i965: Print access flags in INTEL_DEBUG=buf output.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_bufmgr.c
1 /**************************************************************************
2 *
3 * Copyright © 2007 Red Hat Inc.
4 * Copyright © 2007-2012 Intel Corporation
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * The above copyright notice and this permission notice (including the
25 * next paragraph) shall be included in all copies or substantial portions
26 * of the Software.
27 *
28 *
29 **************************************************************************/
30 /*
31 * Authors: Thomas Hellström <thomas-at-tungstengraphics-dot-com>
32 * Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33 * Eric Anholt <eric@anholt.net>
34 * Dave Airlie <airlied@linux.ie>
35 */
36
37 #ifdef HAVE_CONFIG_H
38 #include "config.h"
39 #endif
40
41 #include <xf86drm.h>
42 #include <util/u_atomic.h>
43 #include <fcntl.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <unistd.h>
48 #include <assert.h>
49 #include <pthread.h>
50 #include <sys/ioctl.h>
51 #include <sys/stat.h>
52 #include <sys/types.h>
53 #include <stdbool.h>
54
55 #include "errno.h"
56 #ifndef ETIME
57 #define ETIME ETIMEDOUT
58 #endif
59 #include "common/gen_debug.h"
60 #include "common/gen_device_info.h"
61 #include "libdrm_macros.h"
62 #include "main/macros.h"
63 #include "util/macros.h"
64 #include "util/hash_table.h"
65 #include "util/list.h"
66 #include "brw_bufmgr.h"
67 #include "brw_context.h"
68 #include "string.h"
69
70 #include "i915_drm.h"
71
72 #ifdef HAVE_VALGRIND
73 #include <valgrind.h>
74 #include <memcheck.h>
75 #define VG(x) x
76 #else
77 #define VG(x)
78 #endif
79
80 #define memclear(s) memset(&s, 0, sizeof(s))
81
82 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
83
84 static inline int
85 atomic_add_unless(int *v, int add, int unless)
86 {
87 int c, old;
88 c = p_atomic_read(v);
89 while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
90 c = old;
91 return c == unless;
92 }
93
94 struct bo_cache_bucket {
95 struct list_head head;
96 uint64_t size;
97 };
98
99 struct brw_bufmgr {
100 int fd;
101
102 pthread_mutex_t lock;
103
104 /** Array of lists of cached gem objects of power-of-two sizes */
105 struct bo_cache_bucket cache_bucket[14 * 4];
106 int num_buckets;
107 time_t time;
108
109 struct hash_table *name_table;
110 struct hash_table *handle_table;
111
112 bool has_llc:1;
113 bool bo_reuse:1;
114 };
115
116 static int bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
117 uint32_t stride);
118
119 static void bo_free(struct brw_bo *bo);
120
121 static uint32_t
122 key_hash_uint(const void *key)
123 {
124 return _mesa_hash_data(key, 4);
125 }
126
127 static bool
128 key_uint_equal(const void *a, const void *b)
129 {
130 return *((unsigned *) a) == *((unsigned *) b);
131 }
132
133 static struct brw_bo *
134 hash_find_bo(struct hash_table *ht, unsigned int key)
135 {
136 struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
137 return entry ? (struct brw_bo *) entry->data : NULL;
138 }
139
140 static uint64_t
141 bo_tile_size(struct brw_bufmgr *bufmgr, uint64_t size, uint32_t tiling)
142 {
143 if (tiling == I915_TILING_NONE)
144 return size;
145
146 /* 965+ just need multiples of page size for tiling */
147 return ALIGN(size, 4096);
148 }
149
150 /*
151 * Round a given pitch up to the minimum required for X tiling on a
152 * given chip. We use 512 as the minimum to allow for a later tiling
153 * change.
154 */
155 static uint32_t
156 bo_tile_pitch(struct brw_bufmgr *bufmgr, uint32_t pitch, uint32_t tiling)
157 {
158 unsigned long tile_width;
159
160 /* If untiled, then just align it so that we can do rendering
161 * to it with the 3D engine.
