i965: Clarify nomenclature: vert_result -> varying
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45 /* Glossary:
46 *
47 * URB - uniform resource buffer. A mid-sized buffer which is
48 * partitioned between the fixed function units and used for passing
49 * values (vertices, primitives, constants) between them.
50 *
51 * CURBE - constant URB entry. An urb region (entry) used to hold
52 * constant values which the fixed function units can be instructed to
53 * preload into the GRF when spawning a thread.
54 *
55 * VUE - vertex URB entry. An urb entry holding a vertex and usually
56 * a vertex header. The header contains control information and
57 * things like primitive type, Begin/end flags and clip codes.
58 *
59 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
60 * unit holding rasterization and interpolation parameters.
61 *
62 * GRF - general register file. One of several register files
63 * addressable by programmed threads. The inputs (r0, payload, curbe,
64 * urb) of the thread are preloaded to this area before the thread is
65 * spawned. The registers are individually 8 dwords wide and suitable
66 * for general usage. Registers holding thread input values are not
67 * special and may be overwritten.
68 *
69 * MRF - message register file. Threads communicate (and terminate)
70 * by sending messages. Message parameters are placed in contiguous
71 * MRF registers. All program output is via these messages. URB
72 * entries are populated by sending a message to the shared URB
73 * function containing the new data, together with a control word,
74 * often an unmodified copy of R0.
75 *
76 * R0 - GRF register 0. Typically holds control information used when
77 * sending messages to other threads.
78 *
79 * EU or GEN4 EU: The name of the programmable subsystem of the
80 * i965 hardware. Threads are executed by the EU, the registers
81 * described above are part of the EU architecture.
82 *
83 * Fixed function units:
84 *
85 * CS - Command streamer. Notional first unit, little software
86 * interaction. Holds the URB entries used for constant data, ie the
87 * CURBEs.
88 *
89 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
90 * this unit is responsible for pulling vertices out of vertex buffers
91 * in vram and injecting them into the processing pipe as VUEs. If
92 * enabled, it first passes them to a VS thread which is a good place
93 * for the driver to implement any active vertex shader.
94 *
95 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
96 * enabled, incoming strips etc are passed to GS threads in individual
97 * line/triangle/point units. The GS thread may perform arbitary
98 * computation and emit whatever primtives with whatever vertices it
99 * chooses. This makes GS an excellent place to implement GL's
100 * unfilled polygon modes, though of course it is capable of much
101 * more. Additionally, GS is used to translate away primitives not
102 * handled by latter units, including Quads and Lineloops.
103 *
104 * CS - Clipper. Mesa's clipping algorithms are imported to run on
105 * this unit. The fixed function part performs cliptesting against
106 * the 6 fixed clipplanes and makes descisions on whether or not the
107 * incoming primitive needs to be passed to a thread for clipping.
108 * User clip planes are handled via cooperation with the VS thread.
109 *
110 * SF - Strips Fans or Setup: Triangles are prepared for
111 * rasterization. Interpolation coefficients are calculated.
112 * Flatshading and two-side lighting usually performed here.
113 *
114 * WM - Windower. Interpolation of vertex attributes performed here.
115 * Fragment shader implemented here. SIMD aspects of EU taken full
116 * advantage of, as pixels are processed in blocks of 16.
117 *
118 * CC - Color Calculator. No EU threads associated with this unit.
119 * Handles blending and (presumably) depth and stencil testing.
120 */
121
122
123 #define BRW_MAX_CURBE (32*16)
124
125 struct brw_context;
126 struct brw_instruction;
127 struct brw_vs_prog_key;
128 struct brw_wm_prog_key;
129 struct brw_wm_prog_data;
130
131 enum brw_state_id {
132 BRW_STATE_URB_FENCE,
133 BRW_STATE_FRAGMENT_PROGRAM,
134 BRW_STATE_VERTEX_PROGRAM,
135 BRW_STATE_INPUT_DIMENSIONS,
136 BRW_STATE_CURBE_OFFSETS,
137 BRW_STATE_REDUCED_PRIMITIVE,
138 BRW_STATE_PRIMITIVE,
139 BRW_STATE_CONTEXT,
140 BRW_STATE_WM_INPUT_DIMENSIONS,
141 BRW_STATE_PSP,
142 BRW_STATE_SURFACES,
143 BRW_STATE_VS_BINDING_TABLE,
144 BRW_STATE_GS_BINDING_TABLE,
145 BRW_STATE_PS_BINDING_TABLE,
146 BRW_STATE_INDICES,
147 BRW_STATE_VERTICES,
148 BRW_STATE_BATCH,
149 BRW_STATE_NR_WM_SURFACES,
150 BRW_STATE_NR_VS_SURFACES,
151 BRW_STATE_INDEX_BUFFER,
152 BRW_STATE_VS_CONSTBUF,
153 BRW_STATE_PROGRAM_CACHE,
154 BRW_STATE_STATE_BASE_ADDRESS,
155 BRW_STATE_SOL_INDICES,
156 };
157
158 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
159 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
160 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
161 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
162 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
163 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
164 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
165 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
166 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
167 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
168 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
169 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
170 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
171 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
172 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
173 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
174 /**
175 * Used for any batch entry with a relocated pointer that will be used
176 * by any 3D rendering.
