anv: Disable dual source blending when shader doesn't support it on gen8+
[mesa.git] / src / intel / vulkan / genX_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "anv_private.h"
25
26 #include "genxml/gen_macros.h"
27 #include "genxml/genX_pack.h"
28
29 #include "common/gen_l3_config.h"
30 #include "common/gen_sample_positions.h"
31 #include "vk_util.h"
32 #include "vk_format_info.h"
33
34 static uint32_t
35 vertex_element_comp_control(enum isl_format format, unsigned comp)
36 {
37 uint8_t bits;
38 switch (comp) {
39 case 0: bits = isl_format_layouts[format].channels.r.bits; break;
40 case 1: bits = isl_format_layouts[format].channels.g.bits; break;
41 case 2: bits = isl_format_layouts[format].channels.b.bits; break;
42 case 3: bits = isl_format_layouts[format].channels.a.bits; break;
43 default: unreachable("Invalid component");
44 }
45
46 /*
47 * Take in account hardware restrictions when dealing with 64-bit floats.
48 *
49 * From Broadwell spec, command reference structures, page 586:
50 * "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
51 * 64-bit components are stored * in the URB without any conversion. In
52 * this case, vertex elements must be written as 128 or 256 bits, with
53 * VFCOMP_STORE_0 being used to pad the output as required. E.g., if
54 * R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
55 * Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
56 * set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
57 * Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
58 * a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
59 * Component 3 to be specified as VFCOMP_STORE_0 in order to output a
60 * 256-bit vertex element."
61 */
62 if (bits) {
63 return VFCOMP_STORE_SRC;
64 } else if (comp >= 2 &&
65 !isl_format_layouts[format].channels.b.bits &&
66 isl_format_layouts[format].channels.r.type == ISL_RAW) {
67 /* When emitting 64-bit attributes, we need to write either 128 or 256
68 * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
69 * VFCOMP_STORE_0 to pad the written chunk */
70 return VFCOMP_NOSTORE;
71 } else if (comp < 3 ||
72 isl_format_layouts[format].channels.r.type == ISL_RAW) {
73 /* Note we need to pad with value 0, not 1, due hardware restrictions
74 * (see comment above) */
75 return VFCOMP_STORE_0;
76 } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
77 isl_format_layouts[format].channels.r.type == ISL_SINT) {
78 assert(comp == 3);
79 return VFCOMP_STORE_1_INT;
80 } else {
81 assert(comp == 3);
82 return VFCOMP_STORE_1_FP;
83 }
84 }
85
86 static void
87 emit_vertex_input(struct anv_pipeline *pipeline,
88 const VkPipelineVertexInputStateCreateInfo *info)
89 {
90 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
91
92 /* Pull inputs_read out of the VS prog data */
93 const uint64_t inputs_read = vs_prog_data->inputs_read;
94 const uint64_t double_inputs_read =
95 vs_prog_data->double_inputs_read & inputs_read;
96 assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
97 const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
98 const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
99 const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
100 vs_prog_data->uses_instanceid ||
101 vs_prog_data->uses_firstvertex ||
102 vs_prog_data->uses_baseinstance;
103
104 uint32_t elem_count = __builtin_popcount(elements) -
105 __builtin_popcount(elements_double) / 2;
106
107 const uint32_t total_elems =
108 elem_count + needs_svgs_elem + vs_prog_data->uses_drawid;
109 if (total_elems == 0)
110 return;
111
112 uint32_t *p;
113
114 const uint32_t num_dwords = 1 + total_elems * 2;
115 p = anv_batch_emitn(&pipeline->batch, num_dwords,
116 GENX(3DSTATE_VERTEX_ELEMENTS));
117 if (!p)
118 return;
119
120 for (uint32_t i = 0; i < total_elems; i++) {
121 /* The SKL docs for VERTEX_ELEMENT_STATE say:
122 *
123 * "All elements must be valid from Element[0] to the last valid
124 * element. (I.e. if Element[2] is valid then Element[1] and
125 * Element[0] must also be valid)."
126 *
127 * The SKL docs for 3D_Vertex_Component_Control say:
128 *
129 * "Don't store this component. (Not valid for Component 0, but can
130 * be used for Component 1-3)."
131 *
132 * So we can't just leave a vertex element blank and hope for the best.
133 * We have to tell the VF hardware to put something in it; so we just
134 * store a bunch of zero.
135 *
136 * TODO: Compact vertex elements so we never end up with holes.
137 */
138 struct GENX(VERTEX_ELEMENT_STATE) element = {
139 .Valid = true,
140 .Component0Control = VFCOMP_STORE_0,
141 .Component1Control = VFCOMP_STORE_0,
142 .Component2Control = VFCOMP_STORE_0,
143 .Component3Control = VFCOMP_STORE_0,
144 };
145 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + i * 2], &element);
146 }
147
148 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
149 const VkVertexInputAttributeDescription *desc =
150 &info->pVertexAttributeDescriptions[i];
151 enum isl_format format = anv_get_isl_format(&pipeline->device->info,
152 desc->format,
153 VK_IMAGE_ASPECT_COLOR_BIT,
154 VK_IMAGE_TILING_LINEAR);
155
156 assert(desc->binding < MAX_VBS);
157
158 if ((elements & (1 << desc->location)) == 0)
159 continue; /* Binding unused */
160
161 uint32_t slot =
162 __builtin_popcount(elements & ((1 << desc->location) - 1)) -
163 DIV_ROUND_UP(__builtin_popcount(elements_double &
164 ((1 << desc->location) -1)), 2);
165
166 struct GENX(VERTEX_ELEMENT_STATE) element = {
167 .VertexBufferIndex = desc->binding,
168 .Valid = true,
169 .SourceElementFormat = format,
170 .EdgeFlagEnable = false,
171 .SourceElementOffset = desc->offset,
172 .Component0Control = vertex_element_comp_control(format, 0),
173 .Component1Control = vertex_element_comp_control(format, 1),
174 .Component2Control = vertex_element_comp_control(format, 2),
175 .Component3Control = vertex_element_comp_control(format, 3),
176 };
177 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
178
179 #if GEN_GEN >= 8
180 /* On Broadwell and later, we have a separate VF_INSTANCING packet
181 * that controls instancing. On Haswell and prior, that's part of
182 * VERTEX_BUFFER_STATE which we emit later.
183 */
184 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
185 vfi.InstancingEnable = pipeline->vb[desc->binding].instanced;
186 vfi.VertexElementIndex = slot;
187 vfi.InstanceDataStepRate =
188 pipeline->vb[desc->binding].instance_divisor;
189 }
190 #endif
191 }
192
193 const uint32_t id_slot = elem_count;
194 if (needs_svgs_elem) {
195 /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
196 * "Within a VERTEX_ELEMENT_STATE structure, if a Component
197 * Control field is set to something other than VFCOMP_STORE_SRC,
198 * no higher-numbered Component Control fields may be set to
199 * VFCOMP_STORE_SRC"
200 *
201 * This means, that if we have BaseInstance, we need BaseVertex as
202 * well. Just do all or nothing.
203 */
204 uint32_t base_ctrl = (vs_prog_data->uses_firstvertex ||
205 vs_prog_data->uses_baseinstance) ?
206 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
207
208 struct GENX(VERTEX_ELEMENT_STATE) element = {
209 .VertexBufferIndex = ANV_SVGS_VB_INDEX,
210 .Valid = true,
211 .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
212 .Component0Control = base_ctrl,
213 .Component1Control = base_ctrl,
214 #if GEN_GEN >= 8
215 .Component2Control = VFCOMP_STORE_0,
216 .Component3Control = VFCOMP_STORE_0,
217 #else
218 .Component2Control = VFCOMP_STORE_VID,
219 .Component3Control = VFCOMP_STORE_IID,
220 #endif
221 };
222 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
223 }
224
225 #if GEN_GEN >= 8
226 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), sgvs) {
227 sgvs.VertexIDEnable = vs_prog_data->uses_vertexid;
228 sgvs.VertexIDComponentNumber = 2;
229 sgvs.VertexIDElementOffset = id_slot;
230 sgvs.InstanceIDEnable = vs_prog_data->uses_instanceid;
231 sgvs.InstanceIDComponentNumber = 3;
232 sgvs.InstanceIDElementOffset = id_slot;
233 }
234 #endif
235
236 const uint32_t drawid_slot = elem_count + needs_svgs_elem;
237 if (vs_prog_data->uses_drawid) {
238 struct GENX(VERTEX_ELEMENT_STATE) element = {
239 .VertexBufferIndex = ANV_DRAWID_VB_INDEX,
240 .Valid = true,
241 .SourceElementFormat = ISL_FORMAT_R32_UINT,
242 .Component0Control = VFCOMP_STORE_SRC,
243 .Component1Control = VFCOMP_STORE_0,
244 .Component2Control = VFCOMP_STORE_0,
245 .Component3Control = VFCOMP_STORE_0,
246 };
247 GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
248 &p[1 + drawid_slot * 2],
249 &element);
250
251 #if GEN_GEN >= 8
252 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
253 vfi.VertexElementIndex = drawid_slot;
254 }
255 #endif
256 }
257 }
258
259 void
260 genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
261 const struct gen_l3_config *l3_config,
262 VkShaderStageFlags active_stages,
263 const unsigned entry_size[4])
264 {
265 const struct gen_device_info *devinfo = &device->info;
266 #if GEN_IS_HASWELL
267 const unsigned push_constant_kb = devinfo->gt == 3 ? 32 : 16;
268 #else
269 const unsigned push_constant_kb = GEN_GEN >= 8 ? 32 : 16;
270 #endif
271
272 const unsigned urb_size_kb = gen_get_l3_config_urb_size(devinfo, l3_config);
273
274 unsigned entries[4];
275 unsigned start[4];
276 gen_get_urb_config(devinfo,
277 1024 * push_constant_kb, 1024 * urb_size_kb,
278 active_stages &
279 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
280 active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
281 entry_size, entries, start);
282
283 #if GEN_GEN == 7 && !GEN_IS_HASWELL
284 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
285 *
286 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
287 * needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
288 * 3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
289 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one PIPE_CONTROL
290 * needs to be sent before any combination of VS associated 3DSTATE."
