Merge branch 'master' of ../mesa into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp_blit.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/teximage.h"
25 #include "main/fbobject.h"
26 #include "main/renderbuffer.h"
27
28 #include "intel_fbo.h"
29
30 #include "brw_blorp.h"
31 #include "brw_context.h"
32 #include "brw_blorp_blit_eu.h"
33 #include "brw_state.h"
34 #include "brw_meta_util.h"
35
36 #define FILE_DEBUG_FLAG DEBUG_BLORP
37
38 static struct intel_mipmap_tree *
39 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
40 {
41 struct intel_mipmap_tree *mt = irb->mt;
42 if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
43 mt = mt->stencil_mt;
44 return mt;
45 }
46
47
48 /**
49 * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using
50 * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is
51 * the physical layer holding sample 0. So, for example, if
52 * src_mt->num_samples == 4, then logical layer n corresponds to src_layer ==
53 * 4*n.
54 */
55 void
56 brw_blorp_blit_miptrees(struct brw_context *brw,
57 struct intel_mipmap_tree *src_mt,
58 unsigned src_level, unsigned src_layer,
59 mesa_format src_format,
60 struct intel_mipmap_tree *dst_mt,
61 unsigned dst_level, unsigned dst_layer,
62 mesa_format dst_format,
63 float src_x0, float src_y0,
64 float src_x1, float src_y1,
65 float dst_x0, float dst_y0,
66 float dst_x1, float dst_y1,
67 GLenum filter, bool mirror_x, bool mirror_y)
68 {
69 /* Get ready to blit. This includes depth resolving the src and dst
70 * buffers if necessary. Note: it's not necessary to do a color resolve on
71 * the destination buffer because we use the standard render path to render
72 * to destination color buffers, and the standard render path is
73 * fast-color-aware.
74 */
75 intel_miptree_resolve_color(brw, src_mt);
76 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer);
77 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer);
78
79 DBG("%s from %dx %s mt %p %d %d (%f,%f) (%f,%f)"
80 "to %dx %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
81 __func__,
82 src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
83 src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
84 dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
85 dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
86 mirror_x, mirror_y);
87
88 brw_blorp_blit_params params(brw,
89 src_mt, src_level, src_layer, src_format,
90 dst_mt, dst_level, dst_layer, dst_format,
91 src_x0, src_y0,
92 src_x1, src_y1,
93 dst_x0, dst_y0,
94 dst_x1, dst_y1,
95 filter, mirror_x, mirror_y);
96 brw_blorp_exec(brw, &params);
97
98 intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer);
99 }
100
101 static void
102 do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
103 struct intel_renderbuffer *src_irb, mesa_format src_format,
104 struct intel_renderbuffer *dst_irb, mesa_format dst_format,
105 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
106 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
107 GLenum filter, bool mirror_x, bool mirror_y)
108 {
109 /* Find source/dst miptrees */
110 struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
111 struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
112
113 /* Do the blit */
114 brw_blorp_blit_miptrees(brw,
115 src_mt, src_irb->mt_level, src_irb->mt_layer,
116 src_format,
117 dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
118 dst_format,
119 srcX0, srcY0, srcX1, srcY1,
120 dstX0, dstY0, dstX1, dstY1,
121 filter, mirror_x, mirror_y);
122
123 dst_irb->need_downsample = true;
124 }
125
126 static bool
127 try_blorp_blit(struct brw_context *brw,
128 const struct gl_framebuffer *read_fb,
129 const struct gl_framebuffer *draw_fb,
130 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
131 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
132 GLenum filter, GLbitfield buffer_bit)
133 {
134 struct gl_context *ctx = &brw->ctx;
135
136 /* Sync up the state of window system buffers. We need to do this before
137 * we go looking for the buffers.
138 */
139 intel_prepare_render(brw);
140
141 bool mirror_x, mirror_y;
142 if (brw_meta_mirror_clip_and_scissor(ctx, read_fb, draw_fb,
143 &srcX0, &srcY0, &srcX1, &srcY1,
144 &dstX0, &dstY0, &dstX1, &dstY1,
145 &mirror_x, &mirror_y))
146 return true;
147
148 /* Find buffers */
149 struct intel_renderbuffer *src_irb;
150 struct intel_renderbuffer *dst_irb;
151 struct intel_mipmap_tree *src_mt;
152 struct intel_mipmap_tree *dst_mt;
153 switch (buffer_bit) {
154 case GL_COLOR_BUFFER_BIT:
155 src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
156 for (unsigned i = 0; i < draw_fb->_NumColorDrawBuffers; ++i) {
157 dst_irb = intel_renderbuffer(draw_fb->_ColorDrawBuffers[i]);
158 if (dst_irb)
159 do_blorp_blit(brw, buffer_bit,
160 src_irb, src_irb->Base.Base.Format,
161 dst_irb, dst_irb->Base.Base.Format,
162 srcX0, srcY0, srcX1, srcY1,
163 dstX0, dstY0, dstX1, dstY1,
164 filter, mirror_x, mirror_y);
165 }
166 break;
167 case GL_DEPTH_BUFFER_BIT:
168 src_irb =
169 intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
170 dst_irb =
171 intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
172 src_mt = find_miptree(buffer_bit, src_irb);
173 dst_mt = find_miptree(buffer_bit, dst_irb);
174
175 /* We can't handle format conversions between Z24 and other formats
176 * since we have to lie about the surface format. See the comments in
177 * brw_blorp_surface_info::set().
178 */
179 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
180 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT))
181 return false;
182
183 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
184 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
185 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
186 filter, mirror_x, mirror_y);
187 break;
188 case GL_STENCIL_BUFFER_BIT:
189 src_irb =
190 intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
191 dst_irb =
192 intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
193 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
194 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
195 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
196 filter, mirror_x, mirror_y);
197 break;
198 default:
199 unreachable("not reached");
200 }
201
202 return true;
203 }
204
205 bool
206 brw_blorp_copytexsubimage(struct brw_context *brw,
207 struct gl_renderbuffer *src_rb,
208 struct gl_texture_image *dst_image,
209 int slice,
210 int srcX0, int srcY0,
211 int dstX0, int dstY0,
212 int width, int height)
213 {
214 struct gl_context *ctx = &brw->ctx;
215 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
216 struct intel_texture_image *intel_image = intel_texture_image(dst_image);
217
218 /* No pixel transfer operations (zoom, bias, mapping), just a blit */
219 if (brw->ctx._ImageTransferState)
220 return false;
221
222 /* Sync up the state of window system buffers. We need to do this before
223 * we go looking at the src renderbuffer's miptree.
224 */
225 intel_prepare_render(brw);
226
227 struct intel_mipmap_tree *src_mt = src_irb->mt;
228 struct intel_mipmap_tree *dst_mt = intel_image->mt;
229
230 /* BLORP is only supported for Gen6-7. */
231 if (brw->gen < 6 || brw->gen > 7)
232 return false;
233
234 if (_mesa_get_format_base_format(src_rb->Format) !=
235 _mesa_get_format_base_format(dst_image->TexFormat)) {
236 return false;
237 }
238
239 /* We can't handle format conversions between Z24 and other formats since
240 * we have to lie about the surface format. See the comments in
241 * brw_blorp_surface_info::set().
242 */
243 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
244 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) {
245 return false;
246 }
247
248 if (!brw->format_supported_as_render_target[dst_image->TexFormat])
249 return false;
250
251 /* Source clipping shouldn't be necessary, since copytexsubimage (in
252 * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
253 * takes care of it.
254 *
255 * Destination clipping shouldn't be necessary since the restrictions on
256 * glCopyTexSubImage prevent the user from specifying a destination rectangle
257 * that falls outside the bounds of the destination texture.
258 * See error_check_subtexture_dimensions().
259 */
260
261 int srcY1 = srcY0 + height;
262 int srcX1 = srcX0 + width;
263 int dstX1 = dstX0 + width;
264 int dstY1 = dstY0 + height;
265
266 /* Account for the fact that in the system framebuffer, the origin is at
267 * the lower left.
268 */
269 bool mirror_y = false;
270 if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
271 GLint tmp = src_rb->Height - srcY0;
272 srcY0 = src_rb->Height - srcY1;
273 srcY1 = tmp;
274 mirror_y = true;
275 }
276
277 /* Account for face selection and texture view MinLayer */
278 int dst_slice = slice + dst_image->TexObject->MinLayer + dst_image->Face;
279 int dst_level = dst_image->Level + dst_image->TexObject->MinLevel;
280
281 brw_blorp_blit_miptrees(brw,
282 src_mt, src_irb->mt_level, src_irb->mt_layer,
283 src_rb->Format,
284 dst_mt, dst_level, dst_slice,
285 dst_image->TexFormat,
286 srcX0, srcY0, srcX1, srcY1,
287 dstX0, dstY0, dstX1, dstY1,
288 GL_NEAREST, false, mirror_y);
289
290 /* If we're copying to a packed depth stencil texture and the source
291 * framebuffer has separate stencil, we need to also copy the stencil data
292 * over.
