anv: Use subpass dependencies for flushes
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29
30 #include "common/gen_l3_config.h"
31 #include "genxml/gen_macros.h"
32 #include "genxml/genX_pack.h"
33
34 static void
35 emit_lrm(struct anv_batch *batch,
36 uint32_t reg, struct anv_bo *bo, uint32_t offset)
37 {
38 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
39 lrm.RegisterAddress = reg;
40 lrm.MemoryAddress = (struct anv_address) { bo, offset };
41 }
42 }
43
44 static void
45 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
46 {
47 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
48 lri.RegisterOffset = reg;
49 lri.DataDWord = imm;
50 }
51 }
52
53 void
54 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
55 {
56 struct anv_device *device = cmd_buffer->device;
57
58 /* Emit a render target cache flush.
59 *
60 * This isn't documented anywhere in the PRM. However, it seems to be
61 * necessary prior to changing the surface state base adress. Without
62 * this, we get GPU hangs when using multi-level command buffers which
63 * clear depth, reset state base address, and then go render stuff.
64 */
65 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
66 pc.DCFlushEnable = true;
67 pc.RenderTargetCacheFlushEnable = true;
68 pc.CommandStreamerStallEnable = true;
69 }
70
71 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
72 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
73 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
74 sba.GeneralStateBaseAddressModifyEnable = true;
75
76 sba.SurfaceStateBaseAddress =
77 anv_cmd_buffer_surface_base_address(cmd_buffer);
78 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
79 sba.SurfaceStateBaseAddressModifyEnable = true;
80
81 sba.DynamicStateBaseAddress =
82 (struct anv_address) { &device->dynamic_state_block_pool.bo, 0 };
83 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
84 sba.DynamicStateBaseAddressModifyEnable = true;
85
86 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
87 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
88 sba.IndirectObjectBaseAddressModifyEnable = true;
89
90 sba.InstructionBaseAddress =
91 (struct anv_address) { &device->instruction_block_pool.bo, 0 };
92 sba.InstructionMemoryObjectControlState = GENX(MOCS);
93 sba.InstructionBaseAddressModifyEnable = true;
94
95 # if (GEN_GEN >= 8)
96 /* Broadwell requires that we specify a buffer size for a bunch of
97 * these fields. However, since we will be growing the BO's live, we
98 * just set them all to the maximum.
99 */
100 sba.GeneralStateBufferSize = 0xfffff;
101 sba.GeneralStateBufferSizeModifyEnable = true;
102 sba.DynamicStateBufferSize = 0xfffff;
103 sba.DynamicStateBufferSizeModifyEnable = true;
104 sba.IndirectObjectBufferSize = 0xfffff;
105 sba.IndirectObjectBufferSizeModifyEnable = true;
106 sba.InstructionBufferSize = 0xfffff;
107 sba.InstructionBuffersizeModifyEnable = true;
108 # endif
109 }
110
111 /* After re-setting the surface state base address, we have to do some
112 * cache flusing so that the sampler engine will pick up the new
113 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
114 * Shared Function > 3D Sampler > State > State Caching (page 96):
115 *
116 * Coherency with system memory in the state cache, like the texture
117 * cache is handled partially by software. It is expected that the
118 * command stream or shader will issue Cache Flush operation or
119 * Cache_Flush sampler message to ensure that the L1 cache remains
120 * coherent with system memory.
121 *
122 * [...]
123 *
124 * Whenever the value of the Dynamic_State_Base_Addr,
125 * Surface_State_Base_Addr are altered, the L1 state cache must be
126 * invalidated to ensure the new surface or sampler state is fetched
127 * from system memory.
128 *
129 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
130 * which, according the PIPE_CONTROL instruction documentation in the
131 * Broadwell PRM:
132 *
133 * Setting this bit is independent of any other bit in this packet.
134 * This bit controls the invalidation of the L1 and L2 state caches
135 * at the top of the pipe i.e. at the parsing time.
136 *
137 * Unfortunately, experimentation seems to indicate that state cache
138 * invalidation through a PIPE_CONTROL does nothing whatsoever in
139 * regards to surface state and binding tables. In stead, it seems that
140 * invalidating the texture cache is what is actually needed.
141 *
142 * XXX: As far as we have been able to determine through
143 * experimentation, shows that flush the texture cache appears to be
144 * sufficient. The theory here is that all of the sampling/rendering
145 * units cache the binding table in the texture cache. However, we have
146 * yet to be able to actually confirm this.
147 */
148 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
149 pc.TextureCacheInvalidationEnable = true;
150 pc.ConstantCacheInvalidationEnable = true;
151 pc.StateCacheInvalidationEnable = true;
152 }
153 }
154
155 static void
156 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
157 struct anv_state state,
158 struct anv_bo *bo, uint32_t offset)
159 {
160 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
161
162 VkResult result =
163 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
164 state.offset + isl_dev->ss.addr_offset, bo, offset);
165 if (result != VK_SUCCESS)
166 anv_batch_set_error(&cmd_buffer->batch, result);
167 }
168
169 static void
170 add_image_view_relocs(struct anv_cmd_buffer *cmd_buffer,
171 const struct anv_image_view *iview,
172 enum isl_aux_usage aux_usage,
173 struct anv_state state)
174 {
175 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
176
177 add_surface_state_reloc(cmd_buffer, state, iview->bo, iview->offset);
178
179 if (aux_usage != ISL_AUX_USAGE_NONE) {
180 uint32_t aux_offset = iview->offset + iview->image->aux_surface.offset;
181
182 /* On gen7 and prior, the bottom 12 bits of the MCS base address are
183 * used to store other information. This should be ok, however, because
184 * surface buffer addresses are always 4K page alinged.
185 */
186 assert((aux_offset & 0xfff) == 0);
187 uint32_t *aux_addr_dw = state.map + isl_dev->ss.aux_addr_offset;
188 aux_offset += *aux_addr_dw & 0xfff;
189
190 VkResult result =
191 anv_reloc_list_add(&cmd_buffer->surface_relocs,
192 &cmd_buffer->pool->alloc,
193 state.offset + isl_dev->ss.aux_addr_offset,
194 iview->bo, aux_offset);
195 if (result != VK_SUCCESS)
196 anv_batch_set_error(&cmd_buffer->batch, result);
197 }
198 }
199
200 static bool
201 color_is_zero_one(VkClearColorValue value, enum isl_format format)
202 {
203 if (isl_format_has_int_channel(format)) {
204 for (unsigned i = 0; i < 4; i++) {
205 if (value.int32[i] != 0 && value.int32[i] != 1)
206 return false;
207 }
208 } else {
209 for (unsigned i = 0; i < 4; i++) {
210 if (value.float32[i] != 0.0f && value.float32[i] != 1.0f)
211 return false;
212 }
213 }
214
215 return true;
216 }
217
218 static void
219 color_attachment_compute_aux_usage(struct anv_device *device,
220 struct anv_attachment_state *att_state,
221 struct anv_image_view *iview,
222 VkRect2D render_area,
223 union isl_color_value *fast_clear_color)
224 {
225 if (iview->image->aux_surface.isl.size == 0) {
226 att_state->aux_usage = ISL_AUX_USAGE_NONE;
227 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
228 att_state->fast_clear = false;
229 return;
230 } else if (iview->image->aux_usage == ISL_AUX_USAGE_MCS) {
231 att_state->aux_usage = ISL_AUX_USAGE_MCS;
232 att_state->input_aux_usage = ISL_AUX_USAGE_MCS;
233 att_state->fast_clear = false;
234 return;
235 }
236
237 assert(iview->image->aux_surface.isl.usage & ISL_SURF_USAGE_CCS_BIT);
238
239 att_state->clear_color_is_zero_one =
240 color_is_zero_one(att_state->clear_value.color, iview->isl.format);
241
242 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
243 /* Start off assuming fast clears are possible */
244 att_state->fast_clear = true;
245
246 /* Potentially, we could do partial fast-clears but doing so has crazy
247 * alignment restrictions. It's easier to just restrict to full size
248 * fast clears for now.
249 */
250 if (render_area.offset.x != 0 ||
251 render_area.offset.y != 0 ||
252 render_area.extent.width != iview->extent.width ||
253 render_area.extent.height != iview->extent.height)
254 att_state->fast_clear = false;
255
256 if (GEN_GEN <= 7) {
257 /* On gen7, we can't do multi-LOD or multi-layer fast-clears. We
258 * technically can, but it comes with crazy restrictions that we
259 * don't want to deal with now.
260 */
261 if (iview->isl.base_level > 0 ||
262 iview->isl.base_array_layer > 0 ||
263 iview->isl.array_len > 1)
264 att_state->fast_clear = false;
265 }
266
267 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
268 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
269 att_state->fast_clear = false;
270
271 if (att_state->fast_clear) {
272 memcpy(fast_clear_color->u32, att_state->clear_value.color.uint32,
273 sizeof(fast_clear_color->u32));
274 }
275 } else {
276 att_state->fast_clear = false;
277 }
278
279 /**
280 * TODO: Consider using a heuristic to determine if temporarily enabling
281 * CCS_E for this image view would be beneficial.
282 *
283 * While fast-clear resolves and partial resolves are fairly cheap in the
284 * case where you render to most of the pixels, full resolves are not
285 * because they potentially involve reading and writing the entire
286 * framebuffer. If we can't texture with CCS_E, we should leave it off and
287 * limit ourselves to fast clears.
288 */
289 if (iview->image->aux_usage == ISL_AUX_USAGE_CCS_E) {
290 att_state->aux_usage = ISL_AUX_USAGE_CCS_E;
291 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_E;
292 } else if (att_state->fast_clear) {
293 att_state->aux_usage = ISL_AUX_USAGE_CCS_D;
294 if (GEN_GEN >= 9 &&
295 !isl_format_supports_ccs_e(&device->info, iview->isl.format)) {
296 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
297 *
298 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
299 * setting is only allowed if Surface Format supported for Fast
300 * Clear. In addition, if the surface is bound to the sampling
301 * engine, Surface Format must be supported for Render Target
302 * Compression for surfaces bound to the sampling engine."
303 *
304 * In other words, we can't sample from a fast-cleared image if it
305 * doesn't also support color compression.