291 */
292 anv_batch_emit(batch, GEN7_PIPE_CONTROL, pc) {
293 pc.DepthStallEnable = true;
294 pc.PostSyncOperation = WriteImmediateData;
295 pc.Address = (struct anv_address) { &device->workaround_bo, 0 };
296 }
297 #endif
298
299 for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
300 anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
301 urb._3DCommandSubOpcode += i;
302 urb.VSURBStartingAddress = start[i];
303 urb.VSURBEntryAllocationSize = entry_size[i] - 1;
304 urb.VSNumberofURBEntries = entries[i];
305 }
306 }
307 }
308
309 static void
310 emit_urb_setup(struct anv_pipeline *pipeline)
311 {
312 unsigned entry_size[4];
313 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
314 const struct brw_vue_prog_data *prog_data =
315 !anv_pipeline_has_stage(pipeline, i) ? NULL :
316 (const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
317
318 entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
319 }
320
321 genX(emit_urb_setup)(pipeline->device, &pipeline->batch,
322 pipeline->urb.l3_config,
323 pipeline->active_stages, entry_size);
324 }
325
326 static void
327 emit_3dstate_sbe(struct anv_pipeline *pipeline)
328 {
329 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
330
331 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
332 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE), sbe);
333 #if GEN_GEN >= 8
334 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ), sbe);
335 #endif
336 return;
337 }
338
339 const struct brw_vue_map *fs_input_map =
340 &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
341
342 struct GENX(3DSTATE_SBE) sbe = {
343 GENX(3DSTATE_SBE_header),
344 .AttributeSwizzleEnable = true,
345 .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
346 .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
347 .ConstantInterpolationEnable = wm_prog_data->flat_inputs,
348 };
349
350 #if GEN_GEN >= 9
351 for (unsigned i = 0; i < 32; i++)
352 sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
353 #endif
354
355 #if GEN_GEN >= 8
356 /* On Broadwell, they broke 3DSTATE_SBE into two packets */
357 struct GENX(3DSTATE_SBE_SWIZ) swiz = {
358 GENX(3DSTATE_SBE_SWIZ_header),
359 };
360 #else
361 # define swiz sbe
362 #endif
363
364 /* Skip the VUE header and position slots by default */
365 unsigned urb_entry_read_offset = 1;
366 int max_source_attr = 0;
367 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
368 int input_index = wm_prog_data->urb_setup[attr];
369
370 if (input_index < 0)
371 continue;
372
373 /* gl_Layer is stored in the VUE header */
374 if (attr == VARYING_SLOT_LAYER) {
375 urb_entry_read_offset = 0;
376 continue;
377 }
378
379 if (attr == VARYING_SLOT_PNTC) {
380 sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
381 continue;
382 }
383
384 const int slot = fs_input_map->varying_to_slot[attr];
385
386 if (input_index >= 16)
387 continue;
388
389 if (slot == -1) {
390 /* This attribute does not exist in the VUE--that means that the
391 * vertex shader did not write to it. It could be that it's a
392 * regular varying read by the fragment shader but not written by
393 * the vertex shader or it's gl_PrimitiveID. In the first case the
394 * value is undefined, in the second it needs to be
395 * gl_PrimitiveID.
396 */
397 swiz.Attribute[input_index].ConstantSource = PRIM_ID;
398 swiz.Attribute[input_index].ComponentOverrideX = true;
399 swiz.Attribute[input_index].ComponentOverrideY = true;
400 swiz.Attribute[input_index].ComponentOverrideZ = true;
401 swiz.Attribute[input_index].ComponentOverrideW = true;
402 } else {
403 /* We have to subtract two slots to accout for the URB entry output
404 * read offset in the VS and GS stages.
405 */
406 const int source_attr = slot - 2 * urb_entry_read_offset;
407 assert(source_attr >= 0 && source_attr < 32);
408 max_source_attr = MAX2(max_source_attr, source_attr);
409 swiz.Attribute[input_index].SourceAttribute = source_attr;
410 }
411 }
412
413 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
414 sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
415 #if GEN_GEN >= 8
416 sbe.ForceVertexURBEntryReadOffset = true;
417 sbe.ForceVertexURBEntryReadLength = true;
418 #endif
419
420 uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
421 GENX(3DSTATE_SBE_length));
422 if (!dw)
423 return;
424 GENX(3DSTATE_SBE_pack)(&pipeline->batch, dw, &sbe);
425
426 #if GEN_GEN >= 8
427 dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length));
428 if (!dw)
429 return;
430 GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
431 #endif
432 }
433
434 static const uint32_t vk_to_gen_cullmode[] = {
435 [VK_CULL_MODE_NONE] = CULLMODE_NONE,
436 [VK_CULL_MODE_FRONT_BIT] = CULLMODE_FRONT,
437 [VK_CULL_MODE_BACK_BIT] = CULLMODE_BACK,
438 [VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH
439 };
440
441 static const uint32_t vk_to_gen_fillmode[] = {
442 [VK_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
443 [VK_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
444 [VK_POLYGON_MODE_POINT] = FILL_MODE_POINT,
445 };
446
447 static const uint32_t vk_to_gen_front_face[] = {
448 [VK_FRONT_FACE_COUNTER_CLOCKWISE] = 1,
449 [VK_FRONT_FACE_CLOCKWISE] = 0
450 };
451
452 static void
453 emit_rs_state(struct anv_pipeline *pipeline,
454 const VkPipelineRasterizationStateCreateInfo *rs_info,
455 const VkPipelineMultisampleStateCreateInfo *ms_info,
456 const struct anv_render_pass *pass,
457 const struct anv_subpass *subpass)
458 {
459 struct GENX(3DSTATE_SF) sf = {
460 GENX(3DSTATE_SF_header),
461 };
462
463 sf.ViewportTransformEnable = true;
464 sf.StatisticsEnable = true;
465 sf.TriangleStripListProvokingVertexSelect = 0;
466 sf.LineStripListProvokingVertexSelect = 0;
467 sf.TriangleFanProvokingVertexSelect = 1;
468
469 const struct brw_vue_prog_data *last_vue_prog_data =
470 anv_pipeline_get_last_vue_prog_data(pipeline);
471
472 if (last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
473 sf.PointWidthSource = Vertex;
474 } else {
475 sf.PointWidthSource = State;
476 sf.PointWidth = 1.0;
477 }
478
479 #if GEN_GEN >= 8
480 struct GENX(3DSTATE_RASTER) raster = {
481 GENX(3DSTATE_RASTER_header),
482 };
483 #else
484 # define raster sf
485 #endif
486
487 /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
488 * "Multisample Modes State".
489 */
490 #if GEN_GEN >= 8
491 raster.DXMultisampleRasterizationEnable = true;
492 /* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
493 * computations. If we ever set this bit to a different value, they will
494 * need to be updated accordingly.
495 */
496 raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
497 raster.ForceMultisampling = false;
498 #else
499 raster.MultisampleRasterizationMode =
500 (ms_info && ms_info->rasterizationSamples > 1) ?
501 MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
502 #endif
503
504 raster.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
505 raster.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
506 raster.FrontFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
507 raster.BackFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
508 raster.ScissorRectangleEnable = true;
509
510 #if GEN_GEN >= 9
511 /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
512 raster.ViewportZFarClipTestEnable = !pipeline->depth_clamp_enable;
513 raster.ViewportZNearClipTestEnable = !pipeline->depth_clamp_enable;
514 #elif GEN_GEN >= 8
515 raster.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
516 #endif
517
518 raster.GlobalDepthOffsetEnableSolid = rs_info->depthBiasEnable;
519 raster.GlobalDepthOffsetEnableWireframe = rs_info->depthBiasEnable;
520 raster.GlobalDepthOffsetEnablePoint = rs_info->depthBiasEnable;
521
522 #if GEN_GEN == 7
523 /* Gen7 requires that we provide the depth format in 3DSTATE_SF so that it
524 * can get the depth offsets correct.
525 */
526 if (subpass->depth_stencil_attachment) {
527 VkFormat vk_format =
528 pass->attachments[subpass->depth_stencil_attachment->attachment].format;
529 assert(vk_format_is_depth_or_stencil(vk_format));
530 if (vk_format_aspects(vk_format) & VK_IMAGE_ASPECT_DEPTH_BIT) {
531 enum isl_format isl_format =
532 anv_get_isl_format(&pipeline->device->info, vk_format,
533 VK_IMAGE_ASPECT_DEPTH_BIT,
534 VK_IMAGE_TILING_OPTIMAL);
535 sf.DepthBufferSurfaceFormat =
536 isl_format_get_depth_format(isl_format, false);
537 }
538 }
539 #endif
540
541 #if GEN_GEN >= 8
542 GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
543 GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
544 #else
545 # undef raster
546 GENX(3DSTATE_SF_pack)(NULL, &pipeline->gen7.sf, &sf);
547 #endif
548 }
549
550 static void
551 emit_ms_state(struct anv_pipeline *pipeline,
552 const VkPipelineMultisampleStateCreateInfo *info)
553 {
554 uint32_t samples = 1;
555 uint32_t log2_samples = 0;
556
557 /* From the Vulkan 1.0 spec:
558 * If pSampleMask is NULL, it is treated as if the mask has all bits
559 * enabled, i.e. no coverage is removed from fragments.