293 */
294 src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
295 if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
296 src_rb != NULL) {
297 src_irb = intel_renderbuffer(src_rb);
298 src_mt = src_irb->mt;
299
300 if (src_mt->stencil_mt)
301 src_mt = src_mt->stencil_mt;
302 if (dst_mt->stencil_mt)
303 dst_mt = dst_mt->stencil_mt;
304
305 if (src_mt != dst_mt) {
306 brw_blorp_blit_miptrees(brw,
307 src_mt, src_irb->mt_level, src_irb->mt_layer,
308 src_mt->format,
309 dst_mt, dst_level, dst_slice,
310 dst_mt->format,
311 srcX0, srcY0, srcX1, srcY1,
312 dstX0, dstY0, dstX1, dstY1,
313 GL_NEAREST, false, mirror_y);
314 }
315 }
316
317 return true;
318 }
319
320
321 GLbitfield
322 brw_blorp_framebuffer(struct brw_context *brw,
323 struct gl_framebuffer *readFb,
324 struct gl_framebuffer *drawFb,
325 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
326 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
327 GLbitfield mask, GLenum filter)
328 {
329 /* BLORP is not supported before Gen6. */
330 if (brw->gen < 6 || brw->gen >= 8)
331 return mask;
332
333 static GLbitfield buffer_bits[] = {
334 GL_COLOR_BUFFER_BIT,
335 GL_DEPTH_BUFFER_BIT,
336 GL_STENCIL_BUFFER_BIT,
337 };
338
339 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
340 if ((mask & buffer_bits[i]) &&
341 try_blorp_blit(brw, readFb, drawFb,
342 srcX0, srcY0, srcX1, srcY1,
343 dstX0, dstY0, dstX1, dstY1,
344 filter, buffer_bits[i])) {
345 mask &= ~buffer_bits[i];
346 }
347 }
348
349 return mask;
350 }
351
352
353 /**
354 * Enum to specify the order of arguments in a sampler message
355 */
356 enum sampler_message_arg
357 {
358 SAMPLER_MESSAGE_ARG_U_FLOAT,
359 SAMPLER_MESSAGE_ARG_V_FLOAT,
360 SAMPLER_MESSAGE_ARG_U_INT,
361 SAMPLER_MESSAGE_ARG_V_INT,
362 SAMPLER_MESSAGE_ARG_SI_INT,
363 SAMPLER_MESSAGE_ARG_MCS_INT,
364 SAMPLER_MESSAGE_ARG_ZERO_INT,
365 };
366
367 /**
368 * Generator for WM programs used in BLORP blits.
369 *
370 * The bulk of the work done by the WM program is to wrap and unwrap the
371 * coordinate transformations used by the hardware to store surfaces in
372 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
373 * sample index for a multisampled surface) to a memory offset by the
374 * following formulas:
375 *
376 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
377 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
378 *
379 * For a single-sampled surface, or for a multisampled surface using
380 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
381 * function:
382 *
383 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
384 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
385 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
386 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
387 *
388 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
389 * embeds the sample number into bit 1 of the X and Y coordinates:
390 *
391 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
392 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
393 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
394 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
395 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
396 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
397 * S = (Y & 0b10) | (X & 0b10) >> 1
398 *
399 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
400 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
401 * the Y coordinate:
402 *
403 * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
404 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
405 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
406 * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
407 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
408 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
409 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
410 *
411 * For X tiling, tile() combines together the low-order bits of the X and Y
412 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
413 * bytes wide and 8 rows high:
414 *
415 * tile(x_tiled, X, Y, S) = A
416 * where A = tile_num << 12 | offset
417 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
418 * offset = (Y' & 0b111) << 9
419 * | (X & 0b111111111)
420 * X' = X * cpp
421 * Y' = Y + S * qpitch
422 * detile(x_tiled, A) = (X, Y, S)
423 * where X = X' / cpp
424 * Y = Y' % qpitch
425 * S = Y' / qpitch
426 * Y' = (tile_num / tile_pitch) << 3
427 * | (A & 0b111000000000) >> 9
428 * X' = (tile_num % tile_pitch) << 9
429 * | (A & 0b111111111)
430 *
431 * (In all tiling formulas, cpp is the number of bytes occupied by a single
432 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
433 * to fill the width of the surface, and qpitch is the spacing (in rows)
434 * between array slices).
435 *
436 * For Y tiling, tile() combines together the low-order bits of the X and Y
437 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
438 * bytes wide and 32 rows high:
439 *
440 * tile(y_tiled, X, Y, S) = A
441 * where A = tile_num << 12 | offset
442 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
443 * offset = (X' & 0b1110000) << 5
444 * | (Y' & 0b11111) << 4
445 * | (X' & 0b1111)
446 * X' = X * cpp
447 * Y' = Y + S * qpitch
448 * detile(y_tiled, A) = (X, Y, S)
449 * where X = X' / cpp
450 * Y = Y' % qpitch
451 * S = Y' / qpitch
452 * Y' = (tile_num / tile_pitch) << 5
453 * | (A & 0b111110000) >> 4
454 * X' = (tile_num % tile_pitch) << 7
455 * | (A & 0b111000000000) >> 5
456 * | (A & 0b1111)
457 *
458 * For W tiling, tile() combines together the low-order bits of the X and Y
459 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
460 * bytes wide and 64 rows high (note that W tiling is only used for stencil
461 * buffers, which always have cpp = 1 and S=0):
462 *
463 * tile(w_tiled, X, Y, S) = A
464 * where A = tile_num << 12 | offset
465 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
466 * offset = (X' & 0b111000) << 6
467 * | (Y' & 0b111100) << 3
468 * | (X' & 0b100) << 2
469 * | (Y' & 0b10) << 2
470 * | (X' & 0b10) << 1
471 * | (Y' & 0b1) << 1
472 * | (X' & 0b1)
473 * X' = X * cpp = X
474 * Y' = Y + S * qpitch
475 * detile(w_tiled, A) = (X, Y, S)
476 * where X = X' / cpp = X'
477 * Y = Y' % qpitch = Y'
478 * S = Y / qpitch = 0
479 * Y' = (tile_num / tile_pitch) << 6
480 * | (A & 0b111100000) >> 3
481 * | (A & 0b1000) >> 2
482 * | (A & 0b10) >> 1
483 * X' = (tile_num % tile_pitch) << 6
484 * | (A & 0b111000000000) >> 6
485 * | (A & 0b10000) >> 2
486 * | (A & 0b100) >> 1
487 * | (A & 0b1)
488 *
489 * Finally, for a non-tiled surface, tile() simply combines together the X and
490 * Y coordinates in the natural way:
491 *
492 * tile(untiled, X, Y, S) = A
493 * where A = Y * pitch + X'
494 * X' = X * cpp
495 * Y' = Y + S * qpitch
496 * detile(untiled, A) = (X, Y, S)
497 * where X = X' / cpp
498 * Y = Y' % qpitch
499 * S = Y' / qpitch
500 * X' = A % pitch
501 * Y' = A / pitch
502 *
503 * (In these formulas, pitch is the number of bytes occupied by a single row
504 * of samples).
505 */
506 class brw_blorp_blit_program : public brw_blorp_eu_emitter
507 {
508 public:
509 brw_blorp_blit_program(struct brw_context *brw,
510 const brw_blorp_blit_prog_key *key, bool debug_flag);
511
512 const GLuint *compile(struct brw_context *brw, GLuint *program_size);
513
514 brw_blorp_prog_data prog_data;
515
516 private:
517 void alloc_regs();
518 void alloc_push_const_regs(int base_reg);
519 void compute_frag_coords();
520 void translate_tiling(bool old_tiled_w, bool new_tiled_w);
521 void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
522 void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
523 void translate_dst_to_src();
524 void clamp_tex_coords(struct brw_reg regX, struct brw_reg regY,
525 struct brw_reg clampX0, struct brw_reg clampY0,
526 struct brw_reg clampX1, struct brw_reg clampY1);
527 void single_to_blend();
528 void manual_blend_average(unsigned num_samples);
529 void manual_blend_bilinear(unsigned num_samples);
530 void sample(struct brw_reg dst);
531 void texel_fetch(struct brw_reg dst);
532 void mcs_fetch();
533 void texture_lookup(struct brw_reg dst, enum opcode op,
534 const sampler_message_arg *args, int num_args);
535 void render_target_write();
536
537 /**
538 * Base-2 logarithm of the maximum number of samples that can be blended.
539 */
540 static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
541
542 struct brw_context *brw;
543 const brw_blorp_blit_prog_key *key;
544
545 /* Thread dispatch header */
546 struct brw_reg R0;
547
548 /* Pixel X/Y coordinates (always in R1). */
549 struct brw_reg R1;
550
551 /* Push constants */
552 struct brw_reg dst_x0;
553 struct brw_reg dst_x1;
554 struct brw_reg dst_y0;
555 struct brw_reg dst_y1;
556 /* Top right coordinates of the rectangular grid used for scaled blitting */
557 struct brw_reg rect_grid_x1;
558 struct brw_reg rect_grid_y1;
559 struct {
560 struct brw_reg multiplier;
561 struct brw_reg offset;
562 } x_transform, y_transform;
563
564 /* Data read from texture (4 vec16's per array element) */
565 struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
566
567 /* Auxiliary storage for the contents of the MCS surface.
568 *
569 * Since the sampler always returns 8 registers worth of data, this is 8
570 * registers wide, even though we only use the first 2 registers of it.
571 */
572 struct brw_reg mcs_data;
573
574 /* X coordinates. We have two of them so that we can perform coordinate
575 * transformations easily.
576 */
577 struct brw_reg x_coords[2];
578
579 /* Y coordinates. We have two of them so that we can perform coordinate
580 * transformations easily.
581 */
582 struct brw_reg y_coords[2];
583
584 /* X, Y coordinates of the pixel from which we need to fetch the specific
585 * sample. These are used for multisample scaled blitting.
586 */
587 struct brw_reg x_sample_coords;
588 struct brw_reg y_sample_coords;
589
590 /* Fractional parts of the x and y coordinates, used as bilinear interpolation coefficients */
591 struct brw_reg x_frac;
592 struct brw_reg y_frac;
593
594 /* Which element of x_coords and y_coords is currently in use.