306 */
307 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
308 } else if (GEN_GEN >= 8) {
309 /* Broadwell/Skylake can sample from fast-cleared images */
310 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
311 } else {
312 /* Ivy Bridge and Haswell cannot */
313 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
314 }
315 } else {
316 att_state->aux_usage = ISL_AUX_USAGE_NONE;
317 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
318 }
319 }
320
321 static bool
322 need_input_attachment_state(const struct anv_render_pass_attachment *att)
323 {
324 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
325 return false;
326
327 /* We only allocate input attachment states for color surfaces. Compression
328 * is not yet enabled for depth textures and stencil doesn't allow
329 * compression so we can just use the texture surface state from the view.
330 */
331 return vk_format_is_color(att->format);
332 }
333
334 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
335 * the initial layout is undefined, the HiZ buffer and depth buffer will
336 * represent the same data at the end of this operation.
337 */
338 static void
339 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
340 const struct anv_image *image,
341 VkImageLayout initial_layout,
342 VkImageLayout final_layout)
343 {
344 assert(image);
345
346 /* A transition is a no-op if HiZ is not enabled, or if the initial and
347 * final layouts are equal.
348 *
349 * The undefined layout indicates that the user doesn't care about the data
350 * that's currently in the buffer. Therefore, a data-preserving resolve
351 * operation is not needed.
352 *
353 * The pre-initialized layout is equivalent to the undefined layout for
354 * optimally-tiled images. Anv only exposes support for optimally-tiled
355 * depth buffers.
356 */
357 if (image->aux_usage != ISL_AUX_USAGE_HIZ ||
358 initial_layout == final_layout ||
359 initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
360 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)
361 return;
362
363 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
364 anv_layout_to_aux_usage(&cmd_buffer->device->info, image, image->aspects,
365 initial_layout);
366 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
367 anv_layout_to_aux_usage(&cmd_buffer->device->info, image, image->aspects,
368 final_layout);
369
370 enum blorp_hiz_op hiz_op;
371 if (hiz_enabled && !enable_hiz) {
372 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
373 } else if (!hiz_enabled && enable_hiz) {
374 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
375 } else {
376 assert(hiz_enabled == enable_hiz);
377 /* If the same buffer will be used, no resolves are necessary. */
378 hiz_op = BLORP_HIZ_OP_NONE;
379 }
380
381 if (hiz_op != BLORP_HIZ_OP_NONE)
382 anv_gen8_hiz_op_resolve(cmd_buffer, image, hiz_op);
383 }
384
385
386 /**
387 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
388 */
389 static VkResult
390 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
391 struct anv_render_pass *pass,
392 const VkRenderPassBeginInfo *begin)
393 {
394 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
395 struct anv_cmd_state *state = &cmd_buffer->state;
396
397 vk_free(&cmd_buffer->pool->alloc, state->attachments);
398
399 if (pass->attachment_count == 0) {
400 state->attachments = NULL;
401 return VK_SUCCESS;
402 }
403
404 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
405 pass->attachment_count *
406 sizeof(state->attachments[0]),
407 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
408 if (state->attachments == NULL) {
409 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
410 return anv_batch_set_error(&cmd_buffer->batch,
411 VK_ERROR_OUT_OF_HOST_MEMORY);
412 }
413
414 bool need_null_state = false;
415 unsigned num_states = 0;
416 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
417 if (vk_format_is_color(pass->attachments[i].format)) {
418 num_states++;
419 } else {
420 /* We need a null state for any depth-stencil-only subpasses.
421 * Importantly, this includes depth/stencil clears so we create one
422 * whenever we have depth or stencil
423 */
424 need_null_state = true;
425 }
426
427 if (need_input_attachment_state(&pass->attachments[i]))
428 num_states++;
429 }
430 num_states += need_null_state;
431
432 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
433 state->render_pass_states =
434 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
435 num_states * ss_stride, isl_dev->ss.align);
436
437 struct anv_state next_state = state->render_pass_states;
438 next_state.alloc_size = isl_dev->ss.size;
439
440 if (need_null_state) {
441 state->null_surface_state = next_state;
442 next_state.offset += ss_stride;
443 next_state.map += ss_stride;
444 }
445
446 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
447 if (vk_format_is_color(pass->attachments[i].format)) {
448 state->attachments[i].color_rt_state = next_state;
449 next_state.offset += ss_stride;
450 next_state.map += ss_stride;
451 }
452
453 if (need_input_attachment_state(&pass->attachments[i])) {
454 state->attachments[i].input_att_state = next_state;
455 next_state.offset += ss_stride;
456 next_state.map += ss_stride;
457 }
458 }
459 assert(next_state.offset == state->render_pass_states.offset +
460 state->render_pass_states.alloc_size);
461
462 if (begin) {
463 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
464 assert(pass->attachment_count == framebuffer->attachment_count);
465
466 if (need_null_state) {
467 struct GENX(RENDER_SURFACE_STATE) null_ss = {
468 .SurfaceType = SURFTYPE_NULL,
469 .SurfaceArray = framebuffer->layers > 0,
470 .SurfaceFormat = ISL_FORMAT_R8G8B8A8_UNORM,
471 #if GEN_GEN >= 8
472 .TileMode = YMAJOR,
473 #else
474 .TiledSurface = true,
475 #endif
476 .Width = framebuffer->width - 1,
477 .Height = framebuffer->height - 1,
478 .Depth = framebuffer->layers - 1,
479 .RenderTargetViewExtent = framebuffer->layers - 1,
480 };
481 GENX(RENDER_SURFACE_STATE_pack)(NULL, state->null_surface_state.map,
482 &null_ss);
483 }
484
485 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
486 struct anv_render_pass_attachment *att = &pass->attachments[i];
487 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
488 VkImageAspectFlags clear_aspects = 0;
489
490 if (att_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
491 /* color attachment */
492 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
493 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
494 }
495 } else {
496 /* depthstencil attachment */
497 if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
498 att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
499 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
500 }
501 if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
502 att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
503 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
504 }
505 }
506
507 state->attachments[i].current_layout = att->initial_layout;
508 state->attachments[i].pending_clear_aspects = clear_aspects;
509 if (clear_aspects)
510 state->attachments[i].clear_value = begin->pClearValues[i];
511
512 struct anv_image_view *iview = framebuffer->attachments[i];
513 anv_assert(iview->vk_format == att->format);
514
515 union isl_color_value clear_color = { .u32 = { 0, } };
516 if (att_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
517 color_attachment_compute_aux_usage(cmd_buffer->device,
518 &state->attachments[i],
519 iview, begin->renderArea,
520 &clear_color);
521
522 struct isl_view view = iview->isl;
523 view.usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
524 view.swizzle = anv_swizzle_for_render(view.swizzle);
525 isl_surf_fill_state(isl_dev,
526 state->attachments[i].color_rt_state.map,
527 .surf = &iview->image->color_surface.isl,
528 .view = &view,
529 .aux_surf = &iview->image->aux_surface.isl,
530 .aux_usage = state->attachments[i].aux_usage,
531 .clear_color = clear_color,
532 .mocs = cmd_buffer->device->default_mocs);
533
534 add_image_view_relocs(cmd_buffer, iview,
535 state->attachments[i].aux_usage,
536 state->attachments[i].color_rt_state);
537 } else {
538 /* This field will be initialized after the first subpass
539 * transition.
540 */
541 state->attachments[i].aux_usage = ISL_AUX_USAGE_NONE;
542
543 state->attachments[i].input_aux_usage = ISL_AUX_USAGE_NONE;
544 }
545
546 if (need_input_attachment_state(&pass->attachments[i])) {
547 struct isl_view view = iview->isl;
548 view.usage |= ISL_SURF_USAGE_TEXTURE_BIT;
549 isl_surf_fill_state(isl_dev,
550 state->attachments[i].input_att_state.map,
551 .surf = &iview->image->color_surface.isl,
552 .view = &view,
553 .aux_surf = &iview->image->aux_surface.isl,
554 .aux_usage = state->attachments[i].input_aux_usage,
555 .clear_color = clear_color,
556 .mocs = cmd_buffer->device->default_mocs);
557
558 add_image_view_relocs(cmd_buffer, iview,
559 state->attachments[i].input_aux_usage,
560 state->attachments[i].input_att_state);
561 }
562 }
563
564 anv_state_flush(cmd_buffer->device, state->render_pass_states);
565 }
566
567 return VK_SUCCESS;
568 }
569
570 VkResult
571 genX(BeginCommandBuffer)(
572 VkCommandBuffer commandBuffer,
573 const VkCommandBufferBeginInfo* pBeginInfo)
574 {
575 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
576
577 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
578 * command buffer's state. Otherwise, we must *reset* its state. In both
579 * cases we reset it.
580 *
581 * From the Vulkan 1.0 spec:
582 *
583 * If a command buffer is in the executable state and the command buffer
584 * was allocated from a command pool with the
585 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
586 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
587 * as if vkResetCommandBuffer had been called with
588 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
589 * the command buffer in the recording state.
590 */
591 anv_cmd_buffer_reset(cmd_buffer);
592
593 cmd_buffer->usage_flags = pBeginInfo->flags;
594
595 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
596 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
597
598 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
599
600 VkResult result = VK_SUCCESS;
601 if (cmd_buffer->usage_flags &
602 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
603 cmd_buffer->state.pass =
604 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
605 cmd_buffer->state.subpass =
606 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
607 cmd_buffer->state.framebuffer = NULL;
608
609 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
610 cmd_buffer->state.pass, NULL);
611
612 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
613 }
614
615 return result;
616 }
617
618 VkResult
619 genX(EndCommandBuffer)(
620 VkCommandBuffer commandBuffer)
621 {
622 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
623
624 if (anv_batch_has_error(&cmd_buffer->batch))
625 return cmd_buffer->batch.status;
626
627 /* We want every command buffer to start with the PMA fix in a known state,
628 * so we disable it at the end of the command buffer.
629 */
630 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
631
632 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
633
634 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
635
636 return VK_SUCCESS;
637 }
638
639 void
640 genX(CmdExecuteCommands)(
641 VkCommandBuffer commandBuffer,
642 uint32_t commandBufferCount,
643 const VkCommandBuffer* pCmdBuffers)
644 {
645 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
646
647 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
648
649 if (anv_batch_has_error(&primary->batch))
650 return;
651
652 /* The secondary command buffers will assume that the PMA fix is disabled
653 * when they begin executing. Make sure this is true.