560 *
561 * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
562 */
563 #if GEN_GEN >= 8
564 uint32_t sample_mask = 0xffff;
565 #else
566 uint32_t sample_mask = 0xff;
567 #endif
568
569 if (info) {
570 samples = info->rasterizationSamples;
571 log2_samples = __builtin_ffs(samples) - 1;
572 }
573
574 if (info && info->pSampleMask)
575 sample_mask &= info->pSampleMask[0];
576
577 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), ms) {
578 ms.NumberofMultisamples = log2_samples;
579
580 ms.PixelLocation = CENTER;
581 #if GEN_GEN >= 8
582 /* The PRM says that this bit is valid only for DX9:
583 *
584 * SW can choose to set this bit only for DX9 API. DX10/OGL API's
585 * should not have any effect by setting or not setting this bit.
586 */
587 ms.PixelPositionOffsetEnable = false;
588 #else
589
590 switch (samples) {
591 case 1:
592 GEN_SAMPLE_POS_1X(ms.Sample);
593 break;
594 case 2:
595 GEN_SAMPLE_POS_2X(ms.Sample);
596 break;
597 case 4:
598 GEN_SAMPLE_POS_4X(ms.Sample);
599 break;
600 case 8:
601 GEN_SAMPLE_POS_8X(ms.Sample);
602 break;
603 default:
604 break;
605 }
606 #endif
607 }
608
609 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
610 sm.SampleMask = sample_mask;
611 }
612 }
613
614 static const uint32_t vk_to_gen_logic_op[] = {
615 [VK_LOGIC_OP_COPY] = LOGICOP_COPY,
616 [VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR,
617 [VK_LOGIC_OP_AND] = LOGICOP_AND,
618 [VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE,
619 [VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED,
620 [VK_LOGIC_OP_NO_OP] = LOGICOP_NOOP,
621 [VK_LOGIC_OP_XOR] = LOGICOP_XOR,
622 [VK_LOGIC_OP_OR] = LOGICOP_OR,
623 [VK_LOGIC_OP_NOR] = LOGICOP_NOR,
624 [VK_LOGIC_OP_EQUIVALENT] = LOGICOP_EQUIV,
625 [VK_LOGIC_OP_INVERT] = LOGICOP_INVERT,
626 [VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE,
627 [VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED,
628 [VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED,
629 [VK_LOGIC_OP_NAND] = LOGICOP_NAND,
630 [VK_LOGIC_OP_SET] = LOGICOP_SET,
631 };
632
633 static const uint32_t vk_to_gen_blend[] = {
634 [VK_BLEND_FACTOR_ZERO] = BLENDFACTOR_ZERO,
635 [VK_BLEND_FACTOR_ONE] = BLENDFACTOR_ONE,
636 [VK_BLEND_FACTOR_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
637 [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
638 [VK_BLEND_FACTOR_DST_COLOR] = BLENDFACTOR_DST_COLOR,
639 [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
640 [VK_BLEND_FACTOR_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
641 [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
642 [VK_BLEND_FACTOR_DST_ALPHA] = BLENDFACTOR_DST_ALPHA,
643 [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
644 [VK_BLEND_FACTOR_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
645 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
646 [VK_BLEND_FACTOR_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
647 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
648 [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
649 [VK_BLEND_FACTOR_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
650 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
651 [VK_BLEND_FACTOR_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
652 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
653 };
654
655 static const uint32_t vk_to_gen_blend_op[] = {
656 [VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
657 [VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
658 [VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
659 [VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
660 [VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
661 };
662
663 static const uint32_t vk_to_gen_compare_op[] = {
664 [VK_COMPARE_OP_NEVER] = PREFILTEROPNEVER,
665 [VK_COMPARE_OP_LESS] = PREFILTEROPLESS,
666 [VK_COMPARE_OP_EQUAL] = PREFILTEROPEQUAL,
667 [VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROPLEQUAL,
668 [VK_COMPARE_OP_GREATER] = PREFILTEROPGREATER,
669 [VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROPNOTEQUAL,
670 [VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROPGEQUAL,
671 [VK_COMPARE_OP_ALWAYS] = PREFILTEROPALWAYS,
672 };
673
674 static const uint32_t vk_to_gen_stencil_op[] = {
675 [VK_STENCIL_OP_KEEP] = STENCILOP_KEEP,
676 [VK_STENCIL_OP_ZERO] = STENCILOP_ZERO,
677 [VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE,
678 [VK_STENCIL_OP_INCREMENT_AND_CLAMP] = STENCILOP_INCRSAT,
679 [VK_STENCIL_OP_DECREMENT_AND_CLAMP] = STENCILOP_DECRSAT,
680 [VK_STENCIL_OP_INVERT] = STENCILOP_INVERT,
681 [VK_STENCIL_OP_INCREMENT_AND_WRAP] = STENCILOP_INCR,
682 [VK_STENCIL_OP_DECREMENT_AND_WRAP] = STENCILOP_DECR,
683 };
684
685 /* This function sanitizes the VkStencilOpState by looking at the compare ops
686 * and trying to determine whether or not a given stencil op can ever actually
687 * occur. Stencil ops which can never occur are set to VK_STENCIL_OP_KEEP.
688 * This function returns true if, after sanitation, any of the stencil ops are
689 * set to something other than VK_STENCIL_OP_KEEP.
690 */
691 static bool
692 sanitize_stencil_face(VkStencilOpState *face,
693 VkCompareOp depthCompareOp)
694 {
695 /* If compareOp is ALWAYS then the stencil test will never fail and failOp
696 * will never happen. Set failOp to KEEP in this case.
697 */
698 if (face->compareOp == VK_COMPARE_OP_ALWAYS)
699 face->failOp = VK_STENCIL_OP_KEEP;
700
701 /* If compareOp is NEVER or depthCompareOp is NEVER then one of the depth
702 * or stencil tests will fail and passOp will never happen.
703 */
704 if (face->compareOp == VK_COMPARE_OP_NEVER ||
705 depthCompareOp == VK_COMPARE_OP_NEVER)
706 face->passOp = VK_STENCIL_OP_KEEP;
707
708 /* If compareOp is NEVER or depthCompareOp is ALWAYS then either the
709 * stencil test will fail or the depth test will pass. In either case,
710 * depthFailOp will never happen.
711 */
712 if (face->compareOp == VK_COMPARE_OP_NEVER ||
713 depthCompareOp == VK_COMPARE_OP_ALWAYS)
714 face->depthFailOp = VK_STENCIL_OP_KEEP;
715
716 return face->failOp != VK_STENCIL_OP_KEEP ||
717 face->depthFailOp != VK_STENCIL_OP_KEEP ||
718 face->passOp != VK_STENCIL_OP_KEEP;
719 }
720
721 /* Intel hardware is fairly sensitive to whether or not depth/stencil writes
722 * are enabled. In the presence of discards, it's fairly easy to get into the
723 * non-promoted case which means a fairly big performance hit. From the Iron
724 * Lake PRM, Vol 2, pt. 1, section 8.4.3.2, "Early Depth Test Cases":
725 *
726 * "Non-promoted depth (N) is active whenever the depth test can be done
727 * early but it cannot determine whether or not to write source depth to
728 * the depth buffer, therefore the depth write must be performed post pixel
729 * shader. This includes cases where the pixel shader can kill pixels,
730 * including via sampler chroma key, as well as cases where the alpha test
731 * function is enabled, which kills pixels based on a programmable alpha
732 * test. In this case, even if the depth test fails, the pixel cannot be
733 * killed if a stencil write is indicated. Whether or not the stencil write
734 * happens depends on whether or not the pixel is killed later. In these
735 * cases if stencil test fails and stencil writes are off, the pixels can
736 * also be killed early. If stencil writes are enabled, the pixels must be
737 * treated as Computed depth (described above)."
738 *
739 * The same thing as mentioned in the stencil case can happen in the depth
740 * case as well if it thinks it writes depth but, thanks to the depth test
741 * being GL_EQUAL, the write doesn't actually matter. A little extra work
742 * up-front to try and disable depth and stencil writes can make a big
743 * difference.
744 *
745 * Unfortunately, the way depth and stencil testing is specified, there are
746 * many case where, regardless of depth/stencil writes being enabled, nothing
747 * actually gets written due to some other bit of state being set. This
748 * function attempts to "sanitize" the depth stencil state and disable writes
749 * and sometimes even testing whenever possible.
750 */
751 static void
752 sanitize_ds_state(VkPipelineDepthStencilStateCreateInfo *state,
753 bool *stencilWriteEnable,
754 VkImageAspectFlags ds_aspects)
755 {
756 *stencilWriteEnable = state->stencilTestEnable;
757
758 /* If the depth test is disabled, we won't be writing anything. Make sure we
759 * treat the test as always passing later on as well.