595 */
596 int xy_coord_index;
597
598 /* True if, at the point in the program currently being compiled, the
599 * sample index is known to be zero.
600 */
601 bool s_is_zero;
602
603 /* Register storing the sample index when s_is_zero is false. */
604 struct brw_reg sample_index;
605
606 /* Temporaries */
607 struct brw_reg t1;
608 struct brw_reg t2;
609
610 /* MRF used for sampling and render target writes */
611 GLuint base_mrf;
612 };
613
614 brw_blorp_blit_program::brw_blorp_blit_program(
615 struct brw_context *brw,
616 const brw_blorp_blit_prog_key *key,
617 bool debug_flag)
618 : brw_blorp_eu_emitter(brw, debug_flag),
619 brw(brw),
620 key(key)
621 {
622 }
623
624 const GLuint *
625 brw_blorp_blit_program::compile(struct brw_context *brw,
626 GLuint *program_size)
627 {
628 /* Sanity checks */
629 if (key->dst_tiled_w && key->rt_samples > 0) {
630 /* If the destination image is W tiled and multisampled, then the thread
631 * must be dispatched once per sample, not once per pixel. This is
632 * necessary because after conversion between W and Y tiling, there's no
633 * guarantee that all samples corresponding to a single pixel will still
634 * be together.
635 */
636 assert(key->persample_msaa_dispatch);
637 }
638
639 if (key->blend) {
640 /* We are blending, which means we won't have an opportunity to
641 * translate the tiling and sample count for the texture surface. So
642 * the surface state for the texture must be configured with the correct
643 * tiling and sample count.
644 */
645 assert(!key->src_tiled_w);
646 assert(key->tex_samples == key->src_samples);
647 assert(key->tex_layout == key->src_layout);
648 assert(key->tex_samples > 0);
649 }
650
651 if (key->persample_msaa_dispatch) {
652 /* It only makes sense to do persample dispatch if the render target is
653 * configured as multisampled.
654 */
655 assert(key->rt_samples > 0);
656 }
657
658 /* Make sure layout is consistent with sample count */
659 assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
660 (key->tex_samples == 0));
661 assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
662 (key->rt_samples == 0));
663 assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
664 (key->src_samples == 0));
665 assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
666 (key->dst_samples == 0));
667
668 /* Set up prog_data */
669 memset(&prog_data, 0, sizeof(prog_data));
670 prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
671
672 alloc_regs();
673 compute_frag_coords();
674
675 /* Render target and texture hardware don't support W tiling. */
676 const bool rt_tiled_w = false;
677 const bool tex_tiled_w = false;
678
679 /* The address that data will be written to is determined by the
680 * coordinates supplied to the WM thread and the tiling and sample count of
681 * the render target, according to the formula:
682 *
683 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
684 *
685 * If the actual tiling and sample count of the destination surface are not
686 * the same as the configuration of the render target, then these
687 * coordinates are wrong and we have to adjust them to compensate for the
688 * difference.
689 */
690 if (rt_tiled_w != key->dst_tiled_w ||
691 key->rt_samples != key->dst_samples ||
692 key->rt_layout != key->dst_layout) {
693 encode_msaa(key->rt_samples, key->rt_layout);
694 /* Now (X, Y, S) = detile(rt_tiling, offset) */
695 translate_tiling(rt_tiled_w, key->dst_tiled_w);
696 /* Now (X, Y, S) = detile(dst_tiling, offset) */
697 decode_msaa(key->dst_samples, key->dst_layout);
698 }
699
700 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
701 *
702 * That is: X, Y and S now contain the true coordinates and sample index of
703 * the data that the WM thread should output.
704 *
705 * If we need to kill pixels that are outside the destination rectangle,
706 * now is the time to do it.
707 */
708
709 if (key->use_kill)
710 emit_kill_if_outside_rect(x_coords[xy_coord_index],
711 y_coords[xy_coord_index],
712 dst_x0, dst_x1, dst_y0, dst_y1);
713
714 /* Next, apply a translation to obtain coordinates in the source image. */
715 translate_dst_to_src();
716
717 /* If the source image is not multisampled, then we want to fetch sample
718 * number 0, because that's the only sample there is.
719 */
720 if (key->src_samples == 0)
721 s_is_zero = true;
722
723 /* X, Y, and S are now the coordinates of the pixel in the source image
724 * that we want to texture from. Exception: if we are blending, then S is
725 * irrelevant, because we are going to fetch all samples.
726 */
727 if (key->blend && !key->blit_scaled) {
728 if (brw->gen == 6) {
729 /* Gen6 hardware an automatically blend using the SAMPLE message */
730 single_to_blend();
731 sample(texture_data[0]);
732 } else {
733 /* Gen7+ hardware doesn't automaticaly blend. */
734 manual_blend_average(key->src_samples);
735 }
736 } else if(key->blend && key->blit_scaled) {
737 manual_blend_bilinear(key->src_samples);
738 } else {
739 /* We aren't blending, which means we just want to fetch a single sample
740 * from the source surface. The address that we want to fetch from is
741 * related to the X, Y and S values according to the formula:
742 *
743 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
744 *
745 * If the actual tiling and sample count of the source surface are not
746 * the same as the configuration of the texture, then we need to adjust
747 * the coordinates to compensate for the difference.
748 */
749 if ((tex_tiled_w != key->src_tiled_w ||
750 key->tex_samples != key->src_samples ||
751 key->tex_layout != key->src_layout) &&
752 !key->bilinear_filter) {
753 encode_msaa(key->src_samples, key->src_layout);
754 /* Now (X, Y, S) = detile(src_tiling, offset) */
755 translate_tiling(key->src_tiled_w, tex_tiled_w);
756 /* Now (X, Y, S) = detile(tex_tiling, offset) */
757 decode_msaa(key->tex_samples, key->tex_layout);
758 }
759
760 if (key->bilinear_filter) {
761 sample(texture_data[0]);
762 }
763 else {
764 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
765 *
766 * In other words: X, Y, and S now contain values which, when passed to
767 * the texturing unit, will cause data to be read from the correct
768 * memory location. So we can fetch the texel now.
769 */
770 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
771 mcs_fetch();
772 texel_fetch(texture_data[0]);
773 }
774 }
775
776 /* Finally, write the fetched (or blended) value to the render target and
777 * terminate the thread.
778 */
779 render_target_write();
780
781 return get_program(program_size);
782 }
783
784 void
785 brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
786 {
787 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
788 #define ALLOC_REG(name, type) \
789 this->name = \
790 retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, \
791 base_reg + CONST_LOC(name) / 32, \
792 (CONST_LOC(name) % 32) / 4), type)
793
794 ALLOC_REG(dst_x0, BRW_REGISTER_TYPE_UD);
795 ALLOC_REG(dst_x1, BRW_REGISTER_TYPE_UD);
796 ALLOC_REG(dst_y0, BRW_REGISTER_TYPE_UD);
797 ALLOC_REG(dst_y1, BRW_REGISTER_TYPE_UD);
798 ALLOC_REG(rect_grid_x1, BRW_REGISTER_TYPE_F);
799 ALLOC_REG(rect_grid_y1, BRW_REGISTER_TYPE_F);
800 ALLOC_REG(x_transform.multiplier, BRW_REGISTER_TYPE_F);
801 ALLOC_REG(x_transform.offset, BRW_REGISTER_TYPE_F);
802 ALLOC_REG(y_transform.multiplier, BRW_REGISTER_TYPE_F);
803 ALLOC_REG(y_transform.offset, BRW_REGISTER_TYPE_F);
804 #undef CONST_LOC
805 #undef ALLOC_REG
806 }
807
808 void
809 brw_blorp_blit_program::alloc_regs()
810 {
811 int reg = 0;
812 this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
813 this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
814 prog_data.first_curbe_grf = reg;
815 alloc_push_const_regs(reg);
816 reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
817 for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
818 this->texture_data[i] =
819 retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
820 reg += 8;
821 }
822 this->mcs_data =
823 retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
824
825 for (int i = 0; i < 2; ++i) {
826 this->x_coords[i]
827 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
828 reg += 2;
829 this->y_coords[i]
830 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
831 reg += 2;
832 }
833
834 if (key->blit_scaled && key->blend) {
835 this->x_sample_coords = brw_vec8_grf(reg, 0);
836 reg += 2;
837 this->y_sample_coords = brw_vec8_grf(reg, 0);
838 reg += 2;
839 this->x_frac = brw_vec8_grf(reg, 0);
840 reg += 2;
841 this->y_frac = brw_vec8_grf(reg, 0);
842 reg += 2;
843 }
844
845 this->xy_coord_index = 0;
846 this->sample_index
847 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
848 reg += 2;
849 this->t1 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
850 reg += 2;
851 this->t2 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
852 reg += 2;
853
854 /* Make sure we didn't run out of registers */
855 assert(reg <= GEN7_MRF_HACK_START);
856
857 int mrf = 2;
858 this->base_mrf = mrf;
859 }
860
861 /* In the code that follows, X and Y can be used to quickly refer to the
862 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
863 * prime") to the inactive elements.
864 *
865 * S can be used to quickly refer to sample_index.
866 */
867 #define X x_coords[xy_coord_index]
868 #define Y y_coords[xy_coord_index]
869 #define Xp x_coords[!xy_coord_index]
870 #define Yp y_coords[!xy_coord_index]
871 #define S sample_index
872
873 /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
874 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
875 */
876 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
877
878 /**
879 * Emit code to compute the X and Y coordinates of the pixels being rendered
880 * by this WM invocation.