162 */
163 if (tiling == I915_TILING_NONE)
164 return ALIGN(pitch, 64);
165
166 if (tiling == I915_TILING_X)
167 tile_width = 512;
168 else
169 tile_width = 128;
170
171 /* 965 is flexible */
172 return ALIGN(pitch, tile_width);
173 }
174
175 static struct bo_cache_bucket *
176 bucket_for_size(struct brw_bufmgr *bufmgr, uint64_t size)
177 {
178 int i;
179
180 for (i = 0; i < bufmgr->num_buckets; i++) {
181 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
182 if (bucket->size >= size) {
183 return bucket;
184 }
185 }
186
187 return NULL;
188 }
189
190 inline void
191 brw_bo_reference(struct brw_bo *bo)
192 {
193 p_atomic_inc(&bo->refcount);
194 }
195
196 int
197 brw_bo_busy(struct brw_bo *bo)
198 {
199 struct brw_bufmgr *bufmgr = bo->bufmgr;
200 struct drm_i915_gem_busy busy;
201 int ret;
202
203 memclear(busy);
204 busy.handle = bo->gem_handle;
205
206 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
207 if (ret == 0) {
208 bo->idle = !busy.busy;
209 return busy.busy;
210 }
211 return false;
212 }
213
214 int
215 brw_bo_madvise(struct brw_bo *bo, int state)
216 {
217 struct drm_i915_gem_madvise madv;
218
219 memclear(madv);
220 madv.handle = bo->gem_handle;
221 madv.madv = state;
222 madv.retained = 1;
223 drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
224
225 return madv.retained;
226 }
227
228 /* drop the oldest entries that have been purged by the kernel */
229 static void
230 brw_bo_cache_purge_bucket(struct brw_bufmgr *bufmgr,
231 struct bo_cache_bucket *bucket)
232 {
233 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
234 if (brw_bo_madvise(bo, I915_MADV_DONTNEED))
235 break;
236
237 list_del(&bo->head);
238 bo_free(bo);
239 }
240 }
241
242 static struct brw_bo *
243 bo_alloc_internal(struct brw_bufmgr *bufmgr,
244 const char *name,
245 uint64_t size,
246 unsigned flags,
247 uint32_t tiling_mode,
248 uint32_t stride, uint64_t alignment)
249 {
250 struct brw_bo *bo;
251 unsigned int page_size = getpagesize();
252 int ret;
253 struct bo_cache_bucket *bucket;
254 bool alloc_from_cache;
255 uint64_t bo_size;
256 bool for_render = false;
257
258 if (flags & BO_ALLOC_FOR_RENDER)
259 for_render = true;
260
261 /* Round the allocated size up to a power of two number of pages. */
262 bucket = bucket_for_size(bufmgr, size);
263
264 /* If we don't have caching at this size, don't actually round the
265 * allocation up.
266 */
267 if (bucket == NULL) {
268 bo_size = size;
269 if (bo_size < page_size)
270 bo_size = page_size;
271 } else {
272 bo_size = bucket->size;
273 }
274
275 pthread_mutex_lock(&bufmgr->lock);
276 /* Get a buffer out of the cache if available */
277 retry:
278 alloc_from_cache = false;
279 if (bucket != NULL && !list_empty(&bucket->head)) {
280 if (for_render) {
281 /* Allocate new render-target BOs from the tail (MRU)
282 * of the list, as it will likely be hot in the GPU
283 * cache and in the aperture for us.
284 */
285 bo = LIST_ENTRY(struct brw_bo, bucket->head.prev, head);
286 list_del(&bo->head);
287 alloc_from_cache = true;
288 bo->align = alignment;
289 } else {
290 assert(alignment == 0);
291 /* For non-render-target BOs (where we're probably
292 * going to map it first thing in order to fill it
293 * with data), check if the last BO in the cache is
294 * unbusy, and only reuse in that case. Otherwise,
295 * allocating a new buffer is probably faster than
296 * waiting for the GPU to finish.
