i965/blorp: Implement destination clipping and scissoring
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp_blit.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/teximage.h"
25
26 #include "glsl/ralloc.h"
27
28 #include "intel_fbo.h"
29
30 #include "brw_blorp.h"
31 #include "brw_context.h"
32 #include "brw_eu.h"
33 #include "brw_state.h"
34
35
36 /**
37 * Helper function for handling mirror image blits.
38 *
39 * If coord0 > coord1, swap them and invert the "mirror" boolean.
40 */
41 static inline void
42 fixup_mirroring(bool &mirror, GLint &coord0, GLint &coord1)
43 {
44 if (coord0 > coord1) {
45 mirror = !mirror;
46 GLint tmp = coord0;
47 coord0 = coord1;
48 coord1 = tmp;
49 }
50 }
51
52
53 /**
54 * Adjust {src,dst}_x{0,1} to account for clipping and scissoring of
55 * destination coordinates.
56 *
57 * Return true if there is still blitting to do, false if all pixels got
58 * rejected by the clip and/or scissor.
59 *
60 * For clarity, the nomenclature of this function assumes we are clipping and
61 * scissoring the X coordinate; the exact same logic applies for Y
62 * coordinates.
63 */
64 static inline bool
65 clip_or_scissor(bool mirror, GLint &src_x0, GLint &src_x1, GLint &dst_x0,
66 GLint &dst_x1, GLint fb_xmin, GLint fb_xmax)
67 {
68 /* If we are going to scissor everything away, stop. */
69 if (!(fb_xmin < fb_xmax &&
70 dst_x0 < fb_xmax &&
71 fb_xmin < dst_x1 &&
72 dst_x0 < dst_x1)) {
73 return false;
74 }
75
76 /* Clip the destination rectangle, and keep track of how many pixels we
77 * clipped off of the left and right sides of it.
78 */
79 GLint pixels_clipped_left = 0;
80 GLint pixels_clipped_right = 0;
81 if (dst_x0 < fb_xmin) {
82 pixels_clipped_left = fb_xmin - dst_x0;
83 dst_x0 = fb_xmin;
84 }
85 if (fb_xmax < dst_x1) {
86 pixels_clipped_right = dst_x1 - fb_xmax;
87 dst_x1 = fb_xmax;
88 }
89
90 /* If we are mirrored, then before applying pixels_clipped_{left,right} to
91 * the source coordinates, we need to flip them to account for the
92 * mirroring.
93 */
94 if (mirror) {
95 GLint tmp = pixels_clipped_left;
96 pixels_clipped_left = pixels_clipped_right;
97 pixels_clipped_right = tmp;
98 }
99
100 /* Adjust the source rectangle to remove the pixels corresponding to those
101 * that were clipped/scissored out of the destination rectangle.
102 */
103 src_x0 += pixels_clipped_left;
104 src_x1 -= pixels_clipped_right;
105
106 return true;
107 }
108
109
110 static bool
111 try_blorp_blit(struct intel_context *intel,
112 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
113 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
114 GLenum filter, GLbitfield buffer_bit)
115 {
116 struct gl_context *ctx = &intel->ctx;
117
118 /* Sync up the state of window system buffers. We need to do this before
119 * we go looking for the buffers.
120 */
121 intel_prepare_render(intel);
122
123 /* Find buffers */
124 const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
125 const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
126 struct gl_renderbuffer *src_rb;
127 struct gl_renderbuffer *dst_rb;
128 switch (buffer_bit) {
129 case GL_COLOR_BUFFER_BIT:
130 src_rb = read_fb->_ColorReadBuffer;
131 dst_rb =
132 draw_fb->Attachment[
133 draw_fb->_ColorDrawBufferIndexes[0]].Renderbuffer;
134 break;
135 case GL_DEPTH_BUFFER_BIT:
136 src_rb = read_fb->Attachment[BUFFER_DEPTH].Renderbuffer;
137 dst_rb = draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer;
138 break;
139 case GL_STENCIL_BUFFER_BIT:
140 src_rb = read_fb->Attachment[BUFFER_STENCIL].Renderbuffer;
141 dst_rb = draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer;
142 break;
143 default:
144 assert(false);
145 }
146
147 /* Validate source */
148 if (!src_rb) return false;
149 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
150 struct intel_mipmap_tree *src_mt = src_irb->mt;
151 if (!src_mt) return false;
152 if (buffer_bit == GL_STENCIL_BUFFER_BIT && src_mt->stencil_mt)
153 src_mt = src_mt->stencil_mt;
154 switch (src_mt->format) {
155 case MESA_FORMAT_ARGB8888:
156 case MESA_FORMAT_X8_Z24:
157 case MESA_FORMAT_S8:
158 break; /* Supported */
159 default:
160 /* Unsupported format.
161 *
162 * TODO: need to support all formats that are allowed as multisample
163 * render targets.
164 */
165 return false;
166 }
167
168 /* Validate destination */
169 if (!dst_rb) return false;
170 struct intel_renderbuffer *dst_irb = intel_renderbuffer(dst_rb);
171 struct intel_mipmap_tree *dst_mt = dst_irb->mt;
172 if (!dst_mt) return false;
173 if (buffer_bit == GL_STENCIL_BUFFER_BIT && dst_mt->stencil_mt)
174 dst_mt = dst_mt->stencil_mt;
175 switch (dst_mt->format) {
176 case MESA_FORMAT_ARGB8888:
177 case MESA_FORMAT_X8_Z24:
178 case MESA_FORMAT_S8:
179 break; /* Supported */
180 default:
181 /* Unsupported format.
182 *
183 * TODO: need to support all formats that are allowed as multisample
184 * render targets.
185 */
186 return false;
187 }
188
189 /* Account for the fact that in the system framebuffer, the origin is at
190 * the lower left.
191 */
192 if (read_fb->Name == 0) {
193 srcY0 = read_fb->Height - srcY0;
194 srcY1 = read_fb->Height - srcY1;
195 }
196 if (draw_fb->Name == 0) {
197 dstY0 = draw_fb->Height - dstY0;
198 dstY1 = draw_fb->Height - dstY1;
199 }
200
201 /* Detect if the blit needs to be mirrored */
202 bool mirror_x = false, mirror_y = false;
203 fixup_mirroring(mirror_x, srcX0, srcX1);
204 fixup_mirroring(mirror_x, dstX0, dstX1);
205 fixup_mirroring(mirror_y, srcY0, srcY1);
206 fixup_mirroring(mirror_y, dstY0, dstY1);
207
208 /* Make sure width and height match */
209 GLsizei width = srcX1 - srcX0;
210 GLsizei height = srcY1 - srcY0;
211 if (width != dstX1 - dstX0) return false;
212 if (height != dstY1 - dstY0) return false;
213
214 /* If the destination rectangle needs to be clipped or scissored, do so.
