i965: Add means for limiting color resolves
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp_blit.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/teximage.h"
25 #include "main/fbobject.h"
26
27 #include "intel_fbo.h"
28
29 #include "brw_blorp.h"
30 #include "brw_context.h"
31 #include "brw_blorp_blit_eu.h"
32 #include "brw_state.h"
33 #include "brw_meta_util.h"
34
35 #define FILE_DEBUG_FLAG DEBUG_BLORP
36
37 static struct intel_mipmap_tree *
38 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
39 {
40 struct intel_mipmap_tree *mt = irb->mt;
41 if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
42 mt = mt->stencil_mt;
43 return mt;
44 }
45
46
47 /**
48 * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using
49 * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is
50 * the physical layer holding sample 0. So, for example, if
51 * src_mt->num_samples == 4, then logical layer n corresponds to src_layer ==
52 * 4*n.
53 */
54 void
55 brw_blorp_blit_miptrees(struct brw_context *brw,
56 struct intel_mipmap_tree *src_mt,
57 unsigned src_level, unsigned src_layer,
58 mesa_format src_format,
59 struct intel_mipmap_tree *dst_mt,
60 unsigned dst_level, unsigned dst_layer,
61 mesa_format dst_format,
62 float src_x0, float src_y0,
63 float src_x1, float src_y1,
64 float dst_x0, float dst_y0,
65 float dst_x1, float dst_y1,
66 GLenum filter, bool mirror_x, bool mirror_y)
67 {
68 /* Get ready to blit. This includes depth resolving the src and dst
69 * buffers if necessary. Note: it's not necessary to do a color resolve on
70 * the destination buffer because we use the standard render path to render
71 * to destination color buffers, and the standard render path is
72 * fast-color-aware.
73 */
74 intel_miptree_resolve_color(brw, src_mt, 0);
75 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer);
76 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer);
77
78 DBG("%s from %dx %s mt %p %d %d (%f,%f) (%f,%f)"
79 "to %dx %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
80 __func__,
81 src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
82 src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
83 dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
84 dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
85 mirror_x, mirror_y);
86
87 brw_blorp_blit_params params(brw,
88 src_mt, src_level, src_layer, src_format,
89 dst_mt, dst_level, dst_layer, dst_format,
90 src_x0, src_y0,
91 src_x1, src_y1,
92 dst_x0, dst_y0,
93 dst_x1, dst_y1,
94 filter, mirror_x, mirror_y);
95 brw_blorp_exec(brw, &params);
96
97 intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer);
98 }
99
100 static void
101 do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
102 struct intel_renderbuffer *src_irb, mesa_format src_format,
103 struct intel_renderbuffer *dst_irb, mesa_format dst_format,
104 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
105 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
106 GLenum filter, bool mirror_x, bool mirror_y)
107 {
108 /* Find source/dst miptrees */
109 struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
110 struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
111
112 /* Do the blit */
113 brw_blorp_blit_miptrees(brw,
114 src_mt, src_irb->mt_level, src_irb->mt_layer,
115 src_format,
116 dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
117 dst_format,
118 srcX0, srcY0, srcX1, srcY1,
119 dstX0, dstY0, dstX1, dstY1,
120 filter, mirror_x, mirror_y);
121
122 dst_irb->need_downsample = true;
123 }
124
125 static bool
126 try_blorp_blit(struct brw_context *brw,
127 const struct gl_framebuffer *read_fb,
128 const struct gl_framebuffer *draw_fb,
129 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
130 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
131 GLenum filter, GLbitfield buffer_bit)
132 {
133 struct gl_context *ctx = &brw->ctx;
134
135 /* Sync up the state of window system buffers. We need to do this before
136 * we go looking for the buffers.
137 */
138 intel_prepare_render(brw);
139
140 bool mirror_x, mirror_y;
141 if (brw_meta_mirror_clip_and_scissor(ctx, read_fb, draw_fb,
142 &srcX0, &srcY0, &srcX1, &srcY1,
143 &dstX0, &dstY0, &dstX1, &dstY1,
144 &mirror_x, &mirror_y))
145 return true;
146
147 /* Find buffers */
148 struct intel_renderbuffer *src_irb;
149 struct intel_renderbuffer *dst_irb;
150 struct intel_mipmap_tree *src_mt;
151 struct intel_mipmap_tree *dst_mt;
152 switch (buffer_bit) {
153 case GL_COLOR_BUFFER_BIT:
154 src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
155 for (unsigned i = 0; i < draw_fb->_NumColorDrawBuffers; ++i) {
156 dst_irb = intel_renderbuffer(draw_fb->_ColorDrawBuffers[i]);
157 if (dst_irb)
158 do_blorp_blit(brw, buffer_bit,
159 src_irb, src_irb->Base.Base.Format,
160 dst_irb, dst_irb->Base.Base.Format,
161 srcX0, srcY0, srcX1, srcY1,
162 dstX0, dstY0, dstX1, dstY1,
163 filter, mirror_x, mirror_y);
164 }
165 break;
166 case GL_DEPTH_BUFFER_BIT:
167 src_irb =
168 intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
169 dst_irb =
170 intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
171 src_mt = find_miptree(buffer_bit, src_irb);
172 dst_mt = find_miptree(buffer_bit, dst_irb);
173
174 /* We can't handle format conversions between Z24 and other formats
175 * since we have to lie about the surface format. See the comments in
176 * brw_blorp_surface_info::set().
177 */
178 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
179 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT))
180 return false;
181
182 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
183 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
184 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
185 filter, mirror_x, mirror_y);
186 break;
187 case GL_STENCIL_BUFFER_BIT:
188 src_irb =
189 intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
190 dst_irb =
191 intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
192 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
193 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
194 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
195 filter, mirror_x, mirror_y);
196 break;
197 default:
198 unreachable("not reached");
199 }
200
201 return true;
202 }
203
204 bool
205 brw_blorp_copytexsubimage(struct brw_context *brw,
206 struct gl_renderbuffer *src_rb,
207 struct gl_texture_image *dst_image,
208 int slice,
209 int srcX0, int srcY0,
210 int dstX0, int dstY0,
211 int width, int height)
212 {
213 struct gl_context *ctx = &brw->ctx;
214 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
215 struct intel_texture_image *intel_image = intel_texture_image(dst_image);
216
217 /* No pixel transfer operations (zoom, bias, mapping), just a blit */
218 if (brw->ctx._ImageTransferState)
219 return false;
220
221 /* Sync up the state of window system buffers. We need to do this before
222 * we go looking at the src renderbuffer's miptree.
223 */
224 intel_prepare_render(brw);
225
226 struct intel_mipmap_tree *src_mt = src_irb->mt;
227 struct intel_mipmap_tree *dst_mt = intel_image->mt;
228
229 /* BLORP is only supported for Gen6-7. */
230 if (brw->gen < 6 || brw->gen > 7)
231 return false;
232
233 if (_mesa_get_format_base_format(src_rb->Format) !=
234 _mesa_get_format_base_format(dst_image->TexFormat)) {
235 return false;
236 }
237
238 /* We can't handle format conversions between Z24 and other formats since
239 * we have to lie about the surface format. See the comments in
240 * brw_blorp_surface_info::set().
241 */
242 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
243 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) {
244 return false;
245 }
246
247 if (!brw->format_supported_as_render_target[dst_image->TexFormat])
248 return false;
249
250 /* Source clipping shouldn't be necessary, since copytexsubimage (in
251 * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
252 * takes care of it.
253 *
254 * Destination clipping shouldn't be necessary since the restrictions on
255 * glCopyTexSubImage prevent the user from specifying a destination rectangle
256 * that falls outside the bounds of the destination texture.
257 * See error_check_subtexture_dimensions().
258 */
259
260 int srcY1 = srcY0 + height;
261 int srcX1 = srcX0 + width;
262 int dstX1 = dstX0 + width;
263 int dstY1 = dstY0 + height;
264
265 /* Account for the fact that in the system framebuffer, the origin is at
266 * the lower left.
267 */
268 bool mirror_y = false;
269 if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
270 GLint tmp = src_rb->Height - srcY0;
271 srcY0 = src_rb->Height - srcY1;
272 srcY1 = tmp;
273 mirror_y = true;
274 }
275
276 /* Account for face selection and texture view MinLayer */
277 int dst_slice = slice + dst_image->TexObject->MinLayer + dst_image->Face;
278 int dst_level = dst_image->Level + dst_image->TexObject->MinLevel;
279
280 brw_blorp_blit_miptrees(brw,
281 src_mt, src_irb->mt_level, src_irb->mt_layer,
282 src_rb->Format,
283 dst_mt, dst_level, dst_slice,
284 dst_image->TexFormat,
285 srcX0, srcY0, srcX1, srcY1,
286 dstX0, dstY0, dstX1, dstY1,
287 GL_NEAREST, false, mirror_y);
288
289 /* If we're copying to a packed depth stencil texture and the source
290 * framebuffer has separate stencil, we need to also copy the stencil data
291 * over.
