anv: implement gen9 post sync pipe control workaround
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30 #include "util/fast_idiv_by_const.h"
31
32 #include "common/gen_aux_map.h"
33 #include "common/gen_l3_config.h"
34 #include "genxml/gen_macros.h"
35 #include "genxml/genX_pack.h"
36
37 /* We reserve GPR 14 and 15 for conditional rendering */
38 #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
39 #define __gen_get_batch_dwords anv_batch_emit_dwords
40 #define __gen_address_offset anv_address_add
41 #include "common/gen_mi_builder.h"
42
43 static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
44 uint32_t pipeline);
45
46 static void
47 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
48 {
49 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
50 lri.RegisterOffset = reg;
51 lri.DataDWord = imm;
52 }
53 }
54
55 void
56 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
57 {
58 struct anv_device *device = cmd_buffer->device;
59 UNUSED const struct gen_device_info *devinfo = &device->info;
60 uint32_t mocs = device->isl_dev.mocs.internal;
61
62 /* If we are emitting a new state base address we probably need to re-emit
63 * binding tables.
64 */
65 cmd_buffer->state.descriptors_dirty |= ~0;
66
67 /* Emit a render target cache flush.
68 *
69 * This isn't documented anywhere in the PRM. However, it seems to be
70 * necessary prior to changing the surface state base adress. Without
71 * this, we get GPU hangs when using multi-level command buffers which
72 * clear depth, reset state base address, and then go render stuff.
73 */
74 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
75 pc.DCFlushEnable = true;
76 pc.RenderTargetCacheFlushEnable = true;
77 pc.CommandStreamerStallEnable = true;
78 #if GEN_GEN >= 12
79 pc.TileCacheFlushEnable = true;
80 #endif
81 #if GEN_GEN == 12
82 /* GEN:BUG:1606662791:
83 *
84 * Software must program PIPE_CONTROL command with "HDC Pipeline
85 * Flush" prior to programming of the below two non-pipeline state :
86 * * STATE_BASE_ADDRESS
87 * * 3DSTATE_BINDING_TABLE_POOL_ALLOC
88 */
89 if (devinfo->revision == 0 /* A0 */)
90 pc.HDCPipelineFlushEnable = true;
91 #endif
92 }
93
94 #if GEN_GEN == 12
95 /* GEN:BUG:1607854226:
96 *
97 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
98 * mode by putting the pipeline temporarily in 3D mode.
99 */
100 uint32_t gen12_wa_pipeline = cmd_buffer->state.current_pipeline;
101 genX(flush_pipeline_select_3d)(cmd_buffer);
102 #endif
103
104 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
105 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
106 sba.GeneralStateMOCS = mocs;
107 sba.GeneralStateBaseAddressModifyEnable = true;
108
109 sba.StatelessDataPortAccessMOCS = mocs;
110
111 sba.SurfaceStateBaseAddress =
112 anv_cmd_buffer_surface_base_address(cmd_buffer);
113 sba.SurfaceStateMOCS = mocs;
114 sba.SurfaceStateBaseAddressModifyEnable = true;
115
116 sba.DynamicStateBaseAddress =
117 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
118 sba.DynamicStateMOCS = mocs;
119 sba.DynamicStateBaseAddressModifyEnable = true;
120
121 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
122 sba.IndirectObjectMOCS = mocs;
123 sba.IndirectObjectBaseAddressModifyEnable = true;
124
125 sba.InstructionBaseAddress =
126 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
127 sba.InstructionMOCS = mocs;
128 sba.InstructionBaseAddressModifyEnable = true;
129
130 # if (GEN_GEN >= 8)
131 /* Broadwell requires that we specify a buffer size for a bunch of
132 * these fields. However, since we will be growing the BO's live, we
133 * just set them all to the maximum.
134 */
135 sba.GeneralStateBufferSize = 0xfffff;
136 sba.IndirectObjectBufferSize = 0xfffff;
137 if (device->physical->use_softpin) {
138 /* With softpin, we use fixed addresses so we actually know how big
139 * our base addresses are.
140 */
141 sba.DynamicStateBufferSize = DYNAMIC_STATE_POOL_SIZE / 4096;
142 sba.InstructionBufferSize = INSTRUCTION_STATE_POOL_SIZE / 4096;
143 } else {
144 sba.DynamicStateBufferSize = 0xfffff;
145 sba.InstructionBufferSize = 0xfffff;
146 }
147 sba.GeneralStateBufferSizeModifyEnable = true;
148 sba.IndirectObjectBufferSizeModifyEnable = true;
149 sba.DynamicStateBufferSizeModifyEnable = true;
150 sba.InstructionBuffersizeModifyEnable = true;
151 # else
152 /* On gen7, we have upper bounds instead. According to the docs,
153 * setting an upper bound of zero means that no bounds checking is
154 * performed so, in theory, we should be able to leave them zero.
155 * However, border color is broken and the GPU bounds-checks anyway.
156 * To avoid this and other potential problems, we may as well set it
157 * for everything.
158 */
159 sba.GeneralStateAccessUpperBound =
160 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
161 sba.GeneralStateAccessUpperBoundModifyEnable = true;
162 sba.DynamicStateAccessUpperBound =
163 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
164 sba.DynamicStateAccessUpperBoundModifyEnable = true;
165 sba.InstructionAccessUpperBound =
166 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
167 sba.InstructionAccessUpperBoundModifyEnable = true;
168 # endif
169 # if (GEN_GEN >= 9)
170 if (cmd_buffer->device->physical->use_softpin) {
171 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
172 .bo = device->surface_state_pool.block_pool.bo,
173 .offset = 0,
174 };
175 sba.BindlessSurfaceStateSize = (1 << 20) - 1;
176 } else {
177 sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
178 sba.BindlessSurfaceStateSize = 0;
179 }
180 sba.BindlessSurfaceStateMOCS = mocs;
181 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
182 # endif
183 # if (GEN_GEN >= 10)
184 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
185 sba.BindlessSamplerStateMOCS = mocs;
186 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
187 sba.BindlessSamplerStateBufferSize = 0;
188 # endif
189 }
190
191 #if GEN_GEN == 12
192 /* GEN:BUG:1607854226:
193 *
194 * Put the pipeline back into its current mode.
195 */
196 if (gen12_wa_pipeline != UINT32_MAX)
197 genX(flush_pipeline_select)(cmd_buffer, gen12_wa_pipeline);
198 #endif
199
200 /* After re-setting the surface state base address, we have to do some
201 * cache flusing so that the sampler engine will pick up the new
202 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
203 * Shared Function > 3D Sampler > State > State Caching (page 96):
204 *
205 * Coherency with system memory in the state cache, like the texture
206 * cache is handled partially by software. It is expected that the
207 * command stream or shader will issue Cache Flush operation or
208 * Cache_Flush sampler message to ensure that the L1 cache remains
209 * coherent with system memory.
210 *
211 * [...]
212 *
213 * Whenever the value of the Dynamic_State_Base_Addr,
214 * Surface_State_Base_Addr are altered, the L1 state cache must be
215 * invalidated to ensure the new surface or sampler state is fetched
216 * from system memory.
217 *
218 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
219 * which, according the PIPE_CONTROL instruction documentation in the
220 * Broadwell PRM:
221 *
222 * Setting this bit is independent of any other bit in this packet.
223 * This bit controls the invalidation of the L1 and L2 state caches
224 * at the top of the pipe i.e. at the parsing time.
225 *
226 * Unfortunately, experimentation seems to indicate that state cache
227 * invalidation through a PIPE_CONTROL does nothing whatsoever in
228 * regards to surface state and binding tables. In stead, it seems that
229 * invalidating the texture cache is what is actually needed.
230 *
231 * XXX: As far as we have been able to determine through
232 * experimentation, shows that flush the texture cache appears to be
233 * sufficient. The theory here is that all of the sampling/rendering
234 * units cache the binding table in the texture cache. However, we have
235 * yet to be able to actually confirm this.
236 */
237 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
238 pc.TextureCacheInvalidationEnable = true;
239 pc.ConstantCacheInvalidationEnable = true;
240 pc.StateCacheInvalidationEnable = true;
241 }
242 }
243
244 static void
245 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
246 struct anv_state state, struct anv_address addr)
247 {
248 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
249
250 VkResult result =
251 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
252 state.offset + isl_dev->ss.addr_offset,
253 addr.bo, addr.offset, NULL);
254 if (result != VK_SUCCESS)
255 anv_batch_set_error(&cmd_buffer->batch, result);
256 }
257
258 static void
259 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
260 struct anv_surface_state state)
261 {
262 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
263
264 assert(!anv_address_is_null(state.address));
265 add_surface_reloc(cmd_buffer, state.state, state.address);
266
267 if (!anv_address_is_null(state.aux_address)) {
268 VkResult result =
269 anv_reloc_list_add(&cmd_buffer->surface_relocs,
270 &cmd_buffer->pool->alloc,
271 state.state.offset + isl_dev->ss.aux_addr_offset,
272 state.aux_address.bo,
273 state.aux_address.offset,
274 NULL);
275 if (result != VK_SUCCESS)
276 anv_batch_set_error(&cmd_buffer->batch, result);
277 }
278
279 if (!anv_address_is_null(state.clear_address)) {
280 VkResult result =
281 anv_reloc_list_add(&cmd_buffer->surface_relocs,
282 &cmd_buffer->pool->alloc,
283 state.state.offset +
284 isl_dev->ss.clear_color_state_offset,
285 state.clear_address.bo,
286 state.clear_address.offset,
287 NULL);
288 if (result != VK_SUCCESS)
289 anv_batch_set_error(&cmd_buffer->batch, result);
290 }
291 }
292
293 static void
294 color_attachment_compute_aux_usage(struct anv_device * device,
295 struct anv_cmd_state * cmd_state,
296 uint32_t att, VkRect2D render_area,
297 union isl_color_value *fast_clear_color)
298 {
299 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
300 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
301
302 assert(iview->n_planes == 1);
303
304 if (iview->planes[0].isl.base_array_layer >=
305 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
306 iview->planes[0].isl.base_level)) {
307 /* There is no aux buffer which corresponds to the level and layer(s)
308 * being accessed.
309 */
310 att_state->aux_usage = ISL_AUX_USAGE_NONE;
311 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
312 att_state->fast_clear = false;
313 return;
314 }
315
316 att_state->aux_usage =
317 anv_layout_to_aux_usage(&device->info, iview->image,
318 VK_IMAGE_ASPECT_COLOR_BIT,
319 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
320 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
321
322 /* If we don't have aux, then we should have returned early in the layer
323 * check above. If we got here, we must have something.
324 */
325 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
326
327 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
328 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
329 att_state->input_aux_usage = att_state->aux_usage;
330 } else {
331 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
332 *
333 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
334 * setting is only allowed if Surface Format supported for Fast
335 * Clear. In addition, if the surface is bound to the sampling
336 * engine, Surface Format must be supported for Render Target
337 * Compression for surfaces bound to the sampling engine."
338 *
339 * In other words, we can only sample from a fast-cleared image if it
340 * also supports color compression.
341 */
342 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format) &&
343 isl_format_supports_ccs_d(&device->info, iview->planes[0].isl.format)) {
344 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
345
346 /* While fast-clear resolves and partial resolves are fairly cheap in the
347 * case where you render to most of the pixels, full resolves are not
348 * because they potentially involve reading and writing the entire
349 * framebuffer. If we can't texture with CCS_E, we should leave it off and
350 * limit ourselves to fast clears.
351 */
352 if (cmd_state->pass->attachments[att].first_subpass_layout ==
353 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
354 anv_perf_warn(device, iview->image,
355 "Not temporarily enabling CCS_E.");
356 }
357 } else {
358 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
359 }
360 }
361
362 assert(iview->image->planes[0].aux_surface.isl.usage &
363 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
364
365 union isl_color_value clear_color = {};
366 anv_clear_color_from_att_state(&clear_color, att_state, iview);
367
368 att_state->clear_color_is_zero_one =
369 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
370 att_state->clear_color_is_zero =
371 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
372
373 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
374 /* Start by getting the fast clear type. We use the first subpass
375 * layout here because we don't want to fast-clear if the first subpass
376 * to use the attachment can't handle fast-clears.
377 */
378 enum anv_fast_clear_type fast_clear_type =
379 anv_layout_to_fast_clear_type(&device->info, iview->image,
380 VK_IMAGE_ASPECT_COLOR_BIT,
381 cmd_state->pass->attachments[att].first_subpass_layout);
382 switch (fast_clear_type) {
383 case ANV_FAST_CLEAR_NONE:
384 att_state->fast_clear = false;
385 break;
386 case ANV_FAST_CLEAR_DEFAULT_VALUE:
387 att_state->fast_clear = att_state->clear_color_is_zero;
388 break;
389 case ANV_FAST_CLEAR_ANY:
390 att_state->fast_clear = true;
391 break;
392 }
393
394 /* Potentially, we could do partial fast-clears but doing so has crazy
395 * alignment restrictions. It's easier to just restrict to full size
396 * fast clears for now.
397 */
398 if (render_area.offset.x != 0 ||
399 render_area.offset.y != 0 ||
400 render_area.extent.width != iview->extent.width ||
401 render_area.extent.height != iview->extent.height)
402 att_state->fast_clear = false;
403
404 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
405 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
406 att_state->fast_clear = false;
407
408 /* We only allow fast clears to the first slice of an image (level 0,
409 * layer 0) and only for the entire slice. This guarantees us that, at
410 * any given time, there is only one clear color on any given image at
411 * any given time. At the time of our testing (Jan 17, 2018), there
412 * were no known applications which would benefit from fast-clearing
413 * more than just the first slice.
414 */
415 if (att_state->fast_clear &&
416 (iview->planes[0].isl.base_level > 0 ||
417 iview->planes[0].isl.base_array_layer > 0)) {
418 anv_perf_warn(device, iview->image,
419 "Rendering with multi-lod or multi-layer framebuffer "
420 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
421 "baseArrayLayer > 0. Not fast clearing.");
422 att_state->fast_clear = false;
423 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
424 anv_perf_warn(device, iview->image,
425 "Rendering to a multi-layer framebuffer with "
426 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
427 }
428
429 if (att_state->fast_clear)
430 *fast_clear_color = clear_color;
431 } else {
432 att_state->fast_clear = false;
433 }
434 }
435
436 static void
437 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
438 struct anv_cmd_state *cmd_state,
439 uint32_t att, VkRect2D render_area)
440 {
441 struct anv_render_pass_attachment *pass_att =
442 &cmd_state->pass->attachments[att];
443 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
444 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
445
446 /* These will be initialized after the first subpass transition. */
447 att_state->aux_usage = ISL_AUX_USAGE_NONE;
448 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
449
450 /* This is unused for depth/stencil but valgrind complains if it
451 * isn't initialized
452 */
453 att_state->clear_color_is_zero_one = false;
454
455 if (GEN_GEN == 7) {
456 /* We don't do any HiZ or depth fast-clears on gen7 yet */
457 att_state->fast_clear = false;
458 return;
459 }
460
461 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
462 /* If we're just clearing stencil, we can always HiZ clear */
463 att_state->fast_clear = true;
464 return;
465 }
466
467 /* Default to false for now */
468 att_state->fast_clear = false;
469
470 /* We must have depth in order to have HiZ */
471 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
472 return;
473
474 const enum isl_aux_usage first_subpass_aux_usage =
475 anv_layout_to_aux_usage(&device->info, iview->image,
476 VK_IMAGE_ASPECT_DEPTH_BIT,
477 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
478 pass_att->first_subpass_layout);
479 if (!blorp_can_hiz_clear_depth(&device->info,
480 &iview->image->planes[0].surface.isl,
481 first_subpass_aux_usage,
482 iview->planes[0].isl.base_level,
483 iview->planes[0].isl.base_array_layer,
484 render_area.offset.x,
485 render_area.offset.y,
486 render_area.offset.x +
487 render_area.extent.width,
488 render_area.offset.y +
489 render_area.extent.height))
490 return;
491
492 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
493 return;
494
495 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
496 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
497 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
498 * only supports returning 0.0f. Gens prior to gen8 do not support this
499 * feature at all.
500 */
501 return;
502 }
503
504 /* If we got here, then we can fast clear */
505 att_state->fast_clear = true;
506 }
507
508 static bool
509 need_input_attachment_state(const struct anv_render_pass_attachment *att)
510 {
511 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
512 return false;
513
514 /* We only allocate input attachment states for color surfaces. Compression
515 * is not yet enabled for depth textures and stencil doesn't allow
516 * compression so we can just use the texture surface state from the view.
517 */
518 return vk_format_is_color(att->format);
519 }
520
521 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
522 * the initial layout is undefined, the HiZ buffer and depth buffer will
523 * represent the same data at the end of this operation.
524 */
525 static void
526 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
527 const struct anv_image *image,
528 VkImageLayout initial_layout,
529 VkImageLayout final_layout)
530 {
531 uint32_t depth_plane =
532 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
533 if (image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_NONE)
534 return;
535
536 const enum isl_aux_state initial_state =
537 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
538 VK_IMAGE_ASPECT_DEPTH_BIT,
539 initial_layout);
540 const enum isl_aux_state final_state =
541 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
542 VK_IMAGE_ASPECT_DEPTH_BIT,
543 final_layout);
544
545 const bool initial_depth_valid =
546 isl_aux_state_has_valid_primary(initial_state);
547 const bool initial_hiz_valid =
548 isl_aux_state_has_valid_aux(initial_state);
549 const bool final_needs_depth =
550 isl_aux_state_has_valid_primary(final_state);
551 const bool final_needs_hiz =
552 isl_aux_state_has_valid_aux(final_state);
553
554 /* Getting into the pass-through state for Depth is tricky and involves
555 * both a resolve and an ambiguate. We don't handle that state right now
556 * as anv_layout_to_aux_state never returns it.
557 */
558 assert(final_state != ISL_AUX_STATE_PASS_THROUGH);
559
560 if (final_needs_depth && !initial_depth_valid) {
561 assert(initial_hiz_valid);
562 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
563 0, 0, 1, ISL_AUX_OP_FULL_RESOLVE);
564 } else if (final_needs_hiz && !initial_hiz_valid) {
565 assert(initial_depth_valid);
566 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
567 0, 0, 1, ISL_AUX_OP_AMBIGUATE);
568 }
569 }
570
571 static inline bool
572 vk_image_layout_stencil_write_optimal(VkImageLayout layout)
573 {
574 return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
575 layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
576 layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
577 }
578
579 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
580 * the initial layout is undefined, the HiZ buffer and depth buffer will
581 * represent the same data at the end of this operation.
582 */
583 static void
584 transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
585 const struct anv_image *image,
586 uint32_t base_level, uint32_t level_count,
587 uint32_t base_layer, uint32_t layer_count,
588 VkImageLayout initial_layout,
589 VkImageLayout final_layout)
590 {
591 #if GEN_GEN == 7
592 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
593 VK_IMAGE_ASPECT_STENCIL_BIT);
594
595 /* On gen7, we have to store a texturable version of the stencil buffer in
596 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
597 * forth at strategic points. Stencil writes are only allowed in following
598 * layouts:
599 *
600 * - VK_IMAGE_LAYOUT_GENERAL
601 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
602 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
603 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
604 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
605 *
606 * For general, we have no nice opportunity to transition so we do the copy
607 * to the shadow unconditionally at the end of the subpass. For transfer
608 * destinations, we can update it as part of the transfer op. For the other
609 * layouts, we delay the copy until a transition into some other layout.
610 */
611 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
612 vk_image_layout_stencil_write_optimal(initial_layout) &&
613 !vk_image_layout_stencil_write_optimal(final_layout)) {
614 anv_image_copy_to_shadow(cmd_buffer, image,
615 VK_IMAGE_ASPECT_STENCIL_BIT,
616 base_level, level_count,
617 base_layer, layer_count);
618 }
619 #endif /* GEN_GEN == 7 */
620 }
621
622 #define MI_PREDICATE_SRC0 0x2400
623 #define MI_PREDICATE_SRC1 0x2408
624 #define MI_PREDICATE_RESULT 0x2418
625
626 static void
627 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
628 const struct anv_image *image,
629 VkImageAspectFlagBits aspect,
630 uint32_t level,
631 uint32_t base_layer, uint32_t layer_count,
632 bool compressed)
633 {
634 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
635
636 /* We only have compression tracking for CCS_E */
637 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
638 return;
639
640 for (uint32_t a = 0; a < layer_count; a++) {
641 uint32_t layer = base_layer + a;
642 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
643 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
644 image, aspect,
645 level, layer);
646 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
647 }
648 }
649 }
650
651 static void
652 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
653 const struct anv_image *image,
654 VkImageAspectFlagBits aspect,
655 enum anv_fast_clear_type fast_clear)
656 {
657 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
658 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
659 image, aspect);
660 sdi.ImmediateData = fast_clear;
661 }
662
663 /* Whenever we have fast-clear, we consider that slice to be compressed.
664 * This makes building predicates much easier.
665 */
666 if (fast_clear != ANV_FAST_CLEAR_NONE)
667 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
668 }
669
670 /* This is only really practical on haswell and above because it requires
671 * MI math in order to get it correct.
672 */
673 #if GEN_GEN >= 8 || GEN_IS_HASWELL
674 static void
675 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
676 const struct anv_image *image,
677 VkImageAspectFlagBits aspect,
678 uint32_t level, uint32_t array_layer,
679 enum isl_aux_op resolve_op,
680 enum anv_fast_clear_type fast_clear_supported)
681 {
682 struct gen_mi_builder b;
683 gen_mi_builder_init(&b, &cmd_buffer->batch);
684
685 const struct gen_mi_value fast_clear_type =
686 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
687 image, aspect));
688
689 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
690 /* In this case, we're doing a full resolve which means we want the
691 * resolve to happen if any compression (including fast-clears) is
692 * present.
693 *
694 * In order to simplify the logic a bit, we make the assumption that,
695 * if the first slice has been fast-cleared, it is also marked as
696 * compressed. See also set_image_fast_clear_state.
