960
2961 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2962 /* The Skylake PRM contains the following restriction:
2963 *
2964 * "The driver must ensure The following case does not occur
2965 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2966 * buffer 3 read length equal to zero committed followed by a
2967 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2968 * zero committed."
2969 *
2970 * To avoid this, we program the buffers in the highest slots.
2971 * This way, slot 0 is only used if slot 3 is also used.
2972 */
2973 assert(buffer_count <= 4);
2974 const unsigned shift = 4 - buffer_count;
2975 for (unsigned i = 0; i < buffer_count; i++) {
2976 const struct anv_push_range *range = &bind_map->push_ranges[i];
2977
2978 /* At this point we only have non-empty ranges */
2979 assert(range->length > 0);
2980
2981 /* For Ivy Bridge, make sure we only set the first range (actual
2982 * push constants)
2983 */
2984 assert((GEN_GEN >= 8 || GEN_IS_HASWELL) || i == 0);
2985
2986 const struct anv_address addr =
2987 get_push_range_address(cmd_buffer, stage, range);
2988 c.ConstantBody.ReadLength[i + shift] = range->length;
2989 c.ConstantBody.Buffer[i + shift] =
2990 anv_address_add(addr, range->start * 32);
2991 }
2992 #else
2993 /* For Ivy Bridge, push constants are relative to dynamic state
2994 * base address and we only ever push actual push constants.
2995 */
2996 if (bind_map->push_ranges[0].length > 0) {
2997 assert(bind_map->push_ranges[0].set ==
2998 ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
2999 struct anv_state state =
3000 anv_cmd_buffer_push_constants(cmd_buffer, stage);
3001 c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length;
3002 c.ConstantBody.Buffer[0].bo = NULL;
3003 c.ConstantBody.Buffer[0].offset = state.offset;
3004 }
3005 assert(bind_map->push_ranges[1].length == 0);
3006 assert(bind_map->push_ranges[2].length == 0);
3007 assert(bind_map->push_ranges[3].length == 0);
3008 #endif
3009 }
3010 }
3011 }
3012
3013 #if GEN_GEN >= 12
3014 static void
3015 cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer,
3016 uint32_t shader_mask, uint32_t count)
3017 {
3018 if (count == 0) {
3019 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
3020 c.ShaderUpdateEnable = shader_mask;
3021 c.MOCS = cmd_buffer->device->isl_dev.mocs.internal;
3022 }
3023 return;
3024 }
3025
3026 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3027 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
3028
3029 static const uint32_t push_constant_opcodes[] = {
3030 [MESA_SHADER_VERTEX] = 21,
3031 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3032 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3033 [MESA_SHADER_GEOMETRY] = 22,
3034 [MESA_SHADER_FRAGMENT] = 23,
3035 [MESA_SHADER_COMPUTE] = 0,
3036 };
3037
3038 gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask);
3039 assert(stage < ARRAY_SIZE(push_constant_opcodes));
3040 assert(push_constant_opcodes[stage] > 0);
3041
3042 const struct anv_pipeline_bind_map *bind_map =
3043 &pipeline->shaders[stage]->bind_map;
3044
3045 uint32_t *dw;
3046 const uint32_t buffers = (1 << count) - 1;
3047 const uint32_t num_dwords = 2 + 2 * count;
3048
3049 dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3050 GENX(3DSTATE_CONSTANT_ALL),
3051 .ShaderUpdateEnable = shader_mask,
3052 .PointerBufferMask = buffers,
3053 .MOCS = cmd_buffer->device->isl_dev.mocs.internal);
3054
3055 for (int i = 0; i < count; i++) {
3056 const struct anv_push_range *range = &bind_map->push_ranges[i];
3057 const struct anv_address addr =
3058 get_push_range_address(cmd_buffer, stage, range);
3059
3060 GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
3061 &cmd_buffer->batch, dw + 2 + i * 2,
3062 &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
3063 .PointerToConstantBuffer = anv_address_add(addr, range->start * 32),
3064 .ConstantBufferReadLength = range->length,
3065 });
3066 }
3067 }
3068 #endif
3069
3070 static void
3071 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
3072 VkShaderStageFlags dirty_stages)
3073 {
3074 VkShaderStageFlags flushed = 0;
3075 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3076 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
3077
3078 #if GEN_GEN >= 12
3079 uint32_t nobuffer_stages = 0;
3080 #endif
3081
3082 anv_foreach_stage(stage, dirty_stages) {
3083 unsigned buffer_count = 0;
3084 flushed |= mesa_to_vk_shader_stage(stage);
3085 uint32_t max_push_range = 0;
3086
3087 if (anv_pipeline_has_stage(pipeline, stage)) {
3088 const struct anv_pipeline_bind_map *bind_map =
3089 &pipeline->shaders[stage]->bind_map;
3090
3091 for (unsigned i = 0; i < 4; i++) {
3092 const struct anv_push_range *range = &bind_map->push_ranges[i];
3093 if (range->length > 0) {
3094 buffer_count++;
3095 if (GEN_GEN >= 12 && range->length > max_push_range)
3096 max_push_range = range->length;
3097 }
3098 }
3099 }
3100
3101 #if GEN_GEN >= 12
3102 /* If this stage doesn't have any push constants, emit it later in a
3103 * single CONSTANT_ALL packet.
3104 */
3105 if (buffer_count == 0) {
3106 nobuffer_stages |= 1 << stage;
3107 continue;
3108 }
3109
3110 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
3111 * contains only 5 bits, so we can only use it for buffers smaller than
3112 * 32.
3113 */
3114 if (max_push_range < 32) {
3115 cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage,
3116 buffer_count);
3117 continue;
3118 }
3119 #endif
3120
3121 cmd_buffer_emit_push_constant(cmd_buffer, stage, buffer_count);
3122 }
3123
3124 #if GEN_GEN >= 12
3125 if (nobuffer_stages)
3126 cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, 0);
3127 #endif
3128
3129 cmd_buffer->state.push_constants_dirty &= ~flushed;
3130 }
3131
3132 void
3133 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
3134 {
3135 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3136 uint32_t *p;
3137
3138 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
3139 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
3140 vb_emit |= pipeline->vb_used;
3141
3142 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
3143
3144 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->l3_config);
3145
3146 genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
3147
3148 genX(flush_pipeline_select_3d)(cmd_buffer);
3149
3150 if (vb_emit) {
3151 const uint32_t num_buffers = __builtin_popcount(vb_emit);
3152 const uint32_t num_dwords = 1 + num_buffers * 4;
3153
3154 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3155 GENX(3DSTATE_VERTEX_BUFFERS));
3156 uint32_t vb, i = 0;
3157 for_each_bit(vb, vb_emit) {
3158 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
3159 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
3160
3161 struct GENX(VERTEX_BUFFER_STATE) state = {
3162 .VertexBufferIndex = vb,
3163
3164 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
3165 #if GEN_GEN <= 7
3166 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
3167 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
3168 #endif
3169
3170 .AddressModifyEnable = true,
3171 .BufferPitch = pipeline->vb[vb].stride,
3172 .BufferStartingAddress = anv_address_add(buffer->address, offset),
3173
3174 #if GEN_GEN >= 8
3175 .BufferSize = buffer->size - offset
3176 #else
3177 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
3178 #endif
3179 };
3180
3181 #if GEN_GEN >= 8 && GEN_GEN <= 9
3182 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer, vb,
3183 state.BufferStartingAddress,
3184 state.BufferSize);
3185 #endif
3186
3187 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
3188 i++;
3189 }
3190 }
3191
3192 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
3193
3194 #if GEN_GEN >= 8
3195 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) {
3196 /* We don't need any per-buffer dirty tracking because you're not
3197 * allowed to bind different XFB buffers while XFB is enabled.
3198 */
3199 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3200 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
3201 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
3202 #if GEN_GEN < 12
3203 sob.SOBufferIndex = idx;
3204 #else
3205 sob._3DCommandOpcode = 0;
3206 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
3207 #endif
3208
3209 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
3210 sob.SOBufferEnable = true;
3211 sob.MOCS = cmd_buffer->device->isl_dev.mocs.internal,
3212 sob.StreamOffsetWriteEnable = false;
3213 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
3214 xfb->offset);
3215 /* Size is in DWords - 1 */
3216 sob.SurfaceSize = xfb->size / 4 - 1;
3217 }
3218 }
3219 }
3220
3221 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
3222 if (GEN_GEN >= 10)
3223 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3224 }
3225 #endif
3226
3227 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
3228 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3229
3230 /* If the pipeline changed, we may need to re-allocate push constant
3231 * space in the URB.
3232 */
3233 cmd_buffer_alloc_push_constants(cmd_buffer);
3234 }
3235
3236 #if GEN_GEN <= 7
3237 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
3238 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
3239 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
3240 *
3241 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
3242 * stall needs to be sent just prior to any 3DSTATE_VS,
3243 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
3244 * 3DSTATE_BINDING_TABLE_POINTER_VS,
3245 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
3246 * PIPE_CONTROL needs to be sent before any combination of VS
3247 * associated 3DSTATE."
3248 */
3249 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3250 pc.DepthStallEnable = true;
3251 pc.PostSyncOperation = WriteImmediateData;
3252 pc.Address =
3253 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
3254 }
3255 }
3256 #endif
3257
3258 /* Render targets live in the same binding table as fragment descriptors */
3259 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
3260 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
3261
3262 /* We emit the binding tables and sampler tables first, then emit push
3263 * constants and then finally emit binding table and sampler table
3264 * pointers. It has to happen in this order, since emitting the binding
3265 * tables may change the push constants (in case of storage images). After
3266 * emitting push constants, on SKL+ we have to emit the corresponding
3267 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
3268 */
3269 uint32_t dirty = 0;
3270 if (cmd_buffer->state.descriptors_dirty)
3271 dirty = flush_descriptor_sets(cmd_buffer, pipeline);
3272
3273 if (dirty || cmd_buffer->state.push_constants_dirty) {
3274 /* Because we're pushing UBOs, we have to push whenever either
3275 * descriptors or push constants is dirty.
