c9fd56c547e404cb1ff9b482638dab548e52e1a1
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "compiler/nir/nir.h"
35 #include "main/api_exec.h"
36 #include "main/context.h"
37 #include "main/fbobject.h"
38 #include "main/extensions.h"
39 #include "main/glthread.h"
40 #include "main/macros.h"
41 #include "main/points.h"
42 #include "main/version.h"
43 #include "main/vtxfmt.h"
44 #include "main/texobj.h"
45 #include "main/framebuffer.h"
46 #include "main/stencil.h"
47 #include "main/state.h"
48 #include "main/spirv_extensions.h"
49
50 #include "vbo/vbo.h"
51
52 #include "drivers/common/driverfuncs.h"
53 #include "drivers/common/meta.h"
54 #include "utils.h"
55
56 #include "brw_context.h"
57 #include "brw_defines.h"
58 #include "brw_blorp.h"
59 #include "brw_draw.h"
60 #include "brw_state.h"
61
62 #include "intel_batchbuffer.h"
63 #include "intel_buffer_objects.h"
64 #include "intel_buffers.h"
65 #include "intel_fbo.h"
66 #include "intel_mipmap_tree.h"
67 #include "intel_pixel.h"
68 #include "intel_image.h"
69 #include "intel_tex.h"
70 #include "intel_tex_obj.h"
71
72 #include "swrast_setup/swrast_setup.h"
73 #include "tnl/tnl.h"
74 #include "tnl/t_pipeline.h"
75 #include "util/ralloc.h"
76 #include "util/debug.h"
77 #include "util/disk_cache.h"
78 #include "util/u_memory.h"
79 #include "isl/isl.h"
80
81 #include "common/gen_defines.h"
82
83 #include "compiler/spirv/nir_spirv.h"
84 /***************************************
85 * Mesa's Driver Functions
86 ***************************************/
87
88 const char *const brw_vendor_string = "Intel Open Source Technology Center";
89
90 static const char *
91 get_bsw_model(const struct intel_screen *screen)
92 {
93 switch (screen->eu_total) {
94 case 16:
95 return "405";
96 case 12:
97 return "400";
98 default:
99 return " ";
100 }
101 }
102
103 const char *
104 brw_get_renderer_string(const struct intel_screen *screen)
105 {
106 static char buf[128];
107 const char *name = gen_get_device_name(screen->deviceID);
108
109 if (!name)
110 name = "Intel Unknown";
111
112 snprintf(buf, sizeof(buf), "Mesa DRI %s", name);
113
114 /* Braswell branding is funny, so we have to fix it up here */
115 if (screen->deviceID == 0x22B1) {
116 char *needle = strstr(buf, "XXX");
117 if (needle)
118 memcpy(needle, get_bsw_model(screen), 3);
119 }
120
121 return buf;
122 }
123
124 static const GLubyte *
125 intel_get_string(struct gl_context * ctx, GLenum name)
126 {
127 const struct brw_context *const brw = brw_context(ctx);
128
129 switch (name) {
130 case GL_VENDOR:
131 return (GLubyte *) brw_vendor_string;
132
133 case GL_RENDERER:
134 return
135 (GLubyte *) brw_get_renderer_string(brw->screen);
136
137 default:
138 return NULL;
139 }
140 }
141
142 static void
143 brw_set_background_context(struct gl_context *ctx,
144 struct util_queue_monitoring *queue_info)
145 {
146 struct brw_context *brw = brw_context(ctx);
147 __DRIcontext *driContext = brw->driContext;
148 __DRIscreen *driScreen = driContext->driScreenPriv;
149 const __DRIbackgroundCallableExtension *backgroundCallable =
150 driScreen->dri2.backgroundCallable;
151
152 /* Note: Mesa will only call this function if we've called
153 * _mesa_enable_multithreading(). We only do that if the loader exposed
154 * the __DRI_BACKGROUND_CALLABLE extension. So we know that
155 * backgroundCallable is not NULL.
156 */
157 backgroundCallable->setBackgroundContext(driContext->loaderPrivate);
158 }
159
160 static void
161 intel_viewport(struct gl_context *ctx)
162 {
163 struct brw_context *brw = brw_context(ctx);
164 __DRIcontext *driContext = brw->driContext;
165
166 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
167 if (driContext->driDrawablePriv)
168 dri2InvalidateDrawable(driContext->driDrawablePriv);
169 if (driContext->driReadablePriv)
170 dri2InvalidateDrawable(driContext->driReadablePriv);
171 }
172 }
173
174 static void
175 intel_update_framebuffer(struct gl_context *ctx,
176 struct gl_framebuffer *fb)
177 {
178 struct brw_context *brw = brw_context(ctx);
179
180 /* Quantize the derived default number of samples
181 */
182 fb->DefaultGeometry._NumSamples =
183 intel_quantize_num_samples(brw->screen,
184 fb->DefaultGeometry.NumSamples);
185 }
186
187 static void
188 intel_update_state(struct gl_context * ctx)
189 {
190 GLuint new_state = ctx->NewState;
191 struct brw_context *brw = brw_context(ctx);
192
193 if (ctx->swrast_context)
194 _swrast_InvalidateState(ctx, new_state);
195
196 brw->NewGLState |= new_state;
197
198 if (new_state & (_NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT))
199 _mesa_update_draw_buffer_bounds(ctx, ctx->DrawBuffer);
200
201 if (new_state & (_NEW_STENCIL | _NEW_BUFFERS)) {
202 brw->stencil_enabled = _mesa_stencil_is_enabled(ctx);
203 brw->stencil_two_sided = _mesa_stencil_is_two_sided(ctx);
204 brw->stencil_write_enabled =
205 _mesa_stencil_is_write_enabled(ctx, brw->stencil_two_sided);
206 }
207
208 if (new_state & _NEW_POLYGON)
209 brw->polygon_front_bit = _mesa_polygon_get_front_bit(ctx);
210
211 if (new_state & _NEW_BUFFERS) {
212 intel_update_framebuffer(ctx, ctx->DrawBuffer);
213 if (ctx->DrawBuffer != ctx->ReadBuffer)
214 intel_update_framebuffer(ctx, ctx->ReadBuffer);
215 }
216 }
217
218 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
219
220 static void
221 intel_flush_front(struct gl_context *ctx)
222 {
223 struct brw_context *brw = brw_context(ctx);
224 __DRIcontext *driContext = brw->driContext;
225 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
226 __DRIscreen *const dri_screen = brw->screen->driScrnPriv;
227
228 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
229 if (flushFront(dri_screen) && driDrawable &&
230 driDrawable->loaderPrivate) {
231
232 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
233 *
234 * This potentially resolves both front and back buffer. It
235 * is unnecessary to resolve the back, but harms nothing except
236 * performance. And no one cares about front-buffer render
237 * performance.
238 */
239 intel_resolve_for_dri2_flush(brw, driDrawable);
240 intel_batchbuffer_flush(brw);
241
242 flushFront(dri_screen)(driDrawable, driDrawable->loaderPrivate);
243
244 /* We set the dirty bit in intel_prepare_render() if we're
245 * front buffer rendering once we get there.
246 */
247 brw->front_buffer_dirty = false;
248 }
249 }
250 }
251
252 static void
253 brw_display_shared_buffer(struct brw_context *brw)
254 {
255 __DRIcontext *dri_context = brw->driContext;
256 __DRIdrawable *dri_drawable = dri_context->driDrawablePriv;
257 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
258 int fence_fd = -1;
259
260 if (!brw->is_shared_buffer_bound)
261 return;
262
263 if (!brw->is_shared_buffer_dirty)
264 return;
265
266 if (brw->screen->has_exec_fence) {
267 /* This function is always called during a flush operation, so there is
268 * no need to flush again here. But we want to provide a fence_fd to the
269 * loader, and a redundant flush is the easiest way to acquire one.
270 */
271 if (intel_batchbuffer_flush_fence(brw, -1, &fence_fd))
272 return;
273 }
274
275 dri_screen->mutableRenderBuffer.loader
276 ->displaySharedBuffer(dri_drawable, fence_fd,
277 dri_drawable->loaderPrivate);
278 brw->is_shared_buffer_dirty = false;
279 }
280
281 static void
282 intel_glFlush(struct gl_context *ctx)
283 {
284 struct brw_context *brw = brw_context(ctx);
285
286 intel_batchbuffer_flush(brw);
287 intel_flush_front(ctx);
288 brw_display_shared_buffer(brw);
289 brw->need_flush_throttle = true;
290 }
291
292 static void
293 intel_glEnable(struct gl_context *ctx, GLenum cap, GLboolean state)
294 {
295 struct brw_context *brw = brw_context(ctx);
296
297 switch (cap) {
298 case GL_BLACKHOLE_RENDER_INTEL:
299 brw->frontend_noop = state;
300 intel_batchbuffer_flush(brw);
301 intel_batchbuffer_maybe_noop(brw);
302 /* Because we started previous batches with a potential
303 * MI_BATCH_BUFFER_END if NOOP was enabled, that means that anything
304 * that was ever emitted after that never made it to the HW. So when the
305 * blackhole state changes from NOOP->!NOOP reupload the entire state.