297 */
298 bo = LIST_ENTRY(struct brw_bo, bucket->head.next, head);
299 if (!brw_bo_busy(bo)) {
300 alloc_from_cache = true;
301 list_del(&bo->head);
302 }
303 }
304
305 if (alloc_from_cache) {
306 if (!brw_bo_madvise(bo, I915_MADV_WILLNEED)) {
307 bo_free(bo);
308 brw_bo_cache_purge_bucket(bufmgr, bucket);
309 goto retry;
310 }
311
312 if (bo_set_tiling_internal(bo, tiling_mode, stride)) {
313 bo_free(bo);
314 goto retry;
315 }
316 }
317 }
318
319 if (!alloc_from_cache) {
320 struct drm_i915_gem_create create;
321
322 bo = calloc(1, sizeof(*bo));
323 if (!bo)
324 goto err;
325
326 bo->size = bo_size;
327 bo->idle = true;
328
329 memclear(create);
330 create.size = bo_size;
331
332 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create);
333 if (ret != 0) {
334 free(bo);
335 goto err;
336 }
337
338 bo->gem_handle = create.handle;
339 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
340
341 bo->bufmgr = bufmgr;
342 bo->align = alignment;
343
344 bo->tiling_mode = I915_TILING_NONE;
345 bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
346 bo->stride = 0;
347
348 if (bo_set_tiling_internal(bo, tiling_mode, stride))
349 goto err_free;
350 }
351
352 bo->name = name;
353 p_atomic_set(&bo->refcount, 1);
354 bo->reusable = true;
355 bo->cache_coherent = bufmgr->has_llc;
356
357 pthread_mutex_unlock(&bufmgr->lock);
358
359 DBG("bo_create: buf %d (%s) %ldb\n", bo->gem_handle, bo->name, size);
360
361 return bo;
362
363 err_free:
364 bo_free(bo);
365 err:
366 pthread_mutex_unlock(&bufmgr->lock);
367 return NULL;
368 }
369
370 struct brw_bo *
371 brw_bo_alloc(struct brw_bufmgr *bufmgr,
372 const char *name, uint64_t size, uint64_t alignment)
373 {
374 return bo_alloc_internal(bufmgr, name, size, 0, I915_TILING_NONE, 0, 0);
375 }
376
377 struct brw_bo *
378 brw_bo_alloc_tiled(struct brw_bufmgr *bufmgr, const char *name,
379 uint64_t size, uint32_t tiling_mode, uint32_t pitch,
380 unsigned flags)
381 {
382 return bo_alloc_internal(bufmgr, name, size, flags, tiling_mode, pitch, 0);
383 }
384
385 struct brw_bo *
386 brw_bo_alloc_tiled_2d(struct brw_bufmgr *bufmgr, const char *name,
387 int x, int y, int cpp, uint32_t tiling,
388 uint32_t *pitch, unsigned flags)
389 {
390 uint64_t size;
391 uint32_t stride;
392 unsigned long aligned_y, height_alignment;
393
394 /* If we're tiled, our allocations are in 8 or 32-row blocks,
395 * so failure to align our height means that we won't allocate
396 * enough pages.
397 *
398 * If we're untiled, we still have to align to 2 rows high
399 * because the data port accesses 2x2 blocks even if the
400 * bottom row isn't to be rendered, so failure to align means
401 * we could walk off the end of the GTT and fault. This is
402 * documented on 965, and may be the case on older chipsets
403 * too so we try to be careful.
404 */
405 aligned_y = y;
406 height_alignment = 2;
407
408 if (tiling == I915_TILING_X)
409 height_alignment = 8;
410 else if (tiling == I915_TILING_Y)
411 height_alignment = 32;
412 aligned_y = ALIGN(y, height_alignment);
413
414 stride = x * cpp;
415 stride = bo_tile_pitch(bufmgr, stride, tiling);
416 size = stride * aligned_y;
417 size = bo_tile_size(bufmgr, size, tiling);
418 *pitch = stride;
419
420 if (tiling == I915_TILING_NONE)
421 stride = 0;
422
423 return bo_alloc_internal(bufmgr, name, size, flags, tiling, stride, 0);
424 }
425
426 /**
427 * Returns a brw_bo wrapping the given buffer object handle.
428 *
429 * This can be used when one application needs to pass a buffer object
430 * to another.
431 */
432 struct brw_bo *
433 brw_bo_gem_create_from_name(struct brw_bufmgr *bufmgr,
434 const char *name, unsigned int handle)
435 {
436 struct brw_bo *bo;
437 int ret;
438 struct drm_gem_open open_arg;
439 struct drm_i915_gem_get_tiling get_tiling;
440
441 /* At the moment most applications only have a few named bo.
442 * For instance, in a DRI client only the render buffers passed
443 * between X and the client are named. And since X returns the
444 * alternating names for the front/back buffer a linear search
445 * provides a sufficiently fast match.
