anv: Remove redundant check in flush_descriptor_sets() helpers
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30 #include "util/fast_idiv_by_const.h"
31
32 #include "common/gen_aux_map.h"
33 #include "common/gen_l3_config.h"
34 #include "genxml/gen_macros.h"
35 #include "genxml/genX_pack.h"
36
37 /* We reserve GPR 14 and 15 for conditional rendering */
38 #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
39 #define __gen_get_batch_dwords anv_batch_emit_dwords
40 #define __gen_address_offset anv_address_add
41 #include "common/gen_mi_builder.h"
42
43 static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
44 uint32_t pipeline);
45
46 static void
47 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
48 {
49 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
50 lri.RegisterOffset = reg;
51 lri.DataDWord = imm;
52 }
53 }
54
55 void
56 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
57 {
58 struct anv_device *device = cmd_buffer->device;
59 UNUSED const struct gen_device_info *devinfo = &device->info;
60 uint32_t mocs = device->isl_dev.mocs.internal;
61
62 /* If we are emitting a new state base address we probably need to re-emit
63 * binding tables.
64 */
65 cmd_buffer->state.descriptors_dirty |= ~0;
66
67 /* Emit a render target cache flush.
68 *
69 * This isn't documented anywhere in the PRM. However, it seems to be
70 * necessary prior to changing the surface state base adress. Without
71 * this, we get GPU hangs when using multi-level command buffers which
72 * clear depth, reset state base address, and then go render stuff.
73 */
74 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
75 pc.DCFlushEnable = true;
76 pc.RenderTargetCacheFlushEnable = true;
77 pc.CommandStreamerStallEnable = true;
78 #if GEN_GEN >= 12
79 pc.TileCacheFlushEnable = true;
80 #endif
81 #if GEN_GEN == 12
82 /* GEN:BUG:1606662791:
83 *
84 * Software must program PIPE_CONTROL command with "HDC Pipeline
85 * Flush" prior to programming of the below two non-pipeline state :
86 * * STATE_BASE_ADDRESS
87 * * 3DSTATE_BINDING_TABLE_POOL_ALLOC
88 */
89 if (devinfo->revision == 0 /* A0 */)
90 pc.HDCPipelineFlushEnable = true;
91 #endif
92 }
93
94 #if GEN_GEN == 12
95 /* GEN:BUG:1607854226:
96 *
97 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
98 * mode by putting the pipeline temporarily in 3D mode.
99 */
100 uint32_t gen12_wa_pipeline = cmd_buffer->state.current_pipeline;
101 genX(flush_pipeline_select_3d)(cmd_buffer);
102 #endif
103
104 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
105 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
106 sba.GeneralStateMOCS = mocs;
107 sba.GeneralStateBaseAddressModifyEnable = true;
108
109 sba.StatelessDataPortAccessMOCS = mocs;
110
111 sba.SurfaceStateBaseAddress =
112 anv_cmd_buffer_surface_base_address(cmd_buffer);
113 sba.SurfaceStateMOCS = mocs;
114 sba.SurfaceStateBaseAddressModifyEnable = true;
115
116 sba.DynamicStateBaseAddress =
117 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
118 sba.DynamicStateMOCS = mocs;
119 sba.DynamicStateBaseAddressModifyEnable = true;
120
121 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
122 sba.IndirectObjectMOCS = mocs;
123 sba.IndirectObjectBaseAddressModifyEnable = true;
124
125 sba.InstructionBaseAddress =
126 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
127 sba.InstructionMOCS = mocs;
128 sba.InstructionBaseAddressModifyEnable = true;
129
130 # if (GEN_GEN >= 8)
131 /* Broadwell requires that we specify a buffer size for a bunch of
132 * these fields. However, since we will be growing the BO's live, we
133 * just set them all to the maximum.
134 */
135 sba.GeneralStateBufferSize = 0xfffff;
136 sba.IndirectObjectBufferSize = 0xfffff;
137 if (device->physical->use_softpin) {
138 /* With softpin, we use fixed addresses so we actually know how big
139 * our base addresses are.
140 */
141 sba.DynamicStateBufferSize = DYNAMIC_STATE_POOL_SIZE / 4096;
142 sba.InstructionBufferSize = INSTRUCTION_STATE_POOL_SIZE / 4096;
143 } else {
144 sba.DynamicStateBufferSize = 0xfffff;
145 sba.InstructionBufferSize = 0xfffff;
146 }
147 sba.GeneralStateBufferSizeModifyEnable = true;
148 sba.IndirectObjectBufferSizeModifyEnable = true;
149 sba.DynamicStateBufferSizeModifyEnable = true;
150 sba.InstructionBuffersizeModifyEnable = true;
151 # else
152 /* On gen7, we have upper bounds instead. According to the docs,
153 * setting an upper bound of zero means that no bounds checking is
154 * performed so, in theory, we should be able to leave them zero.
155 * However, border color is broken and the GPU bounds-checks anyway.
156 * To avoid this and other potential problems, we may as well set it
157 * for everything.
158 */
159 sba.GeneralStateAccessUpperBound =
160 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
161 sba.GeneralStateAccessUpperBoundModifyEnable = true;
162 sba.DynamicStateAccessUpperBound =
163 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
164 sba.DynamicStateAccessUpperBoundModifyEnable = true;
165 sba.InstructionAccessUpperBound =
166 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
167 sba.InstructionAccessUpperBoundModifyEnable = true;
168 # endif
169 # if (GEN_GEN >= 9)
170 if (cmd_buffer->device->physical->use_softpin) {
171 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
172 .bo = device->surface_state_pool.block_pool.bo,
173 .offset = 0,
174 };
175 sba.BindlessSurfaceStateSize = (1 << 20) - 1;
176 } else {
177 sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
178 sba.BindlessSurfaceStateSize = 0;
179 }
180 sba.BindlessSurfaceStateMOCS = mocs;
181 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
182 # endif
183 # if (GEN_GEN >= 10)
184 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
185 sba.BindlessSamplerStateMOCS = mocs;
186 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
187 sba.BindlessSamplerStateBufferSize = 0;
188 # endif
189 }
190
191 #if GEN_GEN == 12
192 /* GEN:BUG:1607854226:
193 *
194 * Put the pipeline back into its current mode.
195 */
196 if (gen12_wa_pipeline != UINT32_MAX)
197 genX(flush_pipeline_select)(cmd_buffer, gen12_wa_pipeline);
198 #endif
199
200 /* After re-setting the surface state base address, we have to do some
201 * cache flusing so that the sampler engine will pick up the new
202 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
203 * Shared Function > 3D Sampler > State > State Caching (page 96):
204 *
205 * Coherency with system memory in the state cache, like the texture
206 * cache is handled partially by software. It is expected that the
207 * command stream or shader will issue Cache Flush operation or
208 * Cache_Flush sampler message to ensure that the L1 cache remains
209 * coherent with system memory.
210 *
211 * [...]
212 *
213 * Whenever the value of the Dynamic_State_Base_Addr,
214 * Surface_State_Base_Addr are altered, the L1 state cache must be
215 * invalidated to ensure the new surface or sampler state is fetched
216 * from system memory.
217 *
218 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
219 * which, according the PIPE_CONTROL instruction documentation in the
220 * Broadwell PRM:
221 *
222 * Setting this bit is independent of any other bit in this packet.
223 * This bit controls the invalidation of the L1 and L2 state caches
224 * at the top of the pipe i.e. at the parsing time.
225 *
226 * Unfortunately, experimentation seems to indicate that state cache
227 * invalidation through a PIPE_CONTROL does nothing whatsoever in
228 * regards to surface state and binding tables. In stead, it seems that
229 * invalidating the texture cache is what is actually needed.
230 *
231 * XXX: As far as we have been able to determine through
232 * experimentation, shows that flush the texture cache appears to be
233 * sufficient. The theory here is that all of the sampling/rendering
234 * units cache the binding table in the texture cache. However, we have
235 * yet to be able to actually confirm this.
236 */
237 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
238 pc.TextureCacheInvalidationEnable = true;
239 pc.ConstantCacheInvalidationEnable = true;
240 pc.StateCacheInvalidationEnable = true;
241 }
242 }
243
244 static void
245 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
246 struct anv_state state, struct anv_address addr)
247 {
248 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
249
250 VkResult result =
251 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
252 state.offset + isl_dev->ss.addr_offset,
253 addr.bo, addr.offset, NULL);
254 if (result != VK_SUCCESS)
255 anv_batch_set_error(&cmd_buffer->batch, result);
256 }
257
258 static void
259 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
260 struct anv_surface_state state)
261 {
262 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
263
264 assert(!anv_address_is_null(state.address));
265 add_surface_reloc(cmd_buffer, state.state, state.address);
266
267 if (!anv_address_is_null(state.aux_address)) {
268 VkResult result =
269 anv_reloc_list_add(&cmd_buffer->surface_relocs,
270 &cmd_buffer->pool->alloc,
271 state.state.offset + isl_dev->ss.aux_addr_offset,
272 state.aux_address.bo,
273 state.aux_address.offset,
274 NULL);
275 if (result != VK_SUCCESS)
276 anv_batch_set_error(&cmd_buffer->batch, result);
277 }
278
279 if (!anv_address_is_null(state.clear_address)) {
280 VkResult result =
281 anv_reloc_list_add(&cmd_buffer->surface_relocs,
282 &cmd_buffer->pool->alloc,
283 state.state.offset +
284 isl_dev->ss.clear_color_state_offset,
285 state.clear_address.bo,
286 state.clear_address.offset,
287 NULL);
288 if (result != VK_SUCCESS)
289 anv_batch_set_error(&cmd_buffer->batch, result);
290 }
291 }
292
293 static void
294 color_attachment_compute_aux_usage(struct anv_device * device,
295 struct anv_cmd_state * cmd_state,
296 uint32_t att, VkRect2D render_area,
297 union isl_color_value *fast_clear_color)
298 {
299 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
300 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
301
302 assert(iview->n_planes == 1);
303
304 if (iview->planes[0].isl.base_array_layer >=
305 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
306 iview->planes[0].isl.base_level)) {
307 /* There is no aux buffer which corresponds to the level and layer(s)
308 * being accessed.
309 */
310 att_state->aux_usage = ISL_AUX_USAGE_NONE;
311 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
312 att_state->fast_clear = false;
313 return;
314 }
315
316 att_state->aux_usage =
317 anv_layout_to_aux_usage(&device->info, iview->image,
318 VK_IMAGE_ASPECT_COLOR_BIT,
319 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
320 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
321
322 /* If we don't have aux, then we should have returned early in the layer
323 * check above. If we got here, we must have something.
324 */
325 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
326
327 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
328 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
329 att_state->input_aux_usage = att_state->aux_usage;
330 } else {
331 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
332 *
333 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
334 * setting is only allowed if Surface Format supported for Fast
335 * Clear. In addition, if the surface is bound to the sampling
336 * engine, Surface Format must be supported for Render Target
337 * Compression for surfaces bound to the sampling engine."
338 *
339 * In other words, we can only sample from a fast-cleared image if it
340 * also supports color compression.
341 */
342 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format) &&
343 isl_format_supports_ccs_d(&device->info, iview->planes[0].isl.format)) {
344 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
345
346 /* While fast-clear resolves and partial resolves are fairly cheap in the
347 * case where you render to most of the pixels, full resolves are not
348 * because they potentially involve reading and writing the entire
349 * framebuffer. If we can't texture with CCS_E, we should leave it off and
350 * limit ourselves to fast clears.
351 */
352 if (cmd_state->pass->attachments[att].first_subpass_layout ==
353 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
354 anv_perf_warn(device, iview->image,
355 "Not temporarily enabling CCS_E.");
356 }
357 } else {
358 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
359 }
360 }
361
362 assert(iview->image->planes[0].aux_surface.isl.usage &
363 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
364
365 union isl_color_value clear_color = {};
366 anv_clear_color_from_att_state(&clear_color, att_state, iview);
367
368 att_state->clear_color_is_zero_one =
369 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
370 att_state->clear_color_is_zero =
371 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
372
373 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
374 /* Start by getting the fast clear type. We use the first subpass
375 * layout here because we don't want to fast-clear if the first subpass
376 * to use the attachment can't handle fast-clears.
377 */
378 enum anv_fast_clear_type fast_clear_type =
379 anv_layout_to_fast_clear_type(&device->info, iview->image,
380 VK_IMAGE_ASPECT_COLOR_BIT,
381 cmd_state->pass->attachments[att].first_subpass_layout);
382 switch (fast_clear_type) {
383 case ANV_FAST_CLEAR_NONE:
384 att_state->fast_clear = false;
385 break;
386 case ANV_FAST_CLEAR_DEFAULT_VALUE:
387 att_state->fast_clear = att_state->clear_color_is_zero;
388 break;
389 case ANV_FAST_CLEAR_ANY:
390 att_state->fast_clear = true;
391 break;
392 }
393
394 /* Potentially, we could do partial fast-clears but doing so has crazy
395 * alignment restrictions. It's easier to just restrict to full size
396 * fast clears for now.
397 */
398 if (render_area.offset.x != 0 ||
399 render_area.offset.y != 0 ||
400 render_area.extent.width != iview->extent.width ||
401 render_area.extent.height != iview->extent.height)
402 att_state->fast_clear = false;
403
404 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
405 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
406 att_state->fast_clear = false;
407
408 /* We only allow fast clears to the first slice of an image (level 0,
409 * layer 0) and only for the entire slice. This guarantees us that, at
410 * any given time, there is only one clear color on any given image at
411 * any given time. At the time of our testing (Jan 17, 2018), there
412 * were no known applications which would benefit from fast-clearing
413 * more than just the first slice.
414 */
415 if (att_state->fast_clear &&
416 (iview->planes[0].isl.base_level > 0 ||
417 iview->planes[0].isl.base_array_layer > 0)) {
418 anv_perf_warn(device, iview->image,
419 "Rendering with multi-lod or multi-layer framebuffer "
420 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
421 "baseArrayLayer > 0. Not fast clearing.");
422 att_state->fast_clear = false;
423 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
424 anv_perf_warn(device, iview->image,
425 "Rendering to a multi-layer framebuffer with "
426 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
427 }
428
429 if (att_state->fast_clear)
430 *fast_clear_color = clear_color;
431 } else {
432 att_state->fast_clear = false;
433 }
434 }
435
436 static void
437 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
438 struct anv_cmd_state *cmd_state,
439 uint32_t att, VkRect2D render_area)
440 {
441 struct anv_render_pass_attachment *pass_att =
442 &cmd_state->pass->attachments[att];
443 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
444 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
445
446 /* These will be initialized after the first subpass transition. */
447 att_state->aux_usage = ISL_AUX_USAGE_NONE;
448 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
449
450 /* This is unused for depth/stencil but valgrind complains if it
451 * isn't initialized
452 */
453 att_state->clear_color_is_zero_one = false;
454
455 if (GEN_GEN == 7) {
456 /* We don't do any HiZ or depth fast-clears on gen7 yet */
457 att_state->fast_clear = false;
458 return;
459 }
460
461 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
462 /* If we're just clearing stencil, we can always HiZ clear */
463 att_state->fast_clear = true;
464 return;
465 }
466
467 /* Default to false for now */
468 att_state->fast_clear = false;
469
470 /* We must have depth in order to have HiZ */
471 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
472 return;
473
474 const enum isl_aux_usage first_subpass_aux_usage =
475 anv_layout_to_aux_usage(&device->info, iview->image,
476 VK_IMAGE_ASPECT_DEPTH_BIT,
477 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
478 pass_att->first_subpass_layout);
479 if (!blorp_can_hiz_clear_depth(&device->info,
480 &iview->image->planes[0].surface.isl,
481 first_subpass_aux_usage,
482 iview->planes[0].isl.base_level,
483 iview->planes[0].isl.base_array_layer,
484 render_area.offset.x,
485 render_area.offset.y,
486 render_area.offset.x +
487 render_area.extent.width,
488 render_area.offset.y +
489 render_area.extent.height))
490 return;
491
492 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
493 return;
494
495 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
496 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
497 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
498 * only supports returning 0.0f. Gens prior to gen8 do not support this
499 * feature at all.
500 */
501 return;
502 }
503
504 /* If we got here, then we can fast clear */
505 att_state->fast_clear = true;
506 }
507
508 static bool
509 need_input_attachment_state(const struct anv_render_pass_attachment *att)
510 {
511 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
512 return false;
513
514 /* We only allocate input attachment states for color surfaces. Compression
515 * is not yet enabled for depth textures and stencil doesn't allow
516 * compression so we can just use the texture surface state from the view.
517 */
518 return vk_format_is_color(att->format);
519 }
520
521 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
522 * the initial layout is undefined, the HiZ buffer and depth buffer will
523 * represent the same data at the end of this operation.
524 */
525 static void
526 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
527 const struct anv_image *image,
528 VkImageLayout initial_layout,
529 VkImageLayout final_layout)
530 {
531 uint32_t depth_plane =
532 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
533 if (image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_NONE)
534 return;
535
536 const enum isl_aux_state initial_state =
537 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
538 VK_IMAGE_ASPECT_DEPTH_BIT,
539 initial_layout);
540 const enum isl_aux_state final_state =
541 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
542 VK_IMAGE_ASPECT_DEPTH_BIT,
543 final_layout);
544
545 const bool initial_depth_valid =
546 isl_aux_state_has_valid_primary(initial_state);
547 const bool initial_hiz_valid =
548 isl_aux_state_has_valid_aux(initial_state);
549 const bool final_needs_depth =
550 isl_aux_state_has_valid_primary(final_state);
551 const bool final_needs_hiz =
552 isl_aux_state_has_valid_aux(final_state);
553
554 /* Getting into the pass-through state for Depth is tricky and involves
555 * both a resolve and an ambiguate. We don't handle that state right now
556 * as anv_layout_to_aux_state never returns it.
557 */
558 assert(final_state != ISL_AUX_STATE_PASS_THROUGH);
559
560 if (final_needs_depth && !initial_depth_valid) {
561 assert(initial_hiz_valid);
562 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
563 0, 0, 1, ISL_AUX_OP_FULL_RESOLVE);
564 } else if (final_needs_hiz && !initial_hiz_valid) {
565 assert(initial_depth_valid);
566 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
567 0, 0, 1, ISL_AUX_OP_AMBIGUATE);
568 }
569 }
570
571 static inline bool
572 vk_image_layout_stencil_write_optimal(VkImageLayout layout)
573 {
574 return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
575 layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
576 layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
577 }
578
579 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
580 * the initial layout is undefined, the HiZ buffer and depth buffer will
581 * represent the same data at the end of this operation.
582 */
583 static void
584 transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
585 const struct anv_image *image,
586 uint32_t base_level, uint32_t level_count,
587 uint32_t base_layer, uint32_t layer_count,
588 VkImageLayout initial_layout,
589 VkImageLayout final_layout)
590 {
591 #if GEN_GEN == 7
592 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
593 VK_IMAGE_ASPECT_STENCIL_BIT);
594
595 /* On gen7, we have to store a texturable version of the stencil buffer in
596 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
597 * forth at strategic points. Stencil writes are only allowed in following
598 * layouts:
599 *
600 * - VK_IMAGE_LAYOUT_GENERAL
601 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
602 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
603 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
604 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
605 *
606 * For general, we have no nice opportunity to transition so we do the copy
607 * to the shadow unconditionally at the end of the subpass. For transfer
608 * destinations, we can update it as part of the transfer op. For the other
609 * layouts, we delay the copy until a transition into some other layout.
610 */
611 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
612 vk_image_layout_stencil_write_optimal(initial_layout) &&
613 !vk_image_layout_stencil_write_optimal(final_layout)) {
614 anv_image_copy_to_shadow(cmd_buffer, image,
615 VK_IMAGE_ASPECT_STENCIL_BIT,
616 base_level, level_count,
617 base_layer, layer_count);
618 }
619 #endif /* GEN_GEN == 7 */
620 }
621
622 #define MI_PREDICATE_SRC0 0x2400
623 #define MI_PREDICATE_SRC1 0x2408
624 #define MI_PREDICATE_RESULT 0x2418
625
626 static void
627 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
628 const struct anv_image *image,
629 VkImageAspectFlagBits aspect,
630 uint32_t level,
631 uint32_t base_layer, uint32_t layer_count,
632 bool compressed)
633 {
634 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
635
636 /* We only have compression tracking for CCS_E */
637 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
638 return;
639
640 for (uint32_t a = 0; a < layer_count; a++) {
641 uint32_t layer = base_layer + a;
642 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
643 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
644 image, aspect,
645 level, layer);
646 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
647 }
648 }
649 }
650
651 static void
652 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
653 const struct anv_image *image,
654 VkImageAspectFlagBits aspect,
655 enum anv_fast_clear_type fast_clear)
656 {
657 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
658 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
659 image, aspect);
660 sdi.ImmediateData = fast_clear;
661 }
662
663 /* Whenever we have fast-clear, we consider that slice to be compressed.
664 * This makes building predicates much easier.
665 */
666 if (fast_clear != ANV_FAST_CLEAR_NONE)
667 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
668 }
669
670 /* This is only really practical on haswell and above because it requires
671 * MI math in order to get it correct.
672 */
673 #if GEN_GEN >= 8 || GEN_IS_HASWELL
674 static void
675 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
676 const struct anv_image *image,
677 VkImageAspectFlagBits aspect,
678 uint32_t level, uint32_t array_layer,
679 enum isl_aux_op resolve_op,
680 enum anv_fast_clear_type fast_clear_supported)
681 {
682 struct gen_mi_builder b;
683 gen_mi_builder_init(&b, &cmd_buffer->batch);
684
685 const struct gen_mi_value fast_clear_type =
686 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
687 image, aspect));
688
689 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
690 /* In this case, we're doing a full resolve which means we want the
691 * resolve to happen if any compression (including fast-clears) is
692 * present.
693 *
694 * In order to simplify the logic a bit, we make the assumption that,
695 * if the first slice has been fast-cleared, it is also marked as
696 * compressed. See also set_image_fast_clear_state.
697 */
698 const struct gen_mi_value compression_state =
699 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
700 image, aspect,
701 level, array_layer));
702 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
703 compression_state);
704 gen_mi_store(&b, compression_state, gen_mi_imm(0));
705
706 if (level == 0 && array_layer == 0) {
707 /* If the predicate is true, we want to write 0 to the fast clear type
708 * and, if it's false, leave it alone. We can do this by writing
709 *
710 * clear_type = clear_type & ~predicate;
711 */
712 struct gen_mi_value new_fast_clear_type =
713 gen_mi_iand(&b, fast_clear_type,
714 gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0)));
715 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
716 }
717 } else if (level == 0 && array_layer == 0) {
718 /* In this case, we are doing a partial resolve to get rid of fast-clear
719 * colors. We don't care about the compression state but we do care
720 * about how much fast clear is allowed by the final layout.
721 */
722 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
723 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
724
725 /* We need to compute (fast_clear_supported < image->fast_clear) */
726 struct gen_mi_value pred =
727 gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type);
728 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
729 gen_mi_value_ref(&b, pred));
730
731 /* If the predicate is true, we want to write 0 to the fast clear type
732 * and, if it's false, leave it alone. We can do this by writing
733 *
734 * clear_type = clear_type & ~predicate;
735 */
736 struct gen_mi_value new_fast_clear_type =
737 gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred));
738 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
739 } else {
740 /* In this case, we're trying to do a partial resolve on a slice that
741 * doesn't have clear color. There's nothing to do.