654 */
655 genX(cmd_buffer_enable_pma_fix)(primary, false);
656
657 /* The secondary command buffer doesn't know which textures etc. have been
658 * flushed prior to their execution. Apply those flushes now.
659 */
660 genX(cmd_buffer_apply_pipe_flushes)(primary);
661
662 for (uint32_t i = 0; i < commandBufferCount; i++) {
663 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
664
665 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
666 assert(!anv_batch_has_error(&secondary->batch));
667
668 if (secondary->usage_flags &
669 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
670 /* If we're continuing a render pass from the primary, we need to
671 * copy the surface states for the current subpass into the storage
672 * we allocated for them in BeginCommandBuffer.
673 */
674 struct anv_bo *ss_bo = &primary->device->surface_state_block_pool.bo;
675 struct anv_state src_state = primary->state.render_pass_states;
676 struct anv_state dst_state = secondary->state.render_pass_states;
677 assert(src_state.alloc_size == dst_state.alloc_size);
678
679 genX(cmd_buffer_gpu_memcpy)(primary, ss_bo, dst_state.offset,
680 ss_bo, src_state.offset,
681 src_state.alloc_size);
682 }
683
684 anv_cmd_buffer_add_secondary(primary, secondary);
685 }
686
687 /* Each of the secondary command buffers will use its own state base
688 * address. We need to re-emit state base address for the primary after
689 * all of the secondaries are done.
690 *
691 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
692 * address calls?
693 */
694 genX(cmd_buffer_emit_state_base_address)(primary);
695 }
696
697 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
698 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
699 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
700
701 /**
702 * Program the hardware to use the specified L3 configuration.
703 */
704 void
705 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
706 const struct gen_l3_config *cfg)
707 {
708 assert(cfg);
709 if (cfg == cmd_buffer->state.current_l3_config)
710 return;
711
712 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
713 fprintf(stderr, "L3 config transition: ");
714 gen_dump_l3_config(cfg, stderr);
715 }
716
717 const bool has_slm = cfg->n[GEN_L3P_SLM];
718
719 /* According to the hardware docs, the L3 partitioning can only be changed
720 * while the pipeline is completely drained and the caches are flushed,
721 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
722 */
723 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
724 pc.DCFlushEnable = true;
725 pc.PostSyncOperation = NoWrite;
726 pc.CommandStreamerStallEnable = true;
727 }
728
729 /* ...followed by a second pipelined PIPE_CONTROL that initiates
730 * invalidation of the relevant caches. Note that because RO invalidation
731 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
732 * command is processed by the CS) we cannot combine it with the previous
733 * stalling flush as the hardware documentation suggests, because that
734 * would cause the CS to stall on previous rendering *after* RO
735 * invalidation and wouldn't prevent the RO caches from being polluted by
736 * concurrent rendering before the stall completes. This intentionally
737 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
738 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
739 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
740 * already guarantee that there is no concurrent GPGPU kernel execution
741 * (see SKL HSD 2132585).
742 */
743 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
744 pc.TextureCacheInvalidationEnable = true;
745 pc.ConstantCacheInvalidationEnable = true;
746 pc.InstructionCacheInvalidateEnable = true;
747 pc.StateCacheInvalidationEnable = true;
748 pc.PostSyncOperation = NoWrite;
749 }
750
751 /* Now send a third stalling flush to make sure that invalidation is
752 * complete when the L3 configuration registers are modified.
753 */
754 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
755 pc.DCFlushEnable = true;
756 pc.PostSyncOperation = NoWrite;
757 pc.CommandStreamerStallEnable = true;
758 }
759
760 #if GEN_GEN >= 8
761
762 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
763
764 uint32_t l3cr;
765 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
766 .SLMEnable = has_slm,
767 .URBAllocation = cfg->n[GEN_L3P_URB],
768 .ROAllocation = cfg->n[GEN_L3P_RO],
769 .DCAllocation = cfg->n[GEN_L3P_DC],
770 .AllAllocation = cfg->n[GEN_L3P_ALL]);
771
772 /* Set up the L3 partitioning. */
773 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
774
775 #else
776
777 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
778 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
779 cfg->n[GEN_L3P_ALL];
780 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
781 cfg->n[GEN_L3P_ALL];
782 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
783 cfg->n[GEN_L3P_ALL];
784
785 assert(!cfg->n[GEN_L3P_ALL]);
786
787 /* When enabled SLM only uses a portion of the L3 on half of the banks,
788 * the matching space on the remaining banks has to be allocated to a
789 * client (URB for all validated configurations) set to the
790 * lower-bandwidth 2-bank address hashing mode.
791 */
792 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
793 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
794 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
795
796 /* Minimum number of ways that can be allocated to the URB. */
797 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
798 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
799
800 uint32_t l3sqcr1, l3cr2, l3cr3;
801 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
802 .ConvertDC_UC = !has_dc,
803 .ConvertIS_UC = !has_is,
804 .ConvertC_UC = !has_c,
805 .ConvertT_UC = !has_t);
806 l3sqcr1 |=
807 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
808 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
809 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
810
811 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
812 .SLMEnable = has_slm,
813 .URBLowBandwidth = urb_low_bw,
814 .URBAllocation = cfg->n[GEN_L3P_URB],
815 #if !GEN_IS_HASWELL
816 .ALLAllocation = cfg->n[GEN_L3P_ALL],
817 #endif
818 .ROAllocation = cfg->n[GEN_L3P_RO],
819 .DCAllocation = cfg->n[GEN_L3P_DC]);
820
821 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
822 .ISAllocation = cfg->n[GEN_L3P_IS],
823 .ISLowBandwidth = 0,
824 .CAllocation = cfg->n[GEN_L3P_C],
825 .CLowBandwidth = 0,
826 .TAllocation = cfg->n[GEN_L3P_T],
827 .TLowBandwidth = 0);
828
829 /* Set up the L3 partitioning. */
830 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
831 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
832 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
833
834 #if GEN_IS_HASWELL
835 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
836 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
837 * them disabled to avoid crashing the system hard.
838 */
839 uint32_t scratch1, chicken3;
840 anv_pack_struct(&scratch1, GENX(SCRATCH1),
841 .L3AtomicDisable = !has_dc);
842 anv_pack_struct(&chicken3, GENX(CHICKEN3),
843 .L3AtomicDisableMask = true,
844 .L3AtomicDisable = !has_dc);
845 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
846 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
847 }
848 #endif
849
850 #endif
851
852 cmd_buffer->state.current_l3_config = cfg;
853 }
854
855 void
856 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
857 {
858 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
859
860 /* Flushes are pipelined while invalidations are handled immediately.
861 * Therefore, if we're flushing anything then we need to schedule a stall
862 * before any invalidations can happen.
863 */
864 if (bits & ANV_PIPE_FLUSH_BITS)
865 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
866
867 /* If we're going to do an invalidate and we have a pending CS stall that
868 * has yet to be resolved, we do the CS stall now.
869 */
870 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
871 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
872 bits |= ANV_PIPE_CS_STALL_BIT;
873 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
874 }
875
876 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
877 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
878 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
879 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
880 pipe.RenderTargetCacheFlushEnable =
881 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
882
883 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
884 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
885 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
886
887 /*
888 * According to the Broadwell documentation, any PIPE_CONTROL with the
889 * "Command Streamer Stall" bit set must also have another bit set,
890 * with five different options:
891 *
892 * - Render Target Cache Flush
893 * - Depth Cache Flush
894 * - Stall at Pixel Scoreboard
895 * - Post-Sync Operation
896 * - Depth Stall
897 * - DC Flush Enable
898 *
899 * I chose "Stall at Pixel Scoreboard" since that's what we use in
900 * mesa and it seems to work fine. The choice is fairly arbitrary.
901 */
902 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
903 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
904 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
905 pipe.StallAtPixelScoreboard = true;
906 }
907
908 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
909 }
910
911 if (bits & ANV_PIPE_INVALIDATE_BITS) {
912 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
913 pipe.StateCacheInvalidationEnable =
914 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
915 pipe.ConstantCacheInvalidationEnable =
916 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
917 pipe.VFCacheInvalidationEnable =
918 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
919 pipe.TextureCacheInvalidationEnable =
920 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
921 pipe.InstructionCacheInvalidateEnable =
922 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
923 }
924
925 bits &= ~ANV_PIPE_INVALIDATE_BITS;
926 }
927
928 cmd_buffer->state.pending_pipe_bits = bits;
929 }
930
931 void genX(CmdPipelineBarrier)(
932 VkCommandBuffer commandBuffer,
933 VkPipelineStageFlags srcStageMask,
934 VkPipelineStageFlags destStageMask,
935 VkBool32 byRegion,
936 uint32_t memoryBarrierCount,
937 const VkMemoryBarrier* pMemoryBarriers,
938 uint32_t bufferMemoryBarrierCount,
939 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
940 uint32_t imageMemoryBarrierCount,
941 const VkImageMemoryBarrier* pImageMemoryBarriers)
942 {
943 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
944
945 /* XXX: Right now, we're really dumb and just flush whatever categories
946 * the app asks for. One of these days we may make this a bit better
947 * but right now that's all the hardware allows for in most areas.
948 */
949 VkAccessFlags src_flags = 0;
950 VkAccessFlags dst_flags = 0;
951
952 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
953 src_flags |= pMemoryBarriers[i].srcAccessMask;
954 dst_flags |= pMemoryBarriers[i].dstAccessMask;
955 }
956
957 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
958 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
959 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
960 }
961
962 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
963 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
964 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
965 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
966 if (pImageMemoryBarriers[i].subresourceRange.aspectMask &
967 VK_IMAGE_ASPECT_DEPTH_BIT) {
968 transition_depth_buffer(cmd_buffer, image,
969 pImageMemoryBarriers[i].oldLayout,
970 pImageMemoryBarriers[i].newLayout);
971 }
972 }
973
974 cmd_buffer->state.pending_pipe_bits |=
975 anv_pipe_flush_bits_for_access_flags(src_flags) |
976 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
977 }
978
979 static void
980 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
981 {
982 VkShaderStageFlags stages = cmd_buffer->state.pipeline->active_stages;
983
984 /* In order to avoid thrash, we assume that vertex and fragment stages
985 * always exist. In the rare case where one is missing *and* the other
986 * uses push concstants, this may be suboptimal. However, avoiding stalls
987 * seems more important.