446 */
447 pthread_mutex_lock(&bufmgr->lock);
448 bo = hash_find_bo(bufmgr->name_table, handle);
449 if (bo) {
450 brw_bo_reference(bo);
451 goto out;
452 }
453
454 memclear(open_arg);
455 open_arg.name = handle;
456 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
457 if (ret != 0) {
458 DBG("Couldn't reference %s handle 0x%08x: %s\n",
459 name, handle, strerror(errno));
460 bo = NULL;
461 goto out;
462 }
463 /* Now see if someone has used a prime handle to get this
464 * object from the kernel before by looking through the list
465 * again for a matching gem_handle
466 */
467 bo = hash_find_bo(bufmgr->handle_table, open_arg.handle);
468 if (bo) {
469 brw_bo_reference(bo);
470 goto out;
471 }
472
473 bo = calloc(1, sizeof(*bo));
474 if (!bo)
475 goto out;
476
477 p_atomic_set(&bo->refcount, 1);
478
479 bo->size = open_arg.size;
480 bo->offset64 = 0;
481 bo->bufmgr = bufmgr;
482 bo->gem_handle = open_arg.handle;
483 bo->name = name;
484 bo->global_name = handle;
485 bo->reusable = false;
486
487 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
488 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
489
490 memclear(get_tiling);
491 get_tiling.handle = bo->gem_handle;
492 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
493 if (ret != 0)
494 goto err_unref;
495
496 bo->tiling_mode = get_tiling.tiling_mode;
497 bo->swizzle_mode = get_tiling.swizzle_mode;
498 /* XXX stride is unknown */
499 DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
500
501 out:
502 pthread_mutex_unlock(&bufmgr->lock);
503 return bo;
504
505 err_unref:
506 bo_free(bo);
507 pthread_mutex_unlock(&bufmgr->lock);
508 return NULL;
509 }
510
511 static void
512 bo_free(struct brw_bo *bo)
513 {
514 struct brw_bufmgr *bufmgr = bo->bufmgr;
515 struct drm_gem_close close;
516 struct hash_entry *entry;
517 int ret;
518
519 if (bo->map_cpu) {
520 VG(VALGRIND_FREELIKE_BLOCK(bo->map_cpu, 0));
521 drm_munmap(bo->map_cpu, bo->size);
522 }
523 if (bo->map_wc) {
524 VG(VALGRIND_FREELIKE_BLOCK(bo->map_wc, 0));
525 drm_munmap(bo->map_wc, bo->size);
526 }
527 if (bo->map_gtt) {
528 drm_munmap(bo->map_gtt, bo->size);
529 }
530
531 if (bo->global_name) {
532 entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
533 _mesa_hash_table_remove(bufmgr->name_table, entry);
534 }
535 entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
536 _mesa_hash_table_remove(bufmgr->handle_table, entry);
537
538 /* Close this object */
539 memclear(close);
540 close.handle = bo->gem_handle;
541 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
542 if (ret != 0) {
543 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
544 bo->gem_handle, bo->name, strerror(errno));
545 }
546 free(bo);
547 }
548
549 /** Frees all cached buffers significantly older than @time. */
550 static void
551 cleanup_bo_cache(struct brw_bufmgr *bufmgr, time_t time)
552 {
553 int i;
554
555 if (bufmgr->time == time)
556 return;
557
558 for (i = 0; i < bufmgr->num_buckets; i++) {
559 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
560
561 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
562 if (time - bo->free_time <= 1)
563 break;
564
565 list_del(&bo->head);
566
567 bo_free(bo);
568 }
569 }
570
571 bufmgr->time = time;
572 }
573
574 static void
575 bo_unreference_final(struct brw_bo *bo, time_t time)
576 {
577 struct brw_bufmgr *bufmgr = bo->bufmgr;
578 struct bo_cache_bucket *bucket;
579
580 DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
581
582 bucket = bucket_for_size(bufmgr, bo->size);
583 /* Put the buffer into our internal cache for reuse if we can. */
584 if (bufmgr->bo_reuse && bo->reusable && bucket != NULL &&
585 brw_bo_madvise(bo, I915_MADV_DONTNEED)) {
586 bo->free_time = time;
587
588 bo->name = NULL;
589 bo->kflags = 0;
590
591 list_addtail(&bo->head, &bucket->head);
592 } else {
593 bo_free(bo);