306 */
307 if (!brw->frontend_noop) {
308 brw->NewGLState = ~0u;
309 brw->ctx.NewDriverState = ~0ull;
310 }
311 break;
312 default:
313 break;
314 }
315 }
316
317 static void
318 intel_finish(struct gl_context * ctx)
319 {
320 struct brw_context *brw = brw_context(ctx);
321
322 intel_glFlush(ctx);
323
324 if (brw->batch.last_bo)
325 brw_bo_wait_rendering(brw->batch.last_bo);
326 }
327
328 static void
329 brw_init_driver_functions(struct brw_context *brw,
330 struct dd_function_table *functions)
331 {
332 const struct gen_device_info *devinfo = &brw->screen->devinfo;
333
334 _mesa_init_driver_functions(functions);
335
336 /* GLX uses DRI2 invalidate events to handle window resizing.
337 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
338 * which doesn't provide a mechanism for snooping the event queues.
339 *
340 * So EGL still relies on viewport hacks to handle window resizing.
341 * This should go away with DRI3000.
342 */
343 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
344 functions->Viewport = intel_viewport;
345
346 functions->Enable = intel_glEnable;
347 functions->Flush = intel_glFlush;
348 functions->Finish = intel_finish;
349 functions->GetString = intel_get_string;
350 functions->UpdateState = intel_update_state;
351
352 brw_init_draw_functions(functions);
353 intelInitTextureFuncs(functions);
354 intelInitTextureImageFuncs(functions);
355 intelInitTextureCopyImageFuncs(functions);
356 intelInitCopyImageFuncs(functions);
357 intelInitClearFuncs(functions);
358 intelInitBufferFuncs(functions);
359 intelInitPixelFuncs(functions);
360 intelInitBufferObjectFuncs(functions);
361 brw_init_syncobj_functions(functions);
362 brw_init_object_purgeable_functions(functions);
363
364 brwInitFragProgFuncs( functions );
365 brw_init_common_queryobj_functions(functions);
366 if (devinfo->gen >= 8 || devinfo->is_haswell)
367 hsw_init_queryobj_functions(functions);
368 else if (devinfo->gen >= 6)
369 gen6_init_queryobj_functions(functions);
370 else
371 gen4_init_queryobj_functions(functions);
372 brw_init_compute_functions(functions);
373 brw_init_conditional_render_functions(functions);
374
375 functions->GenerateMipmap = brw_generate_mipmap;
376
377 functions->QueryInternalFormat = brw_query_internal_format;
378
379 functions->NewTransformFeedback = brw_new_transform_feedback;
380 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
381 if (can_do_mi_math_and_lrr(brw->screen)) {
382 functions->BeginTransformFeedback = hsw_begin_transform_feedback;
383 functions->EndTransformFeedback = hsw_end_transform_feedback;
384 functions->PauseTransformFeedback = hsw_pause_transform_feedback;
385 functions->ResumeTransformFeedback = hsw_resume_transform_feedback;
386 } else if (devinfo->gen >= 7) {
387 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
388 functions->EndTransformFeedback = gen7_end_transform_feedback;
389 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
390 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
391 functions->GetTransformFeedbackVertexCount =
392 brw_get_transform_feedback_vertex_count;
393 } else {
394 functions->BeginTransformFeedback = brw_begin_transform_feedback;
395 functions->EndTransformFeedback = brw_end_transform_feedback;
396 functions->PauseTransformFeedback = brw_pause_transform_feedback;
397 functions->ResumeTransformFeedback = brw_resume_transform_feedback;
398 functions->GetTransformFeedbackVertexCount =
399 brw_get_transform_feedback_vertex_count;
400 }
401
402 if (devinfo->gen >= 6)
403 functions->GetSamplePosition = gen6_get_sample_position;
404
405 /* GL_ARB_get_program_binary */
406 brw_program_binary_init(brw->screen->deviceID);
407 functions->GetProgramBinaryDriverSHA1 = brw_get_program_binary_driver_sha1;
408 functions->ProgramBinarySerializeDriverBlob = brw_serialize_program_binary;
409 functions->ProgramBinaryDeserializeDriverBlob =
410 brw_deserialize_program_binary;
411
412 if (brw->screen->disk_cache) {
413 functions->ShaderCacheSerializeDriverBlob = brw_program_serialize_nir;
414 }
415
416 functions->SetBackgroundContext = brw_set_background_context;
417 }
418
419 static void
420 brw_initialize_spirv_supported_capabilities(struct brw_context *brw)
421 {
422 const struct gen_device_info *devinfo = &brw->screen->devinfo;
423 struct gl_context *ctx = &brw->ctx;
424
425 /* The following SPIR-V capabilities are only supported on gen7+. In theory
426 * you should enable the extension only on gen7+, but just in case let's
427 * assert it.
428 */
429 assert(devinfo->gen >= 7);
430
431 ctx->Const.SpirVCapabilities.atomic_storage = devinfo->gen >= 7;
432 ctx->Const.SpirVCapabilities.draw_parameters = true;
433 ctx->Const.SpirVCapabilities.float64 = devinfo->gen >= 8;
434 ctx->Const.SpirVCapabilities.geometry_streams = devinfo->gen >= 7;
435 ctx->Const.SpirVCapabilities.image_write_without_format = true;
436 ctx->Const.SpirVCapabilities.int64 = devinfo->gen >= 8;
437 ctx->Const.SpirVCapabilities.tessellation = true;
438 ctx->Const.SpirVCapabilities.transform_feedback = devinfo->gen >= 7;
439 ctx->Const.SpirVCapabilities.variable_pointers = true;
440 ctx->Const.SpirVCapabilities.integer_functions2 = devinfo->gen >= 8;
441 }
442
443 static void
444 brw_initialize_context_constants(struct brw_context *brw)
445 {
446 const struct gen_device_info *devinfo = &brw->screen->devinfo;
447 struct gl_context *ctx = &brw->ctx;
448 const struct brw_compiler *compiler = brw->screen->compiler;
449
450 const bool stage_exists[MESA_SHADER_STAGES] = {
451 [MESA_SHADER_VERTEX] = true,
452 [MESA_SHADER_TESS_CTRL] = devinfo->gen >= 7,
453 [MESA_SHADER_TESS_EVAL] = devinfo->gen >= 7,
454 [MESA_SHADER_GEOMETRY] = devinfo->gen >= 6,
455 [MESA_SHADER_FRAGMENT] = true,
456 [MESA_SHADER_COMPUTE] =
457 (_mesa_is_desktop_gl(ctx) &&
458 ctx->Const.MaxComputeWorkGroupSize[0] >= 1024) ||
459 (ctx->API == API_OPENGLES2 &&
460 ctx->Const.MaxComputeWorkGroupSize[0] >= 128),
461 };
462
463 unsigned num_stages = 0;
464 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
465 if (stage_exists[i])
466 num_stages++;
467 }
468
469 unsigned max_samplers =
470 devinfo->gen >= 8 || devinfo->is_haswell ? BRW_MAX_TEX_UNIT : 16;
471
472 ctx->Const.MaxDualSourceDrawBuffers = 1;
473 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
474 ctx->Const.MaxCombinedShaderOutputResources =
475 MAX_IMAGE_UNITS + BRW_MAX_DRAW_BUFFERS;
476
477 /* The timestamp register we can read for glGetTimestamp() is
478 * sometimes only 32 bits, before scaling to nanoseconds (depending
479 * on kernel).
480 *
481 * Once scaled to nanoseconds the timestamp would roll over at a
482 * non-power-of-two, so an application couldn't use
483 * GL_QUERY_COUNTER_BITS to handle rollover correctly. Instead, we
484 * report 36 bits and truncate at that (rolling over 5 times as
485 * often as the HW counter), and when the 32-bit counter rolls
486 * over, it happens to also be at a rollover in the reported value
487 * from near (1<<36) to 0.
488 *
489 * The low 32 bits rolls over in ~343 seconds. Our 36-bit result
490 * rolls over every ~69 seconds.