988 */
989 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
990
991 if (stages == cmd_buffer->state.push_constant_stages)
992 return;
993
994 #if GEN_GEN >= 8
995 const unsigned push_constant_kb = 32;
996 #elif GEN_IS_HASWELL
997 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
998 #else
999 const unsigned push_constant_kb = 16;
1000 #endif
1001
1002 const unsigned num_stages =
1003 _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1004 unsigned size_per_stage = push_constant_kb / num_stages;
1005
1006 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1007 * units of 2KB. Incidentally, these are the same platforms that have
1008 * 32KB worth of push constant space.
1009 */
1010 if (push_constant_kb == 32)
1011 size_per_stage &= ~1u;
1012
1013 uint32_t kb_used = 0;
1014 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1015 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1016 anv_batch_emit(&cmd_buffer->batch,
1017 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1018 alloc._3DCommandSubOpcode = 18 + i;
1019 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1020 alloc.ConstantBufferSize = push_size;
1021 }
1022 kb_used += push_size;
1023 }
1024
1025 anv_batch_emit(&cmd_buffer->batch,
1026 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1027 alloc.ConstantBufferOffset = kb_used;
1028 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1029 }
1030
1031 cmd_buffer->state.push_constant_stages = stages;
1032
1033 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1034 *
1035 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1036 * the next 3DPRIMITIVE command after programming the
1037 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1038 *
1039 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1040 * pipeline setup, we need to dirty push constants.
1041 */
1042 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1043 }
1044
1045 static VkResult
1046 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1047 gl_shader_stage stage,
1048 struct anv_state *bt_state)
1049 {
1050 struct anv_subpass *subpass = cmd_buffer->state.subpass;
1051 struct anv_pipeline *pipeline;
1052 uint32_t bias, state_offset;
1053
1054 switch (stage) {
1055 case MESA_SHADER_COMPUTE:
1056 pipeline = cmd_buffer->state.compute_pipeline;
1057 bias = 1;
1058 break;
1059 default:
1060 pipeline = cmd_buffer->state.pipeline;
1061 bias = 0;
1062 break;
1063 }
1064
1065 if (!anv_pipeline_has_stage(pipeline, stage)) {
1066 *bt_state = (struct anv_state) { 0, };
1067 return VK_SUCCESS;
1068 }
1069
1070 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1071 if (bias + map->surface_count == 0) {
1072 *bt_state = (struct anv_state) { 0, };
1073 return VK_SUCCESS;
1074 }
1075
1076 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
1077 bias + map->surface_count,
1078 &state_offset);
1079 uint32_t *bt_map = bt_state->map;
1080
1081 if (bt_state->map == NULL)
1082 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1083
1084 if (stage == MESA_SHADER_COMPUTE &&
1085 get_cs_prog_data(cmd_buffer->state.compute_pipeline)->uses_num_work_groups) {
1086 struct anv_bo *bo = cmd_buffer->state.num_workgroups_bo;
1087 uint32_t bo_offset = cmd_buffer->state.num_workgroups_offset;
1088
1089 struct anv_state surface_state;
1090 surface_state =
1091 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
1092
1093 const enum isl_format format =
1094 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
1095 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1096 format, bo_offset, 12, 1);
1097
1098 bt_map[0] = surface_state.offset + state_offset;
1099 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
1100 }
1101
1102 if (map->surface_count == 0)
1103 goto out;
1104
1105 if (map->image_count > 0) {
1106 VkResult result =
1107 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
1108 if (result != VK_SUCCESS)
1109 return result;
1110
1111 cmd_buffer->state.push_constants_dirty |= 1 << stage;
1112 }
1113
1114 uint32_t image = 0;
1115 for (uint32_t s = 0; s < map->surface_count; s++) {
1116 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
1117
1118 struct anv_state surface_state;
1119
1120 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
1121 /* Color attachment binding */
1122 assert(stage == MESA_SHADER_FRAGMENT);
1123 assert(binding->binding == 0);
1124 if (binding->index < subpass->color_count) {
1125 const unsigned att = subpass->color_attachments[binding->index].attachment;
1126 surface_state = cmd_buffer->state.attachments[att].color_rt_state;
1127 } else {
1128 surface_state = cmd_buffer->state.null_surface_state;
1129 }
1130
1131 bt_map[bias + s] = surface_state.offset + state_offset;
1132 continue;
1133 }
1134
1135 struct anv_descriptor_set *set =
1136 cmd_buffer->state.descriptors[binding->set];
1137 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
1138 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
1139
1140 switch (desc->type) {
1141 case VK_DESCRIPTOR_TYPE_SAMPLER:
1142 /* Nothing for us to do here */
1143 continue;
1144
1145 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1146 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1147 surface_state = desc->aux_usage == ISL_AUX_USAGE_NONE ?
1148 desc->image_view->no_aux_sampler_surface_state :
1149 desc->image_view->sampler_surface_state;
1150 assert(surface_state.alloc_size);
1151 add_image_view_relocs(cmd_buffer, desc->image_view,
1152 desc->aux_usage, surface_state);
1153 break;
1154 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1155 assert(stage == MESA_SHADER_FRAGMENT);
1156 if (desc->image_view->aspect_mask != VK_IMAGE_ASPECT_COLOR_BIT) {
1157 /* For depth and stencil input attachments, we treat it like any
1158 * old texture that a user may have bound.
1159 */
1160 surface_state = desc->aux_usage == ISL_AUX_USAGE_NONE ?
1161 desc->image_view->no_aux_sampler_surface_state :
1162 desc->image_view->sampler_surface_state;
1163 assert(surface_state.alloc_size);
1164 add_image_view_relocs(cmd_buffer, desc->image_view,
1165 desc->aux_usage, surface_state);
1166 } else {
1167 /* For color input attachments, we create the surface state at
1168 * vkBeginRenderPass time so that we can include aux and clear
1169 * color information.
1170 */
1171 assert(binding->input_attachment_index < subpass->input_count);
1172 const unsigned subpass_att = binding->input_attachment_index;
1173 const unsigned att = subpass->input_attachments[subpass_att].attachment;
1174 surface_state = cmd_buffer->state.attachments[att].input_att_state;
1175 }
1176 break;
1177
1178 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1179 surface_state = (binding->write_only)
1180 ? desc->image_view->writeonly_storage_surface_state
1181 : desc->image_view->storage_surface_state;
1182 assert(surface_state.alloc_size);
1183 add_image_view_relocs(cmd_buffer, desc->image_view,
1184 desc->image_view->image->aux_usage,
1185 surface_state);
1186
1187 struct brw_image_param *image_param =
1188 &cmd_buffer->state.push_constants[stage]->images[image++];
1189
1190 *image_param = desc->image_view->storage_image_param;
1191 image_param->surface_idx = bias + s;
1192 break;
1193 }
1194
1195 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1196 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1197 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1198 surface_state = desc->buffer_view->surface_state;
1199 assert(surface_state.alloc_size);
1200 add_surface_state_reloc(cmd_buffer, surface_state,
1201 desc->buffer_view->bo,
1202 desc->buffer_view->offset);
1203 break;
1204
1205 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1206 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1207 uint32_t dynamic_offset_idx =
1208 pipeline->layout->set[binding->set].dynamic_offset_start +
1209 set->layout->binding[binding->binding].dynamic_offset_index +
1210 binding->index;
1211
1212 /* Compute the offset within the buffer */
1213 uint64_t offset = desc->offset +
1214 cmd_buffer->state.dynamic_offsets[dynamic_offset_idx];
1215 /* Clamp to the buffer size */
1216 offset = MIN2(offset, desc->buffer->size);
1217 /* Clamp the range to the buffer size */
1218 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
1219
1220 surface_state =
1221 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
1222 enum isl_format format =
1223 anv_isl_format_for_descriptor_type(desc->type);
1224
1225 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1226 format, offset, range, 1);
1227 add_surface_state_reloc(cmd_buffer, surface_state,
1228 desc->buffer->bo,
1229 desc->buffer->offset + offset);
1230 break;
1231 }
1232
1233 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1234 surface_state = (binding->write_only)
1235 ? desc->buffer_view->writeonly_storage_surface_state
1236 : desc->buffer_view->storage_surface_state;
1237 assert(surface_state.alloc_size);
1238 add_surface_state_reloc(cmd_buffer, surface_state,
1239 desc->buffer_view->bo,
1240 desc->buffer_view->offset);
1241
1242 struct brw_image_param *image_param =
1243 &cmd_buffer->state.push_constants[stage]->images[image++];
1244
1245 *image_param = desc->buffer_view->storage_image_param;
1246 image_param->surface_idx = bias + s;
1247 break;
1248
1249 default:
1250 assert(!"Invalid descriptor type");
1251 continue;
1252 }
1253
1254 bt_map[bias + s] = surface_state.offset + state_offset;
1255 }
1256 assert(image == map->image_count);
1257
1258 out:
1259 anv_state_flush(cmd_buffer->device, *bt_state);
1260
1261 return VK_SUCCESS;
1262 }
1263
1264 static VkResult
1265 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1266 gl_shader_stage stage,
1267 struct anv_state *state)
1268 {
1269 struct anv_pipeline *pipeline;
1270
1271 if (stage == MESA_SHADER_COMPUTE)
1272 pipeline = cmd_buffer->state.compute_pipeline;
1273 else
1274 pipeline = cmd_buffer->state.pipeline;
1275
1276 if (!anv_pipeline_has_stage(pipeline, stage)) {
1277 *state = (struct anv_state) { 0, };
1278 return VK_SUCCESS;
1279 }
1280
1281 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1282 if (map->sampler_count == 0) {
1283 *state = (struct anv_state) { 0, };
1284 return VK_SUCCESS;
1285 }
1286
1287 uint32_t size = map->sampler_count * 16;
1288 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
1289
1290 if (state->map == NULL)
1291 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1292
1293 for (uint32_t s = 0; s < map->sampler_count; s++) {
1294 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
1295 struct anv_descriptor_set *set =
1296 cmd_buffer->state.descriptors[binding->set];
1297 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
1298 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
1299
1300 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
1301 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
1302 continue;
1303
1304 struct anv_sampler *sampler = desc->sampler;
1305
1306 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
1307 * happens to be zero.