881 *
882 * Assuming the render target is set up for Y tiling, these (X, Y) values are
883 * related to the address offset where outputs will be written by the formula:
884 *
885 * (X, Y, S) = decode_msaa(detile(offset)).
886 *
887 * (See brw_blorp_blit_program).
888 */
889 void
890 brw_blorp_blit_program::compute_frag_coords()
891 {
892 /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
893 * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
894 * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
895 * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
896 *
897 * Pixels within a subspan are laid out in this arrangement:
898 * 0 1
899 * 2 3
900 *
901 * So, to compute the coordinates of each pixel, we need to read every 2nd
902 * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
903 * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
904 * In other words, the data we want to access is R1.4<2;4,0>UW.
905 *
906 * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
907 * result, since pixels n+1 and n+3 are in the right half of the subspan.
908 */
909 emit_add(vec16(retype(X, BRW_REGISTER_TYPE_UW)),
910 stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
911
912 /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
913 * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
914 * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
915 * R1.4<2;4,0>UW).
916 *
917 * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
918 * pixels n+2 and n+3 are in the bottom half of the subspan.
919 */
920 emit_add(vec16(retype(Y, BRW_REGISTER_TYPE_UW)),
921 stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
922
923 /* Move the coordinates to UD registers. */
924 emit_mov(vec16(Xp), retype(X, BRW_REGISTER_TYPE_UW));
925 emit_mov(vec16(Yp), retype(Y, BRW_REGISTER_TYPE_UW));
926 SWAP_XY_AND_XPYP();
927
928 if (key->persample_msaa_dispatch) {
929 switch (key->rt_samples) {
930 case 4: {
931 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4.
932 * Therefore, subspan 0 will represent sample 0, subspan 1 will
933 * represent sample 1, and so on.
934 *
935 * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1,
936 * 1, 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to
937 * populate a temporary variable with the sequence (0, 1, 2, 3), and
938 * then copy from it using vstride=1, width=4, hstride=0.
939 */
940 struct brw_reg t1_uw1 = retype(t1, BRW_REGISTER_TYPE_UW);
941 emit_mov(vec16(t1_uw1), brw_imm_v(0x3210));
942 /* Move to UD sample_index register. */
943 emit_mov_8(S, stride(t1_uw1, 1, 4, 0));
944 emit_mov_8(offset(S, 1), suboffset(stride(t1_uw1, 1, 4, 0), 2));
945 break;
946 }
947 case 8: {
948 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8.
949 * Therefore, subspan 0 will represent sample N (where N is 0 or 4),
950 * subspan 1 will represent sample 1, and so on. We can find the
951 * value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair
952 * Index") and multiplying by two (since samples are always delivered
953 * in pairs). That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 &
954 * 0xc0) >> 5.
955 *
956 * Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2,
957 * 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary
958 * variable with the sequence (0, 1, 2, 3), and then reading from it
959 * using vstride=1, width=4, hstride=0.
960 */
961 struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD));
962 struct brw_reg t2_uw1 = retype(t2, BRW_REGISTER_TYPE_UW);
963 struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD));
964 emit_and(t1_ud1, r0_ud1, brw_imm_ud(0xc0));
965 emit_shr(t1_ud1, t1_ud1, brw_imm_ud(5));
966 emit_mov(vec16(t2_uw1), brw_imm_v(0x3210));
967 emit_add(vec16(S), retype(t1_ud1, BRW_REGISTER_TYPE_UW),
968 stride(t2_uw1, 1, 4, 0));
969 emit_add_8(offset(S, 1),
970 retype(t1_ud1, BRW_REGISTER_TYPE_UW),
971 suboffset(stride(t2_uw1, 1, 4, 0), 2));
972 break;
973 }
974 default:
975 unreachable("Unrecognized sample count in "
976 "brw_blorp_blit_program::compute_frag_coords()");
977 }
978 s_is_zero = false;
979 } else {
980 /* Either the destination surface is single-sampled, or the WM will be
981 * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
982 * per pixel). In either case, it's not meaningful to compute a sample
983 * value. Just set it to 0.
984 */
985 s_is_zero = true;
986 }
987 }
988
989 /**
990 * Emit code to compensate for the difference between Y and W tiling.
991 *
992 * This code modifies the X and Y coordinates according to the formula:
993 *
994 * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
995 *
996 * (See brw_blorp_blit_program).
997 *
998 * It can only translate between W and Y tiling, so new_tiling and old_tiling
999 * are booleans where true represents W tiling and false represents Y tiling.
1000 */
1001 void
1002 brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
1003 {
1004 if (old_tiled_w == new_tiled_w)
1005 return;
1006
1007 /* In the code that follows, we can safely assume that S = 0, because W
1008 * tiling formats always use IMS layout.
1009 */
1010 assert(s_is_zero);
1011
1012 if (new_tiled_w) {
1013 /* Given X and Y coordinates that describe an address using Y tiling,
1014 * translate to the X and Y coordinates that describe the same address
1015 * using W tiling.
1016 *
1017 * If we break down the low order bits of X and Y, using a
1018 * single letter to represent each low-order bit:
1019 *
1020 * X = A << 7 | 0bBCDEFGH
1021 * Y = J << 5 | 0bKLMNP (1)
1022 *
1023 * Then we can apply the Y tiling formula to see the memory offset being
1024 * addressed:
1025 *
1026 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
1027 *
1028 * If we apply the W detiling formula to this memory location, that the
1029 * corresponding X' and Y' coordinates are:
1030 *
1031 * X' = A << 6 | 0bBCDPFH (3)
1032 * Y' = J << 6 | 0bKLMNEG
1033 *
1034 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
1035 * we need to make the following computation:
1036 *
1037 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
1038 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
1039 */
1040 emit_and(t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
1041 emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
1042 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1043 emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
1044 emit_or(t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
1045 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1046 emit_or(Xp, t1, t2);
1047 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1048 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1049 emit_and(t2, X, brw_imm_uw(8)); /* X & 0b1000 */
1050 emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
1051 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
1052 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1053 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1054 emit_or(Yp, t1, t2);
1055 SWAP_XY_AND_XPYP();
1056 } else {
1057 /* Applying the same logic as above, but in reverse, we obtain the
1058 * formulas:
1059 *
1060 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
1061 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
1062 */
1063 emit_and(t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
1064 emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
1065 emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1066 emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
1067 emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
1068 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1069 emit_shl(t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
1070 emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
1071 | (Y & 0b1) << 1 */
1072 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1073 emit_or(Xp, t1, t2);
1074 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1075 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1076 emit_and(t2, X, brw_imm_uw(4)); /* X & 0b100 */
1077 emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
1078 emit_or(Yp, t1, t2);
1079 SWAP_XY_AND_XPYP();
1080 }
1081 }
1082
1083 /**
1084 * Emit code to compensate for the difference between MSAA and non-MSAA
1085 * surfaces.
1086 *
1087 * This code modifies the X and Y coordinates according to the formula:
1088 *
1089 * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
1090 *
1091 * (See brw_blorp_blit_program).
1092 */
1093 void
1094 brw_blorp_blit_program::encode_msaa(unsigned num_samples,
1095 intel_msaa_layout layout)
1096 {
1097 switch (layout) {
1098 case INTEL_MSAA_LAYOUT_NONE:
1099 /* No translation necessary, and S should already be zero. */
1100 assert(s_is_zero);
1101 break;
1102 case INTEL_MSAA_LAYOUT_CMS:
1103 /* We can't compensate for compressed layout since at this point in the
1104 * program we haven't read from the MCS buffer.
1105 */
1106 unreachable("Bad layout in encode_msaa");
1107 case INTEL_MSAA_LAYOUT_UMS:
1108 /* No translation necessary. */
1109 break;
1110 case INTEL_MSAA_LAYOUT_IMS:
1111 switch (num_samples) {
1112 case 4:
1113 /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
1114 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
1115 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1116 */
1117 emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1118 if (!s_is_zero) {
1119 emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
1120 emit_or(t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
1121 }
1122 emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
1123 | (S & 0b1) << 1 */
1124 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1125 emit_or(Xp, t1, t2);
1126 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1127 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1128 if (!s_is_zero) {
1129 emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
1130 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1131 }
1132 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1133 emit_or(Yp, t1, t2);
1134 break;
1135 case 8:
1136 /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
1137 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
1138 * | (X & 0b1)
1139 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1140 */
1141 emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1142 emit_shl(t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */
1143 if (!s_is_zero) {
1144 emit_and(t2, S, brw_imm_uw(4)); /* S & 0b100 */
1145 emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */
1146 emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
1147 emit_shl(t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */
1148 emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100)
1149 | (S & 0b1) << 1 */
1150 }
1151 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1152 emit_or(Xp, t1, t2);
1153 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1154 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1155 if (!s_is_zero) {
1156 emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
1157 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1158 }
1159 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1160 emit_or(Yp, t1, t2);
1161 break;
1162 }
1163 SWAP_XY_AND_XPYP();
1164 s_is_zero = true;
1165 break;
1166 }
1167 }
1168
1169 /**
1170 * Emit code to compensate for the difference between MSAA and non-MSAA
1171 * surfaces.
1172 *
1173 * This code modifies the X and Y coordinates according to the formula:
1174 *
1175 * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
1176 *
1177 * (See brw_blorp_blit_program).