594 }
595 }
596
597 void
598 brw_bo_unreference(struct brw_bo *bo)
599 {
600 if (bo == NULL)
601 return;
602
603 assert(p_atomic_read(&bo->refcount) > 0);
604
605 if (atomic_add_unless(&bo->refcount, -1, 1)) {
606 struct brw_bufmgr *bufmgr = bo->bufmgr;
607 struct timespec time;
608
609 clock_gettime(CLOCK_MONOTONIC, &time);
610
611 pthread_mutex_lock(&bufmgr->lock);
612
613 if (p_atomic_dec_zero(&bo->refcount)) {
614 bo_unreference_final(bo, time.tv_sec);
615 cleanup_bo_cache(bufmgr, time.tv_sec);
616 }
617
618 pthread_mutex_unlock(&bufmgr->lock);
619 }
620 }
621
622 static void
623 set_domain(struct brw_context *brw, const char *action,
624 struct brw_bo *bo, uint32_t read_domains, uint32_t write_domain)
625 {
626 struct drm_i915_gem_set_domain sd = {
627 .handle = bo->gem_handle,
628 .read_domains = read_domains,
629 .write_domain = write_domain,
630 };
631
632 double elapsed = unlikely(brw && brw->perf_debug) ? -get_time() : 0.0;
633
634 if (drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0) {
635 DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s.\n",
636 __FILE__, __LINE__, bo->gem_handle, read_domains, write_domain,
637 strerror(errno));
638 }
639
640 if (unlikely(brw && brw->perf_debug)) {
641 elapsed += get_time();
642 if (elapsed > 1e-5) /* 0.01ms */
643 perf_debug("%s a busy \"%s\" BO stalled and took %.03f ms.\n",
644 action, bo->name, elapsed * 1000);
645 }
646 }
647
648 static void
649 print_flags(unsigned flags)
650 {
651 if (flags & MAP_READ)
652 DBG("READ ");
653 if (flags & MAP_WRITE)
654 DBG("WRITE ");
655 if (flags & MAP_ASYNC)
656 DBG("ASYNC ");
657 if (flags & MAP_PERSISTENT)
658 DBG("PERSISTENT ");
659 if (flags & MAP_COHERENT)
660 DBG("COHERENT ");
661 if (flags & MAP_RAW)
662 DBG("RAW ");
663 DBG("\n");
664 }
665
666 static void *
667 brw_bo_map_cpu(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
668 {
669 struct brw_bufmgr *bufmgr = bo->bufmgr;
670
671 if (!bo->map_cpu) {
672 struct drm_i915_gem_mmap mmap_arg;
673 void *map;
674
675 DBG("brw_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
676
677 memclear(mmap_arg);
678 mmap_arg.handle = bo->gem_handle;
679 mmap_arg.size = bo->size;
680 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
681 if (ret != 0) {
682 ret = -errno;
683 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
684 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
685 return NULL;
686 }
687 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
688 map = (void *) (uintptr_t) mmap_arg.addr_ptr;
689
690 if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
691 VG(VALGRIND_FREELIKE_BLOCK(map, 0));
692 drm_munmap(map, bo->size);
693 }
694 }
695 DBG("brw_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
696 bo->map_cpu);
697 print_flags(flags);
698
699 if (!(flags & MAP_ASYNC) || !bufmgr->has_llc) {
700 set_domain(brw, "CPU mapping", bo, I915_GEM_DOMAIN_CPU,
701 flags & MAP_WRITE ? I915_GEM_DOMAIN_CPU : 0);
702 }
703
704 return bo->map_cpu;
705 }
706
707 static void *
708 brw_bo_map_gtt(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
709 {
710 struct brw_bufmgr *bufmgr = bo->bufmgr;
711
712 /* Get a mapping of the buffer if we haven't before. */
713 if (bo->map_gtt == NULL) {
714 struct drm_i915_gem_mmap_gtt mmap_arg;
715 void *map;
716
717 DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
718
719 memclear(mmap_arg);
720 mmap_arg.handle = bo->gem_handle;
721
722 /* Get the fake offset back... */
723 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
724 if (ret != 0) {
725 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
726 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
727 pthread_mutex_unlock(&bufmgr->lock);
728 return NULL;
729 }
730
731 /* and mmap it. We don't need to use VALGRIND_MALLOCLIKE_BLOCK
732 * because Valgrind will already intercept this mmap call.