491 */
492 ctx->Const.QueryCounterBits.Timestamp = 36;
493
494 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
495 ctx->Const.MaxImageUnits = MAX_IMAGE_UNITS;
496 if (devinfo->gen >= 7) {
497 ctx->Const.MaxRenderbufferSize = 16384;
498 ctx->Const.MaxTextureSize = 16384;
499 ctx->Const.MaxCubeTextureLevels = 15; /* 16384 */
500 } else {
501 ctx->Const.MaxRenderbufferSize = 8192;
502 ctx->Const.MaxTextureSize = 8192;
503 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
504 }
505 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
506 ctx->Const.MaxArrayTextureLayers = devinfo->gen >= 7 ? 2048 : 512;
507 ctx->Const.MaxTextureMbytes = 1536;
508 ctx->Const.MaxTextureRectSize = devinfo->gen >= 7 ? 16384 : 8192;
509 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
510 ctx->Const.MaxTextureLodBias = 15.0;
511 ctx->Const.StripTextureBorder = true;
512 if (devinfo->gen >= 7) {
513 ctx->Const.MaxProgramTextureGatherComponents = 4;
514 ctx->Const.MinProgramTextureGatherOffset = -32;
515 ctx->Const.MaxProgramTextureGatherOffset = 31;
516 } else if (devinfo->gen == 6) {
517 ctx->Const.MaxProgramTextureGatherComponents = 1;
518 ctx->Const.MinProgramTextureGatherOffset = -8;
519 ctx->Const.MaxProgramTextureGatherOffset = 7;
520 }
521
522 ctx->Const.MaxUniformBlockSize = 65536;
523
524 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
525 struct gl_program_constants *prog = &ctx->Const.Program[i];
526
527 if (!stage_exists[i])
528 continue;
529
530 prog->MaxTextureImageUnits = max_samplers;
531
532 prog->MaxUniformBlocks = BRW_MAX_UBO;
533 prog->MaxCombinedUniformComponents =
534 prog->MaxUniformComponents +
535 ctx->Const.MaxUniformBlockSize / 4 * prog->MaxUniformBlocks;
536
537 prog->MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
538 prog->MaxAtomicBuffers = BRW_MAX_ABO;
539 prog->MaxImageUniforms = compiler->scalar_stage[i] ? BRW_MAX_IMAGES : 0;
540 prog->MaxShaderStorageBlocks = BRW_MAX_SSBO;
541 }
542
543 ctx->Const.MaxTextureUnits =
544 MIN2(ctx->Const.MaxTextureCoordUnits,
545 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
546
547 ctx->Const.MaxUniformBufferBindings = num_stages * BRW_MAX_UBO;
548 ctx->Const.MaxCombinedUniformBlocks = num_stages * BRW_MAX_UBO;
549 ctx->Const.MaxCombinedAtomicBuffers = num_stages * BRW_MAX_ABO;
550 ctx->Const.MaxCombinedShaderStorageBlocks = num_stages * BRW_MAX_SSBO;
551 ctx->Const.MaxShaderStorageBufferBindings = num_stages * BRW_MAX_SSBO;
552 ctx->Const.MaxCombinedTextureImageUnits = num_stages * max_samplers;
553 ctx->Const.MaxCombinedImageUniforms = num_stages * BRW_MAX_IMAGES;
554
555
556 /* Hardware only supports a limited number of transform feedback buffers.
557 * So we need to override the Mesa default (which is based only on software
558 * limits).
559 */
560 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
561
562 /* On Gen6, in the worst case, we use up one binding table entry per
563 * transform feedback component (see comments above the definition of
564 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
565 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
566 * BRW_MAX_SOL_BINDINGS.
567 *
568 * In "separate components" mode, we need to divide this value by
569 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
570 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
571 */
572 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
573 ctx->Const.MaxTransformFeedbackSeparateComponents =
574 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
575
576 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount =
577 !can_do_mi_math_and_lrr(brw->screen);
578
579 int max_samples;
580 const int *msaa_modes = intel_supported_msaa_modes(brw->screen);
581 const int clamp_max_samples =
582 driQueryOptioni(&brw->optionCache, "clamp_max_samples");
583
584 if (clamp_max_samples < 0) {
585 max_samples = msaa_modes[0];
586 } else {
587 /* Select the largest supported MSAA mode that does not exceed
588 * clamp_max_samples.
589 */
590 max_samples = 0;
591 for (int i = 0; msaa_modes[i] != 0; ++i) {
592 if (msaa_modes[i] <= clamp_max_samples) {
593 max_samples = msaa_modes[i];
594 break;
595 }
596 }
597 }
598
599 ctx->Const.MaxSamples = max_samples;
600 ctx->Const.MaxColorTextureSamples = max_samples;
601 ctx->Const.MaxDepthTextureSamples = max_samples;
602 ctx->Const.MaxIntegerSamples = max_samples;
603 ctx->Const.MaxImageSamples = 0;
604
605 ctx->Const.MinLineWidth = 1.0;
606 ctx->Const.MinLineWidthAA = 1.0;
607 if (devinfo->gen >= 6) {
608 ctx->Const.MaxLineWidth = 7.375;
609 ctx->Const.MaxLineWidthAA = 7.375;
610 ctx->Const.LineWidthGranularity = 0.125;
611 } else {
612 ctx->Const.MaxLineWidth = 7.0;
613 ctx->Const.MaxLineWidthAA = 7.0;
614 ctx->Const.LineWidthGranularity = 0.5;
615 }
616
617 /* For non-antialiased lines, we have to round the line width to the
618 * nearest whole number. Make sure that we don't advertise a line
619 * width that, when rounded, will be beyond the actual hardware
620 * maximum.
621 */
622 assert(roundf(ctx->Const.MaxLineWidth) <= ctx->Const.MaxLineWidth);
623
624 ctx->Const.MinPointSize = 1.0;
625 ctx->Const.MinPointSizeAA = 1.0;
626 ctx->Const.MaxPointSize = 255.0;
627 ctx->Const.MaxPointSizeAA = 255.0;
628 ctx->Const.PointSizeGranularity = 1.0;
629
630 if (devinfo->gen >= 5 || devinfo->is_g4x)
631 ctx->Const.MaxClipPlanes = 8;
632
633 ctx->Const.GLSLFragCoordIsSysVal = true;
634 ctx->Const.GLSLFrontFacingIsSysVal = true;
635 ctx->Const.GLSLTessLevelsAsInputs = true;
636 ctx->Const.PrimitiveRestartForPatches = true;
637
638 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
639 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
640 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
641 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
642 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
643 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
644 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
645 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
646 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
647 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
648 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
649 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
650 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
651 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
652
653 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
654 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
655 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
656 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
657 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
658 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
659 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
660 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
661 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
662 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
663 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
664
665 /* Fragment shaders use real, 32-bit twos-complement integers for all
666 * integer types.
667 */
668 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
669 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
670 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
671 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
672 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
673
674 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
675 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
676 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
677 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
678 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
679
680 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
681 * but we're not sure how it's actually done for vertex order,
682 * that affect provoking vertex decision. Always use last vertex
683 * convention for quad primitive which works as expected for now.
684 */
685 if (devinfo->gen >= 6)
686 ctx->Const.QuadsFollowProvokingVertexConvention = false;
687
688 ctx->Const.NativeIntegers = true;
689
690 /* Regarding the CMP instruction, the Ivybridge PRM says:
691 *
692 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
693 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
694 * 0xFFFFFFFF) is assigned to dst."
695 *
696 * but PRMs for earlier generations say
697 *
698 * "In dword format, one GRF may store up to 8 results. When the register
699 * is used later as a vector of Booleans, as only LSB at each channel
700 * contains meaning [sic] data, software should make sure all higher bits
701 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
702 *
703 * We select the representation of a true boolean uniform to be ~0, and fix
704 * the results of Gen <= 5 CMP instruction's with -(result & 1).
705 */
706 ctx->Const.UniformBooleanTrue = ~0;
707
708 /* From the gen4 PRM, volume 4 page 127:
709 *
710 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
711 * the base address of the first element of the surface, computed in
712 * software by adding the surface base address to the byte offset of
713 * the element in the buffer."
714 *
715 * However, unaligned accesses are slower, so enforce buffer alignment.
716 *
717 * In order to push UBO data, 3DSTATE_CONSTANT_XS imposes an additional
718 * restriction: the start of the buffer needs to be 32B aligned.
719 */
720 ctx->Const.UniformBufferOffsetAlignment = 32;
721
722 /* ShaderStorageBufferOffsetAlignment should be a cacheline (64 bytes) so
723 * that we can safely have the CPU and GPU writing the same SSBO on
724 * non-cachecoherent systems (our Atom CPUs). With UBOs, the GPU never
725 * writes, so there's no problem. For an SSBO, the GPU and the CPU can
726 * be updating disjoint regions of the buffer simultaneously and that will
727 * break if the regions overlap the same cacheline.