292 */
293 src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
294 if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
295 src_rb != NULL) {
296 src_irb = intel_renderbuffer(src_rb);
297 src_mt = src_irb->mt;
298
299 if (src_mt->stencil_mt)
300 src_mt = src_mt->stencil_mt;
301 if (dst_mt->stencil_mt)
302 dst_mt = dst_mt->stencil_mt;
303
304 if (src_mt != dst_mt) {
305 brw_blorp_blit_miptrees(brw,
306 src_mt, src_irb->mt_level, src_irb->mt_layer,
307 src_mt->format,
308 dst_mt, dst_level, dst_slice,
309 dst_mt->format,
310 srcX0, srcY0, srcX1, srcY1,
311 dstX0, dstY0, dstX1, dstY1,
312 GL_NEAREST, false, mirror_y);
313 }
314 }
315
316 return true;
317 }
318
319
320 GLbitfield
321 brw_blorp_framebuffer(struct brw_context *brw,
322 struct gl_framebuffer *readFb,
323 struct gl_framebuffer *drawFb,
324 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
325 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
326 GLbitfield mask, GLenum filter)
327 {
328 /* BLORP is not supported before Gen6. */
329 if (brw->gen < 6 || brw->gen >= 8)
330 return mask;
331
332 static GLbitfield buffer_bits[] = {
333 GL_COLOR_BUFFER_BIT,
334 GL_DEPTH_BUFFER_BIT,
335 GL_STENCIL_BUFFER_BIT,
336 };
337
338 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
339 if ((mask & buffer_bits[i]) &&
340 try_blorp_blit(brw, readFb, drawFb,
341 srcX0, srcY0, srcX1, srcY1,
342 dstX0, dstY0, dstX1, dstY1,
343 filter, buffer_bits[i])) {
344 mask &= ~buffer_bits[i];
345 }
346 }
347
348 return mask;
349 }
350
351
352 /**
353 * Enum to specify the order of arguments in a sampler message
354 */
355 enum sampler_message_arg
356 {
357 SAMPLER_MESSAGE_ARG_U_FLOAT,
358 SAMPLER_MESSAGE_ARG_V_FLOAT,
359 SAMPLER_MESSAGE_ARG_U_INT,
360 SAMPLER_MESSAGE_ARG_V_INT,
361 SAMPLER_MESSAGE_ARG_SI_INT,
362 SAMPLER_MESSAGE_ARG_MCS_INT,
363 SAMPLER_MESSAGE_ARG_ZERO_INT,
364 };
365
366 /**
367 * Generator for WM programs used in BLORP blits.
368 *
369 * The bulk of the work done by the WM program is to wrap and unwrap the
370 * coordinate transformations used by the hardware to store surfaces in
371 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
372 * sample index for a multisampled surface) to a memory offset by the
373 * following formulas:
374 *
375 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
376 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
377 *
378 * For a single-sampled surface, or for a multisampled surface using
379 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
380 * function:
381 *
382 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
383 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
384 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
385 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
386 *
387 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
388 * embeds the sample number into bit 1 of the X and Y coordinates:
389 *
390 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
391 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
392 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
393 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
394 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
395 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
396 * S = (Y & 0b10) | (X & 0b10) >> 1
397 *
398 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
399 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
400 * the Y coordinate:
401 *
402 * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
403 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
404 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
405 * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
406 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
407 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
408 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
409 *
410 * For X tiling, tile() combines together the low-order bits of the X and Y
411 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
412 * bytes wide and 8 rows high:
413 *
414 * tile(x_tiled, X, Y, S) = A
415 * where A = tile_num << 12 | offset
416 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
417 * offset = (Y' & 0b111) << 9
418 * | (X & 0b111111111)
419 * X' = X * cpp
420 * Y' = Y + S * qpitch
421 * detile(x_tiled, A) = (X, Y, S)
422 * where X = X' / cpp
423 * Y = Y' % qpitch
424 * S = Y' / qpitch
425 * Y' = (tile_num / tile_pitch) << 3
426 * | (A & 0b111000000000) >> 9
427 * X' = (tile_num % tile_pitch) << 9
428 * | (A & 0b111111111)
429 *
430 * (In all tiling formulas, cpp is the number of bytes occupied by a single
431 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
432 * to fill the width of the surface, and qpitch is the spacing (in rows)
433 * between array slices).
434 *
435 * For Y tiling, tile() combines together the low-order bits of the X and Y
436 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
437 * bytes wide and 32 rows high:
438 *
439 * tile(y_tiled, X, Y, S) = A
440 * where A = tile_num << 12 | offset
441 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
442 * offset = (X' & 0b1110000) << 5
443 * | (Y' & 0b11111) << 4
444 * | (X' & 0b1111)
445 * X' = X * cpp
446 * Y' = Y + S * qpitch
447 * detile(y_tiled, A) = (X, Y, S)
448 * where X = X' / cpp
449 * Y = Y' % qpitch
450 * S = Y' / qpitch
451 * Y' = (tile_num / tile_pitch) << 5
452 * | (A & 0b111110000) >> 4
453 * X' = (tile_num % tile_pitch) << 7
454 * | (A & 0b111000000000) >> 5
455 * | (A & 0b1111)
456 *
457 * For W tiling, tile() combines together the low-order bits of the X and Y
458 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
459 * bytes wide and 64 rows high (note that W tiling is only used for stencil
460 * buffers, which always have cpp = 1 and S=0):
461 *
462 * tile(w_tiled, X, Y, S) = A
463 * where A = tile_num << 12 | offset
464 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
465 * offset = (X' & 0b111000) << 6
466 * | (Y' & 0b111100) << 3
467 * | (X' & 0b100) << 2
468 * | (Y' & 0b10) << 2
469 * | (X' & 0b10) << 1
470 * | (Y' & 0b1) << 1
471 * | (X' & 0b1)
472 * X' = X * cpp = X
473 * Y' = Y + S * qpitch
474 * detile(w_tiled, A) = (X, Y, S)
475 * where X = X' / cpp = X'
476 * Y = Y' % qpitch = Y'
477 * S = Y / qpitch = 0
478 * Y' = (tile_num / tile_pitch) << 6
479 * | (A & 0b111100000) >> 3
480 * | (A & 0b1000) >> 2
481 * | (A & 0b10) >> 1
482 * X' = (tile_num % tile_pitch) << 6
483 * | (A & 0b111000000000) >> 6
484 * | (A & 0b10000) >> 2
485 * | (A & 0b100) >> 1
486 * | (A & 0b1)
487 *
488 * Finally, for a non-tiled surface, tile() simply combines together the X and
489 * Y coordinates in the natural way:
490 *
491 * tile(untiled, X, Y, S) = A
492 * where A = Y * pitch + X'
493 * X' = X * cpp
494 * Y' = Y + S * qpitch
495 * detile(untiled, A) = (X, Y, S)
496 * where X = X' / cpp
497 * Y = Y' % qpitch
498 * S = Y' / qpitch
499 * X' = A % pitch
500 * Y' = A / pitch
501 *
502 * (In these formulas, pitch is the number of bytes occupied by a single row
503 * of samples).
504 */
505 class brw_blorp_blit_program : public brw_blorp_eu_emitter
506 {
507 public:
508 brw_blorp_blit_program(struct brw_context *brw,
509 const brw_blorp_blit_prog_key *key, bool debug_flag);
510
511 const GLuint *compile(struct brw_context *brw, GLuint *program_size);
512
513 brw_blorp_prog_data prog_data;
514
515 private:
516 void alloc_regs();
517 void alloc_push_const_regs(int base_reg);
518 void compute_frag_coords();
519 void translate_tiling(bool old_tiled_w, bool new_tiled_w);
520 void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
521 void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
522 void translate_dst_to_src();
523 void clamp_tex_coords(struct brw_reg regX, struct brw_reg regY,
524 struct brw_reg clampX0, struct brw_reg clampY0,
525 struct brw_reg clampX1, struct brw_reg clampY1);
526 void single_to_blend();
527 void manual_blend_average(unsigned num_samples);
528 void manual_blend_bilinear(unsigned num_samples);
529 void sample(struct brw_reg dst);
530 void texel_fetch(struct brw_reg dst);
531 void mcs_fetch();
532 void texture_lookup(struct brw_reg dst, enum opcode op,
533 const sampler_message_arg *args, int num_args);
534 void render_target_write();
535
536 /**
537 * Base-2 logarithm of the maximum number of samples that can be blended.
538 */
539 static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
540
541 struct brw_context *brw;
542 const brw_blorp_blit_prog_key *key;
543
544 /* Thread dispatch header */
545 struct brw_reg R0;
546
547 /* Pixel X/Y coordinates (always in R1). */
548 struct brw_reg R1;
549
550 /* Push constants */
551 struct brw_reg dst_x0;
552 struct brw_reg dst_x1;
553 struct brw_reg dst_y0;
554 struct brw_reg dst_y1;
555 /* Top right coordinates of the rectangular grid used for scaled blitting */
556 struct brw_reg rect_grid_x1;
557 struct brw_reg rect_grid_y1;
558 struct {
559 struct brw_reg multiplier;
560 struct brw_reg offset;
561 } x_transform, y_transform;
562
563 /* Data read from texture (4 vec16's per array element) */
564 struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
565
566 /* Auxiliary storage for the contents of the MCS surface.
567 *
568 * Since the sampler always returns 8 registers worth of data, this is 8
569 * registers wide, even though we only use the first 2 registers of it.
570 */
571 struct brw_reg mcs_data;
572
573 /* X coordinates. We have two of them so that we can perform coordinate
574 * transformations easily.
575 */
576 struct brw_reg x_coords[2];
577
578 /* Y coordinates. We have two of them so that we can perform coordinate
579 * transformations easily.
580 */
581 struct brw_reg y_coords[2];
582
583 /* X, Y coordinates of the pixel from which we need to fetch the specific
584 * sample. These are used for multisample scaled blitting.
585 */
586 struct brw_reg x_sample_coords;
587 struct brw_reg y_sample_coords;
588
589 /* Fractional parts of the x and y coordinates, used as bilinear interpolation coefficients */
590 struct brw_reg x_frac;
591 struct brw_reg y_frac;
592
593 /* Which element of x_coords and y_coords is currently in use.