760 *
761 * Also, the Vulkan spec requires that if either depth or stencil is not
762 * present, the pipeline is to act as if the test silently passes. In that
763 * case we won't write either.
764 */
765 if (!state->depthTestEnable || !(ds_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
766 state->depthWriteEnable = false;
767 state->depthCompareOp = VK_COMPARE_OP_ALWAYS;
768 }
769
770 if (!(ds_aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
771 *stencilWriteEnable = false;
772 state->front.compareOp = VK_COMPARE_OP_ALWAYS;
773 state->back.compareOp = VK_COMPARE_OP_ALWAYS;
774 }
775
776 /* If the stencil test is enabled and always fails, then we will never get
777 * to the depth test so we can just disable the depth test entirely.
778 */
779 if (state->stencilTestEnable &&
780 state->front.compareOp == VK_COMPARE_OP_NEVER &&
781 state->back.compareOp == VK_COMPARE_OP_NEVER) {
782 state->depthTestEnable = false;
783 state->depthWriteEnable = false;
784 }
785
786 /* If depthCompareOp is EQUAL then the value we would be writing to the
787 * depth buffer is the same as the value that's already there so there's no
788 * point in writing it.
789 */
790 if (state->depthCompareOp == VK_COMPARE_OP_EQUAL)
791 state->depthWriteEnable = false;
792
793 /* If the stencil ops are such that we don't actually ever modify the
794 * stencil buffer, we should disable writes.
795 */
796 if (!sanitize_stencil_face(&state->front, state->depthCompareOp) &&
797 !sanitize_stencil_face(&state->back, state->depthCompareOp))
798 *stencilWriteEnable = false;
799
800 /* If the depth test always passes and we never write out depth, that's the
801 * same as if the depth test is disabled entirely.
802 */
803 if (state->depthCompareOp == VK_COMPARE_OP_ALWAYS &&
804 !state->depthWriteEnable)
805 state->depthTestEnable = false;
806
807 /* If the stencil test always passes and we never write out stencil, that's
808 * the same as if the stencil test is disabled entirely.
809 */
810 if (state->front.compareOp == VK_COMPARE_OP_ALWAYS &&
811 state->back.compareOp == VK_COMPARE_OP_ALWAYS &&
812 !*stencilWriteEnable)
813 state->stencilTestEnable = false;
814 }
815
816 static void
817 emit_ds_state(struct anv_pipeline *pipeline,
818 const VkPipelineDepthStencilStateCreateInfo *pCreateInfo,
819 const struct anv_render_pass *pass,
820 const struct anv_subpass *subpass)
821 {
822 #if GEN_GEN == 7
823 # define depth_stencil_dw pipeline->gen7.depth_stencil_state
824 #elif GEN_GEN == 8
825 # define depth_stencil_dw pipeline->gen8.wm_depth_stencil
826 #else
827 # define depth_stencil_dw pipeline->gen9.wm_depth_stencil
828 #endif
829
830 if (pCreateInfo == NULL) {
831 /* We're going to OR this together with the dynamic state. We need
832 * to make sure it's initialized to something useful.
833 */
834 pipeline->writes_stencil = false;
835 pipeline->stencil_test_enable = false;
836 pipeline->writes_depth = false;
837 pipeline->depth_test_enable = false;
838 memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw));
839 return;
840 }
841
842 VkImageAspectFlags ds_aspects = 0;
843 if (subpass->depth_stencil_attachment) {
844 VkFormat depth_stencil_format =
845 pass->attachments[subpass->depth_stencil_attachment->attachment].format;
846 ds_aspects = vk_format_aspects(depth_stencil_format);
847 }
848
849 VkPipelineDepthStencilStateCreateInfo info = *pCreateInfo;
850 sanitize_ds_state(&info, &pipeline->writes_stencil, ds_aspects);
851 pipeline->stencil_test_enable = info.stencilTestEnable;
852 pipeline->writes_depth = info.depthWriteEnable;
853 pipeline->depth_test_enable = info.depthTestEnable;
854
855 /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */
856
857 #if GEN_GEN <= 7
858 struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
859 #else
860 struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = {
861 #endif
862 .DepthTestEnable = info.depthTestEnable,
863 .DepthBufferWriteEnable = info.depthWriteEnable,
864 .DepthTestFunction = vk_to_gen_compare_op[info.depthCompareOp],
865 .DoubleSidedStencilEnable = true,
866
867 .StencilTestEnable = info.stencilTestEnable,
868 .StencilFailOp = vk_to_gen_stencil_op[info.front.failOp],
869 .StencilPassDepthPassOp = vk_to_gen_stencil_op[info.front.passOp],
870 .StencilPassDepthFailOp = vk_to_gen_stencil_op[info.front.depthFailOp],
871 .StencilTestFunction = vk_to_gen_compare_op[info.front.compareOp],
872 .BackfaceStencilFailOp = vk_to_gen_stencil_op[info.back.failOp],
873 .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info.back.passOp],
874 .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info.back.depthFailOp],
875 .BackfaceStencilTestFunction = vk_to_gen_compare_op[info.back.compareOp],
876 };
877
878 #if GEN_GEN <= 7
879 GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
880 #else
881 GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil);
882 #endif
883 }
884
885 MAYBE_UNUSED static bool
886 is_dual_src_blend_factor(VkBlendFactor factor)
887 {
888 return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
889 factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
890 factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
891 factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
892 }
893
894 static void
895 emit_cb_state(struct anv_pipeline *pipeline,
896 const VkPipelineColorBlendStateCreateInfo *info,
897 const VkPipelineMultisampleStateCreateInfo *ms_info)
898 {
899 struct anv_device *device = pipeline->device;
900 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
901
902 struct GENX(BLEND_STATE) blend_state = {
903 #if GEN_GEN >= 8
904 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
905 .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
906 #endif
907 };
908
909 uint32_t surface_count = 0;
910 struct anv_pipeline_bind_map *map;
911 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
912 map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
913 surface_count = map->surface_count;
914 }
915
916 const uint32_t num_dwords = GENX(BLEND_STATE_length) +
917 GENX(BLEND_STATE_ENTRY_length) * surface_count;
918 pipeline->blend_state =
919 anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
920
921 bool has_writeable_rt = false;
922 uint32_t *state_pos = pipeline->blend_state.map;
923 state_pos += GENX(BLEND_STATE_length);
924 #if GEN_GEN >= 8
925 struct GENX(BLEND_STATE_ENTRY) bs0 = { 0 };
926 #endif
927 for (unsigned i = 0; i < surface_count; i++) {
928 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
929
930 /* All color attachments are at the beginning of the binding table */
931 if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
932 break;
933
934 /* We can have at most 8 attachments */
935 assert(i < 8);
936
937 if (info == NULL || binding->index >= info->attachmentCount) {
938 /* Default everything to disabled */
939 struct GENX(BLEND_STATE_ENTRY) entry = {
940 .WriteDisableAlpha = true,
941 .WriteDisableRed = true,
942 .WriteDisableGreen = true,
943 .WriteDisableBlue = true,
944 };
945 GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
946 state_pos += GENX(BLEND_STATE_ENTRY_length);
947 continue;
948 }
949
950 assert(binding->binding == 0);
951 const VkPipelineColorBlendAttachmentState *a =
952 &info->pAttachments[binding->index];
953
954 struct GENX(BLEND_STATE_ENTRY) entry = {
955 #if GEN_GEN < 8
956 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
957 .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
958 #endif
959 .LogicOpEnable = info->logicOpEnable,
960 .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
961 .ColorBufferBlendEnable = a->blendEnable,
962 .ColorClampRange = COLORCLAMP_RTFORMAT,
963 .PreBlendColorClampEnable = true,
964 .PostBlendColorClampEnable = true,
965 .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
966 .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
967 .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
968 .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
969 .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
970 .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
971 .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
972 .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
973 .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
974 .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
975 };
976
977 if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
978 a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
979 a->colorBlendOp != a->alphaBlendOp) {
980 #if GEN_GEN >= 8
981 blend_state.IndependentAlphaBlendEnable = true;
982 #else
983 entry.IndependentAlphaBlendEnable = true;
984 #endif
985 }
986
987 /* The Dual Source Blending documentation says:
988 *
989 * "If SRC1 is included in a src/dst blend factor and
990 * a DualSource RT Write message is not used, results
991 * are UNDEFINED. (This reflects the same restriction in DX APIs,
992 * where undefined results are produced if “o1” is not written
993 * by a PS – there are no default values defined)."
994 *
995 * There is no way to gracefully fix this undefined situation
996 * so we just disable the blending to prevent possible issues.
997 */
998 if (!wm_prog_data->dual_src_blend &&
999 (is_dual_src_blend_factor(a->srcColorBlendFactor) ||
1000 is_dual_src_blend_factor(a->dstColorBlendFactor) ||
1001 is_dual_src_blend_factor(a->srcAlphaBlendFactor) ||
1002 is_dual_src_blend_factor(a->dstAlphaBlendFactor))) {
1003 vk_debug_report(&device->instance->debug_report_callbacks,
1004 VK_DEBUG_REPORT_WARNING_BIT_EXT,
1005 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
1006 (uint64_t)(uintptr_t)device,
1007 0, 0, "anv",
1008 "Enabled dual-src blend factors without writing both targets "
1009 "in the shader. Disabling blending to avoid GPU hangs.");
1010 entry.ColorBufferBlendEnable = false;
1011 }
1012
1013 if (a->colorWriteMask != 0)
1014 has_writeable_rt = true;
1015
1016 /* Our hardware applies the blend factor prior to the blend function
1017 * regardless of what function is used. Technically, this means the
1018 * hardware can do MORE than GL or Vulkan specify. However, it also
1019 * means that, for MIN and MAX, we have to stomp the blend factor to
1020 * ONE to make it a no-op.