697 */
698 const struct gen_mi_value compression_state =
699 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
700 image, aspect,
701 level, array_layer));
702 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
703 compression_state);
704 gen_mi_store(&b, compression_state, gen_mi_imm(0));
705
706 if (level == 0 && array_layer == 0) {
707 /* If the predicate is true, we want to write 0 to the fast clear type
708 * and, if it's false, leave it alone. We can do this by writing
709 *
710 * clear_type = clear_type & ~predicate;
711 */
712 struct gen_mi_value new_fast_clear_type =
713 gen_mi_iand(&b, fast_clear_type,
714 gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0)));
715 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
716 }
717 } else if (level == 0 && array_layer == 0) {
718 /* In this case, we are doing a partial resolve to get rid of fast-clear
719 * colors. We don't care about the compression state but we do care
720 * about how much fast clear is allowed by the final layout.
721 */
722 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
723 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
724
725 /* We need to compute (fast_clear_supported < image->fast_clear) */
726 struct gen_mi_value pred =
727 gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type);
728 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
729 gen_mi_value_ref(&b, pred));
730
731 /* If the predicate is true, we want to write 0 to the fast clear type
732 * and, if it's false, leave it alone. We can do this by writing
733 *
734 * clear_type = clear_type & ~predicate;
735 */
736 struct gen_mi_value new_fast_clear_type =
737 gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred));
738 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
739 } else {
740 /* In this case, we're trying to do a partial resolve on a slice that
741 * doesn't have clear color. There's nothing to do.
742 */
743 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
744 return;
745 }
746
747 /* Set src1 to 0 and use a != condition */
748 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
749
750 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
751 mip.LoadOperation = LOAD_LOADINV;
752 mip.CombineOperation = COMBINE_SET;
753 mip.CompareOperation = COMPARE_SRCS_EQUAL;
754 }
755 }
756 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
757
758 #if GEN_GEN <= 8
759 static void
760 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
761 const struct anv_image *image,
762 VkImageAspectFlagBits aspect,
763 uint32_t level, uint32_t array_layer,
764 enum isl_aux_op resolve_op,
765 enum anv_fast_clear_type fast_clear_supported)
766 {
767 struct gen_mi_builder b;
768 gen_mi_builder_init(&b, &cmd_buffer->batch);
769
770 struct gen_mi_value fast_clear_type_mem =
771 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
772 image, aspect));
773
774 /* This only works for partial resolves and only when the clear color is
775 * all or nothing. On the upside, this emits less command streamer code
776 * and works on Ivybridge and Bay Trail.
777 */
778 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
779 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
780
781 /* We don't support fast clears on anything other than the first slice. */
782 if (level > 0 || array_layer > 0)
783 return;
784
785 /* On gen8, we don't have a concept of default clear colors because we
786 * can't sample from CCS surfaces. It's enough to just load the fast clear
787 * state into the predicate register.
788 */
789 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
790 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
791 gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0));
792
793 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
794 mip.LoadOperation = LOAD_LOADINV;
795 mip.CombineOperation = COMBINE_SET;
796 mip.CompareOperation = COMPARE_SRCS_EQUAL;
797 }
798 }
799 #endif /* GEN_GEN <= 8 */
800
801 static void
802 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
803 const struct anv_image *image,
804 enum isl_format format,
805 VkImageAspectFlagBits aspect,
806 uint32_t level, uint32_t array_layer,
807 enum isl_aux_op resolve_op,
808 enum anv_fast_clear_type fast_clear_supported)
809 {
810 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
811
812 #if GEN_GEN >= 9
813 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
814 aspect, level, array_layer,
815 resolve_op, fast_clear_supported);
816 #else /* GEN_GEN <= 8 */
817 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
818 aspect, level, array_layer,
819 resolve_op, fast_clear_supported);
820 #endif
821
822 /* CCS_D only supports full resolves and BLORP will assert on us if we try
823 * to do a partial resolve on a CCS_D surface.
824 */
825 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
826 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D)
827 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
828
829 anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
830 array_layer, 1, resolve_op, NULL, true);
831 }
832
833 static void
834 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
835 const struct anv_image *image,
836 enum isl_format format,
837 VkImageAspectFlagBits aspect,
838 uint32_t array_layer,
839 enum isl_aux_op resolve_op,
840 enum anv_fast_clear_type fast_clear_supported)
841 {
842 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
843 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
844
845 #if GEN_GEN >= 8 || GEN_IS_HASWELL
846 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
847 aspect, 0, array_layer,
848 resolve_op, fast_clear_supported);
849
850 anv_image_mcs_op(cmd_buffer, image, format, aspect,
851 array_layer, 1, resolve_op, NULL, true);
852 #else
853 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
854 #endif
855 }
856
857 void
858 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
859 const struct anv_image *image,
860 VkImageAspectFlagBits aspect,
861 enum isl_aux_usage aux_usage,
862 uint32_t level,
863 uint32_t base_layer,
864 uint32_t layer_count)
865 {
866 /* The aspect must be exactly one of the image aspects. */
867 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
868
869 /* The only compression types with more than just fast-clears are MCS,
870 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
871 * track the current fast-clear and compression state. This leaves us
872 * with just MCS and CCS_E.
873 */
874 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
875 aux_usage != ISL_AUX_USAGE_MCS)
876 return;
877
878 set_image_compressed_bit(cmd_buffer, image, aspect,
879 level, base_layer, layer_count, true);
880 }
881
882 static void
883 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
884 const struct anv_image *image,
885 VkImageAspectFlagBits aspect)
886 {
887 assert(cmd_buffer && image);
888 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
889
890 set_image_fast_clear_state(cmd_buffer, image, aspect,
891 ANV_FAST_CLEAR_NONE);
892
893 /* Initialize the struct fields that are accessed for fast-clears so that
894 * the HW restrictions on the field values are satisfied.
895 */
896 struct anv_address addr =
897 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
898
899 if (GEN_GEN >= 9) {
900 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
901 const unsigned num_dwords = GEN_GEN >= 10 ?
902 isl_dev->ss.clear_color_state_size / 4 :
903 isl_dev->ss.clear_value_size / 4;
904 for (unsigned i = 0; i < num_dwords; i++) {
905 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
906 sdi.Address = addr;
907 sdi.Address.offset += i * 4;
908 sdi.ImmediateData = 0;
909 }
910 }
911 } else {
912 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
913 sdi.Address = addr;
914 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
915 /* Pre-SKL, the dword containing the clear values also contains
916 * other fields, so we need to initialize those fields to match the
917 * values that would be in a color attachment.
918 */
919 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
920 ISL_CHANNEL_SELECT_GREEN << 22 |
921 ISL_CHANNEL_SELECT_BLUE << 19 |
922 ISL_CHANNEL_SELECT_ALPHA << 16;
923 } else if (GEN_GEN == 7) {
924 /* On IVB, the dword containing the clear values also contains
925 * other fields that must be zero or can be zero.
926 */
927 sdi.ImmediateData = 0;
928 }
929 }
930 }
931 }
932
933 /* Copy the fast-clear value dword(s) between a surface state object and an
934 * image's fast clear state buffer.
935 */
936 static void
937 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
938 struct anv_state surface_state,
939 const struct anv_image *image,
940 VkImageAspectFlagBits aspect,
941 bool copy_from_surface_state)
942 {
943 assert(cmd_buffer && image);
944 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
945
946 struct anv_address ss_clear_addr = {
947 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
948 .offset = surface_state.offset +
949 cmd_buffer->device->isl_dev.ss.clear_value_offset,
950 };
951 const struct anv_address entry_addr =
952 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
953 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
954
955 #if GEN_GEN == 7
956 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
957 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
958 * in-flight when they are issued even if the memory touched is not
959 * currently active for rendering. The weird bit is that it is not the
960 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
961 * rendering hangs such that the next stalling command after the
962 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
963 *
964 * It is unclear exactly why this hang occurs. Both MI commands come with
965 * warnings about the 3D pipeline but that doesn't seem to fully explain
966 * it. My (Jason's) best theory is that it has something to do with the
967 * fact that we're using a GPU state register as our temporary and that
968 * something with reading/writing it is causing problems.
969 *
970 * In order to work around this issue, we emit a PIPE_CONTROL with the
971 * command streamer stall bit set.
972 */
973 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
974 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
975 #endif
976
977 struct gen_mi_builder b;
978 gen_mi_builder_init(&b, &cmd_buffer->batch);
979
980 if (copy_from_surface_state) {
981 gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
982 } else {
983 gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
984
985 /* Updating a surface state object may require that the state cache be
986 * invalidated. From the SKL PRM, Shared Functions -> State -> State
987 * Caching:
988 *
989 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
990 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
991 * modified [...], the L1 state cache must be invalidated to ensure
992 * the new surface or sampler state is fetched from system memory.
993 *
994 * In testing, SKL doesn't actually seem to need this, but HSW does.
995 */
996 cmd_buffer->state.pending_pipe_bits |=
997 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
998 }
999 }
1000
1001 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
1002
1003 #if GEN_GEN == 12
1004 static void
1005 anv_image_init_aux_tt(struct anv_cmd_buffer *cmd_buffer,
1006 const struct anv_image *image,
1007 VkImageAspectFlagBits aspect,
1008 uint32_t base_level, uint32_t level_count,
1009 uint32_t base_layer, uint32_t layer_count)
1010 {
1011 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1012
1013 uint64_t base_address =
1014 anv_address_physical(image->planes[plane].address);
1015
1016 const struct isl_surf *isl_surf = &image->planes[plane].surface.isl;
1017 uint64_t format_bits = gen_aux_map_format_bits_for_isl_surf(isl_surf);
1018
1019 /* We're about to live-update the AUX-TT. We really don't want anyone else
1020 * trying to read it while we're doing this. We could probably get away
1021 * with not having this stall in some cases if we were really careful but
1022 * it's better to play it safe. Full stall the GPU.
1023 */
1024 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1025 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1026
1027 struct gen_mi_builder b;
1028 gen_mi_builder_init(&b, &cmd_buffer->batch);
1029
1030 for (uint32_t a = 0; a < layer_count; a++) {
1031 const uint32_t layer = base_layer + a;
1032
1033 uint64_t start_offset_B = UINT64_MAX, end_offset_B = 0;
1034 for (uint32_t l = 0; l < level_count; l++) {
1035 const uint32_t level = base_level + l;
1036
1037 uint32_t logical_array_layer, logical_z_offset_px;
1038 if (image->type == VK_IMAGE_TYPE_3D) {
1039 logical_array_layer = 0;
1040
1041 /* If the given miplevel does not have this layer, then any higher
1042 * miplevels won't either because miplevels only get smaller the
1043 * higher the LOD.
1044 */
1045 assert(layer < image->extent.depth);
1046 if (layer >= anv_minify(image->extent.depth, level))
1047 break;
1048 logical_z_offset_px = layer;
1049 } else {
1050 assert(layer < image->array_size);
1051 logical_array_layer = layer;
1052 logical_z_offset_px = 0;
1053 }
1054
1055 uint32_t slice_start_offset_B, slice_end_offset_B;
1056 isl_surf_get_image_range_B_tile(isl_surf, level,
1057 logical_array_layer,
1058 logical_z_offset_px,
1059 &slice_start_offset_B,
1060 &slice_end_offset_B);
1061
1062 start_offset_B = MIN2(start_offset_B, slice_start_offset_B);
1063 end_offset_B = MAX2(end_offset_B, slice_end_offset_B);
1064 }
1065
1066 /* Aux operates 64K at a time */
1067 start_offset_B = align_down_u64(start_offset_B, 64 * 1024);
1068 end_offset_B = align_u64(end_offset_B, 64 * 1024);
1069
1070 for (uint64_t offset = start_offset_B;
1071 offset < end_offset_B; offset += 64 * 1024) {
1072 uint64_t address = base_address + offset;
1073
1074 uint64_t aux_entry_addr64, *aux_entry_map;
1075 aux_entry_map = gen_aux_map_get_entry(cmd_buffer->device->aux_map_ctx,
1076 address, &aux_entry_addr64);
1077
1078 assert(cmd_buffer->device->physical->use_softpin);
1079 struct anv_address aux_entry_address = {
1080 .bo = NULL,
1081 .offset = aux_entry_addr64,
1082 };
1083
1084 const uint64_t old_aux_entry = READ_ONCE(*aux_entry_map);
1085 uint64_t new_aux_entry =
1086 (old_aux_entry & GEN_AUX_MAP_ADDRESS_MASK) | format_bits;
1087
1088 if (isl_aux_usage_has_ccs(image->planes[plane].aux_usage))
1089 new_aux_entry |= GEN_AUX_MAP_ENTRY_VALID_BIT;
1090
1091 gen_mi_store(&b, gen_mi_mem64(aux_entry_address),
1092 gen_mi_imm(new_aux_entry));
1093 }
1094 }
1095
1096 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1097 }
1098 #endif /* GEN_GEN == 12 */
1099
1100 /**
1101 * @brief Transitions a color buffer from one layout to another.
1102 *
1103 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
1104 * more information.
1105 *
1106 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
1107 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
1108 * this represents the maximum layers to transition at each
1109 * specified miplevel.
1110 */
1111 static void
1112 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
1113 const struct anv_image *image,
1114 VkImageAspectFlagBits aspect,
1115 const uint32_t base_level, uint32_t level_count,
1116 uint32_t base_layer, uint32_t layer_count,
1117 VkImageLayout initial_layout,
1118 VkImageLayout final_layout)
1119 {
1120 struct anv_device *device = cmd_buffer->device;
1121 const struct gen_device_info *devinfo = &device->info;
1122 /* Validate the inputs. */
1123 assert(cmd_buffer);
1124 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1125 /* These values aren't supported for simplicity's sake. */
1126 assert(level_count != VK_REMAINING_MIP_LEVELS &&
1127 layer_count != VK_REMAINING_ARRAY_LAYERS);
1128 /* Ensure the subresource range is valid. */
1129 UNUSED uint64_t last_level_num = base_level + level_count;
1130 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
1131 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
1132 assert((uint64_t)base_layer + layer_count <= image_layers);
1133 assert(last_level_num <= image->levels);
1134 /* The spec disallows these final layouts. */
1135 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
1136 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
1137
1138 /* No work is necessary if the layout stays the same or if this subresource
1139 * range lacks auxiliary data.
1140 */
1141 if (initial_layout == final_layout)
1142 return;
1143
1144 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1145
1146 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1147 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
1148 /* This surface is a linear compressed image with a tiled shadow surface
1149 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
1150 * we need to ensure the shadow copy is up-to-date.
1151 */
1152 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1153 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
1154 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1155 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
1156 assert(plane == 0);
1157 anv_image_copy_to_shadow(cmd_buffer, image,
1158 VK_IMAGE_ASPECT_COLOR_BIT,
1159 base_level, level_count,
1160 base_layer, layer_count);
1161 }
1162
1163 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
1164 return;
1165
1166 assert(image->planes[plane].surface.isl.tiling != ISL_TILING_LINEAR);
1167
1168 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
1169 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
1170 #if GEN_GEN == 12
1171 if (device->physical->has_implicit_ccs && devinfo->has_aux_map) {
1172 anv_image_init_aux_tt(cmd_buffer, image, aspect,
1173 base_level, level_count,
1174 base_layer, layer_count);
1175 }
1176 #else
1177 assert(!(device->physical->has_implicit_ccs && devinfo->has_aux_map));
1178 #endif
1179
1180 /* A subresource in the undefined layout may have been aliased and
1181 * populated with any arrangement of bits. Therefore, we must initialize
1182 * the related aux buffer and clear buffer entry with desirable values.
1183 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
1184 * images with VK_IMAGE_TILING_OPTIMAL.
1185 *
1186 * Initialize the relevant clear buffer entries.
1187 */
1188 if (base_level == 0 && base_layer == 0)
1189 init_fast_clear_color(cmd_buffer, image, aspect);
1190
1191 /* Initialize the aux buffers to enable correct rendering. In order to
1192 * ensure that things such as storage images work correctly, aux buffers
1193 * need to be initialized to valid data.
1194 *
1195 * Having an aux buffer with invalid data is a problem for two reasons:
1196 *
1197 * 1) Having an invalid value in the buffer can confuse the hardware.
1198 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1199 * invalid and leads to the hardware doing strange things. It
1200 * doesn't hang as far as we can tell but rendering corruption can
1201 * occur.
1202 *
1203 * 2) If this transition is into the GENERAL layout and we then use the
1204 * image as a storage image, then we must have the aux buffer in the
1205 * pass-through state so that, if we then go to texture from the
1206 * image, we get the results of our storage image writes and not the
1207 * fast clear color or other random data.
1208 *
1209 * For CCS both of the problems above are real demonstrable issues. In
1210 * that case, the only thing we can do is to perform an ambiguate to
1211 * transition the aux surface into the pass-through state.
1212 *
1213 * For MCS, (2) is never an issue because we don't support multisampled
1214 * storage images. In theory, issue (1) is a problem with MCS but we've
1215 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1216 * theory, be interpreted as something but we don't know that all bit
1217 * patterns are actually valid. For 2x and 8x, you could easily end up
1218 * with the MCS referring to an invalid plane because not all bits of
1219 * the MCS value are actually used. Even though we've never seen issues
1220 * in the wild, it's best to play it safe and initialize the MCS. We
1221 * can use a fast-clear for MCS because we only ever touch from render
1222 * and texture (no image load store).
1223 */
1224 if (image->samples == 1) {
1225 for (uint32_t l = 0; l < level_count; l++) {
1226 const uint32_t level = base_level + l;
1227
1228 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1229 if (base_layer >= aux_layers)
1230 break; /* We will only get fewer layers as level increases */
1231 uint32_t level_layer_count =
1232 MIN2(layer_count, aux_layers - base_layer);
1233
1234 anv_image_ccs_op(cmd_buffer, image,
1235 image->planes[plane].surface.isl.format,
1236 aspect, level, base_layer, level_layer_count,
1237 ISL_AUX_OP_AMBIGUATE, NULL, false);
1238
1239 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1240 set_image_compressed_bit(cmd_buffer, image, aspect,
1241 level, base_layer, level_layer_count,
1242 false);
1243 }
1244 }
1245 } else {
1246 if (image->samples == 4 || image->samples == 16) {
1247 anv_perf_warn(cmd_buffer->device, image,
1248 "Doing a potentially unnecessary fast-clear to "
1249 "define an MCS buffer.");
1250 }
1251
1252 assert(base_level == 0 && level_count == 1);
1253 anv_image_mcs_op(cmd_buffer, image,
1254 image->planes[plane].surface.isl.format,
1255 aspect, base_layer, layer_count,
1256 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1257 }
1258 return;
1259 }
1260
1261 const enum isl_aux_usage initial_aux_usage =
1262 anv_layout_to_aux_usage(devinfo, image, aspect, 0, initial_layout);
1263 const enum isl_aux_usage final_aux_usage =
1264 anv_layout_to_aux_usage(devinfo, image, aspect, 0, final_layout);
1265
1266 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1267 * We can handle transitions between CCS_D/E to and from NONE. What we
1268 * don't yet handle is switching between CCS_E and CCS_D within a given
1269 * image. Doing so in a performant way requires more detailed aux state
1270 * tracking such as what is done in i965. For now, just assume that we
1271 * only have one type of compression.
1272 */
1273 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1274 final_aux_usage == ISL_AUX_USAGE_NONE ||
1275 initial_aux_usage == final_aux_usage);
1276
1277 /* If initial aux usage is NONE, there is nothing to resolve */
1278 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1279 return;
1280
1281 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1282
1283 /* If the initial layout supports more fast clear than the final layout
1284 * then we need at least a partial resolve.
1285 */
1286 const enum anv_fast_clear_type initial_fast_clear =
1287 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1288 const enum anv_fast_clear_type final_fast_clear =
1289 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1290 if (final_fast_clear < initial_fast_clear)
1291 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1292
1293 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1294 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1295 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1296
1297 if (resolve_op == ISL_AUX_OP_NONE)
1298 return;
1299
1300 /* Perform a resolve to synchronize data between the main and aux buffer.
1301 * Before we begin, we must satisfy the cache flushing requirement specified
1302 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1303 *
1304 * Any transition from any value in {Clear, Render, Resolve} to a
1305 * different value in {Clear, Render, Resolve} requires end of pipe
1306 * synchronization.
1307 *
1308 * We perform a flush of the write cache before and after the clear and
1309 * resolve operations to meet this requirement.
1310 *
1311 * Unlike other drawing, fast clear operations are not properly
1312 * synchronized. The first PIPE_CONTROL here likely ensures that the
1313 * contents of the previous render or clear hit the render target before we
1314 * resolve and the second likely ensures that the resolve is complete before
1315 * we do any more rendering or clearing.
1316 */
1317 cmd_buffer->state.pending_pipe_bits |=
1318 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1319
1320 for (uint32_t l = 0; l < level_count; l++) {
1321 uint32_t level = base_level + l;
1322
1323 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1324 if (base_layer >= aux_layers)
1325 break; /* We will only get fewer layers as level increases */
1326 uint32_t level_layer_count =
1327 MIN2(layer_count, aux_layers - base_layer);
1328
1329 for (uint32_t a = 0; a < level_layer_count; a++) {
1330 uint32_t array_layer = base_layer + a;
1331 if (image->samples == 1) {
1332 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1333 image->planes[plane].surface.isl.format,
1334 aspect, level, array_layer, resolve_op,
1335 final_fast_clear);
1336 } else {
1337 /* We only support fast-clear on the first layer so partial
1338 * resolves should not be used on other layers as they will use
1339 * the clear color stored in memory that is only valid for layer0.