594 */
595 int xy_coord_index;
596
597 /* True if, at the point in the program currently being compiled, the
598 * sample index is known to be zero.
599 */
600 bool s_is_zero;
601
602 /* Register storing the sample index when s_is_zero is false. */
603 struct brw_reg sample_index;
604
605 /* Temporaries */
606 struct brw_reg t1;
607 struct brw_reg t2;
608
609 /* MRF used for sampling and render target writes */
610 GLuint base_mrf;
611 };
612
613 brw_blorp_blit_program::brw_blorp_blit_program(
614 struct brw_context *brw,
615 const brw_blorp_blit_prog_key *key,
616 bool debug_flag)
617 : brw_blorp_eu_emitter(brw, debug_flag),
618 brw(brw),
619 key(key)
620 {
621 }
622
623 const GLuint *
624 brw_blorp_blit_program::compile(struct brw_context *brw,
625 GLuint *program_size)
626 {
627 /* Sanity checks */
628 if (key->dst_tiled_w && key->rt_samples > 0) {
629 /* If the destination image is W tiled and multisampled, then the thread
630 * must be dispatched once per sample, not once per pixel. This is
631 * necessary because after conversion between W and Y tiling, there's no
632 * guarantee that all samples corresponding to a single pixel will still
633 * be together.
634 */
635 assert(key->persample_msaa_dispatch);
636 }
637
638 if (key->blend) {
639 /* We are blending, which means we won't have an opportunity to
640 * translate the tiling and sample count for the texture surface. So
641 * the surface state for the texture must be configured with the correct
642 * tiling and sample count.
643 */
644 assert(!key->src_tiled_w);
645 assert(key->tex_samples == key->src_samples);
646 assert(key->tex_layout == key->src_layout);
647 assert(key->tex_samples > 0);
648 }
649
650 if (key->persample_msaa_dispatch) {
651 /* It only makes sense to do persample dispatch if the render target is
652 * configured as multisampled.
653 */
654 assert(key->rt_samples > 0);
655 }
656
657 /* Make sure layout is consistent with sample count */
658 assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
659 (key->tex_samples == 0));
660 assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
661 (key->rt_samples == 0));
662 assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
663 (key->src_samples == 0));
664 assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
665 (key->dst_samples == 0));
666
667 /* Set up prog_data */
668 memset(&prog_data, 0, sizeof(prog_data));
669 prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
670
671 alloc_regs();
672 compute_frag_coords();
673
674 /* Render target and texture hardware don't support W tiling. */
675 const bool rt_tiled_w = false;
676 const bool tex_tiled_w = false;
677
678 /* The address that data will be written to is determined by the
679 * coordinates supplied to the WM thread and the tiling and sample count of
680 * the render target, according to the formula:
681 *
682 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
683 *
684 * If the actual tiling and sample count of the destination surface are not
685 * the same as the configuration of the render target, then these
686 * coordinates are wrong and we have to adjust them to compensate for the
687 * difference.
688 */
689 if (rt_tiled_w != key->dst_tiled_w ||
690 key->rt_samples != key->dst_samples ||
691 key->rt_layout != key->dst_layout) {
692 encode_msaa(key->rt_samples, key->rt_layout);
693 /* Now (X, Y, S) = detile(rt_tiling, offset) */
694 translate_tiling(rt_tiled_w, key->dst_tiled_w);
695 /* Now (X, Y, S) = detile(dst_tiling, offset) */
696 decode_msaa(key->dst_samples, key->dst_layout);
697 }
698
699 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
700 *
701 * That is: X, Y and S now contain the true coordinates and sample index of
702 * the data that the WM thread should output.
703 *
704 * If we need to kill pixels that are outside the destination rectangle,
705 * now is the time to do it.
706 */
707
708 if (key->use_kill)
709 emit_kill_if_outside_rect(x_coords[xy_coord_index],
710 y_coords[xy_coord_index],
711 dst_x0, dst_x1, dst_y0, dst_y1);
712
713 /* Next, apply a translation to obtain coordinates in the source image. */
714 translate_dst_to_src();
715
716 /* If the source image is not multisampled, then we want to fetch sample
717 * number 0, because that's the only sample there is.
718 */
719 if (key->src_samples == 0)
720 s_is_zero = true;
721
722 /* X, Y, and S are now the coordinates of the pixel in the source image
723 * that we want to texture from. Exception: if we are blending, then S is
724 * irrelevant, because we are going to fetch all samples.
725 */
726 if (key->blend && !key->blit_scaled) {
727 if (brw->gen == 6) {
728 /* Gen6 hardware an automatically blend using the SAMPLE message */
729 single_to_blend();
730 sample(texture_data[0]);
731 } else {
732 /* Gen7+ hardware doesn't automaticaly blend. */
733 manual_blend_average(key->src_samples);
734 }
735 } else if(key->blend && key->blit_scaled) {
736 manual_blend_bilinear(key->src_samples);
737 } else {
738 /* We aren't blending, which means we just want to fetch a single sample
739 * from the source surface. The address that we want to fetch from is
740 * related to the X, Y and S values according to the formula:
741 *
742 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
743 *
744 * If the actual tiling and sample count of the source surface are not
745 * the same as the configuration of the texture, then we need to adjust
746 * the coordinates to compensate for the difference.
747 */
748 if ((tex_tiled_w != key->src_tiled_w ||
749 key->tex_samples != key->src_samples ||
750 key->tex_layout != key->src_layout) &&
751 !key->bilinear_filter) {
752 encode_msaa(key->src_samples, key->src_layout);
753 /* Now (X, Y, S) = detile(src_tiling, offset) */
754 translate_tiling(key->src_tiled_w, tex_tiled_w);
755 /* Now (X, Y, S) = detile(tex_tiling, offset) */
756 decode_msaa(key->tex_samples, key->tex_layout);
757 }
758
759 if (key->bilinear_filter) {
760 sample(texture_data[0]);
761 }
762 else {
763 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
764 *
765 * In other words: X, Y, and S now contain values which, when passed to
766 * the texturing unit, will cause data to be read from the correct
767 * memory location. So we can fetch the texel now.
768 */
769 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
770 mcs_fetch();
771 texel_fetch(texture_data[0]);
772 }
773 }
774
775 /* Finally, write the fetched (or blended) value to the render target and
776 * terminate the thread.
777 */
778 render_target_write();
779
780 return get_program(program_size);
781 }
782
783 void
784 brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
785 {
786 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
787 #define ALLOC_REG(name, type) \
788 this->name = \
789 retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, \
790 base_reg + CONST_LOC(name) / 32, \
791 (CONST_LOC(name) % 32) / 4), type)
792
793 ALLOC_REG(dst_x0, BRW_REGISTER_TYPE_UD);
794 ALLOC_REG(dst_x1, BRW_REGISTER_TYPE_UD);
795 ALLOC_REG(dst_y0, BRW_REGISTER_TYPE_UD);
796 ALLOC_REG(dst_y1, BRW_REGISTER_TYPE_UD);
797 ALLOC_REG(rect_grid_x1, BRW_REGISTER_TYPE_F);
798 ALLOC_REG(rect_grid_y1, BRW_REGISTER_TYPE_F);
799 ALLOC_REG(x_transform.multiplier, BRW_REGISTER_TYPE_F);
800 ALLOC_REG(x_transform.offset, BRW_REGISTER_TYPE_F);
801 ALLOC_REG(y_transform.multiplier, BRW_REGISTER_TYPE_F);
802 ALLOC_REG(y_transform.offset, BRW_REGISTER_TYPE_F);
803 #undef CONST_LOC
804 #undef ALLOC_REG
805 }
806
807 void
808 brw_blorp_blit_program::alloc_regs()
809 {
810 int reg = 0;
811 this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
812 this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
813 prog_data.first_curbe_grf = reg;
814 alloc_push_const_regs(reg);
815 reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
816 for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
817 this->texture_data[i] =
818 retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
819 reg += 8;
820 }
821 this->mcs_data =
822 retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
823
824 for (int i = 0; i < 2; ++i) {
825 this->x_coords[i]
826 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
827 reg += 2;
828 this->y_coords[i]
829 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
830 reg += 2;
831 }
832
833 if (key->blit_scaled && key->blend) {
834 this->x_sample_coords = brw_vec8_grf(reg, 0);
835 reg += 2;
836 this->y_sample_coords = brw_vec8_grf(reg, 0);
837 reg += 2;
838 this->x_frac = brw_vec8_grf(reg, 0);
839 reg += 2;
840 this->y_frac = brw_vec8_grf(reg, 0);
841 reg += 2;
842 }
843
844 this->xy_coord_index = 0;
845 this->sample_index
846 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
847 reg += 2;
848 this->t1 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
849 reg += 2;
850 this->t2 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
851 reg += 2;
852
853 /* Make sure we didn't run out of registers */
854 assert(reg <= GEN7_MRF_HACK_START);
855
856 int mrf = 2;
857 this->base_mrf = mrf;
858 }
859
860 /* In the code that follows, X and Y can be used to quickly refer to the
861 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
862 * prime") to the inactive elements.
863 *
864 * S can be used to quickly refer to sample_index.
865 */
866 #define X x_coords[xy_coord_index]
867 #define Y y_coords[xy_coord_index]
868 #define Xp x_coords[!xy_coord_index]
869 #define Yp y_coords[!xy_coord_index]
870 #define S sample_index
871
872 /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
873 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
874 */
875 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
876
877 /**
878 * Emit code to compute the X and Y coordinates of the pixels being rendered
879 * by this WM invocation.