177 */
178 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
179 /** \see brw.state.depth_region */
180 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
181 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
182 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
183 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
184 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
185
186 struct brw_state_flags {
187 /** State update flags signalled by mesa internals */
188 GLuint mesa;
189 /**
190 * State update flags signalled as the result of brw_tracked_state updates
191 */
192 GLuint brw;
193 /** State update flags signalled by brw_state_cache.c searches */
194 GLuint cache;
195 };
196
197 #define AUB_TRACE_TYPE_MASK 0x0000ff00
198 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
199 #define AUB_TRACE_TYPE_BATCH (1 << 8)
200 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
201 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
202 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
203 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
204 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
205 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
206 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
207 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
208 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
209 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
210
211 /**
212 * state_struct_type enum values are encoded with the top 16 bits representing
213 * the type to be delivered to the .aub file, and the bottom 16 bits
214 * representing the subtype. This macro performs the encoding.
215 */
216 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
217
218 enum state_struct_type {
219 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
220 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
221 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
222 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
223 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
224 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
225 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
226 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
227 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
228 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
229 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
230 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
231 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
232
233 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
234 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
235 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
236
237 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
238 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
239 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
240 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
241 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
242 };
243
244 /**
245 * Decode a state_struct_type value to determine the type that should be
246 * stored in the .aub file.
247 */
248 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
249 {
250 return (ss_type & 0xFFFF0000) >> 16;
251 }
252
253 /**
254 * Decode a state_struct_type value to determine the subtype that should be
255 * stored in the .aub file.
256 */
257 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
258 {
259 return ss_type & 0xFFFF;
260 }
261
262 /** Subclass of Mesa vertex program */
263 struct brw_vertex_program {
264 struct gl_vertex_program program;
265 GLuint id;
266 };
267
268
269 /** Subclass of Mesa fragment program */
270 struct brw_fragment_program {
271 struct gl_fragment_program program;
272 GLuint id; /**< serial no. to identify frag progs, never re-used */
273 };
274
275 struct brw_shader {
276 struct gl_shader base;
277
278 bool compiled_once;
279
280 /** Shader IR transformed for native compile, at link time. */
281 struct exec_list *ir;
282 };
283
284 /* Data about a particular attempt to compile a program. Note that
285 * there can be many of these, each in a different GL state
286 * corresponding to a different brw_wm_prog_key struct, with different
287 * compiled programs.
288 *
289 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
290 * struct!
291 */
292 struct brw_wm_prog_data {
293 GLuint curb_read_length;
294 GLuint urb_read_length;
295
296 GLuint first_curbe_grf;
297 GLuint first_curbe_grf_16;
298 GLuint reg_blocks;
299 GLuint reg_blocks_16;
300 GLuint total_scratch;
301
302 GLuint nr_params; /**< number of float params/constants */
303 GLuint nr_pull_params;
304 bool dual_src_blend;
305 int dispatch_width;
306 uint32_t prog_offset_16;
307
308 /**
309 * Mask of which interpolation modes are required by the fragment shader.
310 * Used in hardware setup on gen6+.
311 */
312 uint32_t barycentric_interp_modes;
313
314 /* Pointers to tracked values (only valid once
315 * _mesa_load_state_parameters has been called at runtime).
316 *
317 * These must be the last fields of the struct (see
318 * brw_wm_prog_data_compare()).
319 */
320 const float **param;
321 const float **pull_param;
322 };
323
324 /**
325 * Enum representing the i965-specific vertex results that don't correspond
326 * exactly to any element of gl_varying_slot. The values of this enum are
327 * assigned such that they don't conflict with gl_varying_slot.
328 */
329 typedef enum
330 {
331 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
332 BRW_VARYING_SLOT_POS_DUPLICATE,
333 BRW_VARYING_SLOT_PAD,
334 /**
335 * Technically this is not a varying but just a placeholder that
336 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
337 * builtin variable to be compiled correctly. see compile_sf_prog() for
338 * more info.
339 */
340 BRW_VARYING_SLOT_PNTC,
341 BRW_VARYING_SLOT_MAX
342 } brw_varying_slot;
343
344
345 /**
346 * Data structure recording the relationship between the gl_varying_slot enum
347 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
348 * single octaword within the VUE (128 bits).
349 *
350 * Note that each BRW register contains 256 bits (2 octawords), so when
351 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
352 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
353 * in a vertex shader), each register corresponds to a single VUE slot, since
354 * it contains data for two separate vertices.
355 */
356 struct brw_vue_map {
357 /**
358 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
359 * not stored in a slot (because they are not written, or because
360 * additional processing is applied before storing them in the VUE), the
361 * value is -1.