3276 */
3277 dirty |= cmd_buffer->state.push_constants_dirty;
3278 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
3279 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
3280 }
3281
3282 if (dirty)
3283 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
3284
3285 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
3286 gen8_cmd_buffer_emit_viewport(cmd_buffer);
3287
3288 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
3289 ANV_CMD_DIRTY_PIPELINE)) {
3290 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
3291 pipeline->depth_clamp_enable);
3292 }
3293
3294 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
3295 ANV_CMD_DIRTY_RENDER_TARGETS))
3296 gen7_cmd_buffer_emit_scissor(cmd_buffer);
3297
3298 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
3299 }
3300
3301 static void
3302 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
3303 struct anv_address addr,
3304 uint32_t size, uint32_t index)
3305 {
3306 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
3307 GENX(3DSTATE_VERTEX_BUFFERS));
3308
3309 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
3310 &(struct GENX(VERTEX_BUFFER_STATE)) {
3311 .VertexBufferIndex = index,
3312 .AddressModifyEnable = true,
3313 .BufferPitch = 0,
3314 .MOCS = addr.bo ? anv_mocs_for_bo(cmd_buffer->device, addr.bo) : 0,
3315 .NullVertexBuffer = size == 0,
3316 #if (GEN_GEN >= 8)
3317 .BufferStartingAddress = addr,
3318 .BufferSize = size
3319 #else
3320 .BufferStartingAddress = addr,
3321 .EndAddress = anv_address_add(addr, size),
3322 #endif
3323 });
3324
3325 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer,
3326 index, addr, size);
3327 }
3328
3329 static void
3330 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
3331 struct anv_address addr)
3332 {
3333 emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
3334 }
3335
3336 static void
3337 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
3338 uint32_t base_vertex, uint32_t base_instance)
3339 {
3340 if (base_vertex == 0 && base_instance == 0) {
3341 emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
3342 } else {
3343 struct anv_state id_state =
3344 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
3345
3346 ((uint32_t *)id_state.map)[0] = base_vertex;
3347 ((uint32_t *)id_state.map)[1] = base_instance;
3348
3349 struct anv_address addr = {
3350 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3351 .offset = id_state.offset,
3352 };
3353
3354 emit_base_vertex_instance_bo(cmd_buffer, addr);
3355 }
3356 }
3357
3358 static void
3359 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
3360 {
3361 struct anv_state state =
3362 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
3363
3364 ((uint32_t *)state.map)[0] = draw_index;
3365
3366 struct anv_address addr = {
3367 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3368 .offset = state.offset,
3369 };
3370
3371 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
3372 }
3373
3374 static void
3375 update_dirty_vbs_for_gen8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
3376 uint32_t access_type)
3377 {
3378 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3379 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3380
3381 uint64_t vb_used = pipeline->vb_used;
3382 if (vs_prog_data->uses_firstvertex ||
3383 vs_prog_data->uses_baseinstance)
3384 vb_used |= 1ull << ANV_SVGS_VB_INDEX;
3385 if (vs_prog_data->uses_drawid)
3386 vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
3387
3388 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(cmd_buffer,
3389 access_type == RANDOM,
3390 vb_used);
3391 }
3392
3393 void genX(CmdDraw)(
3394 VkCommandBuffer commandBuffer,
3395 uint32_t vertexCount,
3396 uint32_t instanceCount,
3397 uint32_t firstVertex,
3398 uint32_t firstInstance)
3399 {
3400 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3401 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3402 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3403
3404 if (anv_batch_has_error(&cmd_buffer->batch))
3405 return;
3406
3407 genX(cmd_buffer_flush_state)(cmd_buffer);
3408
3409 if (cmd_buffer->state.conditional_render_enabled)
3410 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3411
3412 if (vs_prog_data->uses_firstvertex ||
3413 vs_prog_data->uses_baseinstance)
3414 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3415 if (vs_prog_data->uses_drawid)
3416 emit_draw_index(cmd_buffer, 0);
3417
3418 /* Emitting draw index or vertex index BOs may result in needing
3419 * additional VF cache flushes.
3420 */
3421 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3422
3423 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3424 * different views. We need to multiply instanceCount by the view count.
3425 */
3426 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3427
3428 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3429 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3430 prim.VertexAccessType = SEQUENTIAL;
3431 prim.PrimitiveTopologyType = pipeline->topology;
3432 prim.VertexCountPerInstance = vertexCount;
3433 prim.StartVertexLocation = firstVertex;
3434 prim.InstanceCount = instanceCount;
3435 prim.StartInstanceLocation = firstInstance;
3436 prim.BaseVertexLocation = 0;
3437 }
3438
3439 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3440 }
3441
3442 void genX(CmdDrawIndexed)(
3443 VkCommandBuffer commandBuffer,
3444 uint32_t indexCount,
3445 uint32_t instanceCount,
3446 uint32_t firstIndex,
3447 int32_t vertexOffset,
3448 uint32_t firstInstance)
3449 {
3450 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3451 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3452 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3453
3454 if (anv_batch_has_error(&cmd_buffer->batch))
3455 return;
3456
3457 genX(cmd_buffer_flush_state)(cmd_buffer);
3458
3459 if (cmd_buffer->state.conditional_render_enabled)
3460 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3461
3462 if (vs_prog_data->uses_firstvertex ||
3463 vs_prog_data->uses_baseinstance)
3464 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
3465 if (vs_prog_data->uses_drawid)
3466 emit_draw_index(cmd_buffer, 0);
3467
3468 /* Emitting draw index or vertex index BOs may result in needing
3469 * additional VF cache flushes.
3470 */
3471 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3472
3473 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3474 * different views. We need to multiply instanceCount by the view count.
3475 */
3476 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3477
3478 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3479 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3480 prim.VertexAccessType = RANDOM;
3481 prim.PrimitiveTopologyType = pipeline->topology;
3482 prim.VertexCountPerInstance = indexCount;
3483 prim.StartVertexLocation = firstIndex;
3484 prim.InstanceCount = instanceCount;
3485 prim.StartInstanceLocation = firstInstance;
3486 prim.BaseVertexLocation = vertexOffset;
3487 }
3488
3489 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3490 }
3491
3492 /* Auto-Draw / Indirect Registers */
3493 #define GEN7_3DPRIM_END_OFFSET 0x2420
3494 #define GEN7_3DPRIM_START_VERTEX 0x2430
3495 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
3496 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
3497 #define GEN7_3DPRIM_START_INSTANCE 0x243C
3498 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
3499
3500 void genX(CmdDrawIndirectByteCountEXT)(
3501 VkCommandBuffer commandBuffer,
3502 uint32_t instanceCount,
3503 uint32_t firstInstance,
3504 VkBuffer counterBuffer,
3505 VkDeviceSize counterBufferOffset,
3506 uint32_t counterOffset,
3507 uint32_t vertexStride)
3508 {
3509 #if GEN_IS_HASWELL || GEN_GEN >= 8
3510 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3511 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
3512 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3513 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3514
3515 /* firstVertex is always zero for this draw function */
3516 const uint32_t firstVertex = 0;
3517
3518 if (anv_batch_has_error(&cmd_buffer->batch))
3519 return;
3520
3521 genX(cmd_buffer_flush_state)(cmd_buffer);
3522
3523 if (vs_prog_data->uses_firstvertex ||
3524 vs_prog_data->uses_baseinstance)
3525 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3526 if (vs_prog_data->uses_drawid)
3527 emit_draw_index(cmd_buffer, 0);
3528
3529 /* Emitting draw index or vertex index BOs may result in needing
3530 * additional VF cache flushes.
3531 */
3532 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3533
3534 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3535 * different views. We need to multiply instanceCount by the view count.
3536 */
3537 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3538
3539 struct gen_mi_builder b;
3540 gen_mi_builder_init(&b, &cmd_buffer->batch);
3541 struct gen_mi_value count =
3542 gen_mi_mem32(anv_address_add(counter_buffer->address,
3543 counterBufferOffset));
3544 if (counterOffset)
3545 count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset));
3546 count = gen_mi_udiv32_imm(&b, count, vertexStride);
3547 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count);
3548
3549 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3550 gen_mi_imm(firstVertex));
3551 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT),
3552 gen_mi_imm(instanceCount));
3553 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3554 gen_mi_imm(firstInstance));
3555 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3556
3557 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3558 prim.IndirectParameterEnable = true;
3559 prim.VertexAccessType = SEQUENTIAL;
3560 prim.PrimitiveTopologyType = pipeline->topology;
3561 }
3562
3563 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3564 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
3565 }
3566
3567 static void
3568 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
3569 struct anv_address addr,
3570 bool indexed)
3571 {
3572 struct gen_mi_builder b;
3573 gen_mi_builder_init(&b, &cmd_buffer->batch);
3574
3575 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT),
3576 gen_mi_mem32(anv_address_add(addr, 0)));
3577
3578 struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4));
3579 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
3580 if (view_count > 1) {
3581 #if GEN_IS_HASWELL || GEN_GEN >= 8
3582 instance_count = gen_mi_imul_imm(&b, instance_count, view_count);
3583 #else
3584 anv_finishme("Multiview + indirect draw requires MI_MATH; "
3585 "MI_MATH is not supported on Ivy Bridge");
3586 #endif
3587 }
3588 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count);
3589
3590 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3591 gen_mi_mem32(anv_address_add(addr, 8)));
3592
3593 if (indexed) {
3594 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX),
3595 gen_mi_mem32(anv_address_add(addr, 12)));
3596 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3597 gen_mi_mem32(anv_address_add(addr, 16)));
3598 } else {
3599 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3600 gen_mi_mem32(anv_address_add(addr, 12)));
3601 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3602 }
3603 }
3604
3605 void genX(CmdDrawIndirect)(
3606 VkCommandBuffer commandBuffer,
3607 VkBuffer _buffer,
3608 VkDeviceSize offset,
3609 uint32_t drawCount,
3610 uint32_t stride)
3611 {
3612 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3613 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3614 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3615 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3616
3617 if (anv_batch_has_error(&cmd_buffer->batch))
3618 return;
3619
3620 genX(cmd_buffer_flush_state)(cmd_buffer);
3621
3622 if (cmd_buffer->state.conditional_render_enabled)
3623 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3624
3625 for (uint32_t i = 0; i < drawCount; i++) {
3626 struct anv_address draw = anv_address_add(buffer->address, offset);
3627
3628 if (vs_prog_data->uses_firstvertex ||
3629 vs_prog_data->uses_baseinstance)
3630 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3631 if (vs_prog_data->uses_drawid)
3632 emit_draw_index(cmd_buffer, i);
3633
3634 /* Emitting draw index or vertex index BOs may result in needing
3635 * additional VF cache flushes.
3636 */
3637 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3638
3639 load_indirect_parameters(cmd_buffer, draw, false);
3640
3641 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3642 prim.IndirectParameterEnable = true;
3643 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3644 prim.VertexAccessType = SEQUENTIAL;
3645 prim.PrimitiveTopologyType = pipeline->topology;
3646 }
3647
3648 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3649
3650 offset += stride;
3651 }
3652 }
3653
3654 void genX(CmdDrawIndexedIndirect)(
3655 VkCommandBuffer commandBuffer,
3656 VkBuffer _buffer,
3657 VkDeviceSize offset,
3658 uint32_t drawCount,
3659 uint32_t stride)
3660 {
3661 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3662 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3663 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3664 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3665
3666 if (anv_batch_has_error(&cmd_buffer->batch))
3667 return;
3668
3669 genX(cmd_buffer_flush_state)(cmd_buffer);
3670
3671 if (cmd_buffer->state.conditional_render_enabled)
3672 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3673
3674 for (uint32_t i = 0; i < drawCount; i++) {
3675 struct anv_address draw = anv_address_add(buffer->address, offset);
3676
3677 /* TODO: We need to stomp base vertex to 0 somehow */
3678 if (vs_prog_data->uses_firstvertex ||
3679 vs_prog_data->uses_baseinstance)
3680 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3681 if (vs_prog_data->uses_drawid)
3682 emit_draw_index(cmd_buffer, i);
3683
3684 /* Emitting draw index or vertex index BOs may result in needing
3685 * additional VF cache flushes.
3686 */
3687 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3688
3689 load_indirect_parameters(cmd_buffer, draw, true);
3690
3691 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3692 prim.IndirectParameterEnable = true;
3693 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3694 prim.VertexAccessType = RANDOM;
3695 prim.PrimitiveTopologyType = pipeline->topology;
3696 }
3697
3698 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3699
3700 offset += stride;
3701 }
3702 }
3703
3704 #define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
3705
3706 static void
3707 prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3708 struct anv_address count_address,
3709 const bool conditional_render_enabled)
3710 {
3711 struct gen_mi_builder b;
3712 gen_mi_builder_init(&b, &cmd_buffer->batch);
3713
3714 if (conditional_render_enabled) {
3715 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3716 gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
3717 gen_mi_mem32(count_address));
3718 #endif
3719 } else {
3720 /* Upload the current draw count from the draw parameters buffer to
3721 * MI_PREDICATE_SRC0.