880 *
881 * Assuming the render target is set up for Y tiling, these (X, Y) values are
882 * related to the address offset where outputs will be written by the formula:
883 *
884 * (X, Y, S) = decode_msaa(detile(offset)).
885 *
886 * (See brw_blorp_blit_program).
887 */
888 void
889 brw_blorp_blit_program::compute_frag_coords()
890 {
891 /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
892 * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
893 * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
894 * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
895 *
896 * Pixels within a subspan are laid out in this arrangement:
897 * 0 1
898 * 2 3
899 *
900 * So, to compute the coordinates of each pixel, we need to read every 2nd
901 * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
902 * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
903 * In other words, the data we want to access is R1.4<2;4,0>UW.
904 *
905 * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
906 * result, since pixels n+1 and n+3 are in the right half of the subspan.
907 */
908 emit_add(vec16(retype(X, BRW_REGISTER_TYPE_UW)),
909 stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
910
911 /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
912 * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
913 * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
914 * R1.4<2;4,0>UW).
915 *
916 * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
917 * pixels n+2 and n+3 are in the bottom half of the subspan.
918 */
919 emit_add(vec16(retype(Y, BRW_REGISTER_TYPE_UW)),
920 stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
921
922 /* Move the coordinates to UD registers. */
923 emit_mov(vec16(Xp), retype(X, BRW_REGISTER_TYPE_UW));
924 emit_mov(vec16(Yp), retype(Y, BRW_REGISTER_TYPE_UW));
925 SWAP_XY_AND_XPYP();
926
927 if (key->persample_msaa_dispatch) {
928 switch (key->rt_samples) {
929 case 4: {
930 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4.
931 * Therefore, subspan 0 will represent sample 0, subspan 1 will
932 * represent sample 1, and so on.
933 *
934 * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1,
935 * 1, 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to
936 * populate a temporary variable with the sequence (0, 1, 2, 3), and
937 * then copy from it using vstride=1, width=4, hstride=0.
938 */
939 struct brw_reg t1_uw1 = retype(t1, BRW_REGISTER_TYPE_UW);
940 emit_mov(vec16(t1_uw1), brw_imm_v(0x3210));
941 /* Move to UD sample_index register. */
942 emit_mov_8(S, stride(t1_uw1, 1, 4, 0));
943 emit_mov_8(offset(S, 1), suboffset(stride(t1_uw1, 1, 4, 0), 2));
944 break;
945 }
946 case 8: {
947 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8.
948 * Therefore, subspan 0 will represent sample N (where N is 0 or 4),
949 * subspan 1 will represent sample 1, and so on. We can find the
950 * value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair
951 * Index") and multiplying by two (since samples are always delivered
952 * in pairs). That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 &
953 * 0xc0) >> 5.
954 *
955 * Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2,
956 * 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary
957 * variable with the sequence (0, 1, 2, 3), and then reading from it
958 * using vstride=1, width=4, hstride=0.
959 */
960 struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD));
961 struct brw_reg t2_uw1 = retype(t2, BRW_REGISTER_TYPE_UW);
962 struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD));
963 emit_and(t1_ud1, r0_ud1, brw_imm_ud(0xc0));
964 emit_shr(t1_ud1, t1_ud1, brw_imm_ud(5));
965 emit_mov(vec16(t2_uw1), brw_imm_v(0x3210));
966 emit_add(vec16(S), retype(t1_ud1, BRW_REGISTER_TYPE_UW),
967 stride(t2_uw1, 1, 4, 0));
968 emit_add_8(offset(S, 1),
969 retype(t1_ud1, BRW_REGISTER_TYPE_UW),
970 suboffset(stride(t2_uw1, 1, 4, 0), 2));
971 break;
972 }
973 default:
974 unreachable("Unrecognized sample count in "
975 "brw_blorp_blit_program::compute_frag_coords()");
976 }
977 s_is_zero = false;
978 } else {
979 /* Either the destination surface is single-sampled, or the WM will be
980 * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
981 * per pixel). In either case, it's not meaningful to compute a sample
982 * value. Just set it to 0.
983 */
984 s_is_zero = true;
985 }
986 }
987
988 /**
989 * Emit code to compensate for the difference between Y and W tiling.
990 *
991 * This code modifies the X and Y coordinates according to the formula:
992 *
993 * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
994 *
995 * (See brw_blorp_blit_program).
996 *
997 * It can only translate between W and Y tiling, so new_tiling and old_tiling
998 * are booleans where true represents W tiling and false represents Y tiling.
999 */
1000 void
1001 brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
1002 {
1003 if (old_tiled_w == new_tiled_w)
1004 return;
1005
1006 /* In the code that follows, we can safely assume that S = 0, because W
1007 * tiling formats always use IMS layout.
1008 */
1009 assert(s_is_zero);
1010
1011 if (new_tiled_w) {
1012 /* Given X and Y coordinates that describe an address using Y tiling,
1013 * translate to the X and Y coordinates that describe the same address
1014 * using W tiling.
1015 *
1016 * If we break down the low order bits of X and Y, using a
1017 * single letter to represent each low-order bit:
1018 *
1019 * X = A << 7 | 0bBCDEFGH
1020 * Y = J << 5 | 0bKLMNP (1)
1021 *
1022 * Then we can apply the Y tiling formula to see the memory offset being
1023 * addressed:
1024 *
1025 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
1026 *
1027 * If we apply the W detiling formula to this memory location, that the
1028 * corresponding X' and Y' coordinates are:
1029 *
1030 * X' = A << 6 | 0bBCDPFH (3)
1031 * Y' = J << 6 | 0bKLMNEG
1032 *
1033 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
1034 * we need to make the following computation:
1035 *
1036 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
1037 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
1038 */
1039 emit_and(t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
1040 emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
1041 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1042 emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
1043 emit_or(t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
1044 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1045 emit_or(Xp, t1, t2);
1046 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1047 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1048 emit_and(t2, X, brw_imm_uw(8)); /* X & 0b1000 */
1049 emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
1050 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
1051 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1052 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1053 emit_or(Yp, t1, t2);
1054 SWAP_XY_AND_XPYP();
1055 } else {
1056 /* Applying the same logic as above, but in reverse, we obtain the
1057 * formulas:
1058 *
1059 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
1060 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
1061 */
1062 emit_and(t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
1063 emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
1064 emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1065 emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
1066 emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
1067 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1068 emit_shl(t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
1069 emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
1070 | (Y & 0b1) << 1 */
1071 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1072 emit_or(Xp, t1, t2);
1073 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1074 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1075 emit_and(t2, X, brw_imm_uw(4)); /* X & 0b100 */
1076 emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
1077 emit_or(Yp, t1, t2);
1078 SWAP_XY_AND_XPYP();
1079 }
1080 }
1081
1082 /**
1083 * Emit code to compensate for the difference between MSAA and non-MSAA
1084 * surfaces.
1085 *
1086 * This code modifies the X and Y coordinates according to the formula:
1087 *
1088 * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
1089 *
1090 * (See brw_blorp_blit_program).
1091 */
1092 void
1093 brw_blorp_blit_program::encode_msaa(unsigned num_samples,
1094 intel_msaa_layout layout)
1095 {
1096 switch (layout) {
1097 case INTEL_MSAA_LAYOUT_NONE:
1098 /* No translation necessary, and S should already be zero. */
1099 assert(s_is_zero);
1100 break;
1101 case INTEL_MSAA_LAYOUT_CMS:
1102 /* We can't compensate for compressed layout since at this point in the
1103 * program we haven't read from the MCS buffer.
1104 */
1105 unreachable("Bad layout in encode_msaa");
1106 case INTEL_MSAA_LAYOUT_UMS:
1107 /* No translation necessary. */
1108 break;
1109 case INTEL_MSAA_LAYOUT_IMS:
1110 switch (num_samples) {
1111 case 4:
1112 /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
1113 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
1114 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1115 */
1116 emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1117 if (!s_is_zero) {
1118 emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
1119 emit_or(t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
1120 }
1121 emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
1122 | (S & 0b1) << 1 */
1123 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1124 emit_or(Xp, t1, t2);
1125 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1126 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1127 if (!s_is_zero) {
1128 emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
1129 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1130 }
1131 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1132 emit_or(Yp, t1, t2);
1133 break;
1134 case 8:
1135 /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
1136 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
1137 * | (X & 0b1)
1138 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1139 */
1140 emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1141 emit_shl(t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */
1142 if (!s_is_zero) {
1143 emit_and(t2, S, brw_imm_uw(4)); /* S & 0b100 */
1144 emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */
1145 emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
1146 emit_shl(t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */
1147 emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100)
1148 | (S & 0b1) << 1 */
1149 }
1150 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1151 emit_or(Xp, t1, t2);
1152 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1153 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1154 if (!s_is_zero) {
1155 emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
1156 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1157 }
1158 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1159 emit_or(Yp, t1, t2);
1160 break;
1161 }
1162 SWAP_XY_AND_XPYP();
1163 s_is_zero = true;
1164 break;
1165 }
1166 }
1167
1168 /**
1169 * Emit code to compensate for the difference between MSAA and non-MSAA
1170 * surfaces.
1171 *
1172 * This code modifies the X and Y coordinates according to the formula:
1173 *
1174 * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
1175 *
1176 * (See brw_blorp_blit_program).