362 */
363 int varying_to_slot[BRW_VARYING_SLOT_MAX];
364
365 /**
366 * Map from VUE slot to gl_varying_slot value. For slots that do not
367 * directly correspond to a gl_varying_slot, the value comes from
368 * brw_varying_slot.
369 *
370 * For slots that are not in use, the value is BRW_VARYING_SLOT_MAX (this
371 * simplifies code that uses the value stored in slot_to_varying to
372 * create a bit mask).
373 */
374 int slot_to_varying[BRW_VARYING_SLOT_MAX];
375
376 /**
377 * Total number of VUE slots in use
378 */
379 int num_slots;
380 };
381
382 /**
383 * Convert a VUE slot number into a byte offset within the VUE.
384 */
385 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
386 {
387 return 16*slot;
388 }
389
390 /**
391 * Convert a vertex output (brw_varying_slot) into a byte offset within the
392 * VUE.
393 */
394 static inline GLuint brw_varying_to_offset(struct brw_vue_map *vue_map,
395 GLuint varying)
396 {
397 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
398 }
399
400
401 struct brw_sf_prog_data {
402 GLuint urb_read_length;
403 GLuint total_grf;
404
405 /* Each vertex may have upto 12 attributes, 4 components each,
406 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
407 * rows.
408 *
409 * Actually we use 4 for each, so call it 12 rows.
410 */
411 GLuint urb_entry_size;
412 };
413
414 struct brw_clip_prog_data {
415 GLuint curb_read_length; /* user planes? */
416 GLuint clip_mode;
417 GLuint urb_read_length;
418 GLuint total_grf;
419 };
420
421 struct brw_gs_prog_data {
422 GLuint urb_read_length;
423 GLuint total_grf;
424
425 /**
426 * Gen6 transform feedback: Amount by which the streaming vertex buffer
427 * indices should be incremented each time the GS is invoked.
428 */
429 unsigned svbi_postincrement_value;
430 };
431
432 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
433 * struct!
434 */
435 struct brw_vs_prog_data {
436 struct brw_vue_map vue_map;
437
438 GLuint curb_read_length;
439 GLuint urb_read_length;
440 GLuint total_grf;
441 GLbitfield64 outputs_written;
442 GLuint nr_params; /**< number of float params/constants */
443 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
444 GLuint total_scratch;
445
446 GLbitfield64 inputs_read;
447
448 /* Used for calculating urb partitions:
449 */
450 GLuint urb_entry_size;
451
452 bool uses_vertexid;
453
454 int num_surfaces;
455
456 /* These pointers must appear last. See brw_vs_prog_data_compare(). */
457 const float **param;
458 const float **pull_param;
459 };
460
461 /** Number of texture sampler units */
462 #define BRW_MAX_TEX_UNIT 16
463
464 /** Max number of render targets in a shader */
465 #define BRW_MAX_DRAW_BUFFERS 8
466
467 /**
468 * Max number of binding table entries used for stream output.
469 *
470 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
471 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
472 *
473 * On Gen6, the size of transform feedback data is limited not by the number
474 * of components but by the number of binding table entries we set aside. We
475 * use one binding table entry for a float, one entry for a vector, and one
476 * entry per matrix column. Since the only way we can communicate our
477 * transform feedback capabilities to the client is via
478 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
479 * worst case, in which all the varyings are floats, so we use up one binding
480 * table entry per component. Therefore we need to set aside at least 64
481 * binding table entries for use by transform feedback.
482 *
483 * Note: since we don't currently pack varyings, it is currently impossible
484 * for the client to actually use up all of these binding table entries--if
485 * all of their varyings were floats, they would run out of varying slots and
486 * fail to link. But that's a bug, so it seems prudent to go ahead and
487 * allocate the number of binding table entries we will need once the bug is
488 * fixed.
489 */
490 #define BRW_MAX_SOL_BINDINGS 64
491
492 /** Maximum number of actual buffers used for stream output */
493 #define BRW_MAX_SOL_BUFFERS 4
494
495 #define BRW_MAX_WM_UBOS 12
496 #define BRW_MAX_VS_UBOS 12
497
498 /**
499 * Helpers to create Surface Binding Table indexes for draw buffers,
500 * textures, and constant buffers.
501 *
502 * Shader threads access surfaces via numeric handles, rather than directly
503 * using pointers. The binding table maps these numeric handles to the
504 * address of the actual buffer.
505 *
506 * For example, a shader might ask to sample from "surface 7." In this case,
507 * bind[7] would contain a pointer to a texture.