742 */
743 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
744 return;
745 }
746
747 /* Set src1 to 0 and use a != condition */
748 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
749
750 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
751 mip.LoadOperation = LOAD_LOADINV;
752 mip.CombineOperation = COMBINE_SET;
753 mip.CompareOperation = COMPARE_SRCS_EQUAL;
754 }
755 }
756 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
757
758 #if GEN_GEN <= 8
759 static void
760 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
761 const struct anv_image *image,
762 VkImageAspectFlagBits aspect,
763 uint32_t level, uint32_t array_layer,
764 enum isl_aux_op resolve_op,
765 enum anv_fast_clear_type fast_clear_supported)
766 {
767 struct gen_mi_builder b;
768 gen_mi_builder_init(&b, &cmd_buffer->batch);
769
770 struct gen_mi_value fast_clear_type_mem =
771 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
772 image, aspect));
773
774 /* This only works for partial resolves and only when the clear color is
775 * all or nothing. On the upside, this emits less command streamer code
776 * and works on Ivybridge and Bay Trail.
777 */
778 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
779 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
780
781 /* We don't support fast clears on anything other than the first slice. */
782 if (level > 0 || array_layer > 0)
783 return;
784
785 /* On gen8, we don't have a concept of default clear colors because we
786 * can't sample from CCS surfaces. It's enough to just load the fast clear
787 * state into the predicate register.
788 */
789 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
790 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
791 gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0));
792
793 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
794 mip.LoadOperation = LOAD_LOADINV;
795 mip.CombineOperation = COMBINE_SET;
796 mip.CompareOperation = COMPARE_SRCS_EQUAL;
797 }
798 }
799 #endif /* GEN_GEN <= 8 */
800
801 static void
802 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
803 const struct anv_image *image,
804 enum isl_format format,
805 VkImageAspectFlagBits aspect,
806 uint32_t level, uint32_t array_layer,
807 enum isl_aux_op resolve_op,
808 enum anv_fast_clear_type fast_clear_supported)
809 {
810 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
811
812 #if GEN_GEN >= 9
813 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
814 aspect, level, array_layer,
815 resolve_op, fast_clear_supported);
816 #else /* GEN_GEN <= 8 */
817 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
818 aspect, level, array_layer,
819 resolve_op, fast_clear_supported);
820 #endif
821
822 /* CCS_D only supports full resolves and BLORP will assert on us if we try
823 * to do a partial resolve on a CCS_D surface.
824 */
825 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
826 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D)
827 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
828
829 anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
830 array_layer, 1, resolve_op, NULL, true);
831 }
832
833 static void
834 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
835 const struct anv_image *image,
836 enum isl_format format,
837 VkImageAspectFlagBits aspect,
838 uint32_t array_layer,
839 enum isl_aux_op resolve_op,
840 enum anv_fast_clear_type fast_clear_supported)
841 {
842 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
843 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
844
845 #if GEN_GEN >= 8 || GEN_IS_HASWELL
846 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
847 aspect, 0, array_layer,
848 resolve_op, fast_clear_supported);
849
850 anv_image_mcs_op(cmd_buffer, image, format, aspect,
851 array_layer, 1, resolve_op, NULL, true);
852 #else
853 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
854 #endif
855 }
856
857 void
858 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
859 const struct anv_image *image,
860 VkImageAspectFlagBits aspect,
861 enum isl_aux_usage aux_usage,
862 uint32_t level,
863 uint32_t base_layer,
864 uint32_t layer_count)
865 {
866 /* The aspect must be exactly one of the image aspects. */
867 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
868
869 /* The only compression types with more than just fast-clears are MCS,
870 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
871 * track the current fast-clear and compression state. This leaves us
872 * with just MCS and CCS_E.
873 */
874 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
875 aux_usage != ISL_AUX_USAGE_MCS)
876 return;
877
878 set_image_compressed_bit(cmd_buffer, image, aspect,
879 level, base_layer, layer_count, true);
880 }
881
882 static void
883 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
884 const struct anv_image *image,
885 VkImageAspectFlagBits aspect)
886 {
887 assert(cmd_buffer && image);
888 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
889
890 set_image_fast_clear_state(cmd_buffer, image, aspect,
891 ANV_FAST_CLEAR_NONE);
892
893 /* Initialize the struct fields that are accessed for fast-clears so that
894 * the HW restrictions on the field values are satisfied.
895 */
896 struct anv_address addr =
897 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
898
899 if (GEN_GEN >= 9) {
900 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
901 const unsigned num_dwords = GEN_GEN >= 10 ?
902 isl_dev->ss.clear_color_state_size / 4 :
903 isl_dev->ss.clear_value_size / 4;
904 for (unsigned i = 0; i < num_dwords; i++) {
905 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
906 sdi.Address = addr;
907 sdi.Address.offset += i * 4;
908 sdi.ImmediateData = 0;
909 }
910 }
911 } else {
912 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
913 sdi.Address = addr;
914 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
915 /* Pre-SKL, the dword containing the clear values also contains
916 * other fields, so we need to initialize those fields to match the
917 * values that would be in a color attachment.
918 */
919 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
920 ISL_CHANNEL_SELECT_GREEN << 22 |
921 ISL_CHANNEL_SELECT_BLUE << 19 |
922 ISL_CHANNEL_SELECT_ALPHA << 16;
923 } else if (GEN_GEN == 7) {
924 /* On IVB, the dword containing the clear values also contains
925 * other fields that must be zero or can be zero.
926 */
927 sdi.ImmediateData = 0;
928 }
929 }
930 }
931 }
932
933 /* Copy the fast-clear value dword(s) between a surface state object and an
934 * image's fast clear state buffer.
935 */
936 static void
937 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
938 struct anv_state surface_state,
939 const struct anv_image *image,
940 VkImageAspectFlagBits aspect,
941 bool copy_from_surface_state)
942 {
943 assert(cmd_buffer && image);
944 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
945
946 struct anv_address ss_clear_addr = {
947 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
948 .offset = surface_state.offset +
949 cmd_buffer->device->isl_dev.ss.clear_value_offset,
950 };
951 const struct anv_address entry_addr =
952 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
953 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
954
955 #if GEN_GEN == 7
956 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
957 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
958 * in-flight when they are issued even if the memory touched is not
959 * currently active for rendering. The weird bit is that it is not the
960 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
961 * rendering hangs such that the next stalling command after the
962 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
963 *
964 * It is unclear exactly why this hang occurs. Both MI commands come with
965 * warnings about the 3D pipeline but that doesn't seem to fully explain
966 * it. My (Jason's) best theory is that it has something to do with the
967 * fact that we're using a GPU state register as our temporary and that
968 * something with reading/writing it is causing problems.
969 *
970 * In order to work around this issue, we emit a PIPE_CONTROL with the
971 * command streamer stall bit set.
972 */
973 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
974 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
975 #endif
976
977 struct gen_mi_builder b;
978 gen_mi_builder_init(&b, &cmd_buffer->batch);
979
980 if (copy_from_surface_state) {
981 gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
982 } else {
983 gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
984
985 /* Updating a surface state object may require that the state cache be
986 * invalidated. From the SKL PRM, Shared Functions -> State -> State
987 * Caching:
988 *
989 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
990 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
991 * modified [...], the L1 state cache must be invalidated to ensure
992 * the new surface or sampler state is fetched from system memory.
993 *
994 * In testing, SKL doesn't actually seem to need this, but HSW does.
995 */
996 cmd_buffer->state.pending_pipe_bits |=
997 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
998 }
999 }
1000
1001 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
1002
1003 #if GEN_GEN == 12
1004 static void
1005 anv_image_init_aux_tt(struct anv_cmd_buffer *cmd_buffer,
1006 const struct anv_image *image,
1007 VkImageAspectFlagBits aspect,
1008 uint32_t base_level, uint32_t level_count,
1009 uint32_t base_layer, uint32_t layer_count)
1010 {
1011 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1012
1013 uint64_t base_address =
1014 anv_address_physical(image->planes[plane].address);
1015
1016 const struct isl_surf *isl_surf = &image->planes[plane].surface.isl;
1017 uint64_t format_bits = gen_aux_map_format_bits_for_isl_surf(isl_surf);
1018
1019 /* We're about to live-update the AUX-TT. We really don't want anyone else
1020 * trying to read it while we're doing this. We could probably get away
1021 * with not having this stall in some cases if we were really careful but
1022 * it's better to play it safe. Full stall the GPU.
1023 */
1024 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1025 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1026
1027 struct gen_mi_builder b;
1028 gen_mi_builder_init(&b, &cmd_buffer->batch);
1029
1030 for (uint32_t a = 0; a < layer_count; a++) {
1031 const uint32_t layer = base_layer + a;
1032
1033 uint64_t start_offset_B = UINT64_MAX, end_offset_B = 0;
1034 for (uint32_t l = 0; l < level_count; l++) {
1035 const uint32_t level = base_level + l;
1036
1037 uint32_t logical_array_layer, logical_z_offset_px;
1038 if (image->type == VK_IMAGE_TYPE_3D) {
1039 logical_array_layer = 0;
1040
1041 /* If the given miplevel does not have this layer, then any higher
1042 * miplevels won't either because miplevels only get smaller the
1043 * higher the LOD.
1044 */
1045 assert(layer < image->extent.depth);
1046 if (layer >= anv_minify(image->extent.depth, level))
1047 break;
1048 logical_z_offset_px = layer;
1049 } else {
1050 assert(layer < image->array_size);
1051 logical_array_layer = layer;
1052 logical_z_offset_px = 0;
1053 }
1054
1055 uint32_t slice_start_offset_B, slice_end_offset_B;
1056 isl_surf_get_image_range_B_tile(isl_surf, level,
1057 logical_array_layer,
1058 logical_z_offset_px,
1059 &slice_start_offset_B,
1060 &slice_end_offset_B);
1061
1062 start_offset_B = MIN2(start_offset_B, slice_start_offset_B);
1063 end_offset_B = MAX2(end_offset_B, slice_end_offset_B);
1064 }
1065
1066 /* Aux operates 64K at a time */
1067 start_offset_B = align_down_u64(start_offset_B, 64 * 1024);
1068 end_offset_B = align_u64(end_offset_B, 64 * 1024);
1069
1070 for (uint64_t offset = start_offset_B;
1071 offset < end_offset_B; offset += 64 * 1024) {
1072 uint64_t address = base_address + offset;
1073
1074 uint64_t aux_entry_addr64, *aux_entry_map;
1075 aux_entry_map = gen_aux_map_get_entry(cmd_buffer->device->aux_map_ctx,
1076 address, &aux_entry_addr64);
1077
1078 assert(cmd_buffer->device->physical->use_softpin);
1079 struct anv_address aux_entry_address = {
1080 .bo = NULL,
1081 .offset = aux_entry_addr64,
1082 };
1083
1084 const uint64_t old_aux_entry = READ_ONCE(*aux_entry_map);
1085 uint64_t new_aux_entry =
1086 (old_aux_entry & GEN_AUX_MAP_ADDRESS_MASK) | format_bits;
1087
1088 if (isl_aux_usage_has_ccs(image->planes[plane].aux_usage))
1089 new_aux_entry |= GEN_AUX_MAP_ENTRY_VALID_BIT;
1090
1091 gen_mi_store(&b, gen_mi_mem64(aux_entry_address),
1092 gen_mi_imm(new_aux_entry));
1093 }
1094 }
1095
1096 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1097 }
1098 #endif /* GEN_GEN == 12 */
1099
1100 /**
1101 * @brief Transitions a color buffer from one layout to another.
1102 *
1103 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
1104 * more information.
1105 *
1106 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
1107 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
1108 * this represents the maximum layers to transition at each
1109 * specified miplevel.
1110 */
1111 static void
1112 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
1113 const struct anv_image *image,
1114 VkImageAspectFlagBits aspect,
1115 const uint32_t base_level, uint32_t level_count,
1116 uint32_t base_layer, uint32_t layer_count,
1117 VkImageLayout initial_layout,
1118 VkImageLayout final_layout)
1119 {
1120 struct anv_device *device = cmd_buffer->device;
1121 const struct gen_device_info *devinfo = &device->info;
1122 /* Validate the inputs. */
1123 assert(cmd_buffer);
1124 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1125 /* These values aren't supported for simplicity's sake. */
1126 assert(level_count != VK_REMAINING_MIP_LEVELS &&
1127 layer_count != VK_REMAINING_ARRAY_LAYERS);
1128 /* Ensure the subresource range is valid. */
1129 UNUSED uint64_t last_level_num = base_level + level_count;
1130 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
1131 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
1132 assert((uint64_t)base_layer + layer_count <= image_layers);
1133 assert(last_level_num <= image->levels);
1134 /* The spec disallows these final layouts. */
1135 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
1136 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
1137
1138 /* No work is necessary if the layout stays the same or if this subresource
1139 * range lacks auxiliary data.
1140 */
1141 if (initial_layout == final_layout)
1142 return;
1143
1144 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1145
1146 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1147 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
1148 /* This surface is a linear compressed image with a tiled shadow surface
1149 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
1150 * we need to ensure the shadow copy is up-to-date.
1151 */
1152 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1153 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
1154 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1155 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
1156 assert(plane == 0);
1157 anv_image_copy_to_shadow(cmd_buffer, image,
1158 VK_IMAGE_ASPECT_COLOR_BIT,
1159 base_level, level_count,
1160 base_layer, layer_count);
1161 }
1162
1163 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
1164 return;
1165
1166 assert(image->planes[plane].surface.isl.tiling != ISL_TILING_LINEAR);
1167
1168 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
1169 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
1170 #if GEN_GEN == 12
1171 if (device->physical->has_implicit_ccs && devinfo->has_aux_map) {
1172 anv_image_init_aux_tt(cmd_buffer, image, aspect,
1173 base_level, level_count,
1174 base_layer, layer_count);
1175 }
1176 #else
1177 assert(!(device->physical->has_implicit_ccs && devinfo->has_aux_map));
1178 #endif
1179
1180 /* A subresource in the undefined layout may have been aliased and
1181 * populated with any arrangement of bits. Therefore, we must initialize
1182 * the related aux buffer and clear buffer entry with desirable values.
1183 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
1184 * images with VK_IMAGE_TILING_OPTIMAL.
1185 *
1186 * Initialize the relevant clear buffer entries.
1187 */
1188 if (base_level == 0 && base_layer == 0)
1189 init_fast_clear_color(cmd_buffer, image, aspect);
1190
1191 /* Initialize the aux buffers to enable correct rendering. In order to
1192 * ensure that things such as storage images work correctly, aux buffers
1193 * need to be initialized to valid data.
1194 *
1195 * Having an aux buffer with invalid data is a problem for two reasons:
1196 *
1197 * 1) Having an invalid value in the buffer can confuse the hardware.
1198 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1199 * invalid and leads to the hardware doing strange things. It
1200 * doesn't hang as far as we can tell but rendering corruption can
1201 * occur.
1202 *
1203 * 2) If this transition is into the GENERAL layout and we then use the
1204 * image as a storage image, then we must have the aux buffer in the
1205 * pass-through state so that, if we then go to texture from the
1206 * image, we get the results of our storage image writes and not the
1207 * fast clear color or other random data.
1208 *
1209 * For CCS both of the problems above are real demonstrable issues. In
1210 * that case, the only thing we can do is to perform an ambiguate to
1211 * transition the aux surface into the pass-through state.
1212 *
1213 * For MCS, (2) is never an issue because we don't support multisampled
1214 * storage images. In theory, issue (1) is a problem with MCS but we've
1215 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1216 * theory, be interpreted as something but we don't know that all bit
1217 * patterns are actually valid. For 2x and 8x, you could easily end up
1218 * with the MCS referring to an invalid plane because not all bits of
1219 * the MCS value are actually used. Even though we've never seen issues
1220 * in the wild, it's best to play it safe and initialize the MCS. We
1221 * can use a fast-clear for MCS because we only ever touch from render
1222 * and texture (no image load store).
1223 */
1224 if (image->samples == 1) {
1225 for (uint32_t l = 0; l < level_count; l++) {
1226 const uint32_t level = base_level + l;
1227
1228 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1229 if (base_layer >= aux_layers)
1230 break; /* We will only get fewer layers as level increases */
1231 uint32_t level_layer_count =
1232 MIN2(layer_count, aux_layers - base_layer);
1233
1234 anv_image_ccs_op(cmd_buffer, image,
1235 image->planes[plane].surface.isl.format,
1236 aspect, level, base_layer, level_layer_count,
1237 ISL_AUX_OP_AMBIGUATE, NULL, false);
1238
1239 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1240 set_image_compressed_bit(cmd_buffer, image, aspect,
1241 level, base_layer, level_layer_count,
1242 false);
1243 }
1244 }
1245 } else {
1246 if (image->samples == 4 || image->samples == 16) {
1247 anv_perf_warn(cmd_buffer->device, image,
1248 "Doing a potentially unnecessary fast-clear to "
1249 "define an MCS buffer.");
1250 }
1251
1252 assert(base_level == 0 && level_count == 1);
1253 anv_image_mcs_op(cmd_buffer, image,
1254 image->planes[plane].surface.isl.format,
1255 aspect, base_layer, layer_count,
1256 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1257 }
1258 return;
1259 }
1260
1261 const enum isl_aux_usage initial_aux_usage =
1262 anv_layout_to_aux_usage(devinfo, image, aspect, 0, initial_layout);
1263 const enum isl_aux_usage final_aux_usage =
1264 anv_layout_to_aux_usage(devinfo, image, aspect, 0, final_layout);
1265
1266 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1267 * We can handle transitions between CCS_D/E to and from NONE. What we
1268 * don't yet handle is switching between CCS_E and CCS_D within a given
1269 * image. Doing so in a performant way requires more detailed aux state
1270 * tracking such as what is done in i965. For now, just assume that we
1271 * only have one type of compression.
1272 */
1273 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1274 final_aux_usage == ISL_AUX_USAGE_NONE ||
1275 initial_aux_usage == final_aux_usage);
1276
1277 /* If initial aux usage is NONE, there is nothing to resolve */
1278 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1279 return;
1280
1281 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1282
1283 /* If the initial layout supports more fast clear than the final layout
1284 * then we need at least a partial resolve.
1285 */
1286 const enum anv_fast_clear_type initial_fast_clear =
1287 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1288 const enum anv_fast_clear_type final_fast_clear =
1289 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1290 if (final_fast_clear < initial_fast_clear)
1291 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1292
1293 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1294 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1295 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1296
1297 if (resolve_op == ISL_AUX_OP_NONE)
1298 return;
1299
1300 /* Perform a resolve to synchronize data between the main and aux buffer.
1301 * Before we begin, we must satisfy the cache flushing requirement specified
1302 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1303 *
1304 * Any transition from any value in {Clear, Render, Resolve} to a
1305 * different value in {Clear, Render, Resolve} requires end of pipe
1306 * synchronization.
1307 *
1308 * We perform a flush of the write cache before and after the clear and
1309 * resolve operations to meet this requirement.
1310 *
1311 * Unlike other drawing, fast clear operations are not properly
1312 * synchronized. The first PIPE_CONTROL here likely ensures that the
1313 * contents of the previous render or clear hit the render target before we
1314 * resolve and the second likely ensures that the resolve is complete before
1315 * we do any more rendering or clearing.
1316 */
1317 cmd_buffer->state.pending_pipe_bits |=
1318 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT;
1319
1320 for (uint32_t l = 0; l < level_count; l++) {
1321 uint32_t level = base_level + l;
1322
1323 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1324 if (base_layer >= aux_layers)
1325 break; /* We will only get fewer layers as level increases */
1326 uint32_t level_layer_count =
1327 MIN2(layer_count, aux_layers - base_layer);
1328
1329 for (uint32_t a = 0; a < level_layer_count; a++) {
1330 uint32_t array_layer = base_layer + a;
1331 if (image->samples == 1) {
1332 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1333 image->planes[plane].surface.isl.format,
1334 aspect, level, array_layer, resolve_op,
1335 final_fast_clear);
1336 } else {
1337 /* We only support fast-clear on the first layer so partial
1338 * resolves should not be used on other layers as they will use
1339 * the clear color stored in memory that is only valid for layer0.
1340 */
1341 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1342 array_layer != 0)
1343 continue;
1344
1345 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1346 image->planes[plane].surface.isl.format,
1347 aspect, array_layer, resolve_op,
1348 final_fast_clear);
1349 }
1350 }
1351 }
1352
1353 cmd_buffer->state.pending_pipe_bits |=
1354 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT;
1355 }
1356
1357 /**
1358 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1359 */
1360 static VkResult
1361 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1362 struct anv_render_pass *pass,
1363 const VkRenderPassBeginInfo *begin)
1364 {
1365 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1366 struct anv_cmd_state *state = &cmd_buffer->state;
1367 struct anv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
1368
1369 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1370
1371 if (pass->attachment_count > 0) {
1372 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1373 pass->attachment_count *
1374 sizeof(state->attachments[0]),
1375 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1376 if (state->attachments == NULL) {
1377 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1378 return anv_batch_set_error(&cmd_buffer->batch,
1379 VK_ERROR_OUT_OF_HOST_MEMORY);
1380 }
1381 } else {
1382 state->attachments = NULL;
1383 }
1384
1385 /* Reserve one for the NULL state. */
1386 unsigned num_states = 1;
1387 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1388 if (vk_format_is_color(pass->attachments[i].format))
1389 num_states++;
1390
1391 if (need_input_attachment_state(&pass->attachments[i]))
1392 num_states++;
1393 }
1394
1395 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1396 state->render_pass_states =
1397 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1398 num_states * ss_stride, isl_dev->ss.align);
1399
1400 struct anv_state next_state = state->render_pass_states;
1401 next_state.alloc_size = isl_dev->ss.size;
1402
1403 state->null_surface_state = next_state;
1404 next_state.offset += ss_stride;
1405 next_state.map += ss_stride;
1406
1407 const VkRenderPassAttachmentBeginInfoKHR *begin_attachment =
1408 vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR);
1409
1410 if (begin && !begin_attachment)
1411 assert(pass->attachment_count == framebuffer->attachment_count);
1412
1413 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1414 if (vk_format_is_color(pass->attachments[i].format)) {
1415 state->attachments[i].color.state = next_state;
1416 next_state.offset += ss_stride;
1417 next_state.map += ss_stride;
1418 }
1419
1420 if (need_input_attachment_state(&pass->attachments[i])) {
1421 state->attachments[i].input.state = next_state;
1422 next_state.offset += ss_stride;
1423 next_state.map += ss_stride;
1424 }
1425
1426 if (begin_attachment && begin_attachment->attachmentCount != 0) {
1427 assert(begin_attachment->attachmentCount == pass->attachment_count);
1428 ANV_FROM_HANDLE(anv_image_view, iview, begin_attachment->pAttachments[i]);
1429 cmd_buffer->state.attachments[i].image_view = iview;
1430 } else if (framebuffer && i < framebuffer->attachment_count) {
1431 cmd_buffer->state.attachments[i].image_view = framebuffer->attachments[i];
1432 }
1433 }
1434 assert(next_state.offset == state->render_pass_states.offset +
1435 state->render_pass_states.alloc_size);
1436
1437 if (begin) {
1438 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1439 isl_extent3d(framebuffer->width,
1440 framebuffer->height,
1441 framebuffer->layers));
1442
1443 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1444 struct anv_render_pass_attachment *att = &pass->attachments[i];
1445 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1446 VkImageAspectFlags clear_aspects = 0;
1447 VkImageAspectFlags load_aspects = 0;
1448
1449 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1450 /* color attachment */
1451 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1452 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1453 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1454 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1455 }
1456 } else {
1457 /* depthstencil attachment */
1458 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1459 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1460 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1461 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1462 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1463 }
1464 }
1465 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1466 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1467 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1468 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1469 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1470 }
1471 }
1472 }
1473
1474 state->attachments[i].current_layout = att->initial_layout;
1475 state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
1476 state->attachments[i].pending_clear_aspects = clear_aspects;
1477 state->attachments[i].pending_load_aspects = load_aspects;
1478 if (clear_aspects)
1479 state->attachments[i].clear_value = begin->pClearValues[i];
1480
1481 struct anv_image_view *iview = cmd_buffer->state.attachments[i].image_view;
1482 anv_assert(iview->vk_format == att->format);
1483
1484 const uint32_t num_layers = iview->planes[0].isl.array_len;
1485 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1486
1487 union isl_color_value clear_color = { .u32 = { 0, } };
1488 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1489 anv_assert(iview->n_planes == 1);
1490 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1491 color_attachment_compute_aux_usage(cmd_buffer->device,
1492 state, i, begin->renderArea,
1493 &clear_color);
1494
1495 anv_image_fill_surface_state(cmd_buffer->device,
1496 iview->image,
1497 VK_IMAGE_ASPECT_COLOR_BIT,
1498 &iview->planes[0].isl,
1499 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1500 state->attachments[i].aux_usage,
1501 &clear_color,
1502 0,
1503 &state->attachments[i].color,
1504 NULL);
1505
1506 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1507 } else {
1508 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1509 state, i,
1510 begin->renderArea);
1511 }
1512
1513 if (need_input_attachment_state(&pass->attachments[i])) {
1514 anv_image_fill_surface_state(cmd_buffer->device,
1515 iview->image,
1516 VK_IMAGE_ASPECT_COLOR_BIT,
1517 &iview->planes[0].isl,
1518 ISL_SURF_USAGE_TEXTURE_BIT,
1519 state->attachments[i].input_aux_usage,
1520 &clear_color,
1521 0,
1522 &state->attachments[i].input,
1523 NULL);
1524
1525 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1526 }
1527 }
1528 }
1529
1530 return VK_SUCCESS;
1531 }
1532
1533 VkResult
1534 genX(BeginCommandBuffer)(
1535 VkCommandBuffer commandBuffer,
1536 const VkCommandBufferBeginInfo* pBeginInfo)
1537 {
1538 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1539
1540 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1541 * command buffer's state. Otherwise, we must *reset* its state. In both
1542 * cases we reset it.