1178 */
1179 void
1180 brw_blorp_blit_program::decode_msaa(unsigned num_samples,
1181 intel_msaa_layout layout)
1182 {
1183 switch (layout) {
1184 case INTEL_MSAA_LAYOUT_NONE:
1185 /* No translation necessary, and S should already be zero. */
1186 assert(s_is_zero);
1187 break;
1188 case INTEL_MSAA_LAYOUT_CMS:
1189 /* We can't compensate for compressed layout since at this point in the
1190 * program we don't have access to the MCS buffer.
1191 */
1192 unreachable("Bad layout in encode_msaa");
1193 case INTEL_MSAA_LAYOUT_UMS:
1194 /* No translation necessary. */
1195 break;
1196 case INTEL_MSAA_LAYOUT_IMS:
1197 assert(s_is_zero);
1198 switch (num_samples) {
1199 case 4:
1200 /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
1201 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
1202 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1203 * S = (Y & 0b10) | (X & 0b10) >> 1
1204 */
1205 emit_and(t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
1206 emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
1207 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1208 emit_or(Xp, t1, t2);
1209 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1210 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1211 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1212 emit_or(Yp, t1, t2);
1213 emit_and(t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
1214 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1215 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1216 emit_or(S, t1, t2);
1217 break;
1218 case 8:
1219 /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
1220 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
1221 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1222 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
1223 */
1224 emit_and(t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */
1225 emit_shr(t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */
1226 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1227 emit_or(Xp, t1, t2);
1228 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1229 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1230 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1231 emit_or(Yp, t1, t2);
1232 emit_and(t1, X, brw_imm_uw(4)); /* X & 0b100 */
1233 emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1234 emit_or(t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */
1235 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1236 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1237 emit_or(S, t1, t2);
1238 break;
1239 }
1240 s_is_zero = false;
1241 SWAP_XY_AND_XPYP();
1242 break;
1243 }
1244 }
1245
1246 /**
1247 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1248 * coordinates.
1249 */
1250 void
1251 brw_blorp_blit_program::translate_dst_to_src()
1252 {
1253 struct brw_reg X_f = retype(X, BRW_REGISTER_TYPE_F);
1254 struct brw_reg Y_f = retype(Y, BRW_REGISTER_TYPE_F);
1255 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1256 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1257
1258 /* Move the UD coordinates to float registers. */
1259 emit_mov(Xp_f, X);
1260 emit_mov(Yp_f, Y);
1261 /* Scale and offset */
1262 emit_mad(X_f, x_transform.offset, Xp_f, x_transform.multiplier);
1263 emit_mad(Y_f, y_transform.offset, Yp_f, y_transform.multiplier);
1264 if (key->blit_scaled && key->blend) {
1265 /* Translate coordinates to lay out the samples in a rectangular grid
1266 * roughly corresponding to sample locations.
1267 */
1268 emit_mul(X_f, X_f, brw_imm_f(key->x_scale));
1269 emit_mul(Y_f, Y_f, brw_imm_f(key->y_scale));
1270 /* Adjust coordinates so that integers represent pixel centers rather
1271 * than pixel edges.
1272 */
1273 emit_add(X_f, X_f, brw_imm_f(-0.5));
1274 emit_add(Y_f, Y_f, brw_imm_f(-0.5));
1275
1276 /* Clamp the X, Y texture coordinates to properly handle the sampling of
1277 * texels on texture edges.
1278 */
1279 clamp_tex_coords(X_f, Y_f,
1280 brw_imm_f(0.0), brw_imm_f(0.0),
1281 rect_grid_x1, rect_grid_y1);
1282
1283 /* Store the fractional parts to be used as bilinear interpolation
1284 * coefficients.
1285 */
1286 emit_frc(x_frac, X_f);
1287 emit_frc(y_frac, Y_f);
1288
1289 /* Round the float coordinates down to nearest integer */
1290 emit_rndd(Xp_f, X_f);
1291 emit_rndd(Yp_f, Y_f);
1292 emit_mul(X_f, Xp_f, brw_imm_f(1.0f / key->x_scale));
1293 emit_mul(Y_f, Yp_f, brw_imm_f(1.0f / key->y_scale));
1294 SWAP_XY_AND_XPYP();
1295 } else if (!key->bilinear_filter) {
1296 /* Round the float coordinates down to nearest integer by moving to
1297 * UD registers.
1298 */
1299 emit_mov(Xp, X_f);
1300 emit_mov(Yp, Y_f);
1301 SWAP_XY_AND_XPYP();
1302 }
1303 }
1304
1305 void
1306 brw_blorp_blit_program::clamp_tex_coords(struct brw_reg regX,
1307 struct brw_reg regY,
1308 struct brw_reg clampX0,
1309 struct brw_reg clampY0,
1310 struct brw_reg clampX1,
1311 struct brw_reg clampY1)
1312 {
1313 emit_max(regX, regX, clampX0);
1314 emit_max(regY, regY, clampY0);
1315 emit_min(regX, regX, clampX1);
1316 emit_min(regY, regY, clampY1);
1317 }
1318
1319 /**
1320 * Emit code to transform the X and Y coordinates as needed for blending
1321 * together the different samples in an MSAA texture.
1322 */
1323 void
1324 brw_blorp_blit_program::single_to_blend()
1325 {
1326 /* When looking up samples in an MSAA texture using the SAMPLE message,
1327 * Gen6 requires the texture coordinates to be odd integers (so that they
1328 * correspond to the center of a 2x2 block representing the four samples
1329 * that maxe up a pixel). So we need to multiply our X and Y coordinates
1330 * each by 2 and then add 1.
1331 */
1332 emit_shl(t1, X, brw_imm_w(1));
1333 emit_shl(t2, Y, brw_imm_w(1));
1334 emit_add(Xp, t1, brw_imm_w(1));
1335 emit_add(Yp, t2, brw_imm_w(1));
1336 SWAP_XY_AND_XPYP();
1337 }
1338
1339
1340 /**
1341 * Count the number of trailing 1 bits in the given value. For example:
1342 *
1343 * count_trailing_one_bits(0) == 0
1344 * count_trailing_one_bits(7) == 3
1345 * count_trailing_one_bits(11) == 2
1346 */
1347 inline int count_trailing_one_bits(unsigned value)
1348 {
1349 #ifdef HAVE___BUILTIN_CTZ
1350 return __builtin_ctz(~value);
1351 #else
1352 return _mesa_bitcount(value & ~(value + 1));
1353 #endif
1354 }
1355
1356
1357 void
1358 brw_blorp_blit_program::manual_blend_average(unsigned num_samples)
1359 {
1360 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1361 mcs_fetch();
1362
1363 /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
1364 *
1365 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
1366 *
1367 * This ensures that when all samples have the same value, no numerical
1368 * precision is lost, since each addition operation always adds two equal
1369 * values, and summing two equal floating point values does not lose
1370 * precision.
1371 *
1372 * We perform this computation by treating the texture_data array as a
1373 * stack and performing the following operations:
1374 *
1375 * - push sample 0 onto stack
1376 * - push sample 1 onto stack
1377 * - add top two stack entries
1378 * - push sample 2 onto stack
1379 * - push sample 3 onto stack
1380 * - add top two stack entries
1381 * - add top two stack entries
1382 * - divide top stack entry by 4
1383 *
1384 * Note that after pushing sample i onto the stack, the number of add
1385 * operations we do is equal to the number of trailing 1 bits in i. This
1386 * works provided the total number of samples is a power of two, which it
1387 * always is for i965.
1388 *
1389 * For integer formats, we replace the add operations with average
1390 * operations and skip the final division.
1391 */
1392 unsigned stack_depth = 0;
1393 for (unsigned i = 0; i < num_samples; ++i) {
1394 assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
1395
1396 /* Push sample i onto the stack */
1397 assert(stack_depth < ARRAY_SIZE(texture_data));
1398 if (i == 0) {
1399 s_is_zero = true;
1400 } else {
1401 s_is_zero = false;
1402 emit_mov(vec16(S), brw_imm_ud(i));
1403 }
1404 texel_fetch(texture_data[stack_depth++]);
1405
1406 if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
1407 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
1408 * suggests an optimization:
1409 *
1410 * "A simple optimization with probable large return in
1411 * performance is to compare the MCS value to zero (indicating
1412 * all samples are on sample slice 0), and sample only from
1413 * sample slice 0 using ld2dss if MCS is zero."
1414 *
1415 * Note that in the case where the MCS value is zero, sampling from
1416 * sample slice 0 using ld2dss and sampling from sample 0 using
1417 * ld2dms are equivalent (since all samples are on sample slice 0).
1418 * Since we have already sampled from sample 0, all we need to do is
1419 * skip the remaining fetches and averaging if MCS is zero.
1420 */
1421 emit_cmp_if(BRW_CONDITIONAL_NZ, mcs_data, brw_imm_ud(0));
1422 }
1423
1424 /* Do count_trailing_one_bits(i) times */
1425 for (int j = count_trailing_one_bits(i); j-- > 0; ) {
1426 assert(stack_depth >= 2);
1427 --stack_depth;
1428
1429 /* TODO: should use a smaller loop bound for non_RGBA formats */
1430 for (int k = 0; k < 4; ++k) {
1431 emit_combine(key->texture_data_type == BRW_REGISTER_TYPE_F ?