733 */
734 map = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
735 MAP_SHARED, bufmgr->fd, mmap_arg.offset);
736 if (map == MAP_FAILED) {
737 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
738 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
739 return NULL;
740 }
741
742 if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
743 drm_munmap(map, bo->size);
744 }
745 }
746
747 DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
748 print_flags(flags);
749
750 if (!(flags & MAP_ASYNC) || !bufmgr->has_llc) {
751 set_domain(brw, "GTT mapping", bo,
752 I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
753 }
754
755 return bo->map_gtt;
756 }
757
758 static bool
759 can_map_cpu(struct brw_bo *bo, unsigned flags)
760 {
761 if (bo->cache_coherent)
762 return true;
763
764 if (flags & MAP_PERSISTENT)
765 return false;
766
767 if (flags & MAP_COHERENT)
768 return false;
769
770 return !(flags & MAP_WRITE);
771 }
772
773 void *
774 brw_bo_map(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
775 {
776 if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
777 return brw_bo_map_gtt(brw, bo, flags);
778 else if (can_map_cpu(bo, flags))
779 return brw_bo_map_cpu(brw, bo, flags);
780 else
781 return brw_bo_map_gtt(brw, bo, flags);
782 }
783
784 int
785 brw_bo_subdata(struct brw_bo *bo, uint64_t offset,
786 uint64_t size, const void *data)
787 {
788 struct brw_bufmgr *bufmgr = bo->bufmgr;
789 struct drm_i915_gem_pwrite pwrite;
790 int ret;
791
792 memclear(pwrite);
793 pwrite.handle = bo->gem_handle;
794 pwrite.offset = offset;
795 pwrite.size = size;
796 pwrite.data_ptr = (uint64_t) (uintptr_t) data;
797 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_PWRITE, &pwrite);
798 if (ret != 0) {
799 ret = -errno;
800 DBG("%s:%d: Error writing data to buffer %d: "
801 "(%"PRIu64" %"PRIu64") %s .\n",
802 __FILE__, __LINE__, bo->gem_handle, offset, size, strerror(errno));
803 }
804
805 return ret;
806 }
807
808 int
809 brw_bo_get_subdata(struct brw_bo *bo, uint64_t offset,
810 uint64_t size, void *data)
811 {
812 struct brw_bufmgr *bufmgr = bo->bufmgr;
813 struct drm_i915_gem_pread pread;
814 int ret;
815
816 memclear(pread);
817 pread.handle = bo->gem_handle;
818 pread.offset = offset;
819 pread.size = size;
820 pread.data_ptr = (uint64_t) (uintptr_t) data;
821 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_PREAD, &pread);
822 if (ret != 0) {
823 ret = -errno;
824 DBG("%s:%d: Error reading data from buffer %d: "
825 "(%"PRIu64" %"PRIu64") %s .\n",
826 __FILE__, __LINE__, bo->gem_handle, offset, size, strerror(errno));
827 }
828
829 return ret;
830 }
831
832 /** Waits for all GPU rendering with the object to have completed. */
833 void
834 brw_bo_wait_rendering(struct brw_context *brw, struct brw_bo *bo)
835 {
836 set_domain(brw, "waiting for",
837 bo, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
838 }
839
840 /**
841 * Waits on a BO for the given amount of time.
842 *
843 * @bo: buffer object to wait for
844 * @timeout_ns: amount of time to wait in nanoseconds.
845 * If value is less than 0, an infinite wait will occur.
846 *
847 * Returns 0 if the wait was successful ie. the last batch referencing the
848 * object has completed within the allotted time. Otherwise some negative return
849 * value describes the error. Of particular interest is -ETIME when the wait has
850 * failed to yield the desired result.
851 *
852 * Similar to brw_bo_wait_rendering except a timeout parameter allows
853 * the operation to give up after a certain amount of time. Another subtle
854 * difference is the internal locking semantics are different (this variant does
855 * not hold the lock for the duration of the wait). This makes the wait subject
856 * to a larger userspace race window.
857 *
858 * The implementation shall wait until the object is no longer actively
859 * referenced within a batch buffer at the time of the call. The wait will
860 * not guarantee that the buffer is re-issued via another thread, or an flinked
861 * handle. Userspace must make sure this race does not occur if such precision
862 * is important.
863 *
864 * Note that some kernels have broken the inifite wait for negative values
865 * promise, upgrade to latest stable kernels if this is the case.
866 */
867 int
868 brw_bo_wait(struct brw_bo *bo, int64_t timeout_ns)
869 {
870 struct brw_bufmgr *bufmgr = bo->bufmgr;
871 struct drm_i915_gem_wait wait;
872 int ret;
873
874 memclear(wait);
875 wait.bo_handle = bo->gem_handle;
876 wait.timeout_ns = timeout_ns;
877 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
878 if (ret == -1)
879 return -errno;
880
881 return ret;
882 }
883
884 void
885 brw_bufmgr_destroy(struct brw_bufmgr *bufmgr)
886 {
887 pthread_mutex_destroy(&bufmgr->lock);
888
889 /* Free any cached buffer objects we were going to reuse */
890 for (int i = 0; i < bufmgr->num_buckets; i++) {
891 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
892
893 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
894 list_del(&bo->head);
895
896 bo_free(bo);
897 }
898 }
899
900 _mesa_hash_table_destroy(bufmgr->name_table, NULL);
901 _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
902
903 free(bufmgr);
904 }
905
906 static int
907 bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
908 uint32_t stride)
909 {
910 struct brw_bufmgr *bufmgr = bo->bufmgr;
911 struct drm_i915_gem_set_tiling set_tiling;
912 int ret;
913
914 if (bo->global_name == 0 &&
915 tiling_mode == bo->tiling_mode && stride == bo->stride)
916 return 0;
917
918 memset(&set_tiling, 0, sizeof(set_tiling));
919 do {
920 /* set_tiling is slightly broken and overwrites the
921 * input on the error path, so we have to open code
922 * rmIoctl.