1177 */
1178 void
1179 brw_blorp_blit_program::decode_msaa(unsigned num_samples,
1180 intel_msaa_layout layout)
1181 {
1182 switch (layout) {
1183 case INTEL_MSAA_LAYOUT_NONE:
1184 /* No translation necessary, and S should already be zero. */
1185 assert(s_is_zero);
1186 break;
1187 case INTEL_MSAA_LAYOUT_CMS:
1188 /* We can't compensate for compressed layout since at this point in the
1189 * program we don't have access to the MCS buffer.
1190 */
1191 unreachable("Bad layout in encode_msaa");
1192 case INTEL_MSAA_LAYOUT_UMS:
1193 /* No translation necessary. */
1194 break;
1195 case INTEL_MSAA_LAYOUT_IMS:
1196 assert(s_is_zero);
1197 switch (num_samples) {
1198 case 4:
1199 /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
1200 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
1201 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1202 * S = (Y & 0b10) | (X & 0b10) >> 1
1203 */
1204 emit_and(t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
1205 emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
1206 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1207 emit_or(Xp, t1, t2);
1208 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1209 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1210 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1211 emit_or(Yp, t1, t2);
1212 emit_and(t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
1213 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1214 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1215 emit_or(S, t1, t2);
1216 break;
1217 case 8:
1218 /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
1219 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
1220 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1221 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
1222 */
1223 emit_and(t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */
1224 emit_shr(t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */
1225 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1226 emit_or(Xp, t1, t2);
1227 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1228 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1229 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1230 emit_or(Yp, t1, t2);
1231 emit_and(t1, X, brw_imm_uw(4)); /* X & 0b100 */
1232 emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1233 emit_or(t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */
1234 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1235 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1236 emit_or(S, t1, t2);
1237 break;
1238 }
1239 s_is_zero = false;
1240 SWAP_XY_AND_XPYP();
1241 break;
1242 }
1243 }
1244
1245 /**
1246 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1247 * coordinates.
1248 */
1249 void
1250 brw_blorp_blit_program::translate_dst_to_src()
1251 {
1252 struct brw_reg X_f = retype(X, BRW_REGISTER_TYPE_F);
1253 struct brw_reg Y_f = retype(Y, BRW_REGISTER_TYPE_F);
1254 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1255 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1256
1257 /* Move the UD coordinates to float registers. */
1258 emit_mov(Xp_f, X);
1259 emit_mov(Yp_f, Y);
1260 /* Scale and offset */
1261 emit_mad(X_f, x_transform.offset, Xp_f, x_transform.multiplier);
1262 emit_mad(Y_f, y_transform.offset, Yp_f, y_transform.multiplier);
1263 if (key->blit_scaled && key->blend) {
1264 /* Translate coordinates to lay out the samples in a rectangular grid
1265 * roughly corresponding to sample locations.
1266 */
1267 emit_mul(X_f, X_f, brw_imm_f(key->x_scale));
1268 emit_mul(Y_f, Y_f, brw_imm_f(key->y_scale));
1269 /* Adjust coordinates so that integers represent pixel centers rather
1270 * than pixel edges.
1271 */
1272 emit_add(X_f, X_f, brw_imm_f(-0.5));
1273 emit_add(Y_f, Y_f, brw_imm_f(-0.5));
1274
1275 /* Clamp the X, Y texture coordinates to properly handle the sampling of
1276 * texels on texture edges.
1277 */
1278 clamp_tex_coords(X_f, Y_f,
1279 brw_imm_f(0.0), brw_imm_f(0.0),
1280 rect_grid_x1, rect_grid_y1);
1281
1282 /* Store the fractional parts to be used as bilinear interpolation
1283 * coefficients.
1284 */
1285 emit_frc(x_frac, X_f);
1286 emit_frc(y_frac, Y_f);
1287
1288 /* Round the float coordinates down to nearest integer */
1289 emit_rndd(Xp_f, X_f);
1290 emit_rndd(Yp_f, Y_f);
1291 emit_mul(X_f, Xp_f, brw_imm_f(1.0f / key->x_scale));
1292 emit_mul(Y_f, Yp_f, brw_imm_f(1.0f / key->y_scale));
1293 SWAP_XY_AND_XPYP();
1294 } else if (!key->bilinear_filter) {
1295 /* Round the float coordinates down to nearest integer by moving to
1296 * UD registers.
1297 */
1298 emit_mov(Xp, X_f);
1299 emit_mov(Yp, Y_f);
1300 SWAP_XY_AND_XPYP();
1301 }
1302 }
1303
1304 void
1305 brw_blorp_blit_program::clamp_tex_coords(struct brw_reg regX,
1306 struct brw_reg regY,
1307 struct brw_reg clampX0,
1308 struct brw_reg clampY0,
1309 struct brw_reg clampX1,
1310 struct brw_reg clampY1)
1311 {
1312 emit_max(regX, regX, clampX0);
1313 emit_max(regY, regY, clampY0);
1314 emit_min(regX, regX, clampX1);
1315 emit_min(regY, regY, clampY1);
1316 }
1317
1318 /**
1319 * Emit code to transform the X and Y coordinates as needed for blending
1320 * together the different samples in an MSAA texture.
1321 */
1322 void
1323 brw_blorp_blit_program::single_to_blend()
1324 {
1325 /* When looking up samples in an MSAA texture using the SAMPLE message,
1326 * Gen6 requires the texture coordinates to be odd integers (so that they
1327 * correspond to the center of a 2x2 block representing the four samples
1328 * that maxe up a pixel). So we need to multiply our X and Y coordinates
1329 * each by 2 and then add 1.
1330 */
1331 emit_shl(t1, X, brw_imm_w(1));
1332 emit_shl(t2, Y, brw_imm_w(1));
1333 emit_add(Xp, t1, brw_imm_w(1));
1334 emit_add(Yp, t2, brw_imm_w(1));
1335 SWAP_XY_AND_XPYP();
1336 }
1337
1338
1339 /**
1340 * Count the number of trailing 1 bits in the given value. For example:
1341 *
1342 * count_trailing_one_bits(0) == 0
1343 * count_trailing_one_bits(7) == 3
1344 * count_trailing_one_bits(11) == 2
1345 */
1346 static inline int count_trailing_one_bits(unsigned value)
1347 {
1348 #ifdef HAVE___BUILTIN_CTZ
1349 return __builtin_ctz(~value);
1350 #else
1351 return _mesa_bitcount(value & ~(value + 1));
1352 #endif
1353 }
1354
1355
1356 void
1357 brw_blorp_blit_program::manual_blend_average(unsigned num_samples)
1358 {
1359 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1360 mcs_fetch();
1361
1362 /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
1363 *
1364 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
1365 *
1366 * This ensures that when all samples have the same value, no numerical
1367 * precision is lost, since each addition operation always adds two equal
1368 * values, and summing two equal floating point values does not lose
1369 * precision.
1370 *
1371 * We perform this computation by treating the texture_data array as a
1372 * stack and performing the following operations:
1373 *
1374 * - push sample 0 onto stack
1375 * - push sample 1 onto stack
1376 * - add top two stack entries
1377 * - push sample 2 onto stack
1378 * - push sample 3 onto stack
1379 * - add top two stack entries
1380 * - add top two stack entries
1381 * - divide top stack entry by 4
1382 *
1383 * Note that after pushing sample i onto the stack, the number of add
1384 * operations we do is equal to the number of trailing 1 bits in i. This
1385 * works provided the total number of samples is a power of two, which it
1386 * always is for i965.
1387 *
1388 * For integer formats, we replace the add operations with average
1389 * operations and skip the final division.
1390 */
1391 unsigned stack_depth = 0;
1392 for (unsigned i = 0; i < num_samples; ++i) {
1393 assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
1394
1395 /* Push sample i onto the stack */
1396 assert(stack_depth < ARRAY_SIZE(texture_data));
1397 if (i == 0) {
1398 s_is_zero = true;
1399 } else {
1400 s_is_zero = false;
1401 emit_mov(vec16(S), brw_imm_ud(i));
1402 }
1403 texel_fetch(texture_data[stack_depth++]);
1404
1405 if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
1406 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
1407 * suggests an optimization:
1408 *
1409 * "A simple optimization with probable large return in
1410 * performance is to compare the MCS value to zero (indicating
1411 * all samples are on sample slice 0), and sample only from
1412 * sample slice 0 using ld2dss if MCS is zero."
1413 *
1414 * Note that in the case where the MCS value is zero, sampling from
1415 * sample slice 0 using ld2dss and sampling from sample 0 using
1416 * ld2dms are equivalent (since all samples are on sample slice 0).
1417 * Since we have already sampled from sample 0, all we need to do is
1418 * skip the remaining fetches and averaging if MCS is zero.
1419 */
1420 emit_cmp_if(BRW_CONDITIONAL_NZ, mcs_data, brw_imm_ud(0));
1421 }
1422
1423 /* Do count_trailing_one_bits(i) times */
1424 for (int j = count_trailing_one_bits(i); j-- > 0; ) {
1425 assert(stack_depth >= 2);
1426 --stack_depth;
1427
1428 /* TODO: should use a smaller loop bound for non_RGBA formats */
1429 for (int k = 0; k < 4; ++k) {
1430 emit_combine(key->texture_data_type == BRW_REGISTER_TYPE_F ?