508 *
509 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
510 *
511 * +-------------------------------+
512 * | 0 | Draw buffer 0 |
513 * | . | . |
514 * | : | : |
515 * | 7 | Draw buffer 7 |
516 * |-----|-------------------------|
517 * | 8 | WM Pull Constant Buffer |
518 * |-----|-------------------------|
519 * | 9 | Texture 0 |
520 * | . | . |
521 * | : | : |
522 * | 24 | Texture 15 |
523 * |-----|-------------------------|
524 * | 25 | UBO 0 |
525 * | . | . |
526 * | : | : |
527 * | 36 | UBO 11 |
528 * +-------------------------------+
529 *
530 * Our VS binding tables are programmed as follows:
531 *
532 * +-----+-------------------------+
533 * | 0 | VS Pull Constant Buffer |
534 * +-----+-------------------------+
535 * | 1 | Texture 0 |
536 * | . | . |
537 * | : | : |
538 * | 16 | Texture 15 |
539 * +-----+-------------------------+
540 * | 17 | UBO 0 |
541 * | . | . |
542 * | : | : |
543 * | 28 | UBO 11 |
544 * +-------------------------------+
545 *
546 * Our (gen6) GS binding tables are programmed as follows:
547 *
548 * +-----+-------------------------+
549 * | 0 | SOL Binding 0 |
550 * | . | . |
551 * | : | : |
552 * | 63 | SOL Binding 63 |
553 * +-----+-------------------------+
554 *
555 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
556 * the identity function or things will break. We do want to keep draw buffers
557 * first so we can use headerless render target writes for RT 0.
558 */
559 #define SURF_INDEX_DRAW(d) (d)
560 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
561 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
562 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
563 #define SURF_INDEX_WM_SHADER_TIME (SURF_INDEX_WM_UBO(12))
564 /** Maximum size of the binding table. */
565 #define BRW_MAX_WM_SURFACES (SURF_INDEX_WM_SHADER_TIME + 1)
566
567 #define SURF_INDEX_VERT_CONST_BUFFER (0)
568 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
569 #define SURF_INDEX_VS_UBO(u) (SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT) + u)
570 #define SURF_INDEX_VS_SHADER_TIME (SURF_INDEX_VS_UBO(12))
571 #define BRW_MAX_VS_SURFACES (SURF_INDEX_VS_SHADER_TIME + 1)
572
573 #define SURF_INDEX_SOL_BINDING(t) ((t))
574 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
575
576 /**
577 * Stride in bytes between shader_time entries.
578 *
579 * We separate entries by a cacheline to reduce traffic between EUs writing to
580 * different entries.
581 */
582 #define SHADER_TIME_STRIDE 64
583
584 enum brw_cache_id {
585 BRW_BLEND_STATE,
586 BRW_DEPTH_STENCIL_STATE,
587 BRW_COLOR_CALC_STATE,
588 BRW_CC_VP,
589 BRW_CC_UNIT,
590 BRW_WM_PROG,
591 BRW_BLORP_BLIT_PROG,
592 BRW_SAMPLER,
593 BRW_WM_UNIT,
594 BRW_SF_PROG,
595 BRW_SF_VP,
596 BRW_SF_UNIT, /* scissor state on gen6 */
597 BRW_VS_UNIT,
598 BRW_VS_PROG,
599 BRW_GS_UNIT,
600 BRW_GS_PROG,
601 BRW_CLIP_VP,
602 BRW_CLIP_UNIT,
603 BRW_CLIP_PROG,
604
605 BRW_MAX_CACHE
606 };
607
608 struct brw_cache_item {
609 /**
610 * Effectively part of the key, cache_id identifies what kind of state
611 * buffer is involved, and also which brw->state.dirty.cache flag should
612 * be set when this cache item is chosen.
613 */
614 enum brw_cache_id cache_id;
615 /** 32-bit hash of the key data */
616 GLuint hash;
617 GLuint key_size; /* for variable-sized keys */
618 GLuint aux_size;
619 const void *key;
620
621 uint32_t offset;
622 uint32_t size;
623
624 struct brw_cache_item *next;
625 };
626
627
628 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
629 int aux_size, const void *key);
630 typedef void (*cache_aux_free_func)(const void *aux);
631
632 struct brw_cache {
633 struct brw_context *brw;
634
635 struct brw_cache_item **items;
636 drm_intel_bo *bo;
637 GLuint size, n_items;
638
639 uint32_t next_offset;
640 bool bo_used_by_gpu;
641
642 /**
643 * Optional functions used in determining whether the prog_data for a new
644 * cache item matches an existing cache item (in case there's relevant data
645 * outside of the prog_data). If NULL, a plain memcmp is done.
646 */
647 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
648 /** Optional functions for freeing other pointers attached to a prog_data. */
649 cache_aux_free_func aux_free[BRW_MAX_CACHE];
650 };
651
652
653 /* Considered adding a member to this struct to document which flags
654 * an update might raise so that ordering of the state atoms can be
655 * checked or derived at runtime. Dropped the idea in favor of having
656 * a debug mode where the state is monitored for flags which are
657 * raised that have already been tested against.