1308 */
1309 if (sampler == NULL)
1310 continue;
1311
1312 memcpy(state->map + (s * 16),
1313 sampler->state, sizeof(sampler->state));
1314 }
1315
1316 anv_state_flush(cmd_buffer->device, *state);
1317
1318 return VK_SUCCESS;
1319 }
1320
1321 static uint32_t
1322 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
1323 {
1324 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
1325 cmd_buffer->state.pipeline->active_stages;
1326
1327 VkResult result = VK_SUCCESS;
1328 anv_foreach_stage(s, dirty) {
1329 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1330 if (result != VK_SUCCESS)
1331 break;
1332 result = emit_binding_table(cmd_buffer, s,
1333 &cmd_buffer->state.binding_tables[s]);
1334 if (result != VK_SUCCESS)
1335 break;
1336 }
1337
1338 if (result != VK_SUCCESS) {
1339 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
1340
1341 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
1342 if (result != VK_SUCCESS)
1343 return 0;
1344
1345 /* Re-emit state base addresses so we get the new surface state base
1346 * address before we start emitting binding tables etc.
1347 */
1348 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1349
1350 /* Re-emit all active binding tables */
1351 dirty |= cmd_buffer->state.pipeline->active_stages;
1352 anv_foreach_stage(s, dirty) {
1353 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1354 if (result != VK_SUCCESS) {
1355 anv_batch_set_error(&cmd_buffer->batch, result);
1356 return 0;
1357 }
1358 result = emit_binding_table(cmd_buffer, s,
1359 &cmd_buffer->state.binding_tables[s]);
1360 if (result != VK_SUCCESS) {
1361 anv_batch_set_error(&cmd_buffer->batch, result);
1362 return 0;
1363 }
1364 }
1365 }
1366
1367 cmd_buffer->state.descriptors_dirty &= ~dirty;
1368
1369 return dirty;
1370 }
1371
1372 static void
1373 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
1374 uint32_t stages)
1375 {
1376 static const uint32_t sampler_state_opcodes[] = {
1377 [MESA_SHADER_VERTEX] = 43,
1378 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
1379 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
1380 [MESA_SHADER_GEOMETRY] = 46,
1381 [MESA_SHADER_FRAGMENT] = 47,
1382 [MESA_SHADER_COMPUTE] = 0,
1383 };
1384
1385 static const uint32_t binding_table_opcodes[] = {
1386 [MESA_SHADER_VERTEX] = 38,
1387 [MESA_SHADER_TESS_CTRL] = 39,
1388 [MESA_SHADER_TESS_EVAL] = 40,
1389 [MESA_SHADER_GEOMETRY] = 41,
1390 [MESA_SHADER_FRAGMENT] = 42,
1391 [MESA_SHADER_COMPUTE] = 0,
1392 };
1393
1394 anv_foreach_stage(s, stages) {
1395 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
1396 anv_batch_emit(&cmd_buffer->batch,
1397 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
1398 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
1399 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
1400 }
1401 }
1402
1403 /* Always emit binding table pointers if we're asked to, since on SKL
1404 * this is what flushes push constants. */
1405 anv_batch_emit(&cmd_buffer->batch,
1406 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
1407 btp._3DCommandSubOpcode = binding_table_opcodes[s];
1408 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
1409 }
1410 }
1411 }
1412
1413 static uint32_t
1414 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer)
1415 {
1416 static const uint32_t push_constant_opcodes[] = {
1417 [MESA_SHADER_VERTEX] = 21,
1418 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
1419 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
1420 [MESA_SHADER_GEOMETRY] = 22,
1421 [MESA_SHADER_FRAGMENT] = 23,
1422 [MESA_SHADER_COMPUTE] = 0,
1423 };
1424
1425 VkShaderStageFlags flushed = 0;
1426
1427 anv_foreach_stage(stage, cmd_buffer->state.push_constants_dirty) {
1428 if (stage == MESA_SHADER_COMPUTE)
1429 continue;
1430
1431 struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage);
1432
1433 if (state.offset == 0) {
1434 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c)
1435 c._3DCommandSubOpcode = push_constant_opcodes[stage];
1436 } else {
1437 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
1438 c._3DCommandSubOpcode = push_constant_opcodes[stage],
1439 c.ConstantBody = (struct GENX(3DSTATE_CONSTANT_BODY)) {
1440 #if GEN_GEN >= 9
1441 .PointerToConstantBuffer2 = { &cmd_buffer->device->dynamic_state_block_pool.bo, state.offset },
1442 .ConstantBuffer2ReadLength = DIV_ROUND_UP(state.alloc_size, 32),
1443 #else
1444 .PointerToConstantBuffer0 = { .offset = state.offset },
1445 .ConstantBuffer0ReadLength = DIV_ROUND_UP(state.alloc_size, 32),
1446 #endif
1447 };
1448 }
1449 }
1450
1451 flushed |= mesa_to_vk_shader_stage(stage);
1452 }
1453
1454 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_ALL_GRAPHICS;
1455
1456 return flushed;
1457 }
1458
1459 void
1460 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
1461 {
1462 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1463 uint32_t *p;
1464
1465 uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used;
1466
1467 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
1468
1469 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
1470
1471 genX(flush_pipeline_select_3d)(cmd_buffer);
1472
1473 if (vb_emit) {
1474 const uint32_t num_buffers = __builtin_popcount(vb_emit);
1475 const uint32_t num_dwords = 1 + num_buffers * 4;
1476
1477 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
1478 GENX(3DSTATE_VERTEX_BUFFERS));
1479 uint32_t vb, i = 0;
1480 for_each_bit(vb, vb_emit) {
1481 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
1482 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
1483
1484 struct GENX(VERTEX_BUFFER_STATE) state = {
1485 .VertexBufferIndex = vb,
1486
1487 #if GEN_GEN >= 8
1488 .MemoryObjectControlState = GENX(MOCS),
1489 #else
1490 .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
1491 .InstanceDataStepRate = 1,
1492 .VertexBufferMemoryObjectControlState = GENX(MOCS),
1493 #endif
1494
1495 .AddressModifyEnable = true,
1496 .BufferPitch = pipeline->binding_stride[vb],
1497 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
1498
1499 #if GEN_GEN >= 8
1500 .BufferSize = buffer->size - offset
1501 #else
1502 .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
1503 #endif
1504 };
1505
1506 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
1507 i++;
1508 }
1509 }
1510
1511 cmd_buffer->state.vb_dirty &= ~vb_emit;
1512
1513 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_PIPELINE) {
1514 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
1515
1516 /* The exact descriptor layout is pulled from the pipeline, so we need
1517 * to re-emit binding tables on every pipeline change.
1518 */
1519 cmd_buffer->state.descriptors_dirty |=
1520 cmd_buffer->state.pipeline->active_stages;
1521
1522 /* If the pipeline changed, we may need to re-allocate push constant
1523 * space in the URB.
1524 */
1525 cmd_buffer_alloc_push_constants(cmd_buffer);
1526 }
1527
1528 #if GEN_GEN <= 7
1529 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
1530 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
1531 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
1532 *
1533 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
1534 * stall needs to be sent just prior to any 3DSTATE_VS,
1535 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
1536 * 3DSTATE_BINDING_TABLE_POINTER_VS,
1537 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
1538 * PIPE_CONTROL needs to be sent before any combination of VS
1539 * associated 3DSTATE."
1540 */
1541 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1542 pc.DepthStallEnable = true;
1543 pc.PostSyncOperation = WriteImmediateData;
1544 pc.Address =
1545 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
1546 }
1547 }
1548 #endif
1549
1550 /* Render targets live in the same binding table as fragment descriptors */
1551 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
1552 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
1553
1554 /* We emit the binding tables and sampler tables first, then emit push
1555 * constants and then finally emit binding table and sampler table
1556 * pointers. It has to happen in this order, since emitting the binding
1557 * tables may change the push constants (in case of storage images). After
1558 * emitting push constants, on SKL+ we have to emit the corresponding
1559 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
1560 */
1561 uint32_t dirty = 0;
1562 if (cmd_buffer->state.descriptors_dirty)
1563 dirty = flush_descriptor_sets(cmd_buffer);
1564
1565 if (cmd_buffer->state.push_constants_dirty) {
1566 #if GEN_GEN >= 9
1567 /* On Sky Lake and later, the binding table pointers commands are
1568 * what actually flush the changes to push constant state so we need
1569 * to dirty them so they get re-emitted below.