215 */
216 if (!(clip_or_scissor(mirror_x, srcX0, srcX1, dstX0, dstX1,
217 draw_fb->_Xmin, draw_fb->_Xmax) &&
218 clip_or_scissor(mirror_y, srcY0, srcY1, dstY0, dstY1,
219 draw_fb->_Ymin, draw_fb->_Ymax))) {
220 /* Everything got clipped/scissored away, so the blit was successful. */
221 return true;
222 }
223
224 /* TODO: Clipping the source rectangle is not yet implemented. */
225 if (srcX0 < 0 || (GLuint) srcX1 > read_fb->Width) return false;
226 if (srcY0 < 0 || (GLuint) srcY1 > read_fb->Height) return false;
227
228 /* Get ready to blit. This includes depth resolving the src and dst
229 * buffers if necessary.
230 */
231 intel_renderbuffer_resolve_depth(intel, src_irb);
232 intel_renderbuffer_resolve_depth(intel, dst_irb);
233
234 /* Do the blit */
235 brw_blorp_blit_params params(brw_context(ctx), src_mt, dst_mt,
236 srcX0, srcY0, dstX0, dstY0, dstX1, dstY1,
237 mirror_x, mirror_y);
238 brw_blorp_exec(intel, &params);
239
240 /* Mark the dst buffer as needing a HiZ resolve if necessary. */
241 intel_renderbuffer_set_needs_hiz_resolve(dst_irb);
242
243 return true;
244 }
245
246 GLbitfield
247 brw_blorp_framebuffer(struct intel_context *intel,
248 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
249 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
250 GLbitfield mask, GLenum filter)
251 {
252 /* BLORP is not supported before Gen6. */
253 if (intel->gen < 6)
254 return mask;
255
256 static GLbitfield buffer_bits[] = {
257 GL_COLOR_BUFFER_BIT,
258 GL_DEPTH_BUFFER_BIT,
259 GL_STENCIL_BUFFER_BIT,
260 };
261
262 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
263 if ((mask & buffer_bits[i]) &&
264 try_blorp_blit(intel,
265 srcX0, srcY0, srcX1, srcY1,
266 dstX0, dstY0, dstX1, dstY1,
267 filter, buffer_bits[i])) {
268 mask &= ~buffer_bits[i];
269 }
270 }
271
272 return mask;
273 }
274
275
276 /**
277 * Enum to specify the order of arguments in a sampler message
278 */
279 enum sampler_message_arg
280 {
281 SAMPLER_MESSAGE_ARG_U_FLOAT,
282 SAMPLER_MESSAGE_ARG_V_FLOAT,
283 SAMPLER_MESSAGE_ARG_U_INT,
284 SAMPLER_MESSAGE_ARG_V_INT,
285 SAMPLER_MESSAGE_ARG_SI_INT,
286 SAMPLER_MESSAGE_ARG_ZERO_INT,
287 };
288
289 /**
290 * Generator for WM programs used in BLORP blits.
291 *
292 * The bulk of the work done by the WM program is to wrap and unwrap the
293 * coordinate transformations used by the hardware to store surfaces in
294 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
295 * sample index for a multisampled surface) to a memory offset by the
296 * following formulas:
297 *
298 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
299 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
300 *
301 * For a single-sampled surface, or for a multisampled surface that stores
302 * each sample in a different array slice, encode_msaa() and decode_msaa are
303 * the identity function:
304 *
305 * encode_msaa(1, N/A, X, Y, 0) = (X, Y, 0)
306 * decode_msaa(1, N/A, X, Y, 0) = (X, Y, 0)
307 * encode_msaa(n, sliced, X, Y, S) = (X, Y, S)
308 * decode_msaa(n, sliced, X, Y, S) = (X, Y, S)
309 *
310 * For a 4x interleaved multisampled surface, encode_msaa() embeds the sample
311 * number into bit 1 of the X and Y coordinates:
312 *
313 * encode_msaa(4, interleaved, X, Y, S) = (X', Y', 0)
314 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
315 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
316 * decode_msaa(4, interleaved, X, Y, 0) = (X', Y', S)
317 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
318 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
319 * S = (Y & 0b10) | (X & 0b10) >> 1
320 *
321 * For X tiling, tile() combines together the low-order bits of the X and Y
322 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
323 * bytes wide and 8 rows high:
324 *
325 * tile(x_tiled, X, Y, S) = A
326 * where A = tile_num << 12 | offset
327 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
328 * offset = (Y' & 0b111) << 9
329 * | (X & 0b111111111)
330 * X' = X * cpp
331 * Y' = Y + S * qpitch
332 * detile(x_tiled, A) = (X, Y, S)
333 * where X = X' / cpp
334 * Y = Y' % qpitch
335 * S = Y' / qpitch
336 * Y' = (tile_num / tile_pitch) << 3
337 * | (A & 0b111000000000) >> 9
338 * X' = (tile_num % tile_pitch) << 9
339 * | (A & 0b111111111)
340 *
341 * (In all tiling formulas, cpp is the number of bytes occupied by a single
342 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
343 * to fill the width of the surface, and qpitch is the spacing (in rows)
344 * between array slices).