1340 */
1341 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1342 array_layer != 0)
1343 continue;
1344
1345 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1346 image->planes[plane].surface.isl.format,
1347 aspect, array_layer, resolve_op,
1348 final_fast_clear);
1349 }
1350 }
1351 }
1352
1353 cmd_buffer->state.pending_pipe_bits |=
1354 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1355 }
1356
1357 /**
1358 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1359 */
1360 static VkResult
1361 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1362 struct anv_render_pass *pass,
1363 const VkRenderPassBeginInfo *begin)
1364 {
1365 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1366 struct anv_cmd_state *state = &cmd_buffer->state;
1367 struct anv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
1368
1369 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1370
1371 if (pass->attachment_count > 0) {
1372 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1373 pass->attachment_count *
1374 sizeof(state->attachments[0]),
1375 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1376 if (state->attachments == NULL) {
1377 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1378 return anv_batch_set_error(&cmd_buffer->batch,
1379 VK_ERROR_OUT_OF_HOST_MEMORY);
1380 }
1381 } else {
1382 state->attachments = NULL;
1383 }
1384
1385 /* Reserve one for the NULL state. */
1386 unsigned num_states = 1;
1387 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1388 if (vk_format_is_color(pass->attachments[i].format))
1389 num_states++;
1390
1391 if (need_input_attachment_state(&pass->attachments[i]))
1392 num_states++;
1393 }
1394
1395 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1396 state->render_pass_states =
1397 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1398 num_states * ss_stride, isl_dev->ss.align);
1399
1400 struct anv_state next_state = state->render_pass_states;
1401 next_state.alloc_size = isl_dev->ss.size;
1402
1403 state->null_surface_state = next_state;
1404 next_state.offset += ss_stride;
1405 next_state.map += ss_stride;
1406
1407 const VkRenderPassAttachmentBeginInfoKHR *begin_attachment =
1408 vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR);
1409
1410 if (begin && !begin_attachment)
1411 assert(pass->attachment_count == framebuffer->attachment_count);
1412
1413 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1414 if (vk_format_is_color(pass->attachments[i].format)) {
1415 state->attachments[i].color.state = next_state;
1416 next_state.offset += ss_stride;
1417 next_state.map += ss_stride;
1418 }
1419
1420 if (need_input_attachment_state(&pass->attachments[i])) {
1421 state->attachments[i].input.state = next_state;
1422 next_state.offset += ss_stride;
1423 next_state.map += ss_stride;
1424 }
1425
1426 if (begin_attachment && begin_attachment->attachmentCount != 0) {
1427 assert(begin_attachment->attachmentCount == pass->attachment_count);
1428 ANV_FROM_HANDLE(anv_image_view, iview, begin_attachment->pAttachments[i]);
1429 cmd_buffer->state.attachments[i].image_view = iview;
1430 } else if (framebuffer && i < framebuffer->attachment_count) {
1431 cmd_buffer->state.attachments[i].image_view = framebuffer->attachments[i];
1432 }
1433 }
1434 assert(next_state.offset == state->render_pass_states.offset +
1435 state->render_pass_states.alloc_size);
1436
1437 if (begin) {
1438 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1439 isl_extent3d(framebuffer->width,
1440 framebuffer->height,
1441 framebuffer->layers));
1442
1443 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1444 struct anv_render_pass_attachment *att = &pass->attachments[i];
1445 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1446 VkImageAspectFlags clear_aspects = 0;
1447 VkImageAspectFlags load_aspects = 0;
1448
1449 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1450 /* color attachment */
1451 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1452 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1453 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1454 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1455 }
1456 } else {
1457 /* depthstencil attachment */
1458 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1459 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1460 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1461 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1462 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1463 }
1464 }
1465 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1466 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1467 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1468 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1469 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1470 }
1471 }
1472 }
1473
1474 state->attachments[i].current_layout = att->initial_layout;
1475 state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
1476 state->attachments[i].pending_clear_aspects = clear_aspects;
1477 state->attachments[i].pending_load_aspects = load_aspects;
1478 if (clear_aspects)
1479 state->attachments[i].clear_value = begin->pClearValues[i];
1480
1481 struct anv_image_view *iview = cmd_buffer->state.attachments[i].image_view;
1482 anv_assert(iview->vk_format == att->format);
1483
1484 const uint32_t num_layers = iview->planes[0].isl.array_len;
1485 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1486
1487 union isl_color_value clear_color = { .u32 = { 0, } };
1488 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1489 anv_assert(iview->n_planes == 1);
1490 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1491 color_attachment_compute_aux_usage(cmd_buffer->device,
1492 state, i, begin->renderArea,
1493 &clear_color);
1494
1495 anv_image_fill_surface_state(cmd_buffer->device,
1496 iview->image,
1497 VK_IMAGE_ASPECT_COLOR_BIT,
1498 &iview->planes[0].isl,
1499 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1500 state->attachments[i].aux_usage,
1501 &clear_color,
1502 0,
1503 &state->attachments[i].color,
1504 NULL);
1505
1506 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1507 } else {
1508 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1509 state, i,
1510 begin->renderArea);
1511 }
1512
1513 if (need_input_attachment_state(&pass->attachments[i])) {
1514 anv_image_fill_surface_state(cmd_buffer->device,
1515 iview->image,
1516 VK_IMAGE_ASPECT_COLOR_BIT,
1517 &iview->planes[0].isl,
1518 ISL_SURF_USAGE_TEXTURE_BIT,
1519 state->attachments[i].input_aux_usage,
1520 &clear_color,
1521 0,
1522 &state->attachments[i].input,
1523 NULL);
1524
1525 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1526 }
1527 }
1528 }
1529
1530 return VK_SUCCESS;
1531 }
1532
1533 VkResult
1534 genX(BeginCommandBuffer)(
1535 VkCommandBuffer commandBuffer,
1536 const VkCommandBufferBeginInfo* pBeginInfo)
1537 {
1538 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1539
1540 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1541 * command buffer's state. Otherwise, we must *reset* its state. In both
1542 * cases we reset it.
1543 *
1544 * From the Vulkan 1.0 spec:
1545 *
1546 * If a command buffer is in the executable state and the command buffer
1547 * was allocated from a command pool with the
1548 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1549 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1550 * as if vkResetCommandBuffer had been called with
1551 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1552 * the command buffer in the recording state.
1553 */
1554 anv_cmd_buffer_reset(cmd_buffer);
1555
1556 cmd_buffer->usage_flags = pBeginInfo->flags;
1557
1558 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1559 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1560
1561 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1562
1563 /* We sometimes store vertex data in the dynamic state buffer for blorp
1564 * operations and our dynamic state stream may re-use data from previous
1565 * command buffers. In order to prevent stale cache data, we flush the VF
1566 * cache. We could do this on every blorp call but that's not really
1567 * needed as all of the data will get written by the CPU prior to the GPU
1568 * executing anything. The chances are fairly high that they will use
1569 * blorp at least once per primary command buffer so it shouldn't be
1570 * wasted.
1571 *
1572 * There is also a workaround on gen8 which requires us to invalidate the
1573 * VF cache occasionally. It's easier if we can assume we start with a
1574 * fresh cache (See also genX(cmd_buffer_set_binding_for_gen8_vb_flush).)
1575 */
1576 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1577
1578 /* Re-emit the aux table register in every command buffer. This way we're
1579 * ensured that we have the table even if this command buffer doesn't
1580 * initialize any images.
1581 */
1582 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1583
1584 /* We send an "Indirect State Pointers Disable" packet at
1585 * EndCommandBuffer, so all push contant packets are ignored during a
1586 * context restore. Documentation says after that command, we need to
1587 * emit push constants again before any rendering operation. So we
1588 * flag them dirty here to make sure they get emitted.
1589 */
1590 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1591
1592 VkResult result = VK_SUCCESS;
1593 if (cmd_buffer->usage_flags &
1594 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1595 assert(pBeginInfo->pInheritanceInfo);
1596 cmd_buffer->state.pass =
1597 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1598 cmd_buffer->state.subpass =
1599 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1600
1601 /* This is optional in the inheritance info. */
1602 cmd_buffer->state.framebuffer =
1603 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1604
1605 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1606 cmd_buffer->state.pass, NULL);
1607
1608 /* Record that HiZ is enabled if we can. */
1609 if (cmd_buffer->state.framebuffer) {
1610 const struct anv_image_view * const iview =
1611 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1612
1613 if (iview) {
1614 VkImageLayout layout =
1615 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1616
1617 enum isl_aux_usage aux_usage =
1618 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1619 VK_IMAGE_ASPECT_DEPTH_BIT,
1620 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
1621 layout);
1622
1623 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1624 }
1625 }
1626
1627 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1628 }
1629
1630 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1631 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1632 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1633 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1634
1635 /* If secondary buffer supports conditional rendering
1636 * we should emit commands as if conditional rendering is enabled.
1637 */
1638 cmd_buffer->state.conditional_render_enabled =
1639 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1640 }
1641 #endif
1642
1643 return result;
1644 }
1645
1646 /* From the PRM, Volume 2a:
1647 *
1648 * "Indirect State Pointers Disable
1649 *
1650 * At the completion of the post-sync operation associated with this pipe
1651 * control packet, the indirect state pointers in the hardware are
1652 * considered invalid; the indirect pointers are not saved in the context.
1653 * If any new indirect state commands are executed in the command stream
1654 * while the pipe control is pending, the new indirect state commands are
1655 * preserved.
1656 *
1657 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1658 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1659 * commands are only considered as Indirect State Pointers. Once ISP is
1660 * issued in a context, SW must initialize by programming push constant
1661 * commands for all the shaders (at least to zero length) before attempting
1662 * any rendering operation for the same context."
1663 *
1664 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1665 * even though they point to a BO that has been already unreferenced at
1666 * the end of the previous batch buffer. This has been fine so far since
1667 * we are protected by these scratch page (every address not covered by
1668 * a BO should be pointing to the scratch page). But on CNL, it is
1669 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1670 * instruction.
1671 *
1672 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1673 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1674 * context restore, so the mentioned hang doesn't happen. However,
1675 * software must program push constant commands for all stages prior to
1676 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1677 *
1678 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1679 * constants have been loaded into the EUs prior to disable the push constants
1680 * so that it doesn't hang a previous 3DPRIMITIVE.
1681 */
1682 static void
1683 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1684 {
1685 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1686 pc.StallAtPixelScoreboard = true;
1687 pc.CommandStreamerStallEnable = true;
1688 }
1689 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1690 pc.IndirectStatePointersDisable = true;
1691 pc.CommandStreamerStallEnable = true;
1692 }
1693 }
1694
1695 VkResult
1696 genX(EndCommandBuffer)(
1697 VkCommandBuffer commandBuffer)
1698 {
1699 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1700
1701 if (anv_batch_has_error(&cmd_buffer->batch))
1702 return cmd_buffer->batch.status;
1703
1704 /* We want every command buffer to start with the PMA fix in a known state,
1705 * so we disable it at the end of the command buffer.
1706 */
1707 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1708
1709 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1710
1711 emit_isp_disable(cmd_buffer);
1712
1713 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1714
1715 return VK_SUCCESS;
1716 }
1717
1718 void
1719 genX(CmdExecuteCommands)(
1720 VkCommandBuffer commandBuffer,
1721 uint32_t commandBufferCount,
1722 const VkCommandBuffer* pCmdBuffers)
1723 {
1724 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1725
1726 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1727
1728 if (anv_batch_has_error(&primary->batch))
1729 return;
1730
1731 /* The secondary command buffers will assume that the PMA fix is disabled
1732 * when they begin executing. Make sure this is true.
1733 */
1734 genX(cmd_buffer_enable_pma_fix)(primary, false);
1735
1736 /* The secondary command buffer doesn't know which textures etc. have been
1737 * flushed prior to their execution. Apply those flushes now.
1738 */
1739 genX(cmd_buffer_apply_pipe_flushes)(primary);
1740
1741 for (uint32_t i = 0; i < commandBufferCount; i++) {
1742 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1743
1744 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1745 assert(!anv_batch_has_error(&secondary->batch));
1746
1747 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1748 if (secondary->state.conditional_render_enabled) {
1749 if (!primary->state.conditional_render_enabled) {
1750 /* Secondary buffer is constructed as if it will be executed
1751 * with conditional rendering, we should satisfy this dependency
1752 * regardless of conditional rendering being enabled in primary.
1753 */
1754 struct gen_mi_builder b;
1755 gen_mi_builder_init(&b, &primary->batch);
1756 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
1757 gen_mi_imm(UINT64_MAX));
1758 }
1759 }
1760 #endif
1761
1762 if (secondary->usage_flags &
1763 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1764 /* If we're continuing a render pass from the primary, we need to
1765 * copy the surface states for the current subpass into the storage
1766 * we allocated for them in BeginCommandBuffer.
1767 */
1768 struct anv_bo *ss_bo =
1769 primary->device->surface_state_pool.block_pool.bo;
1770 struct anv_state src_state = primary->state.render_pass_states;
1771 struct anv_state dst_state = secondary->state.render_pass_states;
1772 assert(src_state.alloc_size == dst_state.alloc_size);
1773
1774 genX(cmd_buffer_so_memcpy)(primary,
1775 (struct anv_address) {
1776 .bo = ss_bo,
1777 .offset = dst_state.offset,
1778 },
1779 (struct anv_address) {
1780 .bo = ss_bo,
1781 .offset = src_state.offset,
1782 },
1783 src_state.alloc_size);
1784 }
1785
1786 anv_cmd_buffer_add_secondary(primary, secondary);
1787 }
1788
1789 /* The secondary isn't counted in our VF cache tracking so we need to
1790 * invalidate the whole thing.
1791 */
1792 if (GEN_GEN >= 8 && GEN_GEN <= 9) {
1793 primary->state.pending_pipe_bits |=
1794 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1795 }
1796
1797 /* The secondary may have selected a different pipeline (3D or compute) and
1798 * may have changed the current L3$ configuration. Reset our tracking
1799 * variables to invalid values to ensure that we re-emit these in the case
1800 * where we do any draws or compute dispatches from the primary after the
1801 * secondary has returned.
1802 */
1803 primary->state.current_pipeline = UINT32_MAX;
1804 primary->state.current_l3_config = NULL;
1805 primary->state.current_hash_scale = 0;
1806
1807 /* Each of the secondary command buffers will use its own state base
1808 * address. We need to re-emit state base address for the primary after
1809 * all of the secondaries are done.
1810 *
1811 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1812 * address calls?
1813 */
1814 genX(cmd_buffer_emit_state_base_address)(primary);
1815 }
1816
1817 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1818 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1819 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1820
1821 /**
1822 * Program the hardware to use the specified L3 configuration.
1823 */
1824 void
1825 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1826 const struct gen_l3_config *cfg)
1827 {
1828 assert(cfg);
1829 if (cfg == cmd_buffer->state.current_l3_config)
1830 return;
1831
1832 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1833 intel_logd("L3 config transition: ");
1834 gen_dump_l3_config(cfg, stderr);
1835 }
1836
1837 UNUSED const bool has_slm = cfg->n[GEN_L3P_SLM];
1838
1839 /* According to the hardware docs, the L3 partitioning can only be changed
1840 * while the pipeline is completely drained and the caches are flushed,
1841 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1842 */
1843 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1844 pc.DCFlushEnable = true;
1845 pc.PostSyncOperation = NoWrite;
1846 pc.CommandStreamerStallEnable = true;
1847 }
1848
1849 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1850 * invalidation of the relevant caches. Note that because RO invalidation
1851 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1852 * command is processed by the CS) we cannot combine it with the previous
1853 * stalling flush as the hardware documentation suggests, because that
1854 * would cause the CS to stall on previous rendering *after* RO
1855 * invalidation and wouldn't prevent the RO caches from being polluted by
1856 * concurrent rendering before the stall completes. This intentionally
1857 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1858 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1859 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1860 * already guarantee that there is no concurrent GPGPU kernel execution
1861 * (see SKL HSD 2132585).
1862 */
1863 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1864 pc.TextureCacheInvalidationEnable = true;
1865 pc.ConstantCacheInvalidationEnable = true;
1866 pc.InstructionCacheInvalidateEnable = true;
1867 pc.StateCacheInvalidationEnable = true;
1868 pc.PostSyncOperation = NoWrite;
1869 }
1870
1871 /* Now send a third stalling flush to make sure that invalidation is
1872 * complete when the L3 configuration registers are modified.
1873 */
1874 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1875 pc.DCFlushEnable = true;
1876 pc.PostSyncOperation = NoWrite;
1877 pc.CommandStreamerStallEnable = true;
1878 }
1879
1880 #if GEN_GEN >= 8
1881
1882 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1883
1884 #if GEN_GEN >= 12
1885 #define L3_ALLOCATION_REG GENX(L3ALLOC)
1886 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
1887 #else
1888 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
1889 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
1890 #endif
1891
1892 uint32_t l3cr;
1893 anv_pack_struct(&l3cr, L3_ALLOCATION_REG,
1894 #if GEN_GEN < 11
1895 .SLMEnable = has_slm,
1896 #endif
1897 #if GEN_GEN == 11
1898 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1899 * in L3CNTLREG register. The default setting of the bit is not the
1900 * desirable behavior.
1901 */
1902 .ErrorDetectionBehaviorControl = true,
1903 .UseFullWays = true,
1904 #endif
1905 .URBAllocation = cfg->n[GEN_L3P_URB],
1906 .ROAllocation = cfg->n[GEN_L3P_RO],
1907 .DCAllocation = cfg->n[GEN_L3P_DC],
1908 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1909
1910 /* Set up the L3 partitioning. */
1911 emit_lri(&cmd_buffer->batch, L3_ALLOCATION_REG_num, l3cr);
1912
1913 #else
1914
1915 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1916 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1917 cfg->n[GEN_L3P_ALL];
1918 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1919 cfg->n[GEN_L3P_ALL];
1920 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1921 cfg->n[GEN_L3P_ALL];
1922
1923 assert(!cfg->n[GEN_L3P_ALL]);
1924
1925 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1926 * the matching space on the remaining banks has to be allocated to a
1927 * client (URB for all validated configurations) set to the
1928 * lower-bandwidth 2-bank address hashing mode.
1929 */
1930 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1931 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1932 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1933
1934 /* Minimum number of ways that can be allocated to the URB. */
1935 const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1936 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1937
1938 uint32_t l3sqcr1, l3cr2, l3cr3;
1939 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1940 .ConvertDC_UC = !has_dc,
1941 .ConvertIS_UC = !has_is,
1942 .ConvertC_UC = !has_c,
1943 .ConvertT_UC = !has_t);
1944 l3sqcr1 |=
1945 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1946 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1947 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1948
1949 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1950 .SLMEnable = has_slm,
1951 .URBLowBandwidth = urb_low_bw,
1952 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1953 #if !GEN_IS_HASWELL
1954 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1955 #endif
1956 .ROAllocation = cfg->n[GEN_L3P_RO],
1957 .DCAllocation = cfg->n[GEN_L3P_DC]);
1958
1959 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1960 .ISAllocation = cfg->n[GEN_L3P_IS],
1961 .ISLowBandwidth = 0,
1962 .CAllocation = cfg->n[GEN_L3P_C],
1963 .CLowBandwidth = 0,
1964 .TAllocation = cfg->n[GEN_L3P_T],
1965 .TLowBandwidth = 0);
1966
1967 /* Set up the L3 partitioning. */
1968 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1969 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1970 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1971
1972 #if GEN_IS_HASWELL
1973 if (cmd_buffer->device->physical->cmd_parser_version >= 4) {
1974 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1975 * them disabled to avoid crashing the system hard.
1976 */
1977 uint32_t scratch1, chicken3;
1978 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1979 .L3AtomicDisable = !has_dc);
1980 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1981 .L3AtomicDisableMask = true,
1982 .L3AtomicDisable = !has_dc);
1983 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1984 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1985 }
1986 #endif
1987
1988 #endif
1989
1990 cmd_buffer->state.current_l3_config = cfg;
1991 }
1992
1993 void
1994 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1995 {
1996 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1997
1998 if (cmd_buffer->device->physical->always_flush_cache)
1999 bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
2000
2001 /* Flushes are pipelined while invalidations are handled immediately.
2002 * Therefore, if we're flushing anything then we need to schedule a stall
2003 * before any invalidations can happen.
2004 */
2005 if (bits & ANV_PIPE_FLUSH_BITS)
2006 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
2007
2008 /* If we're going to do an invalidate and we have a pending CS stall that
2009 * has yet to be resolved, we do the CS stall now.
2010 */
2011 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
2012 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
2013 bits |= ANV_PIPE_CS_STALL_BIT;
2014 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
2015 }
2016
2017 if (GEN_GEN >= 12 &&
2018 ((bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT) ||
2019 (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT))) {
2020 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
2021 * Enable):
2022 *
2023 * Unified Cache (Tile Cache Disabled):
2024 *
2025 * When the Color and Depth (Z) streams are enabled to be cached in
2026 * the DC space of L2, Software must use "Render Target Cache Flush
2027 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
2028 * Flush" for getting the color and depth (Z) write data to be
2029 * globally observable. In this mode of operation it is not required
2030 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
2031 */
2032 bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2033 }
2034
2035 /* GEN:BUG:1409226450, Wait for EU to be idle before pipe control which
2036 * invalidates the instruction cache
2037 */
2038 if (GEN_GEN == 12 && (bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT))
2039 bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2040
2041 if ((GEN_GEN >= 8 && GEN_GEN <= 9) &&
2042 (bits & ANV_PIPE_CS_STALL_BIT) &&
2043 (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
2044 /* If we are doing a VF cache invalidate AND a CS stall (it must be
2045 * both) then we can reset our vertex cache tracking.
2046 */
2047 memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
2048 sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
2049 memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
2050 sizeof(cmd_buffer->state.gfx.ib_dirty_range));
2051 }
2052
2053 /* Project: SKL / Argument: LRI Post Sync Operation [23]
2054 *
2055 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
2056 * programmed prior to programming a PIPECONTROL command with "LRI
2057 * Post Sync Operation" in GPGPU mode of operation (i.e when
2058 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
2059 *
2060 * The same text exists a few rows below for Post Sync Op.
2061 */
2062 if (bits & ANV_PIPE_POST_SYNC_BIT) {
2063 if (GEN_GEN == 9 && cmd_buffer->state.current_pipeline == GPGPU)
2064 bits |= ANV_PIPE_CS_STALL_BIT;
2065 bits &= ~ANV_PIPE_POST_SYNC_BIT;
2066 }
2067
2068 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
2069 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2070 #if GEN_GEN >= 12
2071 pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2072 #endif
2073 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2074 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2075 pipe.RenderTargetCacheFlushEnable =
2076 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2077
2078 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must
2079 * be set with any PIPE_CONTROL with Depth Flush Enable bit set.
2080 */
2081 #if GEN_GEN >= 12
2082 pipe.DepthStallEnable =
2083 pipe.DepthCacheFlushEnable || (bits & ANV_PIPE_DEPTH_STALL_BIT);
2084 #else
2085 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
2086 #endif
2087
2088 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
2089 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2090
2091 /*
2092 * According to the Broadwell documentation, any PIPE_CONTROL with the
2093 * "Command Streamer Stall" bit set must also have another bit set,
2094 * with five different options:
2095 *
2096 * - Render Target Cache Flush
2097 * - Depth Cache Flush
2098 * - Stall at Pixel Scoreboard
2099 * - Post-Sync Operation
2100 * - Depth Stall
2101 * - DC Flush Enable
2102 *
2103 * I chose "Stall at Pixel Scoreboard" since that's what we use in
2104 * mesa and it seems to work fine. The choice is fairly arbitrary.