1432 BRW_OPCODE_ADD : BRW_OPCODE_AVG,
1433 offset(texture_data[stack_depth - 1], 2*k),
1434 offset(vec8(texture_data[stack_depth - 1]), 2*k),
1435 offset(vec8(texture_data[stack_depth]), 2*k));
1436 }
1437 }
1438 }
1439
1440 /* We should have just 1 sample on the stack now. */
1441 assert(stack_depth == 1);
1442
1443 if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
1444 /* Scale the result down by a factor of num_samples */
1445 /* TODO: should use a smaller loop bound for non-RGBA formats */
1446 for (int j = 0; j < 4; ++j) {
1447 emit_mul(offset(texture_data[0], 2*j),
1448 offset(vec8(texture_data[0]), 2*j),
1449 brw_imm_f(1.0f / num_samples));
1450 }
1451 }
1452
1453 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1454 emit_endif();
1455 }
1456
1457 void
1458 brw_blorp_blit_program::manual_blend_bilinear(unsigned num_samples)
1459 {
1460 /* We do this computation by performing the following operations:
1461 *
1462 * In case of 4x, 8x MSAA:
1463 * - Compute the pixel coordinates and sample numbers (a, b, c, d)
1464 * which are later used for interpolation
1465 * - linearly interpolate samples a and b in X
1466 * - linearly interpolate samples c and d in X
1467 * - linearly interpolate the results of last two operations in Y
1468 *
1469 * result = lrp(lrp(a + b) + lrp(c + d))
1470 */
1471 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1472 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1473 struct brw_reg t1_f = retype(t1, BRW_REGISTER_TYPE_F);
1474 struct brw_reg t2_f = retype(t2, BRW_REGISTER_TYPE_F);
1475
1476 for (unsigned i = 0; i < 4; ++i) {
1477 assert(i < ARRAY_SIZE(texture_data));
1478 s_is_zero = false;
1479
1480 /* Compute pixel coordinates */
1481 emit_add(vec16(x_sample_coords), Xp_f,
1482 brw_imm_f((float)(i & 0x1) * (1.0f / key->x_scale)));
1483 emit_add(vec16(y_sample_coords), Yp_f,
1484 brw_imm_f((float)((i >> 1) & 0x1) * (1.0f / key->y_scale)));
1485 emit_mov(vec16(X), x_sample_coords);
1486 emit_mov(vec16(Y), y_sample_coords);
1487
1488 /* The MCS value we fetch has to match up with the pixel that we're
1489 * sampling from. Since we sample from different pixels in each
1490 * iteration of this "for" loop, the call to mcs_fetch() should be
1491 * here inside the loop after computing the pixel coordinates.
1492 */
1493 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1494 mcs_fetch();
1495
1496 /* Compute sample index and map the sample index to a sample number.
1497 * Sample index layout shows the numbering of slots in a rectangular
1498 * grid of samples with in a pixel. Sample number layout shows the
1499 * rectangular grid of samples roughly corresponding to the real sample
1500 * locations with in a pixel.
1501 * In case of 4x MSAA, layout of sample indices matches the layout of
1502 * sample numbers:
1503 * ---------
1504 * | 0 | 1 |
1505 * ---------
1506 * | 2 | 3 |
1507 * ---------
1508 *
1509 * In case of 8x MSAA the two layouts don't match.
1510 * sample index layout : --------- sample number layout : ---------
1511 * | 0 | 1 | | 5 | 2 |
1512 * --------- ---------
1513 * | 2 | 3 | | 4 | 6 |
1514 * --------- ---------
1515 * | 4 | 5 | | 0 | 3 |
1516 * --------- ---------
1517 * | 6 | 7 | | 7 | 1 |
1518 * --------- ---------
1519 */
1520 emit_frc(vec16(t1_f), x_sample_coords);
1521 emit_frc(vec16(t2_f), y_sample_coords);
1522 emit_mul(vec16(t1_f), t1_f, brw_imm_f(key->x_scale));
1523 emit_mul(vec16(t2_f), t2_f, brw_imm_f(key->x_scale * key->y_scale));
1524 emit_add(vec16(t1_f), t1_f, t2_f);
1525 emit_mov(vec16(S), t1_f);
1526
1527 if (num_samples == 8) {
1528 /* Map the sample index to a sample number */
1529 emit_cmp_if(BRW_CONDITIONAL_L, S, brw_imm_d(4));
1530 {
1531 emit_mov(vec16(t2), brw_imm_d(5));
1532 emit_if_eq_mov(S, 1, vec16(t2), 2);
1533 emit_if_eq_mov(S, 2, vec16(t2), 4);
1534 emit_if_eq_mov(S, 3, vec16(t2), 6);
1535 }
1536 emit_else();
1537 {
1538 emit_mov(vec16(t2), brw_imm_d(0));
1539 emit_if_eq_mov(S, 5, vec16(t2), 3);
1540 emit_if_eq_mov(S, 6, vec16(t2), 7);
1541 emit_if_eq_mov(S, 7, vec16(t2), 1);
1542 }
1543 emit_endif();
1544 emit_mov(vec16(S), t2);
1545 }
1546 texel_fetch(texture_data[i]);
1547 }
1548
1549 #define SAMPLE(x, y) offset(texture_data[x], y)
1550 for (int index = 3; index > 0; ) {
1551 /* Since we're doing SIMD16, 4 color channels fits in to 8 registers.
1552 * Counter value of 8 in 'for' loop below is used to interpolate all
1553 * the color components.
1554 */
1555 for (int k = 0; k < 8; k += 2)
1556 emit_lrp(vec8(SAMPLE(index - 1, k)),
1557 x_frac,
1558 vec8(SAMPLE(index, k)),
1559 vec8(SAMPLE(index - 1, k)));
1560 index -= 2;
1561 }
1562 for (int k = 0; k < 8; k += 2)
1563 emit_lrp(vec8(SAMPLE(0, k)),
1564 y_frac,
1565 vec8(SAMPLE(2, k)),
1566 vec8(SAMPLE(0, k)));
1567 #undef SAMPLE
1568 }
1569
1570 /**
1571 * Emit code to look up a value in the texture using the SAMPLE message (which
1572 * does blending of MSAA surfaces).
1573 */
1574 void
1575 brw_blorp_blit_program::sample(struct brw_reg dst)
1576 {
1577 static const sampler_message_arg args[2] = {
1578 SAMPLER_MESSAGE_ARG_U_FLOAT,
1579 SAMPLER_MESSAGE_ARG_V_FLOAT
1580 };
1581
1582 texture_lookup(dst, SHADER_OPCODE_TEX, args, ARRAY_SIZE(args));
1583 }
1584
1585 /**
1586 * Emit code to look up a value in the texture using the SAMPLE_LD message
1587 * (which does a simple texel fetch).
1588 */
1589 void
1590 brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1591 {
1592 static const sampler_message_arg gen6_args[5] = {
1593 SAMPLER_MESSAGE_ARG_U_INT,
1594 SAMPLER_MESSAGE_ARG_V_INT,
1595 SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1596 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1597 SAMPLER_MESSAGE_ARG_SI_INT
1598 };
1599 static const sampler_message_arg gen7_ld_args[3] = {
1600 SAMPLER_MESSAGE_ARG_U_INT,
1601 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1602 SAMPLER_MESSAGE_ARG_V_INT
1603 };
1604 static const sampler_message_arg gen7_ld2dss_args[3] = {
1605 SAMPLER_MESSAGE_ARG_SI_INT,
1606 SAMPLER_MESSAGE_ARG_U_INT,
1607 SAMPLER_MESSAGE_ARG_V_INT
1608 };
1609 static const sampler_message_arg gen7_ld2dms_args[4] = {
1610 SAMPLER_MESSAGE_ARG_SI_INT,
1611 SAMPLER_MESSAGE_ARG_MCS_INT,
1612 SAMPLER_MESSAGE_ARG_U_INT,
1613 SAMPLER_MESSAGE_ARG_V_INT
1614 };
1615
1616 switch (brw->gen) {
1617 case 6:
1618 texture_lookup(dst, SHADER_OPCODE_TXF, gen6_args, s_is_zero ? 2 : 5);
1619 break;
1620 case 7:
1621 switch (key->tex_layout) {
1622 case INTEL_MSAA_LAYOUT_IMS:
1623 /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
1624 * Format):
1625 *
1626 * If this field is MSFMT_DEPTH_STENCIL
1627 * [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
1628 * messages allowed are "ld2dms", "resinfo", and "sampleinfo".
1629 *
1630 * So fall through to emit the same message as we use for
1631 * INTEL_MSAA_LAYOUT_CMS.
1632 */
1633 case INTEL_MSAA_LAYOUT_CMS:
1634 texture_lookup(dst, SHADER_OPCODE_TXF_CMS,
1635 gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
1636 break;
1637 case INTEL_MSAA_LAYOUT_UMS:
1638 texture_lookup(dst, SHADER_OPCODE_TXF_UMS,
1639 gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1640 break;
1641 case INTEL_MSAA_LAYOUT_NONE:
1642 assert(s_is_zero);
1643 texture_lookup(dst, SHADER_OPCODE_TXF, gen7_ld_args,
1644 ARRAY_SIZE(gen7_ld_args));
1645 break;
1646 }
1647 break;
1648 default:
1649 unreachable("Should not get here.");
1650 };
1651 }
1652
1653 void
1654 brw_blorp_blit_program::mcs_fetch()
1655 {
1656 static const sampler_message_arg gen7_ld_mcs_args[2] = {
1657 SAMPLER_MESSAGE_ARG_U_INT,
1658 SAMPLER_MESSAGE_ARG_V_INT
1659 };
1660 texture_lookup(vec16(mcs_data), SHADER_OPCODE_TXF_MCS,
1661 gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
1662 }
1663
1664 void
1665 brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1666 enum opcode op,
1667 const sampler_message_arg *args,
1668 int num_args)
1669 {
1670 struct brw_reg mrf =
1671 retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1672 for (int arg = 0; arg < num_args; ++arg) {
1673 switch (args[arg]) {
1674 case SAMPLER_MESSAGE_ARG_U_FLOAT:
1675 if (key->bilinear_filter)
1676 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
1677 retype(X, BRW_REGISTER_TYPE_F));
1678 else
1679 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), X);
1680 break;
1681 case SAMPLER_MESSAGE_ARG_V_FLOAT:
1682 if (key->bilinear_filter)
1683 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
1684 retype(Y, BRW_REGISTER_TYPE_F));
1685 else
1686 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), Y);
1687 break;
1688 case SAMPLER_MESSAGE_ARG_U_INT:
1689 emit_mov(mrf, X);
1690 break;
1691 case SAMPLER_MESSAGE_ARG_V_INT:
1692 emit_mov(mrf, Y);
1693 break;
1694 case SAMPLER_MESSAGE_ARG_SI_INT:
1695 /* Note: on Gen7, this code may be reached with s_is_zero==true
1696 * because in Gen7's ld2dss message, the sample index is the first
1697 * argument. When this happens, we need to move a 0 into the
1698 * appropriate message register.