3722 */
3723 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
3724 gen_mi_mem32(count_address));
3725
3726 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
3727 }
3728 }
3729
3730 static void
3731 emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3732 uint32_t draw_index)
3733 {
3734 struct gen_mi_builder b;
3735 gen_mi_builder_init(&b, &cmd_buffer->batch);
3736
3737 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
3738 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
3739
3740 if (draw_index == 0) {
3741 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3742 mip.LoadOperation = LOAD_LOADINV;
3743 mip.CombineOperation = COMBINE_SET;
3744 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3745 }
3746 } else {
3747 /* While draw_index < draw_count the predicate's result will be
3748 * (draw_index == draw_count) ^ TRUE = TRUE
3749 * When draw_index == draw_count the result is
3750 * (TRUE) ^ TRUE = FALSE
3751 * After this all results will be:
3752 * (FALSE) ^ FALSE = FALSE
3753 */
3754 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3755 mip.LoadOperation = LOAD_LOAD;
3756 mip.CombineOperation = COMBINE_XOR;
3757 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3758 }
3759 }
3760 }
3761
3762 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3763 static void
3764 emit_draw_count_predicate_with_conditional_render(
3765 struct anv_cmd_buffer *cmd_buffer,
3766 uint32_t draw_index)
3767 {
3768 struct gen_mi_builder b;
3769 gen_mi_builder_init(&b, &cmd_buffer->batch);
3770
3771 struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
3772 gen_mi_reg64(TMP_DRAW_COUNT_REG));
3773 pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
3774
3775 #if GEN_GEN >= 8
3776 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
3777 #else
3778 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
3779 * so we emit MI_PREDICATE to set it.
3780 */
3781
3782 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
3783 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3784
3785 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3786 mip.LoadOperation = LOAD_LOADINV;
3787 mip.CombineOperation = COMBINE_SET;
3788 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3789 }
3790 #endif
3791 }
3792 #endif
3793
3794 void genX(CmdDrawIndirectCount)(
3795 VkCommandBuffer commandBuffer,
3796 VkBuffer _buffer,
3797 VkDeviceSize offset,
3798 VkBuffer _countBuffer,
3799 VkDeviceSize countBufferOffset,
3800 uint32_t maxDrawCount,
3801 uint32_t stride)
3802 {
3803 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3804 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3805 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3806 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3807 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3808 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3809
3810 if (anv_batch_has_error(&cmd_buffer->batch))
3811 return;
3812
3813 genX(cmd_buffer_flush_state)(cmd_buffer);
3814
3815 struct anv_address count_address =
3816 anv_address_add(count_buffer->address, countBufferOffset);
3817
3818 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3819 cmd_state->conditional_render_enabled);
3820
3821 for (uint32_t i = 0; i < maxDrawCount; i++) {
3822 struct anv_address draw = anv_address_add(buffer->address, offset);
3823
3824 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3825 if (cmd_state->conditional_render_enabled) {
3826 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3827 } else {
3828 emit_draw_count_predicate(cmd_buffer, i);
3829 }
3830 #else
3831 emit_draw_count_predicate(cmd_buffer, i);
3832 #endif
3833
3834 if (vs_prog_data->uses_firstvertex ||
3835 vs_prog_data->uses_baseinstance)
3836 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3837 if (vs_prog_data->uses_drawid)
3838 emit_draw_index(cmd_buffer, i);
3839
3840 /* Emitting draw index or vertex index BOs may result in needing
3841 * additional VF cache flushes.
3842 */
3843 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3844
3845 load_indirect_parameters(cmd_buffer, draw, false);
3846
3847 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3848 prim.IndirectParameterEnable = true;
3849 prim.PredicateEnable = true;
3850 prim.VertexAccessType = SEQUENTIAL;
3851 prim.PrimitiveTopologyType = pipeline->topology;
3852 }
3853
3854 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3855
3856 offset += stride;
3857 }
3858 }
3859
3860 void genX(CmdDrawIndexedIndirectCount)(
3861 VkCommandBuffer commandBuffer,
3862 VkBuffer _buffer,
3863 VkDeviceSize offset,
3864 VkBuffer _countBuffer,
3865 VkDeviceSize countBufferOffset,
3866 uint32_t maxDrawCount,
3867 uint32_t stride)
3868 {
3869 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3870 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3871 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3872 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3873 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3874 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3875
3876 if (anv_batch_has_error(&cmd_buffer->batch))
3877 return;
3878
3879 genX(cmd_buffer_flush_state)(cmd_buffer);
3880
3881 struct anv_address count_address =
3882 anv_address_add(count_buffer->address, countBufferOffset);
3883
3884 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3885 cmd_state->conditional_render_enabled);
3886
3887 for (uint32_t i = 0; i < maxDrawCount; i++) {
3888 struct anv_address draw = anv_address_add(buffer->address, offset);
3889
3890 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3891 if (cmd_state->conditional_render_enabled) {
3892 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3893 } else {
3894 emit_draw_count_predicate(cmd_buffer, i);
3895 }
3896 #else
3897 emit_draw_count_predicate(cmd_buffer, i);
3898 #endif
3899
3900 /* TODO: We need to stomp base vertex to 0 somehow */
3901 if (vs_prog_data->uses_firstvertex ||
3902 vs_prog_data->uses_baseinstance)
3903 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3904 if (vs_prog_data->uses_drawid)
3905 emit_draw_index(cmd_buffer, i);
3906
3907 /* Emitting draw index or vertex index BOs may result in needing
3908 * additional VF cache flushes.
3909 */
3910 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3911
3912 load_indirect_parameters(cmd_buffer, draw, true);
3913
3914 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3915 prim.IndirectParameterEnable = true;
3916 prim.PredicateEnable = true;
3917 prim.VertexAccessType = RANDOM;
3918 prim.PrimitiveTopologyType = pipeline->topology;
3919 }
3920
3921 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3922
3923 offset += stride;
3924 }
3925 }
3926
3927 void genX(CmdBeginTransformFeedbackEXT)(
3928 VkCommandBuffer commandBuffer,
3929 uint32_t firstCounterBuffer,
3930 uint32_t counterBufferCount,
3931 const VkBuffer* pCounterBuffers,
3932 const VkDeviceSize* pCounterBufferOffsets)
3933 {
3934 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3935
3936 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3937 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3938 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3939
3940 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3941 *
3942 * "Ssoftware must ensure that no HW stream output operations can be in
3943 * process or otherwise pending at the point that the MI_LOAD/STORE
3944 * commands are processed. This will likely require a pipeline flush."
3945 */
3946 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3947 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3948
3949 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3950 /* If we have a counter buffer, this is a resume so we need to load the
3951 * value into the streamout offset register. Otherwise, this is a begin
3952 * and we need to reset it to zero.
3953 */
3954 if (pCounterBuffers &&
3955 idx >= firstCounterBuffer &&
3956 idx - firstCounterBuffer < counterBufferCount &&
3957 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
3958 uint32_t cb_idx = idx - firstCounterBuffer;
3959 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3960 uint64_t offset = pCounterBufferOffsets ?
3961 pCounterBufferOffsets[cb_idx] : 0;
3962
3963 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3964 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3965 lrm.MemoryAddress = anv_address_add(counter_buffer->address,
3966 offset);
3967 }
3968 } else {
3969 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
3970 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3971 lri.DataDWord = 0;
3972 }
3973 }
3974 }
3975
3976 cmd_buffer->state.xfb_enabled = true;
3977 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3978 }
3979
3980 void genX(CmdEndTransformFeedbackEXT)(
3981 VkCommandBuffer commandBuffer,
3982 uint32_t firstCounterBuffer,
3983 uint32_t counterBufferCount,
3984 const VkBuffer* pCounterBuffers,
3985 const VkDeviceSize* pCounterBufferOffsets)
3986 {
3987 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3988
3989 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3990 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3991 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3992
3993 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3994 *
3995 * "Ssoftware must ensure that no HW stream output operations can be in
3996 * process or otherwise pending at the point that the MI_LOAD/STORE
3997 * commands are processed. This will likely require a pipeline flush."
3998 */
3999 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4000 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4001
4002 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
4003 unsigned idx = firstCounterBuffer + cb_idx;
4004
4005 /* If we have a counter buffer, this is a resume so we need to load the
4006 * value into the streamout offset register. Otherwise, this is a begin
4007 * and we need to reset it to zero.
4008 */
4009 if (pCounterBuffers &&
4010 cb_idx < counterBufferCount &&
4011 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
4012 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
4013 uint64_t offset = pCounterBufferOffsets ?
4014 pCounterBufferOffsets[cb_idx] : 0;
4015
4016 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4017 srm.MemoryAddress = anv_address_add(counter_buffer->address,
4018 offset);
4019 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4020 }
4021 }
4022 }
4023
4024 cmd_buffer->state.xfb_enabled = false;
4025 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
4026 }
4027
4028 void
4029 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
4030 {
4031 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4032
4033 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
4034
4035 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->l3_config);
4036
4037 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
4038
4039 if (cmd_buffer->state.compute.pipeline_dirty) {
4040 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
4041 *
4042 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4043 * the only bits that are changed are scoreboard related: Scoreboard
4044 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4045 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4046 * sufficient."
4047 */
4048 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4049 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4050
4051 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
4052
4053 /* The workgroup size of the pipeline affects our push constant layout
4054 * so flag push constants as dirty if we change the pipeline.