2105 */
2106 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
2107 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
2108 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
2109 pipe.StallAtPixelScoreboard = true;
2110 }
2111
2112 /* If a render target flush was emitted, then we can toggle off the bit
2113 * saying that render target writes are ongoing.
2114 */
2115 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
2116 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
2117
2118 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
2119 }
2120
2121 if (bits & ANV_PIPE_INVALIDATE_BITS) {
2122 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2123 *
2124 * "If the VF Cache Invalidation Enable is set to a 1 in a
2125 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
2126 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
2127 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
2128 * a 1."
2129 *
2130 * This appears to hang Broadwell, so we restrict it to just gen9.
2131 */
2132 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
2133 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
2134
2135 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2136 pipe.StateCacheInvalidationEnable =
2137 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
2138 pipe.ConstantCacheInvalidationEnable =
2139 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2140 pipe.VFCacheInvalidationEnable =
2141 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2142 pipe.TextureCacheInvalidationEnable =
2143 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2144 pipe.InstructionCacheInvalidateEnable =
2145 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
2146
2147 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2148 *
2149 * "When VF Cache Invalidate is set “Post Sync Operation” must be
2150 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
2151 * “Write Timestamp”.
2152 */
2153 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
2154 pipe.PostSyncOperation = WriteImmediateData;
2155 pipe.Address =
2156 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
2157 }
2158 }
2159
2160 #if GEN_GEN == 12
2161 if ((bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT) &&
2162 cmd_buffer->device->info.has_aux_map) {
2163 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2164 lri.RegisterOffset = GENX(GFX_CCS_AUX_INV_num);
2165 lri.DataDWord = 1;
2166 }
2167 }
2168 #endif
2169
2170 bits &= ~ANV_PIPE_INVALIDATE_BITS;
2171 }
2172
2173 cmd_buffer->state.pending_pipe_bits = bits;
2174 }
2175
2176 void genX(CmdPipelineBarrier)(
2177 VkCommandBuffer commandBuffer,
2178 VkPipelineStageFlags srcStageMask,
2179 VkPipelineStageFlags destStageMask,
2180 VkBool32 byRegion,
2181 uint32_t memoryBarrierCount,
2182 const VkMemoryBarrier* pMemoryBarriers,
2183 uint32_t bufferMemoryBarrierCount,
2184 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
2185 uint32_t imageMemoryBarrierCount,
2186 const VkImageMemoryBarrier* pImageMemoryBarriers)
2187 {
2188 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2189
2190 /* XXX: Right now, we're really dumb and just flush whatever categories
2191 * the app asks for. One of these days we may make this a bit better
2192 * but right now that's all the hardware allows for in most areas.
2193 */
2194 VkAccessFlags src_flags = 0;
2195 VkAccessFlags dst_flags = 0;
2196
2197 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
2198 src_flags |= pMemoryBarriers[i].srcAccessMask;
2199 dst_flags |= pMemoryBarriers[i].dstAccessMask;
2200 }
2201
2202 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
2203 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
2204 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
2205 }
2206
2207 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
2208 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
2209 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
2210 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
2211 const VkImageSubresourceRange *range =
2212 &pImageMemoryBarriers[i].subresourceRange;
2213
2214 uint32_t base_layer, layer_count;
2215 if (image->type == VK_IMAGE_TYPE_3D) {
2216 base_layer = 0;
2217 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
2218 } else {
2219 base_layer = range->baseArrayLayer;
2220 layer_count = anv_get_layerCount(image, range);
2221 }
2222
2223 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
2224 transition_depth_buffer(cmd_buffer, image,
2225 pImageMemoryBarriers[i].oldLayout,
2226 pImageMemoryBarriers[i].newLayout);
2227 }
2228
2229 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
2230 transition_stencil_buffer(cmd_buffer, image,
2231 range->baseMipLevel,
2232 anv_get_levelCount(image, range),
2233 base_layer, layer_count,
2234 pImageMemoryBarriers[i].oldLayout,
2235 pImageMemoryBarriers[i].newLayout);
2236 }
2237
2238 if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2239 VkImageAspectFlags color_aspects =
2240 anv_image_expand_aspects(image, range->aspectMask);
2241 uint32_t aspect_bit;
2242 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
2243 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
2244 range->baseMipLevel,
2245 anv_get_levelCount(image, range),
2246 base_layer, layer_count,
2247 pImageMemoryBarriers[i].oldLayout,
2248 pImageMemoryBarriers[i].newLayout);
2249 }
2250 }
2251 }
2252
2253 cmd_buffer->state.pending_pipe_bits |=
2254 anv_pipe_flush_bits_for_access_flags(src_flags) |
2255 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
2256 }
2257
2258 static void
2259 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
2260 {
2261 VkShaderStageFlags stages =
2262 cmd_buffer->state.gfx.base.pipeline->active_stages;
2263
2264 /* In order to avoid thrash, we assume that vertex and fragment stages
2265 * always exist. In the rare case where one is missing *and* the other
2266 * uses push concstants, this may be suboptimal. However, avoiding stalls
2267 * seems more important.
2268 */
2269 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
2270
2271 if (stages == cmd_buffer->state.push_constant_stages)
2272 return;
2273
2274 #if GEN_GEN >= 8
2275 const unsigned push_constant_kb = 32;
2276 #elif GEN_IS_HASWELL
2277 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
2278 #else
2279 const unsigned push_constant_kb = 16;
2280 #endif
2281
2282 const unsigned num_stages =
2283 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
2284 unsigned size_per_stage = push_constant_kb / num_stages;
2285
2286 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2287 * units of 2KB. Incidentally, these are the same platforms that have
2288 * 32KB worth of push constant space.
2289 */
2290 if (push_constant_kb == 32)
2291 size_per_stage &= ~1u;
2292
2293 uint32_t kb_used = 0;
2294 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
2295 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
2296 anv_batch_emit(&cmd_buffer->batch,
2297 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
2298 alloc._3DCommandSubOpcode = 18 + i;
2299 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
2300 alloc.ConstantBufferSize = push_size;
2301 }
2302 kb_used += push_size;
2303 }
2304
2305 anv_batch_emit(&cmd_buffer->batch,
2306 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
2307 alloc.ConstantBufferOffset = kb_used;
2308 alloc.ConstantBufferSize = push_constant_kb - kb_used;
2309 }
2310
2311 cmd_buffer->state.push_constant_stages = stages;
2312
2313 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2314 *
2315 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2316 * the next 3DPRIMITIVE command after programming the
2317 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2318 *
2319 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2320 * pipeline setup, we need to dirty push constants.
2321 */
2322 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
2323 }
2324
2325 static struct anv_address
2326 anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer,
2327 struct anv_descriptor_set *set)
2328 {
2329 if (set->pool) {
2330 /* This is a normal descriptor set */
2331 return (struct anv_address) {
2332 .bo = set->pool->bo,
2333 .offset = set->desc_mem.offset,
2334 };
2335 } else {
2336 /* This is a push descriptor set. We have to flag it as used on the GPU
2337 * so that the next time we push descriptors, we grab a new memory.
2338 */
2339 struct anv_push_descriptor_set *push_set =
2340 (struct anv_push_descriptor_set *)set;
2341 push_set->set_used_on_gpu = true;
2342
2343 return (struct anv_address) {
2344 .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo,
2345 .offset = set->desc_mem.offset,
2346 };
2347 }
2348 }
2349
2350 static VkResult
2351 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2352 gl_shader_stage stage,
2353 struct anv_state *bt_state)
2354 {
2355 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2356 struct anv_cmd_pipeline_state *pipe_state;
2357 struct anv_pipeline *pipeline;
2358 uint32_t state_offset;
2359
2360 switch (stage) {
2361 case MESA_SHADER_COMPUTE:
2362 pipe_state = &cmd_buffer->state.compute.base;
2363 break;
2364 default:
2365 pipe_state = &cmd_buffer->state.gfx.base;
2366 break;
2367 }
2368 pipeline = pipe_state->pipeline;
2369
2370 if (!anv_pipeline_has_stage(pipeline, stage)) {
2371 *bt_state = (struct anv_state) { 0, };
2372 return VK_SUCCESS;
2373 }
2374
2375 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2376 if (map->surface_count == 0) {
2377 *bt_state = (struct anv_state) { 0, };
2378 return VK_SUCCESS;
2379 }
2380
2381 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2382 map->surface_count,
2383 &state_offset);
2384 uint32_t *bt_map = bt_state->map;
2385
2386 if (bt_state->map == NULL)
2387 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2388
2389 /* We only need to emit relocs if we're not using softpin. If we are using
2390 * softpin then we always keep all user-allocated memory objects resident.
2391 */
2392 const bool need_client_mem_relocs =
2393 !cmd_buffer->device->physical->use_softpin;
2394
2395 for (uint32_t s = 0; s < map->surface_count; s++) {
2396 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2397
2398 struct anv_state surface_state;
2399
2400 switch (binding->set) {
2401 case ANV_DESCRIPTOR_SET_NULL:
2402 bt_map[s] = 0;
2403 break;
2404
2405 case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
2406 /* Color attachment binding */
2407 assert(stage == MESA_SHADER_FRAGMENT);
2408 if (binding->index < subpass->color_count) {
2409 const unsigned att =
2410 subpass->color_attachments[binding->index].attachment;
2411
2412 /* From the Vulkan 1.0.46 spec:
2413 *
2414 * "If any color or depth/stencil attachments are
2415 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2416 * attachments."
2417 */
2418 if (att == VK_ATTACHMENT_UNUSED) {
2419 surface_state = cmd_buffer->state.null_surface_state;
2420 } else {
2421 surface_state = cmd_buffer->state.attachments[att].color.state;
2422 }
2423 } else {
2424 surface_state = cmd_buffer->state.null_surface_state;
2425 }
2426
2427 bt_map[s] = surface_state.offset + state_offset;
2428 break;
2429
2430 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
2431 struct anv_state surface_state =
2432 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2433
2434 struct anv_address constant_data = {
2435 .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
2436 .offset = pipeline->shaders[stage]->constant_data.offset,
2437 };
2438 unsigned constant_data_size =
2439 pipeline->shaders[stage]->constant_data_size;
2440
2441 const enum isl_format format =
2442 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2443 anv_fill_buffer_surface_state(cmd_buffer->device,
2444 surface_state, format,
2445 constant_data, constant_data_size, 1);
2446
2447 bt_map[s] = surface_state.offset + state_offset;
2448 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2449 break;
2450 }
2451
2452 case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
2453 /* This is always the first binding for compute shaders */
2454 assert(stage == MESA_SHADER_COMPUTE && s == 0);
2455
2456 struct anv_state surface_state =
2457 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2458
2459 const enum isl_format format =
2460 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2461 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2462 format,
2463 cmd_buffer->state.compute.num_workgroups,
2464 12, 1);
2465 bt_map[s] = surface_state.offset + state_offset;
2466 if (need_client_mem_relocs) {
2467 add_surface_reloc(cmd_buffer, surface_state,
2468 cmd_buffer->state.compute.num_workgroups);
2469 }
2470 break;
2471 }
2472
2473 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2474 /* This is a descriptor set buffer so the set index is actually
2475 * given by binding->binding. (Yes, that's confusing.)
2476 */
2477 struct anv_descriptor_set *set =
2478 pipe_state->descriptors[binding->index];
2479 assert(set->desc_mem.alloc_size);
2480 assert(set->desc_surface_state.alloc_size);
2481 bt_map[s] = set->desc_surface_state.offset + state_offset;
2482 add_surface_reloc(cmd_buffer, set->desc_surface_state,
2483 anv_descriptor_set_address(cmd_buffer, set));
2484 break;
2485 }
2486
2487 default: {
2488 assert(binding->set < MAX_SETS);
2489 const struct anv_descriptor *desc =
2490 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2491
2492 switch (desc->type) {
2493 case VK_DESCRIPTOR_TYPE_SAMPLER:
2494 /* Nothing for us to do here */
2495 continue;
2496
2497 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2498 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2499 struct anv_surface_state sstate =
2500 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2501 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2502 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2503 surface_state = sstate.state;
2504 assert(surface_state.alloc_size);
2505 if (need_client_mem_relocs)
2506 add_surface_state_relocs(cmd_buffer, sstate);
2507 break;
2508 }
2509 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2510 assert(stage == MESA_SHADER_FRAGMENT);
2511 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2512 /* For depth and stencil input attachments, we treat it like any
2513 * old texture that a user may have bound.
2514 */
2515 assert(desc->image_view->n_planes == 1);
2516 struct anv_surface_state sstate =
2517 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2518 desc->image_view->planes[0].general_sampler_surface_state :
2519 desc->image_view->planes[0].optimal_sampler_surface_state;
2520 surface_state = sstate.state;
2521 assert(surface_state.alloc_size);
2522 if (need_client_mem_relocs)
2523 add_surface_state_relocs(cmd_buffer, sstate);
2524 } else {
2525 /* For color input attachments, we create the surface state at
2526 * vkBeginRenderPass time so that we can include aux and clear
2527 * color information.
2528 */
2529 assert(binding->input_attachment_index < subpass->input_count);
2530 const unsigned subpass_att = binding->input_attachment_index;
2531 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2532 surface_state = cmd_buffer->state.attachments[att].input.state;
2533 }
2534 break;
2535
2536 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2537 struct anv_surface_state sstate = (binding->write_only)
2538 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2539 : desc->image_view->planes[binding->plane].storage_surface_state;
2540 surface_state = sstate.state;
2541 assert(surface_state.alloc_size);
2542 if (need_client_mem_relocs)
2543 add_surface_state_relocs(cmd_buffer, sstate);
2544 break;
2545 }
2546
2547 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2548 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2549 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2550 surface_state = desc->buffer_view->surface_state;
2551 assert(surface_state.alloc_size);
2552 if (need_client_mem_relocs) {
2553 add_surface_reloc(cmd_buffer, surface_state,
2554 desc->buffer_view->address);
2555 }
2556 break;
2557
2558 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2559 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2560 /* Compute the offset within the buffer */
2561 struct anv_push_constants *push =
2562 &cmd_buffer->state.push_constants[stage];
2563
2564 uint32_t dynamic_offset =
2565 push->dynamic_offsets[binding->dynamic_offset_index];
2566 uint64_t offset = desc->offset + dynamic_offset;
2567 /* Clamp to the buffer size */
2568 offset = MIN2(offset, desc->buffer->size);
2569 /* Clamp the range to the buffer size */
2570 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2571
2572 struct anv_address address =
2573 anv_address_add(desc->buffer->address, offset);
2574
2575 surface_state =
2576 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2577 enum isl_format format =
2578 anv_isl_format_for_descriptor_type(desc->type);
2579
2580 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2581 format, address, range, 1);
2582 if (need_client_mem_relocs)
2583 add_surface_reloc(cmd_buffer, surface_state, address);
2584 break;
2585 }
2586
2587 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2588 surface_state = (binding->write_only)
2589 ? desc->buffer_view->writeonly_storage_surface_state
2590 : desc->buffer_view->storage_surface_state;
2591 assert(surface_state.alloc_size);
2592 if (need_client_mem_relocs) {
2593 add_surface_reloc(cmd_buffer, surface_state,
2594 desc->buffer_view->address);
2595 }
2596 break;
2597
2598 default:
2599 assert(!"Invalid descriptor type");
2600 continue;
2601 }
2602 bt_map[s] = surface_state.offset + state_offset;
2603 break;
2604 }
2605 }
2606 }
2607
2608 return VK_SUCCESS;
2609 }
2610
2611 static VkResult
2612 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2613 gl_shader_stage stage,
2614 struct anv_state *state)
2615 {
2616 struct anv_cmd_pipeline_state *pipe_state =
2617 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
2618 &cmd_buffer->state.gfx.base;
2619 struct anv_pipeline *pipeline = pipe_state->pipeline;
2620
2621 if (!anv_pipeline_has_stage(pipeline, stage)) {
2622 *state = (struct anv_state) { 0, };
2623 return VK_SUCCESS;
2624 }
2625
2626 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2627 if (map->sampler_count == 0) {
2628 *state = (struct anv_state) { 0, };
2629 return VK_SUCCESS;
2630 }
2631
2632 uint32_t size = map->sampler_count * 16;
2633 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2634
2635 if (state->map == NULL)
2636 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2637
2638 for (uint32_t s = 0; s < map->sampler_count; s++) {
2639 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2640 const struct anv_descriptor *desc =
2641 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2642
2643 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2644 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2645 continue;
2646
2647 struct anv_sampler *sampler = desc->sampler;
2648
2649 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2650 * happens to be zero.
2651 */
2652 if (sampler == NULL)
2653 continue;
2654
2655 memcpy(state->map + (s * 16),
2656 sampler->state[binding->plane], sizeof(sampler->state[0]));
2657 }
2658
2659 return VK_SUCCESS;
2660 }
2661
2662 static uint32_t
2663 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer,
2664 struct anv_pipeline *pipeline)
2665 {
2666 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2667 pipeline->active_stages;
2668
2669 VkResult result = VK_SUCCESS;
2670 anv_foreach_stage(s, dirty) {
2671 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2672 if (result != VK_SUCCESS)
2673 break;
2674 result = emit_binding_table(cmd_buffer, s,
2675 &cmd_buffer->state.binding_tables[s]);
2676 if (result != VK_SUCCESS)
2677 break;
2678 }
2679
2680 if (result != VK_SUCCESS) {
2681 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2682
2683 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2684 if (result != VK_SUCCESS)
2685 return 0;
2686
2687 /* Re-emit state base addresses so we get the new surface state base
2688 * address before we start emitting binding tables etc.
2689 */
2690 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2691
2692 /* Re-emit all active binding tables */
2693 dirty |= pipeline->active_stages;
2694 anv_foreach_stage(s, dirty) {
2695 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2696 if (result != VK_SUCCESS) {
2697 anv_batch_set_error(&cmd_buffer->batch, result);
2698 return 0;
2699 }
2700 result = emit_binding_table(cmd_buffer, s,
2701 &cmd_buffer->state.binding_tables[s]);
2702 if (result != VK_SUCCESS) {
2703 anv_batch_set_error(&cmd_buffer->batch, result);
2704 return 0;
2705 }
2706 }
2707 }
2708
2709 cmd_buffer->state.descriptors_dirty &= ~dirty;
2710
2711 return dirty;
2712 }
2713
2714 static void
2715 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2716 uint32_t stages)
2717 {
2718 static const uint32_t sampler_state_opcodes[] = {
2719 [MESA_SHADER_VERTEX] = 43,
2720 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2721 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2722 [MESA_SHADER_GEOMETRY] = 46,
2723 [MESA_SHADER_FRAGMENT] = 47,
2724 [MESA_SHADER_COMPUTE] = 0,
2725 };
2726
2727 static const uint32_t binding_table_opcodes[] = {
2728 [MESA_SHADER_VERTEX] = 38,
2729 [MESA_SHADER_TESS_CTRL] = 39,
2730 [MESA_SHADER_TESS_EVAL] = 40,
2731 [MESA_SHADER_GEOMETRY] = 41,
2732 [MESA_SHADER_FRAGMENT] = 42,
2733 [MESA_SHADER_COMPUTE] = 0,
2734 };
2735
2736 anv_foreach_stage(s, stages) {
2737 assert(s < ARRAY_SIZE(binding_table_opcodes));
2738 assert(binding_table_opcodes[s] > 0);
2739
2740 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2741 anv_batch_emit(&cmd_buffer->batch,
2742 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2743 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2744 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2745 }
2746 }
2747
2748 /* Always emit binding table pointers if we're asked to, since on SKL
2749 * this is what flushes push constants. */
2750 anv_batch_emit(&cmd_buffer->batch,
2751 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2752 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2753 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2754 }
2755 }
2756 }
2757
2758 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2759 static struct anv_address
2760 get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
2761 gl_shader_stage stage,
2762 const struct anv_push_range *range)
2763 {
2764 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2765 switch (range->set) {
2766 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2767 /* This is a descriptor set buffer so the set index is
2768 * actually given by binding->binding. (Yes, that's
2769 * confusing.)
2770 */
2771 struct anv_descriptor_set *set =
2772 gfx_state->base.descriptors[range->index];
2773 return anv_descriptor_set_address(cmd_buffer, set);
2774 break;
2775 }
2776
2777 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
2778 struct anv_state state =
2779 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2780 return (struct anv_address) {
2781 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2782 .offset = state.offset,
2783 };
2784 break;
2785 }
2786
2787 default: {
2788 assert(range->set < MAX_SETS);
2789 struct anv_descriptor_set *set =
2790 gfx_state->base.descriptors[range->set];
2791 const struct anv_descriptor *desc =
2792 &set->descriptors[range->index];
2793
2794 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2795 return desc->buffer_view->address;
2796 } else {
2797 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2798 struct anv_push_constants *push =
2799 &cmd_buffer->state.push_constants[stage];
2800 uint32_t dynamic_offset =
2801 push->dynamic_offsets[range->dynamic_offset_index];
2802 return anv_address_add(desc->buffer->address,
2803 desc->offset + dynamic_offset);
2804 }
2805 }
2806 }
2807 }
2808 #endif
2809
2810 static void
2811 cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
2812 gl_shader_stage stage, unsigned buffer_count)
2813 {
2814 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2815 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2816
2817 static const uint32_t push_constant_opcodes[] = {
2818 [MESA_SHADER_VERTEX] = 21,
2819 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2820 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2821 [MESA_SHADER_GEOMETRY] = 22,
2822 [MESA_SHADER_FRAGMENT] = 23,
2823 [MESA_SHADER_COMPUTE] = 0,
2824 };
2825
2826 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2827 assert(push_constant_opcodes[stage] > 0);
2828
2829 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2830 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2831
2832 if (anv_pipeline_has_stage(pipeline, stage)) {
2833 const struct anv_pipeline_bind_map *bind_map =
2834 &pipeline->shaders[stage]->bind_map;
2835
2836 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2837 /* The Skylake PRM contains the following restriction:
2838 *
2839 * "The driver must ensure The following case does not occur
2840 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2841 * buffer 3 read length equal to zero committed followed by a
2842 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2843 * zero committed."
2844 *
2845 * To avoid this, we program the buffers in the highest slots.
2846 * This way, slot 0 is only used if slot 3 is also used.