923 */
924 set_tiling.handle = bo->gem_handle;
925 set_tiling.tiling_mode = tiling_mode;
926 set_tiling.stride = stride;
927
928 ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
929 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
930 if (ret == -1)
931 return -errno;
932
933 bo->tiling_mode = set_tiling.tiling_mode;
934 bo->swizzle_mode = set_tiling.swizzle_mode;
935 bo->stride = set_tiling.stride;
936 return 0;
937 }
938
939 int
940 brw_bo_get_tiling(struct brw_bo *bo, uint32_t *tiling_mode,
941 uint32_t *swizzle_mode)
942 {
943 *tiling_mode = bo->tiling_mode;
944 *swizzle_mode = bo->swizzle_mode;
945 return 0;
946 }
947
948 struct brw_bo *
949 brw_bo_gem_create_from_prime(struct brw_bufmgr *bufmgr, int prime_fd)
950 {
951 int ret;
952 uint32_t handle;
953 struct brw_bo *bo;
954 struct drm_i915_gem_get_tiling get_tiling;
955
956 pthread_mutex_lock(&bufmgr->lock);
957 ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
958 if (ret) {
959 DBG("create_from_prime: failed to obtain handle from fd: %s\n",
960 strerror(errno));
961 pthread_mutex_unlock(&bufmgr->lock);
962 return NULL;
963 }
964
965 /*
966 * See if the kernel has already returned this buffer to us. Just as
967 * for named buffers, we must not create two bo's pointing at the same
968 * kernel object
969 */
970 bo = hash_find_bo(bufmgr->handle_table, handle);
971 if (bo) {
972 brw_bo_reference(bo);
973 goto out;
974 }
975
976 bo = calloc(1, sizeof(*bo));
977 if (!bo)
978 goto out;
979
980 p_atomic_set(&bo->refcount, 1);
981
982 /* Determine size of bo. The fd-to-handle ioctl really should
983 * return the size, but it doesn't. If we have kernel 3.12 or
984 * later, we can lseek on the prime fd to get the size. Older
985 * kernels will just fail, in which case we fall back to the
986 * provided (estimated or guess size). */
987 ret = lseek(prime_fd, 0, SEEK_END);
988 if (ret != -1)
989 bo->size = ret;
990
991 bo->bufmgr = bufmgr;
992
993 bo->gem_handle = handle;
994 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
995
996 bo->name = "prime";
997 bo->reusable = false;
998
999 memclear(get_tiling);
1000 get_tiling.handle = bo->gem_handle;
1001 if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
1002 goto err;
1003
1004 bo->tiling_mode = get_tiling.tiling_mode;
1005 bo->swizzle_mode = get_tiling.swizzle_mode;
1006 /* XXX stride is unknown */
1007
1008 out:
1009 pthread_mutex_unlock(&bufmgr->lock);
1010 return bo;
1011
1012 err:
1013 bo_free(bo);
1014 pthread_mutex_unlock(&bufmgr->lock);
1015 return NULL;
1016 }
1017
1018 int
1019 brw_bo_gem_export_to_prime(struct brw_bo *bo, int *prime_fd)
1020 {
1021 struct brw_bufmgr *bufmgr = bo->bufmgr;
1022
1023 if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1024 DRM_CLOEXEC, prime_fd) != 0)
1025 return -errno;
1026
1027 bo->reusable = false;
1028
1029 return 0;
1030 }
1031
1032 int
1033 brw_bo_flink(struct brw_bo *bo, uint32_t *name)
1034 {
1035 struct brw_bufmgr *bufmgr = bo->bufmgr;
1036
1037 if (!bo->global_name) {
1038 struct drm_gem_flink flink;
1039
1040 memclear(flink);
1041 flink.handle = bo->gem_handle;
1042 if (drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1043 return -errno;
1044
1045 pthread_mutex_lock(&bufmgr->lock);
1046 if (!bo->global_name) {
1047 bo->global_name = flink.name;
1048 bo->reusable = false;
1049
1050 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
1051 }
1052 pthread_mutex_unlock(&bufmgr->lock);
1053 }
1054
1055 *name = bo->global_name;
1056 return 0;
1057 }
1058
1059 /**
1060 * Enables unlimited caching of buffer objects for reuse.