1543 *
1544 * From the Vulkan 1.0 spec:
1545 *
1546 * If a command buffer is in the executable state and the command buffer
1547 * was allocated from a command pool with the
1548 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1549 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1550 * as if vkResetCommandBuffer had been called with
1551 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1552 * the command buffer in the recording state.
1553 */
1554 anv_cmd_buffer_reset(cmd_buffer);
1555
1556 cmd_buffer->usage_flags = pBeginInfo->flags;
1557
1558 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1559 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1560
1561 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1562
1563 /* We sometimes store vertex data in the dynamic state buffer for blorp
1564 * operations and our dynamic state stream may re-use data from previous
1565 * command buffers. In order to prevent stale cache data, we flush the VF
1566 * cache. We could do this on every blorp call but that's not really
1567 * needed as all of the data will get written by the CPU prior to the GPU
1568 * executing anything. The chances are fairly high that they will use
1569 * blorp at least once per primary command buffer so it shouldn't be
1570 * wasted.
1571 *
1572 * There is also a workaround on gen8 which requires us to invalidate the
1573 * VF cache occasionally. It's easier if we can assume we start with a
1574 * fresh cache (See also genX(cmd_buffer_set_binding_for_gen8_vb_flush).)
1575 */
1576 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1577
1578 /* Re-emit the aux table register in every command buffer. This way we're
1579 * ensured that we have the table even if this command buffer doesn't
1580 * initialize any images.
1581 */
1582 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1583
1584 /* We send an "Indirect State Pointers Disable" packet at
1585 * EndCommandBuffer, so all push contant packets are ignored during a
1586 * context restore. Documentation says after that command, we need to
1587 * emit push constants again before any rendering operation. So we
1588 * flag them dirty here to make sure they get emitted.
1589 */
1590 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1591
1592 VkResult result = VK_SUCCESS;
1593 if (cmd_buffer->usage_flags &
1594 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1595 assert(pBeginInfo->pInheritanceInfo);
1596 cmd_buffer->state.pass =
1597 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1598 cmd_buffer->state.subpass =
1599 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1600
1601 /* This is optional in the inheritance info. */
1602 cmd_buffer->state.framebuffer =
1603 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1604
1605 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1606 cmd_buffer->state.pass, NULL);
1607
1608 /* Record that HiZ is enabled if we can. */
1609 if (cmd_buffer->state.framebuffer) {
1610 const struct anv_image_view * const iview =
1611 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1612
1613 if (iview) {
1614 VkImageLayout layout =
1615 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1616
1617 enum isl_aux_usage aux_usage =
1618 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1619 VK_IMAGE_ASPECT_DEPTH_BIT,
1620 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
1621 layout);
1622
1623 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1624 }
1625 }
1626
1627 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1628 }
1629
1630 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1631 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1632 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1633 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1634
1635 /* If secondary buffer supports conditional rendering
1636 * we should emit commands as if conditional rendering is enabled.
1637 */
1638 cmd_buffer->state.conditional_render_enabled =
1639 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1640 }
1641 #endif
1642
1643 return result;
1644 }
1645
1646 /* From the PRM, Volume 2a:
1647 *
1648 * "Indirect State Pointers Disable
1649 *
1650 * At the completion of the post-sync operation associated with this pipe
1651 * control packet, the indirect state pointers in the hardware are
1652 * considered invalid; the indirect pointers are not saved in the context.
1653 * If any new indirect state commands are executed in the command stream
1654 * while the pipe control is pending, the new indirect state commands are
1655 * preserved.
1656 *
1657 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1658 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1659 * commands are only considered as Indirect State Pointers. Once ISP is
1660 * issued in a context, SW must initialize by programming push constant
1661 * commands for all the shaders (at least to zero length) before attempting
1662 * any rendering operation for the same context."
1663 *
1664 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1665 * even though they point to a BO that has been already unreferenced at
1666 * the end of the previous batch buffer. This has been fine so far since
1667 * we are protected by these scratch page (every address not covered by
1668 * a BO should be pointing to the scratch page). But on CNL, it is
1669 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1670 * instruction.
1671 *
1672 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1673 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1674 * context restore, so the mentioned hang doesn't happen. However,
1675 * software must program push constant commands for all stages prior to
1676 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1677 *
1678 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1679 * constants have been loaded into the EUs prior to disable the push constants
1680 * so that it doesn't hang a previous 3DPRIMITIVE.
1681 */
1682 static void
1683 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1684 {
1685 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1686 pc.StallAtPixelScoreboard = true;
1687 pc.CommandStreamerStallEnable = true;
1688 }
1689 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1690 pc.IndirectStatePointersDisable = true;
1691 pc.CommandStreamerStallEnable = true;
1692 }
1693 }
1694
1695 VkResult
1696 genX(EndCommandBuffer)(
1697 VkCommandBuffer commandBuffer)
1698 {
1699 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1700
1701 if (anv_batch_has_error(&cmd_buffer->batch))
1702 return cmd_buffer->batch.status;
1703
1704 /* We want every command buffer to start with the PMA fix in a known state,
1705 * so we disable it at the end of the command buffer.
1706 */
1707 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1708
1709 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1710
1711 emit_isp_disable(cmd_buffer);
1712
1713 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1714
1715 return VK_SUCCESS;
1716 }
1717
1718 void
1719 genX(CmdExecuteCommands)(
1720 VkCommandBuffer commandBuffer,
1721 uint32_t commandBufferCount,
1722 const VkCommandBuffer* pCmdBuffers)
1723 {
1724 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1725
1726 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1727
1728 if (anv_batch_has_error(&primary->batch))
1729 return;
1730
1731 /* The secondary command buffers will assume that the PMA fix is disabled
1732 * when they begin executing. Make sure this is true.
1733 */
1734 genX(cmd_buffer_enable_pma_fix)(primary, false);
1735
1736 /* The secondary command buffer doesn't know which textures etc. have been
1737 * flushed prior to their execution. Apply those flushes now.
1738 */
1739 genX(cmd_buffer_apply_pipe_flushes)(primary);
1740
1741 for (uint32_t i = 0; i < commandBufferCount; i++) {
1742 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1743
1744 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1745 assert(!anv_batch_has_error(&secondary->batch));
1746
1747 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1748 if (secondary->state.conditional_render_enabled) {
1749 if (!primary->state.conditional_render_enabled) {
1750 /* Secondary buffer is constructed as if it will be executed
1751 * with conditional rendering, we should satisfy this dependency
1752 * regardless of conditional rendering being enabled in primary.
1753 */
1754 struct gen_mi_builder b;
1755 gen_mi_builder_init(&b, &primary->batch);
1756 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
1757 gen_mi_imm(UINT64_MAX));
1758 }
1759 }
1760 #endif
1761
1762 if (secondary->usage_flags &
1763 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1764 /* If we're continuing a render pass from the primary, we need to
1765 * copy the surface states for the current subpass into the storage
1766 * we allocated for them in BeginCommandBuffer.
1767 */
1768 struct anv_bo *ss_bo =
1769 primary->device->surface_state_pool.block_pool.bo;
1770 struct anv_state src_state = primary->state.render_pass_states;
1771 struct anv_state dst_state = secondary->state.render_pass_states;
1772 assert(src_state.alloc_size == dst_state.alloc_size);
1773
1774 genX(cmd_buffer_so_memcpy)(primary,
1775 (struct anv_address) {
1776 .bo = ss_bo,
1777 .offset = dst_state.offset,
1778 },
1779 (struct anv_address) {
1780 .bo = ss_bo,
1781 .offset = src_state.offset,
1782 },
1783 src_state.alloc_size);
1784 }
1785
1786 anv_cmd_buffer_add_secondary(primary, secondary);
1787 }
1788
1789 /* The secondary isn't counted in our VF cache tracking so we need to
1790 * invalidate the whole thing.
1791 */
1792 if (GEN_GEN >= 8 && GEN_GEN <= 9) {
1793 primary->state.pending_pipe_bits |=
1794 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1795 }
1796
1797 /* The secondary may have selected a different pipeline (3D or compute) and
1798 * may have changed the current L3$ configuration. Reset our tracking
1799 * variables to invalid values to ensure that we re-emit these in the case
1800 * where we do any draws or compute dispatches from the primary after the
1801 * secondary has returned.
1802 */
1803 primary->state.current_pipeline = UINT32_MAX;
1804 primary->state.current_l3_config = NULL;
1805 primary->state.current_hash_scale = 0;
1806
1807 /* Each of the secondary command buffers will use its own state base
1808 * address. We need to re-emit state base address for the primary after
1809 * all of the secondaries are done.
1810 *
1811 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1812 * address calls?
1813 */
1814 genX(cmd_buffer_emit_state_base_address)(primary);
1815 }
1816
1817 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1818 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1819 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1820
1821 /**
1822 * Program the hardware to use the specified L3 configuration.
1823 */
1824 void
1825 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1826 const struct gen_l3_config *cfg)
1827 {
1828 assert(cfg);
1829 if (cfg == cmd_buffer->state.current_l3_config)
1830 return;
1831
1832 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1833 intel_logd("L3 config transition: ");
1834 gen_dump_l3_config(cfg, stderr);
1835 }
1836
1837 UNUSED const bool has_slm = cfg->n[GEN_L3P_SLM];
1838
1839 /* According to the hardware docs, the L3 partitioning can only be changed
1840 * while the pipeline is completely drained and the caches are flushed,
1841 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1842 */
1843 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1844 pc.DCFlushEnable = true;
1845 pc.PostSyncOperation = NoWrite;
1846 pc.CommandStreamerStallEnable = true;
1847 }
1848
1849 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1850 * invalidation of the relevant caches. Note that because RO invalidation
1851 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1852 * command is processed by the CS) we cannot combine it with the previous
1853 * stalling flush as the hardware documentation suggests, because that
1854 * would cause the CS to stall on previous rendering *after* RO
1855 * invalidation and wouldn't prevent the RO caches from being polluted by
1856 * concurrent rendering before the stall completes. This intentionally
1857 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1858 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1859 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1860 * already guarantee that there is no concurrent GPGPU kernel execution
1861 * (see SKL HSD 2132585).
1862 */
1863 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1864 pc.TextureCacheInvalidationEnable = true;
1865 pc.ConstantCacheInvalidationEnable = true;
1866 pc.InstructionCacheInvalidateEnable = true;
1867 pc.StateCacheInvalidationEnable = true;
1868 pc.PostSyncOperation = NoWrite;
1869 }
1870
1871 /* Now send a third stalling flush to make sure that invalidation is
1872 * complete when the L3 configuration registers are modified.
1873 */
1874 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1875 pc.DCFlushEnable = true;
1876 pc.PostSyncOperation = NoWrite;
1877 pc.CommandStreamerStallEnable = true;
1878 }
1879
1880 #if GEN_GEN >= 8
1881
1882 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1883
1884 #if GEN_GEN >= 12
1885 #define L3_ALLOCATION_REG GENX(L3ALLOC)
1886 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
1887 #else
1888 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
1889 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
1890 #endif
1891
1892 uint32_t l3cr;
1893 anv_pack_struct(&l3cr, L3_ALLOCATION_REG,
1894 #if GEN_GEN < 11
1895 .SLMEnable = has_slm,
1896 #endif
1897 #if GEN_GEN == 11
1898 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1899 * in L3CNTLREG register. The default setting of the bit is not the
1900 * desirable behavior.
1901 */
1902 .ErrorDetectionBehaviorControl = true,
1903 .UseFullWays = true,
1904 #endif
1905 .URBAllocation = cfg->n[GEN_L3P_URB],
1906 .ROAllocation = cfg->n[GEN_L3P_RO],
1907 .DCAllocation = cfg->n[GEN_L3P_DC],
1908 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1909
1910 /* Set up the L3 partitioning. */
1911 emit_lri(&cmd_buffer->batch, L3_ALLOCATION_REG_num, l3cr);
1912
1913 #else
1914
1915 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1916 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1917 cfg->n[GEN_L3P_ALL];
1918 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1919 cfg->n[GEN_L3P_ALL];
1920 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1921 cfg->n[GEN_L3P_ALL];
1922
1923 assert(!cfg->n[GEN_L3P_ALL]);
1924
1925 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1926 * the matching space on the remaining banks has to be allocated to a
1927 * client (URB for all validated configurations) set to the
1928 * lower-bandwidth 2-bank address hashing mode.
1929 */
1930 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1931 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1932 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1933
1934 /* Minimum number of ways that can be allocated to the URB. */
1935 const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1936 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1937
1938 uint32_t l3sqcr1, l3cr2, l3cr3;
1939 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1940 .ConvertDC_UC = !has_dc,
1941 .ConvertIS_UC = !has_is,
1942 .ConvertC_UC = !has_c,
1943 .ConvertT_UC = !has_t);
1944 l3sqcr1 |=
1945 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1946 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1947 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1948
1949 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1950 .SLMEnable = has_slm,
1951 .URBLowBandwidth = urb_low_bw,
1952 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1953 #if !GEN_IS_HASWELL
1954 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1955 #endif
1956 .ROAllocation = cfg->n[GEN_L3P_RO],
1957 .DCAllocation = cfg->n[GEN_L3P_DC]);
1958
1959 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1960 .ISAllocation = cfg->n[GEN_L3P_IS],
1961 .ISLowBandwidth = 0,
1962 .CAllocation = cfg->n[GEN_L3P_C],
1963 .CLowBandwidth = 0,
1964 .TAllocation = cfg->n[GEN_L3P_T],
1965 .TLowBandwidth = 0);
1966
1967 /* Set up the L3 partitioning. */
1968 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1969 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1970 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1971
1972 #if GEN_IS_HASWELL
1973 if (cmd_buffer->device->physical->cmd_parser_version >= 4) {
1974 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1975 * them disabled to avoid crashing the system hard.
1976 */
1977 uint32_t scratch1, chicken3;
1978 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1979 .L3AtomicDisable = !has_dc);
1980 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1981 .L3AtomicDisableMask = true,
1982 .L3AtomicDisable = !has_dc);
1983 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1984 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1985 }
1986 #endif
1987
1988 #endif
1989
1990 cmd_buffer->state.current_l3_config = cfg;
1991 }
1992
1993 void
1994 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1995 {
1996 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1997 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1998
1999 if (cmd_buffer->device->physical->always_flush_cache)
2000 bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
2001
2002 /*
2003 * From Sandybridge PRM, volume 2, "1.7.2 End-of-Pipe Synchronization":
2004 *
2005 * Write synchronization is a special case of end-of-pipe
2006 * synchronization that requires that the render cache and/or depth
2007 * related caches are flushed to memory, where the data will become
2008 * globally visible. This type of synchronization is required prior to
2009 * SW (CPU) actually reading the result data from memory, or initiating
2010 * an operation that will use as a read surface (such as a texture
2011 * surface) a previous render target and/or depth/stencil buffer
2012 *
2013 *
2014 * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
2015 *
2016 * Exercising the write cache flush bits (Render Target Cache Flush
2017 * Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only
2018 * ensures the write caches are flushed and doesn't guarantee the data
2019 * is globally visible.
2020 *
2021 * SW can track the completion of the end-of-pipe-synchronization by
2022 * using "Notify Enable" and "PostSync Operation - Write Immediate
2023 * Data" in the PIPE_CONTROL command.
2024 *
2025 * In other words, flushes are pipelined while invalidations are handled
2026 * immediately. Therefore, if we're flushing anything then we need to
2027 * schedule an end-of-pipe sync before any invalidations can happen.
2028 */
2029 if (bits & ANV_PIPE_FLUSH_BITS)
2030 bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2031
2032
2033 /* HSD 1209978178: docs say that before programming the aux table:
2034 *
2035 * "Driver must ensure that the engine is IDLE but ensure it doesn't
2036 * add extra flushes in the case it knows that the engine is already
2037 * IDLE."
2038 */
2039 if (GEN_GEN == 12 && ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2040 bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2041
2042 /* If we're going to do an invalidate and we have a pending end-of-pipe
2043 * sync that has yet to be resolved, we do the end-of-pipe sync now.
2044 */
2045 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
2046 (bits & ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT)) {
2047 bits |= ANV_PIPE_END_OF_PIPE_SYNC_BIT;
2048 bits &= ~ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2049 }
2050
2051 if (GEN_GEN >= 12 &&
2052 ((bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT) ||
2053 (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT))) {
2054 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
2055 * Enable):
2056 *
2057 * Unified Cache (Tile Cache Disabled):
2058 *
2059 * When the Color and Depth (Z) streams are enabled to be cached in
2060 * the DC space of L2, Software must use "Render Target Cache Flush
2061 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
2062 * Flush" for getting the color and depth (Z) write data to be
2063 * globally observable. In this mode of operation it is not required
2064 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
2065 */
2066 bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2067 }
2068
2069 /* GEN:BUG:1409226450, Wait for EU to be idle before pipe control which
2070 * invalidates the instruction cache
2071 */
2072 if (GEN_GEN == 12 && (bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT))
2073 bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2074
2075 if ((GEN_GEN >= 8 && GEN_GEN <= 9) &&
2076 (bits & ANV_PIPE_CS_STALL_BIT) &&
2077 (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
2078 /* If we are doing a VF cache invalidate AND a CS stall (it must be
2079 * both) then we can reset our vertex cache tracking.
2080 */
2081 memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
2082 sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
2083 memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
2084 sizeof(cmd_buffer->state.gfx.ib_dirty_range));
2085 }
2086
2087 /* Project: SKL / Argument: LRI Post Sync Operation [23]
2088 *
2089 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
2090 * programmed prior to programming a PIPECONTROL command with "LRI
2091 * Post Sync Operation" in GPGPU mode of operation (i.e when
2092 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
2093 *
2094 * The same text exists a few rows below for Post Sync Op.
2095 *
2096 * On Gen12 this is GEN:BUG:1607156449.
2097 */
2098 if (bits & ANV_PIPE_POST_SYNC_BIT) {
2099 if ((GEN_GEN == 9 || (GEN_GEN == 12 && devinfo->revision == 0 /* A0 */)) &&
2100 cmd_buffer->state.current_pipeline == GPGPU)
2101 bits |= ANV_PIPE_CS_STALL_BIT;
2102 bits &= ~ANV_PIPE_POST_SYNC_BIT;
2103 }
2104
2105 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT |
2106 ANV_PIPE_END_OF_PIPE_SYNC_BIT)) {
2107 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2108 #if GEN_GEN >= 12
2109 pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2110 #endif
2111 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2112 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2113 pipe.RenderTargetCacheFlushEnable =
2114 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2115
2116 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must
2117 * be set with any PIPE_CONTROL with Depth Flush Enable bit set.
2118 */
2119 #if GEN_GEN >= 12
2120 pipe.DepthStallEnable =
2121 pipe.DepthCacheFlushEnable || (bits & ANV_PIPE_DEPTH_STALL_BIT);
2122 #else
2123 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
2124 #endif
2125
2126 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
2127 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2128
2129 /* From Sandybridge PRM, volume 2, "1.7.3.1 Writing a Value to Memory":
2130 *
2131 * "The most common action to perform upon reaching a
2132 * synchronization point is to write a value out to memory. An
2133 * immediate value (included with the synchronization command) may
2134 * be written."
2135 *
2136 *
2137 * From Broadwell PRM, volume 7, "End-of-Pipe Synchronization":
2138 *
2139 * "In case the data flushed out by the render engine is to be
2140 * read back in to the render engine in coherent manner, then the
2141 * render engine has to wait for the fence completion before
2142 * accessing the flushed data. This can be achieved by following
2143 * means on various products: PIPE_CONTROL command with CS Stall
2144 * and the required write caches flushed with Post-Sync-Operation
2145 * as Write Immediate Data.
2146 *
2147 * Example:
2148 * - Workload-1 (3D/GPGPU/MEDIA)
2149 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
2150 * Immediate Data, Required Write Cache Flush bits set)
2151 * - Workload-2 (Can use the data produce or output by
2152 * Workload-1)
2153 */
2154 if (bits & ANV_PIPE_END_OF_PIPE_SYNC_BIT) {
2155 pipe.CommandStreamerStallEnable = true;
2156 pipe.PostSyncOperation = WriteImmediateData;
2157 pipe.Address = (struct anv_address) {
2158 .bo = cmd_buffer->device->workaround_bo,
2159 .offset = 0
2160 };
2161 }
2162
2163 /*
2164 * According to the Broadwell documentation, any PIPE_CONTROL with the
2165 * "Command Streamer Stall" bit set must also have another bit set,
2166 * with five different options:
2167 *
2168 * - Render Target Cache Flush
2169 * - Depth Cache Flush
2170 * - Stall at Pixel Scoreboard
2171 * - Post-Sync Operation
2172 * - Depth Stall
2173 * - DC Flush Enable
2174 *
2175 * I chose "Stall at Pixel Scoreboard" since that's what we use in
2176 * mesa and it seems to work fine. The choice is fairly arbitrary.
2177 */
2178 if (pipe.CommandStreamerStallEnable &&
2179 !pipe.RenderTargetCacheFlushEnable &&
2180 !pipe.DepthCacheFlushEnable &&
2181 !pipe.StallAtPixelScoreboard &&
2182 !pipe.PostSyncOperation &&
2183 !pipe.DepthStallEnable &&
2184 !pipe.DCFlushEnable)
2185 pipe.StallAtPixelScoreboard = true;
2186 }
2187
2188 /* If a render target flush was emitted, then we can toggle off the bit
2189 * saying that render target writes are ongoing.