728 */
729 ctx->Const.ShaderStorageBufferOffsetAlignment = 64;
730 ctx->Const.TextureBufferOffsetAlignment = 16;
731 ctx->Const.MaxTextureBufferSize = 128 * 1024 * 1024;
732
733 if (devinfo->gen >= 6) {
734 ctx->Const.MaxVarying = 32;
735 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
736 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents =
737 compiler->scalar_stage[MESA_SHADER_GEOMETRY] ? 128 : 64;
738 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
739 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
740 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxInputComponents = 128;
741 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxOutputComponents = 128;
742 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxInputComponents = 128;
743 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxOutputComponents = 128;
744 }
745
746 /* We want the GLSL compiler to emit code that uses condition codes */
747 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
748 ctx->Const.ShaderCompilerOptions[i] =
749 brw->screen->compiler->glsl_compiler_options[i];
750 }
751
752 if (devinfo->gen >= 7) {
753 ctx->Const.MaxViewportWidth = 32768;
754 ctx->Const.MaxViewportHeight = 32768;
755 }
756
757 /* ARB_viewport_array, OES_viewport_array */
758 if (devinfo->gen >= 6) {
759 ctx->Const.MaxViewports = GEN6_NUM_VIEWPORTS;
760 ctx->Const.ViewportSubpixelBits = 8;
761
762 /* Cast to float before negating because MaxViewportWidth is unsigned.
763 */
764 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
765 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
766 }
767
768 /* ARB_gpu_shader5 */
769 if (devinfo->gen >= 7)
770 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
771
772 /* ARB_framebuffer_no_attachments */
773 ctx->Const.MaxFramebufferWidth = 16384;
774 ctx->Const.MaxFramebufferHeight = 16384;
775 ctx->Const.MaxFramebufferLayers = ctx->Const.MaxArrayTextureLayers;
776 ctx->Const.MaxFramebufferSamples = max_samples;
777
778 /* OES_primitive_bounding_box */
779 ctx->Const.NoPrimitiveBoundingBoxOutput = true;
780
781 /* TODO: We should be able to use STD430 packing by default on all hardware
782 * but some piglit tests [1] currently fail on SNB when this is enabled.
783 * The problem is the messages we're using for doing uniform pulls
784 * in the vec4 back-end on SNB is the OWORD block load instruction, which
785 * takes its offset in units of OWORDS (16 bytes). On IVB+, we use the
786 * sampler which doesn't have these restrictions.
787 *
788 * In the scalar back-end, we use the sampler for dynamic uniform loads and
789 * pull an entire cache line at a time for constant offset loads both of
790 * which support almost any alignment.
791 *
792 * [1] glsl-1.40/uniform_buffer/vs-float-array-variable-index.shader_test
793 */
794 if (devinfo->gen >= 7)
795 ctx->Const.UseSTD430AsDefaultPacking = true;
796
797 if (!(ctx->Const.ContextFlags & GL_CONTEXT_FLAG_DEBUG_BIT))
798 ctx->Const.AllowMappedBuffersDuringExecution = true;
799
800 /* GL_ARB_get_program_binary */
801 ctx->Const.NumProgramBinaryFormats = 1;
802 }
803
804 static void
805 brw_initialize_cs_context_constants(struct brw_context *brw)
806 {
807 struct gl_context *ctx = &brw->ctx;
808 const struct intel_screen *screen = brw->screen;
809 struct gen_device_info *devinfo = &brw->screen->devinfo;
810
811 /* FINISHME: Do this for all platforms that the kernel supports */
812 if (devinfo->is_cherryview &&
813 screen->subslice_total > 0 && screen->eu_total > 0) {
814 /* Logical CS threads = EUs per subslice * 7 threads per EU */
815 uint32_t max_cs_threads = screen->eu_total / screen->subslice_total * 7;
816
817 /* Fuse configurations may give more threads than expected, never less. */
818 if (max_cs_threads > devinfo->max_cs_threads)
819 devinfo->max_cs_threads = max_cs_threads;
820 }
821
822 /* Maximum number of scalar compute shader invocations that can be run in
823 * parallel in the same subslice assuming SIMD32 dispatch.
824 *
825 * We don't advertise more than 64 threads, because we are limited to 64 by
826 * our usage of thread_width_max in the gpgpu walker command. This only
827 * currently impacts Haswell, which otherwise might be able to advertise 70
828 * threads. With SIMD32 and 64 threads, Haswell still provides twice the
829 * required the number of invocation needed for ARB_compute_shader.
830 */
831 const unsigned max_threads = MIN2(64, devinfo->max_cs_threads);
832 const uint32_t max_invocations = 32 * max_threads;
833 ctx->Const.MaxComputeWorkGroupSize[0] = max_invocations;
834 ctx->Const.MaxComputeWorkGroupSize[1] = max_invocations;
835 ctx->Const.MaxComputeWorkGroupSize[2] = max_invocations;
836 ctx->Const.MaxComputeWorkGroupInvocations = max_invocations;
837 ctx->Const.MaxComputeSharedMemorySize = 64 * 1024;
838
839 /* Constants used for ARB_compute_variable_group_size. The compiler will
840 * use the maximum to decide which SIMDs can be used. If we top this like
841 * max_invocations, that would prevent SIMD8 / SIMD16 to be considered.
842 *
843 * TODO: To avoid the trade off above between having the lower maximum
844 * vs. always using SIMD32, keep all three shader variants (for each SIMD)
845 * and select a suitable one at dispatch time.
846 */
847 if (devinfo->gen >= 7) {
848 const uint32_t max_var_invocations =
849 (max_threads >= 64 ? 8 : (max_threads >= 32 ? 16 : 32)) * max_threads;
850 assert(max_var_invocations >= 512);
851 ctx->Const.MaxComputeVariableGroupSize[0] = max_var_invocations;
852 ctx->Const.MaxComputeVariableGroupSize[1] = max_var_invocations;
853 ctx->Const.MaxComputeVariableGroupSize[2] = max_var_invocations;
854 ctx->Const.MaxComputeVariableGroupInvocations = max_var_invocations;
855 }
856 }
857
858 /**
859 * Process driconf (drirc) options, setting appropriate context flags.
860 *
861 * intelInitExtensions still pokes at optionCache directly, in order to
862 * avoid advertising various extensions. No flags are set, so it makes
863 * sense to continue doing that there.
864 */
865 static void
866 brw_process_driconf_options(struct brw_context *brw)
867 {
868 const struct gen_device_info *devinfo = &brw->screen->devinfo;
869 struct gl_context *ctx = &brw->ctx;
870
871 driOptionCache *options = &brw->optionCache;
872 driParseConfigFiles(options, &brw->screen->optionCache,
873 brw->driContext->driScreenPriv->myNum,
874 "i965", NULL, NULL, 0);
875
876 if (INTEL_DEBUG & DEBUG_NO_HIZ) {
877 brw->has_hiz = false;
878 /* On gen6, you can only do separate stencil with HIZ. */
879 if (devinfo->gen == 6)
880 brw->has_separate_stencil = false;
881 }
882
883 if (driQueryOptionb(options, "mesa_no_error"))
884 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_NO_ERROR_BIT_KHR;
885
886 if (driQueryOptionb(options, "always_flush_batch")) {
887 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
888 brw->always_flush_batch = true;
889 }
890
891 if (driQueryOptionb(options, "always_flush_cache")) {
892 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
893 brw->always_flush_cache = true;
894 }
895
896 if (driQueryOptionb(options, "disable_throttling")) {
897 fprintf(stderr, "disabling flush throttling\n");
898 brw->disable_throttling = true;
899 }
900
901 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
902
903 if (driQueryOptionb(&brw->optionCache, "precise_trig"))
904 brw->screen->compiler->precise_trig = true;
905
906 ctx->Const.ForceGLSLExtensionsWarn =
907 driQueryOptionb(options, "force_glsl_extensions_warn");
908
909 ctx->Const.ForceGLSLVersion =
910 driQueryOptioni(options, "force_glsl_version");
911
912 ctx->Const.DisableGLSLLineContinuations =
913 driQueryOptionb(options, "disable_glsl_line_continuations");
914
915 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
916 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
917
918 ctx->Const.AllowGLSLBuiltinVariableRedeclaration =
919 driQueryOptionb(options, "allow_glsl_builtin_variable_redeclaration");
920
921 ctx->Const.AllowHigherCompatVersion =
922 driQueryOptionb(options, "allow_higher_compat_version");
923
924 ctx->Const.ForceGLSLAbsSqrt =
925 driQueryOptionb(options, "force_glsl_abs_sqrt");
926
927 ctx->Const.GLSLZeroInit = driQueryOptionb(options, "glsl_zero_init");
928
929 brw->dual_color_blend_by_location =
930 driQueryOptionb(options, "dual_color_blend_by_location");
931
932 ctx->Const.AllowGLSLCrossStageInterpolationMismatch =
933 driQueryOptionb(options, "allow_glsl_cross_stage_interpolation_mismatch");
934
935 ctx->Const.dri_config_options_sha1 = ralloc_array(brw, unsigned char, 20);
936 driComputeOptionsSha1(&brw->screen->optionCache,
937 ctx->Const.dri_config_options_sha1);
938 }
939
940 GLboolean
941 brwCreateContext(gl_api api,
942 const struct gl_config *mesaVis,
943 __DRIcontext *driContextPriv,
944 const struct __DriverContextConfig *ctx_config,
945 unsigned *dri_ctx_error,
946 void *sharedContextPrivate)
947 {
948 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
949 struct intel_screen *screen = driContextPriv->driScreenPriv->driverPrivate;
950 const struct gen_device_info *devinfo = &screen->devinfo;
951 struct dd_function_table functions;
952
953 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
954 * provides us with context reset notifications.