1431 BRW_OPCODE_ADD : BRW_OPCODE_AVG,
1432 offset(texture_data[stack_depth - 1], 2*k),
1433 offset(vec8(texture_data[stack_depth - 1]), 2*k),
1434 offset(vec8(texture_data[stack_depth]), 2*k));
1435 }
1436 }
1437 }
1438
1439 /* We should have just 1 sample on the stack now. */
1440 assert(stack_depth == 1);
1441
1442 if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
1443 /* Scale the result down by a factor of num_samples */
1444 /* TODO: should use a smaller loop bound for non-RGBA formats */
1445 for (int j = 0; j < 4; ++j) {
1446 emit_mul(offset(texture_data[0], 2*j),
1447 offset(vec8(texture_data[0]), 2*j),
1448 brw_imm_f(1.0f / num_samples));
1449 }
1450 }
1451
1452 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1453 emit_endif();
1454 }
1455
1456 void
1457 brw_blorp_blit_program::manual_blend_bilinear(unsigned num_samples)
1458 {
1459 /* We do this computation by performing the following operations:
1460 *
1461 * In case of 4x, 8x MSAA:
1462 * - Compute the pixel coordinates and sample numbers (a, b, c, d)
1463 * which are later used for interpolation
1464 * - linearly interpolate samples a and b in X
1465 * - linearly interpolate samples c and d in X
1466 * - linearly interpolate the results of last two operations in Y
1467 *
1468 * result = lrp(lrp(a + b) + lrp(c + d))
1469 */
1470 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1471 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1472 struct brw_reg t1_f = retype(t1, BRW_REGISTER_TYPE_F);
1473 struct brw_reg t2_f = retype(t2, BRW_REGISTER_TYPE_F);
1474
1475 for (unsigned i = 0; i < 4; ++i) {
1476 assert(i < ARRAY_SIZE(texture_data));
1477 s_is_zero = false;
1478
1479 /* Compute pixel coordinates */
1480 emit_add(vec16(x_sample_coords), Xp_f,
1481 brw_imm_f((float)(i & 0x1) * (1.0f / key->x_scale)));
1482 emit_add(vec16(y_sample_coords), Yp_f,
1483 brw_imm_f((float)((i >> 1) & 0x1) * (1.0f / key->y_scale)));
1484 emit_mov(vec16(X), x_sample_coords);
1485 emit_mov(vec16(Y), y_sample_coords);
1486
1487 /* The MCS value we fetch has to match up with the pixel that we're
1488 * sampling from. Since we sample from different pixels in each
1489 * iteration of this "for" loop, the call to mcs_fetch() should be
1490 * here inside the loop after computing the pixel coordinates.
1491 */
1492 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1493 mcs_fetch();
1494
1495 /* Compute sample index and map the sample index to a sample number.
1496 * Sample index layout shows the numbering of slots in a rectangular
1497 * grid of samples with in a pixel. Sample number layout shows the
1498 * rectangular grid of samples roughly corresponding to the real sample
1499 * locations with in a pixel.
1500 * In case of 4x MSAA, layout of sample indices matches the layout of
1501 * sample numbers:
1502 * ---------
1503 * | 0 | 1 |
1504 * ---------
1505 * | 2 | 3 |
1506 * ---------
1507 *
1508 * In case of 8x MSAA the two layouts don't match.
1509 * sample index layout : --------- sample number layout : ---------
1510 * | 0 | 1 | | 5 | 2 |
1511 * --------- ---------
1512 * | 2 | 3 | | 4 | 6 |
1513 * --------- ---------
1514 * | 4 | 5 | | 0 | 3 |
1515 * --------- ---------
1516 * | 6 | 7 | | 7 | 1 |
1517 * --------- ---------
1518 */
1519 emit_frc(vec16(t1_f), x_sample_coords);
1520 emit_frc(vec16(t2_f), y_sample_coords);
1521 emit_mul(vec16(t1_f), t1_f, brw_imm_f(key->x_scale));
1522 emit_mul(vec16(t2_f), t2_f, brw_imm_f(key->x_scale * key->y_scale));
1523 emit_add(vec16(t1_f), t1_f, t2_f);
1524 emit_mov(vec16(S), t1_f);
1525
1526 if (num_samples == 8) {
1527 /* Map the sample index to a sample number */
1528 emit_cmp_if(BRW_CONDITIONAL_L, S, brw_imm_d(4));
1529 {
1530 emit_mov(vec16(t2), brw_imm_d(5));
1531 emit_if_eq_mov(S, 1, vec16(t2), 2);
1532 emit_if_eq_mov(S, 2, vec16(t2), 4);
1533 emit_if_eq_mov(S, 3, vec16(t2), 6);
1534 }
1535 emit_else();
1536 {
1537 emit_mov(vec16(t2), brw_imm_d(0));
1538 emit_if_eq_mov(S, 5, vec16(t2), 3);
1539 emit_if_eq_mov(S, 6, vec16(t2), 7);
1540 emit_if_eq_mov(S, 7, vec16(t2), 1);
1541 }
1542 emit_endif();
1543 emit_mov(vec16(S), t2);
1544 }
1545 texel_fetch(texture_data[i]);
1546 }
1547
1548 #define SAMPLE(x, y) offset(texture_data[x], y)
1549 for (int index = 3; index > 0; ) {
1550 /* Since we're doing SIMD16, 4 color channels fits in to 8 registers.
1551 * Counter value of 8 in 'for' loop below is used to interpolate all
1552 * the color components.
1553 */
1554 for (int k = 0; k < 8; k += 2)
1555 emit_lrp(vec8(SAMPLE(index - 1, k)),
1556 x_frac,
1557 vec8(SAMPLE(index, k)),
1558 vec8(SAMPLE(index - 1, k)));
1559 index -= 2;
1560 }
1561 for (int k = 0; k < 8; k += 2)
1562 emit_lrp(vec8(SAMPLE(0, k)),
1563 y_frac,
1564 vec8(SAMPLE(2, k)),
1565 vec8(SAMPLE(0, k)));
1566 #undef SAMPLE
1567 }
1568
1569 /**
1570 * Emit code to look up a value in the texture using the SAMPLE message (which
1571 * does blending of MSAA surfaces).
1572 */
1573 void
1574 brw_blorp_blit_program::sample(struct brw_reg dst)
1575 {
1576 static const sampler_message_arg args[2] = {
1577 SAMPLER_MESSAGE_ARG_U_FLOAT,
1578 SAMPLER_MESSAGE_ARG_V_FLOAT
1579 };
1580
1581 texture_lookup(dst, SHADER_OPCODE_TEX, args, ARRAY_SIZE(args));
1582 }
1583
1584 /**
1585 * Emit code to look up a value in the texture using the SAMPLE_LD message
1586 * (which does a simple texel fetch).
1587 */
1588 void
1589 brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1590 {
1591 static const sampler_message_arg gen6_args[5] = {
1592 SAMPLER_MESSAGE_ARG_U_INT,
1593 SAMPLER_MESSAGE_ARG_V_INT,
1594 SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1595 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1596 SAMPLER_MESSAGE_ARG_SI_INT
1597 };
1598 static const sampler_message_arg gen7_ld_args[3] = {
1599 SAMPLER_MESSAGE_ARG_U_INT,
1600 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1601 SAMPLER_MESSAGE_ARG_V_INT
1602 };
1603 static const sampler_message_arg gen7_ld2dss_args[3] = {
1604 SAMPLER_MESSAGE_ARG_SI_INT,
1605 SAMPLER_MESSAGE_ARG_U_INT,
1606 SAMPLER_MESSAGE_ARG_V_INT
1607 };
1608 static const sampler_message_arg gen7_ld2dms_args[4] = {
1609 SAMPLER_MESSAGE_ARG_SI_INT,
1610 SAMPLER_MESSAGE_ARG_MCS_INT,
1611 SAMPLER_MESSAGE_ARG_U_INT,
1612 SAMPLER_MESSAGE_ARG_V_INT
1613 };
1614
1615 switch (brw->gen) {
1616 case 6:
1617 texture_lookup(dst, SHADER_OPCODE_TXF, gen6_args, s_is_zero ? 2 : 5);
1618 break;
1619 case 7:
1620 switch (key->tex_layout) {
1621 case INTEL_MSAA_LAYOUT_IMS:
1622 /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
1623 * Format):
1624 *
1625 * If this field is MSFMT_DEPTH_STENCIL
1626 * [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
1627 * messages allowed are "ld2dms", "resinfo", and "sampleinfo".
1628 *
1629 * So fall through to emit the same message as we use for
1630 * INTEL_MSAA_LAYOUT_CMS.
1631 */
1632 case INTEL_MSAA_LAYOUT_CMS:
1633 texture_lookup(dst, SHADER_OPCODE_TXF_CMS,
1634 gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
1635 break;
1636 case INTEL_MSAA_LAYOUT_UMS:
1637 texture_lookup(dst, SHADER_OPCODE_TXF_UMS,
1638 gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1639 break;
1640 case INTEL_MSAA_LAYOUT_NONE:
1641 assert(s_is_zero);
1642 texture_lookup(dst, SHADER_OPCODE_TXF, gen7_ld_args,
1643 ARRAY_SIZE(gen7_ld_args));
1644 break;
1645 }
1646 break;
1647 default:
1648 unreachable("Should not get here.");
1649 };
1650 }
1651
1652 void
1653 brw_blorp_blit_program::mcs_fetch()
1654 {
1655 static const sampler_message_arg gen7_ld_mcs_args[2] = {
1656 SAMPLER_MESSAGE_ARG_U_INT,
1657 SAMPLER_MESSAGE_ARG_V_INT
1658 };
1659 texture_lookup(vec16(mcs_data), SHADER_OPCODE_TXF_MCS,
1660 gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
1661 }
1662
1663 void
1664 brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1665 enum opcode op,
1666 const sampler_message_arg *args,
1667 int num_args)
1668 {
1669 struct brw_reg mrf =
1670 retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1671 for (int arg = 0; arg < num_args; ++arg) {
1672 switch (args[arg]) {
1673 case SAMPLER_MESSAGE_ARG_U_FLOAT:
1674 if (key->bilinear_filter)
1675 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
1676 retype(X, BRW_REGISTER_TYPE_F));
1677 else
1678 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), X);
1679 break;
1680 case SAMPLER_MESSAGE_ARG_V_FLOAT:
1681 if (key->bilinear_filter)
1682 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
1683 retype(Y, BRW_REGISTER_TYPE_F));
1684 else
1685 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), Y);
1686 break;
1687 case SAMPLER_MESSAGE_ARG_U_INT:
1688 emit_mov(mrf, X);
1689 break;
1690 case SAMPLER_MESSAGE_ARG_V_INT:
1691 emit_mov(mrf, Y);
1692 break;
1693 case SAMPLER_MESSAGE_ARG_SI_INT:
1694 /* Note: on Gen7, this code may be reached with s_is_zero==true
1695 * because in Gen7's ld2dss message, the sample index is the first
1696 * argument. When this happens, we need to move a 0 into the
1697 * appropriate message register.