2190 */
2191 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
2192 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
2193
2194 if (GEN_IS_HASWELL) {
2195 /* Haswell needs addition work-arounds:
2196 *
2197 * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
2198 *
2199 * Option 1:
2200 * PIPE_CONTROL command with the CS Stall and the required write
2201 * caches flushed with Post-SyncOperation as Write Immediate Data
2202 * followed by eight dummy MI_STORE_DATA_IMM (write to scratch
2203 * spce) commands.
2204 *
2205 * Example:
2206 * - Workload-1
2207 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
2208 * Immediate Data, Required Write Cache Flush bits set)
2209 * - MI_STORE_DATA_IMM (8 times) (Dummy data, Scratch Address)
2210 * - Workload-2 (Can use the data produce or output by
2211 * Workload-1)
2212 *
2213 * Unfortunately, both the PRMs and the internal docs are a bit
2214 * out-of-date in this regard. What the windows driver does (and
2215 * this appears to actually work) is to emit a register read from the
2216 * memory address written by the pipe control above.
2217 *
2218 * What register we load into doesn't matter. We choose an indirect
2219 * rendering register because we know it always exists and it's one
2220 * of the first registers the command parser allows us to write. If
2221 * you don't have command parser support in your kernel (pre-4.2),
2222 * this will get turned into MI_NOOP and you won't get the
2223 * workaround. Unfortunately, there's just not much we can do in
2224 * that case. This register is perfectly safe to write since we
2225 * always re-load all of the indirect draw registers right before
2226 * 3DPRIMITIVE when needed anyway.
2227 */
2228 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
2229 lrm.RegisterAddress = 0x243C; /* GEN7_3DPRIM_START_INSTANCE */
2230 lrm.MemoryAddress = (struct anv_address) {
2231 .bo = cmd_buffer->device->workaround_bo,
2232 .offset = 0
2233 };
2234 }
2235 }
2236
2237 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT |
2238 ANV_PIPE_END_OF_PIPE_SYNC_BIT);
2239 }
2240
2241 if (bits & ANV_PIPE_INVALIDATE_BITS) {
2242 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2243 *
2244 * "If the VF Cache Invalidation Enable is set to a 1 in a
2245 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
2246 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
2247 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
2248 * a 1."
2249 *
2250 * This appears to hang Broadwell, so we restrict it to just gen9.
2251 */
2252 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
2253 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
2254
2255 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2256 pipe.StateCacheInvalidationEnable =
2257 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
2258 pipe.ConstantCacheInvalidationEnable =
2259 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2260 pipe.VFCacheInvalidationEnable =
2261 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2262 pipe.TextureCacheInvalidationEnable =
2263 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2264 pipe.InstructionCacheInvalidateEnable =
2265 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
2266
2267 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2268 *
2269 * "When VF Cache Invalidate is set “Post Sync Operation” must be
2270 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
2271 * “Write Timestamp”.
2272 */
2273 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
2274 pipe.PostSyncOperation = WriteImmediateData;
2275 pipe.Address =
2276 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
2277 }
2278 }
2279
2280 #if GEN_GEN == 12
2281 if ((bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT) &&
2282 cmd_buffer->device->info.has_aux_map) {
2283 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2284 lri.RegisterOffset = GENX(GFX_CCS_AUX_INV_num);
2285 lri.DataDWord = 1;
2286 }
2287 }
2288 #endif
2289
2290 bits &= ~ANV_PIPE_INVALIDATE_BITS;
2291 }
2292
2293 cmd_buffer->state.pending_pipe_bits = bits;
2294 }
2295
2296 void genX(CmdPipelineBarrier)(
2297 VkCommandBuffer commandBuffer,
2298 VkPipelineStageFlags srcStageMask,
2299 VkPipelineStageFlags destStageMask,
2300 VkBool32 byRegion,
2301 uint32_t memoryBarrierCount,
2302 const VkMemoryBarrier* pMemoryBarriers,
2303 uint32_t bufferMemoryBarrierCount,
2304 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
2305 uint32_t imageMemoryBarrierCount,
2306 const VkImageMemoryBarrier* pImageMemoryBarriers)
2307 {
2308 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2309
2310 /* XXX: Right now, we're really dumb and just flush whatever categories
2311 * the app asks for. One of these days we may make this a bit better
2312 * but right now that's all the hardware allows for in most areas.
2313 */
2314 VkAccessFlags src_flags = 0;
2315 VkAccessFlags dst_flags = 0;
2316
2317 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
2318 src_flags |= pMemoryBarriers[i].srcAccessMask;
2319 dst_flags |= pMemoryBarriers[i].dstAccessMask;
2320 }
2321
2322 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
2323 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
2324 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
2325 }
2326
2327 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
2328 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
2329 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
2330 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
2331 const VkImageSubresourceRange *range =
2332 &pImageMemoryBarriers[i].subresourceRange;
2333
2334 uint32_t base_layer, layer_count;
2335 if (image->type == VK_IMAGE_TYPE_3D) {
2336 base_layer = 0;
2337 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
2338 } else {
2339 base_layer = range->baseArrayLayer;
2340 layer_count = anv_get_layerCount(image, range);
2341 }
2342
2343 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
2344 transition_depth_buffer(cmd_buffer, image,
2345 pImageMemoryBarriers[i].oldLayout,
2346 pImageMemoryBarriers[i].newLayout);
2347 }
2348
2349 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
2350 transition_stencil_buffer(cmd_buffer, image,
2351 range->baseMipLevel,
2352 anv_get_levelCount(image, range),
2353 base_layer, layer_count,
2354 pImageMemoryBarriers[i].oldLayout,
2355 pImageMemoryBarriers[i].newLayout);
2356 }
2357
2358 if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2359 VkImageAspectFlags color_aspects =
2360 anv_image_expand_aspects(image, range->aspectMask);
2361 uint32_t aspect_bit;
2362 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
2363 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
2364 range->baseMipLevel,
2365 anv_get_levelCount(image, range),
2366 base_layer, layer_count,
2367 pImageMemoryBarriers[i].oldLayout,
2368 pImageMemoryBarriers[i].newLayout);
2369 }
2370 }
2371 }
2372
2373 cmd_buffer->state.pending_pipe_bits |=
2374 anv_pipe_flush_bits_for_access_flags(src_flags) |
2375 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
2376 }
2377
2378 static void
2379 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
2380 {
2381 VkShaderStageFlags stages =
2382 cmd_buffer->state.gfx.base.pipeline->active_stages;
2383
2384 /* In order to avoid thrash, we assume that vertex and fragment stages
2385 * always exist. In the rare case where one is missing *and* the other
2386 * uses push concstants, this may be suboptimal. However, avoiding stalls
2387 * seems more important.
2388 */
2389 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
2390
2391 if (stages == cmd_buffer->state.push_constant_stages)
2392 return;
2393
2394 #if GEN_GEN >= 8
2395 const unsigned push_constant_kb = 32;
2396 #elif GEN_IS_HASWELL
2397 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
2398 #else
2399 const unsigned push_constant_kb = 16;
2400 #endif
2401
2402 const unsigned num_stages =
2403 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
2404 unsigned size_per_stage = push_constant_kb / num_stages;
2405
2406 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2407 * units of 2KB. Incidentally, these are the same platforms that have
2408 * 32KB worth of push constant space.
2409 */
2410 if (push_constant_kb == 32)
2411 size_per_stage &= ~1u;
2412
2413 uint32_t kb_used = 0;
2414 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
2415 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
2416 anv_batch_emit(&cmd_buffer->batch,
2417 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
2418 alloc._3DCommandSubOpcode = 18 + i;
2419 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
2420 alloc.ConstantBufferSize = push_size;
2421 }
2422 kb_used += push_size;
2423 }
2424
2425 anv_batch_emit(&cmd_buffer->batch,
2426 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
2427 alloc.ConstantBufferOffset = kb_used;
2428 alloc.ConstantBufferSize = push_constant_kb - kb_used;
2429 }
2430
2431 cmd_buffer->state.push_constant_stages = stages;
2432
2433 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2434 *
2435 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2436 * the next 3DPRIMITIVE command after programming the
2437 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2438 *
2439 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2440 * pipeline setup, we need to dirty push constants.
2441 */
2442 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
2443 }
2444
2445 static struct anv_address
2446 anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer,
2447 struct anv_descriptor_set *set)
2448 {
2449 if (set->pool) {
2450 /* This is a normal descriptor set */
2451 return (struct anv_address) {
2452 .bo = set->pool->bo,
2453 .offset = set->desc_mem.offset,
2454 };
2455 } else {
2456 /* This is a push descriptor set. We have to flag it as used on the GPU
2457 * so that the next time we push descriptors, we grab a new memory.
2458 */
2459 struct anv_push_descriptor_set *push_set =
2460 (struct anv_push_descriptor_set *)set;
2461 push_set->set_used_on_gpu = true;
2462
2463 return (struct anv_address) {
2464 .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo,
2465 .offset = set->desc_mem.offset,
2466 };
2467 }
2468 }
2469
2470 static VkResult
2471 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2472 struct anv_cmd_pipeline_state *pipe_state,
2473 gl_shader_stage stage,
2474 struct anv_state *bt_state)
2475 {
2476 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2477 uint32_t state_offset;
2478
2479 struct anv_pipeline *pipeline = pipe_state->pipeline;
2480
2481 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2482 if (map->surface_count == 0) {
2483 *bt_state = (struct anv_state) { 0, };
2484 return VK_SUCCESS;
2485 }
2486
2487 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2488 map->surface_count,
2489 &state_offset);
2490 uint32_t *bt_map = bt_state->map;
2491
2492 if (bt_state->map == NULL)
2493 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2494
2495 /* We only need to emit relocs if we're not using softpin. If we are using
2496 * softpin then we always keep all user-allocated memory objects resident.
2497 */
2498 const bool need_client_mem_relocs =
2499 !cmd_buffer->device->physical->use_softpin;
2500
2501 for (uint32_t s = 0; s < map->surface_count; s++) {
2502 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2503
2504 struct anv_state surface_state;
2505
2506 switch (binding->set) {
2507 case ANV_DESCRIPTOR_SET_NULL:
2508 bt_map[s] = 0;
2509 break;
2510
2511 case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
2512 /* Color attachment binding */
2513 assert(stage == MESA_SHADER_FRAGMENT);
2514 if (binding->index < subpass->color_count) {
2515 const unsigned att =
2516 subpass->color_attachments[binding->index].attachment;
2517
2518 /* From the Vulkan 1.0.46 spec:
2519 *
2520 * "If any color or depth/stencil attachments are
2521 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2522 * attachments."
2523 */
2524 if (att == VK_ATTACHMENT_UNUSED) {
2525 surface_state = cmd_buffer->state.null_surface_state;
2526 } else {
2527 surface_state = cmd_buffer->state.attachments[att].color.state;
2528 }
2529 } else {
2530 surface_state = cmd_buffer->state.null_surface_state;
2531 }
2532
2533 bt_map[s] = surface_state.offset + state_offset;
2534 break;
2535
2536 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
2537 struct anv_state surface_state =
2538 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2539
2540 struct anv_address constant_data = {
2541 .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
2542 .offset = pipeline->shaders[stage]->constant_data.offset,
2543 };
2544 unsigned constant_data_size =
2545 pipeline->shaders[stage]->constant_data_size;
2546
2547 const enum isl_format format =
2548 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2549 anv_fill_buffer_surface_state(cmd_buffer->device,
2550 surface_state, format,
2551 constant_data, constant_data_size, 1);
2552
2553 bt_map[s] = surface_state.offset + state_offset;
2554 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2555 break;
2556 }
2557
2558 case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
2559 /* This is always the first binding for compute shaders */
2560 assert(stage == MESA_SHADER_COMPUTE && s == 0);
2561
2562 struct anv_state surface_state =
2563 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2564
2565 const enum isl_format format =
2566 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2567 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2568 format,
2569 cmd_buffer->state.compute.num_workgroups,
2570 12, 1);
2571 bt_map[s] = surface_state.offset + state_offset;
2572 if (need_client_mem_relocs) {
2573 add_surface_reloc(cmd_buffer, surface_state,
2574 cmd_buffer->state.compute.num_workgroups);
2575 }
2576 break;
2577 }
2578
2579 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2580 /* This is a descriptor set buffer so the set index is actually
2581 * given by binding->binding. (Yes, that's confusing.)
2582 */
2583 struct anv_descriptor_set *set =
2584 pipe_state->descriptors[binding->index];
2585 assert(set->desc_mem.alloc_size);
2586 assert(set->desc_surface_state.alloc_size);
2587 bt_map[s] = set->desc_surface_state.offset + state_offset;
2588 add_surface_reloc(cmd_buffer, set->desc_surface_state,
2589 anv_descriptor_set_address(cmd_buffer, set));
2590 break;
2591 }
2592
2593 default: {
2594 assert(binding->set < MAX_SETS);
2595 const struct anv_descriptor *desc =
2596 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2597
2598 switch (desc->type) {
2599 case VK_DESCRIPTOR_TYPE_SAMPLER:
2600 /* Nothing for us to do here */
2601 continue;
2602
2603 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2604 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2605 struct anv_surface_state sstate =
2606 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2607 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2608 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2609 surface_state = sstate.state;
2610 assert(surface_state.alloc_size);
2611 if (need_client_mem_relocs)
2612 add_surface_state_relocs(cmd_buffer, sstate);
2613 break;
2614 }
2615 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2616 assert(stage == MESA_SHADER_FRAGMENT);
2617 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2618 /* For depth and stencil input attachments, we treat it like any
2619 * old texture that a user may have bound.
2620 */
2621 assert(desc->image_view->n_planes == 1);
2622 struct anv_surface_state sstate =
2623 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2624 desc->image_view->planes[0].general_sampler_surface_state :
2625 desc->image_view->planes[0].optimal_sampler_surface_state;
2626 surface_state = sstate.state;
2627 assert(surface_state.alloc_size);
2628 if (need_client_mem_relocs)
2629 add_surface_state_relocs(cmd_buffer, sstate);
2630 } else {
2631 /* For color input attachments, we create the surface state at
2632 * vkBeginRenderPass time so that we can include aux and clear
2633 * color information.
2634 */
2635 assert(binding->input_attachment_index < subpass->input_count);
2636 const unsigned subpass_att = binding->input_attachment_index;
2637 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2638 surface_state = cmd_buffer->state.attachments[att].input.state;
2639 }
2640 break;
2641
2642 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2643 struct anv_surface_state sstate = (binding->write_only)
2644 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2645 : desc->image_view->planes[binding->plane].storage_surface_state;
2646 surface_state = sstate.state;
2647 assert(surface_state.alloc_size);
2648 if (need_client_mem_relocs)
2649 add_surface_state_relocs(cmd_buffer, sstate);
2650 break;
2651 }
2652
2653 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2654 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2655 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2656 surface_state = desc->buffer_view->surface_state;
2657 assert(surface_state.alloc_size);
2658 if (need_client_mem_relocs) {
2659 add_surface_reloc(cmd_buffer, surface_state,
2660 desc->buffer_view->address);
2661 }
2662 break;
2663
2664 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2665 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2666 /* Compute the offset within the buffer */
2667 struct anv_push_constants *push =
2668 &cmd_buffer->state.push_constants[stage];
2669
2670 uint32_t dynamic_offset =
2671 push->dynamic_offsets[binding->dynamic_offset_index];
2672 uint64_t offset = desc->offset + dynamic_offset;
2673 /* Clamp to the buffer size */
2674 offset = MIN2(offset, desc->buffer->size);
2675 /* Clamp the range to the buffer size */
2676 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2677
2678 /* Align the range for consistency */
2679 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC)
2680 range = align_u32(range, ANV_UBO_BOUNDS_CHECK_ALIGNMENT);
2681
2682 struct anv_address address =
2683 anv_address_add(desc->buffer->address, offset);
2684
2685 surface_state =
2686 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2687 enum isl_format format =
2688 anv_isl_format_for_descriptor_type(desc->type);
2689
2690 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2691 format, address, range, 1);
2692 if (need_client_mem_relocs)
2693 add_surface_reloc(cmd_buffer, surface_state, address);
2694 break;
2695 }
2696
2697 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2698 surface_state = (binding->write_only)
2699 ? desc->buffer_view->writeonly_storage_surface_state
2700 : desc->buffer_view->storage_surface_state;
2701 assert(surface_state.alloc_size);
2702 if (need_client_mem_relocs) {
2703 add_surface_reloc(cmd_buffer, surface_state,
2704 desc->buffer_view->address);
2705 }
2706 break;
2707
2708 default:
2709 assert(!"Invalid descriptor type");
2710 continue;
2711 }
2712 bt_map[s] = surface_state.offset + state_offset;
2713 break;
2714 }
2715 }
2716 }
2717
2718 return VK_SUCCESS;
2719 }
2720
2721 static VkResult
2722 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2723 struct anv_cmd_pipeline_state *pipe_state,
2724 gl_shader_stage stage,
2725 struct anv_state *state)
2726 {
2727 struct anv_pipeline *pipeline = pipe_state->pipeline;
2728
2729 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2730 if (map->sampler_count == 0) {
2731 *state = (struct anv_state) { 0, };
2732 return VK_SUCCESS;
2733 }
2734
2735 uint32_t size = map->sampler_count * 16;
2736 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2737
2738 if (state->map == NULL)
2739 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2740
2741 for (uint32_t s = 0; s < map->sampler_count; s++) {
2742 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2743 const struct anv_descriptor *desc =
2744 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2745
2746 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2747 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2748 continue;
2749
2750 struct anv_sampler *sampler = desc->sampler;
2751
2752 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2753 * happens to be zero.
2754 */
2755 if (sampler == NULL)
2756 continue;
2757
2758 memcpy(state->map + (s * 16),
2759 sampler->state[binding->plane], sizeof(sampler->state[0]));
2760 }
2761
2762 return VK_SUCCESS;
2763 }
2764
2765 static uint32_t
2766 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer,
2767 struct anv_cmd_pipeline_state *pipe_state)
2768 {
2769 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2770 pipe_state->pipeline->active_stages;
2771
2772 VkResult result = VK_SUCCESS;
2773 anv_foreach_stage(s, dirty) {
2774 result = emit_samplers(cmd_buffer, pipe_state, s,
2775 &cmd_buffer->state.samplers[s]);
2776 if (result != VK_SUCCESS)
2777 break;
2778 result = emit_binding_table(cmd_buffer, pipe_state, s,
2779 &cmd_buffer->state.binding_tables[s]);
2780 if (result != VK_SUCCESS)
2781 break;
2782 }
2783
2784 if (result != VK_SUCCESS) {
2785 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2786
2787 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2788 if (result != VK_SUCCESS)
2789 return 0;
2790
2791 /* Re-emit state base addresses so we get the new surface state base
2792 * address before we start emitting binding tables etc.
2793 */
2794 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2795
2796 /* Re-emit all active binding tables */
2797 dirty |= pipe_state->pipeline->active_stages;
2798 anv_foreach_stage(s, dirty) {
2799 result = emit_samplers(cmd_buffer, pipe_state, s,
2800 &cmd_buffer->state.samplers[s]);
2801 if (result != VK_SUCCESS) {
2802 anv_batch_set_error(&cmd_buffer->batch, result);
2803 return 0;
2804 }
2805 result = emit_binding_table(cmd_buffer, pipe_state, s,
2806 &cmd_buffer->state.binding_tables[s]);
2807 if (result != VK_SUCCESS) {
2808 anv_batch_set_error(&cmd_buffer->batch, result);
2809 return 0;
2810 }
2811 }
2812 }
2813
2814 cmd_buffer->state.descriptors_dirty &= ~dirty;
2815
2816 return dirty;
2817 }
2818
2819 static void
2820 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2821 uint32_t stages)
2822 {
2823 static const uint32_t sampler_state_opcodes[] = {
2824 [MESA_SHADER_VERTEX] = 43,
2825 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2826 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2827 [MESA_SHADER_GEOMETRY] = 46,
2828 [MESA_SHADER_FRAGMENT] = 47,
2829 [MESA_SHADER_COMPUTE] = 0,
2830 };
2831
2832 static const uint32_t binding_table_opcodes[] = {
2833 [MESA_SHADER_VERTEX] = 38,
2834 [MESA_SHADER_TESS_CTRL] = 39,
2835 [MESA_SHADER_TESS_EVAL] = 40,
2836 [MESA_SHADER_GEOMETRY] = 41,
2837 [MESA_SHADER_FRAGMENT] = 42,
2838 [MESA_SHADER_COMPUTE] = 0,
2839 };
2840
2841 anv_foreach_stage(s, stages) {
2842 assert(s < ARRAY_SIZE(binding_table_opcodes));
2843 assert(binding_table_opcodes[s] > 0);
2844
2845 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2846 anv_batch_emit(&cmd_buffer->batch,
2847 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2848 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2849 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2850 }
2851 }
2852
2853 /* Always emit binding table pointers if we're asked to, since on SKL
2854 * this is what flushes push constants. */
2855 anv_batch_emit(&cmd_buffer->batch,
2856 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2857 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2858 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2859 }
2860 }
2861 }
2862
2863 static struct anv_address
2864 get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
2865 gl_shader_stage stage,
2866 const struct anv_push_range *range)
2867 {
2868 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2869 switch (range->set) {
2870 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2871 /* This is a descriptor set buffer so the set index is
2872 * actually given by binding->binding. (Yes, that's
2873 * confusing.)
2874 */
2875 struct anv_descriptor_set *set =
2876 gfx_state->base.descriptors[range->index];
2877 return anv_descriptor_set_address(cmd_buffer, set);
2878 }
2879
2880 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
2881 struct anv_state state =
2882 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2883 return (struct anv_address) {
2884 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2885 .offset = state.offset,
2886 };
2887 }
2888
2889 default: {
2890 assert(range->set < MAX_SETS);
2891 struct anv_descriptor_set *set =
2892 gfx_state->base.descriptors[range->set];
2893 const struct anv_descriptor *desc =
2894 &set->descriptors[range->index];
2895
2896 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2897 return desc->buffer_view->address;
2898 } else {
2899 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2900 struct anv_push_constants *push =
2901 &cmd_buffer->state.push_constants[stage];
2902 uint32_t dynamic_offset =
2903 push->dynamic_offsets[range->dynamic_offset_index];
2904 return anv_address_add(desc->buffer->address,
2905 desc->offset + dynamic_offset);
2906 }
2907 }
2908 }
2909 }
2910
2911
2912 /** Returns the size in bytes of the bound buffer relative to range->start
2913 *
2914 * This may be smaller than range->length * 32.