1699 */
1700 if (s_is_zero)
1701 emit_mov(mrf, brw_imm_ud(0));
1702 else
1703 emit_mov(mrf, S);
1704 break;
1705 case SAMPLER_MESSAGE_ARG_MCS_INT:
1706 switch (key->tex_layout) {
1707 case INTEL_MSAA_LAYOUT_CMS:
1708 emit_mov(mrf, mcs_data);
1709 break;
1710 case INTEL_MSAA_LAYOUT_IMS:
1711 /* When sampling from an IMS surface, MCS data is not relevant,
1712 * and the hardware ignores it. So don't bother populating it.
1713 */
1714 break;
1715 default:
1716 /* We shouldn't be trying to send MCS data with any other
1717 * layouts.
1718 */
1719 assert (!"Unsupported layout for MCS data");
1720 break;
1721 }
1722 break;
1723 case SAMPLER_MESSAGE_ARG_ZERO_INT:
1724 emit_mov(mrf, brw_imm_ud(0));
1725 break;
1726 }
1727 mrf.nr += 2;
1728 }
1729
1730 emit_texture_lookup(retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
1731 op,
1732 base_mrf,
1733 mrf.nr - base_mrf /* msg_length */);
1734 }
1735
1736 #undef X
1737 #undef Y
1738 #undef U
1739 #undef V
1740 #undef S
1741 #undef SWAP_XY_AND_XPYP
1742
1743 void
1744 brw_blorp_blit_program::render_target_write()
1745 {
1746 struct brw_reg mrf_rt_write =
1747 retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
1748 int mrf_offset = 0;
1749
1750 /* If we may have killed pixels, then we need to send R0 and R1 in a header
1751 * so that the render target knows which pixels we killed.
1752 */
1753 bool use_header = key->use_kill;
1754 if (use_header) {
1755 /* Copy R0/1 to MRF */
1756 emit_mov(retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1757 retype(R0, BRW_REGISTER_TYPE_UD));
1758 mrf_offset += 2;
1759 }
1760
1761 /* Copy texture data to MRFs */
1762 for (int i = 0; i < 4; ++i) {
1763 /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1764 emit_mov(offset(mrf_rt_write, mrf_offset),
1765 offset(vec8(texture_data[0]), 2*i));
1766 mrf_offset += 2;
1767 }
1768
1769 /* Now write to the render target and terminate the thread */
1770 emit_render_target_write(
1771 mrf_rt_write,
1772 base_mrf,
1773 mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
1774 use_header);
1775 }
1776
1777
1778 void
1779 brw_blorp_coord_transform_params::setup(GLfloat src0, GLfloat src1,
1780 GLfloat dst0, GLfloat dst1,
1781 bool mirror)
1782 {
1783 float scale = (src1 - src0) / (dst1 - dst0);
1784 if (!mirror) {
1785 /* When not mirroring a coordinate (say, X), we need:
1786 * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
1787 * Therefore:
1788 * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
1789 *
1790 * blorp program uses "round toward zero" to convert the
1791 * transformed floating point coordinates to integer coordinates,
1792 * whereas the behaviour we actually want is "round to nearest",
1793 * so 0.5 provides the necessary correction.
1794 */
1795 multiplier = scale;
1796 offset = src0 + (-dst0 + 0.5f) * scale;
1797 } else {
1798 /* When mirroring X we need:
1799 * src_x - src_x0 = dst_x1 - dst_x - 0.5
1800 * Therefore:
1801 * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
1802 */
1803 multiplier = -scale;
1804 offset = src0 + (dst1 - 0.5f) * scale;
1805 }
1806 }
1807
1808
1809 /**
1810 * Determine which MSAA layout the GPU pipeline should be configured for,
1811 * based on the chip generation, the number of samples, and the true layout of
1812 * the image in memory.
1813 */
1814 inline intel_msaa_layout
1815 compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
1816 intel_msaa_layout true_layout)
1817 {
1818 if (num_samples <= 1) {
1819 /* When configuring the GPU for non-MSAA, we can still accommodate IMS
1820 * format buffers, by transforming coordinates appropriately.
1821 */
1822 assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
1823 true_layout == INTEL_MSAA_LAYOUT_IMS);
1824 return INTEL_MSAA_LAYOUT_NONE;
1825 } else {
1826 assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
1827 }
1828
1829 /* Prior to Gen7, all MSAA surfaces use IMS layout. */
1830 if (brw->gen == 6) {
1831 assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
1832 }
1833
1834 return true_layout;
1835 }
1836
1837
1838 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
1839 struct intel_mipmap_tree *src_mt,
1840 unsigned src_level, unsigned src_layer,
1841 mesa_format src_format,
1842 struct intel_mipmap_tree *dst_mt,
1843 unsigned dst_level, unsigned dst_layer,
1844 mesa_format dst_format,
1845 GLfloat src_x0, GLfloat src_y0,
1846 GLfloat src_x1, GLfloat src_y1,
1847 GLfloat dst_x0, GLfloat dst_y0,
1848 GLfloat dst_x1, GLfloat dst_y1,
1849 GLenum filter,
1850 bool mirror_x, bool mirror_y)
1851 {
1852 src.set(brw, src_mt, src_level, src_layer, src_format, false);
1853 dst.set(brw, dst_mt, dst_level, dst_layer, dst_format, true);
1854
1855 /* Even though we do multisample resolves at the time of the blit, OpenGL
1856 * specification defines them as if they happen at the time of rendering,
1857 * which means that the type of averaging we do during the resolve should
1858 * only depend on the source format; the destination format should be
1859 * ignored. But, specification doesn't seem to be strict about it.
1860 *
1861 * It has been observed that mulitisample resolves produce slightly better
1862 * looking images when averaging is done using destination format. NVIDIA's
1863 * proprietary OpenGL driver also follow this approach. So, we choose to
1864 * follow it in our driver.
1865 *
1866 * When multisampling, if the source and destination formats are equal
1867 * (aside from the color space), we choose to blit in sRGB space to get
1868 * this higher quality image.
1869 */
1870 if (src.num_samples > 1 &&
1871 _mesa_get_format_color_encoding(dst_mt->format) == GL_SRGB &&
1872 _mesa_get_srgb_format_linear(src_mt->format) ==
1873 _mesa_get_srgb_format_linear(dst_mt->format)) {
1874 assert(brw->format_supported_as_render_target[dst_mt->format]);
1875 dst.brw_surfaceformat = brw->render_target_format[dst_mt->format];
1876 src.brw_surfaceformat = brw_format_for_mesa_format(dst_mt->format);
1877 }
1878
1879 /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F
1880 * texture, the above code configures the source format for L32_FLOAT or
1881 * I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge,
1882 * the SAMPLE message appears to handle multisampled L32_FLOAT and
1883 * I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work
1884 * around the problem by using a source format of R32_FLOAT. This
1885 * shouldn't affect rendering correctness, since the destination format is
1886 * R32_FLOAT, so only the contents of the red channel matters.
1887 */
1888 if (brw->gen == 6 && src.num_samples > 1 && dst.num_samples <= 1 &&
1889 src_mt->format == dst_mt->format &&
1890 dst.brw_surfaceformat == BRW_SURFACEFORMAT_R32_FLOAT) {
1891 src.brw_surfaceformat = dst.brw_surfaceformat;
1892 }
1893
1894 use_wm_prog = true;
1895 memset(&wm_prog_key, 0, sizeof(wm_prog_key));
1896
1897 /* texture_data_type indicates the register type that should be used to
1898 * manipulate texture data.
1899 */
1900 switch (_mesa_get_format_datatype(src_mt->format)) {
1901 case GL_UNSIGNED_NORMALIZED:
1902 case GL_SIGNED_NORMALIZED:
1903 case GL_FLOAT:
1904 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1905 break;
1906 case GL_UNSIGNED_INT:
1907 if (src_mt->format == MESA_FORMAT_S_UINT8) {
1908 /* We process stencil as though it's an unsigned normalized color */
1909 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1910 } else {
1911 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
1912 }
1913 break;
1914 case GL_INT:
1915 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
1916 break;
1917 default:
1918 unreachable("Unrecognized blorp format");
1919 }
1920
1921 if (brw->gen > 6) {
1922 /* Gen7's rendering hardware only supports the IMS layout for depth and
1923 * stencil render targets. Blorp always maps its destination surface as
1924 * a color render target (even if it's actually a depth or stencil
1925 * buffer). So if the destination is IMS, we'll have to map it as a
1926 * single-sampled texture and interleave the samples ourselves.