1698 */
1699 if (s_is_zero)
1700 emit_mov(mrf, brw_imm_ud(0));
1701 else
1702 emit_mov(mrf, S);
1703 break;
1704 case SAMPLER_MESSAGE_ARG_MCS_INT:
1705 switch (key->tex_layout) {
1706 case INTEL_MSAA_LAYOUT_CMS:
1707 emit_mov(mrf, mcs_data);
1708 break;
1709 case INTEL_MSAA_LAYOUT_IMS:
1710 /* When sampling from an IMS surface, MCS data is not relevant,
1711 * and the hardware ignores it. So don't bother populating it.
1712 */
1713 break;
1714 default:
1715 /* We shouldn't be trying to send MCS data with any other
1716 * layouts.
1717 */
1718 assert (!"Unsupported layout for MCS data");
1719 break;
1720 }
1721 break;
1722 case SAMPLER_MESSAGE_ARG_ZERO_INT:
1723 emit_mov(mrf, brw_imm_ud(0));
1724 break;
1725 }
1726 mrf.nr += 2;
1727 }
1728
1729 emit_texture_lookup(retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
1730 op,
1731 base_mrf,
1732 mrf.nr - base_mrf /* msg_length */);
1733 }
1734
1735 #undef X
1736 #undef Y
1737 #undef U
1738 #undef V
1739 #undef S
1740 #undef SWAP_XY_AND_XPYP
1741
1742 void
1743 brw_blorp_blit_program::render_target_write()
1744 {
1745 struct brw_reg mrf_rt_write =
1746 retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
1747 int mrf_offset = 0;
1748
1749 /* If we may have killed pixels, then we need to send R0 and R1 in a header
1750 * so that the render target knows which pixels we killed.
1751 */
1752 bool use_header = key->use_kill;
1753 if (use_header) {
1754 /* Copy R0/1 to MRF */
1755 emit_mov(retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1756 retype(R0, BRW_REGISTER_TYPE_UD));
1757 mrf_offset += 2;
1758 }
1759
1760 /* Copy texture data to MRFs */
1761 for (int i = 0; i < 4; ++i) {
1762 /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1763 emit_mov(offset(mrf_rt_write, mrf_offset),
1764 offset(vec8(texture_data[0]), 2*i));
1765 mrf_offset += 2;
1766 }
1767
1768 /* Now write to the render target and terminate the thread */
1769 emit_render_target_write(
1770 mrf_rt_write,
1771 base_mrf,
1772 mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
1773 use_header);
1774 }
1775
1776
1777 void
1778 brw_blorp_coord_transform_params::setup(GLfloat src0, GLfloat src1,
1779 GLfloat dst0, GLfloat dst1,
1780 bool mirror)
1781 {
1782 float scale = (src1 - src0) / (dst1 - dst0);
1783 if (!mirror) {
1784 /* When not mirroring a coordinate (say, X), we need:
1785 * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
1786 * Therefore:
1787 * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
1788 *
1789 * blorp program uses "round toward zero" to convert the
1790 * transformed floating point coordinates to integer coordinates,
1791 * whereas the behaviour we actually want is "round to nearest",
1792 * so 0.5 provides the necessary correction.
1793 */
1794 multiplier = scale;
1795 offset = src0 + (-dst0 + 0.5f) * scale;
1796 } else {
1797 /* When mirroring X we need:
1798 * src_x - src_x0 = dst_x1 - dst_x - 0.5
1799 * Therefore:
1800 * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
1801 */
1802 multiplier = -scale;
1803 offset = src0 + (dst1 - 0.5f) * scale;
1804 }
1805 }
1806
1807
1808 /**
1809 * Determine which MSAA layout the GPU pipeline should be configured for,
1810 * based on the chip generation, the number of samples, and the true layout of
1811 * the image in memory.
1812 */
1813 inline intel_msaa_layout
1814 compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
1815 intel_msaa_layout true_layout)
1816 {
1817 if (num_samples <= 1) {
1818 /* When configuring the GPU for non-MSAA, we can still accommodate IMS
1819 * format buffers, by transforming coordinates appropriately.
1820 */
1821 assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
1822 true_layout == INTEL_MSAA_LAYOUT_IMS);
1823 return INTEL_MSAA_LAYOUT_NONE;
1824 } else {
1825 assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
1826 }
1827
1828 /* Prior to Gen7, all MSAA surfaces use IMS layout. */
1829 if (brw->gen == 6) {
1830 assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
1831 }
1832
1833 return true_layout;
1834 }
1835
1836
1837 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
1838 struct intel_mipmap_tree *src_mt,
1839 unsigned src_level, unsigned src_layer,
1840 mesa_format src_format,
1841 struct intel_mipmap_tree *dst_mt,
1842 unsigned dst_level, unsigned dst_layer,
1843 mesa_format dst_format,
1844 GLfloat src_x0, GLfloat src_y0,
1845 GLfloat src_x1, GLfloat src_y1,
1846 GLfloat dst_x0, GLfloat dst_y0,
1847 GLfloat dst_x1, GLfloat dst_y1,
1848 GLenum filter,
1849 bool mirror_x, bool mirror_y)
1850 {
1851 src.set(brw, src_mt, src_level, src_layer, src_format, false);
1852 dst.set(brw, dst_mt, dst_level, dst_layer, dst_format, true);
1853
1854 /* Even though we do multisample resolves at the time of the blit, OpenGL
1855 * specification defines them as if they happen at the time of rendering,
1856 * which means that the type of averaging we do during the resolve should
1857 * only depend on the source format; the destination format should be
1858 * ignored. But, specification doesn't seem to be strict about it.
1859 *
1860 * It has been observed that mulitisample resolves produce slightly better
1861 * looking images when averaging is done using destination format. NVIDIA's
1862 * proprietary OpenGL driver also follow this approach. So, we choose to
1863 * follow it in our driver.
1864 *
1865 * When multisampling, if the source and destination formats are equal
1866 * (aside from the color space), we choose to blit in sRGB space to get
1867 * this higher quality image.
1868 */
1869 if (src.num_samples > 1 &&
1870 _mesa_get_format_color_encoding(dst_mt->format) == GL_SRGB &&
1871 _mesa_get_srgb_format_linear(src_mt->format) ==
1872 _mesa_get_srgb_format_linear(dst_mt->format)) {
1873 assert(brw->format_supported_as_render_target[dst_mt->format]);
1874 dst.brw_surfaceformat = brw->render_target_format[dst_mt->format];
1875 src.brw_surfaceformat = brw_format_for_mesa_format(dst_mt->format);
1876 }
1877
1878 /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F
1879 * texture, the above code configures the source format for L32_FLOAT or
1880 * I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge,
1881 * the SAMPLE message appears to handle multisampled L32_FLOAT and
1882 * I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work
1883 * around the problem by using a source format of R32_FLOAT. This
1884 * shouldn't affect rendering correctness, since the destination format is
1885 * R32_FLOAT, so only the contents of the red channel matters.
1886 */
1887 if (brw->gen == 6 && src.num_samples > 1 && dst.num_samples <= 1 &&
1888 src_mt->format == dst_mt->format &&
1889 dst.brw_surfaceformat == BRW_SURFACEFORMAT_R32_FLOAT) {
1890 src.brw_surfaceformat = dst.brw_surfaceformat;
1891 }
1892
1893 use_wm_prog = true;
1894 memset(&wm_prog_key, 0, sizeof(wm_prog_key));
1895
1896 /* texture_data_type indicates the register type that should be used to
1897 * manipulate texture data.
1898 */
1899 switch (_mesa_get_format_datatype(src_mt->format)) {
1900 case GL_UNSIGNED_NORMALIZED:
1901 case GL_SIGNED_NORMALIZED:
1902 case GL_FLOAT:
1903 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1904 break;
1905 case GL_UNSIGNED_INT:
1906 if (src_mt->format == MESA_FORMAT_S_UINT8) {
1907 /* We process stencil as though it's an unsigned normalized color */
1908 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1909 } else {
1910 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
1911 }
1912 break;
1913 case GL_INT:
1914 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
1915 break;
1916 default:
1917 unreachable("Unrecognized blorp format");
1918 }
1919
1920 if (brw->gen > 6) {
1921 /* Gen7's rendering hardware only supports the IMS layout for depth and
1922 * stencil render targets. Blorp always maps its destination surface as
1923 * a color render target (even if it's actually a depth or stencil
1924 * buffer). So if the destination is IMS, we'll have to map it as a
1925 * single-sampled texture and interleave the samples ourselves.