345 *
346 * For Y tiling, tile() combines together the low-order bits of the X and Y
347 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
348 * bytes wide and 32 rows high:
349 *
350 * tile(y_tiled, X, Y, S) = A
351 * where A = tile_num << 12 | offset
352 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
353 * offset = (X' & 0b1110000) << 5
354 * | (Y' & 0b11111) << 4
355 * | (X' & 0b1111)
356 * X' = X * cpp
357 * Y' = Y + S * qpitch
358 * detile(y_tiled, A) = (X, Y, S)
359 * where X = X' / cpp
360 * Y = Y' % qpitch
361 * S = Y' / qpitch
362 * Y' = (tile_num / tile_pitch) << 5
363 * | (A & 0b111110000) >> 4
364 * X' = (tile_num % tile_pitch) << 7
365 * | (A & 0b111000000000) >> 5
366 * | (A & 0b1111)
367 *
368 * For W tiling, tile() combines together the low-order bits of the X and Y
369 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
370 * bytes wide and 64 rows high (note that W tiling is only used for stencil
371 * buffers, which always have cpp = 1 and S=0):
372 *
373 * tile(w_tiled, X, Y, S) = A
374 * where A = tile_num << 12 | offset
375 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
376 * offset = (X' & 0b111000) << 6
377 * | (Y' & 0b111100) << 3
378 * | (X' & 0b100) << 2
379 * | (Y' & 0b10) << 2
380 * | (X' & 0b10) << 1
381 * | (Y' & 0b1) << 1
382 * | (X' & 0b1)
383 * X' = X * cpp = X
384 * Y' = Y + S * qpitch
385 * detile(w_tiled, A) = (X, Y, S)
386 * where X = X' / cpp = X'
387 * Y = Y' % qpitch = Y'
388 * S = Y / qpitch = 0
389 * Y' = (tile_num / tile_pitch) << 6
390 * | (A & 0b111100000) >> 3
391 * | (A & 0b1000) >> 2
392 * | (A & 0b10) >> 1
393 * X' = (tile_num % tile_pitch) << 6
394 * | (A & 0b111000000000) >> 6
395 * | (A & 0b10000) >> 2
396 * | (A & 0b100) >> 1
397 * | (A & 0b1)
398 *
399 * Finally, for a non-tiled surface, tile() simply combines together the X and
400 * Y coordinates in the natural way:
401 *
402 * tile(untiled, X, Y, S) = A
403 * where A = Y * pitch + X'
404 * X' = X * cpp
405 * Y' = Y + S * qpitch
406 * detile(untiled, A) = (X, Y, S)
407 * where X = X' / cpp
408 * Y = Y' % qpitch
409 * S = Y' / qpitch
410 * X' = A % pitch
411 * Y' = A / pitch
412 *
413 * (In these formulas, pitch is the number of bytes occupied by a single row
414 * of samples).
415 */
416 class brw_blorp_blit_program
417 {
418 public:
419 brw_blorp_blit_program(struct brw_context *brw,
420 const brw_blorp_blit_prog_key *key);
421 ~brw_blorp_blit_program();
422
423 const GLuint *compile(struct brw_context *brw, GLuint *program_size);
424
425 brw_blorp_prog_data prog_data;
426
427 private:
428 void alloc_regs();
429 void alloc_push_const_regs(int base_reg);
430 void compute_frag_coords();
431 void translate_tiling(bool old_tiled_w, bool new_tiled_w);
432 void encode_msaa(unsigned num_samples, bool interleaved);
433 void decode_msaa(unsigned num_samples, bool interleaved);
434 void kill_if_outside_dst_rect();
435 void translate_dst_to_src();
436 void single_to_blend();
437 void manual_blend();
438 void sample(struct brw_reg dst);
439 void texel_fetch(struct brw_reg dst);
440 void expand_to_32_bits(struct brw_reg src, struct brw_reg dst);
441 void texture_lookup(struct brw_reg dst, GLuint msg_type,
442 const sampler_message_arg *args, int num_args);
443 void render_target_write();
444
445 void *mem_ctx;
446 struct brw_context *brw;
447 const brw_blorp_blit_prog_key *key;
448 struct brw_compile func;
449
450 /* Thread dispatch header */
451 struct brw_reg R0;
452
453 /* Pixel X/Y coordinates (always in R1). */
454 struct brw_reg R1;
455
456 /* Push constants */
457 struct brw_reg dst_x0;
458 struct brw_reg dst_x1;
459 struct brw_reg dst_y0;
460 struct brw_reg dst_y1;
461 struct {
462 struct brw_reg multiplier;
463 struct brw_reg offset;
464 } x_transform, y_transform;
465
466 /* Data to be written to render target (4 vec16's) */
467 struct brw_reg result;
468
469 /* Auxiliary storage for data returned by a sampling operation when
470 * blending (4 vec16's)
471 */
472 struct brw_reg texture_data;
473
474 /* X coordinates. We have two of them so that we can perform coordinate
475 * transformations easily.
476 */
477 struct brw_reg x_coords[2];
478
479 /* Y coordinates. We have two of them so that we can perform coordinate
480 * transformations easily.
481 */
482 struct brw_reg y_coords[2];
483
484 /* Which element of x_coords and y_coords is currently in use.
485 */
486 int xy_coord_index;
487
488 /* True if, at the point in the program currently being compiled, the
489 * sample index is known to be zero.
490 */
491 bool s_is_zero;
492
493 /* Register storing the sample index when s_is_zero is false. */
494 struct brw_reg sample_index;
495
496 /* Temporaries */
497 struct brw_reg t1;
498 struct brw_reg t2;
499
500 /* MRF used for sampling and render target writes */
501 GLuint base_mrf;
502 };
503
504 brw_blorp_blit_program::brw_blorp_blit_program(
505 struct brw_context *brw,
506 const brw_blorp_blit_prog_key *key)
507 : mem_ctx(ralloc_context(NULL)),
508 brw(brw),
509 key(key)
510 {
511 brw_init_compile(brw, &func, mem_ctx);
512 }
513
514 brw_blorp_blit_program::~brw_blorp_blit_program()
515 {
516 ralloc_free(mem_ctx);
517 }
518
519 const GLuint *
520 brw_blorp_blit_program::compile(struct brw_context *brw,
521 GLuint *program_size)
522 {
523 /* Since blorp uses color textures and render targets to do all its work
524 * (even when blitting stencil and depth data), we always have to configure
525 * the Gen7 GPU to use sliced layout on Gen7. On Gen6, the MSAA layout is
526 * always interleaved.
527 */
528 const bool rt_interleaved = key->rt_samples > 0 && brw->intel.gen == 6;
529 const bool tex_interleaved = key->tex_samples > 0 && brw->intel.gen == 6;
530
531 /* Sanity checks */
532 if (key->dst_tiled_w && key->rt_samples > 0) {
533 /* If the destination image is W tiled and multisampled, then the thread
534 * must be dispatched once per sample, not once per pixel. This is
535 * necessary because after conversion between W and Y tiling, there's no
536 * guarantee that all samples corresponding to a single pixel will still
537 * be together.
538 */
539 assert(key->persample_msaa_dispatch);
540 }
541
542 if (key->blend) {
543 /* We are blending, which means we won't have an opportunity to
544 * translate the tiling and sample count for the texture surface. So
545 * the surface state for the texture must be configured with the correct
546 * tiling and sample count.