2847 */
2848 assert(buffer_count <= 4);
2849 const unsigned shift = 4 - buffer_count;
2850 for (unsigned i = 0; i < buffer_count; i++) {
2851 const struct anv_push_range *range = &bind_map->push_ranges[i];
2852
2853 /* At this point we only have non-empty ranges */
2854 assert(range->length > 0);
2855
2856 /* For Ivy Bridge, make sure we only set the first range (actual
2857 * push constants)
2858 */
2859 assert((GEN_GEN >= 8 || GEN_IS_HASWELL) || i == 0);
2860
2861 const struct anv_address addr =
2862 get_push_range_address(cmd_buffer, stage, range);
2863 c.ConstantBody.ReadLength[i + shift] = range->length;
2864 c.ConstantBody.Buffer[i + shift] =
2865 anv_address_add(addr, range->start * 32);
2866 }
2867 #else
2868 /* For Ivy Bridge, push constants are relative to dynamic state
2869 * base address and we only ever push actual push constants.
2870 */
2871 if (bind_map->push_ranges[0].length > 0) {
2872 assert(bind_map->push_ranges[0].set ==
2873 ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
2874 struct anv_state state =
2875 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2876 c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length;
2877 c.ConstantBody.Buffer[0].bo = NULL;
2878 c.ConstantBody.Buffer[0].offset = state.offset;
2879 }
2880 assert(bind_map->push_ranges[1].length == 0);
2881 assert(bind_map->push_ranges[2].length == 0);
2882 assert(bind_map->push_ranges[3].length == 0);
2883 #endif
2884 }
2885 }
2886 }
2887
2888 #if GEN_GEN >= 12
2889 static void
2890 cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer,
2891 uint32_t shader_mask, uint32_t count)
2892 {
2893 if (count == 0) {
2894 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
2895 c.ShaderUpdateEnable = shader_mask;
2896 }
2897 return;
2898 }
2899
2900 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2901 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2902
2903 static const uint32_t push_constant_opcodes[] = {
2904 [MESA_SHADER_VERTEX] = 21,
2905 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2906 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2907 [MESA_SHADER_GEOMETRY] = 22,
2908 [MESA_SHADER_FRAGMENT] = 23,
2909 [MESA_SHADER_COMPUTE] = 0,
2910 };
2911
2912 gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask);
2913 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2914 assert(push_constant_opcodes[stage] > 0);
2915
2916 const struct anv_pipeline_bind_map *bind_map =
2917 &pipeline->shaders[stage]->bind_map;
2918
2919 uint32_t *dw;
2920 const uint32_t buffers = (1 << count) - 1;
2921 const uint32_t num_dwords = 2 + 2 * count;
2922
2923 dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2924 GENX(3DSTATE_CONSTANT_ALL),
2925 .ShaderUpdateEnable = shader_mask,
2926 .PointerBufferMask = buffers);
2927
2928 for (int i = 0; i < count; i++) {
2929 const struct anv_push_range *range = &bind_map->push_ranges[i];
2930 const struct anv_address addr =
2931 get_push_range_address(cmd_buffer, stage, range);
2932
2933 GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
2934 &cmd_buffer->batch, dw + 2 + i * 2,
2935 &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
2936 .PointerToConstantBuffer = anv_address_add(addr, range->start * 32),
2937 .ConstantBufferReadLength = range->length,
2938 });
2939 }
2940 }
2941 #endif
2942
2943 static void
2944 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2945 VkShaderStageFlags dirty_stages)
2946 {
2947 VkShaderStageFlags flushed = 0;
2948 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2949 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2950
2951 #if GEN_GEN >= 12
2952 uint32_t nobuffer_stages = 0;
2953 #endif
2954
2955 anv_foreach_stage(stage, dirty_stages) {
2956 unsigned buffer_count = 0;
2957 flushed |= mesa_to_vk_shader_stage(stage);
2958 uint32_t max_push_range = 0;
2959
2960 if (anv_pipeline_has_stage(pipeline, stage)) {
2961 const struct anv_pipeline_bind_map *bind_map =
2962 &pipeline->shaders[stage]->bind_map;
2963
2964 for (unsigned i = 0; i < 4; i++) {
2965 const struct anv_push_range *range = &bind_map->push_ranges[i];
2966 if (range->length > 0) {
2967 buffer_count++;
2968 if (GEN_GEN >= 12 && range->length > max_push_range)
2969 max_push_range = range->length;
2970 }
2971 }
2972 }
2973
2974 #if GEN_GEN >= 12
2975 /* If this stage doesn't have any push constants, emit it later in a
2976 * single CONSTANT_ALL packet.
2977 */
2978 if (buffer_count == 0) {
2979 nobuffer_stages |= 1 << stage;
2980 continue;
2981 }
2982
2983 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
2984 * contains only 5 bits, so we can only use it for buffers smaller than
2985 * 32.
2986 */
2987 if (max_push_range < 32) {
2988 cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage,
2989 buffer_count);
2990 continue;
2991 }
2992 #endif
2993
2994 cmd_buffer_emit_push_constant(cmd_buffer, stage, buffer_count);
2995 }
2996
2997 #if GEN_GEN >= 12
2998 if (nobuffer_stages)
2999 cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, 0);
3000 #endif
3001
3002 cmd_buffer->state.push_constants_dirty &= ~flushed;
3003 }
3004
3005 void
3006 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
3007 {
3008 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3009 uint32_t *p;
3010
3011 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
3012 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
3013 vb_emit |= pipeline->vb_used;
3014
3015 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
3016
3017 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
3018
3019 genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
3020
3021 genX(flush_pipeline_select_3d)(cmd_buffer);
3022
3023 if (vb_emit) {
3024 const uint32_t num_buffers = __builtin_popcount(vb_emit);
3025 const uint32_t num_dwords = 1 + num_buffers * 4;
3026
3027 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3028 GENX(3DSTATE_VERTEX_BUFFERS));
3029 uint32_t vb, i = 0;
3030 for_each_bit(vb, vb_emit) {
3031 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
3032 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
3033
3034 struct GENX(VERTEX_BUFFER_STATE) state = {
3035 .VertexBufferIndex = vb,
3036
3037 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
3038 #if GEN_GEN <= 7
3039 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
3040 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
3041 #endif
3042
3043 .AddressModifyEnable = true,
3044 .BufferPitch = pipeline->vb[vb].stride,
3045 .BufferStartingAddress = anv_address_add(buffer->address, offset),
3046
3047 #if GEN_GEN >= 8
3048 .BufferSize = buffer->size - offset
3049 #else
3050 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
3051 #endif
3052 };
3053
3054 #if GEN_GEN >= 8 && GEN_GEN <= 9
3055 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer, vb,
3056 state.BufferStartingAddress,
3057 state.BufferSize);
3058 #endif
3059
3060 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
3061 i++;
3062 }
3063 }
3064
3065 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
3066
3067 #if GEN_GEN >= 8
3068 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) {
3069 /* We don't need any per-buffer dirty tracking because you're not
3070 * allowed to bind different XFB buffers while XFB is enabled.
3071 */
3072 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3073 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
3074 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
3075 #if GEN_GEN < 12
3076 sob.SOBufferIndex = idx;
3077 #else
3078 sob._3DCommandOpcode = 0;
3079 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
3080 #endif
3081
3082 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
3083 sob.SOBufferEnable = true;
3084 sob.MOCS = cmd_buffer->device->isl_dev.mocs.internal,
3085 sob.StreamOffsetWriteEnable = false;
3086 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
3087 xfb->offset);
3088 /* Size is in DWords - 1 */
3089 sob.SurfaceSize = xfb->size / 4 - 1;
3090 }
3091 }
3092 }
3093
3094 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
3095 if (GEN_GEN >= 10)
3096 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3097 }
3098 #endif
3099
3100 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
3101 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3102
3103 /* If the pipeline changed, we may need to re-allocate push constant
3104 * space in the URB.
3105 */
3106 cmd_buffer_alloc_push_constants(cmd_buffer);
3107 }
3108
3109 #if GEN_GEN <= 7
3110 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
3111 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
3112 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
3113 *
3114 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
3115 * stall needs to be sent just prior to any 3DSTATE_VS,
3116 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
3117 * 3DSTATE_BINDING_TABLE_POINTER_VS,
3118 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
3119 * PIPE_CONTROL needs to be sent before any combination of VS
3120 * associated 3DSTATE."
3121 */
3122 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3123 pc.DepthStallEnable = true;
3124 pc.PostSyncOperation = WriteImmediateData;
3125 pc.Address =
3126 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
3127 }
3128 }
3129 #endif
3130
3131 /* Render targets live in the same binding table as fragment descriptors */
3132 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
3133 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
3134
3135 /* We emit the binding tables and sampler tables first, then emit push
3136 * constants and then finally emit binding table and sampler table
3137 * pointers. It has to happen in this order, since emitting the binding
3138 * tables may change the push constants (in case of storage images). After
3139 * emitting push constants, on SKL+ we have to emit the corresponding
3140 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
3141 */
3142 uint32_t dirty = 0;
3143 if (cmd_buffer->state.descriptors_dirty)
3144 dirty = flush_descriptor_sets(cmd_buffer, pipeline);
3145
3146 if (dirty || cmd_buffer->state.push_constants_dirty) {
3147 /* Because we're pushing UBOs, we have to push whenever either
3148 * descriptors or push constants is dirty.
3149 */
3150 dirty |= cmd_buffer->state.push_constants_dirty;
3151 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
3152 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
3153 }
3154
3155 if (dirty)
3156 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
3157
3158 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
3159 gen8_cmd_buffer_emit_viewport(cmd_buffer);
3160
3161 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
3162 ANV_CMD_DIRTY_PIPELINE)) {
3163 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
3164 pipeline->depth_clamp_enable);
3165 }
3166
3167 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
3168 ANV_CMD_DIRTY_RENDER_TARGETS))
3169 gen7_cmd_buffer_emit_scissor(cmd_buffer);
3170
3171 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
3172 }
3173
3174 static void
3175 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
3176 struct anv_address addr,
3177 uint32_t size, uint32_t index)
3178 {
3179 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
3180 GENX(3DSTATE_VERTEX_BUFFERS));
3181
3182 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
3183 &(struct GENX(VERTEX_BUFFER_STATE)) {
3184 .VertexBufferIndex = index,
3185 .AddressModifyEnable = true,
3186 .BufferPitch = 0,
3187 .MOCS = addr.bo ? anv_mocs_for_bo(cmd_buffer->device, addr.bo) : 0,
3188 .NullVertexBuffer = size == 0,
3189 #if (GEN_GEN >= 8)
3190 .BufferStartingAddress = addr,
3191 .BufferSize = size
3192 #else
3193 .BufferStartingAddress = addr,
3194 .EndAddress = anv_address_add(addr, size),
3195 #endif
3196 });
3197
3198 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer,
3199 index, addr, size);
3200 }
3201
3202 static void
3203 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
3204 struct anv_address addr)
3205 {
3206 emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
3207 }
3208
3209 static void
3210 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
3211 uint32_t base_vertex, uint32_t base_instance)
3212 {
3213 if (base_vertex == 0 && base_instance == 0) {
3214 emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
3215 } else {
3216 struct anv_state id_state =
3217 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
3218
3219 ((uint32_t *)id_state.map)[0] = base_vertex;
3220 ((uint32_t *)id_state.map)[1] = base_instance;
3221
3222 struct anv_address addr = {
3223 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3224 .offset = id_state.offset,
3225 };
3226
3227 emit_base_vertex_instance_bo(cmd_buffer, addr);
3228 }
3229 }
3230
3231 static void
3232 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
3233 {
3234 struct anv_state state =
3235 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
3236
3237 ((uint32_t *)state.map)[0] = draw_index;
3238
3239 struct anv_address addr = {
3240 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3241 .offset = state.offset,
3242 };
3243
3244 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
3245 }
3246
3247 static void
3248 update_dirty_vbs_for_gen8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
3249 uint32_t access_type)
3250 {
3251 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3252 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3253
3254 uint64_t vb_used = pipeline->vb_used;
3255 if (vs_prog_data->uses_firstvertex ||
3256 vs_prog_data->uses_baseinstance)
3257 vb_used |= 1ull << ANV_SVGS_VB_INDEX;
3258 if (vs_prog_data->uses_drawid)
3259 vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
3260
3261 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(cmd_buffer,
3262 access_type == RANDOM,
3263 vb_used);
3264 }
3265
3266 void genX(CmdDraw)(
3267 VkCommandBuffer commandBuffer,
3268 uint32_t vertexCount,
3269 uint32_t instanceCount,
3270 uint32_t firstVertex,
3271 uint32_t firstInstance)
3272 {
3273 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3274 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3275 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3276
3277 if (anv_batch_has_error(&cmd_buffer->batch))
3278 return;
3279
3280 genX(cmd_buffer_flush_state)(cmd_buffer);
3281
3282 if (cmd_buffer->state.conditional_render_enabled)
3283 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3284
3285 if (vs_prog_data->uses_firstvertex ||
3286 vs_prog_data->uses_baseinstance)
3287 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3288 if (vs_prog_data->uses_drawid)
3289 emit_draw_index(cmd_buffer, 0);
3290
3291 /* Emitting draw index or vertex index BOs may result in needing
3292 * additional VF cache flushes.
3293 */
3294 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3295
3296 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3297 * different views. We need to multiply instanceCount by the view count.
3298 */
3299 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3300
3301 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3302 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3303 prim.VertexAccessType = SEQUENTIAL;
3304 prim.PrimitiveTopologyType = pipeline->topology;
3305 prim.VertexCountPerInstance = vertexCount;
3306 prim.StartVertexLocation = firstVertex;
3307 prim.InstanceCount = instanceCount;
3308 prim.StartInstanceLocation = firstInstance;
3309 prim.BaseVertexLocation = 0;
3310 }
3311
3312 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3313 }
3314
3315 void genX(CmdDrawIndexed)(
3316 VkCommandBuffer commandBuffer,
3317 uint32_t indexCount,
3318 uint32_t instanceCount,
3319 uint32_t firstIndex,
3320 int32_t vertexOffset,
3321 uint32_t firstInstance)
3322 {
3323 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3324 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3325 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3326
3327 if (anv_batch_has_error(&cmd_buffer->batch))
3328 return;
3329
3330 genX(cmd_buffer_flush_state)(cmd_buffer);
3331
3332 if (cmd_buffer->state.conditional_render_enabled)
3333 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3334
3335 if (vs_prog_data->uses_firstvertex ||
3336 vs_prog_data->uses_baseinstance)
3337 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
3338 if (vs_prog_data->uses_drawid)
3339 emit_draw_index(cmd_buffer, 0);
3340
3341 /* Emitting draw index or vertex index BOs may result in needing
3342 * additional VF cache flushes.
3343 */
3344 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3345
3346 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3347 * different views. We need to multiply instanceCount by the view count.
3348 */
3349 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3350
3351 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3352 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3353 prim.VertexAccessType = RANDOM;
3354 prim.PrimitiveTopologyType = pipeline->topology;
3355 prim.VertexCountPerInstance = indexCount;
3356 prim.StartVertexLocation = firstIndex;
3357 prim.InstanceCount = instanceCount;
3358 prim.StartInstanceLocation = firstInstance;
3359 prim.BaseVertexLocation = vertexOffset;
3360 }
3361
3362 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3363 }
3364
3365 /* Auto-Draw / Indirect Registers */
3366 #define GEN7_3DPRIM_END_OFFSET 0x2420
3367 #define GEN7_3DPRIM_START_VERTEX 0x2430
3368 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
3369 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
3370 #define GEN7_3DPRIM_START_INSTANCE 0x243C
3371 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
3372
3373 void genX(CmdDrawIndirectByteCountEXT)(
3374 VkCommandBuffer commandBuffer,
3375 uint32_t instanceCount,
3376 uint32_t firstInstance,
3377 VkBuffer counterBuffer,
3378 VkDeviceSize counterBufferOffset,
3379 uint32_t counterOffset,
3380 uint32_t vertexStride)
3381 {
3382 #if GEN_IS_HASWELL || GEN_GEN >= 8
3383 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3384 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
3385 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3386 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3387
3388 /* firstVertex is always zero for this draw function */
3389 const uint32_t firstVertex = 0;
3390
3391 if (anv_batch_has_error(&cmd_buffer->batch))
3392 return;
3393
3394 genX(cmd_buffer_flush_state)(cmd_buffer);
3395
3396 if (vs_prog_data->uses_firstvertex ||
3397 vs_prog_data->uses_baseinstance)
3398 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3399 if (vs_prog_data->uses_drawid)
3400 emit_draw_index(cmd_buffer, 0);
3401
3402 /* Emitting draw index or vertex index BOs may result in needing
3403 * additional VF cache flushes.
3404 */
3405 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3406
3407 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3408 * different views. We need to multiply instanceCount by the view count.
3409 */
3410 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3411
3412 struct gen_mi_builder b;
3413 gen_mi_builder_init(&b, &cmd_buffer->batch);
3414 struct gen_mi_value count =
3415 gen_mi_mem32(anv_address_add(counter_buffer->address,
3416 counterBufferOffset));
3417 if (counterOffset)
3418 count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset));
3419 count = gen_mi_udiv32_imm(&b, count, vertexStride);
3420 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count);
3421
3422 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3423 gen_mi_imm(firstVertex));
3424 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT),
3425 gen_mi_imm(instanceCount));
3426 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3427 gen_mi_imm(firstInstance));
3428 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3429
3430 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3431 prim.IndirectParameterEnable = true;
3432 prim.VertexAccessType = SEQUENTIAL;
3433 prim.PrimitiveTopologyType = pipeline->topology;
3434 }
3435
3436 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3437 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
3438 }
3439
3440 static void
3441 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
3442 struct anv_address addr,
3443 bool indexed)
3444 {
3445 struct gen_mi_builder b;
3446 gen_mi_builder_init(&b, &cmd_buffer->batch);
3447
3448 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT),
3449 gen_mi_mem32(anv_address_add(addr, 0)));
3450
3451 struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4));
3452 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
3453 if (view_count > 1) {
3454 #if GEN_IS_HASWELL || GEN_GEN >= 8
3455 instance_count = gen_mi_imul_imm(&b, instance_count, view_count);
3456 #else
3457 anv_finishme("Multiview + indirect draw requires MI_MATH; "
3458 "MI_MATH is not supported on Ivy Bridge");
3459 #endif
3460 }
3461 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count);
3462
3463 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3464 gen_mi_mem32(anv_address_add(addr, 8)));
3465
3466 if (indexed) {
3467 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX),
3468 gen_mi_mem32(anv_address_add(addr, 12)));
3469 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3470 gen_mi_mem32(anv_address_add(addr, 16)));
3471 } else {
3472 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3473 gen_mi_mem32(anv_address_add(addr, 12)));
3474 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3475 }
3476 }
3477
3478 void genX(CmdDrawIndirect)(
3479 VkCommandBuffer commandBuffer,
3480 VkBuffer _buffer,
3481 VkDeviceSize offset,
3482 uint32_t drawCount,
3483 uint32_t stride)
3484 {
3485 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3486 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3487 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3488 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3489
3490 if (anv_batch_has_error(&cmd_buffer->batch))
3491 return;
3492
3493 genX(cmd_buffer_flush_state)(cmd_buffer);
3494
3495 if (cmd_buffer->state.conditional_render_enabled)
3496 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3497
3498 for (uint32_t i = 0; i < drawCount; i++) {
3499 struct anv_address draw = anv_address_add(buffer->address, offset);
3500
3501 if (vs_prog_data->uses_firstvertex ||
3502 vs_prog_data->uses_baseinstance)
3503 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3504 if (vs_prog_data->uses_drawid)
3505 emit_draw_index(cmd_buffer, i);
3506
3507 /* Emitting draw index or vertex index BOs may result in needing
3508 * additional VF cache flushes.
3509 */
3510 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3511
3512 load_indirect_parameters(cmd_buffer, draw, false);
3513
3514 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3515 prim.IndirectParameterEnable = true;
3516 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3517 prim.VertexAccessType = SEQUENTIAL;
3518 prim.PrimitiveTopologyType = pipeline->topology;
3519 }
3520
3521 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3522
3523 offset += stride;
3524 }
3525 }
3526
3527 void genX(CmdDrawIndexedIndirect)(
3528 VkCommandBuffer commandBuffer,
3529 VkBuffer _buffer,
3530 VkDeviceSize offset,
3531 uint32_t drawCount,
3532 uint32_t stride)
3533 {
3534 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3535 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3536 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3537 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3538
3539 if (anv_batch_has_error(&cmd_buffer->batch))
3540 return;
3541
3542 genX(cmd_buffer_flush_state)(cmd_buffer);
3543
3544 if (cmd_buffer->state.conditional_render_enabled)
3545 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3546
3547 for (uint32_t i = 0; i < drawCount; i++) {
3548 struct anv_address draw = anv_address_add(buffer->address, offset);
3549
3550 /* TODO: We need to stomp base vertex to 0 somehow */
3551 if (vs_prog_data->uses_firstvertex ||
3552 vs_prog_data->uses_baseinstance)
3553 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3554 if (vs_prog_data->uses_drawid)
3555 emit_draw_index(cmd_buffer, i);
3556
3557 /* Emitting draw index or vertex index BOs may result in needing
3558 * additional VF cache flushes.
3559 */
3560 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3561
3562 load_indirect_parameters(cmd_buffer, draw, true);
3563
3564 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3565 prim.IndirectParameterEnable = true;
3566 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3567 prim.VertexAccessType = RANDOM;
3568 prim.PrimitiveTopologyType = pipeline->topology;
3569 }
3570
3571 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3572
3573 offset += stride;
3574 }
3575 }
3576
3577 #define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
3578
3579 static void
3580 prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3581 struct anv_address count_address,
3582 const bool conditional_render_enabled)
3583 {
3584 struct gen_mi_builder b;
3585 gen_mi_builder_init(&b, &cmd_buffer->batch);
3586
3587 if (conditional_render_enabled) {
3588 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3589 gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
3590 gen_mi_mem32(count_address));
3591 #endif
3592 } else {
3593 /* Upload the current draw count from the draw parameters buffer to
3594 * MI_PREDICATE_SRC0.