4055 */
4056 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4057 }
4058
4059 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
4060 cmd_buffer->state.compute.pipeline_dirty) {
4061 flush_descriptor_sets(cmd_buffer, pipeline);
4062
4063 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4064 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
4065 .BindingTablePointer =
4066 cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
4067 .SamplerStatePointer =
4068 cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
4069 };
4070 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
4071
4072 struct anv_state state =
4073 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
4074 pipeline->interface_descriptor_data,
4075 GENX(INTERFACE_DESCRIPTOR_DATA_length),
4076 64);
4077
4078 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4079 anv_batch_emit(&cmd_buffer->batch,
4080 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
4081 mid.InterfaceDescriptorTotalLength = size;
4082 mid.InterfaceDescriptorDataStartAddress = state.offset;
4083 }
4084 }
4085
4086 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
4087 struct anv_state push_state =
4088 anv_cmd_buffer_cs_push_constants(cmd_buffer);
4089
4090 if (push_state.alloc_size) {
4091 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4092 curbe.CURBETotalDataLength = push_state.alloc_size;
4093 curbe.CURBEDataStartAddress = push_state.offset;
4094 }
4095 }
4096
4097 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
4098 }
4099
4100 cmd_buffer->state.compute.pipeline_dirty = false;
4101
4102 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4103 }
4104
4105 #if GEN_GEN == 7
4106
4107 static VkResult
4108 verify_cmd_parser(const struct anv_device *device,
4109 int required_version,
4110 const char *function)
4111 {
4112 if (device->physical->cmd_parser_version < required_version) {
4113 return vk_errorf(device, device->physical,
4114 VK_ERROR_FEATURE_NOT_PRESENT,
4115 "cmd parser version %d is required for %s",
4116 required_version, function);
4117 } else {
4118 return VK_SUCCESS;
4119 }
4120 }
4121
4122 #endif
4123
4124 static void
4125 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
4126 uint32_t baseGroupX,
4127 uint32_t baseGroupY,
4128 uint32_t baseGroupZ)
4129 {
4130 if (anv_batch_has_error(&cmd_buffer->batch))
4131 return;
4132
4133 struct anv_push_constants *push =
4134 &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
4135 if (push->cs.base_work_group_id[0] != baseGroupX ||
4136 push->cs.base_work_group_id[1] != baseGroupY ||
4137 push->cs.base_work_group_id[2] != baseGroupZ) {
4138 push->cs.base_work_group_id[0] = baseGroupX;
4139 push->cs.base_work_group_id[1] = baseGroupY;
4140 push->cs.base_work_group_id[2] = baseGroupZ;
4141
4142 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4143 }
4144 }
4145
4146 void genX(CmdDispatch)(
4147 VkCommandBuffer commandBuffer,
4148 uint32_t x,
4149 uint32_t y,
4150 uint32_t z)
4151 {
4152 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
4153 }
4154
4155 void genX(CmdDispatchBase)(
4156 VkCommandBuffer commandBuffer,
4157 uint32_t baseGroupX,
4158 uint32_t baseGroupY,
4159 uint32_t baseGroupZ,
4160 uint32_t groupCountX,
4161 uint32_t groupCountY,
4162 uint32_t groupCountZ)
4163 {
4164 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4165 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4166 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4167
4168 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
4169 baseGroupY, baseGroupZ);
4170
4171 if (anv_batch_has_error(&cmd_buffer->batch))
4172 return;
4173
4174 if (prog_data->uses_num_work_groups) {
4175 struct anv_state state =
4176 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
4177 uint32_t *sizes = state.map;
4178 sizes[0] = groupCountX;
4179 sizes[1] = groupCountY;
4180 sizes[2] = groupCountZ;
4181 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
4182 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
4183 .offset = state.offset,
4184 };
4185
4186 /* The num_workgroups buffer goes in the binding table */
4187 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4188 }
4189
4190 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4191
4192 if (cmd_buffer->state.conditional_render_enabled)
4193 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4194
4195 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
4196 ggw.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
4197 ggw.SIMDSize = prog_data->simd_size / 16;
4198 ggw.ThreadDepthCounterMaximum = 0;
4199 ggw.ThreadHeightCounterMaximum = 0;
4200 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4201 ggw.ThreadGroupIDXDimension = groupCountX;
4202 ggw.ThreadGroupIDYDimension = groupCountY;
4203 ggw.ThreadGroupIDZDimension = groupCountZ;
4204 ggw.RightExecutionMask = pipeline->cs_right_mask;
4205 ggw.BottomExecutionMask = 0xffffffff;
4206 }
4207
4208 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
4209 }
4210
4211 #define GPGPU_DISPATCHDIMX 0x2500
4212 #define GPGPU_DISPATCHDIMY 0x2504
4213 #define GPGPU_DISPATCHDIMZ 0x2508
4214
4215 void genX(CmdDispatchIndirect)(
4216 VkCommandBuffer commandBuffer,
4217 VkBuffer _buffer,
4218 VkDeviceSize offset)
4219 {
4220 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4221 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4222 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4223 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4224 struct anv_address addr = anv_address_add(buffer->address, offset);
4225 struct anv_batch *batch = &cmd_buffer->batch;
4226
4227 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
4228
4229 #if GEN_GEN == 7
4230 /* Linux 4.4 added command parser version 5 which allows the GPGPU
4231 * indirect dispatch registers to be written.
4232 */
4233 if (verify_cmd_parser(cmd_buffer->device, 5,
4234 "vkCmdDispatchIndirect") != VK_SUCCESS)
4235 return;
4236 #endif
4237
4238 if (prog_data->uses_num_work_groups) {
4239 cmd_buffer->state.compute.num_workgroups = addr;
4240
4241 /* The num_workgroups buffer goes in the binding table */
4242 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4243 }
4244
4245 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4246
4247 struct gen_mi_builder b;
4248 gen_mi_builder_init(&b, &cmd_buffer->batch);
4249
4250 struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0));
4251 struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4));
4252 struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8));
4253
4254 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x);
4255 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y);
4256 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
4257
4258 #if GEN_GEN <= 7
4259 /* predicate = (compute_dispatch_indirect_x_size == 0); */
4260 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x);
4261 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
4262 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4263 mip.LoadOperation = LOAD_LOAD;
4264 mip.CombineOperation = COMBINE_SET;
4265 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4266 }
4267
4268 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
4269 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y);
4270 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4271 mip.LoadOperation = LOAD_LOAD;
4272 mip.CombineOperation = COMBINE_OR;
4273 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4274 }
4275
4276 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
4277 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z);
4278 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4279 mip.LoadOperation = LOAD_LOAD;
4280 mip.CombineOperation = COMBINE_OR;
4281 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4282 }
4283
4284 /* predicate = !predicate; */
4285 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4286 mip.LoadOperation = LOAD_LOADINV;
4287 mip.CombineOperation = COMBINE_OR;
4288 mip.CompareOperation = COMPARE_FALSE;
4289 }
4290
4291 #if GEN_IS_HASWELL
4292 if (cmd_buffer->state.conditional_render_enabled) {
4293 /* predicate &= !(conditional_rendering_predicate == 0); */
4294 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
4295 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
4296 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4297 mip.LoadOperation = LOAD_LOADINV;
4298 mip.CombineOperation = COMBINE_AND;
4299 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4300 }
4301 }
4302 #endif
4303
4304 #else /* GEN_GEN > 7 */
4305 if (cmd_buffer->state.conditional_render_enabled)
4306 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4307 #endif
4308
4309 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
4310 ggw.IndirectParameterEnable = true;
4311 ggw.PredicateEnable = GEN_GEN <= 7 ||
4312 cmd_buffer->state.conditional_render_enabled;
4313 ggw.SIMDSize = prog_data->simd_size / 16;
4314 ggw.ThreadDepthCounterMaximum = 0;
4315 ggw.ThreadHeightCounterMaximum = 0;
4316 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4317 ggw.RightExecutionMask = pipeline->cs_right_mask;
4318 ggw.BottomExecutionMask = 0xffffffff;
4319 }
4320
4321 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
4322 }
4323
4324 static void
4325 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
4326 uint32_t pipeline)
4327 {
4328 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4329
4330 if (cmd_buffer->state.current_pipeline == pipeline)
4331 return;
4332
4333 #if GEN_GEN >= 8 && GEN_GEN < 10
4334 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
4335 *
4336 * Software must clear the COLOR_CALC_STATE Valid field in
4337 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
4338 * with Pipeline Select set to GPGPU.
4339 *
4340 * The internal hardware docs recommend the same workaround for Gen9
4341 * hardware too.
4342 */
4343 if (pipeline == GPGPU)
4344 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
4345 #endif
4346
4347 #if GEN_GEN == 9
4348 if (pipeline == _3D) {
4349 /* There is a mid-object preemption workaround which requires you to
4350 * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
4351 * even without preemption, we have issues with geometry flickering when
4352 * GPGPU and 3D are back-to-back and this seems to fix it. We don't
4353 * really know why.
4354 */
4355 const uint32_t subslices =
4356 MAX2(cmd_buffer->device->physical->subslice_total, 1);
4357 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
4358 vfe.MaximumNumberofThreads =
4359 devinfo->max_cs_threads * subslices - 1;
4360 vfe.NumberofURBEntries = 2;
4361 vfe.URBEntryAllocationSize = 2;
4362 }
4363
4364 /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
4365 * invalid. Set the compute pipeline to dirty to force a re-emit of the
4366 * pipeline in case we get back-to-back dispatch calls with the same
4367 * pipeline and a PIPELINE_SELECT in between.
4368 */
4369 cmd_buffer->state.compute.pipeline_dirty = true;
4370 }
4371 #endif
4372
4373 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
4374 * PIPELINE_SELECT [DevBWR+]":
4375 *
4376 * Project: DEVSNB+
4377 *
4378 * Software must ensure all the write caches are flushed through a
4379 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
4380 * command to invalidate read only caches prior to programming
4381 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
4382 */
4383 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4384 pc.RenderTargetCacheFlushEnable = true;
4385 pc.DepthCacheFlushEnable = true;
4386 pc.DCFlushEnable = true;
4387 pc.PostSyncOperation = NoWrite;
4388 pc.CommandStreamerStallEnable = true;
4389 #if GEN_GEN >= 12
4390 pc.TileCacheFlushEnable = true;
4391
4392 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must be
4393 * set with any PIPE_CONTROL with Depth Flush Enable bit set.
4394 */
4395 pc.DepthStallEnable = true;
4396 #endif
4397 }
4398
4399 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4400 pc.TextureCacheInvalidationEnable = true;
4401 pc.ConstantCacheInvalidationEnable = true;
4402 pc.StateCacheInvalidationEnable = true;
4403 pc.InstructionCacheInvalidateEnable = true;
4404 pc.PostSyncOperation = NoWrite;
4405 #if GEN_GEN >= 12
4406 pc.TileCacheFlushEnable = true;
4407 #endif
4408 }
4409
4410 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
4411 #if GEN_GEN >= 9
4412 ps.MaskBits = 3;
4413 #endif
4414 ps.PipelineSelection = pipeline;
4415 }
4416
4417 #if GEN_GEN == 9
4418 if (devinfo->is_geminilake) {
4419 /* Project: DevGLK
4420 *
4421 * "This chicken bit works around a hardware issue with barrier logic
4422 * encountered when switching between GPGPU and 3D pipelines. To
4423 * workaround the issue, this mode bit should be set after a pipeline
4424 * is selected."
4425 */
4426 uint32_t scec;
4427 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
4428 .GLKBarrierMode =
4429 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
4430 : GLK_BARRIER_MODE_3D_HULL,
4431 .GLKBarrierModeMask = 1);
4432 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
4433 }
4434 #endif
4435
4436 cmd_buffer->state.current_pipeline = pipeline;
4437 }
4438
4439 void
4440 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
4441 {
4442 genX(flush_pipeline_select)(cmd_buffer, _3D);
4443 }
4444
4445 void
4446 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
4447 {
4448 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
4449 }
4450
4451 void
4452 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
4453 {
4454 if (GEN_GEN >= 8)
4455 return;
4456
4457 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
4458 *
4459 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
4460 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
4461 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
4462 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
4463 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
4464 * Depth Flush Bit set, followed by another pipelined depth stall
4465 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
4466 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
4467 * via a preceding MI_FLUSH)."
4468 */
4469 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4470 pipe.DepthStallEnable = true;
4471 }
4472 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4473 pipe.DepthCacheFlushEnable = true;
4474 #if GEN_GEN >= 12
4475 pipe.TileCacheFlushEnable = true;
4476 #endif
4477 }
4478 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4479 pipe.DepthStallEnable = true;
4480 }
4481 }
4482
4483 /* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
4484 *
4485 * "The VF cache needs to be invalidated before binding and then using
4486 * Vertex Buffers that overlap with any previously bound Vertex Buffer
4487 * (at a 64B granularity) since the last invalidation. A VF cache
4488 * invalidate is performed by setting the "VF Cache Invalidation Enable"
4489 * bit in PIPE_CONTROL."