547 */
548 assert(!key->src_tiled_w);
549 assert(key->tex_samples == key->src_samples);
550 assert(tex_interleaved == key->src_interleaved);
551 assert(key->tex_samples > 0);
552 }
553
554 if (key->persample_msaa_dispatch) {
555 /* It only makes sense to do persample dispatch if the render target is
556 * configured as multisampled.
557 */
558 assert(key->rt_samples > 0);
559 }
560
561 /* Interleaved only makes sense on MSAA surfaces */
562 if (tex_interleaved) assert(key->tex_samples > 0);
563 if (key->src_interleaved) assert(key->src_samples > 0);
564 if (key->dst_interleaved) assert(key->dst_samples > 0);
565
566 /* Set up prog_data */
567 memset(&prog_data, 0, sizeof(prog_data));
568 prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
569
570 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
571
572 alloc_regs();
573 compute_frag_coords();
574
575 /* Render target and texture hardware don't support W tiling. */
576 const bool rt_tiled_w = false;
577 const bool tex_tiled_w = false;
578
579 /* The address that data will be written to is determined by the
580 * coordinates supplied to the WM thread and the tiling and sample count of
581 * the render target, according to the formula:
582 *
583 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
584 *
585 * If the actual tiling and sample count of the destination surface are not
586 * the same as the configuration of the render target, then these
587 * coordinates are wrong and we have to adjust them to compensate for the
588 * difference.
589 */
590 if (rt_tiled_w != key->dst_tiled_w ||
591 key->rt_samples != key->dst_samples ||
592 rt_interleaved != key->dst_interleaved) {
593 encode_msaa(key->rt_samples, rt_interleaved);
594 /* Now (X, Y, S) = detile(rt_tiling, offset) */
595 translate_tiling(rt_tiled_w, key->dst_tiled_w);
596 /* Now (X, Y, S) = detile(dst_tiling, offset) */
597 decode_msaa(key->dst_samples, key->dst_interleaved);
598 }
599
600 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
601 *
602 * That is: X, Y and S now contain the true coordinates and sample index of
603 * the data that the WM thread should output.
604 *
605 * If we need to kill pixels that are outside the destination rectangle,
606 * now is the time to do it.
607 */
608
609 if (key->use_kill)
610 kill_if_outside_dst_rect();
611
612 /* Next, apply a translation to obtain coordinates in the source image. */
613 translate_dst_to_src();
614
615 /* If the source image is not multisampled, then we want to fetch sample
616 * number 0, because that's the only sample there is.
617 */
618 if (key->src_samples == 0)
619 s_is_zero = true;
620
621 /* X, Y, and S are now the coordinates of the pixel in the source image
622 * that we want to texture from. Exception: if we are blending, then S is
623 * irrelevant, because we are going to fetch all samples.
624 */
625 if (key->blend) {
626 if (brw->intel.gen == 6) {
627 /* Gen6 hardware an automatically blend using the SAMPLE message */
628 single_to_blend();
629 sample(result);
630 } else {
631 /* Gen7+ hardware doesn't automaticaly blend. */
632 manual_blend();
633 }
634 } else {
635 /* We aren't blending, which means we just want to fetch a single sample
636 * from the source surface. The address that we want to fetch from is
637 * related to the X, Y and S values according to the formula:
638 *
639 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
640 *
641 * If the actual tiling and sample count of the source surface are not
642 * the same as the configuration of the texture, then we need to adjust
643 * the coordinates to compensate for the difference.
644 */
645 if (tex_tiled_w != key->src_tiled_w ||
646 key->tex_samples != key->src_samples ||
647 tex_interleaved != key->src_interleaved) {
648 encode_msaa(key->src_samples, key->src_interleaved);
649 /* Now (X, Y, S) = detile(src_tiling, offset) */
650 translate_tiling(key->src_tiled_w, tex_tiled_w);
651 /* Now (X, Y, S) = detile(tex_tiling, offset) */
652 decode_msaa(key->tex_samples, tex_interleaved);
653 }
654
655 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
656 *
657 * In other words: X, Y, and S now contain values which, when passed to
658 * the texturing unit, will cause data to be read from the correct
659 * memory location. So we can fetch the texel now.
660 */
661 texel_fetch(result);
662 }
663
664 /* Finally, write the fetched (or blended) value to the render target and
665 * terminate the thread.
666 */
667 render_target_write();
668 return brw_get_program(&func, program_size);
669 }
670
671 void
672 brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
673 {
674 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
675 #define ALLOC_REG(name) \
676 this->name = \
677 brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, base_reg, CONST_LOC(name) / 2)
678
679 ALLOC_REG(dst_x0);
680 ALLOC_REG(dst_x1);
681 ALLOC_REG(dst_y0);
682 ALLOC_REG(dst_y1);
683 ALLOC_REG(x_transform.multiplier);
684 ALLOC_REG(x_transform.offset);
685 ALLOC_REG(y_transform.multiplier);
686 ALLOC_REG(y_transform.offset);
687 #undef CONST_LOC
688 #undef ALLOC_REG
689 }
690
691 void
692 brw_blorp_blit_program::alloc_regs()
693 {
694 int reg = 0;
695 this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
696 this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
697 prog_data.first_curbe_grf = reg;
698 alloc_push_const_regs(reg);
699 reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
700 this->result = vec16(brw_vec8_grf(reg, 0)); reg += 8;
701 this->texture_data = vec16(brw_vec8_grf(reg, 0)); reg += 8;
702 for (int i = 0; i < 2; ++i) {
703 this->x_coords[i]
704 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
705 this->y_coords[i]
706 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
707 }
708 this->xy_coord_index = 0;
709 this->sample_index
710 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
711 this->t1 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
712 this->t2 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
713
714 int mrf = 2;
715 this->base_mrf = mrf;
716 }
717
718 /* In the code that follows, X and Y can be used to quickly refer to the
719 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
720 * prime") to the inactive elements.
721 *
722 * S can be used to quickly refer to sample_index.
723 */
724 #define X x_coords[xy_coord_index]
725 #define Y y_coords[xy_coord_index]
726 #define Xp x_coords[!xy_coord_index]
727 #define Yp y_coords[!xy_coord_index]
728 #define S sample_index
729
730 /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
731 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
732 */
733 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
734
735 /**
736 * Emit code to compute the X and Y coordinates of the pixels being rendered
737 * by this WM invocation.