3595 */
3596 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
3597 gen_mi_mem32(count_address));
3598
3599 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
3600 }
3601 }
3602
3603 static void
3604 emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3605 uint32_t draw_index)
3606 {
3607 struct gen_mi_builder b;
3608 gen_mi_builder_init(&b, &cmd_buffer->batch);
3609
3610 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
3611 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
3612
3613 if (draw_index == 0) {
3614 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3615 mip.LoadOperation = LOAD_LOADINV;
3616 mip.CombineOperation = COMBINE_SET;
3617 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3618 }
3619 } else {
3620 /* While draw_index < draw_count the predicate's result will be
3621 * (draw_index == draw_count) ^ TRUE = TRUE
3622 * When draw_index == draw_count the result is
3623 * (TRUE) ^ TRUE = FALSE
3624 * After this all results will be:
3625 * (FALSE) ^ FALSE = FALSE
3626 */
3627 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3628 mip.LoadOperation = LOAD_LOAD;
3629 mip.CombineOperation = COMBINE_XOR;
3630 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3631 }
3632 }
3633 }
3634
3635 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3636 static void
3637 emit_draw_count_predicate_with_conditional_render(
3638 struct anv_cmd_buffer *cmd_buffer,
3639 uint32_t draw_index)
3640 {
3641 struct gen_mi_builder b;
3642 gen_mi_builder_init(&b, &cmd_buffer->batch);
3643
3644 struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
3645 gen_mi_reg64(TMP_DRAW_COUNT_REG));
3646 pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
3647
3648 #if GEN_GEN >= 8
3649 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
3650 #else
3651 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
3652 * so we emit MI_PREDICATE to set it.
3653 */
3654
3655 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
3656 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3657
3658 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3659 mip.LoadOperation = LOAD_LOADINV;
3660 mip.CombineOperation = COMBINE_SET;
3661 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3662 }
3663 #endif
3664 }
3665 #endif
3666
3667 void genX(CmdDrawIndirectCount)(
3668 VkCommandBuffer commandBuffer,
3669 VkBuffer _buffer,
3670 VkDeviceSize offset,
3671 VkBuffer _countBuffer,
3672 VkDeviceSize countBufferOffset,
3673 uint32_t maxDrawCount,
3674 uint32_t stride)
3675 {
3676 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3677 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3678 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3679 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3680 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3681 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3682
3683 if (anv_batch_has_error(&cmd_buffer->batch))
3684 return;
3685
3686 genX(cmd_buffer_flush_state)(cmd_buffer);
3687
3688 struct anv_address count_address =
3689 anv_address_add(count_buffer->address, countBufferOffset);
3690
3691 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3692 cmd_state->conditional_render_enabled);
3693
3694 for (uint32_t i = 0; i < maxDrawCount; i++) {
3695 struct anv_address draw = anv_address_add(buffer->address, offset);
3696
3697 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3698 if (cmd_state->conditional_render_enabled) {
3699 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3700 } else {
3701 emit_draw_count_predicate(cmd_buffer, i);
3702 }
3703 #else
3704 emit_draw_count_predicate(cmd_buffer, i);
3705 #endif
3706
3707 if (vs_prog_data->uses_firstvertex ||
3708 vs_prog_data->uses_baseinstance)
3709 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3710 if (vs_prog_data->uses_drawid)
3711 emit_draw_index(cmd_buffer, i);
3712
3713 /* Emitting draw index or vertex index BOs may result in needing
3714 * additional VF cache flushes.
3715 */
3716 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3717
3718 load_indirect_parameters(cmd_buffer, draw, false);
3719
3720 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3721 prim.IndirectParameterEnable = true;
3722 prim.PredicateEnable = true;
3723 prim.VertexAccessType = SEQUENTIAL;
3724 prim.PrimitiveTopologyType = pipeline->topology;
3725 }
3726
3727 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3728
3729 offset += stride;
3730 }
3731 }
3732
3733 void genX(CmdDrawIndexedIndirectCount)(
3734 VkCommandBuffer commandBuffer,
3735 VkBuffer _buffer,
3736 VkDeviceSize offset,
3737 VkBuffer _countBuffer,
3738 VkDeviceSize countBufferOffset,
3739 uint32_t maxDrawCount,
3740 uint32_t stride)
3741 {
3742 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3743 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3744 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3745 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3746 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3747 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3748
3749 if (anv_batch_has_error(&cmd_buffer->batch))
3750 return;
3751
3752 genX(cmd_buffer_flush_state)(cmd_buffer);
3753
3754 struct anv_address count_address =
3755 anv_address_add(count_buffer->address, countBufferOffset);
3756
3757 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3758 cmd_state->conditional_render_enabled);
3759
3760 for (uint32_t i = 0; i < maxDrawCount; i++) {
3761 struct anv_address draw = anv_address_add(buffer->address, offset);
3762
3763 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3764 if (cmd_state->conditional_render_enabled) {
3765 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3766 } else {
3767 emit_draw_count_predicate(cmd_buffer, i);
3768 }
3769 #else
3770 emit_draw_count_predicate(cmd_buffer, i);
3771 #endif
3772
3773 /* TODO: We need to stomp base vertex to 0 somehow */
3774 if (vs_prog_data->uses_firstvertex ||
3775 vs_prog_data->uses_baseinstance)
3776 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3777 if (vs_prog_data->uses_drawid)
3778 emit_draw_index(cmd_buffer, i);
3779
3780 /* Emitting draw index or vertex index BOs may result in needing
3781 * additional VF cache flushes.
3782 */
3783 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3784
3785 load_indirect_parameters(cmd_buffer, draw, true);
3786
3787 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3788 prim.IndirectParameterEnable = true;
3789 prim.PredicateEnable = true;
3790 prim.VertexAccessType = RANDOM;
3791 prim.PrimitiveTopologyType = pipeline->topology;
3792 }
3793
3794 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3795
3796 offset += stride;
3797 }
3798 }
3799
3800 void genX(CmdBeginTransformFeedbackEXT)(
3801 VkCommandBuffer commandBuffer,
3802 uint32_t firstCounterBuffer,
3803 uint32_t counterBufferCount,
3804 const VkBuffer* pCounterBuffers,
3805 const VkDeviceSize* pCounterBufferOffsets)
3806 {
3807 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3808
3809 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3810 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3811 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3812
3813 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3814 *
3815 * "Ssoftware must ensure that no HW stream output operations can be in
3816 * process or otherwise pending at the point that the MI_LOAD/STORE
3817 * commands are processed. This will likely require a pipeline flush."
3818 */
3819 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3820 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3821
3822 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3823 /* If we have a counter buffer, this is a resume so we need to load the
3824 * value into the streamout offset register. Otherwise, this is a begin
3825 * and we need to reset it to zero.
3826 */
3827 if (pCounterBuffers &&
3828 idx >= firstCounterBuffer &&
3829 idx - firstCounterBuffer < counterBufferCount &&
3830 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
3831 uint32_t cb_idx = idx - firstCounterBuffer;
3832 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3833 uint64_t offset = pCounterBufferOffsets ?
3834 pCounterBufferOffsets[cb_idx] : 0;
3835
3836 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3837 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3838 lrm.MemoryAddress = anv_address_add(counter_buffer->address,
3839 offset);
3840 }
3841 } else {
3842 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
3843 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3844 lri.DataDWord = 0;
3845 }
3846 }
3847 }
3848
3849 cmd_buffer->state.xfb_enabled = true;
3850 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3851 }
3852
3853 void genX(CmdEndTransformFeedbackEXT)(
3854 VkCommandBuffer commandBuffer,
3855 uint32_t firstCounterBuffer,
3856 uint32_t counterBufferCount,
3857 const VkBuffer* pCounterBuffers,
3858 const VkDeviceSize* pCounterBufferOffsets)
3859 {
3860 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3861
3862 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3863 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3864 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3865
3866 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3867 *
3868 * "Ssoftware must ensure that no HW stream output operations can be in
3869 * process or otherwise pending at the point that the MI_LOAD/STORE
3870 * commands are processed. This will likely require a pipeline flush."
3871 */
3872 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3873 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3874
3875 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
3876 unsigned idx = firstCounterBuffer + cb_idx;
3877
3878 /* If we have a counter buffer, this is a resume so we need to load the
3879 * value into the streamout offset register. Otherwise, this is a begin
3880 * and we need to reset it to zero.
3881 */
3882 if (pCounterBuffers &&
3883 cb_idx < counterBufferCount &&
3884 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
3885 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3886 uint64_t offset = pCounterBufferOffsets ?
3887 pCounterBufferOffsets[cb_idx] : 0;
3888
3889 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
3890 srm.MemoryAddress = anv_address_add(counter_buffer->address,
3891 offset);
3892 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3893 }
3894 }
3895 }
3896
3897 cmd_buffer->state.xfb_enabled = false;
3898 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3899 }
3900
3901 void
3902 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
3903 {
3904 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3905
3906 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
3907
3908 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
3909
3910 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
3911
3912 if (cmd_buffer->state.compute.pipeline_dirty) {
3913 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
3914 *
3915 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
3916 * the only bits that are changed are scoreboard related: Scoreboard
3917 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
3918 * these scoreboard related states, a MEDIA_STATE_FLUSH is
3919 * sufficient."
3920 */
3921 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3922 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3923
3924 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3925
3926 /* The workgroup size of the pipeline affects our push constant layout
3927 * so flag push constants as dirty if we change the pipeline.
3928 */
3929 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3930 }
3931
3932 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
3933 cmd_buffer->state.compute.pipeline_dirty) {
3934 flush_descriptor_sets(cmd_buffer, pipeline);
3935
3936 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
3937 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
3938 .BindingTablePointer =
3939 cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
3940 .SamplerStatePointer =
3941 cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
3942 };
3943 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
3944
3945 struct anv_state state =
3946 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
3947 pipeline->interface_descriptor_data,
3948 GENX(INTERFACE_DESCRIPTOR_DATA_length),
3949 64);
3950
3951 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3952 anv_batch_emit(&cmd_buffer->batch,
3953 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
3954 mid.InterfaceDescriptorTotalLength = size;
3955 mid.InterfaceDescriptorDataStartAddress = state.offset;
3956 }
3957 }
3958
3959 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
3960 struct anv_state push_state =
3961 anv_cmd_buffer_cs_push_constants(cmd_buffer);
3962
3963 if (push_state.alloc_size) {
3964 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
3965 curbe.CURBETotalDataLength = push_state.alloc_size;
3966 curbe.CURBEDataStartAddress = push_state.offset;
3967 }
3968 }
3969
3970 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3971 }
3972
3973 cmd_buffer->state.compute.pipeline_dirty = false;
3974
3975 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3976 }
3977
3978 #if GEN_GEN == 7
3979
3980 static VkResult
3981 verify_cmd_parser(const struct anv_device *device,
3982 int required_version,
3983 const char *function)
3984 {
3985 if (device->physical->cmd_parser_version < required_version) {
3986 return vk_errorf(device, device->physical,
3987 VK_ERROR_FEATURE_NOT_PRESENT,
3988 "cmd parser version %d is required for %s",
3989 required_version, function);
3990 } else {
3991 return VK_SUCCESS;
3992 }
3993 }
3994
3995 #endif
3996
3997 static void
3998 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
3999 uint32_t baseGroupX,
4000 uint32_t baseGroupY,
4001 uint32_t baseGroupZ)
4002 {
4003 if (anv_batch_has_error(&cmd_buffer->batch))
4004 return;
4005
4006 struct anv_push_constants *push =
4007 &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
4008 if (push->cs.base_work_group_id[0] != baseGroupX ||
4009 push->cs.base_work_group_id[1] != baseGroupY ||
4010 push->cs.base_work_group_id[2] != baseGroupZ) {
4011 push->cs.base_work_group_id[0] = baseGroupX;
4012 push->cs.base_work_group_id[1] = baseGroupY;
4013 push->cs.base_work_group_id[2] = baseGroupZ;
4014
4015 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4016 }
4017 }
4018
4019 void genX(CmdDispatch)(
4020 VkCommandBuffer commandBuffer,
4021 uint32_t x,
4022 uint32_t y,
4023 uint32_t z)
4024 {
4025 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
4026 }
4027
4028 void genX(CmdDispatchBase)(
4029 VkCommandBuffer commandBuffer,
4030 uint32_t baseGroupX,
4031 uint32_t baseGroupY,
4032 uint32_t baseGroupZ,
4033 uint32_t groupCountX,
4034 uint32_t groupCountY,
4035 uint32_t groupCountZ)
4036 {
4037 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4038 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4039 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4040
4041 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
4042 baseGroupY, baseGroupZ);
4043
4044 if (anv_batch_has_error(&cmd_buffer->batch))
4045 return;
4046
4047 if (prog_data->uses_num_work_groups) {
4048 struct anv_state state =
4049 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
4050 uint32_t *sizes = state.map;
4051 sizes[0] = groupCountX;
4052 sizes[1] = groupCountY;
4053 sizes[2] = groupCountZ;
4054 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
4055 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
4056 .offset = state.offset,
4057 };
4058
4059 /* The num_workgroups buffer goes in the binding table */
4060 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4061 }
4062
4063 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4064
4065 if (cmd_buffer->state.conditional_render_enabled)
4066 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4067
4068 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
4069 ggw.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
4070 ggw.SIMDSize = prog_data->simd_size / 16;
4071 ggw.ThreadDepthCounterMaximum = 0;
4072 ggw.ThreadHeightCounterMaximum = 0;
4073 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4074 ggw.ThreadGroupIDXDimension = groupCountX;
4075 ggw.ThreadGroupIDYDimension = groupCountY;
4076 ggw.ThreadGroupIDZDimension = groupCountZ;
4077 ggw.RightExecutionMask = pipeline->cs_right_mask;
4078 ggw.BottomExecutionMask = 0xffffffff;
4079 }
4080
4081 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
4082 }
4083
4084 #define GPGPU_DISPATCHDIMX 0x2500
4085 #define GPGPU_DISPATCHDIMY 0x2504
4086 #define GPGPU_DISPATCHDIMZ 0x2508
4087
4088 void genX(CmdDispatchIndirect)(
4089 VkCommandBuffer commandBuffer,
4090 VkBuffer _buffer,
4091 VkDeviceSize offset)
4092 {
4093 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4094 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4095 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4096 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4097 struct anv_address addr = anv_address_add(buffer->address, offset);
4098 struct anv_batch *batch = &cmd_buffer->batch;
4099
4100 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
4101
4102 #if GEN_GEN == 7
4103 /* Linux 4.4 added command parser version 5 which allows the GPGPU
4104 * indirect dispatch registers to be written.
4105 */
4106 if (verify_cmd_parser(cmd_buffer->device, 5,
4107 "vkCmdDispatchIndirect") != VK_SUCCESS)
4108 return;
4109 #endif
4110
4111 if (prog_data->uses_num_work_groups) {
4112 cmd_buffer->state.compute.num_workgroups = addr;
4113
4114 /* The num_workgroups buffer goes in the binding table */
4115 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4116 }
4117
4118 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4119
4120 struct gen_mi_builder b;
4121 gen_mi_builder_init(&b, &cmd_buffer->batch);
4122
4123 struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0));
4124 struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4));
4125 struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8));
4126
4127 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x);
4128 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y);
4129 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
4130
4131 #if GEN_GEN <= 7
4132 /* predicate = (compute_dispatch_indirect_x_size == 0); */
4133 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x);
4134 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
4135 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4136 mip.LoadOperation = LOAD_LOAD;
4137 mip.CombineOperation = COMBINE_SET;
4138 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4139 }
4140
4141 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
4142 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y);
4143 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4144 mip.LoadOperation = LOAD_LOAD;
4145 mip.CombineOperation = COMBINE_OR;
4146 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4147 }
4148
4149 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
4150 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z);
4151 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4152 mip.LoadOperation = LOAD_LOAD;
4153 mip.CombineOperation = COMBINE_OR;
4154 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4155 }
4156
4157 /* predicate = !predicate; */
4158 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4159 mip.LoadOperation = LOAD_LOADINV;
4160 mip.CombineOperation = COMBINE_OR;
4161 mip.CompareOperation = COMPARE_FALSE;
4162 }
4163
4164 #if GEN_IS_HASWELL
4165 if (cmd_buffer->state.conditional_render_enabled) {
4166 /* predicate &= !(conditional_rendering_predicate == 0); */
4167 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
4168 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
4169 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4170 mip.LoadOperation = LOAD_LOADINV;
4171 mip.CombineOperation = COMBINE_AND;
4172 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4173 }
4174 }
4175 #endif
4176
4177 #else /* GEN_GEN > 7 */
4178 if (cmd_buffer->state.conditional_render_enabled)
4179 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4180 #endif
4181
4182 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
4183 ggw.IndirectParameterEnable = true;
4184 ggw.PredicateEnable = GEN_GEN <= 7 ||
4185 cmd_buffer->state.conditional_render_enabled;
4186 ggw.SIMDSize = prog_data->simd_size / 16;
4187 ggw.ThreadDepthCounterMaximum = 0;
4188 ggw.ThreadHeightCounterMaximum = 0;
4189 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4190 ggw.RightExecutionMask = pipeline->cs_right_mask;
4191 ggw.BottomExecutionMask = 0xffffffff;
4192 }
4193
4194 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
4195 }
4196
4197 static void
4198 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
4199 uint32_t pipeline)
4200 {
4201 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4202
4203 if (cmd_buffer->state.current_pipeline == pipeline)
4204 return;
4205
4206 #if GEN_GEN >= 8 && GEN_GEN < 10
4207 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
4208 *
4209 * Software must clear the COLOR_CALC_STATE Valid field in
4210 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
4211 * with Pipeline Select set to GPGPU.
4212 *
4213 * The internal hardware docs recommend the same workaround for Gen9
4214 * hardware too.
4215 */
4216 if (pipeline == GPGPU)
4217 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
4218 #endif
4219
4220 #if GEN_GEN == 9
4221 if (pipeline == _3D) {
4222 /* There is a mid-object preemption workaround which requires you to
4223 * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
4224 * even without preemption, we have issues with geometry flickering when
4225 * GPGPU and 3D are back-to-back and this seems to fix it. We don't
4226 * really know why.
4227 */
4228 const uint32_t subslices =
4229 MAX2(cmd_buffer->device->physical->subslice_total, 1);
4230 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
4231 vfe.MaximumNumberofThreads =
4232 devinfo->max_cs_threads * subslices - 1;
4233 vfe.NumberofURBEntries = 2;
4234 vfe.URBEntryAllocationSize = 2;
4235 }
4236
4237 /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
4238 * invalid. Set the compute pipeline to dirty to force a re-emit of the
4239 * pipeline in case we get back-to-back dispatch calls with the same
4240 * pipeline and a PIPELINE_SELECT in between.
4241 */
4242 cmd_buffer->state.compute.pipeline_dirty = true;
4243 }
4244 #endif
4245
4246 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
4247 * PIPELINE_SELECT [DevBWR+]":
4248 *
4249 * Project: DEVSNB+
4250 *
4251 * Software must ensure all the write caches are flushed through a
4252 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
4253 * command to invalidate read only caches prior to programming
4254 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
4255 */
4256 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4257 pc.RenderTargetCacheFlushEnable = true;
4258 pc.DepthCacheFlushEnable = true;
4259 pc.DCFlushEnable = true;
4260 pc.PostSyncOperation = NoWrite;
4261 pc.CommandStreamerStallEnable = true;
4262 #if GEN_GEN >= 12
4263 pc.TileCacheFlushEnable = true;
4264
4265 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must be
4266 * set with any PIPE_CONTROL with Depth Flush Enable bit set.
4267 */
4268 pc.DepthStallEnable = true;
4269 #endif
4270 }
4271
4272 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4273 pc.TextureCacheInvalidationEnable = true;
4274 pc.ConstantCacheInvalidationEnable = true;
4275 pc.StateCacheInvalidationEnable = true;
4276 pc.InstructionCacheInvalidateEnable = true;
4277 pc.PostSyncOperation = NoWrite;
4278 #if GEN_GEN >= 12
4279 pc.TileCacheFlushEnable = true;
4280 #endif
4281 }
4282
4283 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
4284 #if GEN_GEN >= 9
4285 ps.MaskBits = 3;
4286 #endif
4287 ps.PipelineSelection = pipeline;
4288 }
4289
4290 #if GEN_GEN == 9
4291 if (devinfo->is_geminilake) {
4292 /* Project: DevGLK
4293 *
4294 * "This chicken bit works around a hardware issue with barrier logic
4295 * encountered when switching between GPGPU and 3D pipelines. To
4296 * workaround the issue, this mode bit should be set after a pipeline
4297 * is selected."
4298 */
4299 uint32_t scec;
4300 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
4301 .GLKBarrierMode =
4302 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
4303 : GLK_BARRIER_MODE_3D_HULL,
4304 .GLKBarrierModeMask = 1);
4305 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
4306 }
4307 #endif
4308
4309 cmd_buffer->state.current_pipeline = pipeline;
4310 }
4311
4312 void
4313 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
4314 {
4315 genX(flush_pipeline_select)(cmd_buffer, _3D);
4316 }
4317
4318 void
4319 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
4320 {
4321 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
4322 }
4323
4324 void
4325 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
4326 {
4327 if (GEN_GEN >= 8)
4328 return;
4329
4330 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
4331 *
4332 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
4333 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
4334 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
4335 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
4336 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
4337 * Depth Flush Bit set, followed by another pipelined depth stall
4338 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
4339 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
4340 * via a preceding MI_FLUSH)."
4341 */
4342 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4343 pipe.DepthStallEnable = true;
4344 }
4345 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4346 pipe.DepthCacheFlushEnable = true;
4347 #if GEN_GEN >= 12
4348 pipe.TileCacheFlushEnable = true;
4349 #endif
4350 }
4351 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4352 pipe.DepthStallEnable = true;
4353 }
4354 }
4355
4356 /* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
4357 *
4358 * "The VF cache needs to be invalidated before binding and then using
4359 * Vertex Buffers that overlap with any previously bound Vertex Buffer
4360 * (at a 64B granularity) since the last invalidation. A VF cache
4361 * invalidate is performed by setting the "VF Cache Invalidation Enable"
4362 * bit in PIPE_CONTROL."
4363 *
4364 * This is implemented by carefully tracking all vertex and index buffer
4365 * bindings and flushing if the cache ever ends up with a range in the cache
4366 * that would exceed 4 GiB. This is implemented in three parts:
4367 *
4368 * 1. genX(cmd_buffer_set_binding_for_gen8_vb_flush)() which must be called
4369 * every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
4370 * tracking code of the new binding. If this new binding would cause
4371 * the cache to have a too-large range on the next draw call, a pipeline
4372 * stall and VF cache invalidate are added to pending_pipeline_bits.