4490 *
4491 * This is implemented by carefully tracking all vertex and index buffer
4492 * bindings and flushing if the cache ever ends up with a range in the cache
4493 * that would exceed 4 GiB. This is implemented in three parts:
4494 *
4495 * 1. genX(cmd_buffer_set_binding_for_gen8_vb_flush)() which must be called
4496 * every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
4497 * tracking code of the new binding. If this new binding would cause
4498 * the cache to have a too-large range on the next draw call, a pipeline
4499 * stall and VF cache invalidate are added to pending_pipeline_bits.
4500 *
4501 * 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
4502 * empty whenever we emit a VF invalidate.
4503 *
4504 * 3. genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)() must be called
4505 * after every 3DPRIMITIVE and copies the bound range into the dirty
4506 * range for each used buffer. This has to be a separate step because
4507 * we don't always re-bind all buffers and so 1. can't know which
4508 * buffers are actually bound.
4509 */
4510 void
4511 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4512 int vb_index,
4513 struct anv_address vb_address,
4514 uint32_t vb_size)
4515 {
4516 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4517 !cmd_buffer->device->physical->use_softpin)
4518 return;
4519
4520 struct anv_vb_cache_range *bound, *dirty;
4521 if (vb_index == -1) {
4522 bound = &cmd_buffer->state.gfx.ib_bound_range;
4523 dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4524 } else {
4525 assert(vb_index >= 0);
4526 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4527 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4528 bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
4529 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
4530 }
4531
4532 if (vb_size == 0) {
4533 bound->start = 0;
4534 bound->end = 0;
4535 return;
4536 }
4537
4538 assert(vb_address.bo && (vb_address.bo->flags & EXEC_OBJECT_PINNED));
4539 bound->start = gen_48b_address(anv_address_physical(vb_address));
4540 bound->end = bound->start + vb_size;
4541 assert(bound->end > bound->start); /* No overflow */
4542
4543 /* Align everything to a cache line */
4544 bound->start &= ~(64ull - 1ull);
4545 bound->end = align_u64(bound->end, 64);
4546
4547 /* Compute the dirty range */
4548 dirty->start = MIN2(dirty->start, bound->start);
4549 dirty->end = MAX2(dirty->end, bound->end);
4550
4551 /* If our range is larger than 32 bits, we have to flush */
4552 assert(bound->end - bound->start <= (1ull << 32));
4553 if (dirty->end - dirty->start > (1ull << 32)) {
4554 cmd_buffer->state.pending_pipe_bits |=
4555 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
4556 }
4557 }
4558
4559 void
4560 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4561 uint32_t access_type,
4562 uint64_t vb_used)
4563 {
4564 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4565 !cmd_buffer->device->physical->use_softpin)
4566 return;
4567
4568 if (access_type == RANDOM) {
4569 /* We have an index buffer */
4570 struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
4571 struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4572
4573 if (bound->end > bound->start) {
4574 dirty->start = MIN2(dirty->start, bound->start);
4575 dirty->end = MAX2(dirty->end, bound->end);
4576 }
4577 }
4578
4579 uint64_t mask = vb_used;
4580 while (mask) {
4581 int i = u_bit_scan64(&mask);
4582 assert(i >= 0);
4583 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4584 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4585
4586 struct anv_vb_cache_range *bound, *dirty;
4587 bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
4588 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
4589
4590 if (bound->end > bound->start) {
4591 dirty->start = MIN2(dirty->start, bound->start);
4592 dirty->end = MAX2(dirty->end, bound->end);
4593 }
4594 }
4595 }
4596
4597 /**
4598 * Update the pixel hashing modes that determine the balancing of PS threads
4599 * across subslices and slices.
4600 *
4601 * \param width Width bound of the rendering area (already scaled down if \p
4602 * scale is greater than 1).
4603 * \param height Height bound of the rendering area (already scaled down if \p
4604 * scale is greater than 1).
4605 * \param scale The number of framebuffer samples that could potentially be
4606 * affected by an individual channel of the PS thread. This is
4607 * typically one for single-sampled rendering, but for operations
4608 * like CCS resolves and fast clears a single PS invocation may
4609 * update a huge number of pixels, in which case a finer
4610 * balancing is desirable in order to maximally utilize the
4611 * bandwidth available. UINT_MAX can be used as shorthand for
4612 * "finest hashing mode available".
4613 */
4614 void
4615 genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
4616 unsigned width, unsigned height,
4617 unsigned scale)
4618 {
4619 #if GEN_GEN == 9
4620 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4621 const unsigned slice_hashing[] = {
4622 /* Because all Gen9 platforms with more than one slice require
4623 * three-way subslice hashing, a single "normal" 16x16 slice hashing
4624 * block is guaranteed to suffer from substantial imbalance, with one
4625 * subslice receiving twice as much work as the other two in the
4626 * slice.
4627 *
4628 * The performance impact of that would be particularly severe when
4629 * three-way hashing is also in use for slice balancing (which is the
4630 * case for all Gen9 GT4 platforms), because one of the slices
4631 * receives one every three 16x16 blocks in either direction, which
4632 * is roughly the periodicity of the underlying subslice imbalance
4633 * pattern ("roughly" because in reality the hardware's
4634 * implementation of three-way hashing doesn't do exact modulo 3
4635 * arithmetic, which somewhat decreases the magnitude of this effect
4636 * in practice). This leads to a systematic subslice imbalance
4637 * within that slice regardless of the size of the primitive. The
4638 * 32x32 hashing mode guarantees that the subslice imbalance within a
4639 * single slice hashing block is minimal, largely eliminating this
4640 * effect.
4641 */
4642 _32x32,
4643 /* Finest slice hashing mode available. */
4644 NORMAL
4645 };
4646 const unsigned subslice_hashing[] = {
4647 /* 16x16 would provide a slight cache locality benefit especially
4648 * visible in the sampler L1 cache efficiency of low-bandwidth
4649 * non-LLC platforms, but it comes at the cost of greater subslice
4650 * imbalance for primitives of dimensions approximately intermediate
4651 * between 16x4 and 16x16.
4652 */
4653 _16x4,
4654 /* Finest subslice hashing mode available. */
4655 _8x4
4656 };
4657 /* Dimensions of the smallest hashing block of a given hashing mode. If
4658 * the rendering area is smaller than this there can't possibly be any
4659 * benefit from switching to this mode, so we optimize out the
4660 * transition.
4661 */
4662 const unsigned min_size[][2] = {
4663 { 16, 4 },
4664 { 8, 4 }
4665 };
4666 const unsigned idx = scale > 1;
4667
4668 if (cmd_buffer->state.current_hash_scale != scale &&
4669 (width > min_size[idx][0] || height > min_size[idx][1])) {
4670 uint32_t gt_mode;
4671
4672 anv_pack_struct(&gt_mode, GENX(GT_MODE),
4673 .SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0),
4674 .SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0),
4675 .SubsliceHashing = subslice_hashing[idx],
4676 .SubsliceHashingMask = -1);
4677
4678 cmd_buffer->state.pending_pipe_bits |=
4679 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
4680 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4681
4682 emit_lri(&cmd_buffer->batch, GENX(GT_MODE_num), gt_mode);
4683
4684 cmd_buffer->state.current_hash_scale = scale;
4685 }
4686 #endif
4687 }
4688
4689 static void
4690 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
4691 {
4692 struct anv_device *device = cmd_buffer->device;
4693 const struct anv_image_view *iview =
4694 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
4695 const struct anv_image *image = iview ? iview->image : NULL;
4696
4697 /* FIXME: Width and Height are wrong */
4698
4699 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
4700
4701 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
4702 device->isl_dev.ds.size / 4);
4703 if (dw == NULL)
4704 return;
4705
4706 struct isl_depth_stencil_hiz_emit_info info = { };
4707
4708 if (iview)
4709 info.view = &iview->planes[0].isl;
4710
4711 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4712 uint32_t depth_plane =
4713 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
4714 const struct anv_surface *surface = &image->planes[depth_plane].surface;
4715
4716 info.depth_surf = &surface->isl;
4717
4718 info.depth_address =
4719 anv_batch_emit_reloc(&cmd_buffer->batch,
4720 dw + device->isl_dev.ds.depth_offset / 4,
4721 image->planes[depth_plane].address.bo,
4722 image->planes[depth_plane].address.offset +
4723 surface->offset);
4724 info.mocs =
4725 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
4726
4727 const uint32_t ds =
4728 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
4729 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
4730 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
4731 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
4732
4733 info.hiz_address =
4734 anv_batch_emit_reloc(&cmd_buffer->batch,
4735 dw + device->isl_dev.ds.hiz_offset / 4,
4736 image->planes[depth_plane].address.bo,
4737 image->planes[depth_plane].address.offset +
4738 image->planes[depth_plane].aux_surface.offset);
4739
4740 info.depth_clear_value = ANV_HZ_FC_VAL;
4741 }
4742 }
4743
4744 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
4745 uint32_t stencil_plane =
4746 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
4747 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
4748
4749 info.stencil_surf = &surface->isl;
4750
4751 info.stencil_address =
4752 anv_batch_emit_reloc(&cmd_buffer->batch,
4753 dw + device->isl_dev.ds.stencil_offset / 4,
4754 image->planes[stencil_plane].address.bo,
4755 image->planes[stencil_plane].address.offset +
4756 surface->offset);
4757 info.mocs =
4758 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
4759 }
4760
4761 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
4762
4763 if (GEN_GEN >= 12) {
4764 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
4765 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4766
4767 /* GEN:BUG:1408224581
4768 *
4769 * Workaround: Gen12LP Astep only An additional pipe control with
4770 * post-sync = store dword operation would be required.( w/a is to
4771 * have an additional pipe control after the stencil state whenever
4772 * the surface state bits of this state is changing).
4773 */
4774 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4775 pc.PostSyncOperation = WriteImmediateData;
4776 pc.Address =
4777 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
4778 }
4779 }
4780 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
4781 }
4782
4783 /**
4784 * This ANDs the view mask of the current subpass with the pending clear
4785 * views in the attachment to get the mask of views active in the subpass
4786 * that still need to be cleared.
4787 */
4788 static inline uint32_t
4789 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
4790 const struct anv_attachment_state *att_state)
4791 {
4792 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
4793 }
4794
4795 static inline bool
4796 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
4797 const struct anv_attachment_state *att_state)
4798 {
4799 if (!cmd_state->subpass->view_mask)
4800 return true;
4801
4802 uint32_t pending_clear_mask =
4803 get_multiview_subpass_clear_mask(cmd_state, att_state);
4804
4805 return pending_clear_mask & 1;
4806 }
4807
4808 static inline bool
4809 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
4810 uint32_t att_idx)
4811 {
4812 const uint32_t last_subpass_idx =
4813 cmd_state->pass->attachments[att_idx].last_subpass_idx;
4814 const struct anv_subpass *last_subpass =
4815 &cmd_state->pass->subpasses[last_subpass_idx];
4816 return last_subpass == cmd_state->subpass;
4817 }
4818
4819 static void
4820 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
4821 uint32_t subpass_id)
4822 {
4823 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4824 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
4825 cmd_state->subpass = subpass;
4826
4827 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
4828
4829 /* Our implementation of VK_KHR_multiview uses instancing to draw the
4830 * different views. If the client asks for instancing, we need to use the
4831 * Instance Data Step Rate to ensure that we repeat the client's
4832 * per-instance data once for each view. Since this bit is in
4833 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
4834 * of each subpass.