1021 */
1022 if (a->colorBlendOp == VK_BLEND_OP_MIN ||
1023 a->colorBlendOp == VK_BLEND_OP_MAX) {
1024 entry.SourceBlendFactor = BLENDFACTOR_ONE;
1025 entry.DestinationBlendFactor = BLENDFACTOR_ONE;
1026 }
1027 if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
1028 a->alphaBlendOp == VK_BLEND_OP_MAX) {
1029 entry.SourceAlphaBlendFactor = BLENDFACTOR_ONE;
1030 entry.DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
1031 }
1032 GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
1033 state_pos += GENX(BLEND_STATE_ENTRY_length);
1034 #if GEN_GEN >= 8
1035 if (i == 0)
1036 bs0 = entry;
1037 #endif
1038 }
1039
1040 #if GEN_GEN >= 8
1041 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) {
1042 blend.AlphaToCoverageEnable = blend_state.AlphaToCoverageEnable;
1043 blend.HasWriteableRT = has_writeable_rt;
1044 blend.ColorBufferBlendEnable = bs0.ColorBufferBlendEnable;
1045 blend.SourceAlphaBlendFactor = bs0.SourceAlphaBlendFactor;
1046 blend.DestinationAlphaBlendFactor = bs0.DestinationAlphaBlendFactor;
1047 blend.SourceBlendFactor = bs0.SourceBlendFactor;
1048 blend.DestinationBlendFactor = bs0.DestinationBlendFactor;
1049 blend.AlphaTestEnable = false;
1050 blend.IndependentAlphaBlendEnable =
1051 blend_state.IndependentAlphaBlendEnable;
1052 }
1053 #else
1054 (void)has_writeable_rt;
1055 #endif
1056
1057 GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
1058 anv_state_flush(device, pipeline->blend_state);
1059
1060 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
1061 bsp.BlendStatePointer = pipeline->blend_state.offset;
1062 #if GEN_GEN >= 8
1063 bsp.BlendStatePointerValid = true;
1064 #endif
1065 }
1066 }
1067
1068 static void
1069 emit_3dstate_clip(struct anv_pipeline *pipeline,
1070 const VkPipelineViewportStateCreateInfo *vp_info,
1071 const VkPipelineRasterizationStateCreateInfo *rs_info)
1072 {
1073 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1074 (void) wm_prog_data;
1075 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) {
1076 clip.ClipEnable = true;
1077 clip.StatisticsEnable = true;
1078 clip.EarlyCullEnable = true;
1079 clip.APIMode = APIMODE_D3D,
1080 clip.ViewportXYClipTestEnable = true;
1081
1082 clip.ClipMode = CLIPMODE_NORMAL;
1083
1084 clip.TriangleStripListProvokingVertexSelect = 0;
1085 clip.LineStripListProvokingVertexSelect = 0;
1086 clip.TriangleFanProvokingVertexSelect = 1;
1087
1088 clip.MinimumPointWidth = 0.125;
1089 clip.MaximumPointWidth = 255.875;
1090
1091 const struct brw_vue_prog_data *last =
1092 anv_pipeline_get_last_vue_prog_data(pipeline);
1093
1094 /* From the Vulkan 1.0.45 spec:
1095 *
1096 * "If the last active vertex processing stage shader entry point's
1097 * interface does not include a variable decorated with
1098 * ViewportIndex, then the first viewport is used."
1099 */
1100 if (vp_info && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
1101 clip.MaximumVPIndex = vp_info->viewportCount - 1;
1102 } else {
1103 clip.MaximumVPIndex = 0;
1104 }
1105
1106 /* From the Vulkan 1.0.45 spec:
1107 *
1108 * "If the last active vertex processing stage shader entry point's
1109 * interface does not include a variable decorated with Layer, then
1110 * the first layer is used."
1111 */
1112 clip.ForceZeroRTAIndexEnable =
1113 !(last->vue_map.slots_valid & VARYING_BIT_LAYER);
1114
1115 #if GEN_GEN == 7
1116 clip.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
1117 clip.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
1118 clip.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
1119 if (last) {
1120 clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
1121 clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
1122 }
1123 #else
1124 clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
1125 (wm_prog_data->barycentric_interp_modes &
1126 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0 : 0;
1127 #endif
1128 }
1129 }
1130
1131 static void
1132 emit_3dstate_streamout(struct anv_pipeline *pipeline,
1133 const VkPipelineRasterizationStateCreateInfo *rs_info)
1134 {
1135 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), so) {
1136 so.RenderingDisable = rs_info->rasterizerDiscardEnable;
1137 }
1138 }
1139
1140 static uint32_t
1141 get_sampler_count(const struct anv_shader_bin *bin)
1142 {
1143 uint32_t count_by_4 = DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
1144
1145 /* We can potentially have way more than 32 samplers and that's ok.
1146 * However, the 3DSTATE_XS packets only have 3 bits to specify how
1147 * many to pre-fetch and all values above 4 are marked reserved.
1148 */
1149 return MIN2(count_by_4, 4);
1150 }
1151
1152 static uint32_t
1153 get_binding_table_entry_count(const struct anv_shader_bin *bin)
1154 {
1155 return DIV_ROUND_UP(bin->bind_map.surface_count, 32);
1156 }
1157
1158 static struct anv_address
1159 get_scratch_address(struct anv_pipeline *pipeline,
1160 gl_shader_stage stage,
1161 const struct anv_shader_bin *bin)
1162 {
1163 return (struct anv_address) {
1164 .bo = anv_scratch_pool_alloc(pipeline->device,
1165 &pipeline->device->scratch_pool,
1166 stage, bin->prog_data->total_scratch),
1167 .offset = 0,
1168 };
1169 }
1170
1171 static uint32_t
1172 get_scratch_space(const struct anv_shader_bin *bin)
1173 {
1174 return ffs(bin->prog_data->total_scratch / 2048);
1175 }
1176
1177 static void
1178 emit_3dstate_vs(struct anv_pipeline *pipeline)
1179 {
1180 const struct gen_device_info *devinfo = &pipeline->device->info;
1181 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1182 const struct anv_shader_bin *vs_bin =
1183 pipeline->shaders[MESA_SHADER_VERTEX];
1184
1185 assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));
1186
1187 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) {
1188 vs.Enable = true;
1189 vs.StatisticsEnable = true;
1190 vs.KernelStartPointer = vs_bin->kernel.offset;
1191 #if GEN_GEN >= 8
1192 vs.SIMD8DispatchEnable =
1193 vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
1194 #endif
1195
1196 assert(!vs_prog_data->base.base.use_alt_mode);
1197 #if GEN_GEN < 11
1198 vs.SingleVertexDispatch = false;
1199 #endif
1200 vs.VectorMaskEnable = false;
1201 vs.SamplerCount = get_sampler_count(vs_bin);
1202 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable suggests to
1203 * disable prefetching of binding tables on A0 and B0 steppings.
1204 * TODO: Revisit this WA on newer steppings.
1205 */
1206 vs.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(vs_bin);
1207 vs.FloatingPointMode = IEEE754;
1208 vs.IllegalOpcodeExceptionEnable = false;
1209 vs.SoftwareExceptionEnable = false;
1210 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
1211
1212 if (GEN_GEN == 9 && devinfo->gt == 4 &&
1213 anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1214 /* On Sky Lake GT4, we have experienced some hangs related to the VS
1215 * cache and tessellation. It is unknown exactly what is happening
1216 * but the Haswell docs for the "VS Reference Count Full Force Miss
1217 * Enable" field of the "Thread Mode" register refer to a HSW bug in
1218 * which the VUE handle reference count would overflow resulting in
1219 * internal reference counting bugs. My (Jason's) best guess is that
1220 * this bug cropped back up on SKL GT4 when we suddenly had more
1221 * threads in play than any previous gen9 hardware.
1222 *
1223 * What we do know for sure is that setting this bit when
1224 * tessellation shaders are in use fixes a GPU hang in Batman: Arkham
1225 * City when playing with DXVK (https://bugs.freedesktop.org/107280).
1226 * Disabling the vertex cache with tessellation shaders should only
1227 * have a minor performance impact as the tessellation shaders are
1228 * likely generating and processing far more geometry than the vertex
1229 * stage.