4373 *
4374 * 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
4375 * empty whenever we emit a VF invalidate.
4376 *
4377 * 3. genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)() must be called
4378 * after every 3DPRIMITIVE and copies the bound range into the dirty
4379 * range for each used buffer. This has to be a separate step because
4380 * we don't always re-bind all buffers and so 1. can't know which
4381 * buffers are actually bound.
4382 */
4383 void
4384 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4385 int vb_index,
4386 struct anv_address vb_address,
4387 uint32_t vb_size)
4388 {
4389 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4390 !cmd_buffer->device->physical->use_softpin)
4391 return;
4392
4393 struct anv_vb_cache_range *bound, *dirty;
4394 if (vb_index == -1) {
4395 bound = &cmd_buffer->state.gfx.ib_bound_range;
4396 dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4397 } else {
4398 assert(vb_index >= 0);
4399 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4400 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4401 bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
4402 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
4403 }
4404
4405 if (vb_size == 0) {
4406 bound->start = 0;
4407 bound->end = 0;
4408 return;
4409 }
4410
4411 assert(vb_address.bo && (vb_address.bo->flags & EXEC_OBJECT_PINNED));
4412 bound->start = gen_48b_address(anv_address_physical(vb_address));
4413 bound->end = bound->start + vb_size;
4414 assert(bound->end > bound->start); /* No overflow */
4415
4416 /* Align everything to a cache line */
4417 bound->start &= ~(64ull - 1ull);
4418 bound->end = align_u64(bound->end, 64);
4419
4420 /* Compute the dirty range */
4421 dirty->start = MIN2(dirty->start, bound->start);
4422 dirty->end = MAX2(dirty->end, bound->end);
4423
4424 /* If our range is larger than 32 bits, we have to flush */
4425 assert(bound->end - bound->start <= (1ull << 32));
4426 if (dirty->end - dirty->start > (1ull << 32)) {
4427 cmd_buffer->state.pending_pipe_bits |=
4428 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
4429 }
4430 }
4431
4432 void
4433 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4434 uint32_t access_type,
4435 uint64_t vb_used)
4436 {
4437 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4438 !cmd_buffer->device->physical->use_softpin)
4439 return;
4440
4441 if (access_type == RANDOM) {
4442 /* We have an index buffer */
4443 struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
4444 struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4445
4446 if (bound->end > bound->start) {
4447 dirty->start = MIN2(dirty->start, bound->start);
4448 dirty->end = MAX2(dirty->end, bound->end);
4449 }
4450 }
4451
4452 uint64_t mask = vb_used;
4453 while (mask) {
4454 int i = u_bit_scan64(&mask);
4455 assert(i >= 0);
4456 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4457 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4458
4459 struct anv_vb_cache_range *bound, *dirty;
4460 bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
4461 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
4462
4463 if (bound->end > bound->start) {
4464 dirty->start = MIN2(dirty->start, bound->start);
4465 dirty->end = MAX2(dirty->end, bound->end);
4466 }
4467 }
4468 }
4469
4470 /**
4471 * Update the pixel hashing modes that determine the balancing of PS threads
4472 * across subslices and slices.
4473 *
4474 * \param width Width bound of the rendering area (already scaled down if \p
4475 * scale is greater than 1).
4476 * \param height Height bound of the rendering area (already scaled down if \p
4477 * scale is greater than 1).
4478 * \param scale The number of framebuffer samples that could potentially be
4479 * affected by an individual channel of the PS thread. This is
4480 * typically one for single-sampled rendering, but for operations
4481 * like CCS resolves and fast clears a single PS invocation may
4482 * update a huge number of pixels, in which case a finer
4483 * balancing is desirable in order to maximally utilize the
4484 * bandwidth available. UINT_MAX can be used as shorthand for
4485 * "finest hashing mode available".
4486 */
4487 void
4488 genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
4489 unsigned width, unsigned height,
4490 unsigned scale)
4491 {
4492 #if GEN_GEN == 9
4493 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4494 const unsigned slice_hashing[] = {
4495 /* Because all Gen9 platforms with more than one slice require
4496 * three-way subslice hashing, a single "normal" 16x16 slice hashing
4497 * block is guaranteed to suffer from substantial imbalance, with one
4498 * subslice receiving twice as much work as the other two in the
4499 * slice.
4500 *
4501 * The performance impact of that would be particularly severe when
4502 * three-way hashing is also in use for slice balancing (which is the
4503 * case for all Gen9 GT4 platforms), because one of the slices
4504 * receives one every three 16x16 blocks in either direction, which
4505 * is roughly the periodicity of the underlying subslice imbalance
4506 * pattern ("roughly" because in reality the hardware's
4507 * implementation of three-way hashing doesn't do exact modulo 3
4508 * arithmetic, which somewhat decreases the magnitude of this effect
4509 * in practice). This leads to a systematic subslice imbalance
4510 * within that slice regardless of the size of the primitive. The
4511 * 32x32 hashing mode guarantees that the subslice imbalance within a
4512 * single slice hashing block is minimal, largely eliminating this
4513 * effect.
4514 */
4515 _32x32,
4516 /* Finest slice hashing mode available. */
4517 NORMAL
4518 };
4519 const unsigned subslice_hashing[] = {
4520 /* 16x16 would provide a slight cache locality benefit especially
4521 * visible in the sampler L1 cache efficiency of low-bandwidth
4522 * non-LLC platforms, but it comes at the cost of greater subslice
4523 * imbalance for primitives of dimensions approximately intermediate
4524 * between 16x4 and 16x16.
4525 */
4526 _16x4,
4527 /* Finest subslice hashing mode available. */
4528 _8x4
4529 };
4530 /* Dimensions of the smallest hashing block of a given hashing mode. If
4531 * the rendering area is smaller than this there can't possibly be any
4532 * benefit from switching to this mode, so we optimize out the
4533 * transition.
4534 */
4535 const unsigned min_size[][2] = {
4536 { 16, 4 },
4537 { 8, 4 }
4538 };
4539 const unsigned idx = scale > 1;
4540
4541 if (cmd_buffer->state.current_hash_scale != scale &&
4542 (width > min_size[idx][0] || height > min_size[idx][1])) {
4543 uint32_t gt_mode;
4544
4545 anv_pack_struct(&gt_mode, GENX(GT_MODE),
4546 .SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0),
4547 .SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0),
4548 .SubsliceHashing = subslice_hashing[idx],
4549 .SubsliceHashingMask = -1);
4550
4551 cmd_buffer->state.pending_pipe_bits |=
4552 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
4553 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4554
4555 emit_lri(&cmd_buffer->batch, GENX(GT_MODE_num), gt_mode);
4556
4557 cmd_buffer->state.current_hash_scale = scale;
4558 }
4559 #endif
4560 }
4561
4562 static void
4563 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
4564 {
4565 struct anv_device *device = cmd_buffer->device;
4566 const struct anv_image_view *iview =
4567 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
4568 const struct anv_image *image = iview ? iview->image : NULL;
4569
4570 /* FIXME: Width and Height are wrong */
4571
4572 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
4573
4574 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
4575 device->isl_dev.ds.size / 4);
4576 if (dw == NULL)
4577 return;
4578
4579 struct isl_depth_stencil_hiz_emit_info info = { };
4580
4581 if (iview)
4582 info.view = &iview->planes[0].isl;
4583
4584 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4585 uint32_t depth_plane =
4586 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
4587 const struct anv_surface *surface = &image->planes[depth_plane].surface;
4588
4589 info.depth_surf = &surface->isl;
4590
4591 info.depth_address =
4592 anv_batch_emit_reloc(&cmd_buffer->batch,
4593 dw + device->isl_dev.ds.depth_offset / 4,
4594 image->planes[depth_plane].address.bo,
4595 image->planes[depth_plane].address.offset +
4596 surface->offset);
4597 info.mocs =
4598 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
4599
4600 const uint32_t ds =
4601 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
4602 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
4603 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
4604 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
4605
4606 info.hiz_address =
4607 anv_batch_emit_reloc(&cmd_buffer->batch,
4608 dw + device->isl_dev.ds.hiz_offset / 4,
4609 image->planes[depth_plane].address.bo,
4610 image->planes[depth_plane].address.offset +
4611 image->planes[depth_plane].aux_surface.offset);
4612
4613 info.depth_clear_value = ANV_HZ_FC_VAL;
4614 }
4615 }
4616
4617 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
4618 uint32_t stencil_plane =
4619 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
4620 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
4621
4622 info.stencil_surf = &surface->isl;
4623
4624 info.stencil_address =
4625 anv_batch_emit_reloc(&cmd_buffer->batch,
4626 dw + device->isl_dev.ds.stencil_offset / 4,
4627 image->planes[stencil_plane].address.bo,
4628 image->planes[stencil_plane].address.offset +
4629 surface->offset);
4630 info.mocs =
4631 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
4632 }
4633
4634 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
4635
4636 if (GEN_GEN >= 12) {
4637 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
4638 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4639
4640 /* GEN:BUG:1408224581
4641 *
4642 * Workaround: Gen12LP Astep only An additional pipe control with
4643 * post-sync = store dword operation would be required.( w/a is to
4644 * have an additional pipe control after the stencil state whenever
4645 * the surface state bits of this state is changing).
4646 */
4647 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4648 pc.PostSyncOperation = WriteImmediateData;
4649 pc.Address =
4650 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
4651 }
4652 }
4653 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
4654 }
4655
4656 /**
4657 * This ANDs the view mask of the current subpass with the pending clear
4658 * views in the attachment to get the mask of views active in the subpass
4659 * that still need to be cleared.
4660 */
4661 static inline uint32_t
4662 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
4663 const struct anv_attachment_state *att_state)
4664 {
4665 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
4666 }
4667
4668 static inline bool
4669 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
4670 const struct anv_attachment_state *att_state)
4671 {
4672 if (!cmd_state->subpass->view_mask)
4673 return true;
4674
4675 uint32_t pending_clear_mask =
4676 get_multiview_subpass_clear_mask(cmd_state, att_state);
4677
4678 return pending_clear_mask & 1;
4679 }
4680
4681 static inline bool
4682 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
4683 uint32_t att_idx)
4684 {
4685 const uint32_t last_subpass_idx =
4686 cmd_state->pass->attachments[att_idx].last_subpass_idx;
4687 const struct anv_subpass *last_subpass =
4688 &cmd_state->pass->subpasses[last_subpass_idx];
4689 return last_subpass == cmd_state->subpass;
4690 }
4691
4692 static void
4693 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
4694 uint32_t subpass_id)
4695 {
4696 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4697 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
4698 cmd_state->subpass = subpass;
4699
4700 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
4701
4702 /* Our implementation of VK_KHR_multiview uses instancing to draw the
4703 * different views. If the client asks for instancing, we need to use the
4704 * Instance Data Step Rate to ensure that we repeat the client's
4705 * per-instance data once for each view. Since this bit is in
4706 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
4707 * of each subpass.
4708 */
4709 if (GEN_GEN == 7)
4710 cmd_buffer->state.gfx.vb_dirty |= ~0;
4711
4712 /* It is possible to start a render pass with an old pipeline. Because the
4713 * render pass and subpass index are both baked into the pipeline, this is
4714 * highly unlikely. In order to do so, it requires that you have a render
4715 * pass with a single subpass and that you use that render pass twice
4716 * back-to-back and use the same pipeline at the start of the second render
4717 * pass as at the end of the first. In order to avoid unpredictable issues
4718 * with this edge case, we just dirty the pipeline at the start of every
4719 * subpass.
4720 */
4721 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
4722
4723 /* Accumulate any subpass flushes that need to happen before the subpass */
4724 cmd_buffer->state.pending_pipe_bits |=
4725 cmd_buffer->state.pass->subpass_flushes[subpass_id];
4726
4727 VkRect2D render_area = cmd_buffer->state.render_area;
4728 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4729
4730 bool is_multiview = subpass->view_mask != 0;
4731
4732 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4733 const uint32_t a = subpass->attachments[i].attachment;
4734 if (a == VK_ATTACHMENT_UNUSED)
4735 continue;
4736
4737 assert(a < cmd_state->pass->attachment_count);
4738 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4739
4740 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
4741 const struct anv_image *image = iview->image;
4742
4743 /* A resolve is necessary before use as an input attachment if the clear
4744 * color or auxiliary buffer usage isn't supported by the sampler.
4745 */
4746 const bool input_needs_resolve =
4747 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
4748 att_state->input_aux_usage != att_state->aux_usage;
4749
4750 VkImageLayout target_layout;
4751 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
4752 !input_needs_resolve) {
4753 /* Layout transitions before the final only help to enable sampling
4754 * as an input attachment. If the input attachment supports sampling
4755 * using the auxiliary surface, we can skip such transitions by
4756 * making the target layout one that is CCS-aware.
4757 */
4758 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
4759 } else {
4760 target_layout = subpass->attachments[i].layout;
4761 }
4762
4763 VkImageLayout target_stencil_layout =
4764 subpass->attachments[i].stencil_layout;
4765
4766 uint32_t base_layer, layer_count;
4767 if (image->type == VK_IMAGE_TYPE_3D) {
4768 base_layer = 0;
4769 layer_count = anv_minify(iview->image->extent.depth,
4770 iview->planes[0].isl.base_level);
4771 } else {
4772 base_layer = iview->planes[0].isl.base_array_layer;
4773 layer_count = fb->layers;
4774 }
4775
4776 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4777 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4778 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4779 iview->planes[0].isl.base_level, 1,
4780 base_layer, layer_count,
4781 att_state->current_layout, target_layout);
4782 }
4783
4784 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4785 transition_depth_buffer(cmd_buffer, image,
4786 att_state->current_layout, target_layout);
4787 att_state->aux_usage =
4788 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
4789 VK_IMAGE_ASPECT_DEPTH_BIT,
4790 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
4791 target_layout);
4792 }
4793
4794 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
4795 transition_stencil_buffer(cmd_buffer, image,
4796 iview->planes[0].isl.base_level, 1,
4797 base_layer, layer_count,
4798 att_state->current_stencil_layout,
4799 target_stencil_layout);
4800 }
4801 att_state->current_layout = target_layout;
4802 att_state->current_stencil_layout = target_stencil_layout;
4803
4804 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
4805 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4806
4807 /* Multi-planar images are not supported as attachments */
4808 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4809 assert(image->n_planes == 1);
4810
4811 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
4812 uint32_t clear_layer_count = fb->layers;
4813
4814 if (att_state->fast_clear &&
4815 do_first_layer_clear(cmd_state, att_state)) {
4816 /* We only support fast-clears on the first layer */
4817 assert(iview->planes[0].isl.base_level == 0);
4818 assert(iview->planes[0].isl.base_array_layer == 0);
4819
4820 union isl_color_value clear_color = {};
4821 anv_clear_color_from_att_state(&clear_color, att_state, iview);
4822 if (iview->image->samples == 1) {
4823 anv_image_ccs_op(cmd_buffer, image,
4824 iview->planes[0].isl.format,
4825 VK_IMAGE_ASPECT_COLOR_BIT,
4826 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
4827 &clear_color,
4828 false);
4829 } else {
4830 anv_image_mcs_op(cmd_buffer, image,
4831 iview->planes[0].isl.format,
4832 VK_IMAGE_ASPECT_COLOR_BIT,
4833 0, 1, ISL_AUX_OP_FAST_CLEAR,
4834 &clear_color,
4835 false);
4836 }
4837 base_clear_layer++;
4838 clear_layer_count--;
4839 if (is_multiview)
4840 att_state->pending_clear_views &= ~1;
4841
4842 if (att_state->clear_color_is_zero) {
4843 /* This image has the auxiliary buffer enabled. We can mark the
4844 * subresource as not needing a resolve because the clear color
4845 * will match what's in every RENDER_SURFACE_STATE object when
4846 * it's being used for sampling.
4847 */
4848 set_image_fast_clear_state(cmd_buffer, iview->image,
4849 VK_IMAGE_ASPECT_COLOR_BIT,
4850 ANV_FAST_CLEAR_DEFAULT_VALUE);
4851 } else {
4852 set_image_fast_clear_state(cmd_buffer, iview->image,
4853 VK_IMAGE_ASPECT_COLOR_BIT,
4854 ANV_FAST_CLEAR_ANY);
4855 }
4856 }
4857
4858 /* From the VkFramebufferCreateInfo spec:
4859 *
4860 * "If the render pass uses multiview, then layers must be one and each
4861 * attachment requires a number of layers that is greater than the
4862 * maximum bit index set in the view mask in the subpasses in which it
4863 * is used."
4864 *
4865 * So if multiview is active we ignore the number of layers in the
4866 * framebuffer and instead we honor the view mask from the subpass.
4867 */
4868 if (is_multiview) {
4869 assert(image->n_planes == 1);
4870 uint32_t pending_clear_mask =
4871 get_multiview_subpass_clear_mask(cmd_state, att_state);
4872
4873 uint32_t layer_idx;
4874 for_each_bit(layer_idx, pending_clear_mask) {
4875 uint32_t layer =
4876 iview->planes[0].isl.base_array_layer + layer_idx;
4877
4878 anv_image_clear_color(cmd_buffer, image,
4879 VK_IMAGE_ASPECT_COLOR_BIT,
4880 att_state->aux_usage,
4881 iview->planes[0].isl.format,
4882 iview->planes[0].isl.swizzle,
4883 iview->planes[0].isl.base_level,
4884 layer, 1,
4885 render_area,
4886 vk_to_isl_color(att_state->clear_value.color));
4887 }
4888
4889 att_state->pending_clear_views &= ~pending_clear_mask;
4890 } else if (clear_layer_count > 0) {
4891 assert(image->n_planes == 1);
4892 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4893 att_state->aux_usage,
4894 iview->planes[0].isl.format,
4895 iview->planes[0].isl.swizzle,
4896 iview->planes[0].isl.base_level,
4897 base_clear_layer, clear_layer_count,
4898 render_area,
4899 vk_to_isl_color(att_state->clear_value.color));
4900 }
4901 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
4902 VK_IMAGE_ASPECT_STENCIL_BIT)) {
4903 if (att_state->fast_clear && !is_multiview) {
4904 /* We currently only support HiZ for single-layer images */
4905 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4906 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
4907 assert(iview->planes[0].isl.base_level == 0);
4908 assert(iview->planes[0].isl.base_array_layer == 0);
4909 assert(fb->layers == 1);
4910 }
4911
4912 anv_image_hiz_clear(cmd_buffer, image,
4913 att_state->pending_clear_aspects,
4914 iview->planes[0].isl.base_level,
4915 iview->planes[0].isl.base_array_layer,
4916 fb->layers, render_area,
4917 att_state->clear_value.depthStencil.stencil);
4918 } else if (is_multiview) {
4919 uint32_t pending_clear_mask =
4920 get_multiview_subpass_clear_mask(cmd_state, att_state);
4921
4922 uint32_t layer_idx;
4923 for_each_bit(layer_idx, pending_clear_mask) {
4924 uint32_t layer =
4925 iview->planes[0].isl.base_array_layer + layer_idx;
4926
4927 anv_image_clear_depth_stencil(cmd_buffer, image,
4928 att_state->pending_clear_aspects,
4929 att_state->aux_usage,
4930 iview->planes[0].isl.base_level,
4931 layer, 1,
4932 render_area,
4933 att_state->clear_value.depthStencil.depth,
4934 att_state->clear_value.depthStencil.stencil);
4935 }
4936
4937 att_state->pending_clear_views &= ~pending_clear_mask;
4938 } else {
4939 anv_image_clear_depth_stencil(cmd_buffer, image,
4940 att_state->pending_clear_aspects,
4941 att_state->aux_usage,
4942 iview->planes[0].isl.base_level,
4943 iview->planes[0].isl.base_array_layer,
4944 fb->layers, render_area,
4945 att_state->clear_value.depthStencil.depth,
4946 att_state->clear_value.depthStencil.stencil);
4947 }
4948 } else {
4949 assert(att_state->pending_clear_aspects == 0);
4950 }
4951
4952 if (GEN_GEN < 10 &&
4953 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
4954 image->planes[0].aux_usage != ISL_AUX_USAGE_NONE &&
4955 iview->planes[0].isl.base_level == 0 &&
4956 iview->planes[0].isl.base_array_layer == 0) {
4957 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
4958 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
4959 image, VK_IMAGE_ASPECT_COLOR_BIT,
4960 false /* copy to ss */);
4961 }
4962
4963 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
4964 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
4965 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
4966 image, VK_IMAGE_ASPECT_COLOR_BIT,
4967 false /* copy to ss */);
4968 }
4969 }
4970
4971 if (subpass->attachments[i].usage ==
4972 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
4973 /* We assume that if we're starting a subpass, we're going to do some
4974 * rendering so we may end up with compressed data.
4975 */
4976 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
4977 VK_IMAGE_ASPECT_COLOR_BIT,
4978 att_state->aux_usage,
4979 iview->planes[0].isl.base_level,
4980 iview->planes[0].isl.base_array_layer,
4981 fb->layers);
4982 } else if (subpass->attachments[i].usage ==
4983 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
4984 /* We may be writing depth or stencil so we need to mark the surface.
4985 * Unfortunately, there's no way to know at this point whether the
4986 * depth or stencil tests used will actually write to the surface.
4987 *
4988 * Even though stencil may be plane 1, it always shares a base_level
4989 * with depth.
4990 */
4991 const struct isl_view *ds_view = &iview->planes[0].isl;
4992 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
4993 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
4994 VK_IMAGE_ASPECT_DEPTH_BIT,
4995 att_state->aux_usage,
4996 ds_view->base_level,
4997 ds_view->base_array_layer,
4998 fb->layers);
4999 }
5000 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
5001 /* Even though stencil may be plane 1, it always shares a
5002 * base_level with depth.
5003 */
5004 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
5005 VK_IMAGE_ASPECT_STENCIL_BIT,
5006 ISL_AUX_USAGE_NONE,
5007 ds_view->base_level,
5008 ds_view->base_array_layer,
5009 fb->layers);
5010 }
5011 }
5012
5013 /* If multiview is enabled, then we are only done clearing when we no
5014 * longer have pending layers to clear, or when we have processed the
5015 * last subpass that uses this attachment.