4835 */
4836 if (GEN_GEN == 7)
4837 cmd_buffer->state.gfx.vb_dirty |= ~0;
4838
4839 /* It is possible to start a render pass with an old pipeline. Because the
4840 * render pass and subpass index are both baked into the pipeline, this is
4841 * highly unlikely. In order to do so, it requires that you have a render
4842 * pass with a single subpass and that you use that render pass twice
4843 * back-to-back and use the same pipeline at the start of the second render
4844 * pass as at the end of the first. In order to avoid unpredictable issues
4845 * with this edge case, we just dirty the pipeline at the start of every
4846 * subpass.
4847 */
4848 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
4849
4850 /* Accumulate any subpass flushes that need to happen before the subpass */
4851 cmd_buffer->state.pending_pipe_bits |=
4852 cmd_buffer->state.pass->subpass_flushes[subpass_id];
4853
4854 VkRect2D render_area = cmd_buffer->state.render_area;
4855 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4856
4857 bool is_multiview = subpass->view_mask != 0;
4858
4859 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4860 const uint32_t a = subpass->attachments[i].attachment;
4861 if (a == VK_ATTACHMENT_UNUSED)
4862 continue;
4863
4864 assert(a < cmd_state->pass->attachment_count);
4865 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4866
4867 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
4868 const struct anv_image *image = iview->image;
4869
4870 /* A resolve is necessary before use as an input attachment if the clear
4871 * color or auxiliary buffer usage isn't supported by the sampler.
4872 */
4873 const bool input_needs_resolve =
4874 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
4875 att_state->input_aux_usage != att_state->aux_usage;
4876
4877 VkImageLayout target_layout;
4878 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
4879 !input_needs_resolve) {
4880 /* Layout transitions before the final only help to enable sampling
4881 * as an input attachment. If the input attachment supports sampling
4882 * using the auxiliary surface, we can skip such transitions by
4883 * making the target layout one that is CCS-aware.
4884 */
4885 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
4886 } else {
4887 target_layout = subpass->attachments[i].layout;
4888 }
4889
4890 VkImageLayout target_stencil_layout =
4891 subpass->attachments[i].stencil_layout;
4892
4893 uint32_t base_layer, layer_count;
4894 if (image->type == VK_IMAGE_TYPE_3D) {
4895 base_layer = 0;
4896 layer_count = anv_minify(iview->image->extent.depth,
4897 iview->planes[0].isl.base_level);
4898 } else {
4899 base_layer = iview->planes[0].isl.base_array_layer;
4900 layer_count = fb->layers;
4901 }
4902
4903 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4904 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4905 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4906 iview->planes[0].isl.base_level, 1,
4907 base_layer, layer_count,
4908 att_state->current_layout, target_layout);
4909 }
4910
4911 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4912 transition_depth_buffer(cmd_buffer, image,
4913 att_state->current_layout, target_layout);
4914 att_state->aux_usage =
4915 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
4916 VK_IMAGE_ASPECT_DEPTH_BIT,
4917 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
4918 target_layout);
4919 }
4920
4921 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
4922 transition_stencil_buffer(cmd_buffer, image,
4923 iview->planes[0].isl.base_level, 1,
4924 base_layer, layer_count,
4925 att_state->current_stencil_layout,
4926 target_stencil_layout);
4927 }
4928 att_state->current_layout = target_layout;
4929 att_state->current_stencil_layout = target_stencil_layout;
4930
4931 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
4932 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4933
4934 /* Multi-planar images are not supported as attachments */
4935 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4936 assert(image->n_planes == 1);
4937
4938 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
4939 uint32_t clear_layer_count = fb->layers;
4940
4941 if (att_state->fast_clear &&
4942 do_first_layer_clear(cmd_state, att_state)) {
4943 /* We only support fast-clears on the first layer */
4944 assert(iview->planes[0].isl.base_level == 0);
4945 assert(iview->planes[0].isl.base_array_layer == 0);
4946
4947 union isl_color_value clear_color = {};
4948 anv_clear_color_from_att_state(&clear_color, att_state, iview);
4949 if (iview->image->samples == 1) {
4950 anv_image_ccs_op(cmd_buffer, image,
4951 iview->planes[0].isl.format,
4952 VK_IMAGE_ASPECT_COLOR_BIT,
4953 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
4954 &clear_color,
4955 false);
4956 } else {
4957 anv_image_mcs_op(cmd_buffer, image,
4958 iview->planes[0].isl.format,
4959 VK_IMAGE_ASPECT_COLOR_BIT,
4960 0, 1, ISL_AUX_OP_FAST_CLEAR,
4961 &clear_color,
4962 false);
4963 }
4964 base_clear_layer++;
4965 clear_layer_count--;
4966 if (is_multiview)
4967 att_state->pending_clear_views &= ~1;
4968
4969 if (att_state->clear_color_is_zero) {
4970 /* This image has the auxiliary buffer enabled. We can mark the
4971 * subresource as not needing a resolve because the clear color
4972 * will match what's in every RENDER_SURFACE_STATE object when
4973 * it's being used for sampling.
4974 */
4975 set_image_fast_clear_state(cmd_buffer, iview->image,
4976 VK_IMAGE_ASPECT_COLOR_BIT,
4977 ANV_FAST_CLEAR_DEFAULT_VALUE);
4978 } else {
4979 set_image_fast_clear_state(cmd_buffer, iview->image,
4980 VK_IMAGE_ASPECT_COLOR_BIT,
4981 ANV_FAST_CLEAR_ANY);
4982 }
4983 }
4984
4985 /* From the VkFramebufferCreateInfo spec:
4986 *
4987 * "If the render pass uses multiview, then layers must be one and each
4988 * attachment requires a number of layers that is greater than the
4989 * maximum bit index set in the view mask in the subpasses in which it
4990 * is used."
4991 *
4992 * So if multiview is active we ignore the number of layers in the
4993 * framebuffer and instead we honor the view mask from the subpass.
4994 */
4995 if (is_multiview) {
4996 assert(image->n_planes == 1);
4997 uint32_t pending_clear_mask =
4998 get_multiview_subpass_clear_mask(cmd_state, att_state);
4999
5000 uint32_t layer_idx;
5001 for_each_bit(layer_idx, pending_clear_mask) {
5002 uint32_t layer =
5003 iview->planes[0].isl.base_array_layer + layer_idx;
5004
5005 anv_image_clear_color(cmd_buffer, image,
5006 VK_IMAGE_ASPECT_COLOR_BIT,
5007 att_state->aux_usage,
5008 iview->planes[0].isl.format,
5009 iview->planes[0].isl.swizzle,
5010 iview->planes[0].isl.base_level,
5011 layer, 1,
5012 render_area,
5013 vk_to_isl_color(att_state->clear_value.color));
5014 }
5015
5016 att_state->pending_clear_views &= ~pending_clear_mask;
5017 } else if (clear_layer_count > 0) {
5018 assert(image->n_planes == 1);
5019 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5020 att_state->aux_usage,
5021 iview->planes[0].isl.format,
5022 iview->planes[0].isl.swizzle,
5023 iview->planes[0].isl.base_level,
5024 base_clear_layer, clear_layer_count,
5025 render_area,
5026 vk_to_isl_color(att_state->clear_value.color));
5027 }
5028 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
5029 VK_IMAGE_ASPECT_STENCIL_BIT)) {
5030 if (att_state->fast_clear && !is_multiview) {
5031 /* We currently only support HiZ for single-layer images */
5032 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5033 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
5034 assert(iview->planes[0].isl.base_level == 0);
5035 assert(iview->planes[0].isl.base_array_layer == 0);
5036 assert(fb->layers == 1);
5037 }
5038
5039 anv_image_hiz_clear(cmd_buffer, image,
5040 att_state->pending_clear_aspects,
5041 iview->planes[0].isl.base_level,
5042 iview->planes[0].isl.base_array_layer,
5043 fb->layers, render_area,
5044 att_state->clear_value.depthStencil.stencil);
5045 } else if (is_multiview) {
5046 uint32_t pending_clear_mask =
5047 get_multiview_subpass_clear_mask(cmd_state, att_state);
5048
5049 uint32_t layer_idx;
5050 for_each_bit(layer_idx, pending_clear_mask) {
5051 uint32_t layer =
5052 iview->planes[0].isl.base_array_layer + layer_idx;
5053
5054 anv_image_clear_depth_stencil(cmd_buffer, image,
5055 att_state->pending_clear_aspects,
5056 att_state->aux_usage,
5057 iview->planes[0].isl.base_level,
5058 layer, 1,
5059 render_area,
5060 att_state->clear_value.depthStencil.depth,
5061 att_state->clear_value.depthStencil.stencil);
5062 }
5063
5064 att_state->pending_clear_views &= ~pending_clear_mask;
5065 } else {
5066 anv_image_clear_depth_stencil(cmd_buffer, image,
5067 att_state->pending_clear_aspects,
5068 att_state->aux_usage,
5069 iview->planes[0].isl.base_level,
5070 iview->planes[0].isl.base_array_layer,
5071 fb->layers, render_area,
5072 att_state->clear_value.depthStencil.depth,
5073 att_state->clear_value.depthStencil.stencil);
5074 }
5075 } else {
5076 assert(att_state->pending_clear_aspects == 0);
5077 }
5078
5079 if (GEN_GEN < 10 &&
5080 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5081 image->planes[0].aux_usage != ISL_AUX_USAGE_NONE &&
5082 iview->planes[0].isl.base_level == 0 &&
5083 iview->planes[0].isl.base_array_layer == 0) {
5084 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
5085 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
5086 image, VK_IMAGE_ASPECT_COLOR_BIT,
5087 false /* copy to ss */);
5088 }
5089
5090 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
5091 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
5092 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
5093 image, VK_IMAGE_ASPECT_COLOR_BIT,
5094 false /* copy to ss */);
5095 }
5096 }
5097
5098 if (subpass->attachments[i].usage ==
5099 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
5100 /* We assume that if we're starting a subpass, we're going to do some
5101 * rendering so we may end up with compressed data.
5102 */
5103 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
5104 VK_IMAGE_ASPECT_COLOR_BIT,
5105 att_state->aux_usage,
5106 iview->planes[0].isl.base_level,
5107 iview->planes[0].isl.base_array_layer,
5108 fb->layers);
5109 } else if (subpass->attachments[i].usage ==
5110 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
5111 /* We may be writing depth or stencil so we need to mark the surface.
5112 * Unfortunately, there's no way to know at this point whether the
5113 * depth or stencil tests used will actually write to the surface.
5114 *
5115 * Even though stencil may be plane 1, it always shares a base_level
5116 * with depth.
5117 */
5118 const struct isl_view *ds_view = &iview->planes[0].isl;
5119 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
5120 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
5121 VK_IMAGE_ASPECT_DEPTH_BIT,
5122 att_state->aux_usage,
5123 ds_view->base_level,
5124 ds_view->base_array_layer,
5125 fb->layers);
5126 }
5127 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
5128 /* Even though stencil may be plane 1, it always shares a
5129 * base_level with depth.
5130 */
5131 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
5132 VK_IMAGE_ASPECT_STENCIL_BIT,
5133 ISL_AUX_USAGE_NONE,
5134 ds_view->base_level,
5135 ds_view->base_array_layer,
5136 fb->layers);
5137 }
5138 }
5139
5140 /* If multiview is enabled, then we are only done clearing when we no
5141 * longer have pending layers to clear, or when we have processed the
5142 * last subpass that uses this attachment.