658 */
659 struct brw_tracked_state {
660 struct brw_state_flags dirty;
661 void (*emit)( struct brw_context *brw );
662 };
663
664 enum shader_time_shader_type {
665 ST_NONE,
666 ST_VS,
667 ST_VS_WRITTEN,
668 ST_VS_RESET,
669 ST_FS8,
670 ST_FS8_WRITTEN,
671 ST_FS8_RESET,
672 ST_FS16,
673 ST_FS16_WRITTEN,
674 ST_FS16_RESET,
675 };
676
677 /* Flags for brw->state.cache.
678 */
679 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
680 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
681 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
682 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
683 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
684 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
685 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
686 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
687 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
688 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
689 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
690 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
691 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
692 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
693 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
694 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
695 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
696 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
697
698 struct brw_cached_batch_item {
699 struct header *header;
700 GLuint sz;
701 struct brw_cached_batch_item *next;
702 };
703
704
705
706 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
707 * be easier if C allowed arrays of packed elements?
708 */
709 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
710
711 struct brw_vertex_buffer {
712 /** Buffer object containing the uploaded vertex data */
713 drm_intel_bo *bo;
714 uint32_t offset;
715 /** Byte stride between elements in the uploaded array */
716 GLuint stride;
717 GLuint step_rate;
718 };
719 struct brw_vertex_element {
720 const struct gl_client_array *glarray;
721
722 int buffer;
723
724 /** The corresponding Mesa vertex attribute */
725 gl_vert_attrib attrib;
726 /** Offset of the first element within the buffer object */
727 unsigned int offset;
728 };
729
730
731
732 struct brw_vertex_info {
733 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
734 };
735
736 struct brw_query_object {
737 struct gl_query_object Base;
738
739 /** Last query BO associated with this query. */
740 drm_intel_bo *bo;
741
742 /** Last index in bo with query data for this object. */
743 int last_index;
744 };
745
746
747 /**
748 * brw_context is derived from intel_context.
749 */
750 struct brw_context
751 {
752 struct intel_context intel; /**< base class, must be first field */
753 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
754
755 bool emit_state_always;
756 bool has_surface_tile_offset;
757 bool has_compr4;
758 bool has_negative_rhw_bug;
759 bool has_aa_line_parameters;
760 bool has_pln;
761 bool precompile;
762
763 /**
764 * Some versions of Gen hardware don't do centroid interpolation correctly
765 * on unlit pixels, causing incorrect values for derivatives near triangle
766 * edges. Enabling this flag causes the fragment shader to use
767 * non-centroid interpolation for unlit pixels, at the expense of two extra
768 * fragment shader instructions.
769 */
770 bool needs_unlit_centroid_workaround;
771
772 struct {
773 struct brw_state_flags dirty;
774 } state;
775
776 struct brw_cache cache;
777 struct brw_cached_batch_item *cached_batch_items;
778
779 struct {
780 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
781 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
782
783 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
784 GLuint nr_enabled;
785 GLuint nr_buffers;
786
787 /* Summary of size and varying of active arrays, so we can check
788 * for changes to this state:
789 */
790 struct brw_vertex_info info;
791 unsigned int min_index, max_index;
792
793 /* Offset from start of vertex buffer so we can avoid redefining
794 * the same VB packed over and over again.
795 */
796 unsigned int start_vertex_bias;
797 } vb;
798
799 struct {
800 /**
801 * Index buffer for this draw_prims call.
802 *
803 * Updates are signaled by BRW_NEW_INDICES.
804 */
805 const struct _mesa_index_buffer *ib;
806
807 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
808 drm_intel_bo *bo;
809 GLuint type;
810
811 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
812 * avoid re-uploading the IB packet over and over if we're actually
813 * referencing the same index buffer.
814 */
815 unsigned int start_vertex_offset;
816 } ib;
817
818 /* Active vertex program:
819 */
820 const struct gl_vertex_program *vertex_program;
821 const struct gl_fragment_program *fragment_program;
822
823 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
824 uint32_t CMD_VF_STATISTICS;
825 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
826 uint32_t CMD_PIPELINE_SELECT;
827
828 /**
829 * Platform specific constants containing the maximum number of threads
830 * for each pipeline stage.
831 */
832 int max_vs_threads;
833 int max_gs_threads;
834 int max_wm_threads;
835
836 /* BRW_NEW_URB_ALLOCATIONS:
837 */
838 struct {
839 GLuint vsize; /* vertex size plus header in urb registers */
840 GLuint csize; /* constant buffer size in urb registers */
841 GLuint sfsize; /* setup data size in urb registers */
842
843 bool constrained;
844
845 GLuint max_vs_entries; /* Maximum number of VS entries */
846 GLuint max_gs_entries; /* Maximum number of GS entries */
847
848 GLuint nr_vs_entries;
849 GLuint nr_gs_entries;
850 GLuint nr_clip_entries;
851 GLuint nr_sf_entries;
852 GLuint nr_cs_entries;
853
854 /* gen6:
855 * The length of each URB entry owned by the VS (or GS), as
856 * a number of 1024-bit (128-byte) rows. Should be >= 1.