5016 */
5017 if (!is_multiview ||
5018 att_state->pending_clear_views == 0 ||
5019 current_subpass_is_last_for_attachment(cmd_state, a)) {
5020 att_state->pending_clear_aspects = 0;
5021 }
5022
5023 att_state->pending_load_aspects = 0;
5024 }
5025
5026 cmd_buffer_emit_depth_stencil(cmd_buffer);
5027
5028 #if GEN_GEN >= 11
5029 /* The PIPE_CONTROL command description says:
5030 *
5031 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
5032 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
5033 * Target Cache Flush by enabling this bit. When render target flush
5034 * is set due to new association of BTI, PS Scoreboard Stall bit must
5035 * be set in this packet."
5036 */
5037 cmd_buffer->state.pending_pipe_bits |=
5038 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
5039 ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
5040 #endif
5041 }
5042
5043 static enum blorp_filter
5044 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
5045 {
5046 switch (vk_mode) {
5047 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
5048 return BLORP_FILTER_SAMPLE_0;
5049 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
5050 return BLORP_FILTER_AVERAGE;
5051 case VK_RESOLVE_MODE_MIN_BIT_KHR:
5052 return BLORP_FILTER_MIN_SAMPLE;
5053 case VK_RESOLVE_MODE_MAX_BIT_KHR:
5054 return BLORP_FILTER_MAX_SAMPLE;
5055 default:
5056 return BLORP_FILTER_NONE;
5057 }
5058 }
5059
5060 static void
5061 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
5062 {
5063 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5064 struct anv_subpass *subpass = cmd_state->subpass;
5065 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
5066 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
5067
5068 if (subpass->has_color_resolve) {
5069 /* We are about to do some MSAA resolves. We need to flush so that the
5070 * result of writes to the MSAA color attachments show up in the sampler
5071 * when we blit to the single-sampled resolve target.
5072 */
5073 cmd_buffer->state.pending_pipe_bits |=
5074 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5075 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
5076
5077 for (uint32_t i = 0; i < subpass->color_count; ++i) {
5078 uint32_t src_att = subpass->color_attachments[i].attachment;
5079 uint32_t dst_att = subpass->resolve_attachments[i].attachment;
5080
5081 if (dst_att == VK_ATTACHMENT_UNUSED)
5082 continue;
5083
5084 assert(src_att < cmd_buffer->state.pass->attachment_count);
5085 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5086
5087 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5088 /* From the Vulkan 1.0 spec:
5089 *
5090 * If the first use of an attachment in a render pass is as a
5091 * resolve attachment, then the loadOp is effectively ignored
5092 * as the resolve is guaranteed to overwrite all pixels in the
5093 * render area.
5094 */
5095 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5096 }
5097
5098 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5099 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5100
5101 const VkRect2D render_area = cmd_buffer->state.render_area;
5102
5103 enum isl_aux_usage src_aux_usage =
5104 cmd_buffer->state.attachments[src_att].aux_usage;
5105 enum isl_aux_usage dst_aux_usage =
5106 cmd_buffer->state.attachments[dst_att].aux_usage;
5107
5108 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
5109 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
5110
5111 anv_image_msaa_resolve(cmd_buffer,
5112 src_iview->image, src_aux_usage,
5113 src_iview->planes[0].isl.base_level,
5114 src_iview->planes[0].isl.base_array_layer,
5115 dst_iview->image, dst_aux_usage,
5116 dst_iview->planes[0].isl.base_level,
5117 dst_iview->planes[0].isl.base_array_layer,
5118 VK_IMAGE_ASPECT_COLOR_BIT,
5119 render_area.offset.x, render_area.offset.y,
5120 render_area.offset.x, render_area.offset.y,
5121 render_area.extent.width,
5122 render_area.extent.height,
5123 fb->layers, BLORP_FILTER_NONE);
5124 }
5125 }
5126
5127 if (subpass->ds_resolve_attachment) {
5128 /* We are about to do some MSAA resolves. We need to flush so that the
5129 * result of writes to the MSAA depth attachments show up in the sampler
5130 * when we blit to the single-sampled resolve target.
5131 */
5132 cmd_buffer->state.pending_pipe_bits |=
5133 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5134 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
5135
5136 uint32_t src_att = subpass->depth_stencil_attachment->attachment;
5137 uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
5138
5139 assert(src_att < cmd_buffer->state.pass->attachment_count);
5140 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5141
5142 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5143 /* From the Vulkan 1.0 spec:
5144 *
5145 * If the first use of an attachment in a render pass is as a
5146 * resolve attachment, then the loadOp is effectively ignored
5147 * as the resolve is guaranteed to overwrite all pixels in the
5148 * render area.
5149 */
5150 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5151 }
5152
5153 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5154 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5155
5156 const VkRect2D render_area = cmd_buffer->state.render_area;
5157
5158 struct anv_attachment_state *src_state =
5159 &cmd_state->attachments[src_att];
5160 struct anv_attachment_state *dst_state =
5161 &cmd_state->attachments[dst_att];
5162
5163 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
5164 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5165
5166 /* MSAA resolves sample from the source attachment. Transition the
5167 * depth attachment first to get rid of any HiZ that we may not be
5168 * able to handle.
5169 */
5170 transition_depth_buffer(cmd_buffer, src_iview->image,
5171 src_state->current_layout,
5172 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5173 src_state->aux_usage =
5174 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
5175 VK_IMAGE_ASPECT_DEPTH_BIT,
5176 VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
5177 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5178 src_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5179
5180 /* MSAA resolves write to the resolve attachment as if it were any
5181 * other transfer op. Transition the resolve attachment accordingly.
5182 */
5183 VkImageLayout dst_initial_layout = dst_state->current_layout;
5184
5185 /* If our render area is the entire size of the image, we're going to
5186 * blow it all away so we can claim the initial layout is UNDEFINED
5187 * and we'll get a HiZ ambiguate instead of a resolve.
5188 */
5189 if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
5190 render_area.offset.x == 0 && render_area.offset.y == 0 &&
5191 render_area.extent.width == dst_iview->extent.width &&
5192 render_area.extent.height == dst_iview->extent.height)
5193 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5194
5195 transition_depth_buffer(cmd_buffer, dst_iview->image,
5196 dst_initial_layout,
5197 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5198 dst_state->aux_usage =
5199 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
5200 VK_IMAGE_ASPECT_DEPTH_BIT,
5201 VK_IMAGE_USAGE_TRANSFER_DST_BIT,
5202 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5203 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5204
5205 enum blorp_filter filter =
5206 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
5207
5208 anv_image_msaa_resolve(cmd_buffer,
5209 src_iview->image, src_state->aux_usage,
5210 src_iview->planes[0].isl.base_level,
5211 src_iview->planes[0].isl.base_array_layer,
5212 dst_iview->image, dst_state->aux_usage,
5213 dst_iview->planes[0].isl.base_level,
5214 dst_iview->planes[0].isl.base_array_layer,
5215 VK_IMAGE_ASPECT_DEPTH_BIT,
5216 render_area.offset.x, render_area.offset.y,
5217 render_area.offset.x, render_area.offset.y,
5218 render_area.extent.width,
5219 render_area.extent.height,
5220 fb->layers, filter);
5221 }
5222
5223 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
5224 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5225
5226 src_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5227 dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5228
5229 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
5230 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
5231
5232 enum blorp_filter filter =
5233 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
5234
5235 anv_image_msaa_resolve(cmd_buffer,
5236 src_iview->image, src_aux_usage,
5237 src_iview->planes[0].isl.base_level,
5238 src_iview->planes[0].isl.base_array_layer,
5239 dst_iview->image, dst_aux_usage,
5240 dst_iview->planes[0].isl.base_level,
5241 dst_iview->planes[0].isl.base_array_layer,
5242 VK_IMAGE_ASPECT_STENCIL_BIT,
5243 render_area.offset.x, render_area.offset.y,
5244 render_area.offset.x, render_area.offset.y,
5245 render_area.extent.width,
5246 render_area.extent.height,
5247 fb->layers, filter);
5248 }
5249 }
5250
5251 #if GEN_GEN == 7
5252 /* On gen7, we have to store a texturable version of the stencil buffer in
5253 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
5254 * forth at strategic points. Stencil writes are only allowed in following
5255 * layouts:
5256 *
5257 * - VK_IMAGE_LAYOUT_GENERAL
5258 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
5259 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
5260 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
5261 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
5262 *
5263 * For general, we have no nice opportunity to transition so we do the copy
5264 * to the shadow unconditionally at the end of the subpass. For transfer
5265 * destinations, we can update it as part of the transfer op. For the other
5266 * layouts, we delay the copy until a transition into some other layout.
5267 */
5268 if (subpass->depth_stencil_attachment) {
5269 uint32_t a = subpass->depth_stencil_attachment->attachment;
5270 assert(a != VK_ATTACHMENT_UNUSED);
5271
5272 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5273 struct anv_image_view *iview = cmd_state->attachments[a].image_view;;
5274 const struct anv_image *image = iview->image;
5275
5276 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5277 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
5278 VK_IMAGE_ASPECT_STENCIL_BIT);
5279
5280 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
5281 att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) {
5282 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
5283 anv_image_copy_to_shadow(cmd_buffer, image,
5284 VK_IMAGE_ASPECT_STENCIL_BIT,
5285 iview->planes[plane].isl.base_level, 1,
5286 iview->planes[plane].isl.base_array_layer,
5287 fb->layers);
5288 }
5289 }
5290 }
5291 #endif /* GEN_GEN == 7 */
5292
5293 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
5294 const uint32_t a = subpass->attachments[i].attachment;
5295 if (a == VK_ATTACHMENT_UNUSED)
5296 continue;
5297
5298 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
5299 continue;
5300
5301 assert(a < cmd_state->pass->attachment_count);
5302 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5303 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
5304 const struct anv_image *image = iview->image;
5305
5306 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5307 image->vk_format != iview->vk_format) {
5308 enum anv_fast_clear_type fast_clear_type =
5309 anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
5310 image, VK_IMAGE_ASPECT_COLOR_BIT,
5311 att_state->current_layout);
5312
5313 /* If any clear color was used, flush it down the aux surfaces. If we
5314 * don't do it now using the view's format we might use the clear
5315 * color incorrectly in the following resolves (for example with an
5316 * SRGB view & a UNORM image).
5317 */
5318 if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
5319 anv_perf_warn(cmd_buffer->device, iview,
5320 "Doing a partial resolve to get rid of clear color at the "
5321 "end of a renderpass due to an image/view format mismatch");
5322
5323 uint32_t base_layer, layer_count;
5324 if (image->type == VK_IMAGE_TYPE_3D) {
5325 base_layer = 0;
5326 layer_count = anv_minify(iview->image->extent.depth,
5327 iview->planes[0].isl.base_level);
5328 } else {
5329 base_layer = iview->planes[0].isl.base_array_layer;
5330 layer_count = fb->layers;
5331 }
5332
5333 for (uint32_t a = 0; a < layer_count; a++) {
5334 uint32_t array_layer = base_layer + a;
5335 if (image->samples == 1) {
5336 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
5337 iview->planes[0].isl.format,
5338 VK_IMAGE_ASPECT_COLOR_BIT,
5339 iview->planes[0].isl.base_level,
5340 array_layer,
5341 ISL_AUX_OP_PARTIAL_RESOLVE,
5342 ANV_FAST_CLEAR_NONE);
5343 } else {
5344 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
5345 iview->planes[0].isl.format,
5346 VK_IMAGE_ASPECT_COLOR_BIT,
5347 base_layer,
5348 ISL_AUX_OP_PARTIAL_RESOLVE,
5349 ANV_FAST_CLEAR_NONE);
5350 }
5351 }
5352 }
5353 }
5354
5355 /* Transition the image into the final layout for this render pass */
5356 VkImageLayout target_layout =
5357 cmd_state->pass->attachments[a].final_layout;
5358 VkImageLayout target_stencil_layout =
5359 cmd_state->pass->attachments[a].stencil_final_layout;
5360
5361 uint32_t base_layer, layer_count;
5362 if (image->type == VK_IMAGE_TYPE_3D) {
5363 base_layer = 0;
5364 layer_count = anv_minify(iview->image->extent.depth,
5365 iview->planes[0].isl.base_level);
5366 } else {
5367 base_layer = iview->planes[0].isl.base_array_layer;
5368 layer_count = fb->layers;
5369 }
5370
5371 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
5372 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5373 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5374 iview->planes[0].isl.base_level, 1,
5375 base_layer, layer_count,
5376 att_state->current_layout, target_layout);
5377 }
5378
5379 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5380 transition_depth_buffer(cmd_buffer, image,
5381 att_state->current_layout, target_layout);
5382 }
5383
5384 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5385 transition_stencil_buffer(cmd_buffer, image,
5386 iview->planes[0].isl.base_level, 1,
5387 base_layer, layer_count,
5388 att_state->current_stencil_layout,
5389 target_stencil_layout);
5390 }
5391 }
5392
5393 /* Accumulate any subpass flushes that need to happen after the subpass.
5394 * Yes, they do get accumulated twice in the NextSubpass case but since
5395 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
5396 * ORing the bits in twice so it's harmless.
5397 */
5398 cmd_buffer->state.pending_pipe_bits |=
5399 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
5400 }
5401
5402 void genX(CmdBeginRenderPass)(
5403 VkCommandBuffer commandBuffer,
5404 const VkRenderPassBeginInfo* pRenderPassBegin,
5405 VkSubpassContents contents)
5406 {
5407 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5408 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
5409 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
5410
5411 cmd_buffer->state.framebuffer = framebuffer;
5412 cmd_buffer->state.pass = pass;
5413 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
5414 VkResult result =
5415 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
5416
5417 /* If we failed to setup the attachments we should not try to go further */
5418 if (result != VK_SUCCESS) {
5419 assert(anv_batch_has_error(&cmd_buffer->batch));
5420 return;
5421 }
5422
5423 genX(flush_pipeline_select_3d)(cmd_buffer);
5424
5425 cmd_buffer_begin_subpass(cmd_buffer, 0);
5426 }
5427
5428 void genX(CmdBeginRenderPass2)(
5429 VkCommandBuffer commandBuffer,
5430 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
5431 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
5432 {
5433 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
5434 pSubpassBeginInfo->contents);
5435 }
5436
5437 void genX(CmdNextSubpass)(
5438 VkCommandBuffer commandBuffer,
5439 VkSubpassContents contents)
5440 {
5441 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5442
5443 if (anv_batch_has_error(&cmd_buffer->batch))
5444 return;
5445
5446 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
5447
5448 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
5449 cmd_buffer_end_subpass(cmd_buffer);
5450 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
5451 }
5452
5453 void genX(CmdNextSubpass2)(
5454 VkCommandBuffer commandBuffer,
5455 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
5456 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5457 {
5458 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
5459 }
5460
5461 void genX(CmdEndRenderPass)(
5462 VkCommandBuffer commandBuffer)
5463 {
5464 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5465
5466 if (anv_batch_has_error(&cmd_buffer->batch))
5467 return;
5468
5469 cmd_buffer_end_subpass(cmd_buffer);
5470
5471 cmd_buffer->state.hiz_enabled = false;
5472
5473 #ifndef NDEBUG
5474 anv_dump_add_attachments(cmd_buffer);
5475 #endif
5476
5477 /* Remove references to render pass specific state. This enables us to
5478 * detect whether or not we're in a renderpass.
5479 */
5480 cmd_buffer->state.framebuffer = NULL;
5481 cmd_buffer->state.pass = NULL;
5482 cmd_buffer->state.subpass = NULL;
5483 }
5484
5485 void genX(CmdEndRenderPass2)(
5486 VkCommandBuffer commandBuffer,
5487 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5488 {
5489 genX(CmdEndRenderPass)(commandBuffer);
5490 }
5491
5492 void
5493 genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
5494 {
5495 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5496 struct gen_mi_builder b;
5497 gen_mi_builder_init(&b, &cmd_buffer->batch);
5498
5499 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
5500 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
5501 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
5502
5503 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
5504 mip.LoadOperation = LOAD_LOADINV;
5505 mip.CombineOperation = COMBINE_SET;
5506 mip.CompareOperation = COMPARE_SRCS_EQUAL;
5507 }
5508 #endif
5509 }
5510
5511 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5512 void genX(CmdBeginConditionalRenderingEXT)(
5513 VkCommandBuffer commandBuffer,
5514 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
5515 {
5516 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5517 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
5518 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5519 struct anv_address value_address =
5520 anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
5521
5522 const bool isInverted = pConditionalRenderingBegin->flags &
5523 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
5524
5525 cmd_state->conditional_render_enabled = true;
5526
5527 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5528
5529 struct gen_mi_builder b;
5530 gen_mi_builder_init(&b, &cmd_buffer->batch);
5531
5532 /* Section 19.4 of the Vulkan 1.1.85 spec says:
5533 *
5534 * If the value of the predicate in buffer memory changes
5535 * while conditional rendering is active, the rendering commands
5536 * may be discarded in an implementation-dependent way.
5537 * Some implementations may latch the value of the predicate
5538 * upon beginning conditional rendering while others
5539 * may read it before every rendering command.
5540 *
5541 * So it's perfectly fine to read a value from the buffer once.
5542 */
5543 struct gen_mi_value value = gen_mi_mem32(value_address);
5544
5545 /* Precompute predicate result, it is necessary to support secondary
5546 * command buffers since it is unknown if conditional rendering is
5547 * inverted when populating them.
5548 */
5549 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
5550 isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
5551 gen_mi_ult(&b, gen_mi_imm(0), value));
5552 }
5553
5554 void genX(CmdEndConditionalRenderingEXT)(
5555 VkCommandBuffer commandBuffer)
5556 {
5557 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5558 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5559
5560 cmd_state->conditional_render_enabled = false;
5561 }
5562 #endif
5563
5564 /* Set of stage bits for which are pipelined, i.e. they get queued by the
5565 * command streamer for later execution.
5566 */
5567 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
5568 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
5569 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
5570 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
5571 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
5572 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
5573 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
5574 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
5575 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
5576 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
5577 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
5578 VK_PIPELINE_STAGE_TRANSFER_BIT | \
5579 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
5580 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
5581 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
5582
5583 void genX(CmdSetEvent)(
5584 VkCommandBuffer commandBuffer,
5585 VkEvent _event,
5586 VkPipelineStageFlags stageMask)
5587 {
5588 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5589 ANV_FROM_HANDLE(anv_event, event, _event);
5590
5591 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5592 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5593
5594 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5595 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5596 pc.StallAtPixelScoreboard = true;
5597 pc.CommandStreamerStallEnable = true;
5598 }
5599
5600 pc.DestinationAddressType = DAT_PPGTT,
5601 pc.PostSyncOperation = WriteImmediateData,
5602 pc.Address = (struct anv_address) {
5603 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5604 event->state.offset
5605 };
5606 pc.ImmediateData = VK_EVENT_SET;
5607 }
5608 }
5609
5610 void genX(CmdResetEvent)(
5611 VkCommandBuffer commandBuffer,
5612 VkEvent _event,
5613 VkPipelineStageFlags stageMask)
5614 {
5615 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5616 ANV_FROM_HANDLE(anv_event, event, _event);
5617
5618 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5619 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5620
5621 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5622 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5623 pc.StallAtPixelScoreboard = true;
5624 pc.CommandStreamerStallEnable = true;
5625 }
5626
5627 pc.DestinationAddressType = DAT_PPGTT;
5628 pc.PostSyncOperation = WriteImmediateData;
5629 pc.Address = (struct anv_address) {
5630 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5631 event->state.offset
5632 };
5633 pc.ImmediateData = VK_EVENT_RESET;
5634 }
5635 }
5636
5637 void genX(CmdWaitEvents)(
5638 VkCommandBuffer commandBuffer,
5639 uint32_t eventCount,
5640 const VkEvent* pEvents,
5641 VkPipelineStageFlags srcStageMask,
5642 VkPipelineStageFlags destStageMask,
5643 uint32_t memoryBarrierCount,
5644 const VkMemoryBarrier* pMemoryBarriers,
5645 uint32_t bufferMemoryBarrierCount,
5646 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
5647 uint32_t imageMemoryBarrierCount,
5648 const VkImageMemoryBarrier* pImageMemoryBarriers)
5649 {
5650 #if GEN_GEN >= 8
5651 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5652
5653 for (uint32_t i = 0; i < eventCount; i++) {
5654 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
5655
5656 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
5657 sem.WaitMode = PollingMode,
5658 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
5659 sem.SemaphoreDataDword = VK_EVENT_SET,
5660 sem.SemaphoreAddress = (struct anv_address) {
5661 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5662 event->state.offset
5663 };
5664 }
5665 }
5666 #else
5667 anv_finishme("Implement events on gen7");
5668 #endif
5669
5670 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
5671 false, /* byRegion */
5672 memoryBarrierCount, pMemoryBarriers,
5673 bufferMemoryBarrierCount, pBufferMemoryBarriers,
5674 imageMemoryBarrierCount, pImageMemoryBarriers);
5675 }
5676
5677 VkResult genX(CmdSetPerformanceOverrideINTEL)(
5678 VkCommandBuffer commandBuffer,
5679 const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
5680 {
5681 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5682
5683 switch (pOverrideInfo->type) {
5684 case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
5685 uint32_t dw;
5686
5687 #if GEN_GEN >= 9
5688 anv_pack_struct(&dw, GENX(CS_DEBUG_MODE2),
5689 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5690 .MediaInstructionDisable = pOverrideInfo->enable,
5691 ._3DRenderingInstructionDisableMask = true,
5692 .MediaInstructionDisableMask = true);
5693 emit_lri(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2_num), dw);
5694 #else
5695 anv_pack_struct(&dw, GENX(INSTPM),
5696 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5697 .MediaInstructionDisable = pOverrideInfo->enable,
5698 ._3DRenderingInstructionDisableMask = true,
5699 .MediaInstructionDisableMask = true);
5700 emit_lri(&cmd_buffer->batch, GENX(INSTPM_num), dw);
5701 #endif
5702 break;
5703 }
5704
5705 case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
5706 if (pOverrideInfo->enable) {
5707 /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
5708 cmd_buffer->state.pending_pipe_bits |=
5709 ANV_PIPE_FLUSH_BITS |
5710 ANV_PIPE_INVALIDATE_BITS;
5711 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5712 }
5713 break;
5714
5715 default:
5716 unreachable("Invalid override");
5717 }
5718
5719 return VK_SUCCESS;
5720 }
5721
5722 VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
5723 VkCommandBuffer commandBuffer,
5724 const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
5725 {
5726 /* TODO: Waiting on the register to write, might depend on generation. */
5727
5728 return VK_SUCCESS;
5729 }