955 */
956 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG |
957 __DRI_CTX_FLAG_FORWARD_COMPATIBLE |
958 __DRI_CTX_FLAG_NO_ERROR;
959
960 if (screen->has_context_reset_notification)
961 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
962
963 if (ctx_config->flags & ~allowed_flags) {
964 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
965 return false;
966 }
967
968 if (ctx_config->attribute_mask &
969 ~(__DRIVER_CONTEXT_ATTRIB_RESET_STRATEGY |
970 __DRIVER_CONTEXT_ATTRIB_PRIORITY)) {
971 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_ATTRIBUTE;
972 return false;
973 }
974
975 bool notify_reset =
976 ((ctx_config->attribute_mask & __DRIVER_CONTEXT_ATTRIB_RESET_STRATEGY) &&
977 ctx_config->reset_strategy != __DRI_CTX_RESET_NO_NOTIFICATION);
978
979 struct brw_context *brw = rzalloc(NULL, struct brw_context);
980 if (!brw) {
981 fprintf(stderr, "%s: failed to alloc context\n", __func__);
982 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
983 return false;
984 }
985 brw->perf_ctx = gen_perf_new_context(brw);
986
987 driContextPriv->driverPrivate = brw;
988 brw->driContext = driContextPriv;
989 brw->screen = screen;
990 brw->bufmgr = screen->bufmgr;
991
992 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
993 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
994
995 brw->has_swizzling = screen->hw_has_swizzling;
996
997 brw->isl_dev = screen->isl_dev;
998
999 brw->vs.base.stage = MESA_SHADER_VERTEX;
1000 brw->tcs.base.stage = MESA_SHADER_TESS_CTRL;
1001 brw->tes.base.stage = MESA_SHADER_TESS_EVAL;
1002 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
1003 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
1004 brw->cs.base.stage = MESA_SHADER_COMPUTE;
1005
1006 brw_init_driver_functions(brw, &functions);
1007
1008 if (notify_reset)
1009 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
1010
1011 brw_process_driconf_options(brw);
1012
1013 if (api == API_OPENGL_CORE &&
1014 driQueryOptionb(&screen->optionCache, "force_compat_profile")) {
1015 api = API_OPENGL_COMPAT;
1016 }
1017
1018 struct gl_context *ctx = &brw->ctx;
1019
1020 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
1021 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
1022 fprintf(stderr, "%s: failed to init mesa context\n", __func__);
1023 intelDestroyContext(driContextPriv);
1024 return false;
1025 }
1026
1027 driContextSetFlags(ctx, ctx_config->flags);
1028
1029 /* Initialize the software rasterizer and helper modules.
1030 *
1031 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
1032 * software fallbacks (which we have to support on legacy GL to do weird
1033 * glDrawPixels(), glBitmap(), and other functions).
1034 */
1035 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
1036 _swrast_CreateContext(ctx);
1037 }
1038
1039 _vbo_CreateContext(ctx, true);
1040 if (ctx->swrast_context) {
1041 _tnl_CreateContext(ctx);
1042 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
1043 _swsetup_CreateContext(ctx);
1044
1045 /* Configure swrast to match hardware characteristics: */
1046 _swrast_allow_pixel_fog(ctx, false);
1047 _swrast_allow_vertex_fog(ctx, true);
1048 }
1049
1050 _mesa_meta_init(ctx);
1051
1052 if (INTEL_DEBUG & DEBUG_PERF)
1053 brw->perf_debug = true;
1054
1055 brw_initialize_cs_context_constants(brw);
1056 brw_initialize_context_constants(brw);
1057
1058 ctx->Const.ResetStrategy = notify_reset
1059 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
1060
1061 /* Reinitialize the context point state. It depends on ctx->Const values. */
1062 _mesa_init_point(ctx);
1063
1064 intel_fbo_init(brw);
1065
1066 intel_batchbuffer_init(brw);
1067
1068 /* Create a new hardware context. Using a hardware context means that
1069 * our GPU state will be saved/restored on context switch, allowing us
1070 * to assume that the GPU is in the same state we left it in.
1071 *
1072 * This is required for transform feedback buffer offsets, query objects,
1073 * and also allows us to reduce how much state we have to emit.
1074 */
1075 brw->hw_ctx = brw_create_hw_context(brw->bufmgr);
1076 if (!brw->hw_ctx && devinfo->gen >= 6) {
1077 fprintf(stderr, "Failed to create hardware context.\n");
1078 intelDestroyContext(driContextPriv);
1079 return false;
1080 }
1081
1082 if (brw->hw_ctx) {
1083 int hw_priority = GEN_CONTEXT_MEDIUM_PRIORITY;
1084 if (ctx_config->attribute_mask & __DRIVER_CONTEXT_ATTRIB_PRIORITY) {
1085 switch (ctx_config->priority) {
1086 case __DRI_CTX_PRIORITY_LOW:
1087 hw_priority = GEN_CONTEXT_LOW_PRIORITY;
1088 break;
1089 case __DRI_CTX_PRIORITY_HIGH:
1090 hw_priority = GEN_CONTEXT_HIGH_PRIORITY;
1091 break;
1092 }
1093 }
1094 if (hw_priority != I915_CONTEXT_DEFAULT_PRIORITY &&
1095 brw_hw_context_set_priority(brw->bufmgr, brw->hw_ctx, hw_priority)) {
1096 fprintf(stderr,
1097 "Failed to set priority [%d:%d] for hardware context.\n",
1098 ctx_config->priority, hw_priority);
1099 intelDestroyContext(driContextPriv);
1100 return false;
1101 }
1102 }
1103
1104 if (brw_init_pipe_control(brw, devinfo)) {
1105 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
1106 intelDestroyContext(driContextPriv);
1107 return false;
1108 }
1109
1110 brw_upload_init(&brw->upload, brw->bufmgr, 65536);
1111
1112 brw_init_state(brw);
1113
1114 intelInitExtensions(ctx);
1115
1116 brw_init_surface_formats(brw);
1117
1118 brw_blorp_init(brw);
1119
1120 brw->urb.size = devinfo->urb.size;
1121
1122 if (devinfo->gen == 6)
1123 brw->urb.gs_present = false;
1124
1125 brw->prim_restart.in_progress = false;
1126 brw->prim_restart.enable_cut_index = false;
1127 brw->gs.enabled = false;
1128 brw->clip.viewport_count = 1;
1129
1130 brw->predicate.state = BRW_PREDICATE_STATE_RENDER;
1131
1132 brw->max_gtt_map_object_size = screen->max_gtt_map_object_size;
1133
1134 ctx->VertexProgram._MaintainTnlProgram = true;
1135 ctx->FragmentProgram._MaintainTexEnvProgram = true;
1136
1137 brw_draw_init( brw );
1138
1139 if ((ctx_config->flags & __DRI_CTX_FLAG_DEBUG) != 0) {
1140 /* Turn on some extra GL_ARB_debug_output generation. */
1141 brw->perf_debug = true;
1142 }
1143
1144 if ((ctx_config->flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0) {
1145 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
1146 ctx->Const.RobustAccess = GL_TRUE;
1147 }
1148
1149 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1150 brw_init_shader_time(brw);
1151
1152 _mesa_override_extensions(ctx);
1153 _mesa_compute_version(ctx);
1154
1155 /* GL_ARB_gl_spirv */
1156 if (ctx->Extensions.ARB_gl_spirv) {
1157 brw_initialize_spirv_supported_capabilities(brw);
1158
1159 if (ctx->Extensions.ARB_spirv_extensions) {
1160 /* GL_ARB_spirv_extensions */
1161 ctx->Const.SpirVExtensions = MALLOC_STRUCT(spirv_supported_extensions);
1162 _mesa_fill_supported_spirv_extensions(ctx->Const.SpirVExtensions,
1163 &ctx->Const.SpirVCapabilities);
1164 }
1165 }
1166
1167 _mesa_initialize_dispatch_tables(ctx);
1168 _mesa_initialize_vbo_vtxfmt(ctx);
1169
1170 if (ctx->Extensions.INTEL_performance_query)
1171 brw_init_performance_queries(brw);
1172
1173 brw->ctx.Cache = brw->screen->disk_cache;
1174
1175 if (driContextPriv->driScreenPriv->dri2.backgroundCallable &&
1176 driQueryOptionb(&screen->optionCache, "mesa_glthread")) {
1177 /* Loader supports multithreading, and so do we. */
1178 _mesa_glthread_init(ctx);
1179 }
1180
1181 return true;
1182 }
1183
1184 void
1185 intelDestroyContext(__DRIcontext * driContextPriv)
1186 {
1187 struct brw_context *brw =
1188 (struct brw_context *) driContextPriv->driverPrivate;
1189 struct gl_context *ctx = &brw->ctx;
1190
1191 GET_CURRENT_CONTEXT(curctx);
1192
1193 if (curctx == NULL) {
1194 /* No current context, but we need one to release
1195 * renderbuffer surface when we release framebuffer.