5143 */
5144 if (!is_multiview ||
5145 att_state->pending_clear_views == 0 ||
5146 current_subpass_is_last_for_attachment(cmd_state, a)) {
5147 att_state->pending_clear_aspects = 0;
5148 }
5149
5150 att_state->pending_load_aspects = 0;
5151 }
5152
5153 cmd_buffer_emit_depth_stencil(cmd_buffer);
5154
5155 #if GEN_GEN >= 11
5156 /* The PIPE_CONTROL command description says:
5157 *
5158 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
5159 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
5160 * Target Cache Flush by enabling this bit. When render target flush
5161 * is set due to new association of BTI, PS Scoreboard Stall bit must
5162 * be set in this packet."
5163 */
5164 cmd_buffer->state.pending_pipe_bits |=
5165 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
5166 ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
5167 #endif
5168 }
5169
5170 static enum blorp_filter
5171 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
5172 {
5173 switch (vk_mode) {
5174 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
5175 return BLORP_FILTER_SAMPLE_0;
5176 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
5177 return BLORP_FILTER_AVERAGE;
5178 case VK_RESOLVE_MODE_MIN_BIT_KHR:
5179 return BLORP_FILTER_MIN_SAMPLE;
5180 case VK_RESOLVE_MODE_MAX_BIT_KHR:
5181 return BLORP_FILTER_MAX_SAMPLE;
5182 default:
5183 return BLORP_FILTER_NONE;
5184 }
5185 }
5186
5187 static void
5188 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
5189 {
5190 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5191 struct anv_subpass *subpass = cmd_state->subpass;
5192 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
5193 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
5194
5195 if (subpass->has_color_resolve) {
5196 /* We are about to do some MSAA resolves. We need to flush so that the
5197 * result of writes to the MSAA color attachments show up in the sampler
5198 * when we blit to the single-sampled resolve target.
5199 */
5200 cmd_buffer->state.pending_pipe_bits |=
5201 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5202 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
5203
5204 for (uint32_t i = 0; i < subpass->color_count; ++i) {
5205 uint32_t src_att = subpass->color_attachments[i].attachment;
5206 uint32_t dst_att = subpass->resolve_attachments[i].attachment;
5207
5208 if (dst_att == VK_ATTACHMENT_UNUSED)
5209 continue;
5210
5211 assert(src_att < cmd_buffer->state.pass->attachment_count);
5212 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5213
5214 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5215 /* From the Vulkan 1.0 spec:
5216 *
5217 * If the first use of an attachment in a render pass is as a
5218 * resolve attachment, then the loadOp is effectively ignored
5219 * as the resolve is guaranteed to overwrite all pixels in the
5220 * render area.
5221 */
5222 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5223 }
5224
5225 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5226 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5227
5228 const VkRect2D render_area = cmd_buffer->state.render_area;
5229
5230 enum isl_aux_usage src_aux_usage =
5231 cmd_buffer->state.attachments[src_att].aux_usage;
5232 enum isl_aux_usage dst_aux_usage =
5233 cmd_buffer->state.attachments[dst_att].aux_usage;
5234
5235 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
5236 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
5237
5238 anv_image_msaa_resolve(cmd_buffer,
5239 src_iview->image, src_aux_usage,
5240 src_iview->planes[0].isl.base_level,
5241 src_iview->planes[0].isl.base_array_layer,
5242 dst_iview->image, dst_aux_usage,
5243 dst_iview->planes[0].isl.base_level,
5244 dst_iview->planes[0].isl.base_array_layer,
5245 VK_IMAGE_ASPECT_COLOR_BIT,
5246 render_area.offset.x, render_area.offset.y,
5247 render_area.offset.x, render_area.offset.y,
5248 render_area.extent.width,
5249 render_area.extent.height,
5250 fb->layers, BLORP_FILTER_NONE);
5251 }
5252 }
5253
5254 if (subpass->ds_resolve_attachment) {
5255 /* We are about to do some MSAA resolves. We need to flush so that the
5256 * result of writes to the MSAA depth attachments show up in the sampler
5257 * when we blit to the single-sampled resolve target.
5258 */
5259 cmd_buffer->state.pending_pipe_bits |=
5260 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5261 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
5262
5263 uint32_t src_att = subpass->depth_stencil_attachment->attachment;
5264 uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
5265
5266 assert(src_att < cmd_buffer->state.pass->attachment_count);
5267 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5268
5269 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5270 /* From the Vulkan 1.0 spec:
5271 *
5272 * If the first use of an attachment in a render pass is as a
5273 * resolve attachment, then the loadOp is effectively ignored
5274 * as the resolve is guaranteed to overwrite all pixels in the
5275 * render area.
5276 */
5277 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5278 }
5279
5280 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5281 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5282
5283 const VkRect2D render_area = cmd_buffer->state.render_area;
5284
5285 struct anv_attachment_state *src_state =
5286 &cmd_state->attachments[src_att];
5287 struct anv_attachment_state *dst_state =
5288 &cmd_state->attachments[dst_att];
5289
5290 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
5291 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5292
5293 /* MSAA resolves sample from the source attachment. Transition the
5294 * depth attachment first to get rid of any HiZ that we may not be
5295 * able to handle.
5296 */
5297 transition_depth_buffer(cmd_buffer, src_iview->image,
5298 src_state->current_layout,
5299 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5300 src_state->aux_usage =
5301 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
5302 VK_IMAGE_ASPECT_DEPTH_BIT,
5303 VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
5304 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5305 src_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5306
5307 /* MSAA resolves write to the resolve attachment as if it were any
5308 * other transfer op. Transition the resolve attachment accordingly.
5309 */
5310 VkImageLayout dst_initial_layout = dst_state->current_layout;
5311
5312 /* If our render area is the entire size of the image, we're going to
5313 * blow it all away so we can claim the initial layout is UNDEFINED
5314 * and we'll get a HiZ ambiguate instead of a resolve.
5315 */
5316 if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
5317 render_area.offset.x == 0 && render_area.offset.y == 0 &&
5318 render_area.extent.width == dst_iview->extent.width &&
5319 render_area.extent.height == dst_iview->extent.height)
5320 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5321
5322 transition_depth_buffer(cmd_buffer, dst_iview->image,
5323 dst_initial_layout,
5324 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5325 dst_state->aux_usage =
5326 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
5327 VK_IMAGE_ASPECT_DEPTH_BIT,
5328 VK_IMAGE_USAGE_TRANSFER_DST_BIT,
5329 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5330 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5331
5332 enum blorp_filter filter =
5333 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
5334
5335 anv_image_msaa_resolve(cmd_buffer,
5336 src_iview->image, src_state->aux_usage,
5337 src_iview->planes[0].isl.base_level,
5338 src_iview->planes[0].isl.base_array_layer,
5339 dst_iview->image, dst_state->aux_usage,
5340 dst_iview->planes[0].isl.base_level,
5341 dst_iview->planes[0].isl.base_array_layer,
5342 VK_IMAGE_ASPECT_DEPTH_BIT,
5343 render_area.offset.x, render_area.offset.y,
5344 render_area.offset.x, render_area.offset.y,
5345 render_area.extent.width,
5346 render_area.extent.height,
5347 fb->layers, filter);
5348 }
5349
5350 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
5351 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5352
5353 src_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5354 dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5355
5356 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
5357 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
5358
5359 enum blorp_filter filter =
5360 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
5361
5362 anv_image_msaa_resolve(cmd_buffer,
5363 src_iview->image, src_aux_usage,
5364 src_iview->planes[0].isl.base_level,
5365 src_iview->planes[0].isl.base_array_layer,
5366 dst_iview->image, dst_aux_usage,
5367 dst_iview->planes[0].isl.base_level,
5368 dst_iview->planes[0].isl.base_array_layer,
5369 VK_IMAGE_ASPECT_STENCIL_BIT,
5370 render_area.offset.x, render_area.offset.y,
5371 render_area.offset.x, render_area.offset.y,
5372 render_area.extent.width,
5373 render_area.extent.height,
5374 fb->layers, filter);
5375 }
5376 }
5377
5378 #if GEN_GEN == 7
5379 /* On gen7, we have to store a texturable version of the stencil buffer in
5380 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
5381 * forth at strategic points. Stencil writes are only allowed in following
5382 * layouts:
5383 *
5384 * - VK_IMAGE_LAYOUT_GENERAL
5385 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
5386 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
5387 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
5388 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
5389 *
5390 * For general, we have no nice opportunity to transition so we do the copy
5391 * to the shadow unconditionally at the end of the subpass. For transfer
5392 * destinations, we can update it as part of the transfer op. For the other
5393 * layouts, we delay the copy until a transition into some other layout.
5394 */
5395 if (subpass->depth_stencil_attachment) {
5396 uint32_t a = subpass->depth_stencil_attachment->attachment;
5397 assert(a != VK_ATTACHMENT_UNUSED);
5398
5399 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5400 struct anv_image_view *iview = cmd_state->attachments[a].image_view;;
5401 const struct anv_image *image = iview->image;
5402
5403 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5404 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
5405 VK_IMAGE_ASPECT_STENCIL_BIT);
5406
5407 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
5408 att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) {
5409 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
5410 anv_image_copy_to_shadow(cmd_buffer, image,
5411 VK_IMAGE_ASPECT_STENCIL_BIT,
5412 iview->planes[plane].isl.base_level, 1,
5413 iview->planes[plane].isl.base_array_layer,
5414 fb->layers);
5415 }
5416 }
5417 }
5418 #endif /* GEN_GEN == 7 */
5419
5420 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
5421 const uint32_t a = subpass->attachments[i].attachment;
5422 if (a == VK_ATTACHMENT_UNUSED)
5423 continue;
5424
5425 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
5426 continue;
5427
5428 assert(a < cmd_state->pass->attachment_count);
5429 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5430 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
5431 const struct anv_image *image = iview->image;
5432
5433 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5434 image->vk_format != iview->vk_format) {
5435 enum anv_fast_clear_type fast_clear_type =
5436 anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
5437 image, VK_IMAGE_ASPECT_COLOR_BIT,
5438 att_state->current_layout);
5439
5440 /* If any clear color was used, flush it down the aux surfaces. If we
5441 * don't do it now using the view's format we might use the clear
5442 * color incorrectly in the following resolves (for example with an
5443 * SRGB view & a UNORM image).