1570 */
1571 dirty |= cmd_buffer_flush_push_constants(cmd_buffer);
1572 #else
1573 cmd_buffer_flush_push_constants(cmd_buffer);
1574 #endif
1575 }
1576
1577 if (dirty)
1578 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
1579
1580 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
1581 gen8_cmd_buffer_emit_viewport(cmd_buffer);
1582
1583 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
1584 ANV_CMD_DIRTY_PIPELINE)) {
1585 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
1586 pipeline->depth_clamp_enable);
1587 }
1588
1589 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
1590 gen7_cmd_buffer_emit_scissor(cmd_buffer);
1591
1592 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
1593
1594 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1595 }
1596
1597 static void
1598 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
1599 struct anv_bo *bo, uint32_t offset,
1600 uint32_t size, uint32_t index)
1601 {
1602 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
1603 GENX(3DSTATE_VERTEX_BUFFERS));
1604
1605 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
1606 &(struct GENX(VERTEX_BUFFER_STATE)) {
1607 .VertexBufferIndex = index,
1608 .AddressModifyEnable = true,
1609 .BufferPitch = 0,
1610 #if (GEN_GEN >= 8)
1611 .MemoryObjectControlState = GENX(MOCS),
1612 .BufferStartingAddress = { bo, offset },
1613 .BufferSize = size
1614 #else
1615 .VertexBufferMemoryObjectControlState = GENX(MOCS),
1616 .BufferStartingAddress = { bo, offset },
1617 .EndAddress = { bo, offset + size },
1618 #endif
1619 });
1620 }
1621
1622 static void
1623 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
1624 struct anv_bo *bo, uint32_t offset)
1625 {
1626 emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
1627 }
1628
1629 static void
1630 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
1631 uint32_t base_vertex, uint32_t base_instance)
1632 {
1633 struct anv_state id_state =
1634 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
1635
1636 ((uint32_t *)id_state.map)[0] = base_vertex;
1637 ((uint32_t *)id_state.map)[1] = base_instance;
1638
1639 anv_state_flush(cmd_buffer->device, id_state);
1640
1641 emit_base_vertex_instance_bo(cmd_buffer,
1642 &cmd_buffer->device->dynamic_state_block_pool.bo, id_state.offset);
1643 }
1644
1645 static void
1646 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
1647 {
1648 struct anv_state state =
1649 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
1650
1651 ((uint32_t *)state.map)[0] = draw_index;
1652
1653 anv_state_flush(cmd_buffer->device, state);
1654
1655 emit_vertex_bo(cmd_buffer,
1656 &cmd_buffer->device->dynamic_state_block_pool.bo,
1657 state.offset, 4, ANV_DRAWID_VB_INDEX);
1658 }
1659
1660 void genX(CmdDraw)(
1661 VkCommandBuffer commandBuffer,
1662 uint32_t vertexCount,
1663 uint32_t instanceCount,
1664 uint32_t firstVertex,
1665 uint32_t firstInstance)
1666 {
1667 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1668 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1669 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1670
1671 if (anv_batch_has_error(&cmd_buffer->batch))
1672 return;
1673
1674 genX(cmd_buffer_flush_state)(cmd_buffer);
1675
1676 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1677 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
1678 if (vs_prog_data->uses_drawid)
1679 emit_draw_index(cmd_buffer, 0);
1680
1681 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1682 prim.VertexAccessType = SEQUENTIAL;
1683 prim.PrimitiveTopologyType = pipeline->topology;
1684 prim.VertexCountPerInstance = vertexCount;
1685 prim.StartVertexLocation = firstVertex;
1686 prim.InstanceCount = instanceCount;
1687 prim.StartInstanceLocation = firstInstance;
1688 prim.BaseVertexLocation = 0;
1689 }
1690 }
1691
1692 void genX(CmdDrawIndexed)(
1693 VkCommandBuffer commandBuffer,
1694 uint32_t indexCount,
1695 uint32_t instanceCount,
1696 uint32_t firstIndex,
1697 int32_t vertexOffset,
1698 uint32_t firstInstance)
1699 {
1700 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1701 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1702 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1703
1704 if (anv_batch_has_error(&cmd_buffer->batch))
1705 return;
1706
1707 genX(cmd_buffer_flush_state)(cmd_buffer);
1708
1709 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1710 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
1711 if (vs_prog_data->uses_drawid)
1712 emit_draw_index(cmd_buffer, 0);
1713
1714 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1715 prim.VertexAccessType = RANDOM;
1716 prim.PrimitiveTopologyType = pipeline->topology;
1717 prim.VertexCountPerInstance = indexCount;
1718 prim.StartVertexLocation = firstIndex;
1719 prim.InstanceCount = instanceCount;
1720 prim.StartInstanceLocation = firstInstance;
1721 prim.BaseVertexLocation = vertexOffset;
1722 }
1723 }
1724
1725 /* Auto-Draw / Indirect Registers */
1726 #define GEN7_3DPRIM_END_OFFSET 0x2420
1727 #define GEN7_3DPRIM_START_VERTEX 0x2430
1728 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
1729 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
1730 #define GEN7_3DPRIM_START_INSTANCE 0x243C
1731 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
1732
1733 void genX(CmdDrawIndirect)(
1734 VkCommandBuffer commandBuffer,
1735 VkBuffer _buffer,
1736 VkDeviceSize offset,
1737 uint32_t drawCount,
1738 uint32_t stride)
1739 {
1740 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1741 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1742 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1743 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1744 struct anv_bo *bo = buffer->bo;
1745 uint32_t bo_offset = buffer->offset + offset;
1746
1747 if (anv_batch_has_error(&cmd_buffer->batch))
1748 return;
1749
1750 genX(cmd_buffer_flush_state)(cmd_buffer);
1751
1752 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1753 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
1754 if (vs_prog_data->uses_drawid)
1755 emit_draw_index(cmd_buffer, 0);
1756
1757 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
1758 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
1759 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
1760 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
1761 emit_lri(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, 0);
1762
1763 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1764 prim.IndirectParameterEnable = true;
1765 prim.VertexAccessType = SEQUENTIAL;
1766 prim.PrimitiveTopologyType = pipeline->topology;
1767 }
1768 }
1769
1770 void genX(CmdDrawIndexedIndirect)(
1771 VkCommandBuffer commandBuffer,
1772 VkBuffer _buffer,
1773 VkDeviceSize offset,
1774 uint32_t drawCount,
1775 uint32_t stride)
1776 {
1777 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1778 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1779 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1780 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1781 struct anv_bo *bo = buffer->bo;
1782 uint32_t bo_offset = buffer->offset + offset;
1783
1784 if (anv_batch_has_error(&cmd_buffer->batch))
1785 return;
1786
1787 genX(cmd_buffer_flush_state)(cmd_buffer);
1788
1789 /* TODO: We need to stomp base vertex to 0 somehow */
1790 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1791 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
1792 if (vs_prog_data->uses_drawid)
1793 emit_draw_index(cmd_buffer, 0);
1794
1795 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
1796 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
1797 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
1798 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
1799 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
1800
1801 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1802 prim.IndirectParameterEnable = true;
1803 prim.VertexAccessType = RANDOM;
1804 prim.PrimitiveTopologyType = pipeline->topology;
1805 }
1806 }
1807
1808 static VkResult
1809 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
1810 {
1811 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1812 struct anv_state surfaces = { 0, }, samplers = { 0, };
1813 VkResult result;
1814
1815 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
1816 if (result != VK_SUCCESS) {
1817 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
1818
1819 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
1820 if (result != VK_SUCCESS)
1821 return result;
1822
1823 /* Re-emit state base addresses so we get the new surface state base
1824 * address before we start emitting binding tables etc.
1825 */
1826 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1827
1828 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
1829 if (result != VK_SUCCESS) {
1830 anv_batch_set_error(&cmd_buffer->batch, result);
1831 return result;
1832 }
1833 }
1834
1835 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
1836 if (result != VK_SUCCESS) {
1837 anv_batch_set_error(&cmd_buffer->batch, result);
1838 return result;
1839 }
1840
1841 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
1842 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
1843 .BindingTablePointer = surfaces.offset,
1844 .SamplerStatePointer = samplers.offset,
1845 };
1846 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
1847
1848 struct anv_state state =
1849 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
1850 pipeline->interface_descriptor_data,
1851 GENX(INTERFACE_DESCRIPTOR_DATA_length),
1852 64);
1853
1854 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
1855 anv_batch_emit(&cmd_buffer->batch,
1856 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
1857 mid.InterfaceDescriptorTotalLength = size;
1858 mid.InterfaceDescriptorDataStartAddress = state.offset;
1859 }
1860
1861 return VK_SUCCESS;
1862 }
1863
1864 void
1865 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
1866 {
1867 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1868 MAYBE_UNUSED VkResult result;
1869
1870 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
1871
1872 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
1873
1874 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
1875
1876 if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE) {
1877 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
1878 *
1879 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
1880 * the only bits that are changed are scoreboard related: Scoreboard
1881 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
1882 * these scoreboard related states, a MEDIA_STATE_FLUSH is
1883 * sufficient."
1884 */
1885 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1886 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1887
1888 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
1889 }
1890
1891 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
1892 (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
1893 /* FIXME: figure out descriptors for gen7 */
1894 result = flush_compute_descriptor_set(cmd_buffer);
1895 if (result != VK_SUCCESS)
1896 return;
1897
1898 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
1899 }
1900
1901 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
1902 struct anv_state push_state =
1903 anv_cmd_buffer_cs_push_constants(cmd_buffer);
1904
1905 if (push_state.alloc_size) {
1906 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
1907 curbe.CURBETotalDataLength = push_state.alloc_size;
1908 curbe.CURBEDataStartAddress = push_state.offset;
1909 }
1910 }
1911 }
1912
1913 cmd_buffer->state.compute_dirty = 0;
1914
1915 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1916 }
1917
1918 #if GEN_GEN == 7
1919
1920 static VkResult
1921 verify_cmd_parser(const struct anv_device *device,
1922 int required_version,
1923 const char *function)
1924 {
1925 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
1926 return vk_errorf(VK_ERROR_FEATURE_NOT_PRESENT,
1927 "cmd parser version %d is required for %s",
1928 required_version, function);
1929 } else {
1930 return VK_SUCCESS;
1931 }
1932 }
1933
1934 #endif
1935
1936 void genX(CmdDispatch)(
1937 VkCommandBuffer commandBuffer,
1938 uint32_t x,
1939 uint32_t y,
1940 uint32_t z)
1941 {
1942 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1943 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1944 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
1945
1946 if (anv_batch_has_error(&cmd_buffer->batch))
1947 return;
1948
1949 if (prog_data->uses_num_work_groups) {
1950 struct anv_state state =
1951 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
1952 uint32_t *sizes = state.map;
1953 sizes[0] = x;
1954 sizes[1] = y;
1955 sizes[2] = z;
1956 anv_state_flush(cmd_buffer->device, state);
1957 cmd_buffer->state.num_workgroups_offset = state.offset;
1958 cmd_buffer->state.num_workgroups_bo =
1959 &cmd_buffer->device->dynamic_state_block_pool.bo;
1960 }
1961
1962 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
1963
1964 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
1965 ggw.SIMDSize = prog_data->simd_size / 16;
1966 ggw.ThreadDepthCounterMaximum = 0;
1967 ggw.ThreadHeightCounterMaximum = 0;
1968 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
1969 ggw.ThreadGroupIDXDimension = x;
1970 ggw.ThreadGroupIDYDimension = y;
1971 ggw.ThreadGroupIDZDimension = z;
1972 ggw.RightExecutionMask = pipeline->cs_right_mask;
1973 ggw.BottomExecutionMask = 0xffffffff;
1974 }
1975
1976 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
1977 }
1978
1979 #define GPGPU_DISPATCHDIMX 0x2500
1980 #define GPGPU_DISPATCHDIMY 0x2504
1981 #define GPGPU_DISPATCHDIMZ 0x2508
1982
1983 #define MI_PREDICATE_SRC0 0x2400
1984 #define MI_PREDICATE_SRC1 0x2408
1985
1986 void genX(CmdDispatchIndirect)(
1987 VkCommandBuffer commandBuffer,
1988 VkBuffer _buffer,
1989 VkDeviceSize offset)
1990 {
1991 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1992 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1993 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1994 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
1995 struct anv_bo *bo = buffer->bo;
1996 uint32_t bo_offset = buffer->offset + offset;
1997 struct anv_batch *batch = &cmd_buffer->batch;
1998
1999 #if GEN_GEN == 7
2000 /* Linux 4.4 added command parser version 5 which allows the GPGPU
2001 * indirect dispatch registers to be written.