2915 */
2916 static uint32_t
2917 get_push_range_bound_size(struct anv_cmd_buffer *cmd_buffer,
2918 gl_shader_stage stage,
2919 const struct anv_push_range *range)
2920 {
2921 assert(stage != MESA_SHADER_COMPUTE);
2922 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2923 switch (range->set) {
2924 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2925 struct anv_descriptor_set *set =
2926 gfx_state->base.descriptors[range->index];
2927 assert(range->start * 32 < set->desc_mem.alloc_size);
2928 assert((range->start + range->length) * 32 < set->desc_mem.alloc_size);
2929 return set->desc_mem.alloc_size - range->start * 32;
2930 }
2931
2932 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
2933 return range->length * 32;
2934
2935 default: {
2936 assert(range->set < MAX_SETS);
2937 struct anv_descriptor_set *set =
2938 gfx_state->base.descriptors[range->set];
2939 const struct anv_descriptor *desc =
2940 &set->descriptors[range->index];
2941
2942 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2943 if (range->start * 32 > desc->buffer_view->range)
2944 return 0;
2945
2946 return desc->buffer_view->range - range->start * 32;
2947 } else {
2948 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2949 /* Compute the offset within the buffer */
2950 struct anv_push_constants *push =
2951 &cmd_buffer->state.push_constants[stage];
2952 uint32_t dynamic_offset =
2953 push->dynamic_offsets[range->dynamic_offset_index];
2954 uint64_t offset = desc->offset + dynamic_offset;
2955 /* Clamp to the buffer size */
2956 offset = MIN2(offset, desc->buffer->size);
2957 /* Clamp the range to the buffer size */
2958 uint32_t bound_range = MIN2(desc->range, desc->buffer->size - offset);
2959
2960 /* Align the range for consistency */
2961 bound_range = align_u32(bound_range, ANV_UBO_BOUNDS_CHECK_ALIGNMENT);
2962
2963 if (range->start * 32 > bound_range)
2964 return 0;
2965
2966 return bound_range - range->start * 32;
2967 }
2968 }
2969 }
2970 }
2971
2972 static void
2973 cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
2974 gl_shader_stage stage,
2975 struct anv_address *buffers,
2976 unsigned buffer_count)
2977 {
2978 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2979 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2980
2981 static const uint32_t push_constant_opcodes[] = {
2982 [MESA_SHADER_VERTEX] = 21,
2983 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2984 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2985 [MESA_SHADER_GEOMETRY] = 22,
2986 [MESA_SHADER_FRAGMENT] = 23,
2987 [MESA_SHADER_COMPUTE] = 0,
2988 };
2989
2990 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2991 assert(push_constant_opcodes[stage] > 0);
2992
2993 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2994 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2995
2996 if (anv_pipeline_has_stage(pipeline, stage)) {
2997 const struct anv_pipeline_bind_map *bind_map =
2998 &pipeline->shaders[stage]->bind_map;
2999
3000 #if GEN_GEN >= 12
3001 c.MOCS = cmd_buffer->device->isl_dev.mocs.internal;
3002 #endif
3003
3004 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3005 /* The Skylake PRM contains the following restriction:
3006 *
3007 * "The driver must ensure The following case does not occur
3008 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
3009 * buffer 3 read length equal to zero committed followed by a
3010 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
3011 * zero committed."
3012 *
3013 * To avoid this, we program the buffers in the highest slots.
3014 * This way, slot 0 is only used if slot 3 is also used.
3015 */
3016 assert(buffer_count <= 4);
3017 const unsigned shift = 4 - buffer_count;
3018 for (unsigned i = 0; i < buffer_count; i++) {
3019 const struct anv_push_range *range = &bind_map->push_ranges[i];
3020
3021 /* At this point we only have non-empty ranges */
3022 assert(range->length > 0);
3023
3024 /* For Ivy Bridge, make sure we only set the first range (actual
3025 * push constants)
3026 */
3027 assert((GEN_GEN >= 8 || GEN_IS_HASWELL) || i == 0);
3028
3029 c.ConstantBody.ReadLength[i + shift] = range->length;
3030 c.ConstantBody.Buffer[i + shift] =
3031 anv_address_add(buffers[i], range->start * 32);
3032 }
3033 #else
3034 /* For Ivy Bridge, push constants are relative to dynamic state
3035 * base address and we only ever push actual push constants.
3036 */
3037 if (bind_map->push_ranges[0].length > 0) {
3038 assert(buffer_count == 1);
3039 assert(bind_map->push_ranges[0].set ==
3040 ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
3041 assert(buffers[0].bo ==
3042 cmd_buffer->device->dynamic_state_pool.block_pool.bo);
3043 c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length;
3044 c.ConstantBody.Buffer[0].bo = NULL;
3045 c.ConstantBody.Buffer[0].offset = buffers[0].offset;
3046 }
3047 assert(bind_map->push_ranges[1].length == 0);
3048 assert(bind_map->push_ranges[2].length == 0);
3049 assert(bind_map->push_ranges[3].length == 0);
3050 #endif
3051 }
3052 }
3053 }
3054
3055 #if GEN_GEN >= 12
3056 static void
3057 cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer,
3058 uint32_t shader_mask,
3059 struct anv_address *buffers,
3060 uint32_t buffer_count)
3061 {
3062 if (buffer_count == 0) {
3063 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
3064 c.ShaderUpdateEnable = shader_mask;
3065 c.MOCS = cmd_buffer->device->isl_dev.mocs.internal;
3066 }
3067 return;
3068 }
3069
3070 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3071 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
3072
3073 static const uint32_t push_constant_opcodes[] = {
3074 [MESA_SHADER_VERTEX] = 21,
3075 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3076 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3077 [MESA_SHADER_GEOMETRY] = 22,
3078 [MESA_SHADER_FRAGMENT] = 23,
3079 [MESA_SHADER_COMPUTE] = 0,
3080 };
3081
3082 gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask);
3083 assert(stage < ARRAY_SIZE(push_constant_opcodes));
3084 assert(push_constant_opcodes[stage] > 0);
3085
3086 const struct anv_pipeline_bind_map *bind_map =
3087 &pipeline->shaders[stage]->bind_map;
3088
3089 uint32_t *dw;
3090 const uint32_t buffer_mask = (1 << buffer_count) - 1;
3091 const uint32_t num_dwords = 2 + 2 * buffer_count;
3092
3093 dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3094 GENX(3DSTATE_CONSTANT_ALL),
3095 .ShaderUpdateEnable = shader_mask,
3096 .PointerBufferMask = buffer_mask,
3097 .MOCS = cmd_buffer->device->isl_dev.mocs.internal);
3098
3099 for (int i = 0; i < buffer_count; i++) {
3100 const struct anv_push_range *range = &bind_map->push_ranges[i];
3101 GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
3102 &cmd_buffer->batch, dw + 2 + i * 2,
3103 &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
3104 .PointerToConstantBuffer =
3105 anv_address_add(buffers[i], range->start * 32),
3106 .ConstantBufferReadLength = range->length,
3107 });
3108 }
3109 }
3110 #endif
3111
3112 static void
3113 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
3114 VkShaderStageFlags dirty_stages)
3115 {
3116 VkShaderStageFlags flushed = 0;
3117 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3118 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
3119
3120 #if GEN_GEN >= 12
3121 uint32_t nobuffer_stages = 0;
3122 #endif
3123
3124 anv_foreach_stage(stage, dirty_stages) {
3125 unsigned buffer_count = 0;
3126 flushed |= mesa_to_vk_shader_stage(stage);
3127 UNUSED uint32_t max_push_range = 0;
3128
3129 struct anv_address buffers[4] = {};
3130 if (anv_pipeline_has_stage(pipeline, stage)) {
3131 const struct anv_pipeline_bind_map *bind_map =
3132 &pipeline->shaders[stage]->bind_map;
3133 struct anv_push_constants *push =
3134 &cmd_buffer->state.push_constants[stage];
3135
3136 if (cmd_buffer->device->robust_buffer_access) {
3137 for (unsigned i = 0; i < 4; i++) {
3138 const struct anv_push_range *range = &bind_map->push_ranges[i];
3139 if (range->length == 0) {
3140 push->push_ubo_sizes[i] = 0;
3141 } else {
3142 push->push_ubo_sizes[i] =
3143 get_push_range_bound_size(cmd_buffer, stage, range);
3144 }
3145 cmd_buffer->state.push_constants_dirty |=
3146 mesa_to_vk_shader_stage(stage);
3147 }
3148 }
3149
3150 /* We have to gather buffer addresses as a second step because the
3151 * loop above puts data into the push constant area and the call to
3152 * get_push_range_address is what locks our push constants and copies
3153 * them into the actual GPU buffer. If we did the two loops at the
3154 * same time, we'd risk only having some of the sizes in the push
3155 * constant buffer when we did the copy.
3156 */
3157 for (unsigned i = 0; i < 4; i++) {
3158 const struct anv_push_range *range = &bind_map->push_ranges[i];
3159 if (range->length == 0)
3160 break;
3161
3162 buffers[i] = get_push_range_address(cmd_buffer, stage, range);
3163 max_push_range = MAX2(max_push_range, range->length);
3164 buffer_count++;
3165 }
3166
3167 /* We have at most 4 buffers but they should be tightly packed */
3168 for (unsigned i = buffer_count; i < 4; i++)
3169 assert(bind_map->push_ranges[i].length == 0);
3170 }
3171
3172 #if GEN_GEN >= 12
3173 /* If this stage doesn't have any push constants, emit it later in a
3174 * single CONSTANT_ALL packet.
3175 */
3176 if (buffer_count == 0) {
3177 nobuffer_stages |= 1 << stage;
3178 continue;
3179 }
3180
3181 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
3182 * contains only 5 bits, so we can only use it for buffers smaller than
3183 * 32.
3184 */
3185 if (max_push_range < 32) {
3186 cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage,
3187 buffers, buffer_count);
3188 continue;
3189 }
3190 #endif
3191
3192 cmd_buffer_emit_push_constant(cmd_buffer, stage, buffers, buffer_count);
3193 }
3194
3195 #if GEN_GEN >= 12
3196 if (nobuffer_stages)
3197 cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, NULL, 0);
3198 #endif
3199
3200 cmd_buffer->state.push_constants_dirty &= ~flushed;
3201 }
3202
3203 void
3204 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
3205 {
3206 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3207 uint32_t *p;
3208
3209 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
3210 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
3211 vb_emit |= pipeline->vb_used;
3212
3213 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
3214
3215 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->l3_config);
3216
3217 genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
3218
3219 genX(flush_pipeline_select_3d)(cmd_buffer);
3220
3221 if (vb_emit) {
3222 const uint32_t num_buffers = __builtin_popcount(vb_emit);
3223 const uint32_t num_dwords = 1 + num_buffers * 4;
3224
3225 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3226 GENX(3DSTATE_VERTEX_BUFFERS));
3227 uint32_t vb, i = 0;
3228 for_each_bit(vb, vb_emit) {
3229 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
3230 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
3231
3232 struct GENX(VERTEX_BUFFER_STATE) state = {
3233 .VertexBufferIndex = vb,
3234
3235 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
3236 #if GEN_GEN <= 7
3237 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
3238 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
3239 #endif
3240
3241 .AddressModifyEnable = true,
3242 .BufferPitch = pipeline->vb[vb].stride,
3243 .BufferStartingAddress = anv_address_add(buffer->address, offset),
3244
3245 #if GEN_GEN >= 8
3246 .BufferSize = buffer->size - offset
3247 #else
3248 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
3249 #endif
3250 };
3251
3252 #if GEN_GEN >= 8 && GEN_GEN <= 9
3253 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer, vb,
3254 state.BufferStartingAddress,
3255 state.BufferSize);
3256 #endif
3257
3258 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
3259 i++;
3260 }
3261 }
3262
3263 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
3264
3265 #if GEN_GEN >= 8
3266 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) {
3267 /* We don't need any per-buffer dirty tracking because you're not
3268 * allowed to bind different XFB buffers while XFB is enabled.
3269 */
3270 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3271 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
3272 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
3273 #if GEN_GEN < 12
3274 sob.SOBufferIndex = idx;
3275 #else
3276 sob._3DCommandOpcode = 0;
3277 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
3278 #endif
3279
3280 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
3281 sob.SOBufferEnable = true;
3282 sob.MOCS = cmd_buffer->device->isl_dev.mocs.internal,
3283 sob.StreamOffsetWriteEnable = false;
3284 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
3285 xfb->offset);
3286 /* Size is in DWords - 1 */
3287 sob.SurfaceSize = xfb->size / 4 - 1;
3288 }
3289 }
3290 }
3291
3292 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
3293 if (GEN_GEN >= 10)
3294 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3295 }
3296 #endif
3297
3298 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
3299 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3300
3301 /* If the pipeline changed, we may need to re-allocate push constant
3302 * space in the URB.
3303 */
3304 cmd_buffer_alloc_push_constants(cmd_buffer);
3305 }
3306
3307 #if GEN_GEN <= 7
3308 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
3309 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
3310 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
3311 *
3312 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
3313 * stall needs to be sent just prior to any 3DSTATE_VS,
3314 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
3315 * 3DSTATE_BINDING_TABLE_POINTER_VS,
3316 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
3317 * PIPE_CONTROL needs to be sent before any combination of VS
3318 * associated 3DSTATE."
3319 */
3320 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3321 pc.DepthStallEnable = true;
3322 pc.PostSyncOperation = WriteImmediateData;
3323 pc.Address =
3324 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
3325 }
3326 }
3327 #endif
3328
3329 /* Render targets live in the same binding table as fragment descriptors */
3330 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
3331 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
3332
3333 /* We emit the binding tables and sampler tables first, then emit push
3334 * constants and then finally emit binding table and sampler table
3335 * pointers. It has to happen in this order, since emitting the binding
3336 * tables may change the push constants (in case of storage images). After
3337 * emitting push constants, on SKL+ we have to emit the corresponding
3338 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
3339 */
3340 uint32_t dirty = 0;
3341 if (cmd_buffer->state.descriptors_dirty)
3342 dirty = flush_descriptor_sets(cmd_buffer, &cmd_buffer->state.gfx.base);
3343
3344 if (dirty || cmd_buffer->state.push_constants_dirty) {
3345 /* Because we're pushing UBOs, we have to push whenever either
3346 * descriptors or push constants is dirty.
3347 */
3348 dirty |= cmd_buffer->state.push_constants_dirty;
3349 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
3350 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
3351 }
3352
3353 if (dirty)
3354 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
3355
3356 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
3357 gen8_cmd_buffer_emit_viewport(cmd_buffer);
3358
3359 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
3360 ANV_CMD_DIRTY_PIPELINE)) {
3361 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
3362 pipeline->depth_clamp_enable);
3363 }
3364
3365 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
3366 ANV_CMD_DIRTY_RENDER_TARGETS))
3367 gen7_cmd_buffer_emit_scissor(cmd_buffer);
3368
3369 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
3370 }
3371
3372 static void
3373 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
3374 struct anv_address addr,
3375 uint32_t size, uint32_t index)
3376 {
3377 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
3378 GENX(3DSTATE_VERTEX_BUFFERS));
3379
3380 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
3381 &(struct GENX(VERTEX_BUFFER_STATE)) {
3382 .VertexBufferIndex = index,
3383 .AddressModifyEnable = true,
3384 .BufferPitch = 0,
3385 .MOCS = addr.bo ? anv_mocs_for_bo(cmd_buffer->device, addr.bo) : 0,
3386 .NullVertexBuffer = size == 0,
3387 #if (GEN_GEN >= 8)
3388 .BufferStartingAddress = addr,
3389 .BufferSize = size
3390 #else
3391 .BufferStartingAddress = addr,
3392 .EndAddress = anv_address_add(addr, size),
3393 #endif
3394 });
3395
3396 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer,
3397 index, addr, size);
3398 }
3399
3400 static void
3401 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
3402 struct anv_address addr)
3403 {
3404 emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
3405 }
3406
3407 static void
3408 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
3409 uint32_t base_vertex, uint32_t base_instance)
3410 {
3411 if (base_vertex == 0 && base_instance == 0) {
3412 emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
3413 } else {
3414 struct anv_state id_state =
3415 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
3416
3417 ((uint32_t *)id_state.map)[0] = base_vertex;
3418 ((uint32_t *)id_state.map)[1] = base_instance;
3419
3420 struct anv_address addr = {
3421 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3422 .offset = id_state.offset,
3423 };
3424
3425 emit_base_vertex_instance_bo(cmd_buffer, addr);
3426 }
3427 }
3428
3429 static void
3430 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
3431 {
3432 struct anv_state state =
3433 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
3434
3435 ((uint32_t *)state.map)[0] = draw_index;
3436
3437 struct anv_address addr = {
3438 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3439 .offset = state.offset,
3440 };
3441
3442 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
3443 }
3444
3445 static void
3446 update_dirty_vbs_for_gen8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
3447 uint32_t access_type)
3448 {
3449 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3450 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3451
3452 uint64_t vb_used = pipeline->vb_used;
3453 if (vs_prog_data->uses_firstvertex ||
3454 vs_prog_data->uses_baseinstance)
3455 vb_used |= 1ull << ANV_SVGS_VB_INDEX;
3456 if (vs_prog_data->uses_drawid)
3457 vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
3458
3459 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(cmd_buffer,
3460 access_type == RANDOM,
3461 vb_used);
3462 }
3463
3464 void genX(CmdDraw)(
3465 VkCommandBuffer commandBuffer,
3466 uint32_t vertexCount,
3467 uint32_t instanceCount,
3468 uint32_t firstVertex,
3469 uint32_t firstInstance)
3470 {
3471 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3472 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3473 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3474
3475 if (anv_batch_has_error(&cmd_buffer->batch))
3476 return;
3477
3478 genX(cmd_buffer_flush_state)(cmd_buffer);
3479
3480 if (cmd_buffer->state.conditional_render_enabled)
3481 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3482
3483 if (vs_prog_data->uses_firstvertex ||
3484 vs_prog_data->uses_baseinstance)
3485 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3486 if (vs_prog_data->uses_drawid)
3487 emit_draw_index(cmd_buffer, 0);
3488
3489 /* Emitting draw index or vertex index BOs may result in needing
3490 * additional VF cache flushes.
3491 */
3492 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3493
3494 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3495 * different views. We need to multiply instanceCount by the view count.
3496 */
3497 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3498
3499 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3500 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3501 prim.VertexAccessType = SEQUENTIAL;
3502 prim.PrimitiveTopologyType = pipeline->topology;
3503 prim.VertexCountPerInstance = vertexCount;
3504 prim.StartVertexLocation = firstVertex;
3505 prim.InstanceCount = instanceCount;
3506 prim.StartInstanceLocation = firstInstance;
3507 prim.BaseVertexLocation = 0;
3508 }
3509
3510 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3511 }
3512
3513 void genX(CmdDrawIndexed)(
3514 VkCommandBuffer commandBuffer,
3515 uint32_t indexCount,
3516 uint32_t instanceCount,
3517 uint32_t firstIndex,
3518 int32_t vertexOffset,
3519 uint32_t firstInstance)
3520 {
3521 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3522 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3523 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3524
3525 if (anv_batch_has_error(&cmd_buffer->batch))
3526 return;
3527
3528 genX(cmd_buffer_flush_state)(cmd_buffer);
3529
3530 if (cmd_buffer->state.conditional_render_enabled)
3531 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3532
3533 if (vs_prog_data->uses_firstvertex ||
3534 vs_prog_data->uses_baseinstance)
3535 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
3536 if (vs_prog_data->uses_drawid)
3537 emit_draw_index(cmd_buffer, 0);
3538
3539 /* Emitting draw index or vertex index BOs may result in needing
3540 * additional VF cache flushes.
3541 */
3542 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3543
3544 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3545 * different views. We need to multiply instanceCount by the view count.
3546 */
3547 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3548
3549 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3550 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3551 prim.VertexAccessType = RANDOM;
3552 prim.PrimitiveTopologyType = pipeline->topology;
3553 prim.VertexCountPerInstance = indexCount;
3554 prim.StartVertexLocation = firstIndex;
3555 prim.InstanceCount = instanceCount;
3556 prim.StartInstanceLocation = firstInstance;
3557 prim.BaseVertexLocation = vertexOffset;
3558 }
3559
3560 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3561 }
3562
3563 /* Auto-Draw / Indirect Registers */
3564 #define GEN7_3DPRIM_END_OFFSET 0x2420
3565 #define GEN7_3DPRIM_START_VERTEX 0x2430
3566 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
3567 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
3568 #define GEN7_3DPRIM_START_INSTANCE 0x243C
3569 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
3570
3571 void genX(CmdDrawIndirectByteCountEXT)(
3572 VkCommandBuffer commandBuffer,
3573 uint32_t instanceCount,
3574 uint32_t firstInstance,
3575 VkBuffer counterBuffer,
3576 VkDeviceSize counterBufferOffset,
3577 uint32_t counterOffset,
3578 uint32_t vertexStride)
3579 {
3580 #if GEN_IS_HASWELL || GEN_GEN >= 8
3581 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3582 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
3583 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3584 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3585
3586 /* firstVertex is always zero for this draw function */
3587 const uint32_t firstVertex = 0;
3588
3589 if (anv_batch_has_error(&cmd_buffer->batch))
3590 return;
3591
3592 genX(cmd_buffer_flush_state)(cmd_buffer);
3593
3594 if (vs_prog_data->uses_firstvertex ||
3595 vs_prog_data->uses_baseinstance)
3596 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3597 if (vs_prog_data->uses_drawid)
3598 emit_draw_index(cmd_buffer, 0);
3599
3600 /* Emitting draw index or vertex index BOs may result in needing
3601 * additional VF cache flushes.
3602 */
3603 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3604
3605 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3606 * different views. We need to multiply instanceCount by the view count.
3607 */
3608 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3609
3610 struct gen_mi_builder b;
3611 gen_mi_builder_init(&b, &cmd_buffer->batch);
3612 struct gen_mi_value count =
3613 gen_mi_mem32(anv_address_add(counter_buffer->address,
3614 counterBufferOffset));
3615 if (counterOffset)
3616 count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset));
3617 count = gen_mi_udiv32_imm(&b, count, vertexStride);
3618 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count);
3619
3620 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3621 gen_mi_imm(firstVertex));
3622 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT),
3623 gen_mi_imm(instanceCount));
3624 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3625 gen_mi_imm(firstInstance));
3626 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3627
3628 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3629 prim.IndirectParameterEnable = true;
3630 prim.VertexAccessType = SEQUENTIAL;
3631 prim.PrimitiveTopologyType = pipeline->topology;
3632 }
3633
3634 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3635 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
3636 }
3637
3638 static void
3639 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
3640 struct anv_address addr,
3641 bool indexed)
3642 {
3643 struct gen_mi_builder b;
3644 gen_mi_builder_init(&b, &cmd_buffer->batch);
3645
3646 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT),
3647 gen_mi_mem32(anv_address_add(addr, 0)));
3648
3649 struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4));
3650 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
3651 if (view_count > 1) {
3652 #if GEN_IS_HASWELL || GEN_GEN >= 8
3653 instance_count = gen_mi_imul_imm(&b, instance_count, view_count);
3654 #else
3655 anv_finishme("Multiview + indirect draw requires MI_MATH; "
3656 "MI_MATH is not supported on Ivy Bridge");
3657 #endif
3658 }
3659 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count);
3660
3661 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3662 gen_mi_mem32(anv_address_add(addr, 8)));
3663
3664 if (indexed) {
3665 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX),
3666 gen_mi_mem32(anv_address_add(addr, 12)));
3667 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3668 gen_mi_mem32(anv_address_add(addr, 16)));
3669 } else {
3670 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3671 gen_mi_mem32(anv_address_add(addr, 12)));
3672 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3673 }
3674 }
3675
3676 void genX(CmdDrawIndirect)(
3677 VkCommandBuffer commandBuffer,
3678 VkBuffer _buffer,
3679 VkDeviceSize offset,
3680 uint32_t drawCount,
3681 uint32_t stride)
3682 {
3683 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3684 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3685 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3686 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3687
3688 if (anv_batch_has_error(&cmd_buffer->batch))
3689 return;
3690
3691 genX(cmd_buffer_flush_state)(cmd_buffer);
3692
3693 if (cmd_buffer->state.conditional_render_enabled)
3694 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3695
3696 for (uint32_t i = 0; i < drawCount; i++) {
3697 struct anv_address draw = anv_address_add(buffer->address, offset);
3698
3699 if (vs_prog_data->uses_firstvertex ||
3700 vs_prog_data->uses_baseinstance)
3701 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3702 if (vs_prog_data->uses_drawid)
3703 emit_draw_index(cmd_buffer, i);
3704
3705 /* Emitting draw index or vertex index BOs may result in needing
3706 * additional VF cache flushes.