857 *
858 * gen7: Same meaning, but in 512-bit (64-byte) rows.
859 */
860 GLuint vs_size;
861 GLuint gs_size;
862
863 GLuint vs_start;
864 GLuint gs_start;
865 GLuint clip_start;
866 GLuint sf_start;
867 GLuint cs_start;
868 GLuint size; /* Hardware URB size, in KB. */
869
870 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
871 * URB space for the GS.
872 */
873 bool gen6_gs_previously_active;
874 } urb;
875
876
877 /* BRW_NEW_CURBE_OFFSETS:
878 */
879 struct {
880 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
881 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
882 GLuint clip_start;
883 GLuint clip_size;
884 GLuint vs_start;
885 GLuint vs_size;
886 GLuint total_size;
887
888 drm_intel_bo *curbe_bo;
889 /** Offset within curbe_bo of space for current curbe entry */
890 GLuint curbe_offset;
891 /** Offset within curbe_bo of space for next curbe entry */
892 GLuint curbe_next_offset;
893
894 /**
895 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
896 * in brw_curbe.c with the same set of constant data to be uploaded,
897 * so we'd rather not upload new constants in that case (it can cause
898 * a pipeline bubble since only up to 4 can be pipelined at a time).
899 */
900 GLfloat *last_buf;
901 /**
902 * Allocation for where to calculate the next set of CURBEs.
903 * It's a hot enough path that malloc/free of that data matters.
904 */
905 GLfloat *next_buf;
906 GLuint last_bufsz;
907 } curbe;
908
909 /** SAMPLER_STATE count and offset */
910 struct {
911 GLuint count;
912 uint32_t offset;
913 } sampler;
914
915 struct {
916 struct brw_vs_prog_data *prog_data;
917
918 drm_intel_bo *scratch_bo;
919 drm_intel_bo *const_bo;
920 /** Offset in the program cache to the VS program */
921 uint32_t prog_offset;
922 uint32_t state_offset;
923
924 uint32_t push_const_offset; /* Offset in the batchbuffer */
925 int push_const_size; /* in 256-bit register increments */
926
927 /** @{ register allocator */
928
929 struct ra_regs *regs;
930
931 /**
932 * Array of the ra classes for the unaligned contiguous register
933 * block sizes used.
934 */
935 int *classes;
936
937 /**
938 * Mapping for register-allocated objects in *regs to the first
939 * GRF for that object.
940 */
941 uint8_t *ra_reg_to_grf;
942 /** @} */
943
944 uint32_t bind_bo_offset;
945 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
946 } vs;
947
948 struct {
949 struct brw_gs_prog_data *prog_data;
950
951 bool prog_active;
952 /** Offset in the program cache to the CLIP program pre-gen6 */
953 uint32_t prog_offset;
954 uint32_t state_offset;
955
956 uint32_t bind_bo_offset;
957 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
958 } gs;
959
960 struct {
961 struct brw_clip_prog_data *prog_data;
962
963 /** Offset in the program cache to the CLIP program pre-gen6 */
964 uint32_t prog_offset;
965
966 /* Offset in the batch to the CLIP state on pre-gen6. */
967 uint32_t state_offset;
968
969 /* As of gen6, this is the offset in the batch to the CLIP VP,
970 * instead of vp_bo.
971 */
972 uint32_t vp_offset;
973 } clip;
974
975
976 struct {
977 struct brw_sf_prog_data *prog_data;
978
979 /** Offset in the program cache to the CLIP program pre-gen6 */
980 uint32_t prog_offset;
981 uint32_t state_offset;
982 uint32_t vp_offset;
983 } sf;
984
985 struct {
986 struct brw_wm_prog_data *prog_data;
987
988 /** Input sizes, calculated from active vertex program.
989 * One bit per fragment program input attribute.
990 */
991 GLbitfield64 input_size_masks[4];
992
993 /** offsets in the batch to sampler default colors (texture border color)
994 */
995 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
996
997 GLuint render_surf;
998
999 drm_intel_bo *scratch_bo;
1000
1001 /**
1002 * Buffer object used in place of multisampled null render targets on
1003 * Gen6. See brw_update_null_renderbuffer_surface().
1004 */
1005 drm_intel_bo *multisampled_null_render_target_bo;
1006
1007 /** Offset in the program cache to the WM program */
1008 uint32_t prog_offset;
1009
1010 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
1011
1012 drm_intel_bo *const_bo; /* pull constant buffer. */
1013 /**
1014 * This is offset in the batch to the push constants on gen6.
1015 *
1016 * Pre-gen6, push constants live in the CURBE.
1017 */
1018 uint32_t push_const_offset;
1019
1020 /** Binding table of pointers to surf_bo entries */
1021 uint32_t bind_bo_offset;
1022 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1023
1024 struct {
1025 struct ra_regs *regs;
1026
1027 /** Array of the ra classes for the unaligned contiguous
1028 * register block sizes used.