2002 */
2003 if (verify_cmd_parser(cmd_buffer->device, 5,
2004 "vkCmdDispatchIndirect") != VK_SUCCESS)
2005 return;
2006 #endif
2007
2008 if (prog_data->uses_num_work_groups) {
2009 cmd_buffer->state.num_workgroups_offset = bo_offset;
2010 cmd_buffer->state.num_workgroups_bo = bo;
2011 }
2012
2013 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2014
2015 emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
2016 emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
2017 emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
2018
2019 #if GEN_GEN <= 7
2020 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
2021 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
2022 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
2023 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
2024
2025 /* Load compute_dispatch_indirect_x_size into SRC0 */
2026 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
2027
2028 /* predicate = (compute_dispatch_indirect_x_size == 0); */
2029 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2030 mip.LoadOperation = LOAD_LOAD;
2031 mip.CombineOperation = COMBINE_SET;
2032 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2033 }
2034
2035 /* Load compute_dispatch_indirect_y_size into SRC0 */
2036 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
2037
2038 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
2039 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2040 mip.LoadOperation = LOAD_LOAD;
2041 mip.CombineOperation = COMBINE_OR;
2042 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2043 }
2044
2045 /* Load compute_dispatch_indirect_z_size into SRC0 */
2046 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
2047
2048 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
2049 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2050 mip.LoadOperation = LOAD_LOAD;
2051 mip.CombineOperation = COMBINE_OR;
2052 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2053 }
2054
2055 /* predicate = !predicate; */
2056 #define COMPARE_FALSE 1
2057 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2058 mip.LoadOperation = LOAD_LOADINV;
2059 mip.CombineOperation = COMBINE_OR;
2060 mip.CompareOperation = COMPARE_FALSE;
2061 }
2062 #endif
2063
2064 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
2065 ggw.IndirectParameterEnable = true;
2066 ggw.PredicateEnable = GEN_GEN <= 7;
2067 ggw.SIMDSize = prog_data->simd_size / 16;
2068 ggw.ThreadDepthCounterMaximum = 0;
2069 ggw.ThreadHeightCounterMaximum = 0;
2070 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2071 ggw.RightExecutionMask = pipeline->cs_right_mask;
2072 ggw.BottomExecutionMask = 0xffffffff;
2073 }
2074
2075 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
2076 }
2077
2078 static void
2079 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
2080 uint32_t pipeline)
2081 {
2082 if (cmd_buffer->state.current_pipeline == pipeline)
2083 return;
2084
2085 #if GEN_GEN >= 8 && GEN_GEN < 10
2086 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
2087 *
2088 * Software must clear the COLOR_CALC_STATE Valid field in
2089 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
2090 * with Pipeline Select set to GPGPU.
2091 *
2092 * The internal hardware docs recommend the same workaround for Gen9
2093 * hardware too.
2094 */
2095 if (pipeline == GPGPU)
2096 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
2097 #endif
2098
2099 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
2100 * PIPELINE_SELECT [DevBWR+]":
2101 *
2102 * Project: DEVSNB+
2103 *
2104 * Software must ensure all the write caches are flushed through a
2105 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
2106 * command to invalidate read only caches prior to programming
2107 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
2108 */
2109 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2110 pc.RenderTargetCacheFlushEnable = true;
2111 pc.DepthCacheFlushEnable = true;
2112 pc.DCFlushEnable = true;
2113 pc.PostSyncOperation = NoWrite;
2114 pc.CommandStreamerStallEnable = true;
2115 }
2116
2117 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2118 pc.TextureCacheInvalidationEnable = true;
2119 pc.ConstantCacheInvalidationEnable = true;
2120 pc.StateCacheInvalidationEnable = true;
2121 pc.InstructionCacheInvalidateEnable = true;
2122 pc.PostSyncOperation = NoWrite;
2123 }
2124
2125 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
2126 #if GEN_GEN >= 9
2127 ps.MaskBits = 3;
2128 #endif
2129 ps.PipelineSelection = pipeline;
2130 }
2131
2132 cmd_buffer->state.current_pipeline = pipeline;
2133 }
2134
2135 void
2136 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
2137 {
2138 genX(flush_pipeline_select)(cmd_buffer, _3D);
2139 }
2140
2141 void
2142 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
2143 {
2144 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
2145 }
2146
2147 void
2148 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
2149 {
2150 if (GEN_GEN >= 8)
2151 return;
2152
2153 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
2154 *
2155 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
2156 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
2157 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
2158 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
2159 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
2160 * Depth Flush Bit set, followed by another pipelined depth stall
2161 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
2162 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
2163 * via a preceding MI_FLUSH)."
2164 */
2165 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2166 pipe.DepthStallEnable = true;
2167 }
2168 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2169 pipe.DepthCacheFlushEnable = true;
2170 }
2171 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2172 pipe.DepthStallEnable = true;
2173 }
2174 }
2175
2176 static uint32_t
2177 depth_stencil_surface_type(enum isl_surf_dim dim)
2178 {
2179 switch (dim) {
2180 case ISL_SURF_DIM_1D:
2181 if (GEN_GEN >= 9) {
2182 /* From the Sky Lake PRM, 3DSTATAE_DEPTH_BUFFER::SurfaceType
2183 *
2184 * Programming Notes:
2185 * The Surface Type of the depth buffer must be the same as the
2186 * Surface Type of the render target(s) (defined in
2187 * SURFACE_STATE), unless either the depth buffer or render
2188 * targets are SURFTYPE_NULL (see exception below for SKL). 1D
2189 * surface type not allowed for depth surface and stencil surface.
2190 *
2191 * Workaround:
2192 * If depth/stencil is enabled with 1D render target,
2193 * depth/stencil surface type needs to be set to 2D surface type
2194 * and height set to 1. Depth will use (legacy) TileY and stencil
2195 * will use TileW. For this case only, the Surface Type of the
2196 * depth buffer can be 2D while the Surface Type of the render
2197 * target(s) are 1D, representing an exception to a programming
2198 * note above.
2199 */
2200 return SURFTYPE_2D;
2201 } else {
2202 return SURFTYPE_1D;
2203 }
2204 case ISL_SURF_DIM_2D:
2205 return SURFTYPE_2D;
2206 case ISL_SURF_DIM_3D:
2207 if (GEN_GEN >= 9) {
2208 /* The Sky Lake docs list the value for 3D as "Reserved". However,
2209 * they have the exact same layout as 2D arrays on gen9+, so we can
2210 * just use 2D here.
2211 */
2212 return SURFTYPE_2D;
2213 } else {
2214 return SURFTYPE_3D;
2215 }
2216 default:
2217 unreachable("Invalid surface dimension");
2218 }
2219 }
2220
2221 static void
2222 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
2223 {
2224 struct anv_device *device = cmd_buffer->device;
2225 const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
2226 const struct anv_image_view *iview =
2227 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
2228 const struct anv_image *image = iview ? iview->image : NULL;
2229 const bool has_depth = image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT);
2230 const uint32_t ds = cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
2231 const bool has_hiz = image != NULL &&
2232 cmd_buffer->state.attachments[ds].aux_usage == ISL_AUX_USAGE_HIZ;
2233 const bool has_stencil =
2234 image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
2235
2236 cmd_buffer->state.hiz_enabled = has_hiz;
2237
2238 /* FIXME: Width and Height are wrong */
2239
2240 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
2241
2242 /* Emit 3DSTATE_DEPTH_BUFFER */
2243 if (has_depth) {
2244 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER), db) {
2245 db.SurfaceType =
2246 depth_stencil_surface_type(image->depth_surface.isl.dim);
2247 db.DepthWriteEnable = true;
2248 db.StencilWriteEnable = has_stencil;
2249 db.HierarchicalDepthBufferEnable = has_hiz;
2250
2251 db.SurfaceFormat = isl_surf_get_depth_format(&device->isl_dev,
2252 &image->depth_surface.isl);
2253
2254 db.SurfaceBaseAddress = (struct anv_address) {
2255 .bo = image->bo,
2256 .offset = image->offset + image->depth_surface.offset,
2257 };
2258 db.DepthBufferObjectControlState = GENX(MOCS);
2259
2260 db.SurfacePitch = image->depth_surface.isl.row_pitch - 1;
2261 db.Height = image->extent.height - 1;
2262 db.Width = image->extent.width - 1;
2263 db.LOD = iview->isl.base_level;
2264 db.MinimumArrayElement = iview->isl.base_array_layer;
2265
2266 assert(image->depth_surface.isl.dim != ISL_SURF_DIM_3D);
2267 db.Depth =
2268 db.RenderTargetViewExtent = iview->isl.array_len - 1;
2269
2270 #if GEN_GEN >= 8
2271 db.SurfaceQPitch =
2272 isl_surf_get_array_pitch_el_rows(&image->depth_surface.isl) >> 2;
2273 #endif
2274 }
2275 } else {
2276 /* Even when no depth buffer is present, the hardware requires that
2277 * 3DSTATE_DEPTH_BUFFER be programmed correctly. The Broadwell PRM says:
2278 *
2279 * If a null depth buffer is bound, the driver must instead bind depth as:
2280 * 3DSTATE_DEPTH.SurfaceType = SURFTYPE_2D
2281 * 3DSTATE_DEPTH.Width = 1
2282 * 3DSTATE_DEPTH.Height = 1
2283 * 3DSTATE_DEPTH.SuraceFormat = D16_UNORM
2284 * 3DSTATE_DEPTH.SurfaceBaseAddress = 0
2285 * 3DSTATE_DEPTH.HierarchicalDepthBufferEnable = 0
2286 * 3DSTATE_WM_DEPTH_STENCIL.DepthTestEnable = 0
2287 * 3DSTATE_WM_DEPTH_STENCIL.DepthBufferWriteEnable = 0
2288 *
2289 * The PRM is wrong, though. The width and height must be programmed to
2290 * actual framebuffer's width and height, even when neither depth buffer
2291 * nor stencil buffer is present. Also, D16_UNORM is not allowed to
2292 * be combined with a stencil buffer so we use D32_FLOAT instead.