738 *
739 * Assuming the render target is set up for Y tiling, these (X, Y) values are
740 * related to the address offset where outputs will be written by the formula:
741 *
742 * (X, Y, S) = decode_msaa(detile(offset)).
743 *
744 * (See brw_blorp_blit_program).
745 */
746 void
747 brw_blorp_blit_program::compute_frag_coords()
748 {
749 /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
750 * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
751 * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
752 * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
753 *
754 * Pixels within a subspan are laid out in this arrangement:
755 * 0 1
756 * 2 3
757 *
758 * So, to compute the coordinates of each pixel, we need to read every 2nd
759 * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
760 * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
761 * In other words, the data we want to access is R1.4<2;4,0>UW.
762 *
763 * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
764 * result, since pixels n+1 and n+3 are in the right half of the subspan.
765 */
766 brw_ADD(&func, X, stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
767
768 /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
769 * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
770 * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
771 * R1.4<2;4,0>UW).
772 *
773 * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
774 * pixels n+2 and n+3 are in the bottom half of the subspan.
775 */
776 brw_ADD(&func, Y, stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
777
778 if (key->persample_msaa_dispatch) {
779 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples > 0.
780 * Therefore, subspan 0 will represent sample 0, subspan 1 will
781 * represent sample 1, and so on.
782 *
783 * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1, 1,
784 * 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to populate a
785 * temporary variable with the sequence (0, 1, 2, 3), and then copy from
786 * it using vstride=1, width=4, hstride=0.
787 *
788 * TODO: implement the necessary calculation for 8x multisampling.
789 */
790 brw_MOV(&func, t1, brw_imm_v(0x3210));
791 brw_MOV(&func, S, stride(t1, 1, 4, 0));
792 s_is_zero = false;
793 } else {
794 /* Either the destination surface is single-sampled, or the WM will be
795 * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
796 * per pixel). In either case, it's not meaningful to compute a sample
797 * value. Just set it to 0.
798 */
799 s_is_zero = true;
800 }
801 }
802
803 /**
804 * Emit code to compensate for the difference between Y and W tiling.
805 *
806 * This code modifies the X and Y coordinates according to the formula:
807 *
808 * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
809 *
810 * (See brw_blorp_blit_program).
811 *
812 * It can only translate between W and Y tiling, so new_tiling and old_tiling
813 * are booleans where true represents W tiling and false represents Y tiling.
814 */
815 void
816 brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
817 {
818 if (old_tiled_w == new_tiled_w)
819 return;
820
821 /* In the code that follows, we can safely assume that S = 0, because W
822 * tiling formats always use interleaved encoding.
823 */
824 assert(s_is_zero);
825
826 if (new_tiled_w) {
827 /* Given X and Y coordinates that describe an address using Y tiling,
828 * translate to the X and Y coordinates that describe the same address
829 * using W tiling.
830 *
831 * If we break down the low order bits of X and Y, using a
832 * single letter to represent each low-order bit:
833 *
834 * X = A << 7 | 0bBCDEFGH
835 * Y = J << 5 | 0bKLMNP (1)
836 *
837 * Then we can apply the Y tiling formula to see the memory offset being
838 * addressed:
839 *
840 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
841 *
842 * If we apply the W detiling formula to this memory location, that the
843 * corresponding X' and Y' coordinates are:
844 *
845 * X' = A << 6 | 0bBCDPFH (3)
846 * Y' = J << 6 | 0bKLMNEG
847 *
848 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
849 * we need to make the following computation:
850 *
851 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
852 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
853 */
854 brw_AND(&func, t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
855 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
856 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
857 brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
858 brw_OR(&func, t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
859 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
860 brw_OR(&func, Xp, t1, t2);
861 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
862 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
863 brw_AND(&func, t2, X, brw_imm_uw(8)); /* X & 0b1000 */
864 brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
865 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
866 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
867 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
868 brw_OR(&func, Yp, t1, t2);
869 SWAP_XY_AND_XPYP();
870 } else {
871 /* Applying the same logic as above, but in reverse, we obtain the
872 * formulas:
873 *
874 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
875 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
876 */
877 brw_AND(&func, t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
878 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
879 brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
880 brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
881 brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
882 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
883 brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
884 brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
885 | (Y & 0b1) << 1 */
886 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
887 brw_OR(&func, Xp, t1, t2);
888 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
889 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
890 brw_AND(&func, t2, X, brw_imm_uw(4)); /* X & 0b100 */
891 brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
892 brw_OR(&func, Yp, t1, t2);
893 SWAP_XY_AND_XPYP();
894 }
895 }
896
897 /**
898 * Emit code to compensate for the difference between MSAA and non-MSAA
899 * surfaces.
900 *
901 * This code modifies the X and Y coordinates according to the formula:
902 *
903 * (X', Y', S') = encode_msaa_4x(X, Y, S)
904 *
905 * (See brw_blorp_blit_program).
906 */
907 void
908 brw_blorp_blit_program::encode_msaa(unsigned num_samples, bool interleaved)
909 {
910 if (num_samples == 0) {
911 /* No translation necessary, and S should already be zero. */
912 assert(s_is_zero);
913 } else if (!interleaved) {
914 /* No translation necessary. */
915 } else {
916 /* encode_msaa(4, interleaved, X, Y, S) = (X', Y', 0)
917 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
918 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
919 */
920 brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
921 if (!s_is_zero) {
922 brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
923 brw_OR(&func, t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
924 }
925 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
926 | (S & 0b1) << 1 */
927 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
928 brw_OR(&func, Xp, t1, t2);
929 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
930 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
931 if (!s_is_zero) {
932 brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
933 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
934 }
935 brw_AND(&func, t2, Y, brw_imm_uw(1));
936 brw_OR(&func, Yp, t1, t2);
937 SWAP_XY_AND_XPYP();
938 s_is_zero = true;
939 }
940 }
941
942 /**
943 * Emit code to compensate for the difference between MSAA and non-MSAA
944 * surfaces.
945 *
946 * This code modifies the X and Y coordinates according to the formula:
947 *
948 * (X', Y', S) = decode_msaa(num_samples, X, Y, S)
949 *
950 * (See brw_blorp_blit_program).