3707 */
3708 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3709
3710 load_indirect_parameters(cmd_buffer, draw, false);
3711
3712 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3713 prim.IndirectParameterEnable = true;
3714 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3715 prim.VertexAccessType = SEQUENTIAL;
3716 prim.PrimitiveTopologyType = pipeline->topology;
3717 }
3718
3719 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3720
3721 offset += stride;
3722 }
3723 }
3724
3725 void genX(CmdDrawIndexedIndirect)(
3726 VkCommandBuffer commandBuffer,
3727 VkBuffer _buffer,
3728 VkDeviceSize offset,
3729 uint32_t drawCount,
3730 uint32_t stride)
3731 {
3732 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3733 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3734 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3735 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3736
3737 if (anv_batch_has_error(&cmd_buffer->batch))
3738 return;
3739
3740 genX(cmd_buffer_flush_state)(cmd_buffer);
3741
3742 if (cmd_buffer->state.conditional_render_enabled)
3743 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3744
3745 for (uint32_t i = 0; i < drawCount; i++) {
3746 struct anv_address draw = anv_address_add(buffer->address, offset);
3747
3748 /* TODO: We need to stomp base vertex to 0 somehow */
3749 if (vs_prog_data->uses_firstvertex ||
3750 vs_prog_data->uses_baseinstance)
3751 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3752 if (vs_prog_data->uses_drawid)
3753 emit_draw_index(cmd_buffer, i);
3754
3755 /* Emitting draw index or vertex index BOs may result in needing
3756 * additional VF cache flushes.
3757 */
3758 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3759
3760 load_indirect_parameters(cmd_buffer, draw, true);
3761
3762 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3763 prim.IndirectParameterEnable = true;
3764 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3765 prim.VertexAccessType = RANDOM;
3766 prim.PrimitiveTopologyType = pipeline->topology;
3767 }
3768
3769 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3770
3771 offset += stride;
3772 }
3773 }
3774
3775 #define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
3776
3777 static void
3778 prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3779 struct anv_address count_address,
3780 const bool conditional_render_enabled)
3781 {
3782 struct gen_mi_builder b;
3783 gen_mi_builder_init(&b, &cmd_buffer->batch);
3784
3785 if (conditional_render_enabled) {
3786 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3787 gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
3788 gen_mi_mem32(count_address));
3789 #endif
3790 } else {
3791 /* Upload the current draw count from the draw parameters buffer to
3792 * MI_PREDICATE_SRC0.
3793 */
3794 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
3795 gen_mi_mem32(count_address));
3796
3797 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
3798 }
3799 }
3800
3801 static void
3802 emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3803 uint32_t draw_index)
3804 {
3805 struct gen_mi_builder b;
3806 gen_mi_builder_init(&b, &cmd_buffer->batch);
3807
3808 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
3809 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
3810
3811 if (draw_index == 0) {
3812 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3813 mip.LoadOperation = LOAD_LOADINV;
3814 mip.CombineOperation = COMBINE_SET;
3815 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3816 }
3817 } else {
3818 /* While draw_index < draw_count the predicate's result will be
3819 * (draw_index == draw_count) ^ TRUE = TRUE
3820 * When draw_index == draw_count the result is
3821 * (TRUE) ^ TRUE = FALSE
3822 * After this all results will be:
3823 * (FALSE) ^ FALSE = FALSE
3824 */
3825 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3826 mip.LoadOperation = LOAD_LOAD;
3827 mip.CombineOperation = COMBINE_XOR;
3828 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3829 }
3830 }
3831 }
3832
3833 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3834 static void
3835 emit_draw_count_predicate_with_conditional_render(
3836 struct anv_cmd_buffer *cmd_buffer,
3837 uint32_t draw_index)
3838 {
3839 struct gen_mi_builder b;
3840 gen_mi_builder_init(&b, &cmd_buffer->batch);
3841
3842 struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
3843 gen_mi_reg64(TMP_DRAW_COUNT_REG));
3844 pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
3845
3846 #if GEN_GEN >= 8
3847 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
3848 #else
3849 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
3850 * so we emit MI_PREDICATE to set it.
3851 */
3852
3853 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
3854 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3855
3856 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3857 mip.LoadOperation = LOAD_LOADINV;
3858 mip.CombineOperation = COMBINE_SET;
3859 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3860 }
3861 #endif
3862 }
3863 #endif
3864
3865 void genX(CmdDrawIndirectCount)(
3866 VkCommandBuffer commandBuffer,
3867 VkBuffer _buffer,
3868 VkDeviceSize offset,
3869 VkBuffer _countBuffer,
3870 VkDeviceSize countBufferOffset,
3871 uint32_t maxDrawCount,
3872 uint32_t stride)
3873 {
3874 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3875 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3876 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3877 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3878 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3879 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3880
3881 if (anv_batch_has_error(&cmd_buffer->batch))
3882 return;
3883
3884 genX(cmd_buffer_flush_state)(cmd_buffer);
3885
3886 struct anv_address count_address =
3887 anv_address_add(count_buffer->address, countBufferOffset);
3888
3889 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3890 cmd_state->conditional_render_enabled);
3891
3892 for (uint32_t i = 0; i < maxDrawCount; i++) {
3893 struct anv_address draw = anv_address_add(buffer->address, offset);
3894
3895 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3896 if (cmd_state->conditional_render_enabled) {
3897 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3898 } else {
3899 emit_draw_count_predicate(cmd_buffer, i);
3900 }
3901 #else
3902 emit_draw_count_predicate(cmd_buffer, i);
3903 #endif
3904
3905 if (vs_prog_data->uses_firstvertex ||
3906 vs_prog_data->uses_baseinstance)
3907 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3908 if (vs_prog_data->uses_drawid)
3909 emit_draw_index(cmd_buffer, i);
3910
3911 /* Emitting draw index or vertex index BOs may result in needing
3912 * additional VF cache flushes.
3913 */
3914 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3915
3916 load_indirect_parameters(cmd_buffer, draw, false);
3917
3918 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3919 prim.IndirectParameterEnable = true;
3920 prim.PredicateEnable = true;
3921 prim.VertexAccessType = SEQUENTIAL;
3922 prim.PrimitiveTopologyType = pipeline->topology;
3923 }
3924
3925 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3926
3927 offset += stride;
3928 }
3929 }
3930
3931 void genX(CmdDrawIndexedIndirectCount)(
3932 VkCommandBuffer commandBuffer,
3933 VkBuffer _buffer,
3934 VkDeviceSize offset,
3935 VkBuffer _countBuffer,
3936 VkDeviceSize countBufferOffset,
3937 uint32_t maxDrawCount,
3938 uint32_t stride)
3939 {
3940 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3941 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3942 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3943 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3944 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3945 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3946
3947 if (anv_batch_has_error(&cmd_buffer->batch))
3948 return;
3949
3950 genX(cmd_buffer_flush_state)(cmd_buffer);
3951
3952 struct anv_address count_address =
3953 anv_address_add(count_buffer->address, countBufferOffset);
3954
3955 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3956 cmd_state->conditional_render_enabled);
3957
3958 for (uint32_t i = 0; i < maxDrawCount; i++) {
3959 struct anv_address draw = anv_address_add(buffer->address, offset);
3960
3961 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3962 if (cmd_state->conditional_render_enabled) {
3963 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3964 } else {
3965 emit_draw_count_predicate(cmd_buffer, i);
3966 }
3967 #else
3968 emit_draw_count_predicate(cmd_buffer, i);
3969 #endif
3970
3971 /* TODO: We need to stomp base vertex to 0 somehow */
3972 if (vs_prog_data->uses_firstvertex ||
3973 vs_prog_data->uses_baseinstance)
3974 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3975 if (vs_prog_data->uses_drawid)
3976 emit_draw_index(cmd_buffer, i);
3977
3978 /* Emitting draw index or vertex index BOs may result in needing
3979 * additional VF cache flushes.
3980 */
3981 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3982
3983 load_indirect_parameters(cmd_buffer, draw, true);
3984
3985 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3986 prim.IndirectParameterEnable = true;
3987 prim.PredicateEnable = true;
3988 prim.VertexAccessType = RANDOM;
3989 prim.PrimitiveTopologyType = pipeline->topology;
3990 }
3991
3992 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3993
3994 offset += stride;
3995 }
3996 }
3997
3998 void genX(CmdBeginTransformFeedbackEXT)(
3999 VkCommandBuffer commandBuffer,
4000 uint32_t firstCounterBuffer,
4001 uint32_t counterBufferCount,
4002 const VkBuffer* pCounterBuffers,
4003 const VkDeviceSize* pCounterBufferOffsets)
4004 {
4005 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4006
4007 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
4008 assert(counterBufferCount <= MAX_XFB_BUFFERS);
4009 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
4010
4011 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
4012 *
4013 * "Ssoftware must ensure that no HW stream output operations can be in
4014 * process or otherwise pending at the point that the MI_LOAD/STORE
4015 * commands are processed. This will likely require a pipeline flush."
4016 */
4017 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4018 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4019
4020 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
4021 /* If we have a counter buffer, this is a resume so we need to load the
4022 * value into the streamout offset register. Otherwise, this is a begin
4023 * and we need to reset it to zero.
4024 */
4025 if (pCounterBuffers &&
4026 idx >= firstCounterBuffer &&
4027 idx - firstCounterBuffer < counterBufferCount &&
4028 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
4029 uint32_t cb_idx = idx - firstCounterBuffer;
4030 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
4031 uint64_t offset = pCounterBufferOffsets ?
4032 pCounterBufferOffsets[cb_idx] : 0;
4033
4034 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4035 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4036 lrm.MemoryAddress = anv_address_add(counter_buffer->address,
4037 offset);
4038 }
4039 } else {
4040 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4041 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4042 lri.DataDWord = 0;
4043 }
4044 }
4045 }
4046
4047 cmd_buffer->state.xfb_enabled = true;
4048 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
4049 }
4050
4051 void genX(CmdEndTransformFeedbackEXT)(
4052 VkCommandBuffer commandBuffer,
4053 uint32_t firstCounterBuffer,
4054 uint32_t counterBufferCount,
4055 const VkBuffer* pCounterBuffers,
4056 const VkDeviceSize* pCounterBufferOffsets)
4057 {
4058 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4059
4060 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
4061 assert(counterBufferCount <= MAX_XFB_BUFFERS);
4062 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
4063
4064 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
4065 *
4066 * "Ssoftware must ensure that no HW stream output operations can be in
4067 * process or otherwise pending at the point that the MI_LOAD/STORE
4068 * commands are processed. This will likely require a pipeline flush."
4069 */
4070 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4071 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4072
4073 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
4074 unsigned idx = firstCounterBuffer + cb_idx;
4075
4076 /* If we have a counter buffer, this is a resume so we need to load the
4077 * value into the streamout offset register. Otherwise, this is a begin
4078 * and we need to reset it to zero.
4079 */
4080 if (pCounterBuffers &&
4081 cb_idx < counterBufferCount &&
4082 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
4083 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
4084 uint64_t offset = pCounterBufferOffsets ?
4085 pCounterBufferOffsets[cb_idx] : 0;
4086
4087 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4088 srm.MemoryAddress = anv_address_add(counter_buffer->address,
4089 offset);
4090 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4091 }
4092 }
4093 }
4094
4095 cmd_buffer->state.xfb_enabled = false;
4096 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
4097 }
4098
4099 void
4100 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
4101 {
4102 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4103
4104 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
4105
4106 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->l3_config);
4107
4108 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
4109
4110 if (cmd_buffer->state.compute.pipeline_dirty) {
4111 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
4112 *
4113 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4114 * the only bits that are changed are scoreboard related: Scoreboard
4115 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4116 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4117 * sufficient."
4118 */
4119 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4120 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4121
4122 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
4123
4124 /* The workgroup size of the pipeline affects our push constant layout
4125 * so flag push constants as dirty if we change the pipeline.
4126 */
4127 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4128 }
4129
4130 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
4131 cmd_buffer->state.compute.pipeline_dirty) {
4132 flush_descriptor_sets(cmd_buffer, &cmd_buffer->state.compute.base);
4133
4134 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4135 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
4136 .BindingTablePointer =
4137 cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
4138 .SamplerStatePointer =
4139 cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
4140 };
4141 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
4142
4143 struct anv_state state =
4144 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
4145 pipeline->interface_descriptor_data,
4146 GENX(INTERFACE_DESCRIPTOR_DATA_length),
4147 64);
4148
4149 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4150 anv_batch_emit(&cmd_buffer->batch,
4151 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
4152 mid.InterfaceDescriptorTotalLength = size;
4153 mid.InterfaceDescriptorDataStartAddress = state.offset;
4154 }
4155 }
4156
4157 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
4158 struct anv_state push_state =
4159 anv_cmd_buffer_cs_push_constants(cmd_buffer);
4160
4161 if (push_state.alloc_size) {
4162 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4163 curbe.CURBETotalDataLength = push_state.alloc_size;
4164 curbe.CURBEDataStartAddress = push_state.offset;
4165 }
4166 }
4167
4168 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
4169 }
4170
4171 cmd_buffer->state.compute.pipeline_dirty = false;
4172
4173 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4174 }
4175
4176 #if GEN_GEN == 7
4177
4178 static VkResult
4179 verify_cmd_parser(const struct anv_device *device,
4180 int required_version,
4181 const char *function)
4182 {
4183 if (device->physical->cmd_parser_version < required_version) {
4184 return vk_errorf(device, device->physical,
4185 VK_ERROR_FEATURE_NOT_PRESENT,
4186 "cmd parser version %d is required for %s",
4187 required_version, function);
4188 } else {
4189 return VK_SUCCESS;
4190 }
4191 }
4192
4193 #endif
4194
4195 static void
4196 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
4197 uint32_t baseGroupX,
4198 uint32_t baseGroupY,
4199 uint32_t baseGroupZ)
4200 {
4201 if (anv_batch_has_error(&cmd_buffer->batch))
4202 return;
4203
4204 struct anv_push_constants *push =
4205 &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
4206 if (push->cs.base_work_group_id[0] != baseGroupX ||
4207 push->cs.base_work_group_id[1] != baseGroupY ||
4208 push->cs.base_work_group_id[2] != baseGroupZ) {
4209 push->cs.base_work_group_id[0] = baseGroupX;
4210 push->cs.base_work_group_id[1] = baseGroupY;
4211 push->cs.base_work_group_id[2] = baseGroupZ;
4212
4213 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4214 }
4215 }
4216
4217 void genX(CmdDispatch)(
4218 VkCommandBuffer commandBuffer,
4219 uint32_t x,
4220 uint32_t y,
4221 uint32_t z)
4222 {
4223 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
4224 }
4225
4226 void genX(CmdDispatchBase)(
4227 VkCommandBuffer commandBuffer,
4228 uint32_t baseGroupX,
4229 uint32_t baseGroupY,
4230 uint32_t baseGroupZ,
4231 uint32_t groupCountX,
4232 uint32_t groupCountY,
4233 uint32_t groupCountZ)
4234 {
4235 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4236 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4237 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4238
4239 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
4240 baseGroupY, baseGroupZ);
4241
4242 if (anv_batch_has_error(&cmd_buffer->batch))
4243 return;
4244
4245 if (prog_data->uses_num_work_groups) {
4246 struct anv_state state =
4247 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
4248 uint32_t *sizes = state.map;
4249 sizes[0] = groupCountX;
4250 sizes[1] = groupCountY;
4251 sizes[2] = groupCountZ;
4252 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
4253 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
4254 .offset = state.offset,
4255 };
4256
4257 /* The num_workgroups buffer goes in the binding table */
4258 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4259 }
4260
4261 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4262
4263 if (cmd_buffer->state.conditional_render_enabled)
4264 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4265
4266 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
4267 ggw.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
4268 ggw.SIMDSize = prog_data->simd_size / 16;
4269 ggw.ThreadDepthCounterMaximum = 0;
4270 ggw.ThreadHeightCounterMaximum = 0;
4271 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4272 ggw.ThreadGroupIDXDimension = groupCountX;
4273 ggw.ThreadGroupIDYDimension = groupCountY;
4274 ggw.ThreadGroupIDZDimension = groupCountZ;
4275 ggw.RightExecutionMask = pipeline->cs_right_mask;
4276 ggw.BottomExecutionMask = 0xffffffff;
4277 }
4278
4279 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
4280 }
4281
4282 #define GPGPU_DISPATCHDIMX 0x2500
4283 #define GPGPU_DISPATCHDIMY 0x2504
4284 #define GPGPU_DISPATCHDIMZ 0x2508
4285
4286 void genX(CmdDispatchIndirect)(
4287 VkCommandBuffer commandBuffer,
4288 VkBuffer _buffer,
4289 VkDeviceSize offset)
4290 {
4291 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4292 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4293 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4294 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4295 struct anv_address addr = anv_address_add(buffer->address, offset);
4296 struct anv_batch *batch = &cmd_buffer->batch;
4297
4298 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
4299
4300 #if GEN_GEN == 7
4301 /* Linux 4.4 added command parser version 5 which allows the GPGPU
4302 * indirect dispatch registers to be written.
4303 */
4304 if (verify_cmd_parser(cmd_buffer->device, 5,
4305 "vkCmdDispatchIndirect") != VK_SUCCESS)
4306 return;
4307 #endif
4308
4309 if (prog_data->uses_num_work_groups) {
4310 cmd_buffer->state.compute.num_workgroups = addr;
4311
4312 /* The num_workgroups buffer goes in the binding table */
4313 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4314 }
4315
4316 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4317
4318 struct gen_mi_builder b;
4319 gen_mi_builder_init(&b, &cmd_buffer->batch);
4320
4321 struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0));
4322 struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4));
4323 struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8));
4324
4325 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x);
4326 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y);
4327 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
4328
4329 #if GEN_GEN <= 7
4330 /* predicate = (compute_dispatch_indirect_x_size == 0); */
4331 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x);
4332 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
4333 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4334 mip.LoadOperation = LOAD_LOAD;
4335 mip.CombineOperation = COMBINE_SET;
4336 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4337 }
4338
4339 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
4340 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y);
4341 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4342 mip.LoadOperation = LOAD_LOAD;
4343 mip.CombineOperation = COMBINE_OR;
4344 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4345 }
4346
4347 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
4348 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z);
4349 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4350 mip.LoadOperation = LOAD_LOAD;
4351 mip.CombineOperation = COMBINE_OR;
4352 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4353 }
4354
4355 /* predicate = !predicate; */
4356 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4357 mip.LoadOperation = LOAD_LOADINV;
4358 mip.CombineOperation = COMBINE_OR;
4359 mip.CompareOperation = COMPARE_FALSE;
4360 }
4361
4362 #if GEN_IS_HASWELL
4363 if (cmd_buffer->state.conditional_render_enabled) {
4364 /* predicate &= !(conditional_rendering_predicate == 0); */
4365 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
4366 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
4367 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4368 mip.LoadOperation = LOAD_LOADINV;
4369 mip.CombineOperation = COMBINE_AND;
4370 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4371 }
4372 }
4373 #endif
4374
4375 #else /* GEN_GEN > 7 */
4376 if (cmd_buffer->state.conditional_render_enabled)
4377 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4378 #endif
4379
4380 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
4381 ggw.IndirectParameterEnable = true;
4382 ggw.PredicateEnable = GEN_GEN <= 7 ||
4383 cmd_buffer->state.conditional_render_enabled;
4384 ggw.SIMDSize = prog_data->simd_size / 16;
4385 ggw.ThreadDepthCounterMaximum = 0;
4386 ggw.ThreadHeightCounterMaximum = 0;
4387 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4388 ggw.RightExecutionMask = pipeline->cs_right_mask;
4389 ggw.BottomExecutionMask = 0xffffffff;
4390 }
4391
4392 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
4393 }
4394
4395 static void
4396 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
4397 uint32_t pipeline)
4398 {
4399 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4400
4401 if (cmd_buffer->state.current_pipeline == pipeline)
4402 return;
4403
4404 #if GEN_GEN >= 8 && GEN_GEN < 10
4405 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
4406 *
4407 * Software must clear the COLOR_CALC_STATE Valid field in
4408 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
4409 * with Pipeline Select set to GPGPU.
4410 *
4411 * The internal hardware docs recommend the same workaround for Gen9
4412 * hardware too.
4413 */
4414 if (pipeline == GPGPU)
4415 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
4416 #endif
4417
4418 #if GEN_GEN == 9
4419 if (pipeline == _3D) {
4420 /* There is a mid-object preemption workaround which requires you to
4421 * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
4422 * even without preemption, we have issues with geometry flickering when
4423 * GPGPU and 3D are back-to-back and this seems to fix it. We don't
4424 * really know why.
4425 */
4426 const uint32_t subslices =
4427 MAX2(cmd_buffer->device->physical->subslice_total, 1);
4428 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
4429 vfe.MaximumNumberofThreads =
4430 devinfo->max_cs_threads * subslices - 1;
4431 vfe.NumberofURBEntries = 2;
4432 vfe.URBEntryAllocationSize = 2;
4433 }
4434
4435 /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
4436 * invalid. Set the compute pipeline to dirty to force a re-emit of the
4437 * pipeline in case we get back-to-back dispatch calls with the same
4438 * pipeline and a PIPELINE_SELECT in between.
4439 */
4440 cmd_buffer->state.compute.pipeline_dirty = true;
4441 }
4442 #endif
4443
4444 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
4445 * PIPELINE_SELECT [DevBWR+]":
4446 *
4447 * Project: DEVSNB+
4448 *
4449 * Software must ensure all the write caches are flushed through a
4450 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
4451 * command to invalidate read only caches prior to programming
4452 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
4453 */
4454 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4455 pc.RenderTargetCacheFlushEnable = true;
4456 pc.DepthCacheFlushEnable = true;
4457 pc.DCFlushEnable = true;
4458 pc.PostSyncOperation = NoWrite;
4459 pc.CommandStreamerStallEnable = true;
4460 #if GEN_GEN >= 12
4461 pc.TileCacheFlushEnable = true;
4462
4463 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must be
4464 * set with any PIPE_CONTROL with Depth Flush Enable bit set.
4465 */
4466 pc.DepthStallEnable = true;
4467 #endif
4468 }
4469
4470 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4471 pc.TextureCacheInvalidationEnable = true;
4472 pc.ConstantCacheInvalidationEnable = true;
4473 pc.StateCacheInvalidationEnable = true;
4474 pc.InstructionCacheInvalidateEnable = true;
4475 pc.PostSyncOperation = NoWrite;
4476 #if GEN_GEN >= 12
4477 pc.TileCacheFlushEnable = true;
4478 #endif
4479 }
4480
4481 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
4482 #if GEN_GEN >= 9
4483 ps.MaskBits = 3;
4484 #endif
4485 ps.PipelineSelection = pipeline;
4486 }
4487
4488 #if GEN_GEN == 9
4489 if (devinfo->is_geminilake) {
4490 /* Project: DevGLK
4491 *
4492 * "This chicken bit works around a hardware issue with barrier logic
4493 * encountered when switching between GPGPU and 3D pipelines. To
4494 * workaround the issue, this mode bit should be set after a pipeline
4495 * is selected."