1196 * So temporarily bind the context.
1197 */
1198 _mesa_make_current(ctx, NULL, NULL);
1199 }
1200
1201 _mesa_glthread_destroy(&brw->ctx);
1202
1203 _mesa_meta_free(&brw->ctx);
1204
1205 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1206 /* Force a report. */
1207 brw->shader_time.report_time = 0;
1208
1209 brw_collect_and_report_shader_time(brw);
1210 brw_destroy_shader_time(brw);
1211 }
1212
1213 blorp_finish(&brw->blorp);
1214
1215 brw_destroy_state(brw);
1216 brw_draw_destroy(brw);
1217
1218 brw_bo_unreference(brw->curbe.curbe_bo);
1219
1220 brw_bo_unreference(brw->vs.base.scratch_bo);
1221 brw_bo_unreference(brw->tcs.base.scratch_bo);
1222 brw_bo_unreference(brw->tes.base.scratch_bo);
1223 brw_bo_unreference(brw->gs.base.scratch_bo);
1224 brw_bo_unreference(brw->wm.base.scratch_bo);
1225
1226 brw_bo_unreference(brw->vs.base.push_const_bo);
1227 brw_bo_unreference(brw->tcs.base.push_const_bo);
1228 brw_bo_unreference(brw->tes.base.push_const_bo);
1229 brw_bo_unreference(brw->gs.base.push_const_bo);
1230 brw_bo_unreference(brw->wm.base.push_const_bo);
1231
1232 brw_destroy_hw_context(brw->bufmgr, brw->hw_ctx);
1233
1234 if (ctx->swrast_context) {
1235 _swsetup_DestroyContext(&brw->ctx);
1236 _tnl_DestroyContext(&brw->ctx);
1237 }
1238 _vbo_DestroyContext(&brw->ctx);
1239
1240 if (ctx->swrast_context)
1241 _swrast_DestroyContext(&brw->ctx);
1242
1243 brw_fini_pipe_control(brw);
1244 intel_batchbuffer_free(&brw->batch);
1245
1246 brw_bo_unreference(brw->throttle_batch[1]);
1247 brw_bo_unreference(brw->throttle_batch[0]);
1248 brw->throttle_batch[1] = NULL;
1249 brw->throttle_batch[0] = NULL;
1250
1251 driDestroyOptionCache(&brw->optionCache);
1252
1253 /* free the Mesa context */
1254 _mesa_free_context_data(&brw->ctx);
1255
1256 ralloc_free(brw);
1257 driContextPriv->driverPrivate = NULL;
1258 }
1259
1260 GLboolean
1261 intelUnbindContext(__DRIcontext * driContextPriv)
1262 {
1263 struct gl_context *ctx = driContextPriv->driverPrivate;
1264 _mesa_glthread_finish(ctx);
1265
1266 /* Unset current context and dispath table */
1267 _mesa_make_current(NULL, NULL, NULL);
1268
1269 return true;
1270 }
1271
1272 /**
1273 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
1274 * on window system framebuffers.
1275 *
1276 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
1277 * your renderbuffer can do sRGB encode, and you can flip a switch that does
1278 * sRGB encode if the renderbuffer can handle it. You can ask specifically
1279 * for a visual where you're guaranteed to be capable, but it turns out that
1280 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
1281 * incapable ones, because there's no difference between the two in resources
1282 * used. Applications thus get built that accidentally rely on the default
1283 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
1284 * great...
1285 *
1286 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
1287 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
1288 * So they removed the enable knob and made it "if the renderbuffer is sRGB
1289 * capable, do sRGB encode". Then, for your window system renderbuffers, you
1290 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
1291 * and get no sRGB encode (assuming that both kinds of visual are available).
1292 * Thus our choice to support sRGB by default on our visuals for desktop would
1293 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
1294 *
1295 * Unfortunately, renderbuffer setup happens before a context is created. So
1296 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
1297 * context (without an sRGB visual), we go turn that back off before anyone
1298 * finds out.
1299 */
1300 static void
1301 intel_gles3_srgb_workaround(struct brw_context *brw,
1302 struct gl_framebuffer *fb)
1303 {
1304 struct gl_context *ctx = &brw->ctx;
1305
1306 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
1307 return;
1308
1309 for (int i = 0; i < BUFFER_COUNT; i++) {
1310 struct gl_renderbuffer *rb = fb->Attachment[i].Renderbuffer;
1311
1312 /* Check if sRGB was specifically asked for. */
1313 struct intel_renderbuffer *irb = intel_get_renderbuffer(fb, i);
1314 if (irb && irb->need_srgb)
1315 return;
1316
1317 if (rb)
1318 rb->Format = _mesa_get_srgb_format_linear(rb->Format);
1319 }
1320 /* Disable sRGB from framebuffers that are not compatible. */
1321 fb->Visual.sRGBCapable = false;
1322 }
1323
1324 GLboolean
1325 intelMakeCurrent(__DRIcontext * driContextPriv,
1326 __DRIdrawable * driDrawPriv,
1327 __DRIdrawable * driReadPriv)
1328 {
1329 struct brw_context *brw;
1330
1331 if (driContextPriv)
1332 brw = (struct brw_context *) driContextPriv->driverPrivate;
1333 else
1334 brw = NULL;
1335
1336 if (driContextPriv) {
1337 struct gl_context *ctx = &brw->ctx;
1338 struct gl_framebuffer *fb, *readFb;
1339
1340 if (driDrawPriv == NULL) {
1341 fb = _mesa_get_incomplete_framebuffer();
1342 } else {
1343 fb = driDrawPriv->driverPrivate;
1344 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1345 }
1346
1347 if (driReadPriv == NULL) {
1348 readFb = _mesa_get_incomplete_framebuffer();
1349 } else {
1350 readFb = driReadPriv->driverPrivate;
1351 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1352 }
1353
1354 /* The sRGB workaround changes the renderbuffer's format. We must change
1355 * the format before the renderbuffer's miptree get's allocated, otherwise
1356 * the formats of the renderbuffer and its miptree will differ.
1357 */
1358 intel_gles3_srgb_workaround(brw, fb);
1359 intel_gles3_srgb_workaround(brw, readFb);
1360
1361 /* If the context viewport hasn't been initialized, force a call out to
1362 * the loader to get buffers so we have a drawable size for the initial
1363 * viewport. */
1364 if (!brw->ctx.ViewportInitialized)
1365 intel_prepare_render(brw);
1366
1367 _mesa_make_current(ctx, fb, readFb);
1368 } else {
1369 GET_CURRENT_CONTEXT(ctx);
1370 _mesa_glthread_finish(ctx);
1371 _mesa_make_current(NULL, NULL, NULL);
1372 }
1373
1374 return true;
1375 }
1376
1377 void
1378 intel_resolve_for_dri2_flush(struct brw_context *brw,
1379 __DRIdrawable *drawable)
1380 {
1381 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1382
1383 if (devinfo->gen < 6) {
1384 /* MSAA and fast color clear are not supported, so don't waste time
1385 * checking whether a resolve is needed.
1386 */
1387 return;
1388 }
1389
1390 struct gl_framebuffer *fb = drawable->driverPrivate;
1391 struct intel_renderbuffer *rb;
1392
1393 /* Usually, only the back buffer will need to be downsampled. However,
1394 * the front buffer will also need it if the user has rendered into it.
1395 */
1396 static const gl_buffer_index buffers[2] = {
1397 BUFFER_BACK_LEFT,
1398 BUFFER_FRONT_LEFT,
1399 };
1400
1401 for (int i = 0; i < 2; ++i) {
1402 rb = intel_get_renderbuffer(fb, buffers[i]);
1403 if (rb == NULL || rb->mt == NULL)
1404 continue;
1405 if (rb->mt->surf.samples == 1) {
1406 assert(rb->mt_layer == 0 && rb->mt_level == 0 &&
1407 rb->layer_count == 1);
1408 intel_miptree_prepare_external(brw, rb->mt);
1409 } else {
1410 intel_renderbuffer_downsample(brw, rb);
1411
1412 /* Call prepare_external on the single-sample miptree to do any
1413 * needed resolves prior to handing it off to the window system.
1414 * This is needed in the case that rb->singlesample_mt is Y-tiled
1415 * with CCS_E enabled but without I915_FORMAT_MOD_Y_TILED_CCS_E. In
1416 * this case, the MSAA resolve above will write compressed data into
1417 * rb->singlesample_mt.