1230 */
1231 vs.VertexCacheDisable = true;
1232 }
1233
1234 vs.VertexURBEntryReadLength = vs_prog_data->base.urb_read_length;
1235 vs.VertexURBEntryReadOffset = 0;
1236 vs.DispatchGRFStartRegisterForURBData =
1237 vs_prog_data->base.base.dispatch_grf_start_reg;
1238
1239 #if GEN_GEN >= 8
1240 vs.UserClipDistanceClipTestEnableBitmask =
1241 vs_prog_data->base.clip_distance_mask;
1242 vs.UserClipDistanceCullTestEnableBitmask =
1243 vs_prog_data->base.cull_distance_mask;
1244 #endif
1245
1246 vs.PerThreadScratchSpace = get_scratch_space(vs_bin);
1247 vs.ScratchSpaceBasePointer =
1248 get_scratch_address(pipeline, MESA_SHADER_VERTEX, vs_bin);
1249 }
1250 }
1251
1252 static void
1253 emit_3dstate_hs_te_ds(struct anv_pipeline *pipeline,
1254 const VkPipelineTessellationStateCreateInfo *tess_info)
1255 {
1256 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1257 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs);
1258 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te);
1259 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds);
1260 return;
1261 }
1262
1263 const struct gen_device_info *devinfo = &pipeline->device->info;
1264 const struct anv_shader_bin *tcs_bin =
1265 pipeline->shaders[MESA_SHADER_TESS_CTRL];
1266 const struct anv_shader_bin *tes_bin =
1267 pipeline->shaders[MESA_SHADER_TESS_EVAL];
1268
1269 const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
1270 const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
1271
1272 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs) {
1273 hs.Enable = true;
1274 hs.StatisticsEnable = true;
1275 hs.KernelStartPointer = tcs_bin->kernel.offset;
1276
1277 hs.SamplerCount = get_sampler_count(tcs_bin);
1278 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1279 hs.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(tcs_bin);
1280 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
1281 hs.IncludeVertexHandles = true;
1282 hs.InstanceCount = tcs_prog_data->instances - 1;
1283
1284 hs.VertexURBEntryReadLength = 0;
1285 hs.VertexURBEntryReadOffset = 0;
1286 hs.DispatchGRFStartRegisterForURBData =
1287 tcs_prog_data->base.base.dispatch_grf_start_reg;
1288
1289 hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
1290 hs.ScratchSpaceBasePointer =
1291 get_scratch_address(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
1292 }
1293
1294 const VkPipelineTessellationDomainOriginStateCreateInfoKHR *domain_origin_state =
1295 tess_info ? vk_find_struct_const(tess_info, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO_KHR) : NULL;
1296
1297 VkTessellationDomainOriginKHR uv_origin =
1298 domain_origin_state ? domain_origin_state->domainOrigin :
1299 VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT_KHR;
1300
1301 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te) {
1302 te.Partitioning = tes_prog_data->partitioning;
1303
1304 if (uv_origin == VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT_KHR) {
1305 te.OutputTopology = tes_prog_data->output_topology;
1306 } else {
1307 /* When the origin is upper-left, we have to flip the winding order */
1308 if (tes_prog_data->output_topology == OUTPUT_TRI_CCW) {
1309 te.OutputTopology = OUTPUT_TRI_CW;
1310 } else if (tes_prog_data->output_topology == OUTPUT_TRI_CW) {
1311 te.OutputTopology = OUTPUT_TRI_CCW;
1312 } else {
1313 te.OutputTopology = tes_prog_data->output_topology;
1314 }
1315 }
1316
1317 te.TEDomain = tes_prog_data->domain;
1318 te.TEEnable = true;
1319 te.MaximumTessellationFactorOdd = 63.0;
1320 te.MaximumTessellationFactorNotOdd = 64.0;
1321 }
1322
1323 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds) {
1324 ds.Enable = true;
1325 ds.StatisticsEnable = true;
1326 ds.KernelStartPointer = tes_bin->kernel.offset;
1327
1328 ds.SamplerCount = get_sampler_count(tes_bin);
1329 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1330 ds.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(tes_bin);
1331 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
1332
1333 ds.ComputeWCoordinateEnable =
1334 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
1335
1336 ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
1337 ds.PatchURBEntryReadOffset = 0;
1338 ds.DispatchGRFStartRegisterForURBData =
1339 tes_prog_data->base.base.dispatch_grf_start_reg;
1340
1341 #if GEN_GEN >= 8
1342 #if GEN_GEN < 11
1343 ds.DispatchMode =
1344 tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
1345 DISPATCH_MODE_SIMD8_SINGLE_PATCH :
1346 DISPATCH_MODE_SIMD4X2;
1347 #else
1348 assert(tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8);
1349 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
1350 #endif
1351
1352 ds.UserClipDistanceClipTestEnableBitmask =
1353 tes_prog_data->base.clip_distance_mask;
1354 ds.UserClipDistanceCullTestEnableBitmask =
1355 tes_prog_data->base.cull_distance_mask;
1356 #endif
1357
1358 ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
1359 ds.ScratchSpaceBasePointer =
1360 get_scratch_address(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
1361 }
1362 }
1363
1364 static void
1365 emit_3dstate_gs(struct anv_pipeline *pipeline)
1366 {
1367 const struct gen_device_info *devinfo = &pipeline->device->info;
1368 const struct anv_shader_bin *gs_bin =
1369 pipeline->shaders[MESA_SHADER_GEOMETRY];
1370
1371 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
1372 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs);
1373 return;
1374 }
1375
1376 const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
1377
1378 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) {
1379 gs.Enable = true;
1380 gs.StatisticsEnable = true;
1381 gs.KernelStartPointer = gs_bin->kernel.offset;
1382 gs.DispatchMode = gs_prog_data->base.dispatch_mode;
1383
1384 gs.SingleProgramFlow = false;
1385 gs.VectorMaskEnable = false;
1386 gs.SamplerCount = get_sampler_count(gs_bin);
1387 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1388 gs.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(gs_bin);
1389 gs.IncludeVertexHandles = gs_prog_data->base.include_vue_handles;
1390 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
1391
1392 if (GEN_GEN == 8) {
1393 /* Broadwell is weird. It needs us to divide by 2. */
1394 gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
1395 } else {
1396 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
1397 }
1398
1399 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
1400 gs.OutputTopology = gs_prog_data->output_topology;
1401 gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1402 gs.ControlDataFormat = gs_prog_data->control_data_format;
1403 gs.ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords;
1404 gs.InstanceControl = MAX2(gs_prog_data->invocations, 1) - 1;
1405 gs.ReorderMode = TRAILING;
1406
1407 #if GEN_GEN >= 8
1408 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
1409 gs.StaticOutput = gs_prog_data->static_vertex_count >= 0;
1410 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
1411 gs_prog_data->static_vertex_count : 0;
1412 #endif
1413
1414 gs.VertexURBEntryReadOffset = 0;
1415 gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1416 gs.DispatchGRFStartRegisterForURBData =
1417 gs_prog_data->base.base.dispatch_grf_start_reg;
1418
1419 #if GEN_GEN >= 8
1420 gs.UserClipDistanceClipTestEnableBitmask =
1421 gs_prog_data->base.clip_distance_mask;
1422 gs.UserClipDistanceCullTestEnableBitmask =
1423 gs_prog_data->base.cull_distance_mask;
1424 #endif
1425
1426 gs.PerThreadScratchSpace = get_scratch_space(gs_bin);
1427 gs.ScratchSpaceBasePointer =
1428 get_scratch_address(pipeline, MESA_SHADER_GEOMETRY, gs_bin);
1429 }
1430 }
1431
1432 static bool
1433 has_color_buffer_write_enabled(const struct anv_pipeline *pipeline,
1434 const VkPipelineColorBlendStateCreateInfo *blend)
1435 {
1436 const struct anv_shader_bin *shader_bin =
1437 pipeline->shaders[MESA_SHADER_FRAGMENT];
1438 if (!shader_bin)
1439 return false;
1440
1441 const struct anv_pipeline_bind_map *bind_map = &shader_bin->bind_map;
1442 for (int i = 0; i < bind_map->surface_count; i++) {
1443 struct anv_pipeline_binding *binding = &bind_map->surface_to_descriptor[i];
1444
1445 if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
1446 continue;
1447
1448 if (binding->index == UINT32_MAX)
1449 continue;
1450
1451 if (blend && blend->pAttachments[binding->index].colorWriteMask != 0)
1452 return true;
1453 }
1454
1455 return false;
1456 }
1457
1458 static void
1459 emit_3dstate_wm(struct anv_pipeline *pipeline, struct anv_subpass *subpass,
1460 const VkPipelineColorBlendStateCreateInfo *blend,
1461 const VkPipelineMultisampleStateCreateInfo *multisample)
1462 {
1463 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1464
1465 MAYBE_UNUSED uint32_t samples =
1466 multisample ? multisample->rasterizationSamples : 1;
1467
1468 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) {
1469 wm.StatisticsEnable = true;
1470 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1471 wm.LineAntialiasingRegionWidth = _10pixels;
1472 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1473
1474 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1475 if (wm_prog_data->early_fragment_tests) {
1476 wm.EarlyDepthStencilControl = EDSC_PREPS;
1477 } else if (wm_prog_data->has_side_effects) {
1478 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1479 } else {
1480 wm.EarlyDepthStencilControl = EDSC_NORMAL;
1481 }
1482
1483 #if GEN_GEN >= 8
1484 /* Gen8 hardware tries to compute ThreadDispatchEnable for us but
1485 * doesn't take into account KillPixels when no depth or stencil
1486 * writes are enabled. In order for occlusion queries to work
1487 * correctly with no attachments, we need to force-enable PS thread
1488 * dispatch.
1489 *
1490 * The BDW docs are pretty clear that that this bit isn't validated
1491 * and probably shouldn't be used in production:
1492 *
1493 * "This must always be set to Normal. This field should not be
1494 * tested for functional validation."
1495 *
1496 * Unfortunately, however, the other mechanism we have for doing this
1497 * is 3DSTATE_PS_EXTRA::PixelShaderHasUAV which causes hangs on BDW.
1498 * Given two bad options, we choose the one which works.