1029 */
1030 int *classes;
1031
1032 /**
1033 * Mapping for register-allocated objects in *regs to the first
1034 * GRF for that object.
1035 */
1036 uint8_t *ra_reg_to_grf;
1037
1038 /**
1039 * ra class for the aligned pairs we use for PLN, which doesn't
1040 * appear in *classes.
1041 */
1042 int aligned_pairs_class;
1043 } reg_sets[2];
1044 } wm;
1045
1046
1047 struct {
1048 uint32_t state_offset;
1049 uint32_t blend_state_offset;
1050 uint32_t depth_stencil_state_offset;
1051 uint32_t vp_offset;
1052 } cc;
1053
1054 struct {
1055 struct brw_query_object *obj;
1056 bool begin_emitted;
1057 } query;
1058
1059 int num_atoms;
1060 const struct brw_tracked_state **atoms;
1061
1062 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1063 struct {
1064 uint32_t offset;
1065 uint32_t size;
1066 enum state_struct_type type;
1067 } *state_batch_list;
1068 int state_batch_count;
1069
1070 struct brw_sol_state {
1071 uint32_t svbi_0_starting_index;
1072 uint32_t svbi_0_max_index;
1073 uint32_t offset_0_batch_start;
1074 uint32_t primitives_generated;
1075 uint32_t primitives_written;
1076 bool counting_primitives_generated;
1077 bool counting_primitives_written;
1078 } sol;
1079
1080 uint32_t render_target_format[MESA_FORMAT_COUNT];
1081 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1082
1083 /* PrimitiveRestart */
1084 struct {
1085 bool in_progress;
1086 bool enable_cut_index;
1087 } prim_restart;
1088
1089 /** Computed depth/stencil/hiz state from the current attached
1090 * renderbuffers, valid only during the drawing state upload loop after
1091 * brw_workaround_depthstencil_alignment().
1092 */
1093 struct {
1094 struct intel_mipmap_tree *depth_mt;
1095 struct intel_mipmap_tree *stencil_mt;
1096 struct intel_mipmap_tree *hiz_mt;
1097
1098 /* Inter-tile (page-aligned) byte offsets. */
1099 uint32_t depth_offset, hiz_offset, stencil_offset;
1100 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1101 uint32_t tile_x, tile_y;
1102 } depthstencil;
1103
1104 uint32_t num_instances;
1105 int basevertex;
1106
1107 struct {
1108 drm_intel_bo *bo;
1109 struct gl_shader_program **programs;
1110 enum shader_time_shader_type *types;
1111 uint64_t *cumulative;
1112 int num_entries;
1113 int max_entries;
1114 double report_time;
1115 } shader_time;
1116 };
1117
1118 /*======================================================================
1119 * brw_vtbl.c
1120 */
1121 void brwInitVtbl( struct brw_context *brw );
1122
1123 /*======================================================================
1124 * brw_context.c
1125 */
1126 bool brwCreateContext(int api,
1127 const struct gl_config *mesaVis,
1128 __DRIcontext *driContextPriv,
1129 unsigned major_version,
1130 unsigned minor_version,
1131 uint32_t flags,
1132 unsigned *error,
1133 void *sharedContextPrivate);
1134
1135 /*======================================================================
1136 * brw_misc_state.c
1137 */
1138 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1139 struct intel_mipmap_tree *stencil_mt,
1140 uint32_t *out_tile_mask_x,
1141 uint32_t *out_tile_mask_y);
1142 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1143 GLbitfield clear_mask);
1144
1145 /*======================================================================
1146 * brw_queryobj.c
1147 */
1148 void brw_init_queryobj_functions(struct dd_function_table *functions);
1149 void brw_emit_query_begin(struct brw_context *brw);
1150 void brw_emit_query_end(struct brw_context *brw);
1151
1152 /*======================================================================
1153 * brw_state_dump.c
1154 */
1155 void brw_debug_batch(struct intel_context *intel);
1156 void brw_annotate_aub(struct intel_context *intel);
1157
1158 /*======================================================================
1159 * brw_tex.c
1160 */
1161 void brw_validate_textures( struct brw_context *brw );
1162
1163
1164 /*======================================================================
1165 * brw_program.c
1166 */
1167 void brwInitFragProgFuncs( struct dd_function_table *functions );
1168
1169 int brw_get_scratch_size(int size);
1170 void brw_get_scratch_bo(struct intel_context *intel,
1171 drm_intel_bo **scratch_bo, int size);
1172 void brw_init_shader_time(struct brw_context *brw);
1173 void brw_collect_and_report_shader_time(struct brw_context *brw);
1174 void brw_destroy_shader_time(struct brw_context *brw);
1175
1176 /* brw_urb.c
1177 */
1178 void brw_upload_urb_fence(struct brw_context *brw);
1179
1180 /* brw_curbe.c
1181 */