1418 *
1419 * TODO: Some day, if we decide to care about the tiny performance
1420 * hit we're taking by doing the MSAA resolve and then a CCS resolve,
1421 * we could detect this case and just allocate the single-sampled
1422 * miptree without aux. However, that would be a lot of plumbing and
1423 * this is a rather exotic case so it's not really worth it.
1424 */
1425 intel_miptree_prepare_external(brw, rb->singlesample_mt);
1426 }
1427 }
1428 }
1429
1430 static unsigned
1431 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1432 {
1433 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1434 }
1435
1436 static void
1437 intel_query_dri2_buffers(struct brw_context *brw,
1438 __DRIdrawable *drawable,
1439 __DRIbuffer **buffers,
1440 int *count);
1441
1442 static void
1443 intel_process_dri2_buffer(struct brw_context *brw,
1444 __DRIdrawable *drawable,
1445 __DRIbuffer *buffer,
1446 struct intel_renderbuffer *rb,
1447 const char *buffer_name);
1448
1449 static void
1450 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1451
1452 static void
1453 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1454 {
1455 struct gl_framebuffer *fb = drawable->driverPrivate;
1456 struct intel_renderbuffer *rb;
1457 __DRIbuffer *buffers = NULL;
1458 int count;
1459 const char *region_name;
1460
1461 /* Set this up front, so that in case our buffers get invalidated
1462 * while we're getting new buffers, we don't clobber the stamp and
1463 * thus ignore the invalidate. */
1464 drawable->lastStamp = drawable->dri2.stamp;
1465
1466 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1467 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1468
1469 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1470
1471 if (buffers == NULL)
1472 return;
1473
1474 for (int i = 0; i < count; i++) {
1475 switch (buffers[i].attachment) {
1476 case __DRI_BUFFER_FRONT_LEFT:
1477 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1478 region_name = "dri2 front buffer";
1479 break;
1480
1481 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1482 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1483 region_name = "dri2 fake front buffer";
1484 break;
1485
1486 case __DRI_BUFFER_BACK_LEFT:
1487 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1488 region_name = "dri2 back buffer";
1489 break;
1490
1491 case __DRI_BUFFER_DEPTH:
1492 case __DRI_BUFFER_HIZ:
1493 case __DRI_BUFFER_DEPTH_STENCIL:
1494 case __DRI_BUFFER_STENCIL:
1495 case __DRI_BUFFER_ACCUM:
1496 default:
1497 fprintf(stderr,
1498 "unhandled buffer attach event, attachment type %d\n",
1499 buffers[i].attachment);
1500 return;
1501 }
1502
1503 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1504 }
1505
1506 }
1507
1508 void
1509 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1510 {
1511 struct brw_context *brw = context->driverPrivate;
1512 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
1513
1514 /* Set this up front, so that in case our buffers get invalidated
1515 * while we're getting new buffers, we don't clobber the stamp and
1516 * thus ignore the invalidate. */
1517 drawable->lastStamp = drawable->dri2.stamp;
1518
1519 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1520 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1521
1522 if (dri_screen->image.loader)
1523 intel_update_image_buffers(brw, drawable);
1524 else
1525 intel_update_dri2_buffers(brw, drawable);
1526
1527 driUpdateFramebufferSize(&brw->ctx, drawable);
1528 }
1529
1530 /**
1531 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1532 * state is required.
1533 */
1534 void
1535 intel_prepare_render(struct brw_context *brw)
1536 {
1537 struct gl_context *ctx = &brw->ctx;
1538 __DRIcontext *driContext = brw->driContext;
1539 __DRIdrawable *drawable;
1540
1541 drawable = driContext->driDrawablePriv;
1542 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1543 if (drawable->lastStamp != drawable->dri2.stamp)
1544 intel_update_renderbuffers(driContext, drawable);
1545 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1546 }
1547
1548 drawable = driContext->driReadablePriv;
1549 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1550 if (drawable->lastStamp != drawable->dri2.stamp)
1551 intel_update_renderbuffers(driContext, drawable);
1552 driContext->dri2.read_stamp = drawable->dri2.stamp;
1553 }
1554
1555 /* If we're currently rendering to the front buffer, the rendering
1556 * that will happen next will probably dirty the front buffer. So
1557 * mark it as dirty here.
1558 */
1559 if (_mesa_is_front_buffer_drawing(ctx->DrawBuffer) &&
1560 ctx->DrawBuffer != _mesa_get_incomplete_framebuffer()) {
1561 brw->front_buffer_dirty = true;
1562 }
1563
1564 if (brw->is_shared_buffer_bound) {
1565 /* Subsequent rendering will probably dirty the shared buffer. */
1566 brw->is_shared_buffer_dirty = true;
1567 }
1568 }
1569
1570 /**
1571 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1572 *
1573 * To determine which DRI buffers to request, examine the renderbuffers
1574 * attached to the drawable's framebuffer. Then request the buffers with
1575 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1576 *
1577 * This is called from intel_update_renderbuffers().
1578 *
1579 * \param drawable Drawable whose buffers are queried.
1580 * \param buffers [out] List of buffers returned by DRI2 query.
1581 * \param buffer_count [out] Number of buffers returned.
1582 *
1583 * \see intel_update_renderbuffers()
1584 * \see DRI2GetBuffers()
1585 * \see DRI2GetBuffersWithFormat()
1586 */
1587 static void
1588 intel_query_dri2_buffers(struct brw_context *brw,
1589 __DRIdrawable *drawable,
1590 __DRIbuffer **buffers,
1591 int *buffer_count)
1592 {
1593 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
1594 struct gl_framebuffer *fb = drawable->driverPrivate;
1595 int i = 0;
1596 unsigned attachments[8];
1597
1598 struct intel_renderbuffer *front_rb;
1599 struct intel_renderbuffer *back_rb;
1600
1601 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1602 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1603
1604 memset(attachments, 0, sizeof(attachments));
1605 if ((_mesa_is_front_buffer_drawing(fb) ||
1606 _mesa_is_front_buffer_reading(fb) ||
1607 !back_rb) && front_rb) {
1608 /* If a fake front buffer is in use, then querying for
1609 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1610 * the real front buffer to the fake front buffer. So before doing the
1611 * query, we need to make sure all the pending drawing has landed in the
1612 * real front buffer.
1613 */
1614 intel_batchbuffer_flush(brw);
1615 intel_flush_front(&brw->ctx);
1616
1617 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1618 attachments[i++] = intel_bits_per_pixel(front_rb);
1619 } else if (front_rb && brw->front_buffer_dirty) {
1620 /* We have pending front buffer rendering, but we aren't querying for a
1621 * front buffer. If the front buffer we have is a fake front buffer,
1622 * the X server is going to throw it away when it processes the query.
1623 * So before doing the query, make sure all the pending drawing has
1624 * landed in the real front buffer.
1625 */
1626 intel_batchbuffer_flush(brw);
1627 intel_flush_front(&brw->ctx);
1628 }
1629
1630 if (back_rb) {
1631 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1632 attachments[i++] = intel_bits_per_pixel(back_rb);
1633 }
1634
1635 assert(i <= ARRAY_SIZE(attachments));
1636
1637 *buffers =
1638 dri_screen->dri2.loader->getBuffersWithFormat(drawable,
1639 &drawable->w,
1640 &drawable->h,
1641 attachments, i / 2,
1642 buffer_count,
1643 drawable->loaderPrivate);
1644 }
1645
1646 /**
1647 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1648 *
1649 * This is called from intel_update_renderbuffers().
1650 *
1651 * \par Note:
1652 * DRI buffers whose attachment point is DRI2BufferStencil or
1653 * DRI2BufferDepthStencil are handled as special cases.
1654 *
1655 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1656 * that is passed to brw_bo_gem_create_from_name().
1657 *
1658 * \see intel_update_renderbuffers()
1659 */
1660 static void
1661 intel_process_dri2_buffer(struct brw_context *brw,
1662 __DRIdrawable *drawable,
1663 __DRIbuffer *buffer,
1664 struct intel_renderbuffer *rb,
1665 const char *buffer_name)
1666 {
1667 struct gl_framebuffer *fb = drawable->driverPrivate;
1668 struct brw_bo *bo;
1669
1670 if (!rb)
1671 return;
1672
1673 unsigned num_samples = rb->Base.Base.NumSamples;
1674
1675 /* We try to avoid closing and reopening the same BO name, because the first
1676 * use of a mapping of the buffer involves a bunch of page faulting which is
1677 * moderately expensive.
1678 */
1679 struct intel_mipmap_tree *last_mt;
1680 if (num_samples == 0)
1681 last_mt = rb->mt;
1682 else
1683 last_mt = rb->singlesample_mt;
1684
1685 uint32_t old_name = 0;
1686 if (last_mt) {
1687 /* The bo already has a name because the miptree was created by a
1688 * previous call to intel_process_dri2_buffer(). If a bo already has a
1689 * name, then brw_bo_flink() is a low-cost getter. It does not
1690 * create a new name.