2293 */
2294 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER), db) {
2295 if (has_stencil) {
2296 db.SurfaceType =
2297 depth_stencil_surface_type(image->stencil_surface.isl.dim);
2298 } else {
2299 db.SurfaceType = SURFTYPE_2D;
2300 }
2301 db.SurfaceFormat = D32_FLOAT;
2302 db.Width = MAX2(fb->width, 1) - 1;
2303 db.Height = MAX2(fb->height, 1) - 1;
2304 db.StencilWriteEnable = has_stencil;
2305 }
2306 }
2307
2308 if (has_hiz) {
2309 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HIER_DEPTH_BUFFER), hdb) {
2310 hdb.HierarchicalDepthBufferObjectControlState = GENX(MOCS);
2311 hdb.SurfacePitch = image->aux_surface.isl.row_pitch - 1;
2312 hdb.SurfaceBaseAddress = (struct anv_address) {
2313 .bo = image->bo,
2314 .offset = image->offset + image->aux_surface.offset,
2315 };
2316 #if GEN_GEN >= 8
2317 /* From the SKL PRM Vol2a:
2318 *
2319 * The interpretation of this field is dependent on Surface Type
2320 * as follows:
2321 * - SURFTYPE_1D: distance in pixels between array slices
2322 * - SURFTYPE_2D/CUBE: distance in rows between array slices
2323 * - SURFTYPE_3D: distance in rows between R - slices
2324 *
2325 * Unfortunately, the docs aren't 100% accurate here. They fail to
2326 * mention that the 1-D rule only applies to linear 1-D images.
2327 * Since depth and HiZ buffers are always tiled, they are treated as
2328 * 2-D images. Prior to Sky Lake, this field is always in rows.
2329 */
2330 hdb.SurfaceQPitch =
2331 isl_surf_get_array_pitch_sa_rows(&image->aux_surface.isl) >> 2;
2332 #endif
2333 }
2334 } else {
2335 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HIER_DEPTH_BUFFER), hdb);
2336 }
2337
2338 /* Emit 3DSTATE_STENCIL_BUFFER */
2339 if (has_stencil) {
2340 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER), sb) {
2341 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2342 sb.StencilBufferEnable = true;
2343 #endif
2344 sb.StencilBufferObjectControlState = GENX(MOCS);
2345
2346 sb.SurfacePitch = image->stencil_surface.isl.row_pitch - 1;
2347
2348 #if GEN_GEN >= 8
2349 sb.SurfaceQPitch = isl_surf_get_array_pitch_el_rows(&image->stencil_surface.isl) >> 2;
2350 #endif
2351 sb.SurfaceBaseAddress = (struct anv_address) {
2352 .bo = image->bo,
2353 .offset = image->offset + image->stencil_surface.offset,
2354 };
2355 }
2356 } else {
2357 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER), sb);
2358 }
2359
2360 /* From the IVB PRM Vol2P1, 11.5.5.4 3DSTATE_CLEAR_PARAMS:
2361 *
2362 * 3DSTATE_CLEAR_PARAMS must always be programmed in the along with
2363 * the other Depth/Stencil state commands(i.e. 3DSTATE_DEPTH_BUFFER,
2364 * 3DSTATE_STENCIL_BUFFER, or 3DSTATE_HIER_DEPTH_BUFFER)
2365 *
2366 * Testing also shows that some variant of this restriction may exist HSW+.
2367 * On BDW+, it is not possible to emit 2 of these packets consecutively when
2368 * both have DepthClearValueValid set. An analysis of such state programming
2369 * on SKL showed that the GPU doesn't register the latter packet's clear
2370 * value.
2371 */
2372 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CLEAR_PARAMS), cp) {
2373 if (has_hiz) {
2374 cp.DepthClearValueValid = true;
2375 cp.DepthClearValue = ANV_HZ_FC_VAL;
2376 }
2377 }
2378 }
2379
2380
2381 /**
2382 * @brief Perform any layout transitions required at the beginning and/or end
2383 * of the current subpass for depth buffers.
2384 *
2385 * TODO: Consider preprocessing the attachment reference array at render pass
2386 * create time to determine if no layout transition is needed at the
2387 * beginning and/or end of each subpass.
2388 *
2389 * @param cmd_buffer The command buffer the transition is happening within.
2390 * @param subpass_end If true, marks that the transition is happening at the
2391 * end of the subpass.
2392 */
2393 static void
2394 cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,
2395 const bool subpass_end)
2396 {
2397 /* We need a non-NULL command buffer. */
2398 assert(cmd_buffer);
2399
2400 const struct anv_cmd_state * const cmd_state = &cmd_buffer->state;
2401 const struct anv_subpass * const subpass = cmd_state->subpass;
2402
2403 /* This function must be called within a subpass. */
2404 assert(subpass);
2405
2406 /* If there are attachment references, the array shouldn't be NULL.
2407 */
2408 if (subpass->attachment_count > 0)
2409 assert(subpass->attachments);
2410
2411 /* Iterate over the array of attachment references. */
2412 for (const VkAttachmentReference *att_ref = subpass->attachments;
2413 att_ref < subpass->attachments + subpass->attachment_count; att_ref++) {
2414
2415 /* If the attachment is unused, we can't perform a layout transition. */
2416 if (att_ref->attachment == VK_ATTACHMENT_UNUSED)
2417 continue;
2418
2419 /* This attachment index shouldn't go out of bounds. */
2420 assert(att_ref->attachment < cmd_state->pass->attachment_count);
2421
2422 const struct anv_render_pass_attachment * const att_desc =
2423 &cmd_state->pass->attachments[att_ref->attachment];
2424 struct anv_attachment_state * const att_state =
2425 &cmd_buffer->state.attachments[att_ref->attachment];
2426
2427 /* The attachment should not be used in a subpass after its last. */
2428 assert(att_desc->last_subpass_idx >= anv_get_subpass_id(cmd_state));
2429
2430 if (subpass_end && anv_get_subpass_id(cmd_state) <
2431 att_desc->last_subpass_idx) {
2432 /* We're calling this function on a buffer twice in one subpass and
2433 * this is not the last use of the buffer. The layout should not have
2434 * changed from the first call and no transition is necessary.
2435 */
2436 assert(att_ref->layout == att_state->current_layout);
2437 continue;
2438 }
2439
2440 /* Get the appropriate target layout for this attachment. */
2441 const VkImageLayout target_layout = subpass_end ?
2442 att_desc->final_layout : att_ref->layout;
2443
2444 /* The attachment index must be less than the number of attachments
2445 * within the framebuffer.
2446 */
2447 assert(att_ref->attachment < cmd_state->framebuffer->attachment_count);
2448
2449 const struct anv_image * const image =
2450 cmd_state->framebuffer->attachments[att_ref->attachment]->image;
2451
2452 /* Perform the layout transition. */
2453 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
2454 transition_depth_buffer(cmd_buffer, image,
2455 att_state->current_layout, target_layout);
2456 att_state->aux_usage =
2457 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
2458 image->aspects, target_layout);
2459 }
2460
2461 att_state->current_layout = target_layout;
2462 }
2463 }
2464
2465 static void
2466 genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
2467 struct anv_subpass *subpass)
2468 {
2469 cmd_buffer->state.subpass = subpass;
2470
2471 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
2472
2473 /* Perform transitions to the subpass layout before any writes have
2474 * occurred.
2475 */
2476 cmd_buffer_subpass_transition_layouts(cmd_buffer, false);
2477
2478 cmd_buffer_emit_depth_stencil(cmd_buffer);
2479
2480 anv_cmd_buffer_clear_subpass(cmd_buffer);
2481 }
2482
2483 void genX(CmdBeginRenderPass)(
2484 VkCommandBuffer commandBuffer,
2485 const VkRenderPassBeginInfo* pRenderPassBegin,
2486 VkSubpassContents contents)
2487 {
2488 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2489 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
2490 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
2491
2492 cmd_buffer->state.framebuffer = framebuffer;
2493 cmd_buffer->state.pass = pass;
2494 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
2495 VkResult result =
2496 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
2497
2498 /* If we failed to setup the attachments we should not try to go further */
2499 if (result != VK_SUCCESS) {
2500 assert(anv_batch_has_error(&cmd_buffer->batch));
2501 return;
2502 }
2503
2504 genX(flush_pipeline_select_3d)(cmd_buffer);
2505
2506 genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
2507
2508 cmd_buffer->state.pending_pipe_bits |=
2509 cmd_buffer->state.pass->subpass_flushes[0];
2510 }
2511
2512 void genX(CmdNextSubpass)(
2513 VkCommandBuffer commandBuffer,
2514 VkSubpassContents contents)
2515 {
2516 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2517
2518 if (anv_batch_has_error(&cmd_buffer->batch))
2519 return;
2520
2521 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
2522
2523 anv_cmd_buffer_resolve_subpass(cmd_buffer);
2524
2525 /* Perform transitions to the final layout after all writes have occurred.
2526 */
2527 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
2528
2529 genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
2530
2531 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
2532 cmd_buffer->state.pending_pipe_bits |=
2533 cmd_buffer->state.pass->subpass_flushes[subpass_id];
2534 }
2535
2536 void genX(CmdEndRenderPass)(
2537 VkCommandBuffer commandBuffer)
2538 {
2539 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2540
2541 if (anv_batch_has_error(&cmd_buffer->batch))
2542 return;
2543
2544 anv_cmd_buffer_resolve_subpass(cmd_buffer);
2545
2546 /* Perform transitions to the final layout after all writes have occurred.
2547 */
2548 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
2549
2550 cmd_buffer->state.pending_pipe_bits |=
2551 cmd_buffer->state.pass->subpass_flushes[cmd_buffer->state.pass->subpass_count];
2552
2553 cmd_buffer->state.hiz_enabled = false;
2554
2555 #ifndef NDEBUG
2556 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
2557 #endif
2558
2559 /* Remove references to render pass specific state. This enables us to
2560 * detect whether or not we're in a renderpass.
2561 */
2562 cmd_buffer->state.framebuffer = NULL;
2563 cmd_buffer->state.pass = NULL;
2564 cmd_buffer->state.subpass = NULL;
2565 }