951 */
952 void
953 brw_blorp_blit_program::decode_msaa(unsigned num_samples, bool interleaved)
954 {
955 if (num_samples == 0) {
956 /* No translation necessary, and S should already be zero. */
957 assert(s_is_zero);
958 } else if (!interleaved) {
959 /* No translation necessary. */
960 } else {
961 /* decode_msaa(4, interleaved, X, Y, 0) = (X', Y', S)
962 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
963 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
964 * S = (Y & 0b10) | (X & 0b10) >> 1
965 */
966 assert(s_is_zero);
967 brw_AND(&func, t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
968 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
969 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
970 brw_OR(&func, Xp, t1, t2);
971 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
972 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
973 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
974 brw_OR(&func, Yp, t1, t2);
975 brw_AND(&func, t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
976 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
977 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
978 brw_OR(&func, S, t1, t2);
979 s_is_zero = false;
980 SWAP_XY_AND_XPYP();
981 }
982 }
983
984 /**
985 * Emit code that kills pixels whose X and Y coordinates are outside the
986 * boundary of the rectangle defined by the push constants (dst_x0, dst_y0,
987 * dst_x1, dst_y1).
988 */
989 void
990 brw_blorp_blit_program::kill_if_outside_dst_rect()
991 {
992 struct brw_reg f0 = brw_flag_reg();
993 struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
994 struct brw_reg null16 = vec16(retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
995
996 brw_CMP(&func, null16, BRW_CONDITIONAL_GE, X, dst_x0);
997 brw_CMP(&func, null16, BRW_CONDITIONAL_GE, Y, dst_y0);
998 brw_CMP(&func, null16, BRW_CONDITIONAL_L, X, dst_x1);
999 brw_CMP(&func, null16, BRW_CONDITIONAL_L, Y, dst_y1);
1000
1001 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1002 brw_push_insn_state(&func);
1003 brw_set_mask_control(&func, BRW_MASK_DISABLE);
1004 brw_AND(&func, g1, f0, g1);
1005 brw_pop_insn_state(&func);
1006 }
1007
1008 /**
1009 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1010 * coordinates.
1011 */
1012 void
1013 brw_blorp_blit_program::translate_dst_to_src()
1014 {
1015 brw_MUL(&func, Xp, X, x_transform.multiplier);
1016 brw_MUL(&func, Yp, Y, y_transform.multiplier);
1017 brw_ADD(&func, Xp, Xp, x_transform.offset);
1018 brw_ADD(&func, Yp, Yp, y_transform.offset);
1019 SWAP_XY_AND_XPYP();
1020 }
1021
1022 /**
1023 * Emit code to transform the X and Y coordinates as needed for blending
1024 * together the different samples in an MSAA texture.
1025 */
1026 void
1027 brw_blorp_blit_program::single_to_blend()
1028 {
1029 /* When looking up samples in an MSAA texture using the SAMPLE message,
1030 * Gen6 requires the texture coordinates to be odd integers (so that they
1031 * correspond to the center of a 2x2 block representing the four samples
1032 * that maxe up a pixel). So we need to multiply our X and Y coordinates
1033 * each by 2 and then add 1.
1034 */
1035 brw_SHL(&func, t1, X, brw_imm_w(1));
1036 brw_SHL(&func, t2, Y, brw_imm_w(1));
1037 brw_ADD(&func, Xp, t1, brw_imm_w(1));
1038 brw_ADD(&func, Yp, t2, brw_imm_w(1));
1039 SWAP_XY_AND_XPYP();
1040 }
1041
1042 void
1043 brw_blorp_blit_program::manual_blend()
1044 {
1045 /* TODO: support num_samples != 4 */
1046 const int num_samples = 4;
1047
1048 /* Gather sample 0 data first */
1049 s_is_zero = true;
1050 texel_fetch(result);
1051
1052 /* Gather data for remaining samples and accumulate it into result. */
1053 s_is_zero = false;
1054 for (int i = 1; i < num_samples; ++i) {
1055 brw_MOV(&func, S, brw_imm_uw(i));
1056 texel_fetch(texture_data);
1057
1058 /* TODO: should use a smaller loop bound for non-RGBA formats */
1059 for (int j = 0; j < 4; ++j) {
1060 brw_ADD(&func, offset(result, 2*j), offset(vec8(result), 2*j),
1061 offset(vec8(texture_data), 2*j));
1062 }
1063 }
1064
1065 /* Scale the result down by a factor of num_samples */
1066 /* TODO: should use a smaller loop bound for non-RGBA formats */
1067 for (int j = 0; j < 4; ++j) {
1068 brw_MUL(&func, offset(result, 2*j), offset(vec8(result), 2*j),
1069 brw_imm_f(1.0/num_samples));
1070 }
1071 }
1072
1073 /**
1074 * Emit code to look up a value in the texture using the SAMPLE message (which
1075 * does blending of MSAA surfaces).
1076 */
1077 void
1078 brw_blorp_blit_program::sample(struct brw_reg dst)
1079 {
1080 static const sampler_message_arg args[2] = {
1081 SAMPLER_MESSAGE_ARG_U_FLOAT,
1082 SAMPLER_MESSAGE_ARG_V_FLOAT
1083 };
1084
1085 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE, args, ARRAY_SIZE(args));
1086 }
1087
1088 /**
1089 * Emit code to look up a value in the texture using the SAMPLE_LD message
1090 * (which does a simple texel fetch).