1182 void brw_upload_cs_urb_state(struct brw_context *brw);
1183
1184 /* brw_fs_reg_allocate.cpp
1185 */
1186 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1187
1188 /* brw_disasm.c */
1189 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1190
1191 /* brw_vs.c */
1192 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1193
1194 /* brw_wm_surface_state.c */
1195 void brw_init_surface_formats(struct brw_context *brw);
1196 void
1197 brw_update_sol_surface(struct brw_context *brw,
1198 struct gl_buffer_object *buffer_obj,
1199 uint32_t *out_offset, unsigned num_vector_components,
1200 unsigned stride_dwords, unsigned offset_dwords);
1201 void brw_upload_ubo_surfaces(struct brw_context *brw,
1202 struct gl_shader *shader,
1203 uint32_t *surf_offsets);
1204
1205 /* gen6_sol.c */
1206 void
1207 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1208 struct gl_transform_feedback_object *obj);
1209 void
1210 brw_end_transform_feedback(struct gl_context *ctx,
1211 struct gl_transform_feedback_object *obj);
1212
1213 /* gen7_sol_state.c */
1214 void
1215 gen7_end_transform_feedback(struct gl_context *ctx,
1216 struct gl_transform_feedback_object *obj);
1217
1218 /* brw_blorp_blit.cpp */
1219 GLbitfield
1220 brw_blorp_framebuffer(struct intel_context *intel,
1221 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1222 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1223 GLbitfield mask, GLenum filter);
1224
1225 bool
1226 brw_blorp_copytexsubimage(struct intel_context *intel,
1227 struct gl_renderbuffer *src_rb,
1228 struct gl_texture_image *dst_image,
1229 int srcX0, int srcY0,
1230 int dstX0, int dstY0,
1231 int width, int height);
1232
1233 /* gen6_multisample_state.c */
1234 void
1235 gen6_emit_3dstate_multisample(struct brw_context *brw,
1236 unsigned num_samples);
1237 void
1238 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1239 unsigned num_samples, float coverage,
1240 bool coverage_invert, unsigned sample_mask);
1241 void
1242 gen6_get_sample_position(struct gl_context *ctx,
1243 struct gl_framebuffer *fb,
1244 GLuint index,
1245 GLfloat *result);
1246
1247 /* gen7_urb.c */
1248 void
1249 gen7_allocate_push_constants(struct brw_context *brw);
1250
1251 void
1252 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1253 GLuint vs_size, GLuint vs_start);
1254
1255
1256
1257 /*======================================================================
1258 * Inline conversion functions. These are better-typed than the
1259 * macros used previously:
1260 */
1261 static INLINE struct brw_context *
1262 brw_context( struct gl_context *ctx )
1263 {
1264 return (struct brw_context *)ctx;
1265 }
1266
1267 static INLINE struct brw_vertex_program *
1268 brw_vertex_program(struct gl_vertex_program *p)
1269 {
1270 return (struct brw_vertex_program *) p;
1271 }
1272
1273 static INLINE const struct brw_vertex_program *
1274 brw_vertex_program_const(const struct gl_vertex_program *p)
1275 {
1276 return (const struct brw_vertex_program *) p;
1277 }
1278
1279 static INLINE struct brw_fragment_program *
1280 brw_fragment_program(struct gl_fragment_program *p)
1281 {
1282 return (struct brw_fragment_program *) p;
1283 }
1284
1285 static INLINE const struct brw_fragment_program *
1286 brw_fragment_program_const(const struct gl_fragment_program *p)
1287 {
1288 return (const struct brw_fragment_program *) p;
1289 }
1290
1291 /**
1292 * Pre-gen6, the register file of the EUs was shared between threads,
1293 * and each thread used some subset allocated on a 16-register block
1294 * granularity. The unit states wanted these block counts.
1295 */
1296 static inline int
1297 brw_register_blocks(int reg_count)
1298 {
1299 return ALIGN(reg_count, 16) / 16 - 1;
1300 }
1301
1302 static inline uint32_t
1303 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1304 uint32_t prog_offset)
1305 {
1306 struct intel_context *intel = &brw->intel;
1307
1308 if (intel->gen >= 5) {
1309 /* Using state base address. */
1310 return prog_offset;
1311 }
1312
1313 drm_intel_bo_emit_reloc(intel->batch.bo,
1314 state_offset,
1315 brw->cache.bo,
1316 prog_offset,
1317 I915_GEM_DOMAIN_INSTRUCTION, 0);
1318
1319 return brw->cache.bo->offset + prog_offset;
1320 }
1321
1322 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1323 bool brw_lower_texture_gradients(struct exec_list *instructions);
1324
1325 struct opcode_desc {
1326 char *name;
1327 int nsrc;
1328 int ndst;
1329 };
1330
1331 extern const struct opcode_desc opcode_descs[128];
1332
1333 #ifdef __cplusplus
1334 }
1335 #endif
1336
1337 #endif