1927 */
1928 if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
1929 dst.num_samples = 0;
1930 }
1931
1932 if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) {
1933 /* If the destination surface is a W-tiled multisampled stencil buffer
1934 * that we're mapping as Y tiled, then we need to arrange for the WM
1935 * program to run once per sample rather than once per pixel, because
1936 * the memory layout of related samples doesn't match between W and Y
1937 * tiling.
1938 */
1939 wm_prog_key.persample_msaa_dispatch = true;
1940 }
1941
1942 if (src.num_samples > 0 && dst.num_samples > 1) {
1943 /* We are blitting from a multisample buffer to a multisample buffer, so
1944 * we must preserve samples within a pixel. This means we have to
1945 * arrange for the WM program to run once per sample rather than once
1946 * per pixel.
1947 */
1948 wm_prog_key.persample_msaa_dispatch = true;
1949 }
1950
1951 /* Scaled blitting or not. */
1952 wm_prog_key.blit_scaled =
1953 ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
1954 (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
1955
1956 /* Scaling factors used for bilinear filtering in multisample scaled
1957 * blits.
1958 */
1959 wm_prog_key.x_scale = 2.0f;
1960 wm_prog_key.y_scale = src_mt->num_samples / 2.0f;
1961
1962 if (filter == GL_LINEAR && src.num_samples <= 1 && dst.num_samples <= 1)
1963 wm_prog_key.bilinear_filter = true;
1964
1965 GLenum base_format = _mesa_get_format_base_format(src_mt->format);
1966 if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
1967 base_format != GL_STENCIL_INDEX &&
1968 src_mt->num_samples > 1 && dst_mt->num_samples <= 1) {
1969 /* We are downsampling a color buffer, so blend. */
1970 wm_prog_key.blend = true;
1971 }
1972
1973 /* src_samples and dst_samples are the true sample counts */
1974 wm_prog_key.src_samples = src_mt->num_samples;
1975 wm_prog_key.dst_samples = dst_mt->num_samples;
1976
1977 /* tex_samples and rt_samples are the sample counts that are set up in
1978 * SURFACE_STATE.
1979 */
1980 wm_prog_key.tex_samples = src.num_samples;
1981 wm_prog_key.rt_samples = dst.num_samples;
1982
1983 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1984 * use to access the source and destination surfaces.
1985 */
1986 wm_prog_key.tex_layout =
1987 compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
1988 wm_prog_key.rt_layout =
1989 compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
1990
1991 /* src_layout and dst_layout indicate the true MSAA layout used by src and
1992 * dst.
1993 */
1994 wm_prog_key.src_layout = src_mt->msaa_layout;
1995 wm_prog_key.dst_layout = dst_mt->msaa_layout;
1996
1997 wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
1998 wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
1999 /* Round floating point values to nearest integer to avoid "off by one texel"
2000 * kind of errors when blitting.
2001 */
2002 x0 = wm_push_consts.dst_x0 = roundf(dst_x0);
2003 y0 = wm_push_consts.dst_y0 = roundf(dst_y0);
2004 x1 = wm_push_consts.dst_x1 = roundf(dst_x1);
2005 y1 = wm_push_consts.dst_y1 = roundf(dst_y1);
2006 wm_push_consts.rect_grid_x1 = (minify(src_mt->logical_width0, src_level) *
2007 wm_prog_key.x_scale - 1.0f);
2008 wm_push_consts.rect_grid_y1 = (minify(src_mt->logical_height0, src_level) *
2009 wm_prog_key.y_scale - 1.0f);
2010
2011 wm_push_consts.x_transform.setup(src_x0, src_x1, dst_x0, dst_x1, mirror_x);
2012 wm_push_consts.y_transform.setup(src_y0, src_y1, dst_y0, dst_y1, mirror_y);
2013
2014 if (dst.num_samples <= 1 && dst_mt->num_samples > 1) {
2015 /* We must expand the rectangle we send through the rendering pipeline,
2016 * to account for the fact that we are mapping the destination region as
2017 * single-sampled when it is in fact multisampled. We must also align
2018 * it to a multiple of the multisampling pattern, because the
2019 * differences between multisampled and single-sampled surface formats
2020 * will mean that pixels are scrambled within the multisampling pattern.
2021 * TODO: what if this makes the coordinates too large?
2022 *
2023 * Note: this only works if the destination surface uses the IMS layout.
2024 * If it's UMS, then we have no choice but to set up the rendering
2025 * pipeline as multisampled.
2026 */
2027 assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
2028 switch (dst_mt->num_samples) {
2029 case 4:
2030 x0 = ROUND_DOWN_TO(x0 * 2, 4);
2031 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2032 x1 = ALIGN(x1 * 2, 4);
2033 y1 = ALIGN(y1 * 2, 4);
2034 break;
2035 case 8:
2036 x0 = ROUND_DOWN_TO(x0 * 4, 8);
2037 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2038 x1 = ALIGN(x1 * 4, 8);
2039 y1 = ALIGN(y1 * 2, 4);
2040 break;
2041 default:
2042 unreachable("Unrecognized sample count in brw_blorp_blit_params ctor");
2043 }
2044 wm_prog_key.use_kill = true;
2045 }
2046
2047 if (dst.map_stencil_as_y_tiled) {
2048 /* We must modify the rectangle we send through the rendering pipeline
2049 * (and the size and x/y offset of the destination surface), to account
2050 * for the fact that we are mapping it as Y-tiled when it is in fact
2051 * W-tiled.
2052 *
2053 * Both Y tiling and W tiling can be understood as organizations of
2054 * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
2055 * is different, but the layout of the 32-byte sub-tiles within the 4k
2056 * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
2057 * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
2058 * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
2059 *
2060 * Therefore, to account for the layout differences within the 32-byte
2061 * sub-tiles, we must expand the rectangle so the X coordinates of its
2062 * edges are multiples of 8 (the W sub-tile width), and its Y
2063 * coordinates of its edges are multiples of 4 (the W sub-tile height).
2064 * Then we need to scale the X and Y coordinates of the rectangle to
2065 * account for the differences in aspect ratio between the Y and W
2066 * sub-tiles. We need to modify the layer width and height similarly.
2067 *
2068 * A correction needs to be applied when MSAA is in use: since
2069 * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
2070 * we need to align the Y coordinates to multiples of 8, so that when
2071 * they are divided by two they are still multiples of 4.
2072 *
2073 * Note: Since the x/y offset of the surface will be applied using the
2074 * SURFACE_STATE command packet, it will be invisible to the swizzling
2075 * code in the shader; therefore it needs to be in a multiple of the
2076 * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
2077 * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
2078 * buffer), and the miplevel alignment used for stencil buffers is 8
2079 * pixels horizontally and either 4 or 8 pixels vertically (see
2080 * intel_horizontal_texture_alignment_unit() and
2081 * intel_vertical_texture_alignment_unit()).
2082 *
2083 * Note: Also, since the SURFACE_STATE command packet can only apply
2084 * offsets that are multiples of 4 pixels horizontally and 2 pixels
2085 * vertically, it is important that the offsets will be multiples of
2086 * these sizes after they are converted into Y-tiled coordinates.
2087 * Fortunately they will be, since we know from above that the offsets
2088 * are a multiple of the 32-byte sub-tile size, and in Y-tiled
2089 * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
2090 *
2091 * TODO: what if this makes the coordinates (or the texture size) too
2092 * large?
2093 */
2094 const unsigned x_align = 8, y_align = dst.num_samples != 0 ? 8 : 4;
2095 x0 = ROUND_DOWN_TO(x0, x_align) * 2;
2096 y0 = ROUND_DOWN_TO(y0, y_align) / 2;
2097 x1 = ALIGN(x1, x_align) * 2;
2098 y1 = ALIGN(y1, y_align) / 2;
2099 dst.width = ALIGN(dst.width, x_align) * 2;
2100 dst.height = ALIGN(dst.height, y_align) / 2;
2101 dst.x_offset *= 2;
2102 dst.y_offset /= 2;
2103 wm_prog_key.use_kill = true;
2104 }
2105
2106 if (src.map_stencil_as_y_tiled) {
2107 /* We must modify the size and x/y offset of the source surface to
2108 * account for the fact that we are mapping it as Y-tiled when it is in
2109 * fact W tiled.
2110 *
2111 * See the comments above concerning x/y offset alignment for the
2112 * destination surface.
2113 *
2114 * TODO: what if this makes the texture size too large?
2115 */
2116 const unsigned x_align = 8, y_align = src.num_samples != 0 ? 8 : 4;
2117 src.width = ALIGN(src.width, x_align) * 2;
2118 src.height = ALIGN(src.height, y_align) / 2;
2119 src.x_offset *= 2;
2120 src.y_offset /= 2;
2121 }
2122 }
2123
2124 uint32_t
2125 brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
2126 brw_blorp_prog_data **prog_data) const
2127 {
2128 uint32_t prog_offset = 0;
2129 if (!brw_search_cache(&brw->cache, BRW_CACHE_BLORP_BLIT_PROG,
2130 &this->wm_prog_key, sizeof(this->wm_prog_key),
2131 &prog_offset, prog_data)) {
2132 brw_blorp_blit_program prog(brw, &this->wm_prog_key,
2133 INTEL_DEBUG & DEBUG_BLORP);
2134 GLuint program_size;
2135 const GLuint *program = prog.compile(brw, &program_size);
2136 brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_BLIT_PROG,
2137 &this->wm_prog_key, sizeof(this->wm_prog_key),
2138 program, program_size,
2139 &prog.prog_data, sizeof(prog.prog_data),
2140 &prog_offset, prog_data);
2141 }
2142 return prog_offset;
2143 }