4496 */
4497 uint32_t scec;
4498 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
4499 .GLKBarrierMode =
4500 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
4501 : GLK_BARRIER_MODE_3D_HULL,
4502 .GLKBarrierModeMask = 1);
4503 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
4504 }
4505 #endif
4506
4507 cmd_buffer->state.current_pipeline = pipeline;
4508 }
4509
4510 void
4511 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
4512 {
4513 genX(flush_pipeline_select)(cmd_buffer, _3D);
4514 }
4515
4516 void
4517 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
4518 {
4519 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
4520 }
4521
4522 void
4523 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
4524 {
4525 if (GEN_GEN >= 8)
4526 return;
4527
4528 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
4529 *
4530 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
4531 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
4532 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
4533 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
4534 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
4535 * Depth Flush Bit set, followed by another pipelined depth stall
4536 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
4537 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
4538 * via a preceding MI_FLUSH)."
4539 */
4540 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4541 pipe.DepthStallEnable = true;
4542 }
4543 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4544 pipe.DepthCacheFlushEnable = true;
4545 #if GEN_GEN >= 12
4546 pipe.TileCacheFlushEnable = true;
4547 #endif
4548 }
4549 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4550 pipe.DepthStallEnable = true;
4551 }
4552 }
4553
4554 /* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
4555 *
4556 * "The VF cache needs to be invalidated before binding and then using
4557 * Vertex Buffers that overlap with any previously bound Vertex Buffer
4558 * (at a 64B granularity) since the last invalidation. A VF cache
4559 * invalidate is performed by setting the "VF Cache Invalidation Enable"
4560 * bit in PIPE_CONTROL."
4561 *
4562 * This is implemented by carefully tracking all vertex and index buffer
4563 * bindings and flushing if the cache ever ends up with a range in the cache
4564 * that would exceed 4 GiB. This is implemented in three parts:
4565 *
4566 * 1. genX(cmd_buffer_set_binding_for_gen8_vb_flush)() which must be called
4567 * every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
4568 * tracking code of the new binding. If this new binding would cause
4569 * the cache to have a too-large range on the next draw call, a pipeline
4570 * stall and VF cache invalidate are added to pending_pipeline_bits.
4571 *
4572 * 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
4573 * empty whenever we emit a VF invalidate.
4574 *
4575 * 3. genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)() must be called
4576 * after every 3DPRIMITIVE and copies the bound range into the dirty
4577 * range for each used buffer. This has to be a separate step because
4578 * we don't always re-bind all buffers and so 1. can't know which
4579 * buffers are actually bound.
4580 */
4581 void
4582 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4583 int vb_index,
4584 struct anv_address vb_address,
4585 uint32_t vb_size)
4586 {
4587 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4588 !cmd_buffer->device->physical->use_softpin)
4589 return;
4590
4591 struct anv_vb_cache_range *bound, *dirty;
4592 if (vb_index == -1) {
4593 bound = &cmd_buffer->state.gfx.ib_bound_range;
4594 dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4595 } else {
4596 assert(vb_index >= 0);
4597 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4598 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4599 bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
4600 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
4601 }
4602
4603 if (vb_size == 0) {
4604 bound->start = 0;
4605 bound->end = 0;
4606 return;
4607 }
4608
4609 assert(vb_address.bo && (vb_address.bo->flags & EXEC_OBJECT_PINNED));
4610 bound->start = gen_48b_address(anv_address_physical(vb_address));
4611 bound->end = bound->start + vb_size;
4612 assert(bound->end > bound->start); /* No overflow */
4613
4614 /* Align everything to a cache line */
4615 bound->start &= ~(64ull - 1ull);
4616 bound->end = align_u64(bound->end, 64);
4617
4618 /* Compute the dirty range */
4619 dirty->start = MIN2(dirty->start, bound->start);
4620 dirty->end = MAX2(dirty->end, bound->end);
4621
4622 /* If our range is larger than 32 bits, we have to flush */
4623 assert(bound->end - bound->start <= (1ull << 32));
4624 if (dirty->end - dirty->start > (1ull << 32)) {
4625 cmd_buffer->state.pending_pipe_bits |=
4626 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
4627 }
4628 }
4629
4630 void
4631 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4632 uint32_t access_type,
4633 uint64_t vb_used)
4634 {
4635 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4636 !cmd_buffer->device->physical->use_softpin)
4637 return;
4638
4639 if (access_type == RANDOM) {
4640 /* We have an index buffer */
4641 struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
4642 struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4643
4644 if (bound->end > bound->start) {
4645 dirty->start = MIN2(dirty->start, bound->start);
4646 dirty->end = MAX2(dirty->end, bound->end);
4647 }
4648 }
4649
4650 uint64_t mask = vb_used;
4651 while (mask) {
4652 int i = u_bit_scan64(&mask);
4653 assert(i >= 0);
4654 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4655 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4656
4657 struct anv_vb_cache_range *bound, *dirty;
4658 bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
4659 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
4660
4661 if (bound->end > bound->start) {
4662 dirty->start = MIN2(dirty->start, bound->start);
4663 dirty->end = MAX2(dirty->end, bound->end);
4664 }
4665 }
4666 }
4667
4668 /**
4669 * Update the pixel hashing modes that determine the balancing of PS threads
4670 * across subslices and slices.
4671 *
4672 * \param width Width bound of the rendering area (already scaled down if \p
4673 * scale is greater than 1).
4674 * \param height Height bound of the rendering area (already scaled down if \p
4675 * scale is greater than 1).
4676 * \param scale The number of framebuffer samples that could potentially be
4677 * affected by an individual channel of the PS thread. This is
4678 * typically one for single-sampled rendering, but for operations
4679 * like CCS resolves and fast clears a single PS invocation may
4680 * update a huge number of pixels, in which case a finer
4681 * balancing is desirable in order to maximally utilize the
4682 * bandwidth available. UINT_MAX can be used as shorthand for
4683 * "finest hashing mode available".
4684 */
4685 void
4686 genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
4687 unsigned width, unsigned height,
4688 unsigned scale)
4689 {
4690 #if GEN_GEN == 9
4691 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4692 const unsigned slice_hashing[] = {
4693 /* Because all Gen9 platforms with more than one slice require
4694 * three-way subslice hashing, a single "normal" 16x16 slice hashing
4695 * block is guaranteed to suffer from substantial imbalance, with one
4696 * subslice receiving twice as much work as the other two in the
4697 * slice.
4698 *
4699 * The performance impact of that would be particularly severe when
4700 * three-way hashing is also in use for slice balancing (which is the
4701 * case for all Gen9 GT4 platforms), because one of the slices
4702 * receives one every three 16x16 blocks in either direction, which
4703 * is roughly the periodicity of the underlying subslice imbalance
4704 * pattern ("roughly" because in reality the hardware's
4705 * implementation of three-way hashing doesn't do exact modulo 3
4706 * arithmetic, which somewhat decreases the magnitude of this effect
4707 * in practice). This leads to a systematic subslice imbalance
4708 * within that slice regardless of the size of the primitive. The
4709 * 32x32 hashing mode guarantees that the subslice imbalance within a
4710 * single slice hashing block is minimal, largely eliminating this
4711 * effect.
4712 */
4713 _32x32,
4714 /* Finest slice hashing mode available. */
4715 NORMAL
4716 };
4717 const unsigned subslice_hashing[] = {
4718 /* 16x16 would provide a slight cache locality benefit especially
4719 * visible in the sampler L1 cache efficiency of low-bandwidth
4720 * non-LLC platforms, but it comes at the cost of greater subslice
4721 * imbalance for primitives of dimensions approximately intermediate
4722 * between 16x4 and 16x16.
4723 */
4724 _16x4,
4725 /* Finest subslice hashing mode available. */
4726 _8x4
4727 };
4728 /* Dimensions of the smallest hashing block of a given hashing mode. If
4729 * the rendering area is smaller than this there can't possibly be any
4730 * benefit from switching to this mode, so we optimize out the
4731 * transition.
4732 */
4733 const unsigned min_size[][2] = {
4734 { 16, 4 },
4735 { 8, 4 }
4736 };
4737 const unsigned idx = scale > 1;
4738
4739 if (cmd_buffer->state.current_hash_scale != scale &&
4740 (width > min_size[idx][0] || height > min_size[idx][1])) {
4741 uint32_t gt_mode;
4742
4743 anv_pack_struct(&gt_mode, GENX(GT_MODE),
4744 .SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0),
4745 .SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0),
4746 .SubsliceHashing = subslice_hashing[idx],
4747 .SubsliceHashingMask = -1);
4748
4749 cmd_buffer->state.pending_pipe_bits |=
4750 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
4751 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4752
4753 emit_lri(&cmd_buffer->batch, GENX(GT_MODE_num), gt_mode);
4754
4755 cmd_buffer->state.current_hash_scale = scale;
4756 }
4757 #endif
4758 }
4759
4760 static void
4761 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
4762 {
4763 struct anv_device *device = cmd_buffer->device;
4764 const struct anv_image_view *iview =
4765 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
4766 const struct anv_image *image = iview ? iview->image : NULL;
4767
4768 /* FIXME: Width and Height are wrong */
4769
4770 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
4771
4772 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
4773 device->isl_dev.ds.size / 4);
4774 if (dw == NULL)
4775 return;
4776
4777 struct isl_depth_stencil_hiz_emit_info info = { };
4778
4779 if (iview)
4780 info.view = &iview->planes[0].isl;
4781
4782 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4783 uint32_t depth_plane =
4784 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
4785 const struct anv_surface *surface = &image->planes[depth_plane].surface;
4786
4787 info.depth_surf = &surface->isl;
4788
4789 info.depth_address =
4790 anv_batch_emit_reloc(&cmd_buffer->batch,
4791 dw + device->isl_dev.ds.depth_offset / 4,
4792 image->planes[depth_plane].address.bo,
4793 image->planes[depth_plane].address.offset +
4794 surface->offset);
4795 info.mocs =
4796 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
4797
4798 const uint32_t ds =
4799 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
4800 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
4801 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
4802 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
4803
4804 info.hiz_address =
4805 anv_batch_emit_reloc(&cmd_buffer->batch,
4806 dw + device->isl_dev.ds.hiz_offset / 4,
4807 image->planes[depth_plane].address.bo,
4808 image->planes[depth_plane].address.offset +
4809 image->planes[depth_plane].aux_surface.offset);
4810
4811 info.depth_clear_value = ANV_HZ_FC_VAL;
4812 }
4813 }
4814
4815 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
4816 uint32_t stencil_plane =
4817 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
4818 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
4819
4820 info.stencil_surf = &surface->isl;
4821
4822 info.stencil_address =
4823 anv_batch_emit_reloc(&cmd_buffer->batch,
4824 dw + device->isl_dev.ds.stencil_offset / 4,
4825 image->planes[stencil_plane].address.bo,
4826 image->planes[stencil_plane].address.offset +
4827 surface->offset);
4828 info.mocs =
4829 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
4830 }
4831
4832 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
4833
4834 if (GEN_GEN >= 12) {
4835 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
4836 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4837
4838 /* GEN:BUG:1408224581
4839 *
4840 * Workaround: Gen12LP Astep only An additional pipe control with
4841 * post-sync = store dword operation would be required.( w/a is to
4842 * have an additional pipe control after the stencil state whenever
4843 * the surface state bits of this state is changing).
4844 */
4845 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4846 pc.PostSyncOperation = WriteImmediateData;
4847 pc.Address =
4848 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
4849 }
4850 }
4851 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
4852 }
4853
4854 /**
4855 * This ANDs the view mask of the current subpass with the pending clear
4856 * views in the attachment to get the mask of views active in the subpass
4857 * that still need to be cleared.
4858 */
4859 static inline uint32_t
4860 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
4861 const struct anv_attachment_state *att_state)
4862 {
4863 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
4864 }
4865
4866 static inline bool
4867 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
4868 const struct anv_attachment_state *att_state)
4869 {
4870 if (!cmd_state->subpass->view_mask)
4871 return true;
4872
4873 uint32_t pending_clear_mask =
4874 get_multiview_subpass_clear_mask(cmd_state, att_state);
4875
4876 return pending_clear_mask & 1;
4877 }
4878
4879 static inline bool
4880 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
4881 uint32_t att_idx)
4882 {
4883 const uint32_t last_subpass_idx =
4884 cmd_state->pass->attachments[att_idx].last_subpass_idx;
4885 const struct anv_subpass *last_subpass =
4886 &cmd_state->pass->subpasses[last_subpass_idx];
4887 return last_subpass == cmd_state->subpass;
4888 }
4889
4890 static void
4891 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
4892 uint32_t subpass_id)
4893 {
4894 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4895 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
4896 cmd_state->subpass = subpass;
4897
4898 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
4899
4900 /* Our implementation of VK_KHR_multiview uses instancing to draw the
4901 * different views. If the client asks for instancing, we need to use the
4902 * Instance Data Step Rate to ensure that we repeat the client's
4903 * per-instance data once for each view. Since this bit is in
4904 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
4905 * of each subpass.
4906 */
4907 if (GEN_GEN == 7)
4908 cmd_buffer->state.gfx.vb_dirty |= ~0;
4909
4910 /* It is possible to start a render pass with an old pipeline. Because the
4911 * render pass and subpass index are both baked into the pipeline, this is
4912 * highly unlikely. In order to do so, it requires that you have a render
4913 * pass with a single subpass and that you use that render pass twice
4914 * back-to-back and use the same pipeline at the start of the second render
4915 * pass as at the end of the first. In order to avoid unpredictable issues
4916 * with this edge case, we just dirty the pipeline at the start of every
4917 * subpass.
4918 */
4919 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
4920
4921 /* Accumulate any subpass flushes that need to happen before the subpass */
4922 cmd_buffer->state.pending_pipe_bits |=
4923 cmd_buffer->state.pass->subpass_flushes[subpass_id];
4924
4925 VkRect2D render_area = cmd_buffer->state.render_area;
4926 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4927
4928 bool is_multiview = subpass->view_mask != 0;
4929
4930 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4931 const uint32_t a = subpass->attachments[i].attachment;
4932 if (a == VK_ATTACHMENT_UNUSED)
4933 continue;
4934
4935 assert(a < cmd_state->pass->attachment_count);
4936 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4937
4938 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
4939 const struct anv_image *image = iview->image;
4940
4941 /* A resolve is necessary before use as an input attachment if the clear
4942 * color or auxiliary buffer usage isn't supported by the sampler.
4943 */
4944 const bool input_needs_resolve =
4945 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
4946 att_state->input_aux_usage != att_state->aux_usage;
4947
4948 VkImageLayout target_layout;
4949 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
4950 !input_needs_resolve) {
4951 /* Layout transitions before the final only help to enable sampling
4952 * as an input attachment. If the input attachment supports sampling
4953 * using the auxiliary surface, we can skip such transitions by
4954 * making the target layout one that is CCS-aware.
4955 */
4956 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
4957 } else {
4958 target_layout = subpass->attachments[i].layout;
4959 }
4960
4961 VkImageLayout target_stencil_layout =
4962 subpass->attachments[i].stencil_layout;
4963
4964 uint32_t base_layer, layer_count;
4965 if (image->type == VK_IMAGE_TYPE_3D) {
4966 base_layer = 0;
4967 layer_count = anv_minify(iview->image->extent.depth,
4968 iview->planes[0].isl.base_level);
4969 } else {
4970 base_layer = iview->planes[0].isl.base_array_layer;
4971 layer_count = fb->layers;
4972 }
4973
4974 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4975 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4976 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4977 iview->planes[0].isl.base_level, 1,
4978 base_layer, layer_count,
4979 att_state->current_layout, target_layout);
4980 }
4981
4982 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4983 transition_depth_buffer(cmd_buffer, image,
4984 att_state->current_layout, target_layout);
4985 att_state->aux_usage =
4986 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
4987 VK_IMAGE_ASPECT_DEPTH_BIT,
4988 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
4989 target_layout);
4990 }
4991
4992 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
4993 transition_stencil_buffer(cmd_buffer, image,
4994 iview->planes[0].isl.base_level, 1,
4995 base_layer, layer_count,
4996 att_state->current_stencil_layout,
4997 target_stencil_layout);
4998 }
4999 att_state->current_layout = target_layout;
5000 att_state->current_stencil_layout = target_stencil_layout;
5001
5002 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
5003 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5004
5005 /* Multi-planar images are not supported as attachments */
5006 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5007 assert(image->n_planes == 1);
5008
5009 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
5010 uint32_t clear_layer_count = fb->layers;
5011
5012 if (att_state->fast_clear &&
5013 do_first_layer_clear(cmd_state, att_state)) {
5014 /* We only support fast-clears on the first layer */
5015 assert(iview->planes[0].isl.base_level == 0);
5016 assert(iview->planes[0].isl.base_array_layer == 0);
5017
5018 union isl_color_value clear_color = {};
5019 anv_clear_color_from_att_state(&clear_color, att_state, iview);
5020 if (iview->image->samples == 1) {
5021 anv_image_ccs_op(cmd_buffer, image,
5022 iview->planes[0].isl.format,
5023 VK_IMAGE_ASPECT_COLOR_BIT,
5024 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
5025 &clear_color,
5026 false);
5027 } else {
5028 anv_image_mcs_op(cmd_buffer, image,
5029 iview->planes[0].isl.format,
5030 VK_IMAGE_ASPECT_COLOR_BIT,
5031 0, 1, ISL_AUX_OP_FAST_CLEAR,
5032 &clear_color,
5033 false);
5034 }
5035 base_clear_layer++;
5036 clear_layer_count--;
5037 if (is_multiview)
5038 att_state->pending_clear_views &= ~1;
5039
5040 if (att_state->clear_color_is_zero) {
5041 /* This image has the auxiliary buffer enabled. We can mark the
5042 * subresource as not needing a resolve because the clear color
5043 * will match what's in every RENDER_SURFACE_STATE object when
5044 * it's being used for sampling.
5045 */
5046 set_image_fast_clear_state(cmd_buffer, iview->image,
5047 VK_IMAGE_ASPECT_COLOR_BIT,
5048 ANV_FAST_CLEAR_DEFAULT_VALUE);
5049 } else {
5050 set_image_fast_clear_state(cmd_buffer, iview->image,
5051 VK_IMAGE_ASPECT_COLOR_BIT,
5052 ANV_FAST_CLEAR_ANY);
5053 }
5054 }
5055
5056 /* From the VkFramebufferCreateInfo spec:
5057 *
5058 * "If the render pass uses multiview, then layers must be one and each
5059 * attachment requires a number of layers that is greater than the
5060 * maximum bit index set in the view mask in the subpasses in which it
5061 * is used."
5062 *
5063 * So if multiview is active we ignore the number of layers in the
5064 * framebuffer and instead we honor the view mask from the subpass.
5065 */
5066 if (is_multiview) {
5067 assert(image->n_planes == 1);
5068 uint32_t pending_clear_mask =
5069 get_multiview_subpass_clear_mask(cmd_state, att_state);
5070
5071 uint32_t layer_idx;
5072 for_each_bit(layer_idx, pending_clear_mask) {
5073 uint32_t layer =
5074 iview->planes[0].isl.base_array_layer + layer_idx;
5075
5076 anv_image_clear_color(cmd_buffer, image,
5077 VK_IMAGE_ASPECT_COLOR_BIT,
5078 att_state->aux_usage,
5079 iview->planes[0].isl.format,
5080 iview->planes[0].isl.swizzle,
5081 iview->planes[0].isl.base_level,
5082 layer, 1,
5083 render_area,
5084 vk_to_isl_color(att_state->clear_value.color));
5085 }
5086
5087 att_state->pending_clear_views &= ~pending_clear_mask;
5088 } else if (clear_layer_count > 0) {
5089 assert(image->n_planes == 1);
5090 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5091 att_state->aux_usage,
5092 iview->planes[0].isl.format,
5093 iview->planes[0].isl.swizzle,
5094 iview->planes[0].isl.base_level,
5095 base_clear_layer, clear_layer_count,
5096 render_area,
5097 vk_to_isl_color(att_state->clear_value.color));
5098 }
5099 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
5100 VK_IMAGE_ASPECT_STENCIL_BIT)) {
5101 if (att_state->fast_clear && !is_multiview) {
5102 /* We currently only support HiZ for single-layer images */
5103 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5104 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
5105 assert(iview->planes[0].isl.base_level == 0);
5106 assert(iview->planes[0].isl.base_array_layer == 0);
5107 assert(fb->layers == 1);
5108 }
5109
5110 anv_image_hiz_clear(cmd_buffer, image,
5111 att_state->pending_clear_aspects,
5112 iview->planes[0].isl.base_level,
5113 iview->planes[0].isl.base_array_layer,
5114 fb->layers, render_area,
5115 att_state->clear_value.depthStencil.stencil);
5116 } else if (is_multiview) {
5117 uint32_t pending_clear_mask =
5118 get_multiview_subpass_clear_mask(cmd_state, att_state);
5119
5120 uint32_t layer_idx;
5121 for_each_bit(layer_idx, pending_clear_mask) {
5122 uint32_t layer =
5123 iview->planes[0].isl.base_array_layer + layer_idx;
5124
5125 anv_image_clear_depth_stencil(cmd_buffer, image,
5126 att_state->pending_clear_aspects,
5127 att_state->aux_usage,
5128 iview->planes[0].isl.base_level,
5129 layer, 1,
5130 render_area,
5131 att_state->clear_value.depthStencil.depth,
5132 att_state->clear_value.depthStencil.stencil);
5133 }
5134
5135 att_state->pending_clear_views &= ~pending_clear_mask;
5136 } else {
5137 anv_image_clear_depth_stencil(cmd_buffer, image,
5138 att_state->pending_clear_aspects,
5139 att_state->aux_usage,
5140 iview->planes[0].isl.base_level,
5141 iview->planes[0].isl.base_array_layer,
5142 fb->layers, render_area,
5143 att_state->clear_value.depthStencil.depth,
5144 att_state->clear_value.depthStencil.stencil);
5145 }
5146 } else {
5147 assert(att_state->pending_clear_aspects == 0);
5148 }
5149
5150 if (GEN_GEN < 10 &&
5151 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5152 image->planes[0].aux_usage != ISL_AUX_USAGE_NONE &&
5153 iview->planes[0].isl.base_level == 0 &&
5154 iview->planes[0].isl.base_array_layer == 0) {
5155 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
5156 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
5157 image, VK_IMAGE_ASPECT_COLOR_BIT,
5158 false /* copy to ss */);
5159 }
5160
5161 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
5162 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
5163 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
5164 image, VK_IMAGE_ASPECT_COLOR_BIT,
5165 false /* copy to ss */);
5166 }
5167 }
5168
5169 if (subpass->attachments[i].usage ==
5170 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
5171 /* We assume that if we're starting a subpass, we're going to do some
5172 * rendering so we may end up with compressed data.
5173 */
5174 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
5175 VK_IMAGE_ASPECT_COLOR_BIT,
5176 att_state->aux_usage,
5177 iview->planes[0].isl.base_level,
5178 iview->planes[0].isl.base_array_layer,
5179 fb->layers);
5180 } else if (subpass->attachments[i].usage ==
5181 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
5182 /* We may be writing depth or stencil so we need to mark the surface.
5183 * Unfortunately, there's no way to know at this point whether the
5184 * depth or stencil tests used will actually write to the surface.
5185 *
5186 * Even though stencil may be plane 1, it always shares a base_level
5187 * with depth.
5188 */
5189 const struct isl_view *ds_view = &iview->planes[0].isl;
5190 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
5191 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
5192 VK_IMAGE_ASPECT_DEPTH_BIT,
5193 att_state->aux_usage,
5194 ds_view->base_level,
5195 ds_view->base_array_layer,
5196 fb->layers);
5197 }
5198 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
5199 /* Even though stencil may be plane 1, it always shares a
5200 * base_level with depth.