5444 */
5445 if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
5446 anv_perf_warn(cmd_buffer->device, iview,
5447 "Doing a partial resolve to get rid of clear color at the "
5448 "end of a renderpass due to an image/view format mismatch");
5449
5450 uint32_t base_layer, layer_count;
5451 if (image->type == VK_IMAGE_TYPE_3D) {
5452 base_layer = 0;
5453 layer_count = anv_minify(iview->image->extent.depth,
5454 iview->planes[0].isl.base_level);
5455 } else {
5456 base_layer = iview->planes[0].isl.base_array_layer;
5457 layer_count = fb->layers;
5458 }
5459
5460 for (uint32_t a = 0; a < layer_count; a++) {
5461 uint32_t array_layer = base_layer + a;
5462 if (image->samples == 1) {
5463 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
5464 iview->planes[0].isl.format,
5465 VK_IMAGE_ASPECT_COLOR_BIT,
5466 iview->planes[0].isl.base_level,
5467 array_layer,
5468 ISL_AUX_OP_PARTIAL_RESOLVE,
5469 ANV_FAST_CLEAR_NONE);
5470 } else {
5471 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
5472 iview->planes[0].isl.format,
5473 VK_IMAGE_ASPECT_COLOR_BIT,
5474 base_layer,
5475 ISL_AUX_OP_PARTIAL_RESOLVE,
5476 ANV_FAST_CLEAR_NONE);
5477 }
5478 }
5479 }
5480 }
5481
5482 /* Transition the image into the final layout for this render pass */
5483 VkImageLayout target_layout =
5484 cmd_state->pass->attachments[a].final_layout;
5485 VkImageLayout target_stencil_layout =
5486 cmd_state->pass->attachments[a].stencil_final_layout;
5487
5488 uint32_t base_layer, layer_count;
5489 if (image->type == VK_IMAGE_TYPE_3D) {
5490 base_layer = 0;
5491 layer_count = anv_minify(iview->image->extent.depth,
5492 iview->planes[0].isl.base_level);
5493 } else {
5494 base_layer = iview->planes[0].isl.base_array_layer;
5495 layer_count = fb->layers;
5496 }
5497
5498 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
5499 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5500 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5501 iview->planes[0].isl.base_level, 1,
5502 base_layer, layer_count,
5503 att_state->current_layout, target_layout);
5504 }
5505
5506 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5507 transition_depth_buffer(cmd_buffer, image,
5508 att_state->current_layout, target_layout);
5509 }
5510
5511 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5512 transition_stencil_buffer(cmd_buffer, image,
5513 iview->planes[0].isl.base_level, 1,
5514 base_layer, layer_count,
5515 att_state->current_stencil_layout,
5516 target_stencil_layout);
5517 }
5518 }
5519
5520 /* Accumulate any subpass flushes that need to happen after the subpass.
5521 * Yes, they do get accumulated twice in the NextSubpass case but since
5522 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
5523 * ORing the bits in twice so it's harmless.
5524 */
5525 cmd_buffer->state.pending_pipe_bits |=
5526 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
5527 }
5528
5529 void genX(CmdBeginRenderPass)(
5530 VkCommandBuffer commandBuffer,
5531 const VkRenderPassBeginInfo* pRenderPassBegin,
5532 VkSubpassContents contents)
5533 {
5534 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5535 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
5536 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
5537
5538 cmd_buffer->state.framebuffer = framebuffer;
5539 cmd_buffer->state.pass = pass;
5540 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
5541 VkResult result =
5542 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
5543
5544 /* If we failed to setup the attachments we should not try to go further */
5545 if (result != VK_SUCCESS) {
5546 assert(anv_batch_has_error(&cmd_buffer->batch));
5547 return;
5548 }
5549
5550 genX(flush_pipeline_select_3d)(cmd_buffer);
5551
5552 cmd_buffer_begin_subpass(cmd_buffer, 0);
5553 }
5554
5555 void genX(CmdBeginRenderPass2)(
5556 VkCommandBuffer commandBuffer,
5557 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
5558 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
5559 {
5560 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
5561 pSubpassBeginInfo->contents);
5562 }
5563
5564 void genX(CmdNextSubpass)(
5565 VkCommandBuffer commandBuffer,
5566 VkSubpassContents contents)
5567 {
5568 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5569
5570 if (anv_batch_has_error(&cmd_buffer->batch))
5571 return;
5572
5573 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
5574
5575 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
5576 cmd_buffer_end_subpass(cmd_buffer);
5577 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
5578 }
5579
5580 void genX(CmdNextSubpass2)(
5581 VkCommandBuffer commandBuffer,
5582 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
5583 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5584 {
5585 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
5586 }
5587
5588 void genX(CmdEndRenderPass)(
5589 VkCommandBuffer commandBuffer)
5590 {
5591 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5592
5593 if (anv_batch_has_error(&cmd_buffer->batch))
5594 return;
5595
5596 cmd_buffer_end_subpass(cmd_buffer);
5597
5598 cmd_buffer->state.hiz_enabled = false;
5599
5600 #ifndef NDEBUG
5601 anv_dump_add_attachments(cmd_buffer);
5602 #endif
5603
5604 /* Remove references to render pass specific state. This enables us to
5605 * detect whether or not we're in a renderpass.
5606 */
5607 cmd_buffer->state.framebuffer = NULL;
5608 cmd_buffer->state.pass = NULL;
5609 cmd_buffer->state.subpass = NULL;
5610 }
5611
5612 void genX(CmdEndRenderPass2)(
5613 VkCommandBuffer commandBuffer,
5614 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5615 {
5616 genX(CmdEndRenderPass)(commandBuffer);
5617 }
5618
5619 void
5620 genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
5621 {
5622 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5623 struct gen_mi_builder b;
5624 gen_mi_builder_init(&b, &cmd_buffer->batch);
5625
5626 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
5627 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
5628 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
5629
5630 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
5631 mip.LoadOperation = LOAD_LOADINV;
5632 mip.CombineOperation = COMBINE_SET;
5633 mip.CompareOperation = COMPARE_SRCS_EQUAL;
5634 }
5635 #endif
5636 }
5637
5638 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5639 void genX(CmdBeginConditionalRenderingEXT)(
5640 VkCommandBuffer commandBuffer,
5641 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
5642 {
5643 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5644 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
5645 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5646 struct anv_address value_address =
5647 anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
5648
5649 const bool isInverted = pConditionalRenderingBegin->flags &
5650 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
5651
5652 cmd_state->conditional_render_enabled = true;
5653
5654 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5655
5656 struct gen_mi_builder b;
5657 gen_mi_builder_init(&b, &cmd_buffer->batch);
5658
5659 /* Section 19.4 of the Vulkan 1.1.85 spec says:
5660 *
5661 * If the value of the predicate in buffer memory changes
5662 * while conditional rendering is active, the rendering commands
5663 * may be discarded in an implementation-dependent way.
5664 * Some implementations may latch the value of the predicate
5665 * upon beginning conditional rendering while others
5666 * may read it before every rendering command.
5667 *
5668 * So it's perfectly fine to read a value from the buffer once.
5669 */
5670 struct gen_mi_value value = gen_mi_mem32(value_address);
5671
5672 /* Precompute predicate result, it is necessary to support secondary
5673 * command buffers since it is unknown if conditional rendering is
5674 * inverted when populating them.
5675 */
5676 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
5677 isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
5678 gen_mi_ult(&b, gen_mi_imm(0), value));
5679 }
5680
5681 void genX(CmdEndConditionalRenderingEXT)(
5682 VkCommandBuffer commandBuffer)
5683 {
5684 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5685 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5686
5687 cmd_state->conditional_render_enabled = false;
5688 }
5689 #endif
5690
5691 /* Set of stage bits for which are pipelined, i.e. they get queued by the
5692 * command streamer for later execution.
5693 */
5694 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
5695 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
5696 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
5697 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
5698 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
5699 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
5700 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
5701 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
5702 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
5703 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
5704 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
5705 VK_PIPELINE_STAGE_TRANSFER_BIT | \
5706 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
5707 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
5708 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
5709
5710 void genX(CmdSetEvent)(
5711 VkCommandBuffer commandBuffer,
5712 VkEvent _event,
5713 VkPipelineStageFlags stageMask)
5714 {
5715 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5716 ANV_FROM_HANDLE(anv_event, event, _event);
5717
5718 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5719 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5720
5721 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5722 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5723 pc.StallAtPixelScoreboard = true;
5724 pc.CommandStreamerStallEnable = true;
5725 }
5726
5727 pc.DestinationAddressType = DAT_PPGTT,
5728 pc.PostSyncOperation = WriteImmediateData,
5729 pc.Address = (struct anv_address) {
5730 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5731 event->state.offset
5732 };
5733 pc.ImmediateData = VK_EVENT_SET;
5734 }
5735 }
5736
5737 void genX(CmdResetEvent)(
5738 VkCommandBuffer commandBuffer,
5739 VkEvent _event,
5740 VkPipelineStageFlags stageMask)
5741 {
5742 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5743 ANV_FROM_HANDLE(anv_event, event, _event);
5744
5745 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5746 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5747
5748 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5749 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5750 pc.StallAtPixelScoreboard = true;
5751 pc.CommandStreamerStallEnable = true;
5752 }
5753
5754 pc.DestinationAddressType = DAT_PPGTT;
5755 pc.PostSyncOperation = WriteImmediateData;
5756 pc.Address = (struct anv_address) {
5757 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5758 event->state.offset
5759 };
5760 pc.ImmediateData = VK_EVENT_RESET;
5761 }
5762 }
5763
5764 void genX(CmdWaitEvents)(
5765 VkCommandBuffer commandBuffer,
5766 uint32_t eventCount,
5767 const VkEvent* pEvents,
5768 VkPipelineStageFlags srcStageMask,
5769 VkPipelineStageFlags destStageMask,
5770 uint32_t memoryBarrierCount,
5771 const VkMemoryBarrier* pMemoryBarriers,
5772 uint32_t bufferMemoryBarrierCount,
5773 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
5774 uint32_t imageMemoryBarrierCount,
5775 const VkImageMemoryBarrier* pImageMemoryBarriers)
5776 {
5777 #if GEN_GEN >= 8
5778 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5779
5780 for (uint32_t i = 0; i < eventCount; i++) {
5781 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
5782
5783 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
5784 sem.WaitMode = PollingMode,
5785 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
5786 sem.SemaphoreDataDword = VK_EVENT_SET,
5787 sem.SemaphoreAddress = (struct anv_address) {
5788 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5789 event->state.offset
5790 };
5791 }
5792 }
5793 #else
5794 anv_finishme("Implement events on gen7");
5795 #endif
5796
5797 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
5798 false, /* byRegion */
5799 memoryBarrierCount, pMemoryBarriers,
5800 bufferMemoryBarrierCount, pBufferMemoryBarriers,
5801 imageMemoryBarrierCount, pImageMemoryBarriers);
5802 }
5803
5804 VkResult genX(CmdSetPerformanceOverrideINTEL)(
5805 VkCommandBuffer commandBuffer,
5806 const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
5807 {
5808 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5809
5810 switch (pOverrideInfo->type) {
5811 case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
5812 uint32_t dw;
5813
5814 #if GEN_GEN >= 9
5815 anv_pack_struct(&dw, GENX(CS_DEBUG_MODE2),
5816 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5817 .MediaInstructionDisable = pOverrideInfo->enable,
5818 ._3DRenderingInstructionDisableMask = true,
5819 .MediaInstructionDisableMask = true);
5820 emit_lri(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2_num), dw);
5821 #else
5822 anv_pack_struct(&dw, GENX(INSTPM),
5823 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5824 .MediaInstructionDisable = pOverrideInfo->enable,
5825 ._3DRenderingInstructionDisableMask = true,
5826 .MediaInstructionDisableMask = true);
5827 emit_lri(&cmd_buffer->batch, GENX(INSTPM_num), dw);
5828 #endif
5829 break;
5830 }
5831
5832 case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
5833 if (pOverrideInfo->enable) {
5834 /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
5835 cmd_buffer->state.pending_pipe_bits |=
5836 ANV_PIPE_FLUSH_BITS |
5837 ANV_PIPE_INVALIDATE_BITS;
5838 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5839 }
5840 break;
5841
5842 default:
5843 unreachable("Invalid override");
5844 }
5845
5846 return VK_SUCCESS;
5847 }
5848
5849 VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
5850 VkCommandBuffer commandBuffer,
5851 const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
5852 {
5853 /* TODO: Waiting on the register to write, might depend on generation. */
5854
5855 return VK_SUCCESS;
5856 }