1691 */
1692 brw_bo_flink(last_mt->bo, &old_name);
1693 }
1694
1695 if (old_name == buffer->name)
1696 return;
1697
1698 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1699 fprintf(stderr,
1700 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1701 buffer->name, buffer->attachment,
1702 buffer->cpp, buffer->pitch);
1703 }
1704
1705 bo = brw_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1706 buffer->name);
1707 if (!bo) {
1708 fprintf(stderr,
1709 "Failed to open BO for returned DRI2 buffer "
1710 "(%dx%d, %s, named %d).\n"
1711 "This is likely a bug in the X Server that will lead to a "
1712 "crash soon.\n",
1713 drawable->w, drawable->h, buffer_name, buffer->name);
1714 return;
1715 }
1716
1717 uint32_t tiling, swizzle;
1718 brw_bo_get_tiling(bo, &tiling, &swizzle);
1719
1720 struct intel_mipmap_tree *mt =
1721 intel_miptree_create_for_bo(brw,
1722 bo,
1723 intel_rb_format(rb),
1724 0,
1725 drawable->w,
1726 drawable->h,
1727 1,
1728 buffer->pitch,
1729 isl_tiling_from_i915_tiling(tiling),
1730 MIPTREE_CREATE_DEFAULT);
1731 if (!mt) {
1732 brw_bo_unreference(bo);
1733 return;
1734 }
1735
1736 /* We got this BO from X11. We cana't assume that we have coherent texture
1737 * access because X may suddenly decide to use it for scan-out which would
1738 * destroy coherency.
1739 */
1740 bo->cache_coherent = false;
1741
1742 if (!intel_update_winsys_renderbuffer_miptree(brw, rb, mt,
1743 drawable->w, drawable->h,
1744 buffer->pitch)) {
1745 brw_bo_unreference(bo);
1746 intel_miptree_release(&mt);
1747 return;
1748 }
1749
1750 if (_mesa_is_front_buffer_drawing(fb) &&
1751 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1752 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1753 rb->Base.Base.NumSamples > 1) {
1754 intel_renderbuffer_upsample(brw, rb);
1755 }
1756
1757 assert(rb->mt);
1758
1759 brw_bo_unreference(bo);
1760 }
1761
1762 /**
1763 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1764 *
1765 * To determine which DRI buffers to request, examine the renderbuffers
1766 * attached to the drawable's framebuffer. Then request the buffers from
1767 * the image loader
1768 *
1769 * This is called from intel_update_renderbuffers().
1770 *
1771 * \param drawable Drawable whose buffers are queried.
1772 * \param buffers [out] List of buffers returned by DRI2 query.
1773 * \param buffer_count [out] Number of buffers returned.
1774 *
1775 * \see intel_update_renderbuffers()
1776 */
1777
1778 static void
1779 intel_update_image_buffer(struct brw_context *intel,
1780 __DRIdrawable *drawable,
1781 struct intel_renderbuffer *rb,
1782 __DRIimage *buffer,
1783 enum __DRIimageBufferMask buffer_type)
1784 {
1785 struct gl_framebuffer *fb = drawable->driverPrivate;
1786
1787 if (!rb || !buffer->bo)
1788 return;
1789
1790 unsigned num_samples = rb->Base.Base.NumSamples;
1791
1792 /* Check and see if we're already bound to the right
1793 * buffer object
1794 */
1795 struct intel_mipmap_tree *last_mt;
1796 if (num_samples == 0)
1797 last_mt = rb->mt;
1798 else
1799 last_mt = rb->singlesample_mt;
1800
1801 if (last_mt && last_mt->bo == buffer->bo) {
1802 if (buffer_type == __DRI_IMAGE_BUFFER_SHARED) {
1803 intel_miptree_make_shareable(intel, last_mt);
1804 }
1805 return;
1806 }
1807
1808 /* Only allow internal compression if samples == 0. For multisampled
1809 * window system buffers, the only thing the single-sampled buffer is used
1810 * for is as a resolve target. If we do any compression beyond what is
1811 * supported by the window system, we will just have to resolve so it's
1812 * probably better to just not bother.
1813 */
1814 const bool allow_internal_aux = (num_samples == 0);
1815
1816 struct intel_mipmap_tree *mt =
1817 intel_miptree_create_for_dri_image(intel, buffer, GL_TEXTURE_2D,
1818 intel_rb_format(rb),
1819 allow_internal_aux);
1820 if (!mt)
1821 return;
1822
1823 if (!intel_update_winsys_renderbuffer_miptree(intel, rb, mt,
1824 buffer->width, buffer->height,
1825 buffer->pitch)) {
1826 intel_miptree_release(&mt);
1827 return;
1828 }
1829
1830 if (_mesa_is_front_buffer_drawing(fb) &&
1831 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1832 rb->Base.Base.NumSamples > 1) {
1833 intel_renderbuffer_upsample(intel, rb);
1834 }
1835
1836 if (buffer_type == __DRI_IMAGE_BUFFER_SHARED) {
1837 /* The compositor and the application may access this image
1838 * concurrently. The display hardware may even scanout the image while
1839 * the GPU is rendering to it. Aux surfaces cause difficulty with
1840 * concurrent access, so permanently disable aux for this miptree.
1841 *
1842 * Perhaps we could improve overall application performance by
1843 * re-enabling the aux surface when EGL_RENDER_BUFFER transitions to
1844 * EGL_BACK_BUFFER, then disabling it again when EGL_RENDER_BUFFER
1845 * returns to EGL_SINGLE_BUFFER. I expect the wins and losses with this
1846 * approach to be highly dependent on the application's GL usage.
1847 *
1848 * I [chadv] expect clever disabling/reenabling to be counterproductive
1849 * in the use cases I care about: applications that render nearly
1850 * realtime handwriting to the surface while possibly undergiong
1851 * simultaneously scanout as a display plane. The app requires low
1852 * render latency. Even though the app spends most of its time in
1853 * shared-buffer mode, it also frequently transitions between
1854 * shared-buffer (EGL_SINGLE_BUFFER) and double-buffer (EGL_BACK_BUFFER)
1855 * mode. Visual sutter during the transitions should be avoided.
1856 *
1857 * In this case, I [chadv] believe reducing the GPU workload at
1858 * shared-buffer/double-buffer transitions would offer a smoother app
1859 * experience than any savings due to aux compression. But I've
1860 * collected no data to prove my theory.
1861 */
1862 intel_miptree_make_shareable(intel, mt);
1863 }
1864 }
1865
1866 static void
1867 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1868 {
1869 struct gl_framebuffer *fb = drawable->driverPrivate;
1870 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
1871 struct intel_renderbuffer *front_rb;
1872 struct intel_renderbuffer *back_rb;
1873 struct __DRIimageList images;
1874 mesa_format format;
1875 uint32_t buffer_mask = 0;
1876 int ret;
1877
1878 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1879 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1880
1881 if (back_rb)
1882 format = intel_rb_format(back_rb);
1883 else if (front_rb)
1884 format = intel_rb_format(front_rb);
1885 else
1886 return;
1887
1888 if (front_rb && (_mesa_is_front_buffer_drawing(fb) ||
1889 _mesa_is_front_buffer_reading(fb) || !back_rb)) {
1890 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1891 }
1892
1893 if (back_rb)
1894 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1895
1896 ret = dri_screen->image.loader->getBuffers(drawable,
1897 driGLFormatToImageFormat(format),
1898 &drawable->dri2.stamp,
1899 drawable->loaderPrivate,
1900 buffer_mask,
1901 &images);
1902 if (!ret)
1903 return;
1904
1905 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1906 drawable->w = images.front->width;
1907 drawable->h = images.front->height;
1908 intel_update_image_buffer(brw,
1909 drawable,
1910 front_rb,
1911 images.front,
1912 __DRI_IMAGE_BUFFER_FRONT);
1913 }
1914
1915 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1916 drawable->w = images.back->width;
1917 drawable->h = images.back->height;
1918 intel_update_image_buffer(brw,
1919 drawable,
1920 back_rb,
1921 images.back,
1922 __DRI_IMAGE_BUFFER_BACK);
1923 }
1924
1925 if (images.image_mask & __DRI_IMAGE_BUFFER_SHARED) {
1926 assert(images.image_mask == __DRI_IMAGE_BUFFER_SHARED);
1927 drawable->w = images.back->width;
1928 drawable->h = images.back->height;
1929 intel_update_image_buffer(brw,
1930 drawable,
1931 back_rb,
1932 images.back,
1933 __DRI_IMAGE_BUFFER_SHARED);
1934 brw->is_shared_buffer_bound = true;
1935 } else {
1936 brw->is_shared_buffer_bound = false;
1937 brw->is_shared_buffer_dirty = false;
1938 }
1939 }