1091 */
1092 void
1093 brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1094 {
1095 static const sampler_message_arg gen6_args[5] = {
1096 SAMPLER_MESSAGE_ARG_U_INT,
1097 SAMPLER_MESSAGE_ARG_V_INT,
1098 SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1099 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1100 SAMPLER_MESSAGE_ARG_SI_INT
1101 };
1102 static const sampler_message_arg gen7_ld_args[3] = {
1103 SAMPLER_MESSAGE_ARG_U_INT,
1104 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1105 SAMPLER_MESSAGE_ARG_V_INT
1106 };
1107 static const sampler_message_arg gen7_ld2dss_args[3] = {
1108 SAMPLER_MESSAGE_ARG_SI_INT,
1109 SAMPLER_MESSAGE_ARG_U_INT,
1110 SAMPLER_MESSAGE_ARG_V_INT
1111 };
1112
1113 switch (brw->intel.gen) {
1114 case 6:
1115 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen6_args,
1116 s_is_zero ? 2 : 5);
1117 break;
1118 case 7:
1119 if (key->tex_samples > 0) {
1120 texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS,
1121 gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1122 } else {
1123 assert(s_is_zero);
1124 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen7_ld_args,
1125 ARRAY_SIZE(gen7_ld_args));
1126 }
1127 break;
1128 default:
1129 assert(!"Should not get here.");
1130 break;
1131 };
1132 }
1133
1134 void
1135 brw_blorp_blit_program::expand_to_32_bits(struct brw_reg src,
1136 struct brw_reg dst)
1137 {
1138 brw_MOV(&func, vec8(dst), vec8(src));
1139 brw_set_compression_control(&func, BRW_COMPRESSION_2NDHALF);
1140 brw_MOV(&func, offset(vec8(dst), 1), suboffset(vec8(src), 8));
1141 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1142 }
1143
1144 void
1145 brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1146 GLuint msg_type,
1147 const sampler_message_arg *args,
1148 int num_args)
1149 {
1150 struct brw_reg mrf =
1151 retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1152 for (int arg = 0; arg < num_args; ++arg) {
1153 switch (args[arg]) {
1154 case SAMPLER_MESSAGE_ARG_U_FLOAT:
1155 expand_to_32_bits(X, retype(mrf, BRW_REGISTER_TYPE_F));
1156 break;
1157 case SAMPLER_MESSAGE_ARG_V_FLOAT:
1158 expand_to_32_bits(Y, retype(mrf, BRW_REGISTER_TYPE_F));
1159 break;
1160 case SAMPLER_MESSAGE_ARG_U_INT:
1161 expand_to_32_bits(X, mrf);
1162 break;
1163 case SAMPLER_MESSAGE_ARG_V_INT:
1164 expand_to_32_bits(Y, mrf);
1165 break;
1166 case SAMPLER_MESSAGE_ARG_SI_INT:
1167 /* Note: on Gen7, this code may be reached with s_is_zero==true
1168 * because in Gen7's ld2dss message, the sample index is the first
1169 * argument. When this happens, we need to move a 0 into the
1170 * appropriate message register.
1171 */
1172 if (s_is_zero)
1173 brw_MOV(&func, mrf, brw_imm_ud(0));
1174 else
1175 expand_to_32_bits(S, mrf);
1176 break;
1177 case SAMPLER_MESSAGE_ARG_ZERO_INT:
1178 brw_MOV(&func, mrf, brw_imm_ud(0));
1179 break;
1180 }
1181 mrf.nr += 2;
1182 }
1183
1184 brw_SAMPLE(&func,
1185 retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
1186 base_mrf /* msg_reg_nr */,
1187 brw_message_reg(base_mrf) /* src0 */,
1188 BRW_BLORP_TEXTURE_BINDING_TABLE_INDEX,
1189 0 /* sampler */,
1190 WRITEMASK_XYZW,
1191 msg_type,
1192 8 /* response_length. TODO: should be smaller for non-RGBA formats? */,
1193 mrf.nr - base_mrf /* msg_length */,
1194 0 /* header_present */,
1195 BRW_SAMPLER_SIMD_MODE_SIMD16,
1196 BRW_SAMPLER_RETURN_FORMAT_FLOAT32);
1197 }
1198
1199 #undef X
1200 #undef Y
1201 #undef U
1202 #undef V
1203 #undef S
1204 #undef SWAP_XY_AND_XPYP
1205
1206 void
1207 brw_blorp_blit_program::render_target_write()
1208 {
1209 struct brw_reg mrf_rt_write = vec16(brw_message_reg(base_mrf));
1210 int mrf_offset = 0;
1211
1212 /* If we may have killed pixels, then we need to send R0 and R1 in a header
1213 * so that the render target knows which pixels we killed.
1214 */
1215 bool use_header = key->use_kill;
1216 if (use_header) {
1217 /* Copy R0/1 to MRF */
1218 brw_MOV(&func, retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1219 retype(R0, BRW_REGISTER_TYPE_UD));
1220 mrf_offset += 2;
1221 }
1222
1223 /* Copy texture data to MRFs */
1224 for (int i = 0; i < 4; ++i) {
1225 /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1226 brw_MOV(&func, offset(mrf_rt_write, mrf_offset),
1227 offset(vec8(result), 2*i));
1228 mrf_offset += 2;
1229 }
1230
1231 /* Now write to the render target and terminate the thread */
1232 brw_fb_WRITE(&func,
1233 16 /* dispatch_width */,
1234 base_mrf /* msg_reg_nr */,
1235 mrf_rt_write /* src0 */,
1236 BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE,
1237 BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX,
1238 mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
1239 0 /* response_length */,
1240 true /* eot */,
1241 use_header);
1242 }
1243
1244
1245 void
1246 brw_blorp_coord_transform_params::setup(GLuint src0, GLuint dst0, GLuint dst1,
1247 bool mirror)
1248 {
1249 if (!mirror) {
1250 /* When not mirroring a coordinate (say, X), we need:
1251 * x' - src_x0 = x - dst_x0
1252 * Therefore:
1253 * x' = 1*x + (src_x0 - dst_x0)
1254 */
1255 multiplier = 1;
1256 offset = src0 - dst0;
1257 } else {
1258 /* When mirroring X we need:
1259 * x' - src_x0 = dst_x1 - x - 1
1260 * Therefore:
1261 * x' = -1*x + (src_x0 + dst_x1 - 1)
1262 */
1263 multiplier = -1;
1264 offset = src0 + dst1 - 1;
1265 }
1266 }
1267
1268
1269 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
1270 struct intel_mipmap_tree *src_mt,
1271 struct intel_mipmap_tree *dst_mt,
1272 GLuint src_x0, GLuint src_y0,
1273 GLuint dst_x0, GLuint dst_y0,
1274 GLuint dst_x1, GLuint dst_y1,
1275 bool mirror_x, bool mirror_y)
1276 {
1277 src.set(src_mt, 0, 0);
1278 dst.set(dst_mt, 0, 0);
1279
1280 use_wm_prog = true;
1281 memset(&wm_prog_key, 0, sizeof(wm_prog_key));
1282
1283 if (brw->intel.gen > 6) {
1284 /* Gen7 only supports interleaved MSAA surfaces for texturing with the
1285 * ld2dms instruction (which blorp doesn't use). So if the source is
1286 * interleaved MSAA, we'll have to map it as a single-sampled texture
1287 * and de-interleave the samples ourselves.