1926 */
1927 if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
1928 dst.num_samples = 0;
1929 }
1930
1931 if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) {
1932 /* If the destination surface is a W-tiled multisampled stencil buffer
1933 * that we're mapping as Y tiled, then we need to arrange for the WM
1934 * program to run once per sample rather than once per pixel, because
1935 * the memory layout of related samples doesn't match between W and Y
1936 * tiling.
1937 */
1938 wm_prog_key.persample_msaa_dispatch = true;
1939 }
1940
1941 if (src.num_samples > 0 && dst.num_samples > 1) {
1942 /* We are blitting from a multisample buffer to a multisample buffer, so
1943 * we must preserve samples within a pixel. This means we have to
1944 * arrange for the WM program to run once per sample rather than once
1945 * per pixel.
1946 */
1947 wm_prog_key.persample_msaa_dispatch = true;
1948 }
1949
1950 /* Scaled blitting or not. */
1951 wm_prog_key.blit_scaled =
1952 ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
1953 (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
1954
1955 /* Scaling factors used for bilinear filtering in multisample scaled
1956 * blits.
1957 */
1958 wm_prog_key.x_scale = 2.0f;
1959 wm_prog_key.y_scale = src_mt->num_samples / 2.0f;
1960
1961 if (filter == GL_LINEAR && src.num_samples <= 1 && dst.num_samples <= 1)
1962 wm_prog_key.bilinear_filter = true;
1963
1964 GLenum base_format = _mesa_get_format_base_format(src_mt->format);
1965 if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
1966 base_format != GL_STENCIL_INDEX &&
1967 src_mt->num_samples > 1 && dst_mt->num_samples <= 1) {
1968 /* We are downsampling a color buffer, so blend. */
1969 wm_prog_key.blend = true;
1970 }
1971
1972 /* src_samples and dst_samples are the true sample counts */
1973 wm_prog_key.src_samples = src_mt->num_samples;
1974 wm_prog_key.dst_samples = dst_mt->num_samples;
1975
1976 /* tex_samples and rt_samples are the sample counts that are set up in
1977 * SURFACE_STATE.
1978 */
1979 wm_prog_key.tex_samples = src.num_samples;
1980 wm_prog_key.rt_samples = dst.num_samples;
1981
1982 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1983 * use to access the source and destination surfaces.
1984 */
1985 wm_prog_key.tex_layout =
1986 compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
1987 wm_prog_key.rt_layout =
1988 compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
1989
1990 /* src_layout and dst_layout indicate the true MSAA layout used by src and
1991 * dst.
1992 */
1993 wm_prog_key.src_layout = src_mt->msaa_layout;
1994 wm_prog_key.dst_layout = dst_mt->msaa_layout;
1995
1996 wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
1997 wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
1998 /* Round floating point values to nearest integer to avoid "off by one texel"
1999 * kind of errors when blitting.
2000 */
2001 x0 = wm_push_consts.dst_x0 = roundf(dst_x0);
2002 y0 = wm_push_consts.dst_y0 = roundf(dst_y0);
2003 x1 = wm_push_consts.dst_x1 = roundf(dst_x1);
2004 y1 = wm_push_consts.dst_y1 = roundf(dst_y1);
2005 wm_push_consts.rect_grid_x1 = (minify(src_mt->logical_width0, src_level) *
2006 wm_prog_key.x_scale - 1.0f);
2007 wm_push_consts.rect_grid_y1 = (minify(src_mt->logical_height0, src_level) *
2008 wm_prog_key.y_scale - 1.0f);
2009
2010 wm_push_consts.x_transform.setup(src_x0, src_x1, dst_x0, dst_x1, mirror_x);
2011 wm_push_consts.y_transform.setup(src_y0, src_y1, dst_y0, dst_y1, mirror_y);
2012
2013 if (dst.num_samples <= 1 && dst_mt->num_samples > 1) {
2014 /* We must expand the rectangle we send through the rendering pipeline,
2015 * to account for the fact that we are mapping the destination region as
2016 * single-sampled when it is in fact multisampled. We must also align
2017 * it to a multiple of the multisampling pattern, because the
2018 * differences between multisampled and single-sampled surface formats
2019 * will mean that pixels are scrambled within the multisampling pattern.
2020 * TODO: what if this makes the coordinates too large?
2021 *
2022 * Note: this only works if the destination surface uses the IMS layout.
2023 * If it's UMS, then we have no choice but to set up the rendering
2024 * pipeline as multisampled.
2025 */
2026 assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
2027 switch (dst_mt->num_samples) {
2028 case 4:
2029 x0 = ROUND_DOWN_TO(x0 * 2, 4);
2030 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2031 x1 = ALIGN(x1 * 2, 4);
2032 y1 = ALIGN(y1 * 2, 4);
2033 break;
2034 case 8:
2035 x0 = ROUND_DOWN_TO(x0 * 4, 8);
2036 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2037 x1 = ALIGN(x1 * 4, 8);
2038 y1 = ALIGN(y1 * 2, 4);
2039 break;
2040 default:
2041 unreachable("Unrecognized sample count in brw_blorp_blit_params ctor");
2042 }
2043 wm_prog_key.use_kill = true;
2044 }
2045
2046 if (dst.map_stencil_as_y_tiled) {
2047 /* We must modify the rectangle we send through the rendering pipeline
2048 * (and the size and x/y offset of the destination surface), to account
2049 * for the fact that we are mapping it as Y-tiled when it is in fact
2050 * W-tiled.
2051 *
2052 * Both Y tiling and W tiling can be understood as organizations of
2053 * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
2054 * is different, but the layout of the 32-byte sub-tiles within the 4k
2055 * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
2056 * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
2057 * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
2058 *
2059 * Therefore, to account for the layout differences within the 32-byte
2060 * sub-tiles, we must expand the rectangle so the X coordinates of its
2061 * edges are multiples of 8 (the W sub-tile width), and its Y
2062 * coordinates of its edges are multiples of 4 (the W sub-tile height).
2063 * Then we need to scale the X and Y coordinates of the rectangle to
2064 * account for the differences in aspect ratio between the Y and W
2065 * sub-tiles. We need to modify the layer width and height similarly.
2066 *
2067 * A correction needs to be applied when MSAA is in use: since
2068 * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
2069 * we need to align the Y coordinates to multiples of 8, so that when
2070 * they are divided by two they are still multiples of 4.
2071 *
2072 * Note: Since the x/y offset of the surface will be applied using the
2073 * SURFACE_STATE command packet, it will be invisible to the swizzling
2074 * code in the shader; therefore it needs to be in a multiple of the
2075 * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
2076 * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
2077 * buffer), and the miplevel alignment used for stencil buffers is 8
2078 * pixels horizontally and either 4 or 8 pixels vertically (see
2079 * intel_horizontal_texture_alignment_unit() and
2080 * intel_vertical_texture_alignment_unit()).
2081 *
2082 * Note: Also, since the SURFACE_STATE command packet can only apply
2083 * offsets that are multiples of 4 pixels horizontally and 2 pixels
2084 * vertically, it is important that the offsets will be multiples of
2085 * these sizes after they are converted into Y-tiled coordinates.
2086 * Fortunately they will be, since we know from above that the offsets
2087 * are a multiple of the 32-byte sub-tile size, and in Y-tiled
2088 * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
2089 *
2090 * TODO: what if this makes the coordinates (or the texture size) too
2091 * large?
2092 */
2093 const unsigned x_align = 8, y_align = dst.num_samples != 0 ? 8 : 4;
2094 x0 = ROUND_DOWN_TO(x0, x_align) * 2;
2095 y0 = ROUND_DOWN_TO(y0, y_align) / 2;
2096 x1 = ALIGN(x1, x_align) * 2;
2097 y1 = ALIGN(y1, y_align) / 2;
2098 dst.width = ALIGN(dst.width, x_align) * 2;
2099 dst.height = ALIGN(dst.height, y_align) / 2;
2100 dst.x_offset *= 2;
2101 dst.y_offset /= 2;
2102 wm_prog_key.use_kill = true;
2103 }
2104
2105 if (src.map_stencil_as_y_tiled) {
2106 /* We must modify the size and x/y offset of the source surface to
2107 * account for the fact that we are mapping it as Y-tiled when it is in
2108 * fact W tiled.
2109 *
2110 * See the comments above concerning x/y offset alignment for the
2111 * destination surface.
2112 *
2113 * TODO: what if this makes the texture size too large?
2114 */
2115 const unsigned x_align = 8, y_align = src.num_samples != 0 ? 8 : 4;
2116 src.width = ALIGN(src.width, x_align) * 2;
2117 src.height = ALIGN(src.height, y_align) / 2;
2118 src.x_offset *= 2;
2119 src.y_offset /= 2;
2120 }
2121 }
2122
2123 uint32_t
2124 brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
2125 brw_blorp_prog_data **prog_data) const
2126 {
2127 uint32_t prog_offset = 0;
2128 if (!brw_search_cache(&brw->cache, BRW_CACHE_BLORP_BLIT_PROG,
2129 &this->wm_prog_key, sizeof(this->wm_prog_key),
2130 &prog_offset, prog_data)) {
2131 brw_blorp_blit_program prog(brw, &this->wm_prog_key,
2132 INTEL_DEBUG & DEBUG_BLORP);
2133 GLuint program_size;
2134 const GLuint *program = prog.compile(brw, &program_size);
2135 brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_BLIT_PROG,
2136 &this->wm_prog_key, sizeof(this->wm_prog_key),
2137 program, program_size,
2138 &prog.prog_data, sizeof(prog.prog_data),
2139 &prog_offset, prog_data);
2140 }
2141 return prog_offset;
2142 }