1061 *
1062 * This is potentially very memory expensive, as the cache at each bucket
1063 * size is only bounded by how many buffers of that size we've managed to have
1064 * in flight at once.
1065 */
1066 void
1067 brw_bufmgr_enable_reuse(struct brw_bufmgr *bufmgr)
1068 {
1069 bufmgr->bo_reuse = true;
1070 }
1071
1072 static void
1073 add_bucket(struct brw_bufmgr *bufmgr, int size)
1074 {
1075 unsigned int i = bufmgr->num_buckets;
1076
1077 assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1078
1079 list_inithead(&bufmgr->cache_bucket[i].head);
1080 bufmgr->cache_bucket[i].size = size;
1081 bufmgr->num_buckets++;
1082 }
1083
1084 static void
1085 init_cache_buckets(struct brw_bufmgr *bufmgr)
1086 {
1087 uint64_t size, cache_max_size = 64 * 1024 * 1024;
1088
1089 /* OK, so power of two buckets was too wasteful of memory.
1090 * Give 3 other sizes between each power of two, to hopefully
1091 * cover things accurately enough. (The alternative is
1092 * probably to just go for exact matching of sizes, and assume
1093 * that for things like composited window resize the tiled
1094 * width/height alignment and rounding of sizes to pages will
1095 * get us useful cache hit rates anyway)
1096 */
1097 add_bucket(bufmgr, 4096);
1098 add_bucket(bufmgr, 4096 * 2);
1099 add_bucket(bufmgr, 4096 * 3);
1100
1101 /* Initialize the linked lists for BO reuse cache. */
1102 for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
1103 add_bucket(bufmgr, size);
1104
1105 add_bucket(bufmgr, size + size * 1 / 4);
1106 add_bucket(bufmgr, size + size * 2 / 4);
1107 add_bucket(bufmgr, size + size * 3 / 4);
1108 }
1109 }
1110
1111 uint32_t
1112 brw_create_hw_context(struct brw_bufmgr *bufmgr)
1113 {
1114 struct drm_i915_gem_context_create create;
1115 int ret;
1116
1117 memclear(create);
1118 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
1119 if (ret != 0) {
1120 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
1121 return 0;
1122 }
1123
1124 return create.ctx_id;
1125 }
1126
1127 void
1128 brw_destroy_hw_context(struct brw_bufmgr *bufmgr, uint32_t ctx_id)
1129 {
1130 struct drm_i915_gem_context_destroy d = {.ctx_id = ctx_id };
1131
1132 if (ctx_id != 0 &&
1133 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
1134 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
1135 strerror(errno));
1136 }
1137 }
1138
1139 int
1140 brw_reg_read(struct brw_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
1141 {
1142 struct drm_i915_reg_read reg_read;
1143 int ret;
1144
1145 memclear(reg_read);
1146 reg_read.offset = offset;
1147
1148 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
1149
1150 *result = reg_read.val;
1151 return ret;
1152 }
1153
1154 /**
1155 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
1156 * and manage map buffer objections.
1157 *
1158 * \param fd File descriptor of the opened DRM device.
1159 */
1160 struct brw_bufmgr *
1161 brw_bufmgr_init(struct gen_device_info *devinfo, int fd, int batch_size)
1162 {
1163 struct brw_bufmgr *bufmgr;
1164
1165 bufmgr = calloc(1, sizeof(*bufmgr));
1166 if (bufmgr == NULL)
1167 return NULL;
1168
1169 /* Handles to buffer objects belong to the device fd and are not
1170 * reference counted by the kernel. If the same fd is used by
1171 * multiple parties (threads sharing the same screen bufmgr, or
1172 * even worse the same device fd passed to multiple libraries)
1173 * ownership of those handles is shared by those independent parties.
1174 *
1175 * Don't do this! Ensure that each library/bufmgr has its own device
1176 * fd so that its namespace does not clash with another.
1177 */
1178 bufmgr->fd = fd;
1179
1180 if (pthread_mutex_init(&bufmgr->lock, NULL) != 0) {
1181 free(bufmgr);
1182 return NULL;
1183 }
1184
1185 bufmgr->has_llc = devinfo->has_llc;
1186
1187 init_cache_buckets(bufmgr);
1188
1189 bufmgr->name_table =
1190 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1191 bufmgr->handle_table =
1192 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1193
1194 return bufmgr;
1195 }