1499 */
1500 if ((wm_prog_data->has_side_effects || wm_prog_data->uses_kill) &&
1501 !has_color_buffer_write_enabled(pipeline, blend))
1502 wm.ForceThreadDispatchEnable = ForceON;
1503 #endif
1504
1505 wm.BarycentricInterpolationMode =
1506 wm_prog_data->barycentric_interp_modes;
1507
1508 #if GEN_GEN < 8
1509 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1510 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1511 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1512 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1513
1514 /* If the subpass has a depth or stencil self-dependency, then we
1515 * need to force the hardware to do the depth/stencil write *after*
1516 * fragment shader execution. Otherwise, the writes may hit memory
1517 * before we get around to fetching from the input attachment and we
1518 * may get the depth or stencil value from the current draw rather
1519 * than the previous one.
1520 */
1521 wm.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
1522 wm_prog_data->uses_kill;
1523
1524 if (wm.PixelShaderComputedDepthMode != PSCDEPTH_OFF ||
1525 wm_prog_data->has_side_effects ||
1526 wm.PixelShaderKillsPixel ||
1527 has_color_buffer_write_enabled(pipeline, blend))
1528 wm.ThreadDispatchEnable = true;
1529
1530 if (samples > 1) {
1531 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1532 if (wm_prog_data->persample_dispatch) {
1533 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1534 } else {
1535 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1536 }
1537 } else {
1538 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1539 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1540 }
1541 #endif
1542 }
1543 }
1544 }
1545
1546 static void
1547 emit_3dstate_ps(struct anv_pipeline *pipeline,
1548 const VkPipelineColorBlendStateCreateInfo *blend,
1549 const VkPipelineMultisampleStateCreateInfo *multisample)
1550 {
1551 MAYBE_UNUSED const struct gen_device_info *devinfo = &pipeline->device->info;
1552 const struct anv_shader_bin *fs_bin =
1553 pipeline->shaders[MESA_SHADER_FRAGMENT];
1554
1555 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1556 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1557 #if GEN_GEN == 7
1558 /* Even if no fragments are ever dispatched, gen7 hardware hangs if
1559 * we don't at least set the maximum number of threads.
1560 */
1561 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1562 #endif
1563 }
1564 return;
1565 }
1566
1567 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1568
1569 #if GEN_GEN < 8
1570 /* The hardware wedges if you have this bit set but don't turn on any dual
1571 * source blend factors.
1572 */
1573 bool dual_src_blend = false;
1574 if (wm_prog_data->dual_src_blend && blend) {
1575 for (uint32_t i = 0; i < blend->attachmentCount; i++) {
1576 const VkPipelineColorBlendAttachmentState *bstate =
1577 &blend->pAttachments[i];
1578
1579 if (bstate->blendEnable &&
1580 (is_dual_src_blend_factor(bstate->srcColorBlendFactor) ||
1581 is_dual_src_blend_factor(bstate->dstColorBlendFactor) ||
1582 is_dual_src_blend_factor(bstate->srcAlphaBlendFactor) ||
1583 is_dual_src_blend_factor(bstate->dstAlphaBlendFactor))) {
1584 dual_src_blend = true;
1585 break;
1586 }
1587 }
1588 }
1589 #endif
1590
1591 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1592 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1593 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1594 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
1595
1596 /* From the Sky Lake PRM 3DSTATE_PS::32 Pixel Dispatch Enable:
1597 *
1598 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, SIMD32
1599 * Dispatch must not be enabled for PER_PIXEL dispatch mode."
1600 *
1601 * Since 16x MSAA is first introduced on SKL, we don't need to apply
1602 * the workaround on any older hardware.
1603 */
1604 if (GEN_GEN >= 9 && !wm_prog_data->persample_dispatch &&
1605 multisample && multisample->rasterizationSamples == 16) {
1606 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
1607 ps._32PixelDispatchEnable = false;
1608 }
1609
1610 ps.KernelStartPointer0 = fs_bin->kernel.offset +
1611 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
1612 ps.KernelStartPointer1 = fs_bin->kernel.offset +
1613 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
1614 ps.KernelStartPointer2 = fs_bin->kernel.offset +
1615 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
1616
1617 ps.SingleProgramFlow = false;
1618 ps.VectorMaskEnable = true;
1619 ps.SamplerCount = get_sampler_count(fs_bin);
1620 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1621 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(fs_bin);
1622 ps.PushConstantEnable = wm_prog_data->base.nr_params > 0 ||
1623 wm_prog_data->base.ubo_ranges[0].length;
1624 ps.PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ?
1625 POSOFFSET_SAMPLE: POSOFFSET_NONE;
1626 #if GEN_GEN < 8
1627 ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
1628 ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1629 ps.DualSourceBlendEnable = dual_src_blend;
1630 #endif
1631
1632 #if GEN_IS_HASWELL
1633 /* Haswell requires the sample mask to be set in this packet as well
1634 * as in 3DSTATE_SAMPLE_MASK; the values should match.
1635 */
1636 ps.SampleMask = 0xff;
1637 #endif
1638
1639 #if GEN_GEN >= 9
1640 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
1641 #elif GEN_GEN >= 8
1642 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
1643 #else
1644 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1645 #endif
1646
1647 ps.DispatchGRFStartRegisterForConstantSetupData0 =
1648 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
1649 ps.DispatchGRFStartRegisterForConstantSetupData1 =
1650 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
1651 ps.DispatchGRFStartRegisterForConstantSetupData2 =
1652 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
1653
1654 ps.PerThreadScratchSpace = get_scratch_space(fs_bin);
1655 ps.ScratchSpaceBasePointer =
1656 get_scratch_address(pipeline, MESA_SHADER_FRAGMENT, fs_bin);
1657 }
1658 }
1659
1660 #if GEN_GEN >= 8
1661 static void
1662 emit_3dstate_ps_extra(struct anv_pipeline *pipeline,
1663 struct anv_subpass *subpass,
1664 const VkPipelineColorBlendStateCreateInfo *blend)
1665 {
1666 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1667
1668 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1669 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps);
1670 return;
1671 }
1672
1673 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) {
1674 ps.PixelShaderValid = true;
1675 ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
1676 ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1677 ps.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
1678 ps.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1679 ps.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1680 ps.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1681
1682 /* If the subpass has a depth or stencil self-dependency, then we need
1683 * to force the hardware to do the depth/stencil write *after* fragment
1684 * shader execution. Otherwise, the writes may hit memory before we get
1685 * around to fetching from the input attachment and we may get the depth
1686 * or stencil value from the current draw rather than the previous one.
1687 */
1688 ps.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
1689 wm_prog_data->uses_kill;
1690
1691 #if GEN_GEN >= 9
1692 ps.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
1693 ps.PixelShaderPullsBary = wm_prog_data->pulls_bary;
1694
1695 ps.InputCoverageMaskState = ICMS_NONE;
1696 if (wm_prog_data->uses_sample_mask) {
1697 if (wm_prog_data->post_depth_coverage)
1698 ps.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
1699 else
1700 ps.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
1701 }
1702 #else
1703 ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1704 #endif
1705 }
1706 }
1707
1708 static void
1709 emit_3dstate_vf_topology(struct anv_pipeline *pipeline)
1710 {
1711 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
1712 vft.PrimitiveTopologyType = pipeline->topology;
1713 }
1714 }
1715 #endif
1716
1717 static void
1718 emit_3dstate_vf_statistics(struct anv_pipeline *pipeline)
1719 {
1720 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
1721 vfs.StatisticsEnable = true;
1722 }
1723 }
1724
1725 static void
1726 compute_kill_pixel(struct anv_pipeline *pipeline,
1727 const VkPipelineMultisampleStateCreateInfo *ms_info,
1728 const struct anv_subpass *subpass)
1729 {
1730 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1731 pipeline->kill_pixel = false;
1732 return;
1733 }
1734
1735 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1736
1737 /* This computes the KillPixel portion of the computation for whether or
1738 * not we want to enable the PMA fix on gen8 or gen9. It's given by this
1739 * chunk of the giant formula:
1740 *
1741 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1742 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1743 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1744 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1745 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1746 *
1747 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
1748 * 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
1749 * of an alpha test.