1288 */
1289 if (src.num_samples > 0 && src_mt->msaa_is_interleaved)
1290 src.num_samples = 0;
1291
1292 /* Similarly, Gen7 only supports interleaved MSAA surfaces for depth and
1293 * stencil render targets. Blorp always maps its destination surface as
1294 * a color render target (even if it's actually a depth or stencil
1295 * buffer). So if the destination is interleaved MSAA, we'll have to
1296 * map it as a single-sampled texture and interleave the samples
1297 * ourselves.
1298 */
1299 if (dst.num_samples > 0 && dst_mt->msaa_is_interleaved)
1300 dst.num_samples = 0;
1301 }
1302
1303 if (dst.map_stencil_as_y_tiled && dst.num_samples > 0) {
1304 /* If the destination surface is a W-tiled multisampled stencil buffer
1305 * that we're mapping as Y tiled, then we need to arrange for the WM
1306 * program to run once per sample rather than once per pixel, because
1307 * the memory layout of related samples doesn't match between W and Y
1308 * tiling.
1309 */
1310 wm_prog_key.persample_msaa_dispatch = true;
1311 }
1312
1313 if (src.num_samples > 0 && dst.num_samples > 0) {
1314 /* We are blitting from a multisample buffer to a multisample buffer, so
1315 * we must preserve samples within a pixel. This means we have to
1316 * arrange for the WM program to run once per sample rather than once
1317 * per pixel.
1318 */
1319 wm_prog_key.persample_msaa_dispatch = true;
1320 }
1321
1322 /* The render path must be configured to use the same number of samples as
1323 * the destination buffer.
1324 */
1325 num_samples = dst.num_samples;
1326
1327 GLenum base_format = _mesa_get_format_base_format(src_mt->format);
1328 if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
1329 base_format != GL_STENCIL_INDEX &&
1330 src_mt->num_samples > 0 && dst_mt->num_samples == 0) {
1331 /* We are downsampling a color buffer, so blend. */
1332 wm_prog_key.blend = true;
1333 }
1334
1335 /* src_samples and dst_samples are the true sample counts */
1336 wm_prog_key.src_samples = src_mt->num_samples;
1337 wm_prog_key.dst_samples = dst_mt->num_samples;
1338
1339 /* tex_samples and rt_samples are the sample counts that are set up in
1340 * SURFACE_STATE.
1341 */
1342 wm_prog_key.tex_samples = src.num_samples;
1343 wm_prog_key.rt_samples = dst.num_samples;
1344
1345 /* src_interleaved and dst_interleaved indicate whether src and dst are
1346 * truly interleaved.
1347 */
1348 wm_prog_key.src_interleaved = src_mt->msaa_is_interleaved;
1349 wm_prog_key.dst_interleaved = dst_mt->msaa_is_interleaved;
1350
1351 wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
1352 wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
1353 x0 = wm_push_consts.dst_x0 = dst_x0;
1354 y0 = wm_push_consts.dst_y0 = dst_y0;
1355 x1 = wm_push_consts.dst_x1 = dst_x1;
1356 y1 = wm_push_consts.dst_y1 = dst_y1;
1357 wm_push_consts.x_transform.setup(src_x0, dst_x0, dst_x1, mirror_x);
1358 wm_push_consts.y_transform.setup(src_y0, dst_y0, dst_y1, mirror_y);
1359
1360 if (dst.num_samples == 0 && dst_mt->num_samples > 0) {
1361 /* We must expand the rectangle we send through the rendering pipeline,
1362 * to account for the fact that we are mapping the destination region as
1363 * single-sampled when it is in fact multisampled. We must also align
1364 * it to a multiple of the multisampling pattern, because the
1365 * differences between multisampled and single-sampled surface formats
1366 * will mean that pixels are scrambled within the multisampling pattern.
1367 * TODO: what if this makes the coordinates too large?
1368 *
1369 * Note: this only works if the destination surface's MSAA layout is
1370 * interleaved. If it's sliced, then we have no choice but to set up
1371 * the rendering pipeline as multisampled.
1372 */
1373 assert(dst_mt->msaa_is_interleaved);
1374 x0 = (x0 * 2) & ~3;
1375 y0 = (y0 * 2) & ~3;
1376 x1 = ALIGN(x1 * 2, 4);
1377 y1 = ALIGN(y1 * 2, 4);
1378 wm_prog_key.use_kill = true;
1379 }
1380
1381 if (dst.map_stencil_as_y_tiled) {
1382 /* We must modify the rectangle we send through the rendering pipeline,
1383 * to account for the fact that we are mapping it as Y-tiled when it is
1384 * in fact W-tiled. Y tiles have dimensions 128x32 whereas W tiles have
1385 * dimensions 64x64. We must also align it to a multiple of the tile
1386 * size, because the differences between W and Y tiling formats will
1387 * mean that pixels are scrambled within the tile.
1388 *
1389 * Note: if the destination surface configured as an interleaved MSAA
1390 * surface, then the effective tile size we need to align it to is
1391 * smaller, because each pixel covers a 2x2 or a 4x2 block of samples.
1392 *
1393 * TODO: what if this makes the coordinates too large?
1394 */
1395 unsigned x_align = 64, y_align = 64;
1396 if (dst_mt->num_samples > 0 && dst_mt->msaa_is_interleaved) {
1397 x_align /= (dst_mt->num_samples == 4 ? 2 : 4);
1398 y_align /= 2;
1399 }
1400 x0 = (x0 & ~(x_align - 1)) * 2;
1401 y0 = (y0 & ~(y_align - 1)) / 2;
1402 x1 = ALIGN(x1, x_align) * 2;
1403 y1 = ALIGN(y1, y_align) / 2;
1404 wm_prog_key.use_kill = true;
1405 }
1406 }
1407
1408 uint32_t
1409 brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
1410 brw_blorp_prog_data **prog_data) const
1411 {
1412 uint32_t prog_offset;
1413 if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
1414 &this->wm_prog_key, sizeof(this->wm_prog_key),
1415 &prog_offset, prog_data)) {
1416 brw_blorp_blit_program prog(brw, &this->wm_prog_key);
1417 GLuint program_size;
1418 const GLuint *program = prog.compile(brw, &program_size);
1419 brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
1420 &this->wm_prog_key, sizeof(this->wm_prog_key),
1421 program, program_size,
1422 &prog.prog_data, sizeof(prog.prog_data),
1423 &prog_offset, prog_data);
1424 }
1425 return prog_offset;
1426 }