5201 */
5202 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
5203 VK_IMAGE_ASPECT_STENCIL_BIT,
5204 ISL_AUX_USAGE_NONE,
5205 ds_view->base_level,
5206 ds_view->base_array_layer,
5207 fb->layers);
5208 }
5209 }
5210
5211 /* If multiview is enabled, then we are only done clearing when we no
5212 * longer have pending layers to clear, or when we have processed the
5213 * last subpass that uses this attachment.
5214 */
5215 if (!is_multiview ||
5216 att_state->pending_clear_views == 0 ||
5217 current_subpass_is_last_for_attachment(cmd_state, a)) {
5218 att_state->pending_clear_aspects = 0;
5219 }
5220
5221 att_state->pending_load_aspects = 0;
5222 }
5223
5224 #if GEN_GEN >= 11
5225 /* The PIPE_CONTROL command description says:
5226 *
5227 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
5228 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
5229 * Target Cache Flush by enabling this bit. When render target flush
5230 * is set due to new association of BTI, PS Scoreboard Stall bit must
5231 * be set in this packet."
5232 */
5233 cmd_buffer->state.pending_pipe_bits |=
5234 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
5235 ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
5236 #endif
5237
5238 #if GEN_GEN == 12
5239 /* GEN:BUG:14010455700
5240 *
5241 * ISL will change some CHICKEN registers depending on the depth surface
5242 * format, along with emitting the depth and stencil packets. In that case,
5243 * we want to do a depth flush and stall, so the pipeline is not using these
5244 * settings while we change the registers.
5245 */
5246 cmd_buffer->state.pending_pipe_bits |=
5247 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT |
5248 ANV_PIPE_DEPTH_STALL_BIT |
5249 ANV_PIPE_END_OF_PIPE_SYNC_BIT;
5250 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5251 #endif
5252
5253 cmd_buffer_emit_depth_stencil(cmd_buffer);
5254 }
5255
5256 static enum blorp_filter
5257 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
5258 {
5259 switch (vk_mode) {
5260 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
5261 return BLORP_FILTER_SAMPLE_0;
5262 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
5263 return BLORP_FILTER_AVERAGE;
5264 case VK_RESOLVE_MODE_MIN_BIT_KHR:
5265 return BLORP_FILTER_MIN_SAMPLE;
5266 case VK_RESOLVE_MODE_MAX_BIT_KHR:
5267 return BLORP_FILTER_MAX_SAMPLE;
5268 default:
5269 return BLORP_FILTER_NONE;
5270 }
5271 }
5272
5273 static void
5274 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
5275 {
5276 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5277 struct anv_subpass *subpass = cmd_state->subpass;
5278 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
5279 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
5280
5281 if (subpass->has_color_resolve) {
5282 /* We are about to do some MSAA resolves. We need to flush so that the
5283 * result of writes to the MSAA color attachments show up in the sampler
5284 * when we blit to the single-sampled resolve target.
5285 */
5286 cmd_buffer->state.pending_pipe_bits |=
5287 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5288 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
5289
5290 for (uint32_t i = 0; i < subpass->color_count; ++i) {
5291 uint32_t src_att = subpass->color_attachments[i].attachment;
5292 uint32_t dst_att = subpass->resolve_attachments[i].attachment;
5293
5294 if (dst_att == VK_ATTACHMENT_UNUSED)
5295 continue;
5296
5297 assert(src_att < cmd_buffer->state.pass->attachment_count);
5298 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5299
5300 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5301 /* From the Vulkan 1.0 spec:
5302 *
5303 * If the first use of an attachment in a render pass is as a
5304 * resolve attachment, then the loadOp is effectively ignored
5305 * as the resolve is guaranteed to overwrite all pixels in the
5306 * render area.
5307 */
5308 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5309 }
5310
5311 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5312 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5313
5314 const VkRect2D render_area = cmd_buffer->state.render_area;
5315
5316 enum isl_aux_usage src_aux_usage =
5317 cmd_buffer->state.attachments[src_att].aux_usage;
5318 enum isl_aux_usage dst_aux_usage =
5319 cmd_buffer->state.attachments[dst_att].aux_usage;
5320
5321 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
5322 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
5323
5324 anv_image_msaa_resolve(cmd_buffer,
5325 src_iview->image, src_aux_usage,
5326 src_iview->planes[0].isl.base_level,
5327 src_iview->planes[0].isl.base_array_layer,
5328 dst_iview->image, dst_aux_usage,
5329 dst_iview->planes[0].isl.base_level,
5330 dst_iview->planes[0].isl.base_array_layer,
5331 VK_IMAGE_ASPECT_COLOR_BIT,
5332 render_area.offset.x, render_area.offset.y,
5333 render_area.offset.x, render_area.offset.y,
5334 render_area.extent.width,
5335 render_area.extent.height,
5336 fb->layers, BLORP_FILTER_NONE);
5337 }
5338 }
5339
5340 if (subpass->ds_resolve_attachment) {
5341 /* We are about to do some MSAA resolves. We need to flush so that the
5342 * result of writes to the MSAA depth attachments show up in the sampler
5343 * when we blit to the single-sampled resolve target.
5344 */
5345 cmd_buffer->state.pending_pipe_bits |=
5346 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5347 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
5348
5349 uint32_t src_att = subpass->depth_stencil_attachment->attachment;
5350 uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
5351
5352 assert(src_att < cmd_buffer->state.pass->attachment_count);
5353 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5354
5355 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5356 /* From the Vulkan 1.0 spec:
5357 *
5358 * If the first use of an attachment in a render pass is as a
5359 * resolve attachment, then the loadOp is effectively ignored
5360 * as the resolve is guaranteed to overwrite all pixels in the
5361 * render area.
5362 */
5363 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5364 }
5365
5366 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5367 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5368
5369 const VkRect2D render_area = cmd_buffer->state.render_area;
5370
5371 struct anv_attachment_state *src_state =
5372 &cmd_state->attachments[src_att];
5373 struct anv_attachment_state *dst_state =
5374 &cmd_state->attachments[dst_att];
5375
5376 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
5377 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5378
5379 /* MSAA resolves sample from the source attachment. Transition the
5380 * depth attachment first to get rid of any HiZ that we may not be
5381 * able to handle.
5382 */
5383 transition_depth_buffer(cmd_buffer, src_iview->image,
5384 src_state->current_layout,
5385 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5386 src_state->aux_usage =
5387 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
5388 VK_IMAGE_ASPECT_DEPTH_BIT,
5389 VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
5390 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5391 src_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5392
5393 /* MSAA resolves write to the resolve attachment as if it were any
5394 * other transfer op. Transition the resolve attachment accordingly.
5395 */
5396 VkImageLayout dst_initial_layout = dst_state->current_layout;
5397
5398 /* If our render area is the entire size of the image, we're going to
5399 * blow it all away so we can claim the initial layout is UNDEFINED
5400 * and we'll get a HiZ ambiguate instead of a resolve.
5401 */
5402 if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
5403 render_area.offset.x == 0 && render_area.offset.y == 0 &&
5404 render_area.extent.width == dst_iview->extent.width &&
5405 render_area.extent.height == dst_iview->extent.height)
5406 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5407
5408 transition_depth_buffer(cmd_buffer, dst_iview->image,
5409 dst_initial_layout,
5410 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5411 dst_state->aux_usage =
5412 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
5413 VK_IMAGE_ASPECT_DEPTH_BIT,
5414 VK_IMAGE_USAGE_TRANSFER_DST_BIT,
5415 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5416 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5417
5418 enum blorp_filter filter =
5419 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
5420
5421 anv_image_msaa_resolve(cmd_buffer,
5422 src_iview->image, src_state->aux_usage,
5423 src_iview->planes[0].isl.base_level,
5424 src_iview->planes[0].isl.base_array_layer,
5425 dst_iview->image, dst_state->aux_usage,
5426 dst_iview->planes[0].isl.base_level,
5427 dst_iview->planes[0].isl.base_array_layer,
5428 VK_IMAGE_ASPECT_DEPTH_BIT,
5429 render_area.offset.x, render_area.offset.y,
5430 render_area.offset.x, render_area.offset.y,
5431 render_area.extent.width,
5432 render_area.extent.height,
5433 fb->layers, filter);
5434 }
5435
5436 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
5437 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5438
5439 src_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5440 dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5441
5442 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
5443 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
5444
5445 enum blorp_filter filter =
5446 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
5447
5448 anv_image_msaa_resolve(cmd_buffer,
5449 src_iview->image, src_aux_usage,
5450 src_iview->planes[0].isl.base_level,
5451 src_iview->planes[0].isl.base_array_layer,
5452 dst_iview->image, dst_aux_usage,
5453 dst_iview->planes[0].isl.base_level,
5454 dst_iview->planes[0].isl.base_array_layer,
5455 VK_IMAGE_ASPECT_STENCIL_BIT,
5456 render_area.offset.x, render_area.offset.y,
5457 render_area.offset.x, render_area.offset.y,
5458 render_area.extent.width,
5459 render_area.extent.height,
5460 fb->layers, filter);
5461 }
5462 }
5463
5464 #if GEN_GEN == 7
5465 /* On gen7, we have to store a texturable version of the stencil buffer in
5466 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
5467 * forth at strategic points. Stencil writes are only allowed in following
5468 * layouts:
5469 *
5470 * - VK_IMAGE_LAYOUT_GENERAL
5471 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
5472 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
5473 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
5474 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
5475 *
5476 * For general, we have no nice opportunity to transition so we do the copy
5477 * to the shadow unconditionally at the end of the subpass. For transfer
5478 * destinations, we can update it as part of the transfer op. For the other
5479 * layouts, we delay the copy until a transition into some other layout.
5480 */
5481 if (subpass->depth_stencil_attachment) {
5482 uint32_t a = subpass->depth_stencil_attachment->attachment;
5483 assert(a != VK_ATTACHMENT_UNUSED);
5484
5485 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5486 struct anv_image_view *iview = cmd_state->attachments[a].image_view;;
5487 const struct anv_image *image = iview->image;
5488
5489 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5490 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
5491 VK_IMAGE_ASPECT_STENCIL_BIT);
5492
5493 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
5494 att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) {
5495 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
5496 anv_image_copy_to_shadow(cmd_buffer, image,
5497 VK_IMAGE_ASPECT_STENCIL_BIT,
5498 iview->planes[plane].isl.base_level, 1,
5499 iview->planes[plane].isl.base_array_layer,
5500 fb->layers);
5501 }
5502 }
5503 }
5504 #endif /* GEN_GEN == 7 */
5505
5506 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
5507 const uint32_t a = subpass->attachments[i].attachment;
5508 if (a == VK_ATTACHMENT_UNUSED)
5509 continue;
5510
5511 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
5512 continue;
5513
5514 assert(a < cmd_state->pass->attachment_count);
5515 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5516 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
5517 const struct anv_image *image = iview->image;
5518
5519 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5520 image->vk_format != iview->vk_format) {
5521 enum anv_fast_clear_type fast_clear_type =
5522 anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
5523 image, VK_IMAGE_ASPECT_COLOR_BIT,
5524 att_state->current_layout);
5525
5526 /* If any clear color was used, flush it down the aux surfaces. If we
5527 * don't do it now using the view's format we might use the clear
5528 * color incorrectly in the following resolves (for example with an
5529 * SRGB view & a UNORM image).
5530 */
5531 if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
5532 anv_perf_warn(cmd_buffer->device, iview,
5533 "Doing a partial resolve to get rid of clear color at the "
5534 "end of a renderpass due to an image/view format mismatch");
5535
5536 uint32_t base_layer, layer_count;
5537 if (image->type == VK_IMAGE_TYPE_3D) {
5538 base_layer = 0;
5539 layer_count = anv_minify(iview->image->extent.depth,
5540 iview->planes[0].isl.base_level);
5541 } else {
5542 base_layer = iview->planes[0].isl.base_array_layer;
5543 layer_count = fb->layers;
5544 }
5545
5546 for (uint32_t a = 0; a < layer_count; a++) {
5547 uint32_t array_layer = base_layer + a;
5548 if (image->samples == 1) {
5549 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
5550 iview->planes[0].isl.format,
5551 VK_IMAGE_ASPECT_COLOR_BIT,
5552 iview->planes[0].isl.base_level,
5553 array_layer,
5554 ISL_AUX_OP_PARTIAL_RESOLVE,
5555 ANV_FAST_CLEAR_NONE);
5556 } else {
5557 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
5558 iview->planes[0].isl.format,
5559 VK_IMAGE_ASPECT_COLOR_BIT,
5560 base_layer,
5561 ISL_AUX_OP_PARTIAL_RESOLVE,
5562 ANV_FAST_CLEAR_NONE);
5563 }
5564 }
5565 }
5566 }
5567
5568 /* Transition the image into the final layout for this render pass */
5569 VkImageLayout target_layout =
5570 cmd_state->pass->attachments[a].final_layout;
5571 VkImageLayout target_stencil_layout =
5572 cmd_state->pass->attachments[a].stencil_final_layout;
5573
5574 uint32_t base_layer, layer_count;
5575 if (image->type == VK_IMAGE_TYPE_3D) {
5576 base_layer = 0;
5577 layer_count = anv_minify(iview->image->extent.depth,
5578 iview->planes[0].isl.base_level);
5579 } else {
5580 base_layer = iview->planes[0].isl.base_array_layer;
5581 layer_count = fb->layers;
5582 }
5583
5584 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
5585 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5586 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5587 iview->planes[0].isl.base_level, 1,
5588 base_layer, layer_count,
5589 att_state->current_layout, target_layout);
5590 }
5591
5592 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5593 transition_depth_buffer(cmd_buffer, image,
5594 att_state->current_layout, target_layout);
5595 }
5596
5597 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5598 transition_stencil_buffer(cmd_buffer, image,
5599 iview->planes[0].isl.base_level, 1,
5600 base_layer, layer_count,
5601 att_state->current_stencil_layout,
5602 target_stencil_layout);
5603 }
5604 }
5605
5606 /* Accumulate any subpass flushes that need to happen after the subpass.
5607 * Yes, they do get accumulated twice in the NextSubpass case but since
5608 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
5609 * ORing the bits in twice so it's harmless.
5610 */
5611 cmd_buffer->state.pending_pipe_bits |=
5612 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
5613 }
5614
5615 void genX(CmdBeginRenderPass)(
5616 VkCommandBuffer commandBuffer,
5617 const VkRenderPassBeginInfo* pRenderPassBegin,
5618 VkSubpassContents contents)
5619 {
5620 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5621 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
5622 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
5623
5624 cmd_buffer->state.framebuffer = framebuffer;
5625 cmd_buffer->state.pass = pass;
5626 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
5627 VkResult result =
5628 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
5629
5630 /* If we failed to setup the attachments we should not try to go further */
5631 if (result != VK_SUCCESS) {
5632 assert(anv_batch_has_error(&cmd_buffer->batch));
5633 return;
5634 }
5635
5636 genX(flush_pipeline_select_3d)(cmd_buffer);
5637
5638 cmd_buffer_begin_subpass(cmd_buffer, 0);
5639 }
5640
5641 void genX(CmdBeginRenderPass2)(
5642 VkCommandBuffer commandBuffer,
5643 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
5644 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
5645 {
5646 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
5647 pSubpassBeginInfo->contents);
5648 }
5649
5650 void genX(CmdNextSubpass)(
5651 VkCommandBuffer commandBuffer,
5652 VkSubpassContents contents)
5653 {
5654 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5655
5656 if (anv_batch_has_error(&cmd_buffer->batch))
5657 return;
5658
5659 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
5660
5661 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
5662 cmd_buffer_end_subpass(cmd_buffer);
5663 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
5664 }
5665
5666 void genX(CmdNextSubpass2)(
5667 VkCommandBuffer commandBuffer,
5668 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
5669 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5670 {
5671 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
5672 }
5673
5674 void genX(CmdEndRenderPass)(
5675 VkCommandBuffer commandBuffer)
5676 {
5677 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5678
5679 if (anv_batch_has_error(&cmd_buffer->batch))
5680 return;
5681
5682 cmd_buffer_end_subpass(cmd_buffer);
5683
5684 cmd_buffer->state.hiz_enabled = false;
5685
5686 #ifndef NDEBUG
5687 anv_dump_add_attachments(cmd_buffer);
5688 #endif
5689
5690 /* Remove references to render pass specific state. This enables us to
5691 * detect whether or not we're in a renderpass.
5692 */
5693 cmd_buffer->state.framebuffer = NULL;
5694 cmd_buffer->state.pass = NULL;
5695 cmd_buffer->state.subpass = NULL;
5696 }
5697
5698 void genX(CmdEndRenderPass2)(
5699 VkCommandBuffer commandBuffer,
5700 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5701 {
5702 genX(CmdEndRenderPass)(commandBuffer);
5703 }
5704
5705 void
5706 genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
5707 {
5708 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5709 struct gen_mi_builder b;
5710 gen_mi_builder_init(&b, &cmd_buffer->batch);
5711
5712 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
5713 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
5714 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
5715
5716 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
5717 mip.LoadOperation = LOAD_LOADINV;
5718 mip.CombineOperation = COMBINE_SET;
5719 mip.CompareOperation = COMPARE_SRCS_EQUAL;
5720 }
5721 #endif
5722 }
5723
5724 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5725 void genX(CmdBeginConditionalRenderingEXT)(
5726 VkCommandBuffer commandBuffer,
5727 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
5728 {
5729 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5730 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
5731 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5732 struct anv_address value_address =
5733 anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
5734
5735 const bool isInverted = pConditionalRenderingBegin->flags &
5736 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
5737
5738 cmd_state->conditional_render_enabled = true;
5739
5740 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5741
5742 struct gen_mi_builder b;
5743 gen_mi_builder_init(&b, &cmd_buffer->batch);
5744
5745 /* Section 19.4 of the Vulkan 1.1.85 spec says:
5746 *
5747 * If the value of the predicate in buffer memory changes
5748 * while conditional rendering is active, the rendering commands
5749 * may be discarded in an implementation-dependent way.
5750 * Some implementations may latch the value of the predicate
5751 * upon beginning conditional rendering while others
5752 * may read it before every rendering command.
5753 *
5754 * So it's perfectly fine to read a value from the buffer once.
5755 */
5756 struct gen_mi_value value = gen_mi_mem32(value_address);
5757
5758 /* Precompute predicate result, it is necessary to support secondary
5759 * command buffers since it is unknown if conditional rendering is
5760 * inverted when populating them.
5761 */
5762 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
5763 isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
5764 gen_mi_ult(&b, gen_mi_imm(0), value));
5765 }
5766
5767 void genX(CmdEndConditionalRenderingEXT)(
5768 VkCommandBuffer commandBuffer)
5769 {
5770 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5771 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5772
5773 cmd_state->conditional_render_enabled = false;
5774 }
5775 #endif
5776
5777 /* Set of stage bits for which are pipelined, i.e. they get queued by the
5778 * command streamer for later execution.
5779 */
5780 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
5781 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
5782 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
5783 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
5784 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
5785 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
5786 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
5787 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
5788 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
5789 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
5790 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
5791 VK_PIPELINE_STAGE_TRANSFER_BIT | \
5792 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
5793 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
5794 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
5795
5796 void genX(CmdSetEvent)(
5797 VkCommandBuffer commandBuffer,
5798 VkEvent _event,
5799 VkPipelineStageFlags stageMask)
5800 {
5801 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5802 ANV_FROM_HANDLE(anv_event, event, _event);
5803
5804 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5805 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5806
5807 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5808 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5809 pc.StallAtPixelScoreboard = true;
5810 pc.CommandStreamerStallEnable = true;
5811 }
5812
5813 pc.DestinationAddressType = DAT_PPGTT,
5814 pc.PostSyncOperation = WriteImmediateData,
5815 pc.Address = (struct anv_address) {
5816 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5817 event->state.offset
5818 };
5819 pc.ImmediateData = VK_EVENT_SET;
5820 }
5821 }
5822
5823 void genX(CmdResetEvent)(
5824 VkCommandBuffer commandBuffer,
5825 VkEvent _event,
5826 VkPipelineStageFlags stageMask)
5827 {
5828 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5829 ANV_FROM_HANDLE(anv_event, event, _event);
5830
5831 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5832 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5833
5834 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5835 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5836 pc.StallAtPixelScoreboard = true;
5837 pc.CommandStreamerStallEnable = true;
5838 }
5839
5840 pc.DestinationAddressType = DAT_PPGTT;
5841 pc.PostSyncOperation = WriteImmediateData;
5842 pc.Address = (struct anv_address) {
5843 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5844 event->state.offset
5845 };
5846 pc.ImmediateData = VK_EVENT_RESET;
5847 }
5848 }
5849
5850 void genX(CmdWaitEvents)(
5851 VkCommandBuffer commandBuffer,
5852 uint32_t eventCount,
5853 const VkEvent* pEvents,
5854 VkPipelineStageFlags srcStageMask,
5855 VkPipelineStageFlags destStageMask,
5856 uint32_t memoryBarrierCount,
5857 const VkMemoryBarrier* pMemoryBarriers,
5858 uint32_t bufferMemoryBarrierCount,
5859 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
5860 uint32_t imageMemoryBarrierCount,
5861 const VkImageMemoryBarrier* pImageMemoryBarriers)
5862 {
5863 #if GEN_GEN >= 8
5864 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5865
5866 for (uint32_t i = 0; i < eventCount; i++) {
5867 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
5868
5869 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
5870 sem.WaitMode = PollingMode,
5871 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
5872 sem.SemaphoreDataDword = VK_EVENT_SET,
5873 sem.SemaphoreAddress = (struct anv_address) {
5874 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5875 event->state.offset
5876 };
5877 }
5878 }
5879 #else
5880 anv_finishme("Implement events on gen7");
5881 #endif
5882
5883 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
5884 false, /* byRegion */
5885 memoryBarrierCount, pMemoryBarriers,
5886 bufferMemoryBarrierCount, pBufferMemoryBarriers,
5887 imageMemoryBarrierCount, pImageMemoryBarriers);
5888 }
5889
5890 VkResult genX(CmdSetPerformanceOverrideINTEL)(
5891 VkCommandBuffer commandBuffer,
5892 const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
5893 {
5894 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5895
5896 switch (pOverrideInfo->type) {
5897 case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
5898 uint32_t dw;
5899
5900 #if GEN_GEN >= 9
5901 anv_pack_struct(&dw, GENX(CS_DEBUG_MODE2),
5902 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5903 .MediaInstructionDisable = pOverrideInfo->enable,
5904 ._3DRenderingInstructionDisableMask = true,
5905 .MediaInstructionDisableMask = true);
5906 emit_lri(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2_num), dw);
5907 #else
5908 anv_pack_struct(&dw, GENX(INSTPM),
5909 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5910 .MediaInstructionDisable = pOverrideInfo->enable,
5911 ._3DRenderingInstructionDisableMask = true,
5912 .MediaInstructionDisableMask = true);
5913 emit_lri(&cmd_buffer->batch, GENX(INSTPM_num), dw);
5914 #endif
5915 break;
5916 }
5917
5918 case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
5919 if (pOverrideInfo->enable) {
5920 /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
5921 cmd_buffer->state.pending_pipe_bits |=
5922 ANV_PIPE_FLUSH_BITS |
5923 ANV_PIPE_INVALIDATE_BITS;
5924 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5925 }
5926 break;
5927
5928 default:
5929 unreachable("Invalid override");
5930 }
5931
5932 return VK_SUCCESS;
5933 }
5934
5935 VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
5936 VkCommandBuffer commandBuffer,
5937 const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
5938 {
5939 /* TODO: Waiting on the register to write, might depend on generation. */
5940
5941 return VK_SUCCESS;
5942 }