1750 */
1751 pipeline->kill_pixel =
1752 subpass->has_ds_self_dep || wm_prog_data->uses_kill ||
1753 wm_prog_data->uses_omask ||
1754 (ms_info && ms_info->alphaToCoverageEnable);
1755 }
1756
1757 static VkResult
1758 genX(graphics_pipeline_create)(
1759 VkDevice _device,
1760 struct anv_pipeline_cache * cache,
1761 const VkGraphicsPipelineCreateInfo* pCreateInfo,
1762 const VkAllocationCallbacks* pAllocator,
1763 VkPipeline* pPipeline)
1764 {
1765 ANV_FROM_HANDLE(anv_device, device, _device);
1766 ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
1767 struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1768 struct anv_pipeline *pipeline;
1769 VkResult result;
1770
1771 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1772
1773 /* Use the default pipeline cache if none is specified */
1774 if (cache == NULL && device->instance->pipeline_cache_enabled)
1775 cache = &device->default_pipeline_cache;
1776
1777 pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1778 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1779 if (pipeline == NULL)
1780 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1781
1782 result = anv_pipeline_init(pipeline, device, cache,
1783 pCreateInfo, pAllocator);
1784 if (result != VK_SUCCESS) {
1785 vk_free2(&device->alloc, pAllocator, pipeline);
1786 return result;
1787 }
1788
1789 assert(pCreateInfo->pVertexInputState);
1790 emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
1791 assert(pCreateInfo->pRasterizationState);
1792 emit_rs_state(pipeline, pCreateInfo->pRasterizationState,
1793 pCreateInfo->pMultisampleState, pass, subpass);
1794 emit_ms_state(pipeline, pCreateInfo->pMultisampleState);
1795 emit_ds_state(pipeline, pCreateInfo->pDepthStencilState, pass, subpass);
1796 emit_cb_state(pipeline, pCreateInfo->pColorBlendState,
1797 pCreateInfo->pMultisampleState);
1798 compute_kill_pixel(pipeline, pCreateInfo->pMultisampleState, subpass);
1799
1800 emit_urb_setup(pipeline);
1801
1802 emit_3dstate_clip(pipeline, pCreateInfo->pViewportState,
1803 pCreateInfo->pRasterizationState);
1804 emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState);
1805
1806 #if 0
1807 /* From gen7_vs_state.c */
1808
1809 /**
1810 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
1811 * Geometry > Geometry Shader > State:
1812 *
1813 * "Note: Because of corruption in IVB:GT2, software needs to flush the
1814 * whole fixed function pipeline when the GS enable changes value in
1815 * the 3DSTATE_GS."
1816 *
1817 * The hardware architects have clarified that in this context "flush the
1818 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
1819 * Stall" bit set.
1820 */
1821 if (!device->info.is_haswell && !device->info.is_baytrail)
1822 gen7_emit_vs_workaround_flush(brw);
1823 #endif
1824
1825 emit_3dstate_vs(pipeline);
1826 emit_3dstate_hs_te_ds(pipeline, pCreateInfo->pTessellationState);
1827 emit_3dstate_gs(pipeline);
1828 emit_3dstate_sbe(pipeline);
1829 emit_3dstate_wm(pipeline, subpass, pCreateInfo->pColorBlendState,
1830 pCreateInfo->pMultisampleState);
1831 emit_3dstate_ps(pipeline, pCreateInfo->pColorBlendState,
1832 pCreateInfo->pMultisampleState);
1833 #if GEN_GEN >= 8
1834 emit_3dstate_ps_extra(pipeline, subpass, pCreateInfo->pColorBlendState);
1835 emit_3dstate_vf_topology(pipeline);
1836 #endif
1837 emit_3dstate_vf_statistics(pipeline);
1838
1839 *pPipeline = anv_pipeline_to_handle(pipeline);
1840
1841 return pipeline->batch.status;
1842 }
1843
1844 static VkResult
1845 compute_pipeline_create(
1846 VkDevice _device,
1847 struct anv_pipeline_cache * cache,
1848 const VkComputePipelineCreateInfo* pCreateInfo,
1849 const VkAllocationCallbacks* pAllocator,
1850 VkPipeline* pPipeline)
1851 {
1852 ANV_FROM_HANDLE(anv_device, device, _device);
1853 const struct anv_physical_device *physical_device =
1854 &device->instance->physicalDevice;
1855 const struct gen_device_info *devinfo = &physical_device->info;
1856 struct anv_pipeline *pipeline;
1857 VkResult result;
1858
1859 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
1860
1861 /* Use the default pipeline cache if none is specified */
1862 if (cache == NULL && device->instance->pipeline_cache_enabled)
1863 cache = &device->default_pipeline_cache;
1864
1865 pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1866 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1867 if (pipeline == NULL)
1868 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1869
1870 pipeline->device = device;
1871
1872 pipeline->blend_state.map = NULL;
1873
1874 result = anv_reloc_list_init(&pipeline->batch_relocs,
1875 pAllocator ? pAllocator : &device->alloc);
1876 if (result != VK_SUCCESS) {
1877 vk_free2(&device->alloc, pAllocator, pipeline);
1878 return result;
1879 }
1880 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1881 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1882 pipeline->batch.relocs = &pipeline->batch_relocs;
1883 pipeline->batch.status = VK_SUCCESS;
1884
1885 /* When we free the pipeline, we detect stages based on the NULL status
1886 * of various prog_data pointers. Make them NULL by default.
1887 */
1888 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1889
1890 pipeline->needs_data_cache = false;
1891
1892 assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE_BIT);
1893 pipeline->active_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
1894 ANV_FROM_HANDLE(anv_shader_module, module, pCreateInfo->stage.module);
1895 result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo, module,
1896 pCreateInfo->stage.pName,
1897 pCreateInfo->stage.pSpecializationInfo);
1898 if (result != VK_SUCCESS) {
1899 vk_free2(&device->alloc, pAllocator, pipeline);
1900 return result;
1901 }
1902
1903 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
1904
1905 anv_pipeline_setup_l3_config(pipeline, cs_prog_data->base.total_shared > 0);
1906
1907 uint32_t group_size = cs_prog_data->local_size[0] *
1908 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
1909 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
1910
1911 if (remainder > 0)
1912 pipeline->cs_right_mask = ~0u >> (32 - remainder);
1913 else
1914 pipeline->cs_right_mask = ~0u >> (32 - cs_prog_data->simd_size);
1915
1916 const uint32_t vfe_curbe_allocation =
1917 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
1918 cs_prog_data->push.cross_thread.regs, 2);
1919
1920 const uint32_t subslices = MAX2(physical_device->subslice_total, 1);
1921
1922 const struct anv_shader_bin *cs_bin =
1923 pipeline->shaders[MESA_SHADER_COMPUTE];
1924
1925 anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE), vfe) {
1926 #if GEN_GEN > 7
1927 vfe.StackSize = 0;
1928 #else
1929 vfe.GPGPUMode = true;
1930 #endif
1931 vfe.MaximumNumberofThreads =
1932 devinfo->max_cs_threads * subslices - 1;
1933 vfe.NumberofURBEntries = GEN_GEN <= 7 ? 0 : 2;
1934 #if GEN_GEN < 11
1935 vfe.ResetGatewayTimer = true;
1936 #endif
1937 #if GEN_GEN <= 8
1938 vfe.BypassGatewayControl = true;
1939 #endif
1940 vfe.URBEntryAllocationSize = GEN_GEN <= 7 ? 0 : 2;
1941 vfe.CURBEAllocationSize = vfe_curbe_allocation;
1942
1943 vfe.PerThreadScratchSpace = get_scratch_space(cs_bin);
1944 vfe.ScratchSpaceBasePointer =
1945 get_scratch_address(pipeline, MESA_SHADER_COMPUTE, cs_bin);
1946 }
1947
1948 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
1949 .KernelStartPointer = cs_bin->kernel.offset,
1950
1951 .SamplerCount = get_sampler_count(cs_bin),
1952 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1953 .BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(cs_bin),
1954 .BarrierEnable = cs_prog_data->uses_barrier,
1955 .SharedLocalMemorySize =
1956 encode_slm_size(GEN_GEN, cs_prog_data->base.total_shared),
1957
1958 #if !GEN_IS_HASWELL
1959 .ConstantURBEntryReadOffset = 0,
1960 #endif
1961 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
1962 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1963 .CrossThreadConstantDataReadLength =
1964 cs_prog_data->push.cross_thread.regs,
1965 #endif
1966
1967 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
1968 };
1969 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
1970 pipeline->interface_descriptor_data,
1971 &desc);
1972
1973 *pPipeline = anv_pipeline_to_handle(pipeline);
1974
1975 return pipeline->batch.status;
1976 }
1977
1978 VkResult genX(CreateGraphicsPipelines)(
1979 VkDevice _device,
1980 VkPipelineCache pipelineCache,
1981 uint32_t count,
1982 const VkGraphicsPipelineCreateInfo* pCreateInfos,
1983 const VkAllocationCallbacks* pAllocator,
1984 VkPipeline* pPipelines)
1985 {
1986 ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
1987
1988 VkResult result = VK_SUCCESS;
1989
1990 unsigned i;
1991 for (i = 0; i < count; i++) {
1992 result = genX(graphics_pipeline_create)(_device,
1993 pipeline_cache,
1994 &pCreateInfos[i],
1995 pAllocator, &pPipelines[i]);
1996
1997 /* Bail out on the first error as it is not obvious what error should be
1998 * report upon 2 different failures. */
1999 if (result != VK_SUCCESS)
2000 break;
2001 }
2002
2003 for (; i < count; i++)
2004 pPipelines[i] = VK_NULL_HANDLE;
2005
2006 return result;
2007 }
2008
2009 VkResult genX(CreateComputePipelines)(
2010 VkDevice _device,
2011 VkPipelineCache pipelineCache,
2012 uint32_t count,
2013 const VkComputePipelineCreateInfo* pCreateInfos,
2014 const VkAllocationCallbacks* pAllocator,
2015 VkPipeline* pPipelines)
2016 {
2017 ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
2018
2019 VkResult result = VK_SUCCESS;
2020
2021 unsigned i;
2022 for (i = 0; i < count; i++) {
2023 result = compute_pipeline_create(_device, pipeline_cache,
2024 &pCreateInfos[i],
2025 pAllocator, &pPipelines[i]);
2026
2027 /* Bail out on the first error as it is not obvious what error should be
2028 * report upon 2 different failures. */
2029 if (result != VK_SUCCESS)
2030 break;
2031 }
2032
2033 for (; i < count; i++)
2034 pPipelines[i] = VK_NULL_HANDLE;
2035
2